@huggingface/tasks 0.0.6 → 0.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. package/README.md +16 -2
  2. package/dist/index.d.ts +358 -5
  3. package/dist/index.js +1906 -72
  4. package/dist/index.mjs +1905 -71
  5. package/package.json +1 -1
  6. package/src/default-widget-inputs.ts +718 -0
  7. package/src/index.ts +35 -4
  8. package/src/library-to-tasks.ts +47 -0
  9. package/src/library-ui-elements.ts +765 -0
  10. package/src/model-data.ts +239 -0
  11. package/src/pipelines.ts +15 -0
  12. package/src/snippets/curl.ts +63 -0
  13. package/src/snippets/index.ts +6 -0
  14. package/src/snippets/inputs.ts +129 -0
  15. package/src/snippets/js.ts +150 -0
  16. package/src/snippets/python.ts +114 -0
  17. package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
  18. package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
  19. package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
  20. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
  21. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
  22. package/src/{conversational → tasks/conversational}/data.ts +1 -1
  23. package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
  24. package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
  25. package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
  26. package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
  27. package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
  28. package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
  29. package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
  30. package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
  31. package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
  32. package/src/{tasksData.ts → tasks/index.ts} +140 -15
  33. package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
  34. package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
  35. package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
  36. package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
  37. package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
  38. package/src/{summarization → tasks/summarization}/data.ts +1 -1
  39. package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
  40. package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
  41. package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
  42. package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
  43. package/src/{text-generation → tasks/text-generation}/about.md +3 -3
  44. package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
  45. package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
  46. package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
  47. package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
  48. package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
  49. package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
  50. package/src/{translation → tasks/translation}/data.ts +1 -1
  51. package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
  52. package/src/{video-classification → tasks/video-classification}/about.md +8 -28
  53. package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
  54. package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
  55. package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
  56. package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
  57. package/src/Types.ts +0 -64
  58. package/src/const.ts +0 -59
  59. /package/src/{modelLibraries.ts → model-libraries.ts} +0 -0
  60. /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
  61. /package/src/{conversational → tasks/conversational}/about.md +0 -0
  62. /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
  63. /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
  64. /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
  65. /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
  66. /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
  67. /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
  68. /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
  69. /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
  70. /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
  71. /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
  72. /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
  73. /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
  74. /package/src/{summarization → tasks/summarization}/about.md +0 -0
  75. /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
  76. /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
  77. /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
  78. /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
  79. /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
  80. /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
  81. /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
  82. /package/src/{translation → tasks/translation}/about.md +0 -0
  83. /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
  84. /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
  85. /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
  86. /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.js CHANGED
@@ -21,8 +21,12 @@ var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: tru
21
21
  var src_exports = {};
22
22
  __export(src_exports, {
23
23
  ALL_DISPLAY_MODEL_LIBRARY_KEYS: () => ALL_DISPLAY_MODEL_LIBRARY_KEYS,
24
+ InferenceDisplayability: () => InferenceDisplayability,
25
+ LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS: () => LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
26
+ MAPPING_DEFAULT_WIDGET: () => MAPPING_DEFAULT_WIDGET,
24
27
  MODALITIES: () => MODALITIES,
25
28
  MODALITY_LABELS: () => MODALITY_LABELS,
29
+ MODEL_LIBRARIES_UI_ELEMENTS: () => MODEL_LIBRARIES_UI_ELEMENTS,
26
30
  ModelLibrary: () => ModelLibrary,
27
31
  OTHER_TAGS_SUGGESTIONS: () => OTHER_TAGS_SUGGESTIONS,
28
32
  PIPELINE_DATA: () => PIPELINE_DATA,
@@ -32,10 +36,1394 @@ __export(src_exports, {
32
36
  TAG_CUSTOM_CODE: () => TAG_CUSTOM_CODE,
33
37
  TAG_NFAA_CONTENT: () => TAG_NFAA_CONTENT,
34
38
  TAG_TEXT_GENERATION_INFERENCE: () => TAG_TEXT_GENERATION_INFERENCE,
35
- TASKS_DATA: () => TASKS_DATA
39
+ TASKS_DATA: () => TASKS_DATA,
40
+ TASKS_MODEL_LIBRARIES: () => TASKS_MODEL_LIBRARIES,
41
+ snippets: () => snippets_exports
36
42
  });
37
43
  module.exports = __toCommonJS(src_exports);
38
44
 
45
+ // src/library-to-tasks.ts
46
+ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
47
+ "adapter-transformers": ["question-answering", "text-classification", "token-classification"],
48
+ allennlp: ["question-answering"],
49
+ asteroid: [
50
+ // "audio-source-separation",
51
+ "audio-to-audio"
52
+ ],
53
+ bertopic: ["text-classification"],
54
+ diffusers: ["image-to-image", "text-to-image"],
55
+ doctr: ["object-detection"],
56
+ espnet: ["text-to-speech", "automatic-speech-recognition"],
57
+ fairseq: ["text-to-speech", "audio-to-audio"],
58
+ fastai: ["image-classification"],
59
+ fasttext: ["feature-extraction", "text-classification"],
60
+ flair: ["token-classification"],
61
+ k2: ["automatic-speech-recognition"],
62
+ keras: ["image-classification"],
63
+ nemo: ["automatic-speech-recognition"],
64
+ open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
65
+ paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
66
+ peft: ["text-generation"],
67
+ "pyannote-audio": ["automatic-speech-recognition"],
68
+ "sentence-transformers": ["feature-extraction", "sentence-similarity"],
69
+ sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
70
+ spacy: ["token-classification", "text-classification", "sentence-similarity"],
71
+ "span-marker": ["token-classification"],
72
+ speechbrain: [
73
+ "audio-classification",
74
+ "audio-to-audio",
75
+ "automatic-speech-recognition",
76
+ "text-to-speech",
77
+ "text2text-generation"
78
+ ],
79
+ stanza: ["token-classification"],
80
+ timm: ["image-classification"],
81
+ mindspore: ["image-classification"]
82
+ };
83
+
84
+ // src/library-ui-elements.ts
85
+ function nameWithoutNamespace(modelId) {
86
+ const splitted = modelId.split("/");
87
+ return splitted.length === 1 ? splitted[0] : splitted[1];
88
+ }
89
+ var adapter_transformers = (model) => [
90
+ `from transformers import ${model.config?.adapter_transformers?.model_class}
91
+
92
+ model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
93
+ model.load_adapter("${model.id}", source="hf")`
94
+ ];
95
+ var allennlpUnknown = (model) => [
96
+ `import allennlp_models
97
+ from allennlp.predictors.predictor import Predictor
98
+
99
+ predictor = Predictor.from_path("hf://${model.id}")`
100
+ ];
101
+ var allennlpQuestionAnswering = (model) => [
102
+ `import allennlp_models
103
+ from allennlp.predictors.predictor import Predictor
104
+
105
+ predictor = Predictor.from_path("hf://${model.id}")
106
+ predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
107
+ predictions = predictor.predict_json(predictor_input)`
108
+ ];
109
+ var allennlp = (model) => {
110
+ if (model.tags?.includes("question-answering")) {
111
+ return allennlpQuestionAnswering(model);
112
+ }
113
+ return allennlpUnknown(model);
114
+ };
115
+ var asteroid = (model) => [
116
+ `from asteroid.models import BaseModel
117
+
118
+ model = BaseModel.from_pretrained("${model.id}")`
119
+ ];
120
+ function get_base_diffusers_model(model) {
121
+ return model.cardData?.base_model ?? "fill-in-base-model";
122
+ }
123
+ var bertopic = (model) => [
124
+ `from bertopic import BERTopic
125
+
126
+ model = BERTopic.load("${model.id}")`
127
+ ];
128
+ var diffusers_default = (model) => [
129
+ `from diffusers import DiffusionPipeline
130
+
131
+ pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
132
+ ];
133
+ var diffusers_controlnet = (model) => [
134
+ `from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
135
+
136
+ controlnet = ControlNetModel.from_pretrained("${model.id}")
137
+ pipeline = StableDiffusionControlNetPipeline.from_pretrained(
138
+ "${get_base_diffusers_model(model)}", controlnet=controlnet
139
+ )`
140
+ ];
141
+ var diffusers_lora = (model) => [
142
+ `from diffusers import DiffusionPipeline
143
+
144
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
145
+ pipeline.load_lora_weights("${model.id}")`
146
+ ];
147
+ var diffusers_textual_inversion = (model) => [
148
+ `from diffusers import DiffusionPipeline
149
+
150
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
151
+ pipeline.load_textual_inversion("${model.id}")`
152
+ ];
153
+ var diffusers = (model) => {
154
+ if (model.tags?.includes("controlnet")) {
155
+ return diffusers_controlnet(model);
156
+ } else if (model.tags?.includes("lora")) {
157
+ return diffusers_lora(model);
158
+ } else if (model.tags?.includes("textual_inversion")) {
159
+ return diffusers_textual_inversion(model);
160
+ } else {
161
+ return diffusers_default(model);
162
+ }
163
+ };
164
+ var espnetTTS = (model) => [
165
+ `from espnet2.bin.tts_inference import Text2Speech
166
+
167
+ model = Text2Speech.from_pretrained("${model.id}")
168
+
169
+ speech, *_ = model("text to generate speech from")`
170
+ ];
171
+ var espnetASR = (model) => [
172
+ `from espnet2.bin.asr_inference import Speech2Text
173
+
174
+ model = Speech2Text.from_pretrained(
175
+ "${model.id}"
176
+ )
177
+
178
+ speech, rate = soundfile.read("speech.wav")
179
+ text, *_ = model(speech)[0]`
180
+ ];
181
+ var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
182
+ var espnet = (model) => {
183
+ if (model.tags?.includes("text-to-speech")) {
184
+ return espnetTTS(model);
185
+ } else if (model.tags?.includes("automatic-speech-recognition")) {
186
+ return espnetASR(model);
187
+ }
188
+ return espnetUnknown();
189
+ };
190
+ var fairseq = (model) => [
191
+ `from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
192
+
193
+ models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
194
+ "${model.id}"
195
+ )`
196
+ ];
197
+ var flair = (model) => [
198
+ `from flair.models import SequenceTagger
199
+
200
+ tagger = SequenceTagger.load("${model.id}")`
201
+ ];
202
+ var keras = (model) => [
203
+ `from huggingface_hub import from_pretrained_keras
204
+
205
+ model = from_pretrained_keras("${model.id}")
206
+ `
207
+ ];
208
+ var open_clip = (model) => [
209
+ `import open_clip
210
+
211
+ model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
212
+ tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
213
+ ];
214
+ var paddlenlp = (model) => {
215
+ if (model.config?.architectures?.[0]) {
216
+ const architecture = model.config.architectures[0];
217
+ return [
218
+ [
219
+ `from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
220
+ "",
221
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
222
+ `model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
223
+ ].join("\n")
224
+ ];
225
+ } else {
226
+ return [
227
+ [
228
+ `# \u26A0\uFE0F Type of model unknown`,
229
+ `from paddlenlp.transformers import AutoTokenizer, AutoModel`,
230
+ "",
231
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
232
+ `model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
233
+ ].join("\n")
234
+ ];
235
+ }
236
+ };
237
+ var pyannote_audio_pipeline = (model) => [
238
+ `from pyannote.audio import Pipeline
239
+
240
+ pipeline = Pipeline.from_pretrained("${model.id}")
241
+
242
+ # inference on the whole file
243
+ pipeline("file.wav")
244
+
245
+ # inference on an excerpt
246
+ from pyannote.core import Segment
247
+ excerpt = Segment(start=2.0, end=5.0)
248
+
249
+ from pyannote.audio import Audio
250
+ waveform, sample_rate = Audio().crop("file.wav", excerpt)
251
+ pipeline({"waveform": waveform, "sample_rate": sample_rate})`
252
+ ];
253
+ var pyannote_audio_model = (model) => [
254
+ `from pyannote.audio import Model, Inference
255
+
256
+ model = Model.from_pretrained("${model.id}")
257
+ inference = Inference(model)
258
+
259
+ # inference on the whole file
260
+ inference("file.wav")
261
+
262
+ # inference on an excerpt
263
+ from pyannote.core import Segment
264
+ excerpt = Segment(start=2.0, end=5.0)
265
+ inference.crop("file.wav", excerpt)`
266
+ ];
267
+ var pyannote_audio = (model) => {
268
+ if (model.tags?.includes("pyannote-audio-pipeline")) {
269
+ return pyannote_audio_pipeline(model);
270
+ }
271
+ return pyannote_audio_model(model);
272
+ };
273
+ var tensorflowttsTextToMel = (model) => [
274
+ `from tensorflow_tts.inference import AutoProcessor, TFAutoModel
275
+
276
+ processor = AutoProcessor.from_pretrained("${model.id}")
277
+ model = TFAutoModel.from_pretrained("${model.id}")
278
+ `
279
+ ];
280
+ var tensorflowttsMelToWav = (model) => [
281
+ `from tensorflow_tts.inference import TFAutoModel
282
+
283
+ model = TFAutoModel.from_pretrained("${model.id}")
284
+ audios = model.inference(mels)
285
+ `
286
+ ];
287
+ var tensorflowttsUnknown = (model) => [
288
+ `from tensorflow_tts.inference import TFAutoModel
289
+
290
+ model = TFAutoModel.from_pretrained("${model.id}")
291
+ `
292
+ ];
293
+ var tensorflowtts = (model) => {
294
+ if (model.tags?.includes("text-to-mel")) {
295
+ return tensorflowttsTextToMel(model);
296
+ } else if (model.tags?.includes("mel-to-wav")) {
297
+ return tensorflowttsMelToWav(model);
298
+ }
299
+ return tensorflowttsUnknown(model);
300
+ };
301
+ var timm = (model) => [
302
+ `import timm
303
+
304
+ model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
305
+ ];
306
+ var skopsPickle = (model, modelFile) => {
307
+ return [
308
+ `import joblib
309
+ from skops.hub_utils import download
310
+ download("${model.id}", "path_to_folder")
311
+ model = joblib.load(
312
+ "${modelFile}"
313
+ )
314
+ # only load pickle files from sources you trust
315
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
316
+ ];
317
+ };
318
+ var skopsFormat = (model, modelFile) => {
319
+ return [
320
+ `from skops.hub_utils import download
321
+ from skops.io import load
322
+ download("${model.id}", "path_to_folder")
323
+ # make sure model file is in skops format
324
+ # if model is a pickle file, make sure it's from a source you trust
325
+ model = load("path_to_folder/${modelFile}")`
326
+ ];
327
+ };
328
+ var skopsJobLib = (model) => {
329
+ return [
330
+ `from huggingface_hub import hf_hub_download
331
+ import joblib
332
+ model = joblib.load(
333
+ hf_hub_download("${model.id}", "sklearn_model.joblib")
334
+ )
335
+ # only load pickle files from sources you trust
336
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
337
+ ];
338
+ };
339
+ var sklearn = (model) => {
340
+ if (model.tags?.includes("skops")) {
341
+ const skopsmodelFile = model.config?.sklearn?.filename;
342
+ const skopssaveFormat = model.config?.sklearn?.model_format;
343
+ if (!skopsmodelFile) {
344
+ return [`# \u26A0\uFE0F Model filename not specified in config.json`];
345
+ }
346
+ if (skopssaveFormat === "pickle") {
347
+ return skopsPickle(model, skopsmodelFile);
348
+ } else {
349
+ return skopsFormat(model, skopsmodelFile);
350
+ }
351
+ } else {
352
+ return skopsJobLib(model);
353
+ }
354
+ };
355
+ var fastai = (model) => [
356
+ `from huggingface_hub import from_pretrained_fastai
357
+
358
+ learn = from_pretrained_fastai("${model.id}")`
359
+ ];
360
+ var sampleFactory = (model) => [
361
+ `python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
362
+ ];
363
+ var sentenceTransformers = (model) => [
364
+ `from sentence_transformers import SentenceTransformer
365
+
366
+ model = SentenceTransformer("${model.id}")`
367
+ ];
368
+ var spacy = (model) => [
369
+ `!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
370
+
371
+ # Using spacy.load().
372
+ import spacy
373
+ nlp = spacy.load("${nameWithoutNamespace(model.id)}")
374
+
375
+ # Importing as module.
376
+ import ${nameWithoutNamespace(model.id)}
377
+ nlp = ${nameWithoutNamespace(model.id)}.load()`
378
+ ];
379
+ var span_marker = (model) => [
380
+ `from span_marker import SpanMarkerModel
381
+
382
+ model = SpanMarkerModel.from_pretrained("${model.id}")`
383
+ ];
384
+ var stanza = (model) => [
385
+ `import stanza
386
+
387
+ stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
388
+ nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
389
+ ];
390
+ var speechBrainMethod = (speechbrainInterface) => {
391
+ switch (speechbrainInterface) {
392
+ case "EncoderClassifier":
393
+ return "classify_file";
394
+ case "EncoderDecoderASR":
395
+ case "EncoderASR":
396
+ return "transcribe_file";
397
+ case "SpectralMaskEnhancement":
398
+ return "enhance_file";
399
+ case "SepformerSeparation":
400
+ return "separate_file";
401
+ default:
402
+ return void 0;
403
+ }
404
+ };
405
+ var speechbrain = (model) => {
406
+ const speechbrainInterface = model.config?.speechbrain?.interface;
407
+ if (speechbrainInterface === void 0) {
408
+ return [`# interface not specified in config.json`];
409
+ }
410
+ const speechbrainMethod = speechBrainMethod(speechbrainInterface);
411
+ if (speechbrainMethod === void 0) {
412
+ return [`# interface in config.json invalid`];
413
+ }
414
+ return [
415
+ `from speechbrain.pretrained import ${speechbrainInterface}
416
+ model = ${speechbrainInterface}.from_hparams(
417
+ "${model.id}"
418
+ )
419
+ model.${speechbrainMethod}("file.wav")`
420
+ ];
421
+ };
422
+ var transformers = (model) => {
423
+ const info = model.transformersInfo;
424
+ if (!info) {
425
+ return [`# \u26A0\uFE0F Type of model unknown`];
426
+ }
427
+ const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
428
+ let autoSnippet;
429
+ if (info.processor) {
430
+ const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
431
+ autoSnippet = [
432
+ "# Load model directly",
433
+ `from transformers import ${info.processor}, ${info.auto_model}`,
434
+ "",
435
+ `${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
436
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
437
+ ].join("\n");
438
+ } else {
439
+ autoSnippet = [
440
+ "# Load model directly",
441
+ `from transformers import ${info.auto_model}`,
442
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
443
+ ].join("\n");
444
+ }
445
+ if (model.pipeline_tag) {
446
+ const pipelineSnippet = [
447
+ "# Use a pipeline as a high-level helper",
448
+ "from transformers import pipeline",
449
+ "",
450
+ `pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
451
+ ].join("\n");
452
+ return [pipelineSnippet, autoSnippet];
453
+ }
454
+ return [autoSnippet];
455
+ };
456
+ var transformersJS = (model) => {
457
+ if (!model.pipeline_tag) {
458
+ return [`// \u26A0\uFE0F Unknown pipeline tag`];
459
+ }
460
+ const libName = "@xenova/transformers";
461
+ return [
462
+ `// npm i ${libName}
463
+ import { pipeline } from '${libName}';
464
+
465
+ // Allocate pipeline
466
+ const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
467
+ ];
468
+ };
469
+ var peftTask = (peftTaskType) => {
470
+ switch (peftTaskType) {
471
+ case "CAUSAL_LM":
472
+ return "CausalLM";
473
+ case "SEQ_2_SEQ_LM":
474
+ return "Seq2SeqLM";
475
+ case "TOKEN_CLS":
476
+ return "TokenClassification";
477
+ case "SEQ_CLS":
478
+ return "SequenceClassification";
479
+ default:
480
+ return void 0;
481
+ }
482
+ };
483
+ var peft = (model) => {
484
+ const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
485
+ const pefttask = peftTask(peftTaskType);
486
+ if (!pefttask) {
487
+ return [`Task type is invalid.`];
488
+ }
489
+ if (!peftBaseModel) {
490
+ return [`Base model is not found.`];
491
+ }
492
+ return [
493
+ `from peft import PeftModel, PeftConfig
494
+ from transformers import AutoModelFor${pefttask}
495
+
496
+ config = PeftConfig.from_pretrained("${model.id}")
497
+ model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
498
+ model = PeftModel.from_pretrained(model, "${model.id}")`
499
+ ];
500
+ };
501
+ var fasttext = (model) => [
502
+ `from huggingface_hub import hf_hub_download
503
+ import fasttext
504
+
505
+ model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
506
+ ];
507
+ var stableBaselines3 = (model) => [
508
+ `from huggingface_sb3 import load_from_hub
509
+ checkpoint = load_from_hub(
510
+ repo_id="${model.id}",
511
+ filename="{MODEL FILENAME}.zip",
512
+ )`
513
+ ];
514
+ var nemoDomainResolver = (domain, model) => {
515
+ switch (domain) {
516
+ case "ASR":
517
+ return [
518
+ `import nemo.collections.asr as nemo_asr
519
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
520
+
521
+ transcriptions = asr_model.transcribe(["file.wav"])`
522
+ ];
523
+ default:
524
+ return void 0;
525
+ }
526
+ };
527
+ var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
528
+ var nemo = (model) => {
529
+ let command = void 0;
530
+ if (model.tags?.includes("automatic-speech-recognition")) {
531
+ command = nemoDomainResolver("ASR", model);
532
+ }
533
+ return command ?? [`# tag did not correspond to a valid NeMo domain.`];
534
+ };
535
+ var pythae = (model) => [
536
+ `from pythae.models import AutoModel
537
+
538
+ model = AutoModel.load_from_hf_hub("${model.id}")`
539
+ ];
540
+ var MODEL_LIBRARIES_UI_ELEMENTS = {
541
+ "adapter-transformers": {
542
+ btnLabel: "Adapter Transformers",
543
+ repoName: "adapter-transformers",
544
+ repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
545
+ docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
546
+ snippets: adapter_transformers
547
+ },
548
+ allennlp: {
549
+ btnLabel: "AllenNLP",
550
+ repoName: "AllenNLP",
551
+ repoUrl: "https://github.com/allenai/allennlp",
552
+ docsUrl: "https://huggingface.co/docs/hub/allennlp",
553
+ snippets: allennlp
554
+ },
555
+ asteroid: {
556
+ btnLabel: "Asteroid",
557
+ repoName: "Asteroid",
558
+ repoUrl: "https://github.com/asteroid-team/asteroid",
559
+ docsUrl: "https://huggingface.co/docs/hub/asteroid",
560
+ snippets: asteroid
561
+ },
562
+ bertopic: {
563
+ btnLabel: "BERTopic",
564
+ repoName: "BERTopic",
565
+ repoUrl: "https://github.com/MaartenGr/BERTopic",
566
+ snippets: bertopic
567
+ },
568
+ diffusers: {
569
+ btnLabel: "Diffusers",
570
+ repoName: "\u{1F917}/diffusers",
571
+ repoUrl: "https://github.com/huggingface/diffusers",
572
+ docsUrl: "https://huggingface.co/docs/hub/diffusers",
573
+ snippets: diffusers
574
+ },
575
+ espnet: {
576
+ btnLabel: "ESPnet",
577
+ repoName: "ESPnet",
578
+ repoUrl: "https://github.com/espnet/espnet",
579
+ docsUrl: "https://huggingface.co/docs/hub/espnet",
580
+ snippets: espnet
581
+ },
582
+ fairseq: {
583
+ btnLabel: "Fairseq",
584
+ repoName: "fairseq",
585
+ repoUrl: "https://github.com/pytorch/fairseq",
586
+ snippets: fairseq
587
+ },
588
+ flair: {
589
+ btnLabel: "Flair",
590
+ repoName: "Flair",
591
+ repoUrl: "https://github.com/flairNLP/flair",
592
+ docsUrl: "https://huggingface.co/docs/hub/flair",
593
+ snippets: flair
594
+ },
595
+ keras: {
596
+ btnLabel: "Keras",
597
+ repoName: "Keras",
598
+ repoUrl: "https://github.com/keras-team/keras",
599
+ docsUrl: "https://huggingface.co/docs/hub/keras",
600
+ snippets: keras
601
+ },
602
+ nemo: {
603
+ btnLabel: "NeMo",
604
+ repoName: "NeMo",
605
+ repoUrl: "https://github.com/NVIDIA/NeMo",
606
+ snippets: nemo
607
+ },
608
+ open_clip: {
609
+ btnLabel: "OpenCLIP",
610
+ repoName: "OpenCLIP",
611
+ repoUrl: "https://github.com/mlfoundations/open_clip",
612
+ snippets: open_clip
613
+ },
614
+ paddlenlp: {
615
+ btnLabel: "paddlenlp",
616
+ repoName: "PaddleNLP",
617
+ repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
618
+ docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
619
+ snippets: paddlenlp
620
+ },
621
+ peft: {
622
+ btnLabel: "PEFT",
623
+ repoName: "PEFT",
624
+ repoUrl: "https://github.com/huggingface/peft",
625
+ snippets: peft
626
+ },
627
+ "pyannote-audio": {
628
+ btnLabel: "pyannote.audio",
629
+ repoName: "pyannote-audio",
630
+ repoUrl: "https://github.com/pyannote/pyannote-audio",
631
+ snippets: pyannote_audio
632
+ },
633
+ "sentence-transformers": {
634
+ btnLabel: "sentence-transformers",
635
+ repoName: "sentence-transformers",
636
+ repoUrl: "https://github.com/UKPLab/sentence-transformers",
637
+ docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
638
+ snippets: sentenceTransformers
639
+ },
640
+ sklearn: {
641
+ btnLabel: "Scikit-learn",
642
+ repoName: "Scikit-learn",
643
+ repoUrl: "https://github.com/scikit-learn/scikit-learn",
644
+ snippets: sklearn
645
+ },
646
+ fastai: {
647
+ btnLabel: "fastai",
648
+ repoName: "fastai",
649
+ repoUrl: "https://github.com/fastai/fastai",
650
+ docsUrl: "https://huggingface.co/docs/hub/fastai",
651
+ snippets: fastai
652
+ },
653
+ spacy: {
654
+ btnLabel: "spaCy",
655
+ repoName: "spaCy",
656
+ repoUrl: "https://github.com/explosion/spaCy",
657
+ docsUrl: "https://huggingface.co/docs/hub/spacy",
658
+ snippets: spacy
659
+ },
660
+ "span-marker": {
661
+ btnLabel: "SpanMarker",
662
+ repoName: "SpanMarkerNER",
663
+ repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
664
+ docsUrl: "https://huggingface.co/docs/hub/span_marker",
665
+ snippets: span_marker
666
+ },
667
+ speechbrain: {
668
+ btnLabel: "speechbrain",
669
+ repoName: "speechbrain",
670
+ repoUrl: "https://github.com/speechbrain/speechbrain",
671
+ docsUrl: "https://huggingface.co/docs/hub/speechbrain",
672
+ snippets: speechbrain
673
+ },
674
+ stanza: {
675
+ btnLabel: "Stanza",
676
+ repoName: "stanza",
677
+ repoUrl: "https://github.com/stanfordnlp/stanza",
678
+ docsUrl: "https://huggingface.co/docs/hub/stanza",
679
+ snippets: stanza
680
+ },
681
+ tensorflowtts: {
682
+ btnLabel: "TensorFlowTTS",
683
+ repoName: "TensorFlowTTS",
684
+ repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
685
+ snippets: tensorflowtts
686
+ },
687
+ timm: {
688
+ btnLabel: "timm",
689
+ repoName: "pytorch-image-models",
690
+ repoUrl: "https://github.com/rwightman/pytorch-image-models",
691
+ docsUrl: "https://huggingface.co/docs/hub/timm",
692
+ snippets: timm
693
+ },
694
+ transformers: {
695
+ btnLabel: "Transformers",
696
+ repoName: "\u{1F917}/transformers",
697
+ repoUrl: "https://github.com/huggingface/transformers",
698
+ docsUrl: "https://huggingface.co/docs/hub/transformers",
699
+ snippets: transformers
700
+ },
701
+ "transformers.js": {
702
+ btnLabel: "Transformers.js",
703
+ repoName: "transformers.js",
704
+ repoUrl: "https://github.com/xenova/transformers.js",
705
+ docsUrl: "https://huggingface.co/docs/hub/transformers-js",
706
+ snippets: transformersJS
707
+ },
708
+ fasttext: {
709
+ btnLabel: "fastText",
710
+ repoName: "fastText",
711
+ repoUrl: "https://fasttext.cc/",
712
+ snippets: fasttext
713
+ },
714
+ "sample-factory": {
715
+ btnLabel: "sample-factory",
716
+ repoName: "sample-factory",
717
+ repoUrl: "https://github.com/alex-petrenko/sample-factory",
718
+ docsUrl: "https://huggingface.co/docs/hub/sample-factory",
719
+ snippets: sampleFactory
720
+ },
721
+ "stable-baselines3": {
722
+ btnLabel: "stable-baselines3",
723
+ repoName: "stable-baselines3",
724
+ repoUrl: "https://github.com/huggingface/huggingface_sb3",
725
+ docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
726
+ snippets: stableBaselines3
727
+ },
728
+ "ml-agents": {
729
+ btnLabel: "ml-agents",
730
+ repoName: "ml-agents",
731
+ repoUrl: "https://github.com/huggingface/ml-agents",
732
+ docsUrl: "https://huggingface.co/docs/hub/ml-agents",
733
+ snippets: mlAgents
734
+ },
735
+ pythae: {
736
+ btnLabel: "pythae",
737
+ repoName: "pythae",
738
+ repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
739
+ snippets: pythae
740
+ }
741
+ };
742
+
743
+ // src/default-widget-inputs.ts
744
+ var MAPPING_EN = /* @__PURE__ */ new Map([
745
+ ["text-classification", [`I like you. I love you`]],
746
+ [
747
+ "token-classification",
748
+ [
749
+ `My name is Wolfgang and I live in Berlin`,
750
+ `My name is Sarah and I live in London`,
751
+ `My name is Clara and I live in Berkeley, California.`
752
+ ]
753
+ ],
754
+ [
755
+ "table-question-answering",
756
+ [
757
+ {
758
+ text: `How many stars does the transformers repository have?`,
759
+ table: {
760
+ Repository: ["Transformers", "Datasets", "Tokenizers"],
761
+ Stars: [36542, 4512, 3934],
762
+ Contributors: [651, 77, 34],
763
+ "Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
764
+ }
765
+ }
766
+ ]
767
+ ],
768
+ [
769
+ "question-answering",
770
+ [
771
+ {
772
+ text: `Where do I live?`,
773
+ context: `My name is Wolfgang and I live in Berlin`
774
+ },
775
+ {
776
+ text: `Where do I live?`,
777
+ context: `My name is Sarah and I live in London`
778
+ },
779
+ {
780
+ text: `What's my name?`,
781
+ context: `My name is Clara and I live in Berkeley.`
782
+ },
783
+ {
784
+ text: `Which name is also used to describe the Amazon rainforest in English?`,
785
+ context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
786
+ }
787
+ ]
788
+ ],
789
+ [
790
+ "zero-shot-classification",
791
+ [
792
+ {
793
+ text: "I have a problem with my iphone that needs to be resolved asap!!",
794
+ candidate_labels: "urgent, not urgent, phone, tablet, computer",
795
+ multi_class: true
796
+ },
797
+ {
798
+ text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
799
+ candidate_labels: "mobile, website, billing, account access",
800
+ multi_class: false
801
+ },
802
+ {
803
+ text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
804
+ candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
805
+ multi_class: true
806
+ }
807
+ ]
808
+ ],
809
+ ["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
810
+ [
811
+ "summarization",
812
+ [
813
+ `The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
814
+ ]
815
+ ],
816
+ [
817
+ "conversational",
818
+ [
819
+ `Hey my name is Julien! How are you?`,
820
+ `Hey my name is Thomas! How are you?`,
821
+ `Hey my name is Mariama! How are you?`,
822
+ `Hey my name is Clara! How are you?`,
823
+ `Hey my name is Julien! How are you?`,
824
+ `Hi.`
825
+ ]
826
+ ],
827
+ [
828
+ "text-generation",
829
+ [
830
+ `My name is Julien and I like to`,
831
+ `My name is Thomas and my main`,
832
+ `My name is Mariama, my favorite`,
833
+ `My name is Clara and I am`,
834
+ `My name is Lewis and I like to`,
835
+ `My name is Merve and my favorite`,
836
+ `My name is Teven and I am`,
837
+ `Once upon a time,`
838
+ ]
839
+ ],
840
+ ["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
841
+ [
842
+ "sentence-similarity",
843
+ [
844
+ {
845
+ source_sentence: "That is a happy person",
846
+ sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
847
+ }
848
+ ]
849
+ ]
850
+ ]);
851
+ var MAPPING_ZH = /* @__PURE__ */ new Map([
852
+ ["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
853
+ ["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
854
+ [
855
+ "question-answering",
856
+ [
857
+ {
858
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
859
+ context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
860
+ },
861
+ {
862
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
863
+ context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
864
+ },
865
+ {
866
+ text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
867
+ context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
868
+ }
869
+ ]
870
+ ],
871
+ ["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
872
+ [
873
+ "zero-shot-classification",
874
+ [
875
+ {
876
+ text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
877
+ candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
878
+ }
879
+ ]
880
+ ],
881
+ [
882
+ "summarization",
883
+ [
884
+ `\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
885
+ ]
886
+ ],
887
+ [
888
+ "text-generation",
889
+ [`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
890
+ ],
891
+ ["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
892
+ [
893
+ "sentence-similarity",
894
+ [
895
+ {
896
+ source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
897
+ sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
898
+ }
899
+ ]
900
+ ]
901
+ ]);
902
+ var MAPPING_FR = /* @__PURE__ */ new Map([
903
+ ["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
904
+ ["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
905
+ [
906
+ "question-answering",
907
+ [
908
+ {
909
+ text: `O\xF9 est-ce que je vis?`,
910
+ context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
911
+ }
912
+ ]
913
+ ],
914
+ ["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
915
+ [
916
+ "summarization",
917
+ [
918
+ `La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
919
+ ]
920
+ ],
921
+ ["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
922
+ ["fill-mask", [`Paris est la <mask> de la France.`]],
923
+ [
924
+ "sentence-similarity",
925
+ [
926
+ {
927
+ source_sentence: "C'est une personne heureuse",
928
+ sentences: [
929
+ "C'est un chien heureux",
930
+ "C'est une personne tr\xE8s heureuse",
931
+ "Aujourd'hui est une journ\xE9e ensoleill\xE9e"
932
+ ]
933
+ }
934
+ ]
935
+ ]
936
+ ]);
937
+ var MAPPING_ES = /* @__PURE__ */ new Map([
938
+ ["text-classification", [`Te quiero. Te amo.`]],
939
+ ["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
940
+ [
941
+ "question-answering",
942
+ [
943
+ {
944
+ text: `\xBFD\xF3nde vivo?`,
945
+ context: `Me llamo Wolfgang y vivo en Berlin`
946
+ },
947
+ {
948
+ text: `\xBFQui\xE9n invent\xF3 el submarino?`,
949
+ context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
950
+ },
951
+ {
952
+ text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
953
+ context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
954
+ }
955
+ ]
956
+ ],
957
+ [
958
+ "translation",
959
+ [
960
+ `Me llamo Wolfgang y vivo en Berlin`,
961
+ `Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
962
+ ]
963
+ ],
964
+ [
965
+ "summarization",
966
+ [
967
+ `La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
968
+ ]
969
+ ],
970
+ [
971
+ "text-generation",
972
+ [
973
+ `Me llamo Julien y me gusta`,
974
+ `Me llamo Thomas y mi principal`,
975
+ `Me llamo Manuel y trabajo en`,
976
+ `\xC9rase una vez,`,
977
+ `Si t\xFA me dices ven, `
978
+ ]
979
+ ],
980
+ ["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
981
+ [
982
+ "sentence-similarity",
983
+ [
984
+ {
985
+ source_sentence: "Esa es una persona feliz",
986
+ sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
987
+ }
988
+ ]
989
+ ]
990
+ ]);
991
+ var MAPPING_RU = /* @__PURE__ */ new Map([
992
+ ["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
993
+ ["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
994
+ [
995
+ "question-answering",
996
+ [
997
+ {
998
+ text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
999
+ context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
1000
+ }
1001
+ ]
1002
+ ],
1003
+ ["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
1004
+ [
1005
+ "summarization",
1006
+ [
1007
+ `\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
1008
+ ]
1009
+ ],
1010
+ ["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
1011
+ ["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
1012
+ [
1013
+ "sentence-similarity",
1014
+ [
1015
+ {
1016
+ source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
1017
+ sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
1018
+ }
1019
+ ]
1020
+ ]
1021
+ ]);
1022
+ var MAPPING_UK = /* @__PURE__ */ new Map([
1023
+ ["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
1024
+ ["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
1025
+ ]);
1026
+ var MAPPING_IT = /* @__PURE__ */ new Map([
1027
+ ["text-classification", [`Mi piaci. Ti amo`]],
1028
+ [
1029
+ "token-classification",
1030
+ [
1031
+ `Mi chiamo Wolfgang e vivo a Berlino`,
1032
+ `Mi chiamo Sarah e vivo a Londra`,
1033
+ `Mi chiamo Clara e vivo a Berkeley in California.`
1034
+ ]
1035
+ ],
1036
+ [
1037
+ "question-answering",
1038
+ [
1039
+ {
1040
+ text: `Dove vivo?`,
1041
+ context: `Mi chiamo Wolfgang e vivo a Berlino`
1042
+ },
1043
+ {
1044
+ text: `Dove vivo?`,
1045
+ context: `Mi chiamo Sarah e vivo a Londra`
1046
+ },
1047
+ {
1048
+ text: `Come mio chiamo?`,
1049
+ context: `Mi chiamo Clara e vivo a Berkeley.`
1050
+ }
1051
+ ]
1052
+ ],
1053
+ ["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
1054
+ [
1055
+ "summarization",
1056
+ [
1057
+ `La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
1058
+ ]
1059
+ ],
1060
+ [
1061
+ "text-generation",
1062
+ [
1063
+ `Mi chiamo Loreto e mi piace`,
1064
+ `Mi chiamo Thomas e il mio principale`,
1065
+ `Mi chiamo Marianna, la mia cosa preferita`,
1066
+ `Mi chiamo Clara e sono`,
1067
+ `C'era una volta`
1068
+ ]
1069
+ ],
1070
+ ["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
1071
+ [
1072
+ "sentence-similarity",
1073
+ [
1074
+ {
1075
+ source_sentence: "Questa \xE8 una persona felice",
1076
+ sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
1077
+ }
1078
+ ]
1079
+ ]
1080
+ ]);
1081
+ var MAPPING_FA = /* @__PURE__ */ new Map([
1082
+ [
1083
+ "text-classification",
1084
+ [`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
1085
+ ],
1086
+ [
1087
+ "token-classification",
1088
+ [
1089
+ `\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
1090
+ `\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
1091
+ `\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
1092
+ ]
1093
+ ],
1094
+ [
1095
+ "question-answering",
1096
+ [
1097
+ {
1098
+ text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
1099
+ context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1100
+ },
1101
+ {
1102
+ text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
1103
+ context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1104
+ },
1105
+ {
1106
+ text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
1107
+ context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
1108
+ },
1109
+ {
1110
+ text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
1111
+ context: [
1112
+ "\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
1113
+ "\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
1114
+ "\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
1115
+ ].join("\n")
1116
+ }
1117
+ ]
1118
+ ],
1119
+ [
1120
+ "translation",
1121
+ [
1122
+ "\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1123
+ "\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
1124
+ ]
1125
+ ],
1126
+ [
1127
+ "summarization",
1128
+ [
1129
+ [
1130
+ "\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
1131
+ "\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
1132
+ "\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
1133
+ "\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
1134
+ " \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
1135
+ " (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
1136
+ " \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
1137
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1138
+ "\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
1139
+ " \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
1140
+ " \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
1141
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
1142
+ " \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
1143
+ " \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
1144
+ ].join("\n")
1145
+ ]
1146
+ ],
1147
+ ["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
1148
+ [
1149
+ "fill-mask",
1150
+ [
1151
+ `\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
1152
+ `\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
1153
+ ]
1154
+ ]
1155
+ ]);
1156
+ var MAPPING_AR = /* @__PURE__ */ new Map([
1157
+ ["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
1158
+ [
1159
+ "token-classification",
1160
+ [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
1161
+ ],
1162
+ [
1163
+ "question-answering",
1164
+ [
1165
+ {
1166
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1167
+ context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
1168
+ },
1169
+ {
1170
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1171
+ context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
1172
+ },
1173
+ {
1174
+ text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
1175
+ context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
1176
+ },
1177
+ {
1178
+ text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
1179
+ context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
1180
+ }
1181
+ ]
1182
+ ],
1183
+ ["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
1184
+ [
1185
+ "summarization",
1186
+ [
1187
+ `\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
1188
+ ]
1189
+ ],
1190
+ [
1191
+ "text-generation",
1192
+ [
1193
+ `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
1194
+ `\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
1195
+ `\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
1196
+ `\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
1197
+ `\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
1198
+ ]
1199
+ ],
1200
+ ["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
1201
+ [
1202
+ "sentence-similarity",
1203
+ [
1204
+ {
1205
+ source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
1206
+ sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
1207
+ }
1208
+ ]
1209
+ ]
1210
+ ]);
1211
+ var MAPPING_BN = /* @__PURE__ */ new Map([
1212
+ ["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
1213
+ [
1214
+ "token-classification",
1215
+ [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
1216
+ ],
1217
+ ["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
1218
+ [
1219
+ "summarization",
1220
+ [
1221
+ `\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
1222
+ ]
1223
+ ],
1224
+ ["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
1225
+ ["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
1226
+ [
1227
+ "question-answering",
1228
+ [
1229
+ {
1230
+ text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
1231
+ context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
1232
+ },
1233
+ {
1234
+ text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
1235
+ context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1236
+ },
1237
+ {
1238
+ text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
1239
+ context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1240
+ }
1241
+ ]
1242
+ ],
1243
+ [
1244
+ "sentence-similarity",
1245
+ [
1246
+ {
1247
+ source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
1248
+ sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
1249
+ }
1250
+ ]
1251
+ ]
1252
+ ]);
1253
+ var MAPPING_MN = /* @__PURE__ */ new Map([
1254
+ ["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
1255
+ [
1256
+ "token-classification",
1257
+ [
1258
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
1259
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
1260
+ `\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
1261
+ ]
1262
+ ],
1263
+ [
1264
+ "question-answering",
1265
+ [
1266
+ {
1267
+ text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
1268
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1269
+ },
1270
+ {
1271
+ text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1272
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1273
+ },
1274
+ {
1275
+ text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1276
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
1277
+ }
1278
+ ]
1279
+ ],
1280
+ ["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
1281
+ [
1282
+ "summarization",
1283
+ [
1284
+ `\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
1285
+ ]
1286
+ ],
1287
+ [
1288
+ "text-generation",
1289
+ [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
1290
+ ],
1291
+ ["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
1292
+ [
1293
+ "automatic-speech-recognition",
1294
+ [
1295
+ {
1296
+ label: `Common Voice Train Example`,
1297
+ src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
1298
+ },
1299
+ {
1300
+ label: `Common Voice Test Example`,
1301
+ src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
1302
+ }
1303
+ ]
1304
+ ],
1305
+ [
1306
+ "text-to-speech",
1307
+ [
1308
+ `\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
1309
+ `\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
1310
+ `\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
1311
+ ]
1312
+ ],
1313
+ [
1314
+ "sentence-similarity",
1315
+ [
1316
+ {
1317
+ source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
1318
+ sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
1319
+ }
1320
+ ]
1321
+ ]
1322
+ ]);
1323
+ var MAPPING_SI = /* @__PURE__ */ new Map([
1324
+ ["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
1325
+ ["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
1326
+ ]);
1327
+ var MAPPING_DE = /* @__PURE__ */ new Map([
1328
+ [
1329
+ "question-answering",
1330
+ [
1331
+ {
1332
+ text: `Wo wohne ich?`,
1333
+ context: `Mein Name ist Wolfgang und ich lebe in Berlin`
1334
+ },
1335
+ {
1336
+ text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
1337
+ context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
1338
+ }
1339
+ ]
1340
+ ],
1341
+ [
1342
+ "sentence-similarity",
1343
+ [
1344
+ {
1345
+ source_sentence: "Das ist eine gl\xFCckliche Person",
1346
+ sentences: [
1347
+ "Das ist ein gl\xFCcklicher Hund",
1348
+ "Das ist eine sehr gl\xFCckliche Person",
1349
+ "Heute ist ein sonniger Tag"
1350
+ ]
1351
+ }
1352
+ ]
1353
+ ]
1354
+ ]);
1355
+ var MAPPING_DV = /* @__PURE__ */ new Map([
1356
+ ["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
1357
+ [
1358
+ "token-classification",
1359
+ [
1360
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1361
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
1362
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
1363
+ ]
1364
+ ],
1365
+ [
1366
+ "question-answering",
1367
+ [
1368
+ {
1369
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1370
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
1371
+ },
1372
+ {
1373
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1374
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1375
+ },
1376
+ {
1377
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
1378
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
1379
+ },
1380
+ {
1381
+ text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
1382
+ context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
1383
+ }
1384
+ ]
1385
+ ],
1386
+ [
1387
+ "translation",
1388
+ [
1389
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1390
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1391
+ ]
1392
+ ],
1393
+ [
1394
+ "summarization",
1395
+ [
1396
+ `\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
1397
+ ]
1398
+ ],
1399
+ [
1400
+ "text-generation",
1401
+ [
1402
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
1403
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
1404
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
1405
+ `\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
1406
+ ]
1407
+ ],
1408
+ ["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
1409
+ ]);
1410
+ var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
1411
+ ["en", MAPPING_EN],
1412
+ ["zh", MAPPING_ZH],
1413
+ ["fr", MAPPING_FR],
1414
+ ["es", MAPPING_ES],
1415
+ ["ru", MAPPING_RU],
1416
+ ["uk", MAPPING_UK],
1417
+ ["it", MAPPING_IT],
1418
+ ["fa", MAPPING_FA],
1419
+ ["ar", MAPPING_AR],
1420
+ ["bn", MAPPING_BN],
1421
+ ["mn", MAPPING_MN],
1422
+ ["si", MAPPING_SI],
1423
+ ["de", MAPPING_DE],
1424
+ ["dv", MAPPING_DV]
1425
+ ]);
1426
+
39
1427
  // src/pipelines.ts
40
1428
  var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
41
1429
  var MODALITY_LABELS = {
@@ -416,6 +1804,11 @@ var PIPELINE_DATA = {
416
1804
  modality: "cv",
417
1805
  color: "indigo"
418
1806
  },
1807
+ "image-to-video": {
1808
+ name: "Image-to-Video",
1809
+ modality: "multimodal",
1810
+ color: "indigo"
1811
+ },
419
1812
  "unconditional-image-generation": {
420
1813
  name: "Unconditional Image Generation",
421
1814
  modality: "cv",
@@ -584,6 +1977,16 @@ var PIPELINE_DATA = {
584
1977
  modality: "multimodal",
585
1978
  color: "green"
586
1979
  },
1980
+ "mask-generation": {
1981
+ name: "Mask Generation",
1982
+ modality: "cv",
1983
+ color: "indigo"
1984
+ },
1985
+ "zero-shot-object-detection": {
1986
+ name: "Zero-Shot Object Detection",
1987
+ modality: "cv",
1988
+ color: "yellow"
1989
+ },
587
1990
  other: {
588
1991
  name: "Other",
589
1992
  modality: "other",
@@ -596,7 +1999,7 @@ var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
596
1999
  var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
597
2000
  var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
598
2001
 
599
- // src/audio-classification/data.ts
2002
+ // src/tasks/audio-classification/data.ts
600
2003
  var taskData = {
601
2004
  datasets: [
602
2005
  {
@@ -661,8 +2064,8 @@ var taskData = {
661
2064
  ],
662
2065
  spaces: [
663
2066
  {
664
- description: "An application that can predict the language spoken in a given audio.",
665
- id: "akhaliq/Speechbrain-audio-classification"
2067
+ description: "An application that can classify music into different genre.",
2068
+ id: "kurianbenoy/audioclassification"
666
2069
  }
667
2070
  ],
668
2071
  summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
@@ -671,7 +2074,7 @@ var taskData = {
671
2074
  };
672
2075
  var data_default = taskData;
673
2076
 
674
- // src/audio-to-audio/data.ts
2077
+ // src/tasks/audio-to-audio/data.ts
675
2078
  var taskData2 = {
676
2079
  datasets: [
677
2080
  {
@@ -733,7 +2136,7 @@ var taskData2 = {
733
2136
  };
734
2137
  var data_default2 = taskData2;
735
2138
 
736
- // src/automatic-speech-recognition/data.ts
2139
+ // src/tasks/automatic-speech-recognition/data.ts
737
2140
  var taskData3 = {
738
2141
  datasets: [
739
2142
  {
@@ -778,7 +2181,7 @@ var taskData3 = {
778
2181
  models: [
779
2182
  {
780
2183
  description: "A powerful ASR model by OpenAI.",
781
- id: "openai/whisper-large-v2"
2184
+ id: "openai/whisper-large-v3"
782
2185
  },
783
2186
  {
784
2187
  description: "A good generic ASR model by MetaAI.",
@@ -792,24 +2195,24 @@ var taskData3 = {
792
2195
  spaces: [
793
2196
  {
794
2197
  description: "A powerful general-purpose speech recognition application.",
795
- id: "openai/whisper"
2198
+ id: "hf-audio/whisper-large-v3"
796
2199
  },
797
2200
  {
798
2201
  description: "Fastest speech recognition application.",
799
2202
  id: "sanchit-gandhi/whisper-jax"
800
2203
  },
801
2204
  {
802
- description: "An application that transcribes speeches in YouTube videos.",
803
- id: "jeffistyping/Youtube-Whisperer"
2205
+ description: "A high quality speech and text translation model by Meta.",
2206
+ id: "facebook/seamless_m4t"
804
2207
  }
805
2208
  ],
806
2209
  summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
807
- widgetModels: ["openai/whisper-large-v2"],
2210
+ widgetModels: ["openai/whisper-large-v3"],
808
2211
  youtubeId: "TksaY_FDgnk"
809
2212
  };
810
2213
  var data_default3 = taskData3;
811
2214
 
812
- // src/conversational/data.ts
2215
+ // src/tasks/conversational/data.ts
813
2216
  var taskData4 = {
814
2217
  datasets: [
815
2218
  {
@@ -869,7 +2272,7 @@ var taskData4 = {
869
2272
  };
870
2273
  var data_default4 = taskData4;
871
2274
 
872
- // src/document-question-answering/data.ts
2275
+ // src/tasks/document-question-answering/data.ts
873
2276
  var taskData5 = {
874
2277
  datasets: [
875
2278
  {
@@ -934,7 +2337,7 @@ var taskData5 = {
934
2337
  };
935
2338
  var data_default5 = taskData5;
936
2339
 
937
- // src/feature-extraction/data.ts
2340
+ // src/tasks/feature-extraction/data.ts
938
2341
  var taskData6 = {
939
2342
  datasets: [
940
2343
  {
@@ -963,12 +2366,7 @@ var taskData6 = {
963
2366
  }
964
2367
  ]
965
2368
  },
966
- metrics: [
967
- {
968
- description: "",
969
- id: ""
970
- }
971
- ],
2369
+ metrics: [],
972
2370
  models: [
973
2371
  {
974
2372
  description: "A powerful feature extraction model for natural language processing tasks.",
@@ -985,7 +2383,7 @@ var taskData6 = {
985
2383
  };
986
2384
  var data_default6 = taskData6;
987
2385
 
988
- // src/fill-mask/data.ts
2386
+ // src/tasks/fill-mask/data.ts
989
2387
  var taskData7 = {
990
2388
  datasets: [
991
2389
  {
@@ -1060,7 +2458,7 @@ var taskData7 = {
1060
2458
  };
1061
2459
  var data_default7 = taskData7;
1062
2460
 
1063
- // src/image-classification/data.ts
2461
+ // src/tasks/image-classification/data.ts
1064
2462
  var taskData8 = {
1065
2463
  datasets: [
1066
2464
  {
@@ -1146,7 +2544,7 @@ var taskData8 = {
1146
2544
  };
1147
2545
  var data_default8 = taskData8;
1148
2546
 
1149
- // src/image-to-image/data.ts
2547
+ // src/tasks/image-to-image/data.ts
1150
2548
  var taskData9 = {
1151
2549
  datasets: [
1152
2550
  {
@@ -1241,7 +2639,7 @@ var taskData9 = {
1241
2639
  };
1242
2640
  var data_default9 = taskData9;
1243
2641
 
1244
- // src/image-to-text/data.ts
2642
+ // src/tasks/image-to-text/data.ts
1245
2643
  var taskData10 = {
1246
2644
  datasets: [
1247
2645
  {
@@ -1325,7 +2723,7 @@ var taskData10 = {
1325
2723
  };
1326
2724
  var data_default10 = taskData10;
1327
2725
 
1328
- // src/image-segmentation/data.ts
2726
+ // src/tasks/image-segmentation/data.ts
1329
2727
  var taskData11 = {
1330
2728
  datasets: [
1331
2729
  {
@@ -1420,7 +2818,7 @@ var taskData11 = {
1420
2818
  };
1421
2819
  var data_default11 = taskData11;
1422
2820
 
1423
- // src/object-detection/data.ts
2821
+ // src/tasks/object-detection/data.ts
1424
2822
  var taskData12 = {
1425
2823
  datasets: [
1426
2824
  {
@@ -1492,7 +2890,7 @@ var taskData12 = {
1492
2890
  };
1493
2891
  var data_default12 = taskData12;
1494
2892
 
1495
- // src/depth-estimation/data.ts
2893
+ // src/tasks/depth-estimation/data.ts
1496
2894
  var taskData13 = {
1497
2895
  datasets: [
1498
2896
  {
@@ -1543,7 +2941,7 @@ var taskData13 = {
1543
2941
  };
1544
2942
  var data_default13 = taskData13;
1545
2943
 
1546
- // src/placeholder/data.ts
2944
+ // src/tasks/placeholder/data.ts
1547
2945
  var taskData14 = {
1548
2946
  datasets: [],
1549
2947
  demo: {
@@ -1560,7 +2958,7 @@ var taskData14 = {
1560
2958
  };
1561
2959
  var data_default14 = taskData14;
1562
2960
 
1563
- // src/reinforcement-learning/data.ts
2961
+ // src/tasks/reinforcement-learning/data.ts
1564
2962
  var taskData15 = {
1565
2963
  datasets: [
1566
2964
  {
@@ -1629,7 +3027,7 @@ var taskData15 = {
1629
3027
  };
1630
3028
  var data_default15 = taskData15;
1631
3029
 
1632
- // src/question-answering/data.ts
3030
+ // src/tasks/question-answering/data.ts
1633
3031
  var taskData16 = {
1634
3032
  datasets: [
1635
3033
  {
@@ -1696,7 +3094,7 @@ var taskData16 = {
1696
3094
  };
1697
3095
  var data_default16 = taskData16;
1698
3096
 
1699
- // src/sentence-similarity/data.ts
3097
+ // src/tasks/sentence-similarity/data.ts
1700
3098
  var taskData17 = {
1701
3099
  datasets: [
1702
3100
  {
@@ -1791,7 +3189,7 @@ var taskData17 = {
1791
3189
  };
1792
3190
  var data_default17 = taskData17;
1793
3191
 
1794
- // src/summarization/data.ts
3192
+ // src/tasks/summarization/data.ts
1795
3193
  var taskData18 = {
1796
3194
  datasets: [
1797
3195
  {
@@ -1859,7 +3257,7 @@ var taskData18 = {
1859
3257
  };
1860
3258
  var data_default18 = taskData18;
1861
3259
 
1862
- // src/table-question-answering/data.ts
3260
+ // src/tasks/table-question-answering/data.ts
1863
3261
  var taskData19 = {
1864
3262
  datasets: [
1865
3263
  {
@@ -1913,7 +3311,7 @@ var taskData19 = {
1913
3311
  };
1914
3312
  var data_default19 = taskData19;
1915
3313
 
1916
- // src/tabular-classification/data.ts
3314
+ // src/tasks/tabular-classification/data.ts
1917
3315
  var taskData20 = {
1918
3316
  datasets: [
1919
3317
  {
@@ -1980,7 +3378,7 @@ var taskData20 = {
1980
3378
  };
1981
3379
  var data_default20 = taskData20;
1982
3380
 
1983
- // src/tabular-regression/data.ts
3381
+ // src/tasks/tabular-regression/data.ts
1984
3382
  var taskData21 = {
1985
3383
  datasets: [
1986
3384
  {
@@ -2035,7 +3433,7 @@ var taskData21 = {
2035
3433
  };
2036
3434
  var data_default21 = taskData21;
2037
3435
 
2038
- // src/text-to-image/data.ts
3436
+ // src/tasks/text-to-image/data.ts
2039
3437
  var taskData22 = {
2040
3438
  datasets: [
2041
3439
  {
@@ -2122,7 +3520,7 @@ var taskData22 = {
2122
3520
  };
2123
3521
  var data_default22 = taskData22;
2124
3522
 
2125
- // src/text-to-speech/data.ts
3523
+ // src/tasks/text-to-speech/data.ts
2126
3524
  var taskData23 = {
2127
3525
  datasets: [
2128
3526
  {
@@ -2175,8 +3573,8 @@ var taskData23 = {
2175
3573
  id: "suno/bark"
2176
3574
  },
2177
3575
  {
2178
- description: "An application that contains multiple speech synthesis models for various languages and accents.",
2179
- id: "coqui/CoquiTTS"
3576
+ description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
3577
+ id: "coqui/xtts"
2180
3578
  },
2181
3579
  {
2182
3580
  description: "An application that synthesizes speech for various speaker types.",
@@ -2184,12 +3582,12 @@ var taskData23 = {
2184
3582
  }
2185
3583
  ],
2186
3584
  summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
2187
- widgetModels: ["microsoft/speecht5_tts"],
3585
+ widgetModels: ["suno/bark"],
2188
3586
  youtubeId: "NW62DpzJ274"
2189
3587
  };
2190
3588
  var data_default23 = taskData23;
2191
3589
 
2192
- // src/token-classification/data.ts
3590
+ // src/tasks/token-classification/data.ts
2193
3591
  var taskData24 = {
2194
3592
  datasets: [
2195
3593
  {
@@ -2268,7 +3666,7 @@ var taskData24 = {
2268
3666
  };
2269
3667
  var data_default24 = taskData24;
2270
3668
 
2271
- // src/translation/data.ts
3669
+ // src/tasks/translation/data.ts
2272
3670
  var taskData25 = {
2273
3671
  datasets: [
2274
3672
  {
@@ -2332,7 +3730,7 @@ var taskData25 = {
2332
3730
  };
2333
3731
  var data_default25 = taskData25;
2334
3732
 
2335
- // src/text-classification/data.ts
3733
+ // src/tasks/text-classification/data.ts
2336
3734
  var taskData26 = {
2337
3735
  datasets: [
2338
3736
  {
@@ -2420,7 +3818,7 @@ var taskData26 = {
2420
3818
  };
2421
3819
  var data_default26 = taskData26;
2422
3820
 
2423
- // src/text-generation/data.ts
3821
+ // src/tasks/text-generation/data.ts
2424
3822
  var taskData27 = {
2425
3823
  datasets: [
2426
3824
  {
@@ -2535,12 +3933,12 @@ var taskData27 = {
2535
3933
  }
2536
3934
  ],
2537
3935
  summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
2538
- widgetModels: ["tiiuae/falcon-7b-instruct"],
3936
+ widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
2539
3937
  youtubeId: "Vpjb1lu0MDk"
2540
3938
  };
2541
3939
  var data_default27 = taskData27;
2542
3940
 
2543
- // src/text-to-video/data.ts
3941
+ // src/tasks/text-to-video/data.ts
2544
3942
  var taskData28 = {
2545
3943
  datasets: [
2546
3944
  {
@@ -2635,7 +4033,7 @@ var taskData28 = {
2635
4033
  };
2636
4034
  var data_default28 = taskData28;
2637
4035
 
2638
- // src/unconditional-image-generation/data.ts
4036
+ // src/tasks/unconditional-image-generation/data.ts
2639
4037
  var taskData29 = {
2640
4038
  datasets: [
2641
4039
  {
@@ -2700,7 +4098,7 @@ var taskData29 = {
2700
4098
  };
2701
4099
  var data_default29 = taskData29;
2702
4100
 
2703
- // src/video-classification/data.ts
4101
+ // src/tasks/video-classification/data.ts
2704
4102
  var taskData30 = {
2705
4103
  datasets: [
2706
4104
  {
@@ -2782,7 +4180,7 @@ var taskData30 = {
2782
4180
  };
2783
4181
  var data_default30 = taskData30;
2784
4182
 
2785
- // src/visual-question-answering/data.ts
4183
+ // src/tasks/visual-question-answering/data.ts
2786
4184
  var taskData31 = {
2787
4185
  datasets: [
2788
4186
  {
@@ -2871,7 +4269,7 @@ var taskData31 = {
2871
4269
  };
2872
4270
  var data_default31 = taskData31;
2873
4271
 
2874
- // src/zero-shot-classification/data.ts
4272
+ // src/tasks/zero-shot-classification/data.ts
2875
4273
  var taskData32 = {
2876
4274
  datasets: [
2877
4275
  {
@@ -2933,7 +4331,7 @@ var taskData32 = {
2933
4331
  };
2934
4332
  var data_default32 = taskData32;
2935
4333
 
2936
- // src/zero-shot-image-classification/data.ts
4334
+ // src/tasks/zero-shot-image-classification/data.ts
2937
4335
  var taskData33 = {
2938
4336
  datasets: [
2939
4337
  {
@@ -3006,7 +4404,7 @@ var taskData33 = {
3006
4404
  };
3007
4405
  var data_default33 = taskData33;
3008
4406
 
3009
- // src/const.ts
4407
+ // src/tasks/index.ts
3010
4408
  var TASKS_MODEL_LIBRARIES = {
3011
4409
  "audio-classification": ["speechbrain", "transformers"],
3012
4410
  "audio-to-audio": ["asteroid", "speechbrain"],
@@ -3019,9 +4417,11 @@ var TASKS_MODEL_LIBRARIES = {
3019
4417
  "graph-ml": ["transformers"],
3020
4418
  "image-classification": ["keras", "timm", "transformers", "transformers.js"],
3021
4419
  "image-segmentation": ["transformers", "transformers.js"],
3022
- "image-to-image": [],
4420
+ "image-to-image": ["diffusers"],
3023
4421
  "image-to-text": ["transformers.js"],
3024
- "video-classification": [],
4422
+ "image-to-video": ["diffusers"],
4423
+ "video-classification": ["transformers"],
4424
+ "mask-generation": ["transformers"],
3025
4425
  "multiple-choice": ["transformers"],
3026
4426
  "object-detection": ["transformers", "transformers.js"],
3027
4427
  other: [],
@@ -3038,10 +4438,10 @@ var TASKS_MODEL_LIBRARIES = {
3038
4438
  "text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
3039
4439
  "text-generation": ["transformers", "transformers.js"],
3040
4440
  "text-retrieval": [],
3041
- "text-to-image": [],
4441
+ "text-to-image": ["diffusers"],
3042
4442
  "text-to-speech": ["espnet", "tensorflowtts", "transformers"],
3043
4443
  "text-to-audio": ["transformers"],
3044
- "text-to-video": [],
4444
+ "text-to-video": ["diffusers"],
3045
4445
  "text2text-generation": ["transformers", "transformers.js"],
3046
4446
  "time-series-forecasting": [],
3047
4447
  "token-classification": [
@@ -3054,14 +4454,21 @@ var TASKS_MODEL_LIBRARIES = {
3054
4454
  "transformers.js"
3055
4455
  ],
3056
4456
  translation: ["transformers", "transformers.js"],
3057
- "unconditional-image-generation": [],
3058
- "visual-question-answering": [],
4457
+ "unconditional-image-generation": ["diffusers"],
4458
+ "visual-question-answering": ["transformers"],
3059
4459
  "voice-activity-detection": [],
3060
4460
  "zero-shot-classification": ["transformers", "transformers.js"],
3061
- "zero-shot-image-classification": ["transformers.js"]
4461
+ "zero-shot-image-classification": ["transformers", "transformers.js"],
4462
+ "zero-shot-object-detection": ["transformers"]
3062
4463
  };
3063
-
3064
- // src/tasksData.ts
4464
+ function getData(type, partialTaskData = data_default14) {
4465
+ return {
4466
+ ...partialTaskData,
4467
+ id: type,
4468
+ label: PIPELINE_DATA[type].name,
4469
+ libraries: TASKS_MODEL_LIBRARIES[type]
4470
+ };
4471
+ }
3065
4472
  var TASKS_DATA = {
3066
4473
  "audio-classification": getData("audio-classification", data_default),
3067
4474
  "audio-to-audio": getData("audio-to-audio", data_default2),
@@ -3076,6 +4483,8 @@ var TASKS_DATA = {
3076
4483
  "image-segmentation": getData("image-segmentation", data_default11),
3077
4484
  "image-to-image": getData("image-to-image", data_default9),
3078
4485
  "image-to-text": getData("image-to-text", data_default10),
4486
+ "image-to-video": void 0,
4487
+ "mask-generation": getData("mask-generation", data_default14),
3079
4488
  "multiple-choice": void 0,
3080
4489
  "object-detection": getData("object-detection", data_default12),
3081
4490
  "video-classification": getData("video-classification", data_default30),
@@ -3105,18 +4514,11 @@ var TASKS_DATA = {
3105
4514
  "visual-question-answering": getData("visual-question-answering", data_default31),
3106
4515
  "voice-activity-detection": void 0,
3107
4516
  "zero-shot-classification": getData("zero-shot-classification", data_default32),
3108
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
4517
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
4518
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default14)
3109
4519
  };
3110
- function getData(type, partialTaskData = data_default14) {
3111
- return {
3112
- ...partialTaskData,
3113
- id: type,
3114
- label: PIPELINE_DATA[type].name,
3115
- libraries: TASKS_MODEL_LIBRARIES[type]
3116
- };
3117
- }
3118
4520
 
3119
- // src/modelLibraries.ts
4521
+ // src/model-libraries.ts
3120
4522
  var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
3121
4523
  ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
3122
4524
  ModelLibrary2["allennlp"] = "allenNLP";
@@ -3157,6 +4559,17 @@ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
3157
4559
  (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
3158
4560
  );
3159
4561
 
4562
+ // src/model-data.ts
4563
+ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
4564
+ InferenceDisplayability2["Yes"] = "Yes";
4565
+ InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
4566
+ InferenceDisplayability2["CustomCode"] = "CustomCode";
4567
+ InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
4568
+ InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
4569
+ InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
4570
+ return InferenceDisplayability2;
4571
+ })(InferenceDisplayability || {});
4572
+
3160
4573
  // src/tags.ts
3161
4574
  var TAG_NFAA_CONTENT = "not-for-all-audiences";
3162
4575
  var OTHER_TAGS_SUGGESTIONS = [
@@ -3173,11 +4586,430 @@ var OTHER_TAGS_SUGGESTIONS = [
3173
4586
  ];
3174
4587
  var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
3175
4588
  var TAG_CUSTOM_CODE = "custom_code";
4589
+
4590
+ // src/snippets/index.ts
4591
+ var snippets_exports = {};
4592
+ __export(snippets_exports, {
4593
+ curl: () => curl_exports,
4594
+ inputs: () => inputs_exports,
4595
+ js: () => js_exports,
4596
+ python: () => python_exports
4597
+ });
4598
+
4599
+ // src/snippets/inputs.ts
4600
+ var inputs_exports = {};
4601
+ __export(inputs_exports, {
4602
+ getModelInputSnippet: () => getModelInputSnippet
4603
+ });
4604
+ var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
4605
+ var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
4606
+ var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
4607
+ var inputsConversational = () => `{
4608
+ "past_user_inputs": ["Which movie is the best ?"],
4609
+ "generated_responses": ["It is Die Hard for sure."],
4610
+ "text": "Can you explain why ?"
4611
+ }`;
4612
+ var inputsTableQuestionAnswering = () => `{
4613
+ "query": "How many stars does the transformers repository have?",
4614
+ "table": {
4615
+ "Repository": ["Transformers", "Datasets", "Tokenizers"],
4616
+ "Stars": ["36542", "4512", "3934"],
4617
+ "Contributors": ["651", "77", "34"],
4618
+ "Programming language": [
4619
+ "Python",
4620
+ "Python",
4621
+ "Rust, Python and NodeJS"
4622
+ ]
4623
+ }
4624
+ }`;
4625
+ var inputsQuestionAnswering = () => `{
4626
+ "question": "What is my name?",
4627
+ "context": "My name is Clara and I live in Berkeley."
4628
+ }`;
4629
+ var inputsTextClassification = () => `"I like you. I love you"`;
4630
+ var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
4631
+ var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
4632
+ var inputsText2TextGeneration = () => `"The answer to the universe is"`;
4633
+ var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
4634
+ var inputsSentenceSimilarity = () => `{
4635
+ "source_sentence": "That is a happy person",
4636
+ "sentences": [
4637
+ "That is a happy dog",
4638
+ "That is a very happy person",
4639
+ "Today is a sunny day"
4640
+ ]
4641
+ }`;
4642
+ var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
4643
+ var inputsImageClassification = () => `"cats.jpg"`;
4644
+ var inputsImageToText = () => `"cats.jpg"`;
4645
+ var inputsImageSegmentation = () => `"cats.jpg"`;
4646
+ var inputsObjectDetection = () => `"cats.jpg"`;
4647
+ var inputsAudioToAudio = () => `"sample1.flac"`;
4648
+ var inputsAudioClassification = () => `"sample1.flac"`;
4649
+ var inputsTextToImage = () => `"Astronaut riding a horse"`;
4650
+ var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
4651
+ var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
4652
+ var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
4653
+ var modelInputSnippets = {
4654
+ "audio-to-audio": inputsAudioToAudio,
4655
+ "audio-classification": inputsAudioClassification,
4656
+ "automatic-speech-recognition": inputsAutomaticSpeechRecognition,
4657
+ conversational: inputsConversational,
4658
+ "feature-extraction": inputsFeatureExtraction,
4659
+ "fill-mask": inputsFillMask,
4660
+ "image-classification": inputsImageClassification,
4661
+ "image-to-text": inputsImageToText,
4662
+ "image-segmentation": inputsImageSegmentation,
4663
+ "object-detection": inputsObjectDetection,
4664
+ "question-answering": inputsQuestionAnswering,
4665
+ "sentence-similarity": inputsSentenceSimilarity,
4666
+ summarization: inputsSummarization,
4667
+ "table-question-answering": inputsTableQuestionAnswering,
4668
+ "text-classification": inputsTextClassification,
4669
+ "text-generation": inputsTextGeneration,
4670
+ "text-to-image": inputsTextToImage,
4671
+ "text-to-speech": inputsTextToSpeech,
4672
+ "text-to-audio": inputsTextToAudio,
4673
+ "text2text-generation": inputsText2TextGeneration,
4674
+ "token-classification": inputsTokenClassification,
4675
+ translation: inputsTranslation,
4676
+ "zero-shot-classification": inputsZeroShotClassification
4677
+ };
4678
+ function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
4679
+ if (model.pipeline_tag) {
4680
+ const inputs = modelInputSnippets[model.pipeline_tag];
4681
+ if (inputs) {
4682
+ let result = inputs(model);
4683
+ if (noWrap) {
4684
+ result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
4685
+ }
4686
+ if (noQuotes) {
4687
+ const REGEX_QUOTES = /^"(.+)"$/s;
4688
+ const match = result.match(REGEX_QUOTES);
4689
+ result = match ? match[1] : result;
4690
+ }
4691
+ return result;
4692
+ }
4693
+ }
4694
+ return "No input example has been defined for this model task.";
4695
+ }
4696
+
4697
+ // src/snippets/curl.ts
4698
+ var curl_exports = {};
4699
+ __export(curl_exports, {
4700
+ curlSnippets: () => curlSnippets,
4701
+ getCurlInferenceSnippet: () => getCurlInferenceSnippet,
4702
+ hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
4703
+ snippetBasic: () => snippetBasic,
4704
+ snippetFile: () => snippetFile,
4705
+ snippetZeroShotClassification: () => snippetZeroShotClassification
4706
+ });
4707
+ var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4708
+ -X POST \\
4709
+ -d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
4710
+ -H 'Content-Type: application/json' \\
4711
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4712
+ `;
4713
+ var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4714
+ -X POST \\
4715
+ -d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
4716
+ -H 'Content-Type: application/json' \\
4717
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4718
+ `;
4719
+ var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4720
+ -X POST \\
4721
+ --data-binary '@${getModelInputSnippet(model, true, true)}' \\
4722
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4723
+ `;
4724
+ var curlSnippets = {
4725
+ // Same order as in js/src/lib/interfaces/Types.ts
4726
+ "text-classification": snippetBasic,
4727
+ "token-classification": snippetBasic,
4728
+ "table-question-answering": snippetBasic,
4729
+ "question-answering": snippetBasic,
4730
+ "zero-shot-classification": snippetZeroShotClassification,
4731
+ translation: snippetBasic,
4732
+ summarization: snippetBasic,
4733
+ conversational: snippetBasic,
4734
+ "feature-extraction": snippetBasic,
4735
+ "text-generation": snippetBasic,
4736
+ "text2text-generation": snippetBasic,
4737
+ "fill-mask": snippetBasic,
4738
+ "sentence-similarity": snippetBasic,
4739
+ "automatic-speech-recognition": snippetFile,
4740
+ "text-to-image": snippetBasic,
4741
+ "text-to-speech": snippetBasic,
4742
+ "text-to-audio": snippetBasic,
4743
+ "audio-to-audio": snippetFile,
4744
+ "audio-classification": snippetFile,
4745
+ "image-classification": snippetFile,
4746
+ "image-to-text": snippetFile,
4747
+ "object-detection": snippetFile,
4748
+ "image-segmentation": snippetFile
4749
+ };
4750
+ function getCurlInferenceSnippet(model, accessToken) {
4751
+ return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
4752
+ }
4753
+ function hasCurlInferenceSnippet(model) {
4754
+ return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
4755
+ }
4756
+
4757
+ // src/snippets/python.ts
4758
+ var python_exports = {};
4759
+ __export(python_exports, {
4760
+ getPythonInferenceSnippet: () => getPythonInferenceSnippet,
4761
+ hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
4762
+ pythonSnippets: () => pythonSnippets,
4763
+ snippetBasic: () => snippetBasic2,
4764
+ snippetFile: () => snippetFile2,
4765
+ snippetTextToAudio: () => snippetTextToAudio,
4766
+ snippetTextToImage: () => snippetTextToImage,
4767
+ snippetZeroShotClassification: () => snippetZeroShotClassification2
4768
+ });
4769
+ var snippetZeroShotClassification2 = (model) => `def query(payload):
4770
+ response = requests.post(API_URL, headers=headers, json=payload)
4771
+ return response.json()
4772
+
4773
+ output = query({
4774
+ "inputs": ${getModelInputSnippet(model)},
4775
+ "parameters": {"candidate_labels": ["refund", "legal", "faq"]},
4776
+ })`;
4777
+ var snippetBasic2 = (model) => `def query(payload):
4778
+ response = requests.post(API_URL, headers=headers, json=payload)
4779
+ return response.json()
4780
+
4781
+ output = query({
4782
+ "inputs": ${getModelInputSnippet(model)},
4783
+ })`;
4784
+ var snippetFile2 = (model) => `def query(filename):
4785
+ with open(filename, "rb") as f:
4786
+ data = f.read()
4787
+ response = requests.post(API_URL, headers=headers, data=data)
4788
+ return response.json()
4789
+
4790
+ output = query(${getModelInputSnippet(model)})`;
4791
+ var snippetTextToImage = (model) => `def query(payload):
4792
+ response = requests.post(API_URL, headers=headers, json=payload)
4793
+ return response.content
4794
+ image_bytes = query({
4795
+ "inputs": ${getModelInputSnippet(model)},
4796
+ })
4797
+ # You can access the image with PIL.Image for example
4798
+ import io
4799
+ from PIL import Image
4800
+ image = Image.open(io.BytesIO(image_bytes))`;
4801
+ var snippetTextToAudio = (model) => {
4802
+ if (model.library_name === "transformers") {
4803
+ return `def query(payload):
4804
+ response = requests.post(API_URL, headers=headers, json=payload)
4805
+ return response.content
4806
+
4807
+ audio_bytes = query({
4808
+ "inputs": ${getModelInputSnippet(model)},
4809
+ })
4810
+ # You can access the audio with IPython.display for example
4811
+ from IPython.display import Audio
4812
+ Audio(audio_bytes)`;
4813
+ } else {
4814
+ return `def query(payload):
4815
+ response = requests.post(API_URL, headers=headers, json=payload)
4816
+ return response.json()
4817
+
4818
+ audio, sampling_rate = query({
4819
+ "inputs": ${getModelInputSnippet(model)},
4820
+ })
4821
+ # You can access the audio with IPython.display for example
4822
+ from IPython.display import Audio
4823
+ Audio(audio, rate=sampling_rate)`;
4824
+ }
4825
+ };
4826
+ var pythonSnippets = {
4827
+ // Same order as in js/src/lib/interfaces/Types.ts
4828
+ "text-classification": snippetBasic2,
4829
+ "token-classification": snippetBasic2,
4830
+ "table-question-answering": snippetBasic2,
4831
+ "question-answering": snippetBasic2,
4832
+ "zero-shot-classification": snippetZeroShotClassification2,
4833
+ translation: snippetBasic2,
4834
+ summarization: snippetBasic2,
4835
+ conversational: snippetBasic2,
4836
+ "feature-extraction": snippetBasic2,
4837
+ "text-generation": snippetBasic2,
4838
+ "text2text-generation": snippetBasic2,
4839
+ "fill-mask": snippetBasic2,
4840
+ "sentence-similarity": snippetBasic2,
4841
+ "automatic-speech-recognition": snippetFile2,
4842
+ "text-to-image": snippetTextToImage,
4843
+ "text-to-speech": snippetTextToAudio,
4844
+ "text-to-audio": snippetTextToAudio,
4845
+ "audio-to-audio": snippetFile2,
4846
+ "audio-classification": snippetFile2,
4847
+ "image-classification": snippetFile2,
4848
+ "image-to-text": snippetFile2,
4849
+ "object-detection": snippetFile2,
4850
+ "image-segmentation": snippetFile2
4851
+ };
4852
+ function getPythonInferenceSnippet(model, accessToken) {
4853
+ const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
4854
+ return `import requests
4855
+
4856
+ API_URL = "https://api-inference.huggingface.co/models/${model.id}"
4857
+ headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
4858
+
4859
+ ${body}`;
4860
+ }
4861
+ function hasPythonInferenceSnippet(model) {
4862
+ return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
4863
+ }
4864
+
4865
+ // src/snippets/js.ts
4866
+ var js_exports = {};
4867
+ __export(js_exports, {
4868
+ getJsInferenceSnippet: () => getJsInferenceSnippet,
4869
+ hasJsInferenceSnippet: () => hasJsInferenceSnippet,
4870
+ jsSnippets: () => jsSnippets,
4871
+ snippetBasic: () => snippetBasic3,
4872
+ snippetFile: () => snippetFile3,
4873
+ snippetTextToAudio: () => snippetTextToAudio2,
4874
+ snippetTextToImage: () => snippetTextToImage2,
4875
+ snippetZeroShotClassification: () => snippetZeroShotClassification3
4876
+ });
4877
+ var snippetBasic3 = (model, accessToken) => `async function query(data) {
4878
+ const response = await fetch(
4879
+ "https://api-inference.huggingface.co/models/${model.id}",
4880
+ {
4881
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4882
+ method: "POST",
4883
+ body: JSON.stringify(data),
4884
+ }
4885
+ );
4886
+ const result = await response.json();
4887
+ return result;
4888
+ }
4889
+
4890
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4891
+ console.log(JSON.stringify(response));
4892
+ });`;
4893
+ var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
4894
+ const response = await fetch(
4895
+ "https://api-inference.huggingface.co/models/${model.id}",
4896
+ {
4897
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4898
+ method: "POST",
4899
+ body: JSON.stringify(data),
4900
+ }
4901
+ );
4902
+ const result = await response.json();
4903
+ return result;
4904
+ }
4905
+
4906
+ query({"inputs": ${getModelInputSnippet(
4907
+ model
4908
+ )}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
4909
+ console.log(JSON.stringify(response));
4910
+ });`;
4911
+ var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
4912
+ const response = await fetch(
4913
+ "https://api-inference.huggingface.co/models/${model.id}",
4914
+ {
4915
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4916
+ method: "POST",
4917
+ body: JSON.stringify(data),
4918
+ }
4919
+ );
4920
+ const result = await response.blob();
4921
+ return result;
4922
+ }
4923
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4924
+ // Use image
4925
+ });`;
4926
+ var snippetTextToAudio2 = (model, accessToken) => {
4927
+ const commonSnippet = `async function query(data) {
4928
+ const response = await fetch(
4929
+ "https://api-inference.huggingface.co/models/${model.id}",
4930
+ {
4931
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4932
+ method: "POST",
4933
+ body: JSON.stringify(data),
4934
+ }
4935
+ );`;
4936
+ if (model.library_name === "transformers") {
4937
+ return commonSnippet + `
4938
+ const result = await response.blob();
4939
+ return result;
4940
+ }
4941
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4942
+ // Returns a byte object of the Audio wavform. Use it directly!
4943
+ });`;
4944
+ } else {
4945
+ return commonSnippet + `
4946
+ const result = await response.json();
4947
+ return result;
4948
+ }
4949
+
4950
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4951
+ console.log(JSON.stringify(response));
4952
+ });`;
4953
+ }
4954
+ };
4955
+ var snippetFile3 = (model, accessToken) => `async function query(filename) {
4956
+ const data = fs.readFileSync(filename);
4957
+ const response = await fetch(
4958
+ "https://api-inference.huggingface.co/models/${model.id}",
4959
+ {
4960
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4961
+ method: "POST",
4962
+ body: data,
4963
+ }
4964
+ );
4965
+ const result = await response.json();
4966
+ return result;
4967
+ }
4968
+
4969
+ query(${getModelInputSnippet(model)}).then((response) => {
4970
+ console.log(JSON.stringify(response));
4971
+ });`;
4972
+ var jsSnippets = {
4973
+ // Same order as in js/src/lib/interfaces/Types.ts
4974
+ "text-classification": snippetBasic3,
4975
+ "token-classification": snippetBasic3,
4976
+ "table-question-answering": snippetBasic3,
4977
+ "question-answering": snippetBasic3,
4978
+ "zero-shot-classification": snippetZeroShotClassification3,
4979
+ translation: snippetBasic3,
4980
+ summarization: snippetBasic3,
4981
+ conversational: snippetBasic3,
4982
+ "feature-extraction": snippetBasic3,
4983
+ "text-generation": snippetBasic3,
4984
+ "text2text-generation": snippetBasic3,
4985
+ "fill-mask": snippetBasic3,
4986
+ "sentence-similarity": snippetBasic3,
4987
+ "automatic-speech-recognition": snippetFile3,
4988
+ "text-to-image": snippetTextToImage2,
4989
+ "text-to-speech": snippetTextToAudio2,
4990
+ "text-to-audio": snippetTextToAudio2,
4991
+ "audio-to-audio": snippetFile3,
4992
+ "audio-classification": snippetFile3,
4993
+ "image-classification": snippetFile3,
4994
+ "image-to-text": snippetFile3,
4995
+ "object-detection": snippetFile3,
4996
+ "image-segmentation": snippetFile3
4997
+ };
4998
+ function getJsInferenceSnippet(model, accessToken) {
4999
+ return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
5000
+ }
5001
+ function hasJsInferenceSnippet(model) {
5002
+ return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
5003
+ }
3176
5004
  // Annotate the CommonJS export names for ESM import in node:
3177
5005
  0 && (module.exports = {
3178
5006
  ALL_DISPLAY_MODEL_LIBRARY_KEYS,
5007
+ InferenceDisplayability,
5008
+ LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
5009
+ MAPPING_DEFAULT_WIDGET,
3179
5010
  MODALITIES,
3180
5011
  MODALITY_LABELS,
5012
+ MODEL_LIBRARIES_UI_ELEMENTS,
3181
5013
  ModelLibrary,
3182
5014
  OTHER_TAGS_SUGGESTIONS,
3183
5015
  PIPELINE_DATA,
@@ -3187,5 +5019,7 @@ var TAG_CUSTOM_CODE = "custom_code";
3187
5019
  TAG_CUSTOM_CODE,
3188
5020
  TAG_NFAA_CONTENT,
3189
5021
  TAG_TEXT_GENERATION_INFERENCE,
3190
- TASKS_DATA
5022
+ TASKS_DATA,
5023
+ TASKS_MODEL_LIBRARIES,
5024
+ snippets
3191
5025
  });