@huggingface/tasks 0.0.6 → 0.0.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +16 -2
- package/dist/index.d.ts +358 -5
- package/dist/index.js +1906 -72
- package/dist/index.mjs +1905 -71
- package/package.json +1 -1
- package/src/default-widget-inputs.ts +718 -0
- package/src/index.ts +35 -4
- package/src/library-to-tasks.ts +47 -0
- package/src/library-ui-elements.ts +765 -0
- package/src/model-data.ts +239 -0
- package/src/pipelines.ts +15 -0
- package/src/snippets/curl.ts +63 -0
- package/src/snippets/index.ts +6 -0
- package/src/snippets/inputs.ts +129 -0
- package/src/snippets/js.ts +150 -0
- package/src/snippets/python.ts +114 -0
- package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
- package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
- package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
- package/src/{conversational → tasks/conversational}/data.ts +1 -1
- package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
- package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
- package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
- package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
- package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
- package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
- package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
- package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
- package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
- package/src/{tasksData.ts → tasks/index.ts} +140 -15
- package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
- package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
- package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
- package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
- package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
- package/src/{summarization → tasks/summarization}/data.ts +1 -1
- package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
- package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
- package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
- package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
- package/src/{text-generation → tasks/text-generation}/about.md +3 -3
- package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
- package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
- package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
- package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
- package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
- package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
- package/src/{translation → tasks/translation}/data.ts +1 -1
- package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
- package/src/{video-classification → tasks/video-classification}/about.md +8 -28
- package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
- package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
- package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
- package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
- package/src/Types.ts +0 -64
- package/src/const.ts +0 -59
- /package/src/{modelLibraries.ts → model-libraries.ts} +0 -0
- /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
- /package/src/{conversational → tasks/conversational}/about.md +0 -0
- /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
- /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
- /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
- /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
- /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
- /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
- /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
- /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
- /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
- /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
- /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
- /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
- /package/src/{summarization → tasks/summarization}/about.md +0 -0
- /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
- /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
- /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
- /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
- /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
- /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
- /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
- /package/src/{translation → tasks/translation}/about.md +0 -0
- /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
- /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
- /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
- /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.js
CHANGED
|
@@ -21,8 +21,12 @@ var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: tru
|
|
|
21
21
|
var src_exports = {};
|
|
22
22
|
__export(src_exports, {
|
|
23
23
|
ALL_DISPLAY_MODEL_LIBRARY_KEYS: () => ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
24
|
+
InferenceDisplayability: () => InferenceDisplayability,
|
|
25
|
+
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS: () => LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
26
|
+
MAPPING_DEFAULT_WIDGET: () => MAPPING_DEFAULT_WIDGET,
|
|
24
27
|
MODALITIES: () => MODALITIES,
|
|
25
28
|
MODALITY_LABELS: () => MODALITY_LABELS,
|
|
29
|
+
MODEL_LIBRARIES_UI_ELEMENTS: () => MODEL_LIBRARIES_UI_ELEMENTS,
|
|
26
30
|
ModelLibrary: () => ModelLibrary,
|
|
27
31
|
OTHER_TAGS_SUGGESTIONS: () => OTHER_TAGS_SUGGESTIONS,
|
|
28
32
|
PIPELINE_DATA: () => PIPELINE_DATA,
|
|
@@ -32,10 +36,1394 @@ __export(src_exports, {
|
|
|
32
36
|
TAG_CUSTOM_CODE: () => TAG_CUSTOM_CODE,
|
|
33
37
|
TAG_NFAA_CONTENT: () => TAG_NFAA_CONTENT,
|
|
34
38
|
TAG_TEXT_GENERATION_INFERENCE: () => TAG_TEXT_GENERATION_INFERENCE,
|
|
35
|
-
TASKS_DATA: () => TASKS_DATA
|
|
39
|
+
TASKS_DATA: () => TASKS_DATA,
|
|
40
|
+
TASKS_MODEL_LIBRARIES: () => TASKS_MODEL_LIBRARIES,
|
|
41
|
+
snippets: () => snippets_exports
|
|
36
42
|
});
|
|
37
43
|
module.exports = __toCommonJS(src_exports);
|
|
38
44
|
|
|
45
|
+
// src/library-to-tasks.ts
|
|
46
|
+
var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
|
|
47
|
+
"adapter-transformers": ["question-answering", "text-classification", "token-classification"],
|
|
48
|
+
allennlp: ["question-answering"],
|
|
49
|
+
asteroid: [
|
|
50
|
+
// "audio-source-separation",
|
|
51
|
+
"audio-to-audio"
|
|
52
|
+
],
|
|
53
|
+
bertopic: ["text-classification"],
|
|
54
|
+
diffusers: ["image-to-image", "text-to-image"],
|
|
55
|
+
doctr: ["object-detection"],
|
|
56
|
+
espnet: ["text-to-speech", "automatic-speech-recognition"],
|
|
57
|
+
fairseq: ["text-to-speech", "audio-to-audio"],
|
|
58
|
+
fastai: ["image-classification"],
|
|
59
|
+
fasttext: ["feature-extraction", "text-classification"],
|
|
60
|
+
flair: ["token-classification"],
|
|
61
|
+
k2: ["automatic-speech-recognition"],
|
|
62
|
+
keras: ["image-classification"],
|
|
63
|
+
nemo: ["automatic-speech-recognition"],
|
|
64
|
+
open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
|
|
65
|
+
paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
|
|
66
|
+
peft: ["text-generation"],
|
|
67
|
+
"pyannote-audio": ["automatic-speech-recognition"],
|
|
68
|
+
"sentence-transformers": ["feature-extraction", "sentence-similarity"],
|
|
69
|
+
sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
|
|
70
|
+
spacy: ["token-classification", "text-classification", "sentence-similarity"],
|
|
71
|
+
"span-marker": ["token-classification"],
|
|
72
|
+
speechbrain: [
|
|
73
|
+
"audio-classification",
|
|
74
|
+
"audio-to-audio",
|
|
75
|
+
"automatic-speech-recognition",
|
|
76
|
+
"text-to-speech",
|
|
77
|
+
"text2text-generation"
|
|
78
|
+
],
|
|
79
|
+
stanza: ["token-classification"],
|
|
80
|
+
timm: ["image-classification"],
|
|
81
|
+
mindspore: ["image-classification"]
|
|
82
|
+
};
|
|
83
|
+
|
|
84
|
+
// src/library-ui-elements.ts
|
|
85
|
+
function nameWithoutNamespace(modelId) {
|
|
86
|
+
const splitted = modelId.split("/");
|
|
87
|
+
return splitted.length === 1 ? splitted[0] : splitted[1];
|
|
88
|
+
}
|
|
89
|
+
var adapter_transformers = (model) => [
|
|
90
|
+
`from transformers import ${model.config?.adapter_transformers?.model_class}
|
|
91
|
+
|
|
92
|
+
model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
|
|
93
|
+
model.load_adapter("${model.id}", source="hf")`
|
|
94
|
+
];
|
|
95
|
+
var allennlpUnknown = (model) => [
|
|
96
|
+
`import allennlp_models
|
|
97
|
+
from allennlp.predictors.predictor import Predictor
|
|
98
|
+
|
|
99
|
+
predictor = Predictor.from_path("hf://${model.id}")`
|
|
100
|
+
];
|
|
101
|
+
var allennlpQuestionAnswering = (model) => [
|
|
102
|
+
`import allennlp_models
|
|
103
|
+
from allennlp.predictors.predictor import Predictor
|
|
104
|
+
|
|
105
|
+
predictor = Predictor.from_path("hf://${model.id}")
|
|
106
|
+
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
|
|
107
|
+
predictions = predictor.predict_json(predictor_input)`
|
|
108
|
+
];
|
|
109
|
+
var allennlp = (model) => {
|
|
110
|
+
if (model.tags?.includes("question-answering")) {
|
|
111
|
+
return allennlpQuestionAnswering(model);
|
|
112
|
+
}
|
|
113
|
+
return allennlpUnknown(model);
|
|
114
|
+
};
|
|
115
|
+
var asteroid = (model) => [
|
|
116
|
+
`from asteroid.models import BaseModel
|
|
117
|
+
|
|
118
|
+
model = BaseModel.from_pretrained("${model.id}")`
|
|
119
|
+
];
|
|
120
|
+
function get_base_diffusers_model(model) {
|
|
121
|
+
return model.cardData?.base_model ?? "fill-in-base-model";
|
|
122
|
+
}
|
|
123
|
+
var bertopic = (model) => [
|
|
124
|
+
`from bertopic import BERTopic
|
|
125
|
+
|
|
126
|
+
model = BERTopic.load("${model.id}")`
|
|
127
|
+
];
|
|
128
|
+
var diffusers_default = (model) => [
|
|
129
|
+
`from diffusers import DiffusionPipeline
|
|
130
|
+
|
|
131
|
+
pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
|
|
132
|
+
];
|
|
133
|
+
var diffusers_controlnet = (model) => [
|
|
134
|
+
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
|
135
|
+
|
|
136
|
+
controlnet = ControlNetModel.from_pretrained("${model.id}")
|
|
137
|
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
|
138
|
+
"${get_base_diffusers_model(model)}", controlnet=controlnet
|
|
139
|
+
)`
|
|
140
|
+
];
|
|
141
|
+
var diffusers_lora = (model) => [
|
|
142
|
+
`from diffusers import DiffusionPipeline
|
|
143
|
+
|
|
144
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
145
|
+
pipeline.load_lora_weights("${model.id}")`
|
|
146
|
+
];
|
|
147
|
+
var diffusers_textual_inversion = (model) => [
|
|
148
|
+
`from diffusers import DiffusionPipeline
|
|
149
|
+
|
|
150
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
151
|
+
pipeline.load_textual_inversion("${model.id}")`
|
|
152
|
+
];
|
|
153
|
+
var diffusers = (model) => {
|
|
154
|
+
if (model.tags?.includes("controlnet")) {
|
|
155
|
+
return diffusers_controlnet(model);
|
|
156
|
+
} else if (model.tags?.includes("lora")) {
|
|
157
|
+
return diffusers_lora(model);
|
|
158
|
+
} else if (model.tags?.includes("textual_inversion")) {
|
|
159
|
+
return diffusers_textual_inversion(model);
|
|
160
|
+
} else {
|
|
161
|
+
return diffusers_default(model);
|
|
162
|
+
}
|
|
163
|
+
};
|
|
164
|
+
var espnetTTS = (model) => [
|
|
165
|
+
`from espnet2.bin.tts_inference import Text2Speech
|
|
166
|
+
|
|
167
|
+
model = Text2Speech.from_pretrained("${model.id}")
|
|
168
|
+
|
|
169
|
+
speech, *_ = model("text to generate speech from")`
|
|
170
|
+
];
|
|
171
|
+
var espnetASR = (model) => [
|
|
172
|
+
`from espnet2.bin.asr_inference import Speech2Text
|
|
173
|
+
|
|
174
|
+
model = Speech2Text.from_pretrained(
|
|
175
|
+
"${model.id}"
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
speech, rate = soundfile.read("speech.wav")
|
|
179
|
+
text, *_ = model(speech)[0]`
|
|
180
|
+
];
|
|
181
|
+
var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
|
|
182
|
+
var espnet = (model) => {
|
|
183
|
+
if (model.tags?.includes("text-to-speech")) {
|
|
184
|
+
return espnetTTS(model);
|
|
185
|
+
} else if (model.tags?.includes("automatic-speech-recognition")) {
|
|
186
|
+
return espnetASR(model);
|
|
187
|
+
}
|
|
188
|
+
return espnetUnknown();
|
|
189
|
+
};
|
|
190
|
+
var fairseq = (model) => [
|
|
191
|
+
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
|
192
|
+
|
|
193
|
+
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
|
194
|
+
"${model.id}"
|
|
195
|
+
)`
|
|
196
|
+
];
|
|
197
|
+
var flair = (model) => [
|
|
198
|
+
`from flair.models import SequenceTagger
|
|
199
|
+
|
|
200
|
+
tagger = SequenceTagger.load("${model.id}")`
|
|
201
|
+
];
|
|
202
|
+
var keras = (model) => [
|
|
203
|
+
`from huggingface_hub import from_pretrained_keras
|
|
204
|
+
|
|
205
|
+
model = from_pretrained_keras("${model.id}")
|
|
206
|
+
`
|
|
207
|
+
];
|
|
208
|
+
var open_clip = (model) => [
|
|
209
|
+
`import open_clip
|
|
210
|
+
|
|
211
|
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
|
|
212
|
+
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
|
|
213
|
+
];
|
|
214
|
+
var paddlenlp = (model) => {
|
|
215
|
+
if (model.config?.architectures?.[0]) {
|
|
216
|
+
const architecture = model.config.architectures[0];
|
|
217
|
+
return [
|
|
218
|
+
[
|
|
219
|
+
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
|
|
220
|
+
"",
|
|
221
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
|
|
222
|
+
`model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
|
|
223
|
+
].join("\n")
|
|
224
|
+
];
|
|
225
|
+
} else {
|
|
226
|
+
return [
|
|
227
|
+
[
|
|
228
|
+
`# \u26A0\uFE0F Type of model unknown`,
|
|
229
|
+
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
|
|
230
|
+
"",
|
|
231
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
|
|
232
|
+
`model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
|
|
233
|
+
].join("\n")
|
|
234
|
+
];
|
|
235
|
+
}
|
|
236
|
+
};
|
|
237
|
+
var pyannote_audio_pipeline = (model) => [
|
|
238
|
+
`from pyannote.audio import Pipeline
|
|
239
|
+
|
|
240
|
+
pipeline = Pipeline.from_pretrained("${model.id}")
|
|
241
|
+
|
|
242
|
+
# inference on the whole file
|
|
243
|
+
pipeline("file.wav")
|
|
244
|
+
|
|
245
|
+
# inference on an excerpt
|
|
246
|
+
from pyannote.core import Segment
|
|
247
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
248
|
+
|
|
249
|
+
from pyannote.audio import Audio
|
|
250
|
+
waveform, sample_rate = Audio().crop("file.wav", excerpt)
|
|
251
|
+
pipeline({"waveform": waveform, "sample_rate": sample_rate})`
|
|
252
|
+
];
|
|
253
|
+
var pyannote_audio_model = (model) => [
|
|
254
|
+
`from pyannote.audio import Model, Inference
|
|
255
|
+
|
|
256
|
+
model = Model.from_pretrained("${model.id}")
|
|
257
|
+
inference = Inference(model)
|
|
258
|
+
|
|
259
|
+
# inference on the whole file
|
|
260
|
+
inference("file.wav")
|
|
261
|
+
|
|
262
|
+
# inference on an excerpt
|
|
263
|
+
from pyannote.core import Segment
|
|
264
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
265
|
+
inference.crop("file.wav", excerpt)`
|
|
266
|
+
];
|
|
267
|
+
var pyannote_audio = (model) => {
|
|
268
|
+
if (model.tags?.includes("pyannote-audio-pipeline")) {
|
|
269
|
+
return pyannote_audio_pipeline(model);
|
|
270
|
+
}
|
|
271
|
+
return pyannote_audio_model(model);
|
|
272
|
+
};
|
|
273
|
+
var tensorflowttsTextToMel = (model) => [
|
|
274
|
+
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
|
|
275
|
+
|
|
276
|
+
processor = AutoProcessor.from_pretrained("${model.id}")
|
|
277
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
278
|
+
`
|
|
279
|
+
];
|
|
280
|
+
var tensorflowttsMelToWav = (model) => [
|
|
281
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
282
|
+
|
|
283
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
284
|
+
audios = model.inference(mels)
|
|
285
|
+
`
|
|
286
|
+
];
|
|
287
|
+
var tensorflowttsUnknown = (model) => [
|
|
288
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
289
|
+
|
|
290
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
291
|
+
`
|
|
292
|
+
];
|
|
293
|
+
var tensorflowtts = (model) => {
|
|
294
|
+
if (model.tags?.includes("text-to-mel")) {
|
|
295
|
+
return tensorflowttsTextToMel(model);
|
|
296
|
+
} else if (model.tags?.includes("mel-to-wav")) {
|
|
297
|
+
return tensorflowttsMelToWav(model);
|
|
298
|
+
}
|
|
299
|
+
return tensorflowttsUnknown(model);
|
|
300
|
+
};
|
|
301
|
+
var timm = (model) => [
|
|
302
|
+
`import timm
|
|
303
|
+
|
|
304
|
+
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
|
|
305
|
+
];
|
|
306
|
+
var skopsPickle = (model, modelFile) => {
|
|
307
|
+
return [
|
|
308
|
+
`import joblib
|
|
309
|
+
from skops.hub_utils import download
|
|
310
|
+
download("${model.id}", "path_to_folder")
|
|
311
|
+
model = joblib.load(
|
|
312
|
+
"${modelFile}"
|
|
313
|
+
)
|
|
314
|
+
# only load pickle files from sources you trust
|
|
315
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
|
|
316
|
+
];
|
|
317
|
+
};
|
|
318
|
+
var skopsFormat = (model, modelFile) => {
|
|
319
|
+
return [
|
|
320
|
+
`from skops.hub_utils import download
|
|
321
|
+
from skops.io import load
|
|
322
|
+
download("${model.id}", "path_to_folder")
|
|
323
|
+
# make sure model file is in skops format
|
|
324
|
+
# if model is a pickle file, make sure it's from a source you trust
|
|
325
|
+
model = load("path_to_folder/${modelFile}")`
|
|
326
|
+
];
|
|
327
|
+
};
|
|
328
|
+
var skopsJobLib = (model) => {
|
|
329
|
+
return [
|
|
330
|
+
`from huggingface_hub import hf_hub_download
|
|
331
|
+
import joblib
|
|
332
|
+
model = joblib.load(
|
|
333
|
+
hf_hub_download("${model.id}", "sklearn_model.joblib")
|
|
334
|
+
)
|
|
335
|
+
# only load pickle files from sources you trust
|
|
336
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
|
|
337
|
+
];
|
|
338
|
+
};
|
|
339
|
+
var sklearn = (model) => {
|
|
340
|
+
if (model.tags?.includes("skops")) {
|
|
341
|
+
const skopsmodelFile = model.config?.sklearn?.filename;
|
|
342
|
+
const skopssaveFormat = model.config?.sklearn?.model_format;
|
|
343
|
+
if (!skopsmodelFile) {
|
|
344
|
+
return [`# \u26A0\uFE0F Model filename not specified in config.json`];
|
|
345
|
+
}
|
|
346
|
+
if (skopssaveFormat === "pickle") {
|
|
347
|
+
return skopsPickle(model, skopsmodelFile);
|
|
348
|
+
} else {
|
|
349
|
+
return skopsFormat(model, skopsmodelFile);
|
|
350
|
+
}
|
|
351
|
+
} else {
|
|
352
|
+
return skopsJobLib(model);
|
|
353
|
+
}
|
|
354
|
+
};
|
|
355
|
+
var fastai = (model) => [
|
|
356
|
+
`from huggingface_hub import from_pretrained_fastai
|
|
357
|
+
|
|
358
|
+
learn = from_pretrained_fastai("${model.id}")`
|
|
359
|
+
];
|
|
360
|
+
var sampleFactory = (model) => [
|
|
361
|
+
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
|
|
362
|
+
];
|
|
363
|
+
var sentenceTransformers = (model) => [
|
|
364
|
+
`from sentence_transformers import SentenceTransformer
|
|
365
|
+
|
|
366
|
+
model = SentenceTransformer("${model.id}")`
|
|
367
|
+
];
|
|
368
|
+
var spacy = (model) => [
|
|
369
|
+
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
|
|
370
|
+
|
|
371
|
+
# Using spacy.load().
|
|
372
|
+
import spacy
|
|
373
|
+
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
|
|
374
|
+
|
|
375
|
+
# Importing as module.
|
|
376
|
+
import ${nameWithoutNamespace(model.id)}
|
|
377
|
+
nlp = ${nameWithoutNamespace(model.id)}.load()`
|
|
378
|
+
];
|
|
379
|
+
var span_marker = (model) => [
|
|
380
|
+
`from span_marker import SpanMarkerModel
|
|
381
|
+
|
|
382
|
+
model = SpanMarkerModel.from_pretrained("${model.id}")`
|
|
383
|
+
];
|
|
384
|
+
var stanza = (model) => [
|
|
385
|
+
`import stanza
|
|
386
|
+
|
|
387
|
+
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
|
|
388
|
+
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
|
|
389
|
+
];
|
|
390
|
+
var speechBrainMethod = (speechbrainInterface) => {
|
|
391
|
+
switch (speechbrainInterface) {
|
|
392
|
+
case "EncoderClassifier":
|
|
393
|
+
return "classify_file";
|
|
394
|
+
case "EncoderDecoderASR":
|
|
395
|
+
case "EncoderASR":
|
|
396
|
+
return "transcribe_file";
|
|
397
|
+
case "SpectralMaskEnhancement":
|
|
398
|
+
return "enhance_file";
|
|
399
|
+
case "SepformerSeparation":
|
|
400
|
+
return "separate_file";
|
|
401
|
+
default:
|
|
402
|
+
return void 0;
|
|
403
|
+
}
|
|
404
|
+
};
|
|
405
|
+
var speechbrain = (model) => {
|
|
406
|
+
const speechbrainInterface = model.config?.speechbrain?.interface;
|
|
407
|
+
if (speechbrainInterface === void 0) {
|
|
408
|
+
return [`# interface not specified in config.json`];
|
|
409
|
+
}
|
|
410
|
+
const speechbrainMethod = speechBrainMethod(speechbrainInterface);
|
|
411
|
+
if (speechbrainMethod === void 0) {
|
|
412
|
+
return [`# interface in config.json invalid`];
|
|
413
|
+
}
|
|
414
|
+
return [
|
|
415
|
+
`from speechbrain.pretrained import ${speechbrainInterface}
|
|
416
|
+
model = ${speechbrainInterface}.from_hparams(
|
|
417
|
+
"${model.id}"
|
|
418
|
+
)
|
|
419
|
+
model.${speechbrainMethod}("file.wav")`
|
|
420
|
+
];
|
|
421
|
+
};
|
|
422
|
+
var transformers = (model) => {
|
|
423
|
+
const info = model.transformersInfo;
|
|
424
|
+
if (!info) {
|
|
425
|
+
return [`# \u26A0\uFE0F Type of model unknown`];
|
|
426
|
+
}
|
|
427
|
+
const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
|
|
428
|
+
let autoSnippet;
|
|
429
|
+
if (info.processor) {
|
|
430
|
+
const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
|
|
431
|
+
autoSnippet = [
|
|
432
|
+
"# Load model directly",
|
|
433
|
+
`from transformers import ${info.processor}, ${info.auto_model}`,
|
|
434
|
+
"",
|
|
435
|
+
`${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
|
|
436
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
|
|
437
|
+
].join("\n");
|
|
438
|
+
} else {
|
|
439
|
+
autoSnippet = [
|
|
440
|
+
"# Load model directly",
|
|
441
|
+
`from transformers import ${info.auto_model}`,
|
|
442
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
|
|
443
|
+
].join("\n");
|
|
444
|
+
}
|
|
445
|
+
if (model.pipeline_tag) {
|
|
446
|
+
const pipelineSnippet = [
|
|
447
|
+
"# Use a pipeline as a high-level helper",
|
|
448
|
+
"from transformers import pipeline",
|
|
449
|
+
"",
|
|
450
|
+
`pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
|
|
451
|
+
].join("\n");
|
|
452
|
+
return [pipelineSnippet, autoSnippet];
|
|
453
|
+
}
|
|
454
|
+
return [autoSnippet];
|
|
455
|
+
};
|
|
456
|
+
var transformersJS = (model) => {
|
|
457
|
+
if (!model.pipeline_tag) {
|
|
458
|
+
return [`// \u26A0\uFE0F Unknown pipeline tag`];
|
|
459
|
+
}
|
|
460
|
+
const libName = "@xenova/transformers";
|
|
461
|
+
return [
|
|
462
|
+
`// npm i ${libName}
|
|
463
|
+
import { pipeline } from '${libName}';
|
|
464
|
+
|
|
465
|
+
// Allocate pipeline
|
|
466
|
+
const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
|
|
467
|
+
];
|
|
468
|
+
};
|
|
469
|
+
var peftTask = (peftTaskType) => {
|
|
470
|
+
switch (peftTaskType) {
|
|
471
|
+
case "CAUSAL_LM":
|
|
472
|
+
return "CausalLM";
|
|
473
|
+
case "SEQ_2_SEQ_LM":
|
|
474
|
+
return "Seq2SeqLM";
|
|
475
|
+
case "TOKEN_CLS":
|
|
476
|
+
return "TokenClassification";
|
|
477
|
+
case "SEQ_CLS":
|
|
478
|
+
return "SequenceClassification";
|
|
479
|
+
default:
|
|
480
|
+
return void 0;
|
|
481
|
+
}
|
|
482
|
+
};
|
|
483
|
+
var peft = (model) => {
|
|
484
|
+
const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
|
|
485
|
+
const pefttask = peftTask(peftTaskType);
|
|
486
|
+
if (!pefttask) {
|
|
487
|
+
return [`Task type is invalid.`];
|
|
488
|
+
}
|
|
489
|
+
if (!peftBaseModel) {
|
|
490
|
+
return [`Base model is not found.`];
|
|
491
|
+
}
|
|
492
|
+
return [
|
|
493
|
+
`from peft import PeftModel, PeftConfig
|
|
494
|
+
from transformers import AutoModelFor${pefttask}
|
|
495
|
+
|
|
496
|
+
config = PeftConfig.from_pretrained("${model.id}")
|
|
497
|
+
model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
|
|
498
|
+
model = PeftModel.from_pretrained(model, "${model.id}")`
|
|
499
|
+
];
|
|
500
|
+
};
|
|
501
|
+
var fasttext = (model) => [
|
|
502
|
+
`from huggingface_hub import hf_hub_download
|
|
503
|
+
import fasttext
|
|
504
|
+
|
|
505
|
+
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
|
|
506
|
+
];
|
|
507
|
+
var stableBaselines3 = (model) => [
|
|
508
|
+
`from huggingface_sb3 import load_from_hub
|
|
509
|
+
checkpoint = load_from_hub(
|
|
510
|
+
repo_id="${model.id}",
|
|
511
|
+
filename="{MODEL FILENAME}.zip",
|
|
512
|
+
)`
|
|
513
|
+
];
|
|
514
|
+
var nemoDomainResolver = (domain, model) => {
|
|
515
|
+
switch (domain) {
|
|
516
|
+
case "ASR":
|
|
517
|
+
return [
|
|
518
|
+
`import nemo.collections.asr as nemo_asr
|
|
519
|
+
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
|
|
520
|
+
|
|
521
|
+
transcriptions = asr_model.transcribe(["file.wav"])`
|
|
522
|
+
];
|
|
523
|
+
default:
|
|
524
|
+
return void 0;
|
|
525
|
+
}
|
|
526
|
+
};
|
|
527
|
+
var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
|
|
528
|
+
var nemo = (model) => {
|
|
529
|
+
let command = void 0;
|
|
530
|
+
if (model.tags?.includes("automatic-speech-recognition")) {
|
|
531
|
+
command = nemoDomainResolver("ASR", model);
|
|
532
|
+
}
|
|
533
|
+
return command ?? [`# tag did not correspond to a valid NeMo domain.`];
|
|
534
|
+
};
|
|
535
|
+
var pythae = (model) => [
|
|
536
|
+
`from pythae.models import AutoModel
|
|
537
|
+
|
|
538
|
+
model = AutoModel.load_from_hf_hub("${model.id}")`
|
|
539
|
+
];
|
|
540
|
+
var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
541
|
+
"adapter-transformers": {
|
|
542
|
+
btnLabel: "Adapter Transformers",
|
|
543
|
+
repoName: "adapter-transformers",
|
|
544
|
+
repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
|
|
545
|
+
docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
|
|
546
|
+
snippets: adapter_transformers
|
|
547
|
+
},
|
|
548
|
+
allennlp: {
|
|
549
|
+
btnLabel: "AllenNLP",
|
|
550
|
+
repoName: "AllenNLP",
|
|
551
|
+
repoUrl: "https://github.com/allenai/allennlp",
|
|
552
|
+
docsUrl: "https://huggingface.co/docs/hub/allennlp",
|
|
553
|
+
snippets: allennlp
|
|
554
|
+
},
|
|
555
|
+
asteroid: {
|
|
556
|
+
btnLabel: "Asteroid",
|
|
557
|
+
repoName: "Asteroid",
|
|
558
|
+
repoUrl: "https://github.com/asteroid-team/asteroid",
|
|
559
|
+
docsUrl: "https://huggingface.co/docs/hub/asteroid",
|
|
560
|
+
snippets: asteroid
|
|
561
|
+
},
|
|
562
|
+
bertopic: {
|
|
563
|
+
btnLabel: "BERTopic",
|
|
564
|
+
repoName: "BERTopic",
|
|
565
|
+
repoUrl: "https://github.com/MaartenGr/BERTopic",
|
|
566
|
+
snippets: bertopic
|
|
567
|
+
},
|
|
568
|
+
diffusers: {
|
|
569
|
+
btnLabel: "Diffusers",
|
|
570
|
+
repoName: "\u{1F917}/diffusers",
|
|
571
|
+
repoUrl: "https://github.com/huggingface/diffusers",
|
|
572
|
+
docsUrl: "https://huggingface.co/docs/hub/diffusers",
|
|
573
|
+
snippets: diffusers
|
|
574
|
+
},
|
|
575
|
+
espnet: {
|
|
576
|
+
btnLabel: "ESPnet",
|
|
577
|
+
repoName: "ESPnet",
|
|
578
|
+
repoUrl: "https://github.com/espnet/espnet",
|
|
579
|
+
docsUrl: "https://huggingface.co/docs/hub/espnet",
|
|
580
|
+
snippets: espnet
|
|
581
|
+
},
|
|
582
|
+
fairseq: {
|
|
583
|
+
btnLabel: "Fairseq",
|
|
584
|
+
repoName: "fairseq",
|
|
585
|
+
repoUrl: "https://github.com/pytorch/fairseq",
|
|
586
|
+
snippets: fairseq
|
|
587
|
+
},
|
|
588
|
+
flair: {
|
|
589
|
+
btnLabel: "Flair",
|
|
590
|
+
repoName: "Flair",
|
|
591
|
+
repoUrl: "https://github.com/flairNLP/flair",
|
|
592
|
+
docsUrl: "https://huggingface.co/docs/hub/flair",
|
|
593
|
+
snippets: flair
|
|
594
|
+
},
|
|
595
|
+
keras: {
|
|
596
|
+
btnLabel: "Keras",
|
|
597
|
+
repoName: "Keras",
|
|
598
|
+
repoUrl: "https://github.com/keras-team/keras",
|
|
599
|
+
docsUrl: "https://huggingface.co/docs/hub/keras",
|
|
600
|
+
snippets: keras
|
|
601
|
+
},
|
|
602
|
+
nemo: {
|
|
603
|
+
btnLabel: "NeMo",
|
|
604
|
+
repoName: "NeMo",
|
|
605
|
+
repoUrl: "https://github.com/NVIDIA/NeMo",
|
|
606
|
+
snippets: nemo
|
|
607
|
+
},
|
|
608
|
+
open_clip: {
|
|
609
|
+
btnLabel: "OpenCLIP",
|
|
610
|
+
repoName: "OpenCLIP",
|
|
611
|
+
repoUrl: "https://github.com/mlfoundations/open_clip",
|
|
612
|
+
snippets: open_clip
|
|
613
|
+
},
|
|
614
|
+
paddlenlp: {
|
|
615
|
+
btnLabel: "paddlenlp",
|
|
616
|
+
repoName: "PaddleNLP",
|
|
617
|
+
repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
|
|
618
|
+
docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
|
|
619
|
+
snippets: paddlenlp
|
|
620
|
+
},
|
|
621
|
+
peft: {
|
|
622
|
+
btnLabel: "PEFT",
|
|
623
|
+
repoName: "PEFT",
|
|
624
|
+
repoUrl: "https://github.com/huggingface/peft",
|
|
625
|
+
snippets: peft
|
|
626
|
+
},
|
|
627
|
+
"pyannote-audio": {
|
|
628
|
+
btnLabel: "pyannote.audio",
|
|
629
|
+
repoName: "pyannote-audio",
|
|
630
|
+
repoUrl: "https://github.com/pyannote/pyannote-audio",
|
|
631
|
+
snippets: pyannote_audio
|
|
632
|
+
},
|
|
633
|
+
"sentence-transformers": {
|
|
634
|
+
btnLabel: "sentence-transformers",
|
|
635
|
+
repoName: "sentence-transformers",
|
|
636
|
+
repoUrl: "https://github.com/UKPLab/sentence-transformers",
|
|
637
|
+
docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
|
|
638
|
+
snippets: sentenceTransformers
|
|
639
|
+
},
|
|
640
|
+
sklearn: {
|
|
641
|
+
btnLabel: "Scikit-learn",
|
|
642
|
+
repoName: "Scikit-learn",
|
|
643
|
+
repoUrl: "https://github.com/scikit-learn/scikit-learn",
|
|
644
|
+
snippets: sklearn
|
|
645
|
+
},
|
|
646
|
+
fastai: {
|
|
647
|
+
btnLabel: "fastai",
|
|
648
|
+
repoName: "fastai",
|
|
649
|
+
repoUrl: "https://github.com/fastai/fastai",
|
|
650
|
+
docsUrl: "https://huggingface.co/docs/hub/fastai",
|
|
651
|
+
snippets: fastai
|
|
652
|
+
},
|
|
653
|
+
spacy: {
|
|
654
|
+
btnLabel: "spaCy",
|
|
655
|
+
repoName: "spaCy",
|
|
656
|
+
repoUrl: "https://github.com/explosion/spaCy",
|
|
657
|
+
docsUrl: "https://huggingface.co/docs/hub/spacy",
|
|
658
|
+
snippets: spacy
|
|
659
|
+
},
|
|
660
|
+
"span-marker": {
|
|
661
|
+
btnLabel: "SpanMarker",
|
|
662
|
+
repoName: "SpanMarkerNER",
|
|
663
|
+
repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
|
|
664
|
+
docsUrl: "https://huggingface.co/docs/hub/span_marker",
|
|
665
|
+
snippets: span_marker
|
|
666
|
+
},
|
|
667
|
+
speechbrain: {
|
|
668
|
+
btnLabel: "speechbrain",
|
|
669
|
+
repoName: "speechbrain",
|
|
670
|
+
repoUrl: "https://github.com/speechbrain/speechbrain",
|
|
671
|
+
docsUrl: "https://huggingface.co/docs/hub/speechbrain",
|
|
672
|
+
snippets: speechbrain
|
|
673
|
+
},
|
|
674
|
+
stanza: {
|
|
675
|
+
btnLabel: "Stanza",
|
|
676
|
+
repoName: "stanza",
|
|
677
|
+
repoUrl: "https://github.com/stanfordnlp/stanza",
|
|
678
|
+
docsUrl: "https://huggingface.co/docs/hub/stanza",
|
|
679
|
+
snippets: stanza
|
|
680
|
+
},
|
|
681
|
+
tensorflowtts: {
|
|
682
|
+
btnLabel: "TensorFlowTTS",
|
|
683
|
+
repoName: "TensorFlowTTS",
|
|
684
|
+
repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
|
|
685
|
+
snippets: tensorflowtts
|
|
686
|
+
},
|
|
687
|
+
timm: {
|
|
688
|
+
btnLabel: "timm",
|
|
689
|
+
repoName: "pytorch-image-models",
|
|
690
|
+
repoUrl: "https://github.com/rwightman/pytorch-image-models",
|
|
691
|
+
docsUrl: "https://huggingface.co/docs/hub/timm",
|
|
692
|
+
snippets: timm
|
|
693
|
+
},
|
|
694
|
+
transformers: {
|
|
695
|
+
btnLabel: "Transformers",
|
|
696
|
+
repoName: "\u{1F917}/transformers",
|
|
697
|
+
repoUrl: "https://github.com/huggingface/transformers",
|
|
698
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers",
|
|
699
|
+
snippets: transformers
|
|
700
|
+
},
|
|
701
|
+
"transformers.js": {
|
|
702
|
+
btnLabel: "Transformers.js",
|
|
703
|
+
repoName: "transformers.js",
|
|
704
|
+
repoUrl: "https://github.com/xenova/transformers.js",
|
|
705
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers-js",
|
|
706
|
+
snippets: transformersJS
|
|
707
|
+
},
|
|
708
|
+
fasttext: {
|
|
709
|
+
btnLabel: "fastText",
|
|
710
|
+
repoName: "fastText",
|
|
711
|
+
repoUrl: "https://fasttext.cc/",
|
|
712
|
+
snippets: fasttext
|
|
713
|
+
},
|
|
714
|
+
"sample-factory": {
|
|
715
|
+
btnLabel: "sample-factory",
|
|
716
|
+
repoName: "sample-factory",
|
|
717
|
+
repoUrl: "https://github.com/alex-petrenko/sample-factory",
|
|
718
|
+
docsUrl: "https://huggingface.co/docs/hub/sample-factory",
|
|
719
|
+
snippets: sampleFactory
|
|
720
|
+
},
|
|
721
|
+
"stable-baselines3": {
|
|
722
|
+
btnLabel: "stable-baselines3",
|
|
723
|
+
repoName: "stable-baselines3",
|
|
724
|
+
repoUrl: "https://github.com/huggingface/huggingface_sb3",
|
|
725
|
+
docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
|
|
726
|
+
snippets: stableBaselines3
|
|
727
|
+
},
|
|
728
|
+
"ml-agents": {
|
|
729
|
+
btnLabel: "ml-agents",
|
|
730
|
+
repoName: "ml-agents",
|
|
731
|
+
repoUrl: "https://github.com/huggingface/ml-agents",
|
|
732
|
+
docsUrl: "https://huggingface.co/docs/hub/ml-agents",
|
|
733
|
+
snippets: mlAgents
|
|
734
|
+
},
|
|
735
|
+
pythae: {
|
|
736
|
+
btnLabel: "pythae",
|
|
737
|
+
repoName: "pythae",
|
|
738
|
+
repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
|
|
739
|
+
snippets: pythae
|
|
740
|
+
}
|
|
741
|
+
};
|
|
742
|
+
|
|
743
|
+
// src/default-widget-inputs.ts
|
|
744
|
+
var MAPPING_EN = /* @__PURE__ */ new Map([
|
|
745
|
+
["text-classification", [`I like you. I love you`]],
|
|
746
|
+
[
|
|
747
|
+
"token-classification",
|
|
748
|
+
[
|
|
749
|
+
`My name is Wolfgang and I live in Berlin`,
|
|
750
|
+
`My name is Sarah and I live in London`,
|
|
751
|
+
`My name is Clara and I live in Berkeley, California.`
|
|
752
|
+
]
|
|
753
|
+
],
|
|
754
|
+
[
|
|
755
|
+
"table-question-answering",
|
|
756
|
+
[
|
|
757
|
+
{
|
|
758
|
+
text: `How many stars does the transformers repository have?`,
|
|
759
|
+
table: {
|
|
760
|
+
Repository: ["Transformers", "Datasets", "Tokenizers"],
|
|
761
|
+
Stars: [36542, 4512, 3934],
|
|
762
|
+
Contributors: [651, 77, 34],
|
|
763
|
+
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
|
|
764
|
+
}
|
|
765
|
+
}
|
|
766
|
+
]
|
|
767
|
+
],
|
|
768
|
+
[
|
|
769
|
+
"question-answering",
|
|
770
|
+
[
|
|
771
|
+
{
|
|
772
|
+
text: `Where do I live?`,
|
|
773
|
+
context: `My name is Wolfgang and I live in Berlin`
|
|
774
|
+
},
|
|
775
|
+
{
|
|
776
|
+
text: `Where do I live?`,
|
|
777
|
+
context: `My name is Sarah and I live in London`
|
|
778
|
+
},
|
|
779
|
+
{
|
|
780
|
+
text: `What's my name?`,
|
|
781
|
+
context: `My name is Clara and I live in Berkeley.`
|
|
782
|
+
},
|
|
783
|
+
{
|
|
784
|
+
text: `Which name is also used to describe the Amazon rainforest in English?`,
|
|
785
|
+
context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
|
|
786
|
+
}
|
|
787
|
+
]
|
|
788
|
+
],
|
|
789
|
+
[
|
|
790
|
+
"zero-shot-classification",
|
|
791
|
+
[
|
|
792
|
+
{
|
|
793
|
+
text: "I have a problem with my iphone that needs to be resolved asap!!",
|
|
794
|
+
candidate_labels: "urgent, not urgent, phone, tablet, computer",
|
|
795
|
+
multi_class: true
|
|
796
|
+
},
|
|
797
|
+
{
|
|
798
|
+
text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
|
|
799
|
+
candidate_labels: "mobile, website, billing, account access",
|
|
800
|
+
multi_class: false
|
|
801
|
+
},
|
|
802
|
+
{
|
|
803
|
+
text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
|
|
804
|
+
candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
|
|
805
|
+
multi_class: true
|
|
806
|
+
}
|
|
807
|
+
]
|
|
808
|
+
],
|
|
809
|
+
["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
|
|
810
|
+
[
|
|
811
|
+
"summarization",
|
|
812
|
+
[
|
|
813
|
+
`The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
|
|
814
|
+
]
|
|
815
|
+
],
|
|
816
|
+
[
|
|
817
|
+
"conversational",
|
|
818
|
+
[
|
|
819
|
+
`Hey my name is Julien! How are you?`,
|
|
820
|
+
`Hey my name is Thomas! How are you?`,
|
|
821
|
+
`Hey my name is Mariama! How are you?`,
|
|
822
|
+
`Hey my name is Clara! How are you?`,
|
|
823
|
+
`Hey my name is Julien! How are you?`,
|
|
824
|
+
`Hi.`
|
|
825
|
+
]
|
|
826
|
+
],
|
|
827
|
+
[
|
|
828
|
+
"text-generation",
|
|
829
|
+
[
|
|
830
|
+
`My name is Julien and I like to`,
|
|
831
|
+
`My name is Thomas and my main`,
|
|
832
|
+
`My name is Mariama, my favorite`,
|
|
833
|
+
`My name is Clara and I am`,
|
|
834
|
+
`My name is Lewis and I like to`,
|
|
835
|
+
`My name is Merve and my favorite`,
|
|
836
|
+
`My name is Teven and I am`,
|
|
837
|
+
`Once upon a time,`
|
|
838
|
+
]
|
|
839
|
+
],
|
|
840
|
+
["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
|
|
841
|
+
[
|
|
842
|
+
"sentence-similarity",
|
|
843
|
+
[
|
|
844
|
+
{
|
|
845
|
+
source_sentence: "That is a happy person",
|
|
846
|
+
sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
|
|
847
|
+
}
|
|
848
|
+
]
|
|
849
|
+
]
|
|
850
|
+
]);
|
|
851
|
+
var MAPPING_ZH = /* @__PURE__ */ new Map([
|
|
852
|
+
["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
|
|
853
|
+
["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
|
|
854
|
+
[
|
|
855
|
+
"question-answering",
|
|
856
|
+
[
|
|
857
|
+
{
|
|
858
|
+
text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
|
|
859
|
+
context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
|
|
860
|
+
},
|
|
861
|
+
{
|
|
862
|
+
text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
|
|
863
|
+
context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
|
|
864
|
+
},
|
|
865
|
+
{
|
|
866
|
+
text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
|
|
867
|
+
context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
|
|
868
|
+
}
|
|
869
|
+
]
|
|
870
|
+
],
|
|
871
|
+
["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
|
|
872
|
+
[
|
|
873
|
+
"zero-shot-classification",
|
|
874
|
+
[
|
|
875
|
+
{
|
|
876
|
+
text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
|
|
877
|
+
candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
|
|
878
|
+
}
|
|
879
|
+
]
|
|
880
|
+
],
|
|
881
|
+
[
|
|
882
|
+
"summarization",
|
|
883
|
+
[
|
|
884
|
+
`\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
|
|
885
|
+
]
|
|
886
|
+
],
|
|
887
|
+
[
|
|
888
|
+
"text-generation",
|
|
889
|
+
[`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
|
|
890
|
+
],
|
|
891
|
+
["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
|
|
892
|
+
[
|
|
893
|
+
"sentence-similarity",
|
|
894
|
+
[
|
|
895
|
+
{
|
|
896
|
+
source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
|
|
897
|
+
sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
|
|
898
|
+
}
|
|
899
|
+
]
|
|
900
|
+
]
|
|
901
|
+
]);
|
|
902
|
+
var MAPPING_FR = /* @__PURE__ */ new Map([
|
|
903
|
+
["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
|
|
904
|
+
["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
|
|
905
|
+
[
|
|
906
|
+
"question-answering",
|
|
907
|
+
[
|
|
908
|
+
{
|
|
909
|
+
text: `O\xF9 est-ce que je vis?`,
|
|
910
|
+
context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
|
|
911
|
+
}
|
|
912
|
+
]
|
|
913
|
+
],
|
|
914
|
+
["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
|
|
915
|
+
[
|
|
916
|
+
"summarization",
|
|
917
|
+
[
|
|
918
|
+
`La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
|
|
919
|
+
]
|
|
920
|
+
],
|
|
921
|
+
["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
|
|
922
|
+
["fill-mask", [`Paris est la <mask> de la France.`]],
|
|
923
|
+
[
|
|
924
|
+
"sentence-similarity",
|
|
925
|
+
[
|
|
926
|
+
{
|
|
927
|
+
source_sentence: "C'est une personne heureuse",
|
|
928
|
+
sentences: [
|
|
929
|
+
"C'est un chien heureux",
|
|
930
|
+
"C'est une personne tr\xE8s heureuse",
|
|
931
|
+
"Aujourd'hui est une journ\xE9e ensoleill\xE9e"
|
|
932
|
+
]
|
|
933
|
+
}
|
|
934
|
+
]
|
|
935
|
+
]
|
|
936
|
+
]);
|
|
937
|
+
var MAPPING_ES = /* @__PURE__ */ new Map([
|
|
938
|
+
["text-classification", [`Te quiero. Te amo.`]],
|
|
939
|
+
["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
|
|
940
|
+
[
|
|
941
|
+
"question-answering",
|
|
942
|
+
[
|
|
943
|
+
{
|
|
944
|
+
text: `\xBFD\xF3nde vivo?`,
|
|
945
|
+
context: `Me llamo Wolfgang y vivo en Berlin`
|
|
946
|
+
},
|
|
947
|
+
{
|
|
948
|
+
text: `\xBFQui\xE9n invent\xF3 el submarino?`,
|
|
949
|
+
context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
|
|
950
|
+
},
|
|
951
|
+
{
|
|
952
|
+
text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
|
|
953
|
+
context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
|
|
954
|
+
}
|
|
955
|
+
]
|
|
956
|
+
],
|
|
957
|
+
[
|
|
958
|
+
"translation",
|
|
959
|
+
[
|
|
960
|
+
`Me llamo Wolfgang y vivo en Berlin`,
|
|
961
|
+
`Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
|
|
962
|
+
]
|
|
963
|
+
],
|
|
964
|
+
[
|
|
965
|
+
"summarization",
|
|
966
|
+
[
|
|
967
|
+
`La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
|
|
968
|
+
]
|
|
969
|
+
],
|
|
970
|
+
[
|
|
971
|
+
"text-generation",
|
|
972
|
+
[
|
|
973
|
+
`Me llamo Julien y me gusta`,
|
|
974
|
+
`Me llamo Thomas y mi principal`,
|
|
975
|
+
`Me llamo Manuel y trabajo en`,
|
|
976
|
+
`\xC9rase una vez,`,
|
|
977
|
+
`Si t\xFA me dices ven, `
|
|
978
|
+
]
|
|
979
|
+
],
|
|
980
|
+
["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
|
|
981
|
+
[
|
|
982
|
+
"sentence-similarity",
|
|
983
|
+
[
|
|
984
|
+
{
|
|
985
|
+
source_sentence: "Esa es una persona feliz",
|
|
986
|
+
sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
|
|
987
|
+
}
|
|
988
|
+
]
|
|
989
|
+
]
|
|
990
|
+
]);
|
|
991
|
+
var MAPPING_RU = /* @__PURE__ */ new Map([
|
|
992
|
+
["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
|
|
993
|
+
["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
|
|
994
|
+
[
|
|
995
|
+
"question-answering",
|
|
996
|
+
[
|
|
997
|
+
{
|
|
998
|
+
text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
|
|
999
|
+
context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
|
|
1000
|
+
}
|
|
1001
|
+
]
|
|
1002
|
+
],
|
|
1003
|
+
["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
|
|
1004
|
+
[
|
|
1005
|
+
"summarization",
|
|
1006
|
+
[
|
|
1007
|
+
`\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
|
|
1008
|
+
]
|
|
1009
|
+
],
|
|
1010
|
+
["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
|
|
1011
|
+
["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
|
|
1012
|
+
[
|
|
1013
|
+
"sentence-similarity",
|
|
1014
|
+
[
|
|
1015
|
+
{
|
|
1016
|
+
source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
|
|
1017
|
+
sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
|
|
1018
|
+
}
|
|
1019
|
+
]
|
|
1020
|
+
]
|
|
1021
|
+
]);
|
|
1022
|
+
var MAPPING_UK = /* @__PURE__ */ new Map([
|
|
1023
|
+
["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
|
|
1024
|
+
["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
|
|
1025
|
+
]);
|
|
1026
|
+
var MAPPING_IT = /* @__PURE__ */ new Map([
|
|
1027
|
+
["text-classification", [`Mi piaci. Ti amo`]],
|
|
1028
|
+
[
|
|
1029
|
+
"token-classification",
|
|
1030
|
+
[
|
|
1031
|
+
`Mi chiamo Wolfgang e vivo a Berlino`,
|
|
1032
|
+
`Mi chiamo Sarah e vivo a Londra`,
|
|
1033
|
+
`Mi chiamo Clara e vivo a Berkeley in California.`
|
|
1034
|
+
]
|
|
1035
|
+
],
|
|
1036
|
+
[
|
|
1037
|
+
"question-answering",
|
|
1038
|
+
[
|
|
1039
|
+
{
|
|
1040
|
+
text: `Dove vivo?`,
|
|
1041
|
+
context: `Mi chiamo Wolfgang e vivo a Berlino`
|
|
1042
|
+
},
|
|
1043
|
+
{
|
|
1044
|
+
text: `Dove vivo?`,
|
|
1045
|
+
context: `Mi chiamo Sarah e vivo a Londra`
|
|
1046
|
+
},
|
|
1047
|
+
{
|
|
1048
|
+
text: `Come mio chiamo?`,
|
|
1049
|
+
context: `Mi chiamo Clara e vivo a Berkeley.`
|
|
1050
|
+
}
|
|
1051
|
+
]
|
|
1052
|
+
],
|
|
1053
|
+
["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
|
|
1054
|
+
[
|
|
1055
|
+
"summarization",
|
|
1056
|
+
[
|
|
1057
|
+
`La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
|
|
1058
|
+
]
|
|
1059
|
+
],
|
|
1060
|
+
[
|
|
1061
|
+
"text-generation",
|
|
1062
|
+
[
|
|
1063
|
+
`Mi chiamo Loreto e mi piace`,
|
|
1064
|
+
`Mi chiamo Thomas e il mio principale`,
|
|
1065
|
+
`Mi chiamo Marianna, la mia cosa preferita`,
|
|
1066
|
+
`Mi chiamo Clara e sono`,
|
|
1067
|
+
`C'era una volta`
|
|
1068
|
+
]
|
|
1069
|
+
],
|
|
1070
|
+
["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
|
|
1071
|
+
[
|
|
1072
|
+
"sentence-similarity",
|
|
1073
|
+
[
|
|
1074
|
+
{
|
|
1075
|
+
source_sentence: "Questa \xE8 una persona felice",
|
|
1076
|
+
sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
|
|
1077
|
+
}
|
|
1078
|
+
]
|
|
1079
|
+
]
|
|
1080
|
+
]);
|
|
1081
|
+
var MAPPING_FA = /* @__PURE__ */ new Map([
|
|
1082
|
+
[
|
|
1083
|
+
"text-classification",
|
|
1084
|
+
[`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
|
|
1085
|
+
],
|
|
1086
|
+
[
|
|
1087
|
+
"token-classification",
|
|
1088
|
+
[
|
|
1089
|
+
`\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
|
|
1090
|
+
`\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
|
|
1091
|
+
`\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
|
|
1092
|
+
]
|
|
1093
|
+
],
|
|
1094
|
+
[
|
|
1095
|
+
"question-answering",
|
|
1096
|
+
[
|
|
1097
|
+
{
|
|
1098
|
+
text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
|
|
1099
|
+
context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
|
|
1100
|
+
},
|
|
1101
|
+
{
|
|
1102
|
+
text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
|
|
1103
|
+
context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
|
|
1104
|
+
},
|
|
1105
|
+
{
|
|
1106
|
+
text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
|
|
1107
|
+
context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
|
|
1108
|
+
},
|
|
1109
|
+
{
|
|
1110
|
+
text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
|
|
1111
|
+
context: [
|
|
1112
|
+
"\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
|
|
1113
|
+
"\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
|
|
1114
|
+
"\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
|
|
1115
|
+
].join("\n")
|
|
1116
|
+
}
|
|
1117
|
+
]
|
|
1118
|
+
],
|
|
1119
|
+
[
|
|
1120
|
+
"translation",
|
|
1121
|
+
[
|
|
1122
|
+
"\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
|
|
1123
|
+
"\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
|
|
1124
|
+
]
|
|
1125
|
+
],
|
|
1126
|
+
[
|
|
1127
|
+
"summarization",
|
|
1128
|
+
[
|
|
1129
|
+
[
|
|
1130
|
+
"\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
|
|
1131
|
+
"\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
|
|
1132
|
+
"\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
|
|
1133
|
+
"\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
|
|
1134
|
+
" \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
|
|
1135
|
+
" (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
|
|
1136
|
+
" \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
|
|
1137
|
+
" \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
|
|
1138
|
+
"\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
|
|
1139
|
+
" \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
|
|
1140
|
+
" \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
|
|
1141
|
+
" \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
|
|
1142
|
+
" \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
|
|
1143
|
+
" \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
|
|
1144
|
+
].join("\n")
|
|
1145
|
+
]
|
|
1146
|
+
],
|
|
1147
|
+
["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
|
|
1148
|
+
[
|
|
1149
|
+
"fill-mask",
|
|
1150
|
+
[
|
|
1151
|
+
`\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
|
|
1152
|
+
`\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
|
|
1153
|
+
]
|
|
1154
|
+
]
|
|
1155
|
+
]);
|
|
1156
|
+
var MAPPING_AR = /* @__PURE__ */ new Map([
|
|
1157
|
+
["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
|
|
1158
|
+
[
|
|
1159
|
+
"token-classification",
|
|
1160
|
+
[`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
|
|
1161
|
+
],
|
|
1162
|
+
[
|
|
1163
|
+
"question-answering",
|
|
1164
|
+
[
|
|
1165
|
+
{
|
|
1166
|
+
text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
|
|
1167
|
+
context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
|
|
1168
|
+
},
|
|
1169
|
+
{
|
|
1170
|
+
text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
|
|
1171
|
+
context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
|
|
1172
|
+
},
|
|
1173
|
+
{
|
|
1174
|
+
text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
|
|
1175
|
+
context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
|
|
1176
|
+
},
|
|
1177
|
+
{
|
|
1178
|
+
text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
|
|
1179
|
+
context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
|
|
1180
|
+
}
|
|
1181
|
+
]
|
|
1182
|
+
],
|
|
1183
|
+
["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
|
|
1184
|
+
[
|
|
1185
|
+
"summarization",
|
|
1186
|
+
[
|
|
1187
|
+
`\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
|
|
1188
|
+
]
|
|
1189
|
+
],
|
|
1190
|
+
[
|
|
1191
|
+
"text-generation",
|
|
1192
|
+
[
|
|
1193
|
+
`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
|
|
1194
|
+
`\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
|
|
1195
|
+
`\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
|
|
1196
|
+
`\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
|
|
1197
|
+
`\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
|
|
1198
|
+
]
|
|
1199
|
+
],
|
|
1200
|
+
["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
|
|
1201
|
+
[
|
|
1202
|
+
"sentence-similarity",
|
|
1203
|
+
[
|
|
1204
|
+
{
|
|
1205
|
+
source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
|
|
1206
|
+
sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
|
|
1207
|
+
}
|
|
1208
|
+
]
|
|
1209
|
+
]
|
|
1210
|
+
]);
|
|
1211
|
+
var MAPPING_BN = /* @__PURE__ */ new Map([
|
|
1212
|
+
["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
|
|
1213
|
+
[
|
|
1214
|
+
"token-classification",
|
|
1215
|
+
[`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
|
|
1216
|
+
],
|
|
1217
|
+
["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
|
|
1218
|
+
[
|
|
1219
|
+
"summarization",
|
|
1220
|
+
[
|
|
1221
|
+
`\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
|
|
1222
|
+
]
|
|
1223
|
+
],
|
|
1224
|
+
["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
|
|
1225
|
+
["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
|
|
1226
|
+
[
|
|
1227
|
+
"question-answering",
|
|
1228
|
+
[
|
|
1229
|
+
{
|
|
1230
|
+
text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
|
|
1231
|
+
context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
|
|
1232
|
+
},
|
|
1233
|
+
{
|
|
1234
|
+
text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
|
|
1235
|
+
context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
|
|
1236
|
+
},
|
|
1237
|
+
{
|
|
1238
|
+
text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
|
|
1239
|
+
context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
|
|
1240
|
+
}
|
|
1241
|
+
]
|
|
1242
|
+
],
|
|
1243
|
+
[
|
|
1244
|
+
"sentence-similarity",
|
|
1245
|
+
[
|
|
1246
|
+
{
|
|
1247
|
+
source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
|
|
1248
|
+
sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
|
|
1249
|
+
}
|
|
1250
|
+
]
|
|
1251
|
+
]
|
|
1252
|
+
]);
|
|
1253
|
+
var MAPPING_MN = /* @__PURE__ */ new Map([
|
|
1254
|
+
["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
|
|
1255
|
+
[
|
|
1256
|
+
"token-classification",
|
|
1257
|
+
[
|
|
1258
|
+
`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
|
|
1259
|
+
`\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
|
|
1260
|
+
`\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
|
|
1261
|
+
]
|
|
1262
|
+
],
|
|
1263
|
+
[
|
|
1264
|
+
"question-answering",
|
|
1265
|
+
[
|
|
1266
|
+
{
|
|
1267
|
+
text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
|
|
1268
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
|
|
1269
|
+
},
|
|
1270
|
+
{
|
|
1271
|
+
text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
|
|
1272
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
|
|
1273
|
+
},
|
|
1274
|
+
{
|
|
1275
|
+
text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
|
|
1276
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
|
|
1277
|
+
}
|
|
1278
|
+
]
|
|
1279
|
+
],
|
|
1280
|
+
["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
|
|
1281
|
+
[
|
|
1282
|
+
"summarization",
|
|
1283
|
+
[
|
|
1284
|
+
`\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
|
|
1285
|
+
]
|
|
1286
|
+
],
|
|
1287
|
+
[
|
|
1288
|
+
"text-generation",
|
|
1289
|
+
[`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
|
|
1290
|
+
],
|
|
1291
|
+
["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
|
|
1292
|
+
[
|
|
1293
|
+
"automatic-speech-recognition",
|
|
1294
|
+
[
|
|
1295
|
+
{
|
|
1296
|
+
label: `Common Voice Train Example`,
|
|
1297
|
+
src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
|
|
1298
|
+
},
|
|
1299
|
+
{
|
|
1300
|
+
label: `Common Voice Test Example`,
|
|
1301
|
+
src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
|
|
1302
|
+
}
|
|
1303
|
+
]
|
|
1304
|
+
],
|
|
1305
|
+
[
|
|
1306
|
+
"text-to-speech",
|
|
1307
|
+
[
|
|
1308
|
+
`\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
|
|
1309
|
+
`\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
|
|
1310
|
+
`\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
|
|
1311
|
+
]
|
|
1312
|
+
],
|
|
1313
|
+
[
|
|
1314
|
+
"sentence-similarity",
|
|
1315
|
+
[
|
|
1316
|
+
{
|
|
1317
|
+
source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
|
|
1318
|
+
sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
|
|
1319
|
+
}
|
|
1320
|
+
]
|
|
1321
|
+
]
|
|
1322
|
+
]);
|
|
1323
|
+
var MAPPING_SI = /* @__PURE__ */ new Map([
|
|
1324
|
+
["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
|
|
1325
|
+
["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
|
|
1326
|
+
]);
|
|
1327
|
+
var MAPPING_DE = /* @__PURE__ */ new Map([
|
|
1328
|
+
[
|
|
1329
|
+
"question-answering",
|
|
1330
|
+
[
|
|
1331
|
+
{
|
|
1332
|
+
text: `Wo wohne ich?`,
|
|
1333
|
+
context: `Mein Name ist Wolfgang und ich lebe in Berlin`
|
|
1334
|
+
},
|
|
1335
|
+
{
|
|
1336
|
+
text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
|
|
1337
|
+
context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
|
|
1338
|
+
}
|
|
1339
|
+
]
|
|
1340
|
+
],
|
|
1341
|
+
[
|
|
1342
|
+
"sentence-similarity",
|
|
1343
|
+
[
|
|
1344
|
+
{
|
|
1345
|
+
source_sentence: "Das ist eine gl\xFCckliche Person",
|
|
1346
|
+
sentences: [
|
|
1347
|
+
"Das ist ein gl\xFCcklicher Hund",
|
|
1348
|
+
"Das ist eine sehr gl\xFCckliche Person",
|
|
1349
|
+
"Heute ist ein sonniger Tag"
|
|
1350
|
+
]
|
|
1351
|
+
}
|
|
1352
|
+
]
|
|
1353
|
+
]
|
|
1354
|
+
]);
|
|
1355
|
+
var MAPPING_DV = /* @__PURE__ */ new Map([
|
|
1356
|
+
["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
|
|
1357
|
+
[
|
|
1358
|
+
"token-classification",
|
|
1359
|
+
[
|
|
1360
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
|
|
1361
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
|
|
1362
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
|
|
1363
|
+
]
|
|
1364
|
+
],
|
|
1365
|
+
[
|
|
1366
|
+
"question-answering",
|
|
1367
|
+
[
|
|
1368
|
+
{
|
|
1369
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
|
|
1370
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
|
|
1371
|
+
},
|
|
1372
|
+
{
|
|
1373
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
|
|
1374
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
|
|
1375
|
+
},
|
|
1376
|
+
{
|
|
1377
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
|
|
1378
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
|
|
1379
|
+
},
|
|
1380
|
+
{
|
|
1381
|
+
text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
|
|
1382
|
+
context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
|
|
1383
|
+
}
|
|
1384
|
+
]
|
|
1385
|
+
],
|
|
1386
|
+
[
|
|
1387
|
+
"translation",
|
|
1388
|
+
[
|
|
1389
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
|
|
1390
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
|
|
1391
|
+
]
|
|
1392
|
+
],
|
|
1393
|
+
[
|
|
1394
|
+
"summarization",
|
|
1395
|
+
[
|
|
1396
|
+
`\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
|
|
1397
|
+
]
|
|
1398
|
+
],
|
|
1399
|
+
[
|
|
1400
|
+
"text-generation",
|
|
1401
|
+
[
|
|
1402
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
|
|
1403
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
|
|
1404
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
|
|
1405
|
+
`\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
|
|
1406
|
+
]
|
|
1407
|
+
],
|
|
1408
|
+
["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
|
|
1409
|
+
]);
|
|
1410
|
+
var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
|
|
1411
|
+
["en", MAPPING_EN],
|
|
1412
|
+
["zh", MAPPING_ZH],
|
|
1413
|
+
["fr", MAPPING_FR],
|
|
1414
|
+
["es", MAPPING_ES],
|
|
1415
|
+
["ru", MAPPING_RU],
|
|
1416
|
+
["uk", MAPPING_UK],
|
|
1417
|
+
["it", MAPPING_IT],
|
|
1418
|
+
["fa", MAPPING_FA],
|
|
1419
|
+
["ar", MAPPING_AR],
|
|
1420
|
+
["bn", MAPPING_BN],
|
|
1421
|
+
["mn", MAPPING_MN],
|
|
1422
|
+
["si", MAPPING_SI],
|
|
1423
|
+
["de", MAPPING_DE],
|
|
1424
|
+
["dv", MAPPING_DV]
|
|
1425
|
+
]);
|
|
1426
|
+
|
|
39
1427
|
// src/pipelines.ts
|
|
40
1428
|
var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
|
|
41
1429
|
var MODALITY_LABELS = {
|
|
@@ -416,6 +1804,11 @@ var PIPELINE_DATA = {
|
|
|
416
1804
|
modality: "cv",
|
|
417
1805
|
color: "indigo"
|
|
418
1806
|
},
|
|
1807
|
+
"image-to-video": {
|
|
1808
|
+
name: "Image-to-Video",
|
|
1809
|
+
modality: "multimodal",
|
|
1810
|
+
color: "indigo"
|
|
1811
|
+
},
|
|
419
1812
|
"unconditional-image-generation": {
|
|
420
1813
|
name: "Unconditional Image Generation",
|
|
421
1814
|
modality: "cv",
|
|
@@ -584,6 +1977,16 @@ var PIPELINE_DATA = {
|
|
|
584
1977
|
modality: "multimodal",
|
|
585
1978
|
color: "green"
|
|
586
1979
|
},
|
|
1980
|
+
"mask-generation": {
|
|
1981
|
+
name: "Mask Generation",
|
|
1982
|
+
modality: "cv",
|
|
1983
|
+
color: "indigo"
|
|
1984
|
+
},
|
|
1985
|
+
"zero-shot-object-detection": {
|
|
1986
|
+
name: "Zero-Shot Object Detection",
|
|
1987
|
+
modality: "cv",
|
|
1988
|
+
color: "yellow"
|
|
1989
|
+
},
|
|
587
1990
|
other: {
|
|
588
1991
|
name: "Other",
|
|
589
1992
|
modality: "other",
|
|
@@ -596,7 +1999,7 @@ var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
|
|
|
596
1999
|
var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
|
|
597
2000
|
var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
|
598
2001
|
|
|
599
|
-
// src/audio-classification/data.ts
|
|
2002
|
+
// src/tasks/audio-classification/data.ts
|
|
600
2003
|
var taskData = {
|
|
601
2004
|
datasets: [
|
|
602
2005
|
{
|
|
@@ -661,8 +2064,8 @@ var taskData = {
|
|
|
661
2064
|
],
|
|
662
2065
|
spaces: [
|
|
663
2066
|
{
|
|
664
|
-
description: "An application that can
|
|
665
|
-
id: "
|
|
2067
|
+
description: "An application that can classify music into different genre.",
|
|
2068
|
+
id: "kurianbenoy/audioclassification"
|
|
666
2069
|
}
|
|
667
2070
|
],
|
|
668
2071
|
summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
|
|
@@ -671,7 +2074,7 @@ var taskData = {
|
|
|
671
2074
|
};
|
|
672
2075
|
var data_default = taskData;
|
|
673
2076
|
|
|
674
|
-
// src/audio-to-audio/data.ts
|
|
2077
|
+
// src/tasks/audio-to-audio/data.ts
|
|
675
2078
|
var taskData2 = {
|
|
676
2079
|
datasets: [
|
|
677
2080
|
{
|
|
@@ -733,7 +2136,7 @@ var taskData2 = {
|
|
|
733
2136
|
};
|
|
734
2137
|
var data_default2 = taskData2;
|
|
735
2138
|
|
|
736
|
-
// src/automatic-speech-recognition/data.ts
|
|
2139
|
+
// src/tasks/automatic-speech-recognition/data.ts
|
|
737
2140
|
var taskData3 = {
|
|
738
2141
|
datasets: [
|
|
739
2142
|
{
|
|
@@ -778,7 +2181,7 @@ var taskData3 = {
|
|
|
778
2181
|
models: [
|
|
779
2182
|
{
|
|
780
2183
|
description: "A powerful ASR model by OpenAI.",
|
|
781
|
-
id: "openai/whisper-large-
|
|
2184
|
+
id: "openai/whisper-large-v3"
|
|
782
2185
|
},
|
|
783
2186
|
{
|
|
784
2187
|
description: "A good generic ASR model by MetaAI.",
|
|
@@ -792,24 +2195,24 @@ var taskData3 = {
|
|
|
792
2195
|
spaces: [
|
|
793
2196
|
{
|
|
794
2197
|
description: "A powerful general-purpose speech recognition application.",
|
|
795
|
-
id: "
|
|
2198
|
+
id: "hf-audio/whisper-large-v3"
|
|
796
2199
|
},
|
|
797
2200
|
{
|
|
798
2201
|
description: "Fastest speech recognition application.",
|
|
799
2202
|
id: "sanchit-gandhi/whisper-jax"
|
|
800
2203
|
},
|
|
801
2204
|
{
|
|
802
|
-
description: "
|
|
803
|
-
id: "
|
|
2205
|
+
description: "A high quality speech and text translation model by Meta.",
|
|
2206
|
+
id: "facebook/seamless_m4t"
|
|
804
2207
|
}
|
|
805
2208
|
],
|
|
806
2209
|
summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
|
|
807
|
-
widgetModels: ["openai/whisper-large-
|
|
2210
|
+
widgetModels: ["openai/whisper-large-v3"],
|
|
808
2211
|
youtubeId: "TksaY_FDgnk"
|
|
809
2212
|
};
|
|
810
2213
|
var data_default3 = taskData3;
|
|
811
2214
|
|
|
812
|
-
// src/conversational/data.ts
|
|
2215
|
+
// src/tasks/conversational/data.ts
|
|
813
2216
|
var taskData4 = {
|
|
814
2217
|
datasets: [
|
|
815
2218
|
{
|
|
@@ -869,7 +2272,7 @@ var taskData4 = {
|
|
|
869
2272
|
};
|
|
870
2273
|
var data_default4 = taskData4;
|
|
871
2274
|
|
|
872
|
-
// src/document-question-answering/data.ts
|
|
2275
|
+
// src/tasks/document-question-answering/data.ts
|
|
873
2276
|
var taskData5 = {
|
|
874
2277
|
datasets: [
|
|
875
2278
|
{
|
|
@@ -934,7 +2337,7 @@ var taskData5 = {
|
|
|
934
2337
|
};
|
|
935
2338
|
var data_default5 = taskData5;
|
|
936
2339
|
|
|
937
|
-
// src/feature-extraction/data.ts
|
|
2340
|
+
// src/tasks/feature-extraction/data.ts
|
|
938
2341
|
var taskData6 = {
|
|
939
2342
|
datasets: [
|
|
940
2343
|
{
|
|
@@ -963,12 +2366,7 @@ var taskData6 = {
|
|
|
963
2366
|
}
|
|
964
2367
|
]
|
|
965
2368
|
},
|
|
966
|
-
metrics: [
|
|
967
|
-
{
|
|
968
|
-
description: "",
|
|
969
|
-
id: ""
|
|
970
|
-
}
|
|
971
|
-
],
|
|
2369
|
+
metrics: [],
|
|
972
2370
|
models: [
|
|
973
2371
|
{
|
|
974
2372
|
description: "A powerful feature extraction model for natural language processing tasks.",
|
|
@@ -985,7 +2383,7 @@ var taskData6 = {
|
|
|
985
2383
|
};
|
|
986
2384
|
var data_default6 = taskData6;
|
|
987
2385
|
|
|
988
|
-
// src/fill-mask/data.ts
|
|
2386
|
+
// src/tasks/fill-mask/data.ts
|
|
989
2387
|
var taskData7 = {
|
|
990
2388
|
datasets: [
|
|
991
2389
|
{
|
|
@@ -1060,7 +2458,7 @@ var taskData7 = {
|
|
|
1060
2458
|
};
|
|
1061
2459
|
var data_default7 = taskData7;
|
|
1062
2460
|
|
|
1063
|
-
// src/image-classification/data.ts
|
|
2461
|
+
// src/tasks/image-classification/data.ts
|
|
1064
2462
|
var taskData8 = {
|
|
1065
2463
|
datasets: [
|
|
1066
2464
|
{
|
|
@@ -1146,7 +2544,7 @@ var taskData8 = {
|
|
|
1146
2544
|
};
|
|
1147
2545
|
var data_default8 = taskData8;
|
|
1148
2546
|
|
|
1149
|
-
// src/image-to-image/data.ts
|
|
2547
|
+
// src/tasks/image-to-image/data.ts
|
|
1150
2548
|
var taskData9 = {
|
|
1151
2549
|
datasets: [
|
|
1152
2550
|
{
|
|
@@ -1241,7 +2639,7 @@ var taskData9 = {
|
|
|
1241
2639
|
};
|
|
1242
2640
|
var data_default9 = taskData9;
|
|
1243
2641
|
|
|
1244
|
-
// src/image-to-text/data.ts
|
|
2642
|
+
// src/tasks/image-to-text/data.ts
|
|
1245
2643
|
var taskData10 = {
|
|
1246
2644
|
datasets: [
|
|
1247
2645
|
{
|
|
@@ -1325,7 +2723,7 @@ var taskData10 = {
|
|
|
1325
2723
|
};
|
|
1326
2724
|
var data_default10 = taskData10;
|
|
1327
2725
|
|
|
1328
|
-
// src/image-segmentation/data.ts
|
|
2726
|
+
// src/tasks/image-segmentation/data.ts
|
|
1329
2727
|
var taskData11 = {
|
|
1330
2728
|
datasets: [
|
|
1331
2729
|
{
|
|
@@ -1420,7 +2818,7 @@ var taskData11 = {
|
|
|
1420
2818
|
};
|
|
1421
2819
|
var data_default11 = taskData11;
|
|
1422
2820
|
|
|
1423
|
-
// src/object-detection/data.ts
|
|
2821
|
+
// src/tasks/object-detection/data.ts
|
|
1424
2822
|
var taskData12 = {
|
|
1425
2823
|
datasets: [
|
|
1426
2824
|
{
|
|
@@ -1492,7 +2890,7 @@ var taskData12 = {
|
|
|
1492
2890
|
};
|
|
1493
2891
|
var data_default12 = taskData12;
|
|
1494
2892
|
|
|
1495
|
-
// src/depth-estimation/data.ts
|
|
2893
|
+
// src/tasks/depth-estimation/data.ts
|
|
1496
2894
|
var taskData13 = {
|
|
1497
2895
|
datasets: [
|
|
1498
2896
|
{
|
|
@@ -1543,7 +2941,7 @@ var taskData13 = {
|
|
|
1543
2941
|
};
|
|
1544
2942
|
var data_default13 = taskData13;
|
|
1545
2943
|
|
|
1546
|
-
// src/placeholder/data.ts
|
|
2944
|
+
// src/tasks/placeholder/data.ts
|
|
1547
2945
|
var taskData14 = {
|
|
1548
2946
|
datasets: [],
|
|
1549
2947
|
demo: {
|
|
@@ -1560,7 +2958,7 @@ var taskData14 = {
|
|
|
1560
2958
|
};
|
|
1561
2959
|
var data_default14 = taskData14;
|
|
1562
2960
|
|
|
1563
|
-
// src/reinforcement-learning/data.ts
|
|
2961
|
+
// src/tasks/reinforcement-learning/data.ts
|
|
1564
2962
|
var taskData15 = {
|
|
1565
2963
|
datasets: [
|
|
1566
2964
|
{
|
|
@@ -1629,7 +3027,7 @@ var taskData15 = {
|
|
|
1629
3027
|
};
|
|
1630
3028
|
var data_default15 = taskData15;
|
|
1631
3029
|
|
|
1632
|
-
// src/question-answering/data.ts
|
|
3030
|
+
// src/tasks/question-answering/data.ts
|
|
1633
3031
|
var taskData16 = {
|
|
1634
3032
|
datasets: [
|
|
1635
3033
|
{
|
|
@@ -1696,7 +3094,7 @@ var taskData16 = {
|
|
|
1696
3094
|
};
|
|
1697
3095
|
var data_default16 = taskData16;
|
|
1698
3096
|
|
|
1699
|
-
// src/sentence-similarity/data.ts
|
|
3097
|
+
// src/tasks/sentence-similarity/data.ts
|
|
1700
3098
|
var taskData17 = {
|
|
1701
3099
|
datasets: [
|
|
1702
3100
|
{
|
|
@@ -1791,7 +3189,7 @@ var taskData17 = {
|
|
|
1791
3189
|
};
|
|
1792
3190
|
var data_default17 = taskData17;
|
|
1793
3191
|
|
|
1794
|
-
// src/summarization/data.ts
|
|
3192
|
+
// src/tasks/summarization/data.ts
|
|
1795
3193
|
var taskData18 = {
|
|
1796
3194
|
datasets: [
|
|
1797
3195
|
{
|
|
@@ -1859,7 +3257,7 @@ var taskData18 = {
|
|
|
1859
3257
|
};
|
|
1860
3258
|
var data_default18 = taskData18;
|
|
1861
3259
|
|
|
1862
|
-
// src/table-question-answering/data.ts
|
|
3260
|
+
// src/tasks/table-question-answering/data.ts
|
|
1863
3261
|
var taskData19 = {
|
|
1864
3262
|
datasets: [
|
|
1865
3263
|
{
|
|
@@ -1913,7 +3311,7 @@ var taskData19 = {
|
|
|
1913
3311
|
};
|
|
1914
3312
|
var data_default19 = taskData19;
|
|
1915
3313
|
|
|
1916
|
-
// src/tabular-classification/data.ts
|
|
3314
|
+
// src/tasks/tabular-classification/data.ts
|
|
1917
3315
|
var taskData20 = {
|
|
1918
3316
|
datasets: [
|
|
1919
3317
|
{
|
|
@@ -1980,7 +3378,7 @@ var taskData20 = {
|
|
|
1980
3378
|
};
|
|
1981
3379
|
var data_default20 = taskData20;
|
|
1982
3380
|
|
|
1983
|
-
// src/tabular-regression/data.ts
|
|
3381
|
+
// src/tasks/tabular-regression/data.ts
|
|
1984
3382
|
var taskData21 = {
|
|
1985
3383
|
datasets: [
|
|
1986
3384
|
{
|
|
@@ -2035,7 +3433,7 @@ var taskData21 = {
|
|
|
2035
3433
|
};
|
|
2036
3434
|
var data_default21 = taskData21;
|
|
2037
3435
|
|
|
2038
|
-
// src/text-to-image/data.ts
|
|
3436
|
+
// src/tasks/text-to-image/data.ts
|
|
2039
3437
|
var taskData22 = {
|
|
2040
3438
|
datasets: [
|
|
2041
3439
|
{
|
|
@@ -2122,7 +3520,7 @@ var taskData22 = {
|
|
|
2122
3520
|
};
|
|
2123
3521
|
var data_default22 = taskData22;
|
|
2124
3522
|
|
|
2125
|
-
// src/text-to-speech/data.ts
|
|
3523
|
+
// src/tasks/text-to-speech/data.ts
|
|
2126
3524
|
var taskData23 = {
|
|
2127
3525
|
datasets: [
|
|
2128
3526
|
{
|
|
@@ -2175,8 +3573,8 @@ var taskData23 = {
|
|
|
2175
3573
|
id: "suno/bark"
|
|
2176
3574
|
},
|
|
2177
3575
|
{
|
|
2178
|
-
description: "
|
|
2179
|
-
id: "coqui/
|
|
3576
|
+
description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
|
|
3577
|
+
id: "coqui/xtts"
|
|
2180
3578
|
},
|
|
2181
3579
|
{
|
|
2182
3580
|
description: "An application that synthesizes speech for various speaker types.",
|
|
@@ -2184,12 +3582,12 @@ var taskData23 = {
|
|
|
2184
3582
|
}
|
|
2185
3583
|
],
|
|
2186
3584
|
summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
|
|
2187
|
-
widgetModels: ["
|
|
3585
|
+
widgetModels: ["suno/bark"],
|
|
2188
3586
|
youtubeId: "NW62DpzJ274"
|
|
2189
3587
|
};
|
|
2190
3588
|
var data_default23 = taskData23;
|
|
2191
3589
|
|
|
2192
|
-
// src/token-classification/data.ts
|
|
3590
|
+
// src/tasks/token-classification/data.ts
|
|
2193
3591
|
var taskData24 = {
|
|
2194
3592
|
datasets: [
|
|
2195
3593
|
{
|
|
@@ -2268,7 +3666,7 @@ var taskData24 = {
|
|
|
2268
3666
|
};
|
|
2269
3667
|
var data_default24 = taskData24;
|
|
2270
3668
|
|
|
2271
|
-
// src/translation/data.ts
|
|
3669
|
+
// src/tasks/translation/data.ts
|
|
2272
3670
|
var taskData25 = {
|
|
2273
3671
|
datasets: [
|
|
2274
3672
|
{
|
|
@@ -2332,7 +3730,7 @@ var taskData25 = {
|
|
|
2332
3730
|
};
|
|
2333
3731
|
var data_default25 = taskData25;
|
|
2334
3732
|
|
|
2335
|
-
// src/text-classification/data.ts
|
|
3733
|
+
// src/tasks/text-classification/data.ts
|
|
2336
3734
|
var taskData26 = {
|
|
2337
3735
|
datasets: [
|
|
2338
3736
|
{
|
|
@@ -2420,7 +3818,7 @@ var taskData26 = {
|
|
|
2420
3818
|
};
|
|
2421
3819
|
var data_default26 = taskData26;
|
|
2422
3820
|
|
|
2423
|
-
// src/text-generation/data.ts
|
|
3821
|
+
// src/tasks/text-generation/data.ts
|
|
2424
3822
|
var taskData27 = {
|
|
2425
3823
|
datasets: [
|
|
2426
3824
|
{
|
|
@@ -2535,12 +3933,12 @@ var taskData27 = {
|
|
|
2535
3933
|
}
|
|
2536
3934
|
],
|
|
2537
3935
|
summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
|
|
2538
|
-
widgetModels: ["
|
|
3936
|
+
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
2539
3937
|
youtubeId: "Vpjb1lu0MDk"
|
|
2540
3938
|
};
|
|
2541
3939
|
var data_default27 = taskData27;
|
|
2542
3940
|
|
|
2543
|
-
// src/text-to-video/data.ts
|
|
3941
|
+
// src/tasks/text-to-video/data.ts
|
|
2544
3942
|
var taskData28 = {
|
|
2545
3943
|
datasets: [
|
|
2546
3944
|
{
|
|
@@ -2635,7 +4033,7 @@ var taskData28 = {
|
|
|
2635
4033
|
};
|
|
2636
4034
|
var data_default28 = taskData28;
|
|
2637
4035
|
|
|
2638
|
-
// src/unconditional-image-generation/data.ts
|
|
4036
|
+
// src/tasks/unconditional-image-generation/data.ts
|
|
2639
4037
|
var taskData29 = {
|
|
2640
4038
|
datasets: [
|
|
2641
4039
|
{
|
|
@@ -2700,7 +4098,7 @@ var taskData29 = {
|
|
|
2700
4098
|
};
|
|
2701
4099
|
var data_default29 = taskData29;
|
|
2702
4100
|
|
|
2703
|
-
// src/video-classification/data.ts
|
|
4101
|
+
// src/tasks/video-classification/data.ts
|
|
2704
4102
|
var taskData30 = {
|
|
2705
4103
|
datasets: [
|
|
2706
4104
|
{
|
|
@@ -2782,7 +4180,7 @@ var taskData30 = {
|
|
|
2782
4180
|
};
|
|
2783
4181
|
var data_default30 = taskData30;
|
|
2784
4182
|
|
|
2785
|
-
// src/visual-question-answering/data.ts
|
|
4183
|
+
// src/tasks/visual-question-answering/data.ts
|
|
2786
4184
|
var taskData31 = {
|
|
2787
4185
|
datasets: [
|
|
2788
4186
|
{
|
|
@@ -2871,7 +4269,7 @@ var taskData31 = {
|
|
|
2871
4269
|
};
|
|
2872
4270
|
var data_default31 = taskData31;
|
|
2873
4271
|
|
|
2874
|
-
// src/zero-shot-classification/data.ts
|
|
4272
|
+
// src/tasks/zero-shot-classification/data.ts
|
|
2875
4273
|
var taskData32 = {
|
|
2876
4274
|
datasets: [
|
|
2877
4275
|
{
|
|
@@ -2933,7 +4331,7 @@ var taskData32 = {
|
|
|
2933
4331
|
};
|
|
2934
4332
|
var data_default32 = taskData32;
|
|
2935
4333
|
|
|
2936
|
-
// src/zero-shot-image-classification/data.ts
|
|
4334
|
+
// src/tasks/zero-shot-image-classification/data.ts
|
|
2937
4335
|
var taskData33 = {
|
|
2938
4336
|
datasets: [
|
|
2939
4337
|
{
|
|
@@ -3006,7 +4404,7 @@ var taskData33 = {
|
|
|
3006
4404
|
};
|
|
3007
4405
|
var data_default33 = taskData33;
|
|
3008
4406
|
|
|
3009
|
-
// src/
|
|
4407
|
+
// src/tasks/index.ts
|
|
3010
4408
|
var TASKS_MODEL_LIBRARIES = {
|
|
3011
4409
|
"audio-classification": ["speechbrain", "transformers"],
|
|
3012
4410
|
"audio-to-audio": ["asteroid", "speechbrain"],
|
|
@@ -3019,9 +4417,11 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3019
4417
|
"graph-ml": ["transformers"],
|
|
3020
4418
|
"image-classification": ["keras", "timm", "transformers", "transformers.js"],
|
|
3021
4419
|
"image-segmentation": ["transformers", "transformers.js"],
|
|
3022
|
-
"image-to-image": [],
|
|
4420
|
+
"image-to-image": ["diffusers"],
|
|
3023
4421
|
"image-to-text": ["transformers.js"],
|
|
3024
|
-
"video
|
|
4422
|
+
"image-to-video": ["diffusers"],
|
|
4423
|
+
"video-classification": ["transformers"],
|
|
4424
|
+
"mask-generation": ["transformers"],
|
|
3025
4425
|
"multiple-choice": ["transformers"],
|
|
3026
4426
|
"object-detection": ["transformers", "transformers.js"],
|
|
3027
4427
|
other: [],
|
|
@@ -3038,10 +4438,10 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3038
4438
|
"text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
|
|
3039
4439
|
"text-generation": ["transformers", "transformers.js"],
|
|
3040
4440
|
"text-retrieval": [],
|
|
3041
|
-
"text-to-image": [],
|
|
4441
|
+
"text-to-image": ["diffusers"],
|
|
3042
4442
|
"text-to-speech": ["espnet", "tensorflowtts", "transformers"],
|
|
3043
4443
|
"text-to-audio": ["transformers"],
|
|
3044
|
-
"text-to-video": [],
|
|
4444
|
+
"text-to-video": ["diffusers"],
|
|
3045
4445
|
"text2text-generation": ["transformers", "transformers.js"],
|
|
3046
4446
|
"time-series-forecasting": [],
|
|
3047
4447
|
"token-classification": [
|
|
@@ -3054,14 +4454,21 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3054
4454
|
"transformers.js"
|
|
3055
4455
|
],
|
|
3056
4456
|
translation: ["transformers", "transformers.js"],
|
|
3057
|
-
"unconditional-image-generation": [],
|
|
3058
|
-
"visual-question-answering": [],
|
|
4457
|
+
"unconditional-image-generation": ["diffusers"],
|
|
4458
|
+
"visual-question-answering": ["transformers"],
|
|
3059
4459
|
"voice-activity-detection": [],
|
|
3060
4460
|
"zero-shot-classification": ["transformers", "transformers.js"],
|
|
3061
|
-
"zero-shot-image-classification": ["transformers.js"]
|
|
4461
|
+
"zero-shot-image-classification": ["transformers", "transformers.js"],
|
|
4462
|
+
"zero-shot-object-detection": ["transformers"]
|
|
3062
4463
|
};
|
|
3063
|
-
|
|
3064
|
-
|
|
4464
|
+
function getData(type, partialTaskData = data_default14) {
|
|
4465
|
+
return {
|
|
4466
|
+
...partialTaskData,
|
|
4467
|
+
id: type,
|
|
4468
|
+
label: PIPELINE_DATA[type].name,
|
|
4469
|
+
libraries: TASKS_MODEL_LIBRARIES[type]
|
|
4470
|
+
};
|
|
4471
|
+
}
|
|
3065
4472
|
var TASKS_DATA = {
|
|
3066
4473
|
"audio-classification": getData("audio-classification", data_default),
|
|
3067
4474
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
@@ -3076,6 +4483,8 @@ var TASKS_DATA = {
|
|
|
3076
4483
|
"image-segmentation": getData("image-segmentation", data_default11),
|
|
3077
4484
|
"image-to-image": getData("image-to-image", data_default9),
|
|
3078
4485
|
"image-to-text": getData("image-to-text", data_default10),
|
|
4486
|
+
"image-to-video": void 0,
|
|
4487
|
+
"mask-generation": getData("mask-generation", data_default14),
|
|
3079
4488
|
"multiple-choice": void 0,
|
|
3080
4489
|
"object-detection": getData("object-detection", data_default12),
|
|
3081
4490
|
"video-classification": getData("video-classification", data_default30),
|
|
@@ -3105,18 +4514,11 @@ var TASKS_DATA = {
|
|
|
3105
4514
|
"visual-question-answering": getData("visual-question-answering", data_default31),
|
|
3106
4515
|
"voice-activity-detection": void 0,
|
|
3107
4516
|
"zero-shot-classification": getData("zero-shot-classification", data_default32),
|
|
3108
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
|
|
4517
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
|
|
4518
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default14)
|
|
3109
4519
|
};
|
|
3110
|
-
function getData(type, partialTaskData = data_default14) {
|
|
3111
|
-
return {
|
|
3112
|
-
...partialTaskData,
|
|
3113
|
-
id: type,
|
|
3114
|
-
label: PIPELINE_DATA[type].name,
|
|
3115
|
-
libraries: TASKS_MODEL_LIBRARIES[type]
|
|
3116
|
-
};
|
|
3117
|
-
}
|
|
3118
4520
|
|
|
3119
|
-
// src/
|
|
4521
|
+
// src/model-libraries.ts
|
|
3120
4522
|
var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
3121
4523
|
ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
|
|
3122
4524
|
ModelLibrary2["allennlp"] = "allenNLP";
|
|
@@ -3157,6 +4559,17 @@ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
|
|
|
3157
4559
|
(k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
|
|
3158
4560
|
);
|
|
3159
4561
|
|
|
4562
|
+
// src/model-data.ts
|
|
4563
|
+
var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
|
|
4564
|
+
InferenceDisplayability2["Yes"] = "Yes";
|
|
4565
|
+
InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
|
|
4566
|
+
InferenceDisplayability2["CustomCode"] = "CustomCode";
|
|
4567
|
+
InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
|
|
4568
|
+
InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
|
|
4569
|
+
InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
|
|
4570
|
+
return InferenceDisplayability2;
|
|
4571
|
+
})(InferenceDisplayability || {});
|
|
4572
|
+
|
|
3160
4573
|
// src/tags.ts
|
|
3161
4574
|
var TAG_NFAA_CONTENT = "not-for-all-audiences";
|
|
3162
4575
|
var OTHER_TAGS_SUGGESTIONS = [
|
|
@@ -3173,11 +4586,430 @@ var OTHER_TAGS_SUGGESTIONS = [
|
|
|
3173
4586
|
];
|
|
3174
4587
|
var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
|
|
3175
4588
|
var TAG_CUSTOM_CODE = "custom_code";
|
|
4589
|
+
|
|
4590
|
+
// src/snippets/index.ts
|
|
4591
|
+
var snippets_exports = {};
|
|
4592
|
+
__export(snippets_exports, {
|
|
4593
|
+
curl: () => curl_exports,
|
|
4594
|
+
inputs: () => inputs_exports,
|
|
4595
|
+
js: () => js_exports,
|
|
4596
|
+
python: () => python_exports
|
|
4597
|
+
});
|
|
4598
|
+
|
|
4599
|
+
// src/snippets/inputs.ts
|
|
4600
|
+
var inputs_exports = {};
|
|
4601
|
+
__export(inputs_exports, {
|
|
4602
|
+
getModelInputSnippet: () => getModelInputSnippet
|
|
4603
|
+
});
|
|
4604
|
+
var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
|
|
4605
|
+
var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
|
|
4606
|
+
var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
|
|
4607
|
+
var inputsConversational = () => `{
|
|
4608
|
+
"past_user_inputs": ["Which movie is the best ?"],
|
|
4609
|
+
"generated_responses": ["It is Die Hard for sure."],
|
|
4610
|
+
"text": "Can you explain why ?"
|
|
4611
|
+
}`;
|
|
4612
|
+
var inputsTableQuestionAnswering = () => `{
|
|
4613
|
+
"query": "How many stars does the transformers repository have?",
|
|
4614
|
+
"table": {
|
|
4615
|
+
"Repository": ["Transformers", "Datasets", "Tokenizers"],
|
|
4616
|
+
"Stars": ["36542", "4512", "3934"],
|
|
4617
|
+
"Contributors": ["651", "77", "34"],
|
|
4618
|
+
"Programming language": [
|
|
4619
|
+
"Python",
|
|
4620
|
+
"Python",
|
|
4621
|
+
"Rust, Python and NodeJS"
|
|
4622
|
+
]
|
|
4623
|
+
}
|
|
4624
|
+
}`;
|
|
4625
|
+
var inputsQuestionAnswering = () => `{
|
|
4626
|
+
"question": "What is my name?",
|
|
4627
|
+
"context": "My name is Clara and I live in Berkeley."
|
|
4628
|
+
}`;
|
|
4629
|
+
var inputsTextClassification = () => `"I like you. I love you"`;
|
|
4630
|
+
var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
|
|
4631
|
+
var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
|
|
4632
|
+
var inputsText2TextGeneration = () => `"The answer to the universe is"`;
|
|
4633
|
+
var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
|
|
4634
|
+
var inputsSentenceSimilarity = () => `{
|
|
4635
|
+
"source_sentence": "That is a happy person",
|
|
4636
|
+
"sentences": [
|
|
4637
|
+
"That is a happy dog",
|
|
4638
|
+
"That is a very happy person",
|
|
4639
|
+
"Today is a sunny day"
|
|
4640
|
+
]
|
|
4641
|
+
}`;
|
|
4642
|
+
var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
|
|
4643
|
+
var inputsImageClassification = () => `"cats.jpg"`;
|
|
4644
|
+
var inputsImageToText = () => `"cats.jpg"`;
|
|
4645
|
+
var inputsImageSegmentation = () => `"cats.jpg"`;
|
|
4646
|
+
var inputsObjectDetection = () => `"cats.jpg"`;
|
|
4647
|
+
var inputsAudioToAudio = () => `"sample1.flac"`;
|
|
4648
|
+
var inputsAudioClassification = () => `"sample1.flac"`;
|
|
4649
|
+
var inputsTextToImage = () => `"Astronaut riding a horse"`;
|
|
4650
|
+
var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
|
|
4651
|
+
var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
|
|
4652
|
+
var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
|
|
4653
|
+
var modelInputSnippets = {
|
|
4654
|
+
"audio-to-audio": inputsAudioToAudio,
|
|
4655
|
+
"audio-classification": inputsAudioClassification,
|
|
4656
|
+
"automatic-speech-recognition": inputsAutomaticSpeechRecognition,
|
|
4657
|
+
conversational: inputsConversational,
|
|
4658
|
+
"feature-extraction": inputsFeatureExtraction,
|
|
4659
|
+
"fill-mask": inputsFillMask,
|
|
4660
|
+
"image-classification": inputsImageClassification,
|
|
4661
|
+
"image-to-text": inputsImageToText,
|
|
4662
|
+
"image-segmentation": inputsImageSegmentation,
|
|
4663
|
+
"object-detection": inputsObjectDetection,
|
|
4664
|
+
"question-answering": inputsQuestionAnswering,
|
|
4665
|
+
"sentence-similarity": inputsSentenceSimilarity,
|
|
4666
|
+
summarization: inputsSummarization,
|
|
4667
|
+
"table-question-answering": inputsTableQuestionAnswering,
|
|
4668
|
+
"text-classification": inputsTextClassification,
|
|
4669
|
+
"text-generation": inputsTextGeneration,
|
|
4670
|
+
"text-to-image": inputsTextToImage,
|
|
4671
|
+
"text-to-speech": inputsTextToSpeech,
|
|
4672
|
+
"text-to-audio": inputsTextToAudio,
|
|
4673
|
+
"text2text-generation": inputsText2TextGeneration,
|
|
4674
|
+
"token-classification": inputsTokenClassification,
|
|
4675
|
+
translation: inputsTranslation,
|
|
4676
|
+
"zero-shot-classification": inputsZeroShotClassification
|
|
4677
|
+
};
|
|
4678
|
+
function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
|
|
4679
|
+
if (model.pipeline_tag) {
|
|
4680
|
+
const inputs = modelInputSnippets[model.pipeline_tag];
|
|
4681
|
+
if (inputs) {
|
|
4682
|
+
let result = inputs(model);
|
|
4683
|
+
if (noWrap) {
|
|
4684
|
+
result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
|
|
4685
|
+
}
|
|
4686
|
+
if (noQuotes) {
|
|
4687
|
+
const REGEX_QUOTES = /^"(.+)"$/s;
|
|
4688
|
+
const match = result.match(REGEX_QUOTES);
|
|
4689
|
+
result = match ? match[1] : result;
|
|
4690
|
+
}
|
|
4691
|
+
return result;
|
|
4692
|
+
}
|
|
4693
|
+
}
|
|
4694
|
+
return "No input example has been defined for this model task.";
|
|
4695
|
+
}
|
|
4696
|
+
|
|
4697
|
+
// src/snippets/curl.ts
|
|
4698
|
+
var curl_exports = {};
|
|
4699
|
+
__export(curl_exports, {
|
|
4700
|
+
curlSnippets: () => curlSnippets,
|
|
4701
|
+
getCurlInferenceSnippet: () => getCurlInferenceSnippet,
|
|
4702
|
+
hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
|
|
4703
|
+
snippetBasic: () => snippetBasic,
|
|
4704
|
+
snippetFile: () => snippetFile,
|
|
4705
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification
|
|
4706
|
+
});
|
|
4707
|
+
var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4708
|
+
-X POST \\
|
|
4709
|
+
-d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
|
|
4710
|
+
-H 'Content-Type: application/json' \\
|
|
4711
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4712
|
+
`;
|
|
4713
|
+
var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4714
|
+
-X POST \\
|
|
4715
|
+
-d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
|
|
4716
|
+
-H 'Content-Type: application/json' \\
|
|
4717
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4718
|
+
`;
|
|
4719
|
+
var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4720
|
+
-X POST \\
|
|
4721
|
+
--data-binary '@${getModelInputSnippet(model, true, true)}' \\
|
|
4722
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4723
|
+
`;
|
|
4724
|
+
var curlSnippets = {
|
|
4725
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4726
|
+
"text-classification": snippetBasic,
|
|
4727
|
+
"token-classification": snippetBasic,
|
|
4728
|
+
"table-question-answering": snippetBasic,
|
|
4729
|
+
"question-answering": snippetBasic,
|
|
4730
|
+
"zero-shot-classification": snippetZeroShotClassification,
|
|
4731
|
+
translation: snippetBasic,
|
|
4732
|
+
summarization: snippetBasic,
|
|
4733
|
+
conversational: snippetBasic,
|
|
4734
|
+
"feature-extraction": snippetBasic,
|
|
4735
|
+
"text-generation": snippetBasic,
|
|
4736
|
+
"text2text-generation": snippetBasic,
|
|
4737
|
+
"fill-mask": snippetBasic,
|
|
4738
|
+
"sentence-similarity": snippetBasic,
|
|
4739
|
+
"automatic-speech-recognition": snippetFile,
|
|
4740
|
+
"text-to-image": snippetBasic,
|
|
4741
|
+
"text-to-speech": snippetBasic,
|
|
4742
|
+
"text-to-audio": snippetBasic,
|
|
4743
|
+
"audio-to-audio": snippetFile,
|
|
4744
|
+
"audio-classification": snippetFile,
|
|
4745
|
+
"image-classification": snippetFile,
|
|
4746
|
+
"image-to-text": snippetFile,
|
|
4747
|
+
"object-detection": snippetFile,
|
|
4748
|
+
"image-segmentation": snippetFile
|
|
4749
|
+
};
|
|
4750
|
+
function getCurlInferenceSnippet(model, accessToken) {
|
|
4751
|
+
return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
|
|
4752
|
+
}
|
|
4753
|
+
function hasCurlInferenceSnippet(model) {
|
|
4754
|
+
return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
|
|
4755
|
+
}
|
|
4756
|
+
|
|
4757
|
+
// src/snippets/python.ts
|
|
4758
|
+
var python_exports = {};
|
|
4759
|
+
__export(python_exports, {
|
|
4760
|
+
getPythonInferenceSnippet: () => getPythonInferenceSnippet,
|
|
4761
|
+
hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
|
|
4762
|
+
pythonSnippets: () => pythonSnippets,
|
|
4763
|
+
snippetBasic: () => snippetBasic2,
|
|
4764
|
+
snippetFile: () => snippetFile2,
|
|
4765
|
+
snippetTextToAudio: () => snippetTextToAudio,
|
|
4766
|
+
snippetTextToImage: () => snippetTextToImage,
|
|
4767
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification2
|
|
4768
|
+
});
|
|
4769
|
+
var snippetZeroShotClassification2 = (model) => `def query(payload):
|
|
4770
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4771
|
+
return response.json()
|
|
4772
|
+
|
|
4773
|
+
output = query({
|
|
4774
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4775
|
+
"parameters": {"candidate_labels": ["refund", "legal", "faq"]},
|
|
4776
|
+
})`;
|
|
4777
|
+
var snippetBasic2 = (model) => `def query(payload):
|
|
4778
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4779
|
+
return response.json()
|
|
4780
|
+
|
|
4781
|
+
output = query({
|
|
4782
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4783
|
+
})`;
|
|
4784
|
+
var snippetFile2 = (model) => `def query(filename):
|
|
4785
|
+
with open(filename, "rb") as f:
|
|
4786
|
+
data = f.read()
|
|
4787
|
+
response = requests.post(API_URL, headers=headers, data=data)
|
|
4788
|
+
return response.json()
|
|
4789
|
+
|
|
4790
|
+
output = query(${getModelInputSnippet(model)})`;
|
|
4791
|
+
var snippetTextToImage = (model) => `def query(payload):
|
|
4792
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4793
|
+
return response.content
|
|
4794
|
+
image_bytes = query({
|
|
4795
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4796
|
+
})
|
|
4797
|
+
# You can access the image with PIL.Image for example
|
|
4798
|
+
import io
|
|
4799
|
+
from PIL import Image
|
|
4800
|
+
image = Image.open(io.BytesIO(image_bytes))`;
|
|
4801
|
+
var snippetTextToAudio = (model) => {
|
|
4802
|
+
if (model.library_name === "transformers") {
|
|
4803
|
+
return `def query(payload):
|
|
4804
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4805
|
+
return response.content
|
|
4806
|
+
|
|
4807
|
+
audio_bytes = query({
|
|
4808
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4809
|
+
})
|
|
4810
|
+
# You can access the audio with IPython.display for example
|
|
4811
|
+
from IPython.display import Audio
|
|
4812
|
+
Audio(audio_bytes)`;
|
|
4813
|
+
} else {
|
|
4814
|
+
return `def query(payload):
|
|
4815
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4816
|
+
return response.json()
|
|
4817
|
+
|
|
4818
|
+
audio, sampling_rate = query({
|
|
4819
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4820
|
+
})
|
|
4821
|
+
# You can access the audio with IPython.display for example
|
|
4822
|
+
from IPython.display import Audio
|
|
4823
|
+
Audio(audio, rate=sampling_rate)`;
|
|
4824
|
+
}
|
|
4825
|
+
};
|
|
4826
|
+
var pythonSnippets = {
|
|
4827
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4828
|
+
"text-classification": snippetBasic2,
|
|
4829
|
+
"token-classification": snippetBasic2,
|
|
4830
|
+
"table-question-answering": snippetBasic2,
|
|
4831
|
+
"question-answering": snippetBasic2,
|
|
4832
|
+
"zero-shot-classification": snippetZeroShotClassification2,
|
|
4833
|
+
translation: snippetBasic2,
|
|
4834
|
+
summarization: snippetBasic2,
|
|
4835
|
+
conversational: snippetBasic2,
|
|
4836
|
+
"feature-extraction": snippetBasic2,
|
|
4837
|
+
"text-generation": snippetBasic2,
|
|
4838
|
+
"text2text-generation": snippetBasic2,
|
|
4839
|
+
"fill-mask": snippetBasic2,
|
|
4840
|
+
"sentence-similarity": snippetBasic2,
|
|
4841
|
+
"automatic-speech-recognition": snippetFile2,
|
|
4842
|
+
"text-to-image": snippetTextToImage,
|
|
4843
|
+
"text-to-speech": snippetTextToAudio,
|
|
4844
|
+
"text-to-audio": snippetTextToAudio,
|
|
4845
|
+
"audio-to-audio": snippetFile2,
|
|
4846
|
+
"audio-classification": snippetFile2,
|
|
4847
|
+
"image-classification": snippetFile2,
|
|
4848
|
+
"image-to-text": snippetFile2,
|
|
4849
|
+
"object-detection": snippetFile2,
|
|
4850
|
+
"image-segmentation": snippetFile2
|
|
4851
|
+
};
|
|
4852
|
+
function getPythonInferenceSnippet(model, accessToken) {
|
|
4853
|
+
const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
|
|
4854
|
+
return `import requests
|
|
4855
|
+
|
|
4856
|
+
API_URL = "https://api-inference.huggingface.co/models/${model.id}"
|
|
4857
|
+
headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
|
|
4858
|
+
|
|
4859
|
+
${body}`;
|
|
4860
|
+
}
|
|
4861
|
+
function hasPythonInferenceSnippet(model) {
|
|
4862
|
+
return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
|
|
4863
|
+
}
|
|
4864
|
+
|
|
4865
|
+
// src/snippets/js.ts
|
|
4866
|
+
var js_exports = {};
|
|
4867
|
+
__export(js_exports, {
|
|
4868
|
+
getJsInferenceSnippet: () => getJsInferenceSnippet,
|
|
4869
|
+
hasJsInferenceSnippet: () => hasJsInferenceSnippet,
|
|
4870
|
+
jsSnippets: () => jsSnippets,
|
|
4871
|
+
snippetBasic: () => snippetBasic3,
|
|
4872
|
+
snippetFile: () => snippetFile3,
|
|
4873
|
+
snippetTextToAudio: () => snippetTextToAudio2,
|
|
4874
|
+
snippetTextToImage: () => snippetTextToImage2,
|
|
4875
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification3
|
|
4876
|
+
});
|
|
4877
|
+
var snippetBasic3 = (model, accessToken) => `async function query(data) {
|
|
4878
|
+
const response = await fetch(
|
|
4879
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4880
|
+
{
|
|
4881
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4882
|
+
method: "POST",
|
|
4883
|
+
body: JSON.stringify(data),
|
|
4884
|
+
}
|
|
4885
|
+
);
|
|
4886
|
+
const result = await response.json();
|
|
4887
|
+
return result;
|
|
4888
|
+
}
|
|
4889
|
+
|
|
4890
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4891
|
+
console.log(JSON.stringify(response));
|
|
4892
|
+
});`;
|
|
4893
|
+
var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
|
|
4894
|
+
const response = await fetch(
|
|
4895
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4896
|
+
{
|
|
4897
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4898
|
+
method: "POST",
|
|
4899
|
+
body: JSON.stringify(data),
|
|
4900
|
+
}
|
|
4901
|
+
);
|
|
4902
|
+
const result = await response.json();
|
|
4903
|
+
return result;
|
|
4904
|
+
}
|
|
4905
|
+
|
|
4906
|
+
query({"inputs": ${getModelInputSnippet(
|
|
4907
|
+
model
|
|
4908
|
+
)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
|
|
4909
|
+
console.log(JSON.stringify(response));
|
|
4910
|
+
});`;
|
|
4911
|
+
var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
|
|
4912
|
+
const response = await fetch(
|
|
4913
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4914
|
+
{
|
|
4915
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4916
|
+
method: "POST",
|
|
4917
|
+
body: JSON.stringify(data),
|
|
4918
|
+
}
|
|
4919
|
+
);
|
|
4920
|
+
const result = await response.blob();
|
|
4921
|
+
return result;
|
|
4922
|
+
}
|
|
4923
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4924
|
+
// Use image
|
|
4925
|
+
});`;
|
|
4926
|
+
var snippetTextToAudio2 = (model, accessToken) => {
|
|
4927
|
+
const commonSnippet = `async function query(data) {
|
|
4928
|
+
const response = await fetch(
|
|
4929
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4930
|
+
{
|
|
4931
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4932
|
+
method: "POST",
|
|
4933
|
+
body: JSON.stringify(data),
|
|
4934
|
+
}
|
|
4935
|
+
);`;
|
|
4936
|
+
if (model.library_name === "transformers") {
|
|
4937
|
+
return commonSnippet + `
|
|
4938
|
+
const result = await response.blob();
|
|
4939
|
+
return result;
|
|
4940
|
+
}
|
|
4941
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4942
|
+
// Returns a byte object of the Audio wavform. Use it directly!
|
|
4943
|
+
});`;
|
|
4944
|
+
} else {
|
|
4945
|
+
return commonSnippet + `
|
|
4946
|
+
const result = await response.json();
|
|
4947
|
+
return result;
|
|
4948
|
+
}
|
|
4949
|
+
|
|
4950
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4951
|
+
console.log(JSON.stringify(response));
|
|
4952
|
+
});`;
|
|
4953
|
+
}
|
|
4954
|
+
};
|
|
4955
|
+
var snippetFile3 = (model, accessToken) => `async function query(filename) {
|
|
4956
|
+
const data = fs.readFileSync(filename);
|
|
4957
|
+
const response = await fetch(
|
|
4958
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4959
|
+
{
|
|
4960
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4961
|
+
method: "POST",
|
|
4962
|
+
body: data,
|
|
4963
|
+
}
|
|
4964
|
+
);
|
|
4965
|
+
const result = await response.json();
|
|
4966
|
+
return result;
|
|
4967
|
+
}
|
|
4968
|
+
|
|
4969
|
+
query(${getModelInputSnippet(model)}).then((response) => {
|
|
4970
|
+
console.log(JSON.stringify(response));
|
|
4971
|
+
});`;
|
|
4972
|
+
var jsSnippets = {
|
|
4973
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4974
|
+
"text-classification": snippetBasic3,
|
|
4975
|
+
"token-classification": snippetBasic3,
|
|
4976
|
+
"table-question-answering": snippetBasic3,
|
|
4977
|
+
"question-answering": snippetBasic3,
|
|
4978
|
+
"zero-shot-classification": snippetZeroShotClassification3,
|
|
4979
|
+
translation: snippetBasic3,
|
|
4980
|
+
summarization: snippetBasic3,
|
|
4981
|
+
conversational: snippetBasic3,
|
|
4982
|
+
"feature-extraction": snippetBasic3,
|
|
4983
|
+
"text-generation": snippetBasic3,
|
|
4984
|
+
"text2text-generation": snippetBasic3,
|
|
4985
|
+
"fill-mask": snippetBasic3,
|
|
4986
|
+
"sentence-similarity": snippetBasic3,
|
|
4987
|
+
"automatic-speech-recognition": snippetFile3,
|
|
4988
|
+
"text-to-image": snippetTextToImage2,
|
|
4989
|
+
"text-to-speech": snippetTextToAudio2,
|
|
4990
|
+
"text-to-audio": snippetTextToAudio2,
|
|
4991
|
+
"audio-to-audio": snippetFile3,
|
|
4992
|
+
"audio-classification": snippetFile3,
|
|
4993
|
+
"image-classification": snippetFile3,
|
|
4994
|
+
"image-to-text": snippetFile3,
|
|
4995
|
+
"object-detection": snippetFile3,
|
|
4996
|
+
"image-segmentation": snippetFile3
|
|
4997
|
+
};
|
|
4998
|
+
function getJsInferenceSnippet(model, accessToken) {
|
|
4999
|
+
return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
|
|
5000
|
+
}
|
|
5001
|
+
function hasJsInferenceSnippet(model) {
|
|
5002
|
+
return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
|
|
5003
|
+
}
|
|
3176
5004
|
// Annotate the CommonJS export names for ESM import in node:
|
|
3177
5005
|
0 && (module.exports = {
|
|
3178
5006
|
ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
5007
|
+
InferenceDisplayability,
|
|
5008
|
+
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
5009
|
+
MAPPING_DEFAULT_WIDGET,
|
|
3179
5010
|
MODALITIES,
|
|
3180
5011
|
MODALITY_LABELS,
|
|
5012
|
+
MODEL_LIBRARIES_UI_ELEMENTS,
|
|
3181
5013
|
ModelLibrary,
|
|
3182
5014
|
OTHER_TAGS_SUGGESTIONS,
|
|
3183
5015
|
PIPELINE_DATA,
|
|
@@ -3187,5 +5019,7 @@ var TAG_CUSTOM_CODE = "custom_code";
|
|
|
3187
5019
|
TAG_CUSTOM_CODE,
|
|
3188
5020
|
TAG_NFAA_CONTENT,
|
|
3189
5021
|
TAG_TEXT_GENERATION_INFERENCE,
|
|
3190
|
-
TASKS_DATA
|
|
5022
|
+
TASKS_DATA,
|
|
5023
|
+
TASKS_MODEL_LIBRARIES,
|
|
5024
|
+
snippets
|
|
3191
5025
|
});
|