@huggingface/tasks 0.0.5 → 0.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (87) hide show
  1. package/README.md +16 -2
  2. package/dist/index.d.ts +364 -3
  3. package/dist/index.js +1942 -72
  4. package/dist/index.mjs +1934 -71
  5. package/package.json +1 -1
  6. package/src/default-widget-inputs.ts +718 -0
  7. package/src/index.ts +39 -4
  8. package/src/library-to-tasks.ts +47 -0
  9. package/src/library-ui-elements.ts +765 -0
  10. package/src/model-data.ts +239 -0
  11. package/src/{modelLibraries.ts → model-libraries.ts} +4 -0
  12. package/src/pipelines.ts +22 -0
  13. package/src/snippets/curl.ts +63 -0
  14. package/src/snippets/index.ts +6 -0
  15. package/src/snippets/inputs.ts +129 -0
  16. package/src/snippets/js.ts +150 -0
  17. package/src/snippets/python.ts +114 -0
  18. package/src/tags.ts +15 -0
  19. package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
  20. package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
  21. package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
  22. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
  23. package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
  24. package/src/{conversational → tasks/conversational}/data.ts +1 -1
  25. package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
  26. package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
  27. package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
  28. package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
  29. package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
  30. package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
  31. package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
  32. package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
  33. package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
  34. package/src/{tasksData.ts → tasks/index.ts} +140 -15
  35. package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
  36. package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
  37. package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
  38. package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
  39. package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
  40. package/src/{summarization → tasks/summarization}/data.ts +1 -1
  41. package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
  42. package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
  43. package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
  44. package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
  45. package/src/{text-generation → tasks/text-generation}/about.md +3 -3
  46. package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
  47. package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
  48. package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
  49. package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
  50. package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
  51. package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
  52. package/src/{translation → tasks/translation}/data.ts +1 -1
  53. package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
  54. package/src/{video-classification → tasks/video-classification}/about.md +8 -28
  55. package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
  56. package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
  57. package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
  58. package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
  59. package/src/Types.ts +0 -64
  60. package/src/const.ts +0 -59
  61. /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
  62. /package/src/{conversational → tasks/conversational}/about.md +0 -0
  63. /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
  64. /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
  65. /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
  66. /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
  67. /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
  68. /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
  69. /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
  70. /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
  71. /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
  72. /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
  73. /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
  74. /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
  75. /package/src/{summarization → tasks/summarization}/about.md +0 -0
  76. /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
  77. /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
  78. /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
  79. /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
  80. /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
  81. /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
  82. /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
  83. /package/src/{translation → tasks/translation}/about.md +0 -0
  84. /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
  85. /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
  86. /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
  87. /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.mjs CHANGED
@@ -1,3 +1,1391 @@
1
+ var __defProp = Object.defineProperty;
2
+ var __export = (target, all) => {
3
+ for (var name in all)
4
+ __defProp(target, name, { get: all[name], enumerable: true });
5
+ };
6
+
7
+ // src/library-to-tasks.ts
8
+ var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
9
+ "adapter-transformers": ["question-answering", "text-classification", "token-classification"],
10
+ allennlp: ["question-answering"],
11
+ asteroid: [
12
+ // "audio-source-separation",
13
+ "audio-to-audio"
14
+ ],
15
+ bertopic: ["text-classification"],
16
+ diffusers: ["image-to-image", "text-to-image"],
17
+ doctr: ["object-detection"],
18
+ espnet: ["text-to-speech", "automatic-speech-recognition"],
19
+ fairseq: ["text-to-speech", "audio-to-audio"],
20
+ fastai: ["image-classification"],
21
+ fasttext: ["feature-extraction", "text-classification"],
22
+ flair: ["token-classification"],
23
+ k2: ["automatic-speech-recognition"],
24
+ keras: ["image-classification"],
25
+ nemo: ["automatic-speech-recognition"],
26
+ open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
27
+ paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
28
+ peft: ["text-generation"],
29
+ "pyannote-audio": ["automatic-speech-recognition"],
30
+ "sentence-transformers": ["feature-extraction", "sentence-similarity"],
31
+ sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
32
+ spacy: ["token-classification", "text-classification", "sentence-similarity"],
33
+ "span-marker": ["token-classification"],
34
+ speechbrain: [
35
+ "audio-classification",
36
+ "audio-to-audio",
37
+ "automatic-speech-recognition",
38
+ "text-to-speech",
39
+ "text2text-generation"
40
+ ],
41
+ stanza: ["token-classification"],
42
+ timm: ["image-classification"],
43
+ mindspore: ["image-classification"]
44
+ };
45
+
46
+ // src/library-ui-elements.ts
47
+ function nameWithoutNamespace(modelId) {
48
+ const splitted = modelId.split("/");
49
+ return splitted.length === 1 ? splitted[0] : splitted[1];
50
+ }
51
+ var adapter_transformers = (model) => [
52
+ `from transformers import ${model.config?.adapter_transformers?.model_class}
53
+
54
+ model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
55
+ model.load_adapter("${model.id}", source="hf")`
56
+ ];
57
+ var allennlpUnknown = (model) => [
58
+ `import allennlp_models
59
+ from allennlp.predictors.predictor import Predictor
60
+
61
+ predictor = Predictor.from_path("hf://${model.id}")`
62
+ ];
63
+ var allennlpQuestionAnswering = (model) => [
64
+ `import allennlp_models
65
+ from allennlp.predictors.predictor import Predictor
66
+
67
+ predictor = Predictor.from_path("hf://${model.id}")
68
+ predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
69
+ predictions = predictor.predict_json(predictor_input)`
70
+ ];
71
+ var allennlp = (model) => {
72
+ if (model.tags?.includes("question-answering")) {
73
+ return allennlpQuestionAnswering(model);
74
+ }
75
+ return allennlpUnknown(model);
76
+ };
77
+ var asteroid = (model) => [
78
+ `from asteroid.models import BaseModel
79
+
80
+ model = BaseModel.from_pretrained("${model.id}")`
81
+ ];
82
+ function get_base_diffusers_model(model) {
83
+ return model.cardData?.base_model ?? "fill-in-base-model";
84
+ }
85
+ var bertopic = (model) => [
86
+ `from bertopic import BERTopic
87
+
88
+ model = BERTopic.load("${model.id}")`
89
+ ];
90
+ var diffusers_default = (model) => [
91
+ `from diffusers import DiffusionPipeline
92
+
93
+ pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
94
+ ];
95
+ var diffusers_controlnet = (model) => [
96
+ `from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
97
+
98
+ controlnet = ControlNetModel.from_pretrained("${model.id}")
99
+ pipeline = StableDiffusionControlNetPipeline.from_pretrained(
100
+ "${get_base_diffusers_model(model)}", controlnet=controlnet
101
+ )`
102
+ ];
103
+ var diffusers_lora = (model) => [
104
+ `from diffusers import DiffusionPipeline
105
+
106
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
107
+ pipeline.load_lora_weights("${model.id}")`
108
+ ];
109
+ var diffusers_textual_inversion = (model) => [
110
+ `from diffusers import DiffusionPipeline
111
+
112
+ pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
113
+ pipeline.load_textual_inversion("${model.id}")`
114
+ ];
115
+ var diffusers = (model) => {
116
+ if (model.tags?.includes("controlnet")) {
117
+ return diffusers_controlnet(model);
118
+ } else if (model.tags?.includes("lora")) {
119
+ return diffusers_lora(model);
120
+ } else if (model.tags?.includes("textual_inversion")) {
121
+ return diffusers_textual_inversion(model);
122
+ } else {
123
+ return diffusers_default(model);
124
+ }
125
+ };
126
+ var espnetTTS = (model) => [
127
+ `from espnet2.bin.tts_inference import Text2Speech
128
+
129
+ model = Text2Speech.from_pretrained("${model.id}")
130
+
131
+ speech, *_ = model("text to generate speech from")`
132
+ ];
133
+ var espnetASR = (model) => [
134
+ `from espnet2.bin.asr_inference import Speech2Text
135
+
136
+ model = Speech2Text.from_pretrained(
137
+ "${model.id}"
138
+ )
139
+
140
+ speech, rate = soundfile.read("speech.wav")
141
+ text, *_ = model(speech)[0]`
142
+ ];
143
+ var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
144
+ var espnet = (model) => {
145
+ if (model.tags?.includes("text-to-speech")) {
146
+ return espnetTTS(model);
147
+ } else if (model.tags?.includes("automatic-speech-recognition")) {
148
+ return espnetASR(model);
149
+ }
150
+ return espnetUnknown();
151
+ };
152
+ var fairseq = (model) => [
153
+ `from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
154
+
155
+ models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
156
+ "${model.id}"
157
+ )`
158
+ ];
159
+ var flair = (model) => [
160
+ `from flair.models import SequenceTagger
161
+
162
+ tagger = SequenceTagger.load("${model.id}")`
163
+ ];
164
+ var keras = (model) => [
165
+ `from huggingface_hub import from_pretrained_keras
166
+
167
+ model = from_pretrained_keras("${model.id}")
168
+ `
169
+ ];
170
+ var open_clip = (model) => [
171
+ `import open_clip
172
+
173
+ model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
174
+ tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
175
+ ];
176
+ var paddlenlp = (model) => {
177
+ if (model.config?.architectures?.[0]) {
178
+ const architecture = model.config.architectures[0];
179
+ return [
180
+ [
181
+ `from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
182
+ "",
183
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
184
+ `model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
185
+ ].join("\n")
186
+ ];
187
+ } else {
188
+ return [
189
+ [
190
+ `# \u26A0\uFE0F Type of model unknown`,
191
+ `from paddlenlp.transformers import AutoTokenizer, AutoModel`,
192
+ "",
193
+ `tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
194
+ `model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
195
+ ].join("\n")
196
+ ];
197
+ }
198
+ };
199
+ var pyannote_audio_pipeline = (model) => [
200
+ `from pyannote.audio import Pipeline
201
+
202
+ pipeline = Pipeline.from_pretrained("${model.id}")
203
+
204
+ # inference on the whole file
205
+ pipeline("file.wav")
206
+
207
+ # inference on an excerpt
208
+ from pyannote.core import Segment
209
+ excerpt = Segment(start=2.0, end=5.0)
210
+
211
+ from pyannote.audio import Audio
212
+ waveform, sample_rate = Audio().crop("file.wav", excerpt)
213
+ pipeline({"waveform": waveform, "sample_rate": sample_rate})`
214
+ ];
215
+ var pyannote_audio_model = (model) => [
216
+ `from pyannote.audio import Model, Inference
217
+
218
+ model = Model.from_pretrained("${model.id}")
219
+ inference = Inference(model)
220
+
221
+ # inference on the whole file
222
+ inference("file.wav")
223
+
224
+ # inference on an excerpt
225
+ from pyannote.core import Segment
226
+ excerpt = Segment(start=2.0, end=5.0)
227
+ inference.crop("file.wav", excerpt)`
228
+ ];
229
+ var pyannote_audio = (model) => {
230
+ if (model.tags?.includes("pyannote-audio-pipeline")) {
231
+ return pyannote_audio_pipeline(model);
232
+ }
233
+ return pyannote_audio_model(model);
234
+ };
235
+ var tensorflowttsTextToMel = (model) => [
236
+ `from tensorflow_tts.inference import AutoProcessor, TFAutoModel
237
+
238
+ processor = AutoProcessor.from_pretrained("${model.id}")
239
+ model = TFAutoModel.from_pretrained("${model.id}")
240
+ `
241
+ ];
242
+ var tensorflowttsMelToWav = (model) => [
243
+ `from tensorflow_tts.inference import TFAutoModel
244
+
245
+ model = TFAutoModel.from_pretrained("${model.id}")
246
+ audios = model.inference(mels)
247
+ `
248
+ ];
249
+ var tensorflowttsUnknown = (model) => [
250
+ `from tensorflow_tts.inference import TFAutoModel
251
+
252
+ model = TFAutoModel.from_pretrained("${model.id}")
253
+ `
254
+ ];
255
+ var tensorflowtts = (model) => {
256
+ if (model.tags?.includes("text-to-mel")) {
257
+ return tensorflowttsTextToMel(model);
258
+ } else if (model.tags?.includes("mel-to-wav")) {
259
+ return tensorflowttsMelToWav(model);
260
+ }
261
+ return tensorflowttsUnknown(model);
262
+ };
263
+ var timm = (model) => [
264
+ `import timm
265
+
266
+ model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
267
+ ];
268
+ var skopsPickle = (model, modelFile) => {
269
+ return [
270
+ `import joblib
271
+ from skops.hub_utils import download
272
+ download("${model.id}", "path_to_folder")
273
+ model = joblib.load(
274
+ "${modelFile}"
275
+ )
276
+ # only load pickle files from sources you trust
277
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
278
+ ];
279
+ };
280
+ var skopsFormat = (model, modelFile) => {
281
+ return [
282
+ `from skops.hub_utils import download
283
+ from skops.io import load
284
+ download("${model.id}", "path_to_folder")
285
+ # make sure model file is in skops format
286
+ # if model is a pickle file, make sure it's from a source you trust
287
+ model = load("path_to_folder/${modelFile}")`
288
+ ];
289
+ };
290
+ var skopsJobLib = (model) => {
291
+ return [
292
+ `from huggingface_hub import hf_hub_download
293
+ import joblib
294
+ model = joblib.load(
295
+ hf_hub_download("${model.id}", "sklearn_model.joblib")
296
+ )
297
+ # only load pickle files from sources you trust
298
+ # read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
299
+ ];
300
+ };
301
+ var sklearn = (model) => {
302
+ if (model.tags?.includes("skops")) {
303
+ const skopsmodelFile = model.config?.sklearn?.filename;
304
+ const skopssaveFormat = model.config?.sklearn?.model_format;
305
+ if (!skopsmodelFile) {
306
+ return [`# \u26A0\uFE0F Model filename not specified in config.json`];
307
+ }
308
+ if (skopssaveFormat === "pickle") {
309
+ return skopsPickle(model, skopsmodelFile);
310
+ } else {
311
+ return skopsFormat(model, skopsmodelFile);
312
+ }
313
+ } else {
314
+ return skopsJobLib(model);
315
+ }
316
+ };
317
+ var fastai = (model) => [
318
+ `from huggingface_hub import from_pretrained_fastai
319
+
320
+ learn = from_pretrained_fastai("${model.id}")`
321
+ ];
322
+ var sampleFactory = (model) => [
323
+ `python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
324
+ ];
325
+ var sentenceTransformers = (model) => [
326
+ `from sentence_transformers import SentenceTransformer
327
+
328
+ model = SentenceTransformer("${model.id}")`
329
+ ];
330
+ var spacy = (model) => [
331
+ `!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
332
+
333
+ # Using spacy.load().
334
+ import spacy
335
+ nlp = spacy.load("${nameWithoutNamespace(model.id)}")
336
+
337
+ # Importing as module.
338
+ import ${nameWithoutNamespace(model.id)}
339
+ nlp = ${nameWithoutNamespace(model.id)}.load()`
340
+ ];
341
+ var span_marker = (model) => [
342
+ `from span_marker import SpanMarkerModel
343
+
344
+ model = SpanMarkerModel.from_pretrained("${model.id}")`
345
+ ];
346
+ var stanza = (model) => [
347
+ `import stanza
348
+
349
+ stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
350
+ nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
351
+ ];
352
+ var speechBrainMethod = (speechbrainInterface) => {
353
+ switch (speechbrainInterface) {
354
+ case "EncoderClassifier":
355
+ return "classify_file";
356
+ case "EncoderDecoderASR":
357
+ case "EncoderASR":
358
+ return "transcribe_file";
359
+ case "SpectralMaskEnhancement":
360
+ return "enhance_file";
361
+ case "SepformerSeparation":
362
+ return "separate_file";
363
+ default:
364
+ return void 0;
365
+ }
366
+ };
367
+ var speechbrain = (model) => {
368
+ const speechbrainInterface = model.config?.speechbrain?.interface;
369
+ if (speechbrainInterface === void 0) {
370
+ return [`# interface not specified in config.json`];
371
+ }
372
+ const speechbrainMethod = speechBrainMethod(speechbrainInterface);
373
+ if (speechbrainMethod === void 0) {
374
+ return [`# interface in config.json invalid`];
375
+ }
376
+ return [
377
+ `from speechbrain.pretrained import ${speechbrainInterface}
378
+ model = ${speechbrainInterface}.from_hparams(
379
+ "${model.id}"
380
+ )
381
+ model.${speechbrainMethod}("file.wav")`
382
+ ];
383
+ };
384
+ var transformers = (model) => {
385
+ const info = model.transformersInfo;
386
+ if (!info) {
387
+ return [`# \u26A0\uFE0F Type of model unknown`];
388
+ }
389
+ const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
390
+ let autoSnippet;
391
+ if (info.processor) {
392
+ const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
393
+ autoSnippet = [
394
+ "# Load model directly",
395
+ `from transformers import ${info.processor}, ${info.auto_model}`,
396
+ "",
397
+ `${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
398
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
399
+ ].join("\n");
400
+ } else {
401
+ autoSnippet = [
402
+ "# Load model directly",
403
+ `from transformers import ${info.auto_model}`,
404
+ `model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
405
+ ].join("\n");
406
+ }
407
+ if (model.pipeline_tag) {
408
+ const pipelineSnippet = [
409
+ "# Use a pipeline as a high-level helper",
410
+ "from transformers import pipeline",
411
+ "",
412
+ `pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
413
+ ].join("\n");
414
+ return [pipelineSnippet, autoSnippet];
415
+ }
416
+ return [autoSnippet];
417
+ };
418
+ var transformersJS = (model) => {
419
+ if (!model.pipeline_tag) {
420
+ return [`// \u26A0\uFE0F Unknown pipeline tag`];
421
+ }
422
+ const libName = "@xenova/transformers";
423
+ return [
424
+ `// npm i ${libName}
425
+ import { pipeline } from '${libName}';
426
+
427
+ // Allocate pipeline
428
+ const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
429
+ ];
430
+ };
431
+ var peftTask = (peftTaskType) => {
432
+ switch (peftTaskType) {
433
+ case "CAUSAL_LM":
434
+ return "CausalLM";
435
+ case "SEQ_2_SEQ_LM":
436
+ return "Seq2SeqLM";
437
+ case "TOKEN_CLS":
438
+ return "TokenClassification";
439
+ case "SEQ_CLS":
440
+ return "SequenceClassification";
441
+ default:
442
+ return void 0;
443
+ }
444
+ };
445
+ var peft = (model) => {
446
+ const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
447
+ const pefttask = peftTask(peftTaskType);
448
+ if (!pefttask) {
449
+ return [`Task type is invalid.`];
450
+ }
451
+ if (!peftBaseModel) {
452
+ return [`Base model is not found.`];
453
+ }
454
+ return [
455
+ `from peft import PeftModel, PeftConfig
456
+ from transformers import AutoModelFor${pefttask}
457
+
458
+ config = PeftConfig.from_pretrained("${model.id}")
459
+ model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
460
+ model = PeftModel.from_pretrained(model, "${model.id}")`
461
+ ];
462
+ };
463
+ var fasttext = (model) => [
464
+ `from huggingface_hub import hf_hub_download
465
+ import fasttext
466
+
467
+ model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
468
+ ];
469
+ var stableBaselines3 = (model) => [
470
+ `from huggingface_sb3 import load_from_hub
471
+ checkpoint = load_from_hub(
472
+ repo_id="${model.id}",
473
+ filename="{MODEL FILENAME}.zip",
474
+ )`
475
+ ];
476
+ var nemoDomainResolver = (domain, model) => {
477
+ switch (domain) {
478
+ case "ASR":
479
+ return [
480
+ `import nemo.collections.asr as nemo_asr
481
+ asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
482
+
483
+ transcriptions = asr_model.transcribe(["file.wav"])`
484
+ ];
485
+ default:
486
+ return void 0;
487
+ }
488
+ };
489
+ var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
490
+ var nemo = (model) => {
491
+ let command = void 0;
492
+ if (model.tags?.includes("automatic-speech-recognition")) {
493
+ command = nemoDomainResolver("ASR", model);
494
+ }
495
+ return command ?? [`# tag did not correspond to a valid NeMo domain.`];
496
+ };
497
+ var pythae = (model) => [
498
+ `from pythae.models import AutoModel
499
+
500
+ model = AutoModel.load_from_hf_hub("${model.id}")`
501
+ ];
502
+ var MODEL_LIBRARIES_UI_ELEMENTS = {
503
+ "adapter-transformers": {
504
+ btnLabel: "Adapter Transformers",
505
+ repoName: "adapter-transformers",
506
+ repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
507
+ docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
508
+ snippets: adapter_transformers
509
+ },
510
+ allennlp: {
511
+ btnLabel: "AllenNLP",
512
+ repoName: "AllenNLP",
513
+ repoUrl: "https://github.com/allenai/allennlp",
514
+ docsUrl: "https://huggingface.co/docs/hub/allennlp",
515
+ snippets: allennlp
516
+ },
517
+ asteroid: {
518
+ btnLabel: "Asteroid",
519
+ repoName: "Asteroid",
520
+ repoUrl: "https://github.com/asteroid-team/asteroid",
521
+ docsUrl: "https://huggingface.co/docs/hub/asteroid",
522
+ snippets: asteroid
523
+ },
524
+ bertopic: {
525
+ btnLabel: "BERTopic",
526
+ repoName: "BERTopic",
527
+ repoUrl: "https://github.com/MaartenGr/BERTopic",
528
+ snippets: bertopic
529
+ },
530
+ diffusers: {
531
+ btnLabel: "Diffusers",
532
+ repoName: "\u{1F917}/diffusers",
533
+ repoUrl: "https://github.com/huggingface/diffusers",
534
+ docsUrl: "https://huggingface.co/docs/hub/diffusers",
535
+ snippets: diffusers
536
+ },
537
+ espnet: {
538
+ btnLabel: "ESPnet",
539
+ repoName: "ESPnet",
540
+ repoUrl: "https://github.com/espnet/espnet",
541
+ docsUrl: "https://huggingface.co/docs/hub/espnet",
542
+ snippets: espnet
543
+ },
544
+ fairseq: {
545
+ btnLabel: "Fairseq",
546
+ repoName: "fairseq",
547
+ repoUrl: "https://github.com/pytorch/fairseq",
548
+ snippets: fairseq
549
+ },
550
+ flair: {
551
+ btnLabel: "Flair",
552
+ repoName: "Flair",
553
+ repoUrl: "https://github.com/flairNLP/flair",
554
+ docsUrl: "https://huggingface.co/docs/hub/flair",
555
+ snippets: flair
556
+ },
557
+ keras: {
558
+ btnLabel: "Keras",
559
+ repoName: "Keras",
560
+ repoUrl: "https://github.com/keras-team/keras",
561
+ docsUrl: "https://huggingface.co/docs/hub/keras",
562
+ snippets: keras
563
+ },
564
+ nemo: {
565
+ btnLabel: "NeMo",
566
+ repoName: "NeMo",
567
+ repoUrl: "https://github.com/NVIDIA/NeMo",
568
+ snippets: nemo
569
+ },
570
+ open_clip: {
571
+ btnLabel: "OpenCLIP",
572
+ repoName: "OpenCLIP",
573
+ repoUrl: "https://github.com/mlfoundations/open_clip",
574
+ snippets: open_clip
575
+ },
576
+ paddlenlp: {
577
+ btnLabel: "paddlenlp",
578
+ repoName: "PaddleNLP",
579
+ repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
580
+ docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
581
+ snippets: paddlenlp
582
+ },
583
+ peft: {
584
+ btnLabel: "PEFT",
585
+ repoName: "PEFT",
586
+ repoUrl: "https://github.com/huggingface/peft",
587
+ snippets: peft
588
+ },
589
+ "pyannote-audio": {
590
+ btnLabel: "pyannote.audio",
591
+ repoName: "pyannote-audio",
592
+ repoUrl: "https://github.com/pyannote/pyannote-audio",
593
+ snippets: pyannote_audio
594
+ },
595
+ "sentence-transformers": {
596
+ btnLabel: "sentence-transformers",
597
+ repoName: "sentence-transformers",
598
+ repoUrl: "https://github.com/UKPLab/sentence-transformers",
599
+ docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
600
+ snippets: sentenceTransformers
601
+ },
602
+ sklearn: {
603
+ btnLabel: "Scikit-learn",
604
+ repoName: "Scikit-learn",
605
+ repoUrl: "https://github.com/scikit-learn/scikit-learn",
606
+ snippets: sklearn
607
+ },
608
+ fastai: {
609
+ btnLabel: "fastai",
610
+ repoName: "fastai",
611
+ repoUrl: "https://github.com/fastai/fastai",
612
+ docsUrl: "https://huggingface.co/docs/hub/fastai",
613
+ snippets: fastai
614
+ },
615
+ spacy: {
616
+ btnLabel: "spaCy",
617
+ repoName: "spaCy",
618
+ repoUrl: "https://github.com/explosion/spaCy",
619
+ docsUrl: "https://huggingface.co/docs/hub/spacy",
620
+ snippets: spacy
621
+ },
622
+ "span-marker": {
623
+ btnLabel: "SpanMarker",
624
+ repoName: "SpanMarkerNER",
625
+ repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
626
+ docsUrl: "https://huggingface.co/docs/hub/span_marker",
627
+ snippets: span_marker
628
+ },
629
+ speechbrain: {
630
+ btnLabel: "speechbrain",
631
+ repoName: "speechbrain",
632
+ repoUrl: "https://github.com/speechbrain/speechbrain",
633
+ docsUrl: "https://huggingface.co/docs/hub/speechbrain",
634
+ snippets: speechbrain
635
+ },
636
+ stanza: {
637
+ btnLabel: "Stanza",
638
+ repoName: "stanza",
639
+ repoUrl: "https://github.com/stanfordnlp/stanza",
640
+ docsUrl: "https://huggingface.co/docs/hub/stanza",
641
+ snippets: stanza
642
+ },
643
+ tensorflowtts: {
644
+ btnLabel: "TensorFlowTTS",
645
+ repoName: "TensorFlowTTS",
646
+ repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
647
+ snippets: tensorflowtts
648
+ },
649
+ timm: {
650
+ btnLabel: "timm",
651
+ repoName: "pytorch-image-models",
652
+ repoUrl: "https://github.com/rwightman/pytorch-image-models",
653
+ docsUrl: "https://huggingface.co/docs/hub/timm",
654
+ snippets: timm
655
+ },
656
+ transformers: {
657
+ btnLabel: "Transformers",
658
+ repoName: "\u{1F917}/transformers",
659
+ repoUrl: "https://github.com/huggingface/transformers",
660
+ docsUrl: "https://huggingface.co/docs/hub/transformers",
661
+ snippets: transformers
662
+ },
663
+ "transformers.js": {
664
+ btnLabel: "Transformers.js",
665
+ repoName: "transformers.js",
666
+ repoUrl: "https://github.com/xenova/transformers.js",
667
+ docsUrl: "https://huggingface.co/docs/hub/transformers-js",
668
+ snippets: transformersJS
669
+ },
670
+ fasttext: {
671
+ btnLabel: "fastText",
672
+ repoName: "fastText",
673
+ repoUrl: "https://fasttext.cc/",
674
+ snippets: fasttext
675
+ },
676
+ "sample-factory": {
677
+ btnLabel: "sample-factory",
678
+ repoName: "sample-factory",
679
+ repoUrl: "https://github.com/alex-petrenko/sample-factory",
680
+ docsUrl: "https://huggingface.co/docs/hub/sample-factory",
681
+ snippets: sampleFactory
682
+ },
683
+ "stable-baselines3": {
684
+ btnLabel: "stable-baselines3",
685
+ repoName: "stable-baselines3",
686
+ repoUrl: "https://github.com/huggingface/huggingface_sb3",
687
+ docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
688
+ snippets: stableBaselines3
689
+ },
690
+ "ml-agents": {
691
+ btnLabel: "ml-agents",
692
+ repoName: "ml-agents",
693
+ repoUrl: "https://github.com/huggingface/ml-agents",
694
+ docsUrl: "https://huggingface.co/docs/hub/ml-agents",
695
+ snippets: mlAgents
696
+ },
697
+ pythae: {
698
+ btnLabel: "pythae",
699
+ repoName: "pythae",
700
+ repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
701
+ snippets: pythae
702
+ }
703
+ };
704
+
705
+ // src/default-widget-inputs.ts
706
+ var MAPPING_EN = /* @__PURE__ */ new Map([
707
+ ["text-classification", [`I like you. I love you`]],
708
+ [
709
+ "token-classification",
710
+ [
711
+ `My name is Wolfgang and I live in Berlin`,
712
+ `My name is Sarah and I live in London`,
713
+ `My name is Clara and I live in Berkeley, California.`
714
+ ]
715
+ ],
716
+ [
717
+ "table-question-answering",
718
+ [
719
+ {
720
+ text: `How many stars does the transformers repository have?`,
721
+ table: {
722
+ Repository: ["Transformers", "Datasets", "Tokenizers"],
723
+ Stars: [36542, 4512, 3934],
724
+ Contributors: [651, 77, 34],
725
+ "Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
726
+ }
727
+ }
728
+ ]
729
+ ],
730
+ [
731
+ "question-answering",
732
+ [
733
+ {
734
+ text: `Where do I live?`,
735
+ context: `My name is Wolfgang and I live in Berlin`
736
+ },
737
+ {
738
+ text: `Where do I live?`,
739
+ context: `My name is Sarah and I live in London`
740
+ },
741
+ {
742
+ text: `What's my name?`,
743
+ context: `My name is Clara and I live in Berkeley.`
744
+ },
745
+ {
746
+ text: `Which name is also used to describe the Amazon rainforest in English?`,
747
+ context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
748
+ }
749
+ ]
750
+ ],
751
+ [
752
+ "zero-shot-classification",
753
+ [
754
+ {
755
+ text: "I have a problem with my iphone that needs to be resolved asap!!",
756
+ candidate_labels: "urgent, not urgent, phone, tablet, computer",
757
+ multi_class: true
758
+ },
759
+ {
760
+ text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
761
+ candidate_labels: "mobile, website, billing, account access",
762
+ multi_class: false
763
+ },
764
+ {
765
+ text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
766
+ candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
767
+ multi_class: true
768
+ }
769
+ ]
770
+ ],
771
+ ["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
772
+ [
773
+ "summarization",
774
+ [
775
+ `The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
776
+ ]
777
+ ],
778
+ [
779
+ "conversational",
780
+ [
781
+ `Hey my name is Julien! How are you?`,
782
+ `Hey my name is Thomas! How are you?`,
783
+ `Hey my name is Mariama! How are you?`,
784
+ `Hey my name is Clara! How are you?`,
785
+ `Hey my name is Julien! How are you?`,
786
+ `Hi.`
787
+ ]
788
+ ],
789
+ [
790
+ "text-generation",
791
+ [
792
+ `My name is Julien and I like to`,
793
+ `My name is Thomas and my main`,
794
+ `My name is Mariama, my favorite`,
795
+ `My name is Clara and I am`,
796
+ `My name is Lewis and I like to`,
797
+ `My name is Merve and my favorite`,
798
+ `My name is Teven and I am`,
799
+ `Once upon a time,`
800
+ ]
801
+ ],
802
+ ["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
803
+ [
804
+ "sentence-similarity",
805
+ [
806
+ {
807
+ source_sentence: "That is a happy person",
808
+ sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
809
+ }
810
+ ]
811
+ ]
812
+ ]);
813
+ var MAPPING_ZH = /* @__PURE__ */ new Map([
814
+ ["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
815
+ ["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
816
+ [
817
+ "question-answering",
818
+ [
819
+ {
820
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
821
+ context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
822
+ },
823
+ {
824
+ text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
825
+ context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
826
+ },
827
+ {
828
+ text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
829
+ context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
830
+ }
831
+ ]
832
+ ],
833
+ ["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
834
+ [
835
+ "zero-shot-classification",
836
+ [
837
+ {
838
+ text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
839
+ candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
840
+ }
841
+ ]
842
+ ],
843
+ [
844
+ "summarization",
845
+ [
846
+ `\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
847
+ ]
848
+ ],
849
+ [
850
+ "text-generation",
851
+ [`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
852
+ ],
853
+ ["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
854
+ [
855
+ "sentence-similarity",
856
+ [
857
+ {
858
+ source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
859
+ sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
860
+ }
861
+ ]
862
+ ]
863
+ ]);
864
+ var MAPPING_FR = /* @__PURE__ */ new Map([
865
+ ["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
866
+ ["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
867
+ [
868
+ "question-answering",
869
+ [
870
+ {
871
+ text: `O\xF9 est-ce que je vis?`,
872
+ context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
873
+ }
874
+ ]
875
+ ],
876
+ ["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
877
+ [
878
+ "summarization",
879
+ [
880
+ `La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
881
+ ]
882
+ ],
883
+ ["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
884
+ ["fill-mask", [`Paris est la <mask> de la France.`]],
885
+ [
886
+ "sentence-similarity",
887
+ [
888
+ {
889
+ source_sentence: "C'est une personne heureuse",
890
+ sentences: [
891
+ "C'est un chien heureux",
892
+ "C'est une personne tr\xE8s heureuse",
893
+ "Aujourd'hui est une journ\xE9e ensoleill\xE9e"
894
+ ]
895
+ }
896
+ ]
897
+ ]
898
+ ]);
899
+ var MAPPING_ES = /* @__PURE__ */ new Map([
900
+ ["text-classification", [`Te quiero. Te amo.`]],
901
+ ["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
902
+ [
903
+ "question-answering",
904
+ [
905
+ {
906
+ text: `\xBFD\xF3nde vivo?`,
907
+ context: `Me llamo Wolfgang y vivo en Berlin`
908
+ },
909
+ {
910
+ text: `\xBFQui\xE9n invent\xF3 el submarino?`,
911
+ context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
912
+ },
913
+ {
914
+ text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
915
+ context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
916
+ }
917
+ ]
918
+ ],
919
+ [
920
+ "translation",
921
+ [
922
+ `Me llamo Wolfgang y vivo en Berlin`,
923
+ `Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
924
+ ]
925
+ ],
926
+ [
927
+ "summarization",
928
+ [
929
+ `La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
930
+ ]
931
+ ],
932
+ [
933
+ "text-generation",
934
+ [
935
+ `Me llamo Julien y me gusta`,
936
+ `Me llamo Thomas y mi principal`,
937
+ `Me llamo Manuel y trabajo en`,
938
+ `\xC9rase una vez,`,
939
+ `Si t\xFA me dices ven, `
940
+ ]
941
+ ],
942
+ ["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
943
+ [
944
+ "sentence-similarity",
945
+ [
946
+ {
947
+ source_sentence: "Esa es una persona feliz",
948
+ sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
949
+ }
950
+ ]
951
+ ]
952
+ ]);
953
+ var MAPPING_RU = /* @__PURE__ */ new Map([
954
+ ["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
955
+ ["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
956
+ [
957
+ "question-answering",
958
+ [
959
+ {
960
+ text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
961
+ context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
962
+ }
963
+ ]
964
+ ],
965
+ ["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
966
+ [
967
+ "summarization",
968
+ [
969
+ `\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
970
+ ]
971
+ ],
972
+ ["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
973
+ ["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
974
+ [
975
+ "sentence-similarity",
976
+ [
977
+ {
978
+ source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
979
+ sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
980
+ }
981
+ ]
982
+ ]
983
+ ]);
984
+ var MAPPING_UK = /* @__PURE__ */ new Map([
985
+ ["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
986
+ ["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
987
+ ]);
988
+ var MAPPING_IT = /* @__PURE__ */ new Map([
989
+ ["text-classification", [`Mi piaci. Ti amo`]],
990
+ [
991
+ "token-classification",
992
+ [
993
+ `Mi chiamo Wolfgang e vivo a Berlino`,
994
+ `Mi chiamo Sarah e vivo a Londra`,
995
+ `Mi chiamo Clara e vivo a Berkeley in California.`
996
+ ]
997
+ ],
998
+ [
999
+ "question-answering",
1000
+ [
1001
+ {
1002
+ text: `Dove vivo?`,
1003
+ context: `Mi chiamo Wolfgang e vivo a Berlino`
1004
+ },
1005
+ {
1006
+ text: `Dove vivo?`,
1007
+ context: `Mi chiamo Sarah e vivo a Londra`
1008
+ },
1009
+ {
1010
+ text: `Come mio chiamo?`,
1011
+ context: `Mi chiamo Clara e vivo a Berkeley.`
1012
+ }
1013
+ ]
1014
+ ],
1015
+ ["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
1016
+ [
1017
+ "summarization",
1018
+ [
1019
+ `La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
1020
+ ]
1021
+ ],
1022
+ [
1023
+ "text-generation",
1024
+ [
1025
+ `Mi chiamo Loreto e mi piace`,
1026
+ `Mi chiamo Thomas e il mio principale`,
1027
+ `Mi chiamo Marianna, la mia cosa preferita`,
1028
+ `Mi chiamo Clara e sono`,
1029
+ `C'era una volta`
1030
+ ]
1031
+ ],
1032
+ ["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
1033
+ [
1034
+ "sentence-similarity",
1035
+ [
1036
+ {
1037
+ source_sentence: "Questa \xE8 una persona felice",
1038
+ sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
1039
+ }
1040
+ ]
1041
+ ]
1042
+ ]);
1043
+ var MAPPING_FA = /* @__PURE__ */ new Map([
1044
+ [
1045
+ "text-classification",
1046
+ [`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
1047
+ ],
1048
+ [
1049
+ "token-classification",
1050
+ [
1051
+ `\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
1052
+ `\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
1053
+ `\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
1054
+ ]
1055
+ ],
1056
+ [
1057
+ "question-answering",
1058
+ [
1059
+ {
1060
+ text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
1061
+ context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1062
+ },
1063
+ {
1064
+ text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
1065
+ context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
1066
+ },
1067
+ {
1068
+ text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
1069
+ context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
1070
+ },
1071
+ {
1072
+ text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
1073
+ context: [
1074
+ "\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
1075
+ "\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
1076
+ "\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
1077
+ ].join("\n")
1078
+ }
1079
+ ]
1080
+ ],
1081
+ [
1082
+ "translation",
1083
+ [
1084
+ "\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1085
+ "\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
1086
+ ]
1087
+ ],
1088
+ [
1089
+ "summarization",
1090
+ [
1091
+ [
1092
+ "\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
1093
+ "\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
1094
+ "\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
1095
+ "\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
1096
+ " \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
1097
+ " (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
1098
+ " \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
1099
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
1100
+ "\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
1101
+ " \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
1102
+ " \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
1103
+ " \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
1104
+ " \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
1105
+ " \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
1106
+ ].join("\n")
1107
+ ]
1108
+ ],
1109
+ ["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
1110
+ [
1111
+ "fill-mask",
1112
+ [
1113
+ `\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
1114
+ `\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
1115
+ ]
1116
+ ]
1117
+ ]);
1118
+ var MAPPING_AR = /* @__PURE__ */ new Map([
1119
+ ["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
1120
+ [
1121
+ "token-classification",
1122
+ [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
1123
+ ],
1124
+ [
1125
+ "question-answering",
1126
+ [
1127
+ {
1128
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1129
+ context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
1130
+ },
1131
+ {
1132
+ text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
1133
+ context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
1134
+ },
1135
+ {
1136
+ text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
1137
+ context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
1138
+ },
1139
+ {
1140
+ text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
1141
+ context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
1142
+ }
1143
+ ]
1144
+ ],
1145
+ ["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
1146
+ [
1147
+ "summarization",
1148
+ [
1149
+ `\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
1150
+ ]
1151
+ ],
1152
+ [
1153
+ "text-generation",
1154
+ [
1155
+ `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
1156
+ `\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
1157
+ `\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
1158
+ `\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
1159
+ `\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
1160
+ ]
1161
+ ],
1162
+ ["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
1163
+ [
1164
+ "sentence-similarity",
1165
+ [
1166
+ {
1167
+ source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
1168
+ sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
1169
+ }
1170
+ ]
1171
+ ]
1172
+ ]);
1173
+ var MAPPING_BN = /* @__PURE__ */ new Map([
1174
+ ["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
1175
+ [
1176
+ "token-classification",
1177
+ [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
1178
+ ],
1179
+ ["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
1180
+ [
1181
+ "summarization",
1182
+ [
1183
+ `\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
1184
+ ]
1185
+ ],
1186
+ ["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
1187
+ ["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
1188
+ [
1189
+ "question-answering",
1190
+ [
1191
+ {
1192
+ text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
1193
+ context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
1194
+ },
1195
+ {
1196
+ text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
1197
+ context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1198
+ },
1199
+ {
1200
+ text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
1201
+ context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
1202
+ }
1203
+ ]
1204
+ ],
1205
+ [
1206
+ "sentence-similarity",
1207
+ [
1208
+ {
1209
+ source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
1210
+ sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
1211
+ }
1212
+ ]
1213
+ ]
1214
+ ]);
1215
+ var MAPPING_MN = /* @__PURE__ */ new Map([
1216
+ ["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
1217
+ [
1218
+ "token-classification",
1219
+ [
1220
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
1221
+ `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
1222
+ `\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
1223
+ ]
1224
+ ],
1225
+ [
1226
+ "question-answering",
1227
+ [
1228
+ {
1229
+ text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
1230
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1231
+ },
1232
+ {
1233
+ text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1234
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
1235
+ },
1236
+ {
1237
+ text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
1238
+ context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
1239
+ }
1240
+ ]
1241
+ ],
1242
+ ["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
1243
+ [
1244
+ "summarization",
1245
+ [
1246
+ `\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
1247
+ ]
1248
+ ],
1249
+ [
1250
+ "text-generation",
1251
+ [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
1252
+ ],
1253
+ ["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
1254
+ [
1255
+ "automatic-speech-recognition",
1256
+ [
1257
+ {
1258
+ label: `Common Voice Train Example`,
1259
+ src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
1260
+ },
1261
+ {
1262
+ label: `Common Voice Test Example`,
1263
+ src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
1264
+ }
1265
+ ]
1266
+ ],
1267
+ [
1268
+ "text-to-speech",
1269
+ [
1270
+ `\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
1271
+ `\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
1272
+ `\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
1273
+ ]
1274
+ ],
1275
+ [
1276
+ "sentence-similarity",
1277
+ [
1278
+ {
1279
+ source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
1280
+ sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
1281
+ }
1282
+ ]
1283
+ ]
1284
+ ]);
1285
+ var MAPPING_SI = /* @__PURE__ */ new Map([
1286
+ ["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
1287
+ ["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
1288
+ ]);
1289
+ var MAPPING_DE = /* @__PURE__ */ new Map([
1290
+ [
1291
+ "question-answering",
1292
+ [
1293
+ {
1294
+ text: `Wo wohne ich?`,
1295
+ context: `Mein Name ist Wolfgang und ich lebe in Berlin`
1296
+ },
1297
+ {
1298
+ text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
1299
+ context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
1300
+ }
1301
+ ]
1302
+ ],
1303
+ [
1304
+ "sentence-similarity",
1305
+ [
1306
+ {
1307
+ source_sentence: "Das ist eine gl\xFCckliche Person",
1308
+ sentences: [
1309
+ "Das ist ein gl\xFCcklicher Hund",
1310
+ "Das ist eine sehr gl\xFCckliche Person",
1311
+ "Heute ist ein sonniger Tag"
1312
+ ]
1313
+ }
1314
+ ]
1315
+ ]
1316
+ ]);
1317
+ var MAPPING_DV = /* @__PURE__ */ new Map([
1318
+ ["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
1319
+ [
1320
+ "token-classification",
1321
+ [
1322
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1323
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
1324
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
1325
+ ]
1326
+ ],
1327
+ [
1328
+ "question-answering",
1329
+ [
1330
+ {
1331
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1332
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
1333
+ },
1334
+ {
1335
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
1336
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1337
+ },
1338
+ {
1339
+ text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
1340
+ context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
1341
+ },
1342
+ {
1343
+ text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
1344
+ context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
1345
+ }
1346
+ ]
1347
+ ],
1348
+ [
1349
+ "translation",
1350
+ [
1351
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
1352
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
1353
+ ]
1354
+ ],
1355
+ [
1356
+ "summarization",
1357
+ [
1358
+ `\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
1359
+ ]
1360
+ ],
1361
+ [
1362
+ "text-generation",
1363
+ [
1364
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
1365
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
1366
+ `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
1367
+ `\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
1368
+ ]
1369
+ ],
1370
+ ["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
1371
+ ]);
1372
+ var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
1373
+ ["en", MAPPING_EN],
1374
+ ["zh", MAPPING_ZH],
1375
+ ["fr", MAPPING_FR],
1376
+ ["es", MAPPING_ES],
1377
+ ["ru", MAPPING_RU],
1378
+ ["uk", MAPPING_UK],
1379
+ ["it", MAPPING_IT],
1380
+ ["fa", MAPPING_FA],
1381
+ ["ar", MAPPING_AR],
1382
+ ["bn", MAPPING_BN],
1383
+ ["mn", MAPPING_MN],
1384
+ ["si", MAPPING_SI],
1385
+ ["de", MAPPING_DE],
1386
+ ["dv", MAPPING_DV]
1387
+ ]);
1388
+
1
1389
  // src/pipelines.ts
2
1390
  var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
3
1391
  var MODALITY_LABELS = {
@@ -378,6 +1766,11 @@ var PIPELINE_DATA = {
378
1766
  modality: "cv",
379
1767
  color: "indigo"
380
1768
  },
1769
+ "image-to-video": {
1770
+ name: "Image-to-Video",
1771
+ modality: "multimodal",
1772
+ color: "indigo"
1773
+ },
381
1774
  "unconditional-image-generation": {
382
1775
  name: "Unconditional Image Generation",
383
1776
  modality: "cv",
@@ -546,6 +1939,16 @@ var PIPELINE_DATA = {
546
1939
  modality: "multimodal",
547
1940
  color: "green"
548
1941
  },
1942
+ "mask-generation": {
1943
+ name: "Mask Generation",
1944
+ modality: "cv",
1945
+ color: "indigo"
1946
+ },
1947
+ "zero-shot-object-detection": {
1948
+ name: "Zero-Shot Object Detection",
1949
+ modality: "cv",
1950
+ color: "yellow"
1951
+ },
549
1952
  other: {
550
1953
  name: "Other",
551
1954
  modality: "other",
@@ -555,8 +1958,10 @@ var PIPELINE_DATA = {
555
1958
  }
556
1959
  };
557
1960
  var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
1961
+ var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
1962
+ var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
558
1963
 
559
- // src/audio-classification/data.ts
1964
+ // src/tasks/audio-classification/data.ts
560
1965
  var taskData = {
561
1966
  datasets: [
562
1967
  {
@@ -621,8 +2026,8 @@ var taskData = {
621
2026
  ],
622
2027
  spaces: [
623
2028
  {
624
- description: "An application that can predict the language spoken in a given audio.",
625
- id: "akhaliq/Speechbrain-audio-classification"
2029
+ description: "An application that can classify music into different genre.",
2030
+ id: "kurianbenoy/audioclassification"
626
2031
  }
627
2032
  ],
628
2033
  summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
@@ -631,7 +2036,7 @@ var taskData = {
631
2036
  };
632
2037
  var data_default = taskData;
633
2038
 
634
- // src/audio-to-audio/data.ts
2039
+ // src/tasks/audio-to-audio/data.ts
635
2040
  var taskData2 = {
636
2041
  datasets: [
637
2042
  {
@@ -693,7 +2098,7 @@ var taskData2 = {
693
2098
  };
694
2099
  var data_default2 = taskData2;
695
2100
 
696
- // src/automatic-speech-recognition/data.ts
2101
+ // src/tasks/automatic-speech-recognition/data.ts
697
2102
  var taskData3 = {
698
2103
  datasets: [
699
2104
  {
@@ -738,7 +2143,7 @@ var taskData3 = {
738
2143
  models: [
739
2144
  {
740
2145
  description: "A powerful ASR model by OpenAI.",
741
- id: "openai/whisper-large-v2"
2146
+ id: "openai/whisper-large-v3"
742
2147
  },
743
2148
  {
744
2149
  description: "A good generic ASR model by MetaAI.",
@@ -752,24 +2157,24 @@ var taskData3 = {
752
2157
  spaces: [
753
2158
  {
754
2159
  description: "A powerful general-purpose speech recognition application.",
755
- id: "openai/whisper"
2160
+ id: "hf-audio/whisper-large-v3"
756
2161
  },
757
2162
  {
758
2163
  description: "Fastest speech recognition application.",
759
2164
  id: "sanchit-gandhi/whisper-jax"
760
2165
  },
761
2166
  {
762
- description: "An application that transcribes speeches in YouTube videos.",
763
- id: "jeffistyping/Youtube-Whisperer"
2167
+ description: "A high quality speech and text translation model by Meta.",
2168
+ id: "facebook/seamless_m4t"
764
2169
  }
765
2170
  ],
766
2171
  summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
767
- widgetModels: ["openai/whisper-large-v2"],
2172
+ widgetModels: ["openai/whisper-large-v3"],
768
2173
  youtubeId: "TksaY_FDgnk"
769
2174
  };
770
2175
  var data_default3 = taskData3;
771
2176
 
772
- // src/conversational/data.ts
2177
+ // src/tasks/conversational/data.ts
773
2178
  var taskData4 = {
774
2179
  datasets: [
775
2180
  {
@@ -829,7 +2234,7 @@ var taskData4 = {
829
2234
  };
830
2235
  var data_default4 = taskData4;
831
2236
 
832
- // src/document-question-answering/data.ts
2237
+ // src/tasks/document-question-answering/data.ts
833
2238
  var taskData5 = {
834
2239
  datasets: [
835
2240
  {
@@ -894,7 +2299,7 @@ var taskData5 = {
894
2299
  };
895
2300
  var data_default5 = taskData5;
896
2301
 
897
- // src/feature-extraction/data.ts
2302
+ // src/tasks/feature-extraction/data.ts
898
2303
  var taskData6 = {
899
2304
  datasets: [
900
2305
  {
@@ -923,12 +2328,7 @@ var taskData6 = {
923
2328
  }
924
2329
  ]
925
2330
  },
926
- metrics: [
927
- {
928
- description: "",
929
- id: ""
930
- }
931
- ],
2331
+ metrics: [],
932
2332
  models: [
933
2333
  {
934
2334
  description: "A powerful feature extraction model for natural language processing tasks.",
@@ -945,7 +2345,7 @@ var taskData6 = {
945
2345
  };
946
2346
  var data_default6 = taskData6;
947
2347
 
948
- // src/fill-mask/data.ts
2348
+ // src/tasks/fill-mask/data.ts
949
2349
  var taskData7 = {
950
2350
  datasets: [
951
2351
  {
@@ -1020,7 +2420,7 @@ var taskData7 = {
1020
2420
  };
1021
2421
  var data_default7 = taskData7;
1022
2422
 
1023
- // src/image-classification/data.ts
2423
+ // src/tasks/image-classification/data.ts
1024
2424
  var taskData8 = {
1025
2425
  datasets: [
1026
2426
  {
@@ -1106,7 +2506,7 @@ var taskData8 = {
1106
2506
  };
1107
2507
  var data_default8 = taskData8;
1108
2508
 
1109
- // src/image-to-image/data.ts
2509
+ // src/tasks/image-to-image/data.ts
1110
2510
  var taskData9 = {
1111
2511
  datasets: [
1112
2512
  {
@@ -1201,7 +2601,7 @@ var taskData9 = {
1201
2601
  };
1202
2602
  var data_default9 = taskData9;
1203
2603
 
1204
- // src/image-to-text/data.ts
2604
+ // src/tasks/image-to-text/data.ts
1205
2605
  var taskData10 = {
1206
2606
  datasets: [
1207
2607
  {
@@ -1285,7 +2685,7 @@ var taskData10 = {
1285
2685
  };
1286
2686
  var data_default10 = taskData10;
1287
2687
 
1288
- // src/image-segmentation/data.ts
2688
+ // src/tasks/image-segmentation/data.ts
1289
2689
  var taskData11 = {
1290
2690
  datasets: [
1291
2691
  {
@@ -1380,7 +2780,7 @@ var taskData11 = {
1380
2780
  };
1381
2781
  var data_default11 = taskData11;
1382
2782
 
1383
- // src/object-detection/data.ts
2783
+ // src/tasks/object-detection/data.ts
1384
2784
  var taskData12 = {
1385
2785
  datasets: [
1386
2786
  {
@@ -1452,7 +2852,7 @@ var taskData12 = {
1452
2852
  };
1453
2853
  var data_default12 = taskData12;
1454
2854
 
1455
- // src/depth-estimation/data.ts
2855
+ // src/tasks/depth-estimation/data.ts
1456
2856
  var taskData13 = {
1457
2857
  datasets: [
1458
2858
  {
@@ -1503,7 +2903,7 @@ var taskData13 = {
1503
2903
  };
1504
2904
  var data_default13 = taskData13;
1505
2905
 
1506
- // src/placeholder/data.ts
2906
+ // src/tasks/placeholder/data.ts
1507
2907
  var taskData14 = {
1508
2908
  datasets: [],
1509
2909
  demo: {
@@ -1520,7 +2920,7 @@ var taskData14 = {
1520
2920
  };
1521
2921
  var data_default14 = taskData14;
1522
2922
 
1523
- // src/reinforcement-learning/data.ts
2923
+ // src/tasks/reinforcement-learning/data.ts
1524
2924
  var taskData15 = {
1525
2925
  datasets: [
1526
2926
  {
@@ -1589,7 +2989,7 @@ var taskData15 = {
1589
2989
  };
1590
2990
  var data_default15 = taskData15;
1591
2991
 
1592
- // src/question-answering/data.ts
2992
+ // src/tasks/question-answering/data.ts
1593
2993
  var taskData16 = {
1594
2994
  datasets: [
1595
2995
  {
@@ -1656,7 +3056,7 @@ var taskData16 = {
1656
3056
  };
1657
3057
  var data_default16 = taskData16;
1658
3058
 
1659
- // src/sentence-similarity/data.ts
3059
+ // src/tasks/sentence-similarity/data.ts
1660
3060
  var taskData17 = {
1661
3061
  datasets: [
1662
3062
  {
@@ -1751,7 +3151,7 @@ var taskData17 = {
1751
3151
  };
1752
3152
  var data_default17 = taskData17;
1753
3153
 
1754
- // src/summarization/data.ts
3154
+ // src/tasks/summarization/data.ts
1755
3155
  var taskData18 = {
1756
3156
  datasets: [
1757
3157
  {
@@ -1819,7 +3219,7 @@ var taskData18 = {
1819
3219
  };
1820
3220
  var data_default18 = taskData18;
1821
3221
 
1822
- // src/table-question-answering/data.ts
3222
+ // src/tasks/table-question-answering/data.ts
1823
3223
  var taskData19 = {
1824
3224
  datasets: [
1825
3225
  {
@@ -1873,7 +3273,7 @@ var taskData19 = {
1873
3273
  };
1874
3274
  var data_default19 = taskData19;
1875
3275
 
1876
- // src/tabular-classification/data.ts
3276
+ // src/tasks/tabular-classification/data.ts
1877
3277
  var taskData20 = {
1878
3278
  datasets: [
1879
3279
  {
@@ -1940,7 +3340,7 @@ var taskData20 = {
1940
3340
  };
1941
3341
  var data_default20 = taskData20;
1942
3342
 
1943
- // src/tabular-regression/data.ts
3343
+ // src/tasks/tabular-regression/data.ts
1944
3344
  var taskData21 = {
1945
3345
  datasets: [
1946
3346
  {
@@ -1995,7 +3395,7 @@ var taskData21 = {
1995
3395
  };
1996
3396
  var data_default21 = taskData21;
1997
3397
 
1998
- // src/text-to-image/data.ts
3398
+ // src/tasks/text-to-image/data.ts
1999
3399
  var taskData22 = {
2000
3400
  datasets: [
2001
3401
  {
@@ -2082,7 +3482,7 @@ var taskData22 = {
2082
3482
  };
2083
3483
  var data_default22 = taskData22;
2084
3484
 
2085
- // src/text-to-speech/data.ts
3485
+ // src/tasks/text-to-speech/data.ts
2086
3486
  var taskData23 = {
2087
3487
  datasets: [
2088
3488
  {
@@ -2135,8 +3535,8 @@ var taskData23 = {
2135
3535
  id: "suno/bark"
2136
3536
  },
2137
3537
  {
2138
- description: "An application that contains multiple speech synthesis models for various languages and accents.",
2139
- id: "coqui/CoquiTTS"
3538
+ description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
3539
+ id: "coqui/xtts"
2140
3540
  },
2141
3541
  {
2142
3542
  description: "An application that synthesizes speech for various speaker types.",
@@ -2144,12 +3544,12 @@ var taskData23 = {
2144
3544
  }
2145
3545
  ],
2146
3546
  summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
2147
- widgetModels: ["microsoft/speecht5_tts"],
3547
+ widgetModels: ["suno/bark"],
2148
3548
  youtubeId: "NW62DpzJ274"
2149
3549
  };
2150
3550
  var data_default23 = taskData23;
2151
3551
 
2152
- // src/token-classification/data.ts
3552
+ // src/tasks/token-classification/data.ts
2153
3553
  var taskData24 = {
2154
3554
  datasets: [
2155
3555
  {
@@ -2228,7 +3628,7 @@ var taskData24 = {
2228
3628
  };
2229
3629
  var data_default24 = taskData24;
2230
3630
 
2231
- // src/translation/data.ts
3631
+ // src/tasks/translation/data.ts
2232
3632
  var taskData25 = {
2233
3633
  datasets: [
2234
3634
  {
@@ -2292,7 +3692,7 @@ var taskData25 = {
2292
3692
  };
2293
3693
  var data_default25 = taskData25;
2294
3694
 
2295
- // src/text-classification/data.ts
3695
+ // src/tasks/text-classification/data.ts
2296
3696
  var taskData26 = {
2297
3697
  datasets: [
2298
3698
  {
@@ -2380,7 +3780,7 @@ var taskData26 = {
2380
3780
  };
2381
3781
  var data_default26 = taskData26;
2382
3782
 
2383
- // src/text-generation/data.ts
3783
+ // src/tasks/text-generation/data.ts
2384
3784
  var taskData27 = {
2385
3785
  datasets: [
2386
3786
  {
@@ -2495,12 +3895,12 @@ var taskData27 = {
2495
3895
  }
2496
3896
  ],
2497
3897
  summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
2498
- widgetModels: ["tiiuae/falcon-7b-instruct"],
3898
+ widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
2499
3899
  youtubeId: "Vpjb1lu0MDk"
2500
3900
  };
2501
3901
  var data_default27 = taskData27;
2502
3902
 
2503
- // src/text-to-video/data.ts
3903
+ // src/tasks/text-to-video/data.ts
2504
3904
  var taskData28 = {
2505
3905
  datasets: [
2506
3906
  {
@@ -2595,7 +3995,7 @@ var taskData28 = {
2595
3995
  };
2596
3996
  var data_default28 = taskData28;
2597
3997
 
2598
- // src/unconditional-image-generation/data.ts
3998
+ // src/tasks/unconditional-image-generation/data.ts
2599
3999
  var taskData29 = {
2600
4000
  datasets: [
2601
4001
  {
@@ -2660,7 +4060,7 @@ var taskData29 = {
2660
4060
  };
2661
4061
  var data_default29 = taskData29;
2662
4062
 
2663
- // src/video-classification/data.ts
4063
+ // src/tasks/video-classification/data.ts
2664
4064
  var taskData30 = {
2665
4065
  datasets: [
2666
4066
  {
@@ -2742,7 +4142,7 @@ var taskData30 = {
2742
4142
  };
2743
4143
  var data_default30 = taskData30;
2744
4144
 
2745
- // src/visual-question-answering/data.ts
4145
+ // src/tasks/visual-question-answering/data.ts
2746
4146
  var taskData31 = {
2747
4147
  datasets: [
2748
4148
  {
@@ -2831,7 +4231,7 @@ var taskData31 = {
2831
4231
  };
2832
4232
  var data_default31 = taskData31;
2833
4233
 
2834
- // src/zero-shot-classification/data.ts
4234
+ // src/tasks/zero-shot-classification/data.ts
2835
4235
  var taskData32 = {
2836
4236
  datasets: [
2837
4237
  {
@@ -2893,7 +4293,7 @@ var taskData32 = {
2893
4293
  };
2894
4294
  var data_default32 = taskData32;
2895
4295
 
2896
- // src/zero-shot-image-classification/data.ts
4296
+ // src/tasks/zero-shot-image-classification/data.ts
2897
4297
  var taskData33 = {
2898
4298
  datasets: [
2899
4299
  {
@@ -2966,7 +4366,7 @@ var taskData33 = {
2966
4366
  };
2967
4367
  var data_default33 = taskData33;
2968
4368
 
2969
- // src/const.ts
4369
+ // src/tasks/index.ts
2970
4370
  var TASKS_MODEL_LIBRARIES = {
2971
4371
  "audio-classification": ["speechbrain", "transformers"],
2972
4372
  "audio-to-audio": ["asteroid", "speechbrain"],
@@ -2979,9 +4379,11 @@ var TASKS_MODEL_LIBRARIES = {
2979
4379
  "graph-ml": ["transformers"],
2980
4380
  "image-classification": ["keras", "timm", "transformers", "transformers.js"],
2981
4381
  "image-segmentation": ["transformers", "transformers.js"],
2982
- "image-to-image": [],
4382
+ "image-to-image": ["diffusers"],
2983
4383
  "image-to-text": ["transformers.js"],
2984
- "video-classification": [],
4384
+ "image-to-video": ["diffusers"],
4385
+ "video-classification": ["transformers"],
4386
+ "mask-generation": ["transformers"],
2985
4387
  "multiple-choice": ["transformers"],
2986
4388
  "object-detection": ["transformers", "transformers.js"],
2987
4389
  other: [],
@@ -2998,10 +4400,10 @@ var TASKS_MODEL_LIBRARIES = {
2998
4400
  "text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
2999
4401
  "text-generation": ["transformers", "transformers.js"],
3000
4402
  "text-retrieval": [],
3001
- "text-to-image": [],
4403
+ "text-to-image": ["diffusers"],
3002
4404
  "text-to-speech": ["espnet", "tensorflowtts", "transformers"],
3003
4405
  "text-to-audio": ["transformers"],
3004
- "text-to-video": [],
4406
+ "text-to-video": ["diffusers"],
3005
4407
  "text2text-generation": ["transformers", "transformers.js"],
3006
4408
  "time-series-forecasting": [],
3007
4409
  "token-classification": [
@@ -3014,14 +4416,21 @@ var TASKS_MODEL_LIBRARIES = {
3014
4416
  "transformers.js"
3015
4417
  ],
3016
4418
  translation: ["transformers", "transformers.js"],
3017
- "unconditional-image-generation": [],
3018
- "visual-question-answering": [],
4419
+ "unconditional-image-generation": ["diffusers"],
4420
+ "visual-question-answering": ["transformers"],
3019
4421
  "voice-activity-detection": [],
3020
4422
  "zero-shot-classification": ["transformers", "transformers.js"],
3021
- "zero-shot-image-classification": ["transformers.js"]
4423
+ "zero-shot-image-classification": ["transformers", "transformers.js"],
4424
+ "zero-shot-object-detection": ["transformers"]
3022
4425
  };
3023
-
3024
- // src/tasksData.ts
4426
+ function getData(type, partialTaskData = data_default14) {
4427
+ return {
4428
+ ...partialTaskData,
4429
+ id: type,
4430
+ label: PIPELINE_DATA[type].name,
4431
+ libraries: TASKS_MODEL_LIBRARIES[type]
4432
+ };
4433
+ }
3025
4434
  var TASKS_DATA = {
3026
4435
  "audio-classification": getData("audio-classification", data_default),
3027
4436
  "audio-to-audio": getData("audio-to-audio", data_default2),
@@ -3036,6 +4445,8 @@ var TASKS_DATA = {
3036
4445
  "image-segmentation": getData("image-segmentation", data_default11),
3037
4446
  "image-to-image": getData("image-to-image", data_default9),
3038
4447
  "image-to-text": getData("image-to-text", data_default10),
4448
+ "image-to-video": void 0,
4449
+ "mask-generation": getData("mask-generation", data_default14),
3039
4450
  "multiple-choice": void 0,
3040
4451
  "object-detection": getData("object-detection", data_default12),
3041
4452
  "video-classification": getData("video-classification", data_default30),
@@ -3065,18 +4476,11 @@ var TASKS_DATA = {
3065
4476
  "visual-question-answering": getData("visual-question-answering", data_default31),
3066
4477
  "voice-activity-detection": void 0,
3067
4478
  "zero-shot-classification": getData("zero-shot-classification", data_default32),
3068
- "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
4479
+ "zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
4480
+ "zero-shot-object-detection": getData("zero-shot-object-detection", data_default14)
3069
4481
  };
3070
- function getData(type, partialTaskData = data_default14) {
3071
- return {
3072
- ...partialTaskData,
3073
- id: type,
3074
- label: PIPELINE_DATA[type].name,
3075
- libraries: TASKS_MODEL_LIBRARIES[type]
3076
- };
3077
- }
3078
4482
 
3079
- // src/modelLibraries.ts
4483
+ // src/model-libraries.ts
3080
4484
  var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
3081
4485
  ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
3082
4486
  ModelLibrary2["allennlp"] = "allenNLP";
@@ -3113,11 +4517,470 @@ var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
3113
4517
  ModelLibrary2["mindspore"] = "MindSpore";
3114
4518
  return ModelLibrary2;
3115
4519
  })(ModelLibrary || {});
4520
+ var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
4521
+ (k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
4522
+ );
4523
+
4524
+ // src/model-data.ts
4525
+ var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
4526
+ InferenceDisplayability2["Yes"] = "Yes";
4527
+ InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
4528
+ InferenceDisplayability2["CustomCode"] = "CustomCode";
4529
+ InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
4530
+ InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
4531
+ InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
4532
+ return InferenceDisplayability2;
4533
+ })(InferenceDisplayability || {});
4534
+
4535
+ // src/tags.ts
4536
+ var TAG_NFAA_CONTENT = "not-for-all-audiences";
4537
+ var OTHER_TAGS_SUGGESTIONS = [
4538
+ "chemistry",
4539
+ "biology",
4540
+ "finance",
4541
+ "legal",
4542
+ "music",
4543
+ "art",
4544
+ "code",
4545
+ "climate",
4546
+ "medical",
4547
+ TAG_NFAA_CONTENT
4548
+ ];
4549
+ var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
4550
+ var TAG_CUSTOM_CODE = "custom_code";
4551
+
4552
+ // src/snippets/index.ts
4553
+ var snippets_exports = {};
4554
+ __export(snippets_exports, {
4555
+ curl: () => curl_exports,
4556
+ inputs: () => inputs_exports,
4557
+ js: () => js_exports,
4558
+ python: () => python_exports
4559
+ });
4560
+
4561
+ // src/snippets/inputs.ts
4562
+ var inputs_exports = {};
4563
+ __export(inputs_exports, {
4564
+ getModelInputSnippet: () => getModelInputSnippet
4565
+ });
4566
+ var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
4567
+ var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
4568
+ var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
4569
+ var inputsConversational = () => `{
4570
+ "past_user_inputs": ["Which movie is the best ?"],
4571
+ "generated_responses": ["It is Die Hard for sure."],
4572
+ "text": "Can you explain why ?"
4573
+ }`;
4574
+ var inputsTableQuestionAnswering = () => `{
4575
+ "query": "How many stars does the transformers repository have?",
4576
+ "table": {
4577
+ "Repository": ["Transformers", "Datasets", "Tokenizers"],
4578
+ "Stars": ["36542", "4512", "3934"],
4579
+ "Contributors": ["651", "77", "34"],
4580
+ "Programming language": [
4581
+ "Python",
4582
+ "Python",
4583
+ "Rust, Python and NodeJS"
4584
+ ]
4585
+ }
4586
+ }`;
4587
+ var inputsQuestionAnswering = () => `{
4588
+ "question": "What is my name?",
4589
+ "context": "My name is Clara and I live in Berkeley."
4590
+ }`;
4591
+ var inputsTextClassification = () => `"I like you. I love you"`;
4592
+ var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
4593
+ var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
4594
+ var inputsText2TextGeneration = () => `"The answer to the universe is"`;
4595
+ var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
4596
+ var inputsSentenceSimilarity = () => `{
4597
+ "source_sentence": "That is a happy person",
4598
+ "sentences": [
4599
+ "That is a happy dog",
4600
+ "That is a very happy person",
4601
+ "Today is a sunny day"
4602
+ ]
4603
+ }`;
4604
+ var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
4605
+ var inputsImageClassification = () => `"cats.jpg"`;
4606
+ var inputsImageToText = () => `"cats.jpg"`;
4607
+ var inputsImageSegmentation = () => `"cats.jpg"`;
4608
+ var inputsObjectDetection = () => `"cats.jpg"`;
4609
+ var inputsAudioToAudio = () => `"sample1.flac"`;
4610
+ var inputsAudioClassification = () => `"sample1.flac"`;
4611
+ var inputsTextToImage = () => `"Astronaut riding a horse"`;
4612
+ var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
4613
+ var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
4614
+ var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
4615
+ var modelInputSnippets = {
4616
+ "audio-to-audio": inputsAudioToAudio,
4617
+ "audio-classification": inputsAudioClassification,
4618
+ "automatic-speech-recognition": inputsAutomaticSpeechRecognition,
4619
+ conversational: inputsConversational,
4620
+ "feature-extraction": inputsFeatureExtraction,
4621
+ "fill-mask": inputsFillMask,
4622
+ "image-classification": inputsImageClassification,
4623
+ "image-to-text": inputsImageToText,
4624
+ "image-segmentation": inputsImageSegmentation,
4625
+ "object-detection": inputsObjectDetection,
4626
+ "question-answering": inputsQuestionAnswering,
4627
+ "sentence-similarity": inputsSentenceSimilarity,
4628
+ summarization: inputsSummarization,
4629
+ "table-question-answering": inputsTableQuestionAnswering,
4630
+ "text-classification": inputsTextClassification,
4631
+ "text-generation": inputsTextGeneration,
4632
+ "text-to-image": inputsTextToImage,
4633
+ "text-to-speech": inputsTextToSpeech,
4634
+ "text-to-audio": inputsTextToAudio,
4635
+ "text2text-generation": inputsText2TextGeneration,
4636
+ "token-classification": inputsTokenClassification,
4637
+ translation: inputsTranslation,
4638
+ "zero-shot-classification": inputsZeroShotClassification
4639
+ };
4640
+ function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
4641
+ if (model.pipeline_tag) {
4642
+ const inputs = modelInputSnippets[model.pipeline_tag];
4643
+ if (inputs) {
4644
+ let result = inputs(model);
4645
+ if (noWrap) {
4646
+ result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
4647
+ }
4648
+ if (noQuotes) {
4649
+ const REGEX_QUOTES = /^"(.+)"$/s;
4650
+ const match = result.match(REGEX_QUOTES);
4651
+ result = match ? match[1] : result;
4652
+ }
4653
+ return result;
4654
+ }
4655
+ }
4656
+ return "No input example has been defined for this model task.";
4657
+ }
4658
+
4659
+ // src/snippets/curl.ts
4660
+ var curl_exports = {};
4661
+ __export(curl_exports, {
4662
+ curlSnippets: () => curlSnippets,
4663
+ getCurlInferenceSnippet: () => getCurlInferenceSnippet,
4664
+ hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
4665
+ snippetBasic: () => snippetBasic,
4666
+ snippetFile: () => snippetFile,
4667
+ snippetZeroShotClassification: () => snippetZeroShotClassification
4668
+ });
4669
+ var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4670
+ -X POST \\
4671
+ -d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
4672
+ -H 'Content-Type: application/json' \\
4673
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4674
+ `;
4675
+ var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4676
+ -X POST \\
4677
+ -d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
4678
+ -H 'Content-Type: application/json' \\
4679
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4680
+ `;
4681
+ var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
4682
+ -X POST \\
4683
+ --data-binary '@${getModelInputSnippet(model, true, true)}' \\
4684
+ -H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
4685
+ `;
4686
+ var curlSnippets = {
4687
+ // Same order as in js/src/lib/interfaces/Types.ts
4688
+ "text-classification": snippetBasic,
4689
+ "token-classification": snippetBasic,
4690
+ "table-question-answering": snippetBasic,
4691
+ "question-answering": snippetBasic,
4692
+ "zero-shot-classification": snippetZeroShotClassification,
4693
+ translation: snippetBasic,
4694
+ summarization: snippetBasic,
4695
+ conversational: snippetBasic,
4696
+ "feature-extraction": snippetBasic,
4697
+ "text-generation": snippetBasic,
4698
+ "text2text-generation": snippetBasic,
4699
+ "fill-mask": snippetBasic,
4700
+ "sentence-similarity": snippetBasic,
4701
+ "automatic-speech-recognition": snippetFile,
4702
+ "text-to-image": snippetBasic,
4703
+ "text-to-speech": snippetBasic,
4704
+ "text-to-audio": snippetBasic,
4705
+ "audio-to-audio": snippetFile,
4706
+ "audio-classification": snippetFile,
4707
+ "image-classification": snippetFile,
4708
+ "image-to-text": snippetFile,
4709
+ "object-detection": snippetFile,
4710
+ "image-segmentation": snippetFile
4711
+ };
4712
+ function getCurlInferenceSnippet(model, accessToken) {
4713
+ return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
4714
+ }
4715
+ function hasCurlInferenceSnippet(model) {
4716
+ return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
4717
+ }
4718
+
4719
+ // src/snippets/python.ts
4720
+ var python_exports = {};
4721
+ __export(python_exports, {
4722
+ getPythonInferenceSnippet: () => getPythonInferenceSnippet,
4723
+ hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
4724
+ pythonSnippets: () => pythonSnippets,
4725
+ snippetBasic: () => snippetBasic2,
4726
+ snippetFile: () => snippetFile2,
4727
+ snippetTextToAudio: () => snippetTextToAudio,
4728
+ snippetTextToImage: () => snippetTextToImage,
4729
+ snippetZeroShotClassification: () => snippetZeroShotClassification2
4730
+ });
4731
+ var snippetZeroShotClassification2 = (model) => `def query(payload):
4732
+ response = requests.post(API_URL, headers=headers, json=payload)
4733
+ return response.json()
4734
+
4735
+ output = query({
4736
+ "inputs": ${getModelInputSnippet(model)},
4737
+ "parameters": {"candidate_labels": ["refund", "legal", "faq"]},
4738
+ })`;
4739
+ var snippetBasic2 = (model) => `def query(payload):
4740
+ response = requests.post(API_URL, headers=headers, json=payload)
4741
+ return response.json()
4742
+
4743
+ output = query({
4744
+ "inputs": ${getModelInputSnippet(model)},
4745
+ })`;
4746
+ var snippetFile2 = (model) => `def query(filename):
4747
+ with open(filename, "rb") as f:
4748
+ data = f.read()
4749
+ response = requests.post(API_URL, headers=headers, data=data)
4750
+ return response.json()
4751
+
4752
+ output = query(${getModelInputSnippet(model)})`;
4753
+ var snippetTextToImage = (model) => `def query(payload):
4754
+ response = requests.post(API_URL, headers=headers, json=payload)
4755
+ return response.content
4756
+ image_bytes = query({
4757
+ "inputs": ${getModelInputSnippet(model)},
4758
+ })
4759
+ # You can access the image with PIL.Image for example
4760
+ import io
4761
+ from PIL import Image
4762
+ image = Image.open(io.BytesIO(image_bytes))`;
4763
+ var snippetTextToAudio = (model) => {
4764
+ if (model.library_name === "transformers") {
4765
+ return `def query(payload):
4766
+ response = requests.post(API_URL, headers=headers, json=payload)
4767
+ return response.content
4768
+
4769
+ audio_bytes = query({
4770
+ "inputs": ${getModelInputSnippet(model)},
4771
+ })
4772
+ # You can access the audio with IPython.display for example
4773
+ from IPython.display import Audio
4774
+ Audio(audio_bytes)`;
4775
+ } else {
4776
+ return `def query(payload):
4777
+ response = requests.post(API_URL, headers=headers, json=payload)
4778
+ return response.json()
4779
+
4780
+ audio, sampling_rate = query({
4781
+ "inputs": ${getModelInputSnippet(model)},
4782
+ })
4783
+ # You can access the audio with IPython.display for example
4784
+ from IPython.display import Audio
4785
+ Audio(audio, rate=sampling_rate)`;
4786
+ }
4787
+ };
4788
+ var pythonSnippets = {
4789
+ // Same order as in js/src/lib/interfaces/Types.ts
4790
+ "text-classification": snippetBasic2,
4791
+ "token-classification": snippetBasic2,
4792
+ "table-question-answering": snippetBasic2,
4793
+ "question-answering": snippetBasic2,
4794
+ "zero-shot-classification": snippetZeroShotClassification2,
4795
+ translation: snippetBasic2,
4796
+ summarization: snippetBasic2,
4797
+ conversational: snippetBasic2,
4798
+ "feature-extraction": snippetBasic2,
4799
+ "text-generation": snippetBasic2,
4800
+ "text2text-generation": snippetBasic2,
4801
+ "fill-mask": snippetBasic2,
4802
+ "sentence-similarity": snippetBasic2,
4803
+ "automatic-speech-recognition": snippetFile2,
4804
+ "text-to-image": snippetTextToImage,
4805
+ "text-to-speech": snippetTextToAudio,
4806
+ "text-to-audio": snippetTextToAudio,
4807
+ "audio-to-audio": snippetFile2,
4808
+ "audio-classification": snippetFile2,
4809
+ "image-classification": snippetFile2,
4810
+ "image-to-text": snippetFile2,
4811
+ "object-detection": snippetFile2,
4812
+ "image-segmentation": snippetFile2
4813
+ };
4814
+ function getPythonInferenceSnippet(model, accessToken) {
4815
+ const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
4816
+ return `import requests
4817
+
4818
+ API_URL = "https://api-inference.huggingface.co/models/${model.id}"
4819
+ headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
4820
+
4821
+ ${body}`;
4822
+ }
4823
+ function hasPythonInferenceSnippet(model) {
4824
+ return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
4825
+ }
4826
+
4827
+ // src/snippets/js.ts
4828
+ var js_exports = {};
4829
+ __export(js_exports, {
4830
+ getJsInferenceSnippet: () => getJsInferenceSnippet,
4831
+ hasJsInferenceSnippet: () => hasJsInferenceSnippet,
4832
+ jsSnippets: () => jsSnippets,
4833
+ snippetBasic: () => snippetBasic3,
4834
+ snippetFile: () => snippetFile3,
4835
+ snippetTextToAudio: () => snippetTextToAudio2,
4836
+ snippetTextToImage: () => snippetTextToImage2,
4837
+ snippetZeroShotClassification: () => snippetZeroShotClassification3
4838
+ });
4839
+ var snippetBasic3 = (model, accessToken) => `async function query(data) {
4840
+ const response = await fetch(
4841
+ "https://api-inference.huggingface.co/models/${model.id}",
4842
+ {
4843
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4844
+ method: "POST",
4845
+ body: JSON.stringify(data),
4846
+ }
4847
+ );
4848
+ const result = await response.json();
4849
+ return result;
4850
+ }
4851
+
4852
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4853
+ console.log(JSON.stringify(response));
4854
+ });`;
4855
+ var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
4856
+ const response = await fetch(
4857
+ "https://api-inference.huggingface.co/models/${model.id}",
4858
+ {
4859
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4860
+ method: "POST",
4861
+ body: JSON.stringify(data),
4862
+ }
4863
+ );
4864
+ const result = await response.json();
4865
+ return result;
4866
+ }
4867
+
4868
+ query({"inputs": ${getModelInputSnippet(
4869
+ model
4870
+ )}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
4871
+ console.log(JSON.stringify(response));
4872
+ });`;
4873
+ var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
4874
+ const response = await fetch(
4875
+ "https://api-inference.huggingface.co/models/${model.id}",
4876
+ {
4877
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4878
+ method: "POST",
4879
+ body: JSON.stringify(data),
4880
+ }
4881
+ );
4882
+ const result = await response.blob();
4883
+ return result;
4884
+ }
4885
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4886
+ // Use image
4887
+ });`;
4888
+ var snippetTextToAudio2 = (model, accessToken) => {
4889
+ const commonSnippet = `async function query(data) {
4890
+ const response = await fetch(
4891
+ "https://api-inference.huggingface.co/models/${model.id}",
4892
+ {
4893
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4894
+ method: "POST",
4895
+ body: JSON.stringify(data),
4896
+ }
4897
+ );`;
4898
+ if (model.library_name === "transformers") {
4899
+ return commonSnippet + `
4900
+ const result = await response.blob();
4901
+ return result;
4902
+ }
4903
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4904
+ // Returns a byte object of the Audio wavform. Use it directly!
4905
+ });`;
4906
+ } else {
4907
+ return commonSnippet + `
4908
+ const result = await response.json();
4909
+ return result;
4910
+ }
4911
+
4912
+ query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
4913
+ console.log(JSON.stringify(response));
4914
+ });`;
4915
+ }
4916
+ };
4917
+ var snippetFile3 = (model, accessToken) => `async function query(filename) {
4918
+ const data = fs.readFileSync(filename);
4919
+ const response = await fetch(
4920
+ "https://api-inference.huggingface.co/models/${model.id}",
4921
+ {
4922
+ headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
4923
+ method: "POST",
4924
+ body: data,
4925
+ }
4926
+ );
4927
+ const result = await response.json();
4928
+ return result;
4929
+ }
4930
+
4931
+ query(${getModelInputSnippet(model)}).then((response) => {
4932
+ console.log(JSON.stringify(response));
4933
+ });`;
4934
+ var jsSnippets = {
4935
+ // Same order as in js/src/lib/interfaces/Types.ts
4936
+ "text-classification": snippetBasic3,
4937
+ "token-classification": snippetBasic3,
4938
+ "table-question-answering": snippetBasic3,
4939
+ "question-answering": snippetBasic3,
4940
+ "zero-shot-classification": snippetZeroShotClassification3,
4941
+ translation: snippetBasic3,
4942
+ summarization: snippetBasic3,
4943
+ conversational: snippetBasic3,
4944
+ "feature-extraction": snippetBasic3,
4945
+ "text-generation": snippetBasic3,
4946
+ "text2text-generation": snippetBasic3,
4947
+ "fill-mask": snippetBasic3,
4948
+ "sentence-similarity": snippetBasic3,
4949
+ "automatic-speech-recognition": snippetFile3,
4950
+ "text-to-image": snippetTextToImage2,
4951
+ "text-to-speech": snippetTextToAudio2,
4952
+ "text-to-audio": snippetTextToAudio2,
4953
+ "audio-to-audio": snippetFile3,
4954
+ "audio-classification": snippetFile3,
4955
+ "image-classification": snippetFile3,
4956
+ "image-to-text": snippetFile3,
4957
+ "object-detection": snippetFile3,
4958
+ "image-segmentation": snippetFile3
4959
+ };
4960
+ function getJsInferenceSnippet(model, accessToken) {
4961
+ return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
4962
+ }
4963
+ function hasJsInferenceSnippet(model) {
4964
+ return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
4965
+ }
3116
4966
  export {
4967
+ ALL_DISPLAY_MODEL_LIBRARY_KEYS,
4968
+ InferenceDisplayability,
4969
+ LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
4970
+ MAPPING_DEFAULT_WIDGET,
3117
4971
  MODALITIES,
3118
4972
  MODALITY_LABELS,
4973
+ MODEL_LIBRARIES_UI_ELEMENTS,
3119
4974
  ModelLibrary,
4975
+ OTHER_TAGS_SUGGESTIONS,
3120
4976
  PIPELINE_DATA,
3121
4977
  PIPELINE_TYPES,
3122
- TASKS_DATA
4978
+ PIPELINE_TYPES_SET,
4979
+ SUBTASK_TYPES,
4980
+ TAG_CUSTOM_CODE,
4981
+ TAG_NFAA_CONTENT,
4982
+ TAG_TEXT_GENERATION_INFERENCE,
4983
+ TASKS_DATA,
4984
+ TASKS_MODEL_LIBRARIES,
4985
+ snippets_exports as snippets
3123
4986
  };