@huggingface/tasks 0.0.5 → 0.0.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +16 -2
- package/dist/index.d.ts +364 -3
- package/dist/index.js +1942 -72
- package/dist/index.mjs +1934 -71
- package/package.json +1 -1
- package/src/default-widget-inputs.ts +718 -0
- package/src/index.ts +39 -4
- package/src/library-to-tasks.ts +47 -0
- package/src/library-ui-elements.ts +765 -0
- package/src/model-data.ts +239 -0
- package/src/{modelLibraries.ts → model-libraries.ts} +4 -0
- package/src/pipelines.ts +22 -0
- package/src/snippets/curl.ts +63 -0
- package/src/snippets/index.ts +6 -0
- package/src/snippets/inputs.ts +129 -0
- package/src/snippets/js.ts +150 -0
- package/src/snippets/python.ts +114 -0
- package/src/tags.ts +15 -0
- package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
- package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
- package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
- package/src/{conversational → tasks/conversational}/data.ts +1 -1
- package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
- package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
- package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
- package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
- package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
- package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
- package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
- package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
- package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
- package/src/{tasksData.ts → tasks/index.ts} +140 -15
- package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
- package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
- package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
- package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
- package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
- package/src/{summarization → tasks/summarization}/data.ts +1 -1
- package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
- package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
- package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
- package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
- package/src/{text-generation → tasks/text-generation}/about.md +3 -3
- package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
- package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
- package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
- package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
- package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
- package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
- package/src/{translation → tasks/translation}/data.ts +1 -1
- package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
- package/src/{video-classification → tasks/video-classification}/about.md +8 -28
- package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
- package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
- package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
- package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
- package/src/Types.ts +0 -64
- package/src/const.ts +0 -59
- /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
- /package/src/{conversational → tasks/conversational}/about.md +0 -0
- /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
- /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
- /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
- /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
- /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
- /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
- /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
- /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
- /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
- /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
- /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
- /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
- /package/src/{summarization → tasks/summarization}/about.md +0 -0
- /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
- /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
- /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
- /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
- /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
- /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
- /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
- /package/src/{translation → tasks/translation}/about.md +0 -0
- /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
- /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
- /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
- /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.mjs
CHANGED
|
@@ -1,3 +1,1391 @@
|
|
|
1
|
+
var __defProp = Object.defineProperty;
|
|
2
|
+
var __export = (target, all) => {
|
|
3
|
+
for (var name in all)
|
|
4
|
+
__defProp(target, name, { get: all[name], enumerable: true });
|
|
5
|
+
};
|
|
6
|
+
|
|
7
|
+
// src/library-to-tasks.ts
|
|
8
|
+
var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
|
|
9
|
+
"adapter-transformers": ["question-answering", "text-classification", "token-classification"],
|
|
10
|
+
allennlp: ["question-answering"],
|
|
11
|
+
asteroid: [
|
|
12
|
+
// "audio-source-separation",
|
|
13
|
+
"audio-to-audio"
|
|
14
|
+
],
|
|
15
|
+
bertopic: ["text-classification"],
|
|
16
|
+
diffusers: ["image-to-image", "text-to-image"],
|
|
17
|
+
doctr: ["object-detection"],
|
|
18
|
+
espnet: ["text-to-speech", "automatic-speech-recognition"],
|
|
19
|
+
fairseq: ["text-to-speech", "audio-to-audio"],
|
|
20
|
+
fastai: ["image-classification"],
|
|
21
|
+
fasttext: ["feature-extraction", "text-classification"],
|
|
22
|
+
flair: ["token-classification"],
|
|
23
|
+
k2: ["automatic-speech-recognition"],
|
|
24
|
+
keras: ["image-classification"],
|
|
25
|
+
nemo: ["automatic-speech-recognition"],
|
|
26
|
+
open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
|
|
27
|
+
paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
|
|
28
|
+
peft: ["text-generation"],
|
|
29
|
+
"pyannote-audio": ["automatic-speech-recognition"],
|
|
30
|
+
"sentence-transformers": ["feature-extraction", "sentence-similarity"],
|
|
31
|
+
sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
|
|
32
|
+
spacy: ["token-classification", "text-classification", "sentence-similarity"],
|
|
33
|
+
"span-marker": ["token-classification"],
|
|
34
|
+
speechbrain: [
|
|
35
|
+
"audio-classification",
|
|
36
|
+
"audio-to-audio",
|
|
37
|
+
"automatic-speech-recognition",
|
|
38
|
+
"text-to-speech",
|
|
39
|
+
"text2text-generation"
|
|
40
|
+
],
|
|
41
|
+
stanza: ["token-classification"],
|
|
42
|
+
timm: ["image-classification"],
|
|
43
|
+
mindspore: ["image-classification"]
|
|
44
|
+
};
|
|
45
|
+
|
|
46
|
+
// src/library-ui-elements.ts
|
|
47
|
+
function nameWithoutNamespace(modelId) {
|
|
48
|
+
const splitted = modelId.split("/");
|
|
49
|
+
return splitted.length === 1 ? splitted[0] : splitted[1];
|
|
50
|
+
}
|
|
51
|
+
var adapter_transformers = (model) => [
|
|
52
|
+
`from transformers import ${model.config?.adapter_transformers?.model_class}
|
|
53
|
+
|
|
54
|
+
model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
|
|
55
|
+
model.load_adapter("${model.id}", source="hf")`
|
|
56
|
+
];
|
|
57
|
+
var allennlpUnknown = (model) => [
|
|
58
|
+
`import allennlp_models
|
|
59
|
+
from allennlp.predictors.predictor import Predictor
|
|
60
|
+
|
|
61
|
+
predictor = Predictor.from_path("hf://${model.id}")`
|
|
62
|
+
];
|
|
63
|
+
var allennlpQuestionAnswering = (model) => [
|
|
64
|
+
`import allennlp_models
|
|
65
|
+
from allennlp.predictors.predictor import Predictor
|
|
66
|
+
|
|
67
|
+
predictor = Predictor.from_path("hf://${model.id}")
|
|
68
|
+
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
|
|
69
|
+
predictions = predictor.predict_json(predictor_input)`
|
|
70
|
+
];
|
|
71
|
+
var allennlp = (model) => {
|
|
72
|
+
if (model.tags?.includes("question-answering")) {
|
|
73
|
+
return allennlpQuestionAnswering(model);
|
|
74
|
+
}
|
|
75
|
+
return allennlpUnknown(model);
|
|
76
|
+
};
|
|
77
|
+
var asteroid = (model) => [
|
|
78
|
+
`from asteroid.models import BaseModel
|
|
79
|
+
|
|
80
|
+
model = BaseModel.from_pretrained("${model.id}")`
|
|
81
|
+
];
|
|
82
|
+
function get_base_diffusers_model(model) {
|
|
83
|
+
return model.cardData?.base_model ?? "fill-in-base-model";
|
|
84
|
+
}
|
|
85
|
+
var bertopic = (model) => [
|
|
86
|
+
`from bertopic import BERTopic
|
|
87
|
+
|
|
88
|
+
model = BERTopic.load("${model.id}")`
|
|
89
|
+
];
|
|
90
|
+
var diffusers_default = (model) => [
|
|
91
|
+
`from diffusers import DiffusionPipeline
|
|
92
|
+
|
|
93
|
+
pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
|
|
94
|
+
];
|
|
95
|
+
var diffusers_controlnet = (model) => [
|
|
96
|
+
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
|
97
|
+
|
|
98
|
+
controlnet = ControlNetModel.from_pretrained("${model.id}")
|
|
99
|
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
|
100
|
+
"${get_base_diffusers_model(model)}", controlnet=controlnet
|
|
101
|
+
)`
|
|
102
|
+
];
|
|
103
|
+
var diffusers_lora = (model) => [
|
|
104
|
+
`from diffusers import DiffusionPipeline
|
|
105
|
+
|
|
106
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
107
|
+
pipeline.load_lora_weights("${model.id}")`
|
|
108
|
+
];
|
|
109
|
+
var diffusers_textual_inversion = (model) => [
|
|
110
|
+
`from diffusers import DiffusionPipeline
|
|
111
|
+
|
|
112
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
113
|
+
pipeline.load_textual_inversion("${model.id}")`
|
|
114
|
+
];
|
|
115
|
+
var diffusers = (model) => {
|
|
116
|
+
if (model.tags?.includes("controlnet")) {
|
|
117
|
+
return diffusers_controlnet(model);
|
|
118
|
+
} else if (model.tags?.includes("lora")) {
|
|
119
|
+
return diffusers_lora(model);
|
|
120
|
+
} else if (model.tags?.includes("textual_inversion")) {
|
|
121
|
+
return diffusers_textual_inversion(model);
|
|
122
|
+
} else {
|
|
123
|
+
return diffusers_default(model);
|
|
124
|
+
}
|
|
125
|
+
};
|
|
126
|
+
var espnetTTS = (model) => [
|
|
127
|
+
`from espnet2.bin.tts_inference import Text2Speech
|
|
128
|
+
|
|
129
|
+
model = Text2Speech.from_pretrained("${model.id}")
|
|
130
|
+
|
|
131
|
+
speech, *_ = model("text to generate speech from")`
|
|
132
|
+
];
|
|
133
|
+
var espnetASR = (model) => [
|
|
134
|
+
`from espnet2.bin.asr_inference import Speech2Text
|
|
135
|
+
|
|
136
|
+
model = Speech2Text.from_pretrained(
|
|
137
|
+
"${model.id}"
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
speech, rate = soundfile.read("speech.wav")
|
|
141
|
+
text, *_ = model(speech)[0]`
|
|
142
|
+
];
|
|
143
|
+
var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
|
|
144
|
+
var espnet = (model) => {
|
|
145
|
+
if (model.tags?.includes("text-to-speech")) {
|
|
146
|
+
return espnetTTS(model);
|
|
147
|
+
} else if (model.tags?.includes("automatic-speech-recognition")) {
|
|
148
|
+
return espnetASR(model);
|
|
149
|
+
}
|
|
150
|
+
return espnetUnknown();
|
|
151
|
+
};
|
|
152
|
+
var fairseq = (model) => [
|
|
153
|
+
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
|
154
|
+
|
|
155
|
+
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
|
156
|
+
"${model.id}"
|
|
157
|
+
)`
|
|
158
|
+
];
|
|
159
|
+
var flair = (model) => [
|
|
160
|
+
`from flair.models import SequenceTagger
|
|
161
|
+
|
|
162
|
+
tagger = SequenceTagger.load("${model.id}")`
|
|
163
|
+
];
|
|
164
|
+
var keras = (model) => [
|
|
165
|
+
`from huggingface_hub import from_pretrained_keras
|
|
166
|
+
|
|
167
|
+
model = from_pretrained_keras("${model.id}")
|
|
168
|
+
`
|
|
169
|
+
];
|
|
170
|
+
var open_clip = (model) => [
|
|
171
|
+
`import open_clip
|
|
172
|
+
|
|
173
|
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
|
|
174
|
+
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
|
|
175
|
+
];
|
|
176
|
+
var paddlenlp = (model) => {
|
|
177
|
+
if (model.config?.architectures?.[0]) {
|
|
178
|
+
const architecture = model.config.architectures[0];
|
|
179
|
+
return [
|
|
180
|
+
[
|
|
181
|
+
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
|
|
182
|
+
"",
|
|
183
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
|
|
184
|
+
`model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
|
|
185
|
+
].join("\n")
|
|
186
|
+
];
|
|
187
|
+
} else {
|
|
188
|
+
return [
|
|
189
|
+
[
|
|
190
|
+
`# \u26A0\uFE0F Type of model unknown`,
|
|
191
|
+
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
|
|
192
|
+
"",
|
|
193
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
|
|
194
|
+
`model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
|
|
195
|
+
].join("\n")
|
|
196
|
+
];
|
|
197
|
+
}
|
|
198
|
+
};
|
|
199
|
+
var pyannote_audio_pipeline = (model) => [
|
|
200
|
+
`from pyannote.audio import Pipeline
|
|
201
|
+
|
|
202
|
+
pipeline = Pipeline.from_pretrained("${model.id}")
|
|
203
|
+
|
|
204
|
+
# inference on the whole file
|
|
205
|
+
pipeline("file.wav")
|
|
206
|
+
|
|
207
|
+
# inference on an excerpt
|
|
208
|
+
from pyannote.core import Segment
|
|
209
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
210
|
+
|
|
211
|
+
from pyannote.audio import Audio
|
|
212
|
+
waveform, sample_rate = Audio().crop("file.wav", excerpt)
|
|
213
|
+
pipeline({"waveform": waveform, "sample_rate": sample_rate})`
|
|
214
|
+
];
|
|
215
|
+
var pyannote_audio_model = (model) => [
|
|
216
|
+
`from pyannote.audio import Model, Inference
|
|
217
|
+
|
|
218
|
+
model = Model.from_pretrained("${model.id}")
|
|
219
|
+
inference = Inference(model)
|
|
220
|
+
|
|
221
|
+
# inference on the whole file
|
|
222
|
+
inference("file.wav")
|
|
223
|
+
|
|
224
|
+
# inference on an excerpt
|
|
225
|
+
from pyannote.core import Segment
|
|
226
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
227
|
+
inference.crop("file.wav", excerpt)`
|
|
228
|
+
];
|
|
229
|
+
var pyannote_audio = (model) => {
|
|
230
|
+
if (model.tags?.includes("pyannote-audio-pipeline")) {
|
|
231
|
+
return pyannote_audio_pipeline(model);
|
|
232
|
+
}
|
|
233
|
+
return pyannote_audio_model(model);
|
|
234
|
+
};
|
|
235
|
+
var tensorflowttsTextToMel = (model) => [
|
|
236
|
+
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
|
|
237
|
+
|
|
238
|
+
processor = AutoProcessor.from_pretrained("${model.id}")
|
|
239
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
240
|
+
`
|
|
241
|
+
];
|
|
242
|
+
var tensorflowttsMelToWav = (model) => [
|
|
243
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
244
|
+
|
|
245
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
246
|
+
audios = model.inference(mels)
|
|
247
|
+
`
|
|
248
|
+
];
|
|
249
|
+
var tensorflowttsUnknown = (model) => [
|
|
250
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
251
|
+
|
|
252
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
253
|
+
`
|
|
254
|
+
];
|
|
255
|
+
var tensorflowtts = (model) => {
|
|
256
|
+
if (model.tags?.includes("text-to-mel")) {
|
|
257
|
+
return tensorflowttsTextToMel(model);
|
|
258
|
+
} else if (model.tags?.includes("mel-to-wav")) {
|
|
259
|
+
return tensorflowttsMelToWav(model);
|
|
260
|
+
}
|
|
261
|
+
return tensorflowttsUnknown(model);
|
|
262
|
+
};
|
|
263
|
+
var timm = (model) => [
|
|
264
|
+
`import timm
|
|
265
|
+
|
|
266
|
+
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
|
|
267
|
+
];
|
|
268
|
+
var skopsPickle = (model, modelFile) => {
|
|
269
|
+
return [
|
|
270
|
+
`import joblib
|
|
271
|
+
from skops.hub_utils import download
|
|
272
|
+
download("${model.id}", "path_to_folder")
|
|
273
|
+
model = joblib.load(
|
|
274
|
+
"${modelFile}"
|
|
275
|
+
)
|
|
276
|
+
# only load pickle files from sources you trust
|
|
277
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
|
|
278
|
+
];
|
|
279
|
+
};
|
|
280
|
+
var skopsFormat = (model, modelFile) => {
|
|
281
|
+
return [
|
|
282
|
+
`from skops.hub_utils import download
|
|
283
|
+
from skops.io import load
|
|
284
|
+
download("${model.id}", "path_to_folder")
|
|
285
|
+
# make sure model file is in skops format
|
|
286
|
+
# if model is a pickle file, make sure it's from a source you trust
|
|
287
|
+
model = load("path_to_folder/${modelFile}")`
|
|
288
|
+
];
|
|
289
|
+
};
|
|
290
|
+
var skopsJobLib = (model) => {
|
|
291
|
+
return [
|
|
292
|
+
`from huggingface_hub import hf_hub_download
|
|
293
|
+
import joblib
|
|
294
|
+
model = joblib.load(
|
|
295
|
+
hf_hub_download("${model.id}", "sklearn_model.joblib")
|
|
296
|
+
)
|
|
297
|
+
# only load pickle files from sources you trust
|
|
298
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
|
|
299
|
+
];
|
|
300
|
+
};
|
|
301
|
+
var sklearn = (model) => {
|
|
302
|
+
if (model.tags?.includes("skops")) {
|
|
303
|
+
const skopsmodelFile = model.config?.sklearn?.filename;
|
|
304
|
+
const skopssaveFormat = model.config?.sklearn?.model_format;
|
|
305
|
+
if (!skopsmodelFile) {
|
|
306
|
+
return [`# \u26A0\uFE0F Model filename not specified in config.json`];
|
|
307
|
+
}
|
|
308
|
+
if (skopssaveFormat === "pickle") {
|
|
309
|
+
return skopsPickle(model, skopsmodelFile);
|
|
310
|
+
} else {
|
|
311
|
+
return skopsFormat(model, skopsmodelFile);
|
|
312
|
+
}
|
|
313
|
+
} else {
|
|
314
|
+
return skopsJobLib(model);
|
|
315
|
+
}
|
|
316
|
+
};
|
|
317
|
+
var fastai = (model) => [
|
|
318
|
+
`from huggingface_hub import from_pretrained_fastai
|
|
319
|
+
|
|
320
|
+
learn = from_pretrained_fastai("${model.id}")`
|
|
321
|
+
];
|
|
322
|
+
var sampleFactory = (model) => [
|
|
323
|
+
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
|
|
324
|
+
];
|
|
325
|
+
var sentenceTransformers = (model) => [
|
|
326
|
+
`from sentence_transformers import SentenceTransformer
|
|
327
|
+
|
|
328
|
+
model = SentenceTransformer("${model.id}")`
|
|
329
|
+
];
|
|
330
|
+
var spacy = (model) => [
|
|
331
|
+
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
|
|
332
|
+
|
|
333
|
+
# Using spacy.load().
|
|
334
|
+
import spacy
|
|
335
|
+
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
|
|
336
|
+
|
|
337
|
+
# Importing as module.
|
|
338
|
+
import ${nameWithoutNamespace(model.id)}
|
|
339
|
+
nlp = ${nameWithoutNamespace(model.id)}.load()`
|
|
340
|
+
];
|
|
341
|
+
var span_marker = (model) => [
|
|
342
|
+
`from span_marker import SpanMarkerModel
|
|
343
|
+
|
|
344
|
+
model = SpanMarkerModel.from_pretrained("${model.id}")`
|
|
345
|
+
];
|
|
346
|
+
var stanza = (model) => [
|
|
347
|
+
`import stanza
|
|
348
|
+
|
|
349
|
+
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
|
|
350
|
+
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
|
|
351
|
+
];
|
|
352
|
+
var speechBrainMethod = (speechbrainInterface) => {
|
|
353
|
+
switch (speechbrainInterface) {
|
|
354
|
+
case "EncoderClassifier":
|
|
355
|
+
return "classify_file";
|
|
356
|
+
case "EncoderDecoderASR":
|
|
357
|
+
case "EncoderASR":
|
|
358
|
+
return "transcribe_file";
|
|
359
|
+
case "SpectralMaskEnhancement":
|
|
360
|
+
return "enhance_file";
|
|
361
|
+
case "SepformerSeparation":
|
|
362
|
+
return "separate_file";
|
|
363
|
+
default:
|
|
364
|
+
return void 0;
|
|
365
|
+
}
|
|
366
|
+
};
|
|
367
|
+
var speechbrain = (model) => {
|
|
368
|
+
const speechbrainInterface = model.config?.speechbrain?.interface;
|
|
369
|
+
if (speechbrainInterface === void 0) {
|
|
370
|
+
return [`# interface not specified in config.json`];
|
|
371
|
+
}
|
|
372
|
+
const speechbrainMethod = speechBrainMethod(speechbrainInterface);
|
|
373
|
+
if (speechbrainMethod === void 0) {
|
|
374
|
+
return [`# interface in config.json invalid`];
|
|
375
|
+
}
|
|
376
|
+
return [
|
|
377
|
+
`from speechbrain.pretrained import ${speechbrainInterface}
|
|
378
|
+
model = ${speechbrainInterface}.from_hparams(
|
|
379
|
+
"${model.id}"
|
|
380
|
+
)
|
|
381
|
+
model.${speechbrainMethod}("file.wav")`
|
|
382
|
+
];
|
|
383
|
+
};
|
|
384
|
+
var transformers = (model) => {
|
|
385
|
+
const info = model.transformersInfo;
|
|
386
|
+
if (!info) {
|
|
387
|
+
return [`# \u26A0\uFE0F Type of model unknown`];
|
|
388
|
+
}
|
|
389
|
+
const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
|
|
390
|
+
let autoSnippet;
|
|
391
|
+
if (info.processor) {
|
|
392
|
+
const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
|
|
393
|
+
autoSnippet = [
|
|
394
|
+
"# Load model directly",
|
|
395
|
+
`from transformers import ${info.processor}, ${info.auto_model}`,
|
|
396
|
+
"",
|
|
397
|
+
`${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
|
|
398
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
|
|
399
|
+
].join("\n");
|
|
400
|
+
} else {
|
|
401
|
+
autoSnippet = [
|
|
402
|
+
"# Load model directly",
|
|
403
|
+
`from transformers import ${info.auto_model}`,
|
|
404
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
|
|
405
|
+
].join("\n");
|
|
406
|
+
}
|
|
407
|
+
if (model.pipeline_tag) {
|
|
408
|
+
const pipelineSnippet = [
|
|
409
|
+
"# Use a pipeline as a high-level helper",
|
|
410
|
+
"from transformers import pipeline",
|
|
411
|
+
"",
|
|
412
|
+
`pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
|
|
413
|
+
].join("\n");
|
|
414
|
+
return [pipelineSnippet, autoSnippet];
|
|
415
|
+
}
|
|
416
|
+
return [autoSnippet];
|
|
417
|
+
};
|
|
418
|
+
var transformersJS = (model) => {
|
|
419
|
+
if (!model.pipeline_tag) {
|
|
420
|
+
return [`// \u26A0\uFE0F Unknown pipeline tag`];
|
|
421
|
+
}
|
|
422
|
+
const libName = "@xenova/transformers";
|
|
423
|
+
return [
|
|
424
|
+
`// npm i ${libName}
|
|
425
|
+
import { pipeline } from '${libName}';
|
|
426
|
+
|
|
427
|
+
// Allocate pipeline
|
|
428
|
+
const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
|
|
429
|
+
];
|
|
430
|
+
};
|
|
431
|
+
var peftTask = (peftTaskType) => {
|
|
432
|
+
switch (peftTaskType) {
|
|
433
|
+
case "CAUSAL_LM":
|
|
434
|
+
return "CausalLM";
|
|
435
|
+
case "SEQ_2_SEQ_LM":
|
|
436
|
+
return "Seq2SeqLM";
|
|
437
|
+
case "TOKEN_CLS":
|
|
438
|
+
return "TokenClassification";
|
|
439
|
+
case "SEQ_CLS":
|
|
440
|
+
return "SequenceClassification";
|
|
441
|
+
default:
|
|
442
|
+
return void 0;
|
|
443
|
+
}
|
|
444
|
+
};
|
|
445
|
+
var peft = (model) => {
|
|
446
|
+
const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
|
|
447
|
+
const pefttask = peftTask(peftTaskType);
|
|
448
|
+
if (!pefttask) {
|
|
449
|
+
return [`Task type is invalid.`];
|
|
450
|
+
}
|
|
451
|
+
if (!peftBaseModel) {
|
|
452
|
+
return [`Base model is not found.`];
|
|
453
|
+
}
|
|
454
|
+
return [
|
|
455
|
+
`from peft import PeftModel, PeftConfig
|
|
456
|
+
from transformers import AutoModelFor${pefttask}
|
|
457
|
+
|
|
458
|
+
config = PeftConfig.from_pretrained("${model.id}")
|
|
459
|
+
model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
|
|
460
|
+
model = PeftModel.from_pretrained(model, "${model.id}")`
|
|
461
|
+
];
|
|
462
|
+
};
|
|
463
|
+
var fasttext = (model) => [
|
|
464
|
+
`from huggingface_hub import hf_hub_download
|
|
465
|
+
import fasttext
|
|
466
|
+
|
|
467
|
+
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
|
|
468
|
+
];
|
|
469
|
+
var stableBaselines3 = (model) => [
|
|
470
|
+
`from huggingface_sb3 import load_from_hub
|
|
471
|
+
checkpoint = load_from_hub(
|
|
472
|
+
repo_id="${model.id}",
|
|
473
|
+
filename="{MODEL FILENAME}.zip",
|
|
474
|
+
)`
|
|
475
|
+
];
|
|
476
|
+
var nemoDomainResolver = (domain, model) => {
|
|
477
|
+
switch (domain) {
|
|
478
|
+
case "ASR":
|
|
479
|
+
return [
|
|
480
|
+
`import nemo.collections.asr as nemo_asr
|
|
481
|
+
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
|
|
482
|
+
|
|
483
|
+
transcriptions = asr_model.transcribe(["file.wav"])`
|
|
484
|
+
];
|
|
485
|
+
default:
|
|
486
|
+
return void 0;
|
|
487
|
+
}
|
|
488
|
+
};
|
|
489
|
+
var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
|
|
490
|
+
var nemo = (model) => {
|
|
491
|
+
let command = void 0;
|
|
492
|
+
if (model.tags?.includes("automatic-speech-recognition")) {
|
|
493
|
+
command = nemoDomainResolver("ASR", model);
|
|
494
|
+
}
|
|
495
|
+
return command ?? [`# tag did not correspond to a valid NeMo domain.`];
|
|
496
|
+
};
|
|
497
|
+
var pythae = (model) => [
|
|
498
|
+
`from pythae.models import AutoModel
|
|
499
|
+
|
|
500
|
+
model = AutoModel.load_from_hf_hub("${model.id}")`
|
|
501
|
+
];
|
|
502
|
+
var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
503
|
+
"adapter-transformers": {
|
|
504
|
+
btnLabel: "Adapter Transformers",
|
|
505
|
+
repoName: "adapter-transformers",
|
|
506
|
+
repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
|
|
507
|
+
docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
|
|
508
|
+
snippets: adapter_transformers
|
|
509
|
+
},
|
|
510
|
+
allennlp: {
|
|
511
|
+
btnLabel: "AllenNLP",
|
|
512
|
+
repoName: "AllenNLP",
|
|
513
|
+
repoUrl: "https://github.com/allenai/allennlp",
|
|
514
|
+
docsUrl: "https://huggingface.co/docs/hub/allennlp",
|
|
515
|
+
snippets: allennlp
|
|
516
|
+
},
|
|
517
|
+
asteroid: {
|
|
518
|
+
btnLabel: "Asteroid",
|
|
519
|
+
repoName: "Asteroid",
|
|
520
|
+
repoUrl: "https://github.com/asteroid-team/asteroid",
|
|
521
|
+
docsUrl: "https://huggingface.co/docs/hub/asteroid",
|
|
522
|
+
snippets: asteroid
|
|
523
|
+
},
|
|
524
|
+
bertopic: {
|
|
525
|
+
btnLabel: "BERTopic",
|
|
526
|
+
repoName: "BERTopic",
|
|
527
|
+
repoUrl: "https://github.com/MaartenGr/BERTopic",
|
|
528
|
+
snippets: bertopic
|
|
529
|
+
},
|
|
530
|
+
diffusers: {
|
|
531
|
+
btnLabel: "Diffusers",
|
|
532
|
+
repoName: "\u{1F917}/diffusers",
|
|
533
|
+
repoUrl: "https://github.com/huggingface/diffusers",
|
|
534
|
+
docsUrl: "https://huggingface.co/docs/hub/diffusers",
|
|
535
|
+
snippets: diffusers
|
|
536
|
+
},
|
|
537
|
+
espnet: {
|
|
538
|
+
btnLabel: "ESPnet",
|
|
539
|
+
repoName: "ESPnet",
|
|
540
|
+
repoUrl: "https://github.com/espnet/espnet",
|
|
541
|
+
docsUrl: "https://huggingface.co/docs/hub/espnet",
|
|
542
|
+
snippets: espnet
|
|
543
|
+
},
|
|
544
|
+
fairseq: {
|
|
545
|
+
btnLabel: "Fairseq",
|
|
546
|
+
repoName: "fairseq",
|
|
547
|
+
repoUrl: "https://github.com/pytorch/fairseq",
|
|
548
|
+
snippets: fairseq
|
|
549
|
+
},
|
|
550
|
+
flair: {
|
|
551
|
+
btnLabel: "Flair",
|
|
552
|
+
repoName: "Flair",
|
|
553
|
+
repoUrl: "https://github.com/flairNLP/flair",
|
|
554
|
+
docsUrl: "https://huggingface.co/docs/hub/flair",
|
|
555
|
+
snippets: flair
|
|
556
|
+
},
|
|
557
|
+
keras: {
|
|
558
|
+
btnLabel: "Keras",
|
|
559
|
+
repoName: "Keras",
|
|
560
|
+
repoUrl: "https://github.com/keras-team/keras",
|
|
561
|
+
docsUrl: "https://huggingface.co/docs/hub/keras",
|
|
562
|
+
snippets: keras
|
|
563
|
+
},
|
|
564
|
+
nemo: {
|
|
565
|
+
btnLabel: "NeMo",
|
|
566
|
+
repoName: "NeMo",
|
|
567
|
+
repoUrl: "https://github.com/NVIDIA/NeMo",
|
|
568
|
+
snippets: nemo
|
|
569
|
+
},
|
|
570
|
+
open_clip: {
|
|
571
|
+
btnLabel: "OpenCLIP",
|
|
572
|
+
repoName: "OpenCLIP",
|
|
573
|
+
repoUrl: "https://github.com/mlfoundations/open_clip",
|
|
574
|
+
snippets: open_clip
|
|
575
|
+
},
|
|
576
|
+
paddlenlp: {
|
|
577
|
+
btnLabel: "paddlenlp",
|
|
578
|
+
repoName: "PaddleNLP",
|
|
579
|
+
repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
|
|
580
|
+
docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
|
|
581
|
+
snippets: paddlenlp
|
|
582
|
+
},
|
|
583
|
+
peft: {
|
|
584
|
+
btnLabel: "PEFT",
|
|
585
|
+
repoName: "PEFT",
|
|
586
|
+
repoUrl: "https://github.com/huggingface/peft",
|
|
587
|
+
snippets: peft
|
|
588
|
+
},
|
|
589
|
+
"pyannote-audio": {
|
|
590
|
+
btnLabel: "pyannote.audio",
|
|
591
|
+
repoName: "pyannote-audio",
|
|
592
|
+
repoUrl: "https://github.com/pyannote/pyannote-audio",
|
|
593
|
+
snippets: pyannote_audio
|
|
594
|
+
},
|
|
595
|
+
"sentence-transformers": {
|
|
596
|
+
btnLabel: "sentence-transformers",
|
|
597
|
+
repoName: "sentence-transformers",
|
|
598
|
+
repoUrl: "https://github.com/UKPLab/sentence-transformers",
|
|
599
|
+
docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
|
|
600
|
+
snippets: sentenceTransformers
|
|
601
|
+
},
|
|
602
|
+
sklearn: {
|
|
603
|
+
btnLabel: "Scikit-learn",
|
|
604
|
+
repoName: "Scikit-learn",
|
|
605
|
+
repoUrl: "https://github.com/scikit-learn/scikit-learn",
|
|
606
|
+
snippets: sklearn
|
|
607
|
+
},
|
|
608
|
+
fastai: {
|
|
609
|
+
btnLabel: "fastai",
|
|
610
|
+
repoName: "fastai",
|
|
611
|
+
repoUrl: "https://github.com/fastai/fastai",
|
|
612
|
+
docsUrl: "https://huggingface.co/docs/hub/fastai",
|
|
613
|
+
snippets: fastai
|
|
614
|
+
},
|
|
615
|
+
spacy: {
|
|
616
|
+
btnLabel: "spaCy",
|
|
617
|
+
repoName: "spaCy",
|
|
618
|
+
repoUrl: "https://github.com/explosion/spaCy",
|
|
619
|
+
docsUrl: "https://huggingface.co/docs/hub/spacy",
|
|
620
|
+
snippets: spacy
|
|
621
|
+
},
|
|
622
|
+
"span-marker": {
|
|
623
|
+
btnLabel: "SpanMarker",
|
|
624
|
+
repoName: "SpanMarkerNER",
|
|
625
|
+
repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
|
|
626
|
+
docsUrl: "https://huggingface.co/docs/hub/span_marker",
|
|
627
|
+
snippets: span_marker
|
|
628
|
+
},
|
|
629
|
+
speechbrain: {
|
|
630
|
+
btnLabel: "speechbrain",
|
|
631
|
+
repoName: "speechbrain",
|
|
632
|
+
repoUrl: "https://github.com/speechbrain/speechbrain",
|
|
633
|
+
docsUrl: "https://huggingface.co/docs/hub/speechbrain",
|
|
634
|
+
snippets: speechbrain
|
|
635
|
+
},
|
|
636
|
+
stanza: {
|
|
637
|
+
btnLabel: "Stanza",
|
|
638
|
+
repoName: "stanza",
|
|
639
|
+
repoUrl: "https://github.com/stanfordnlp/stanza",
|
|
640
|
+
docsUrl: "https://huggingface.co/docs/hub/stanza",
|
|
641
|
+
snippets: stanza
|
|
642
|
+
},
|
|
643
|
+
tensorflowtts: {
|
|
644
|
+
btnLabel: "TensorFlowTTS",
|
|
645
|
+
repoName: "TensorFlowTTS",
|
|
646
|
+
repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
|
|
647
|
+
snippets: tensorflowtts
|
|
648
|
+
},
|
|
649
|
+
timm: {
|
|
650
|
+
btnLabel: "timm",
|
|
651
|
+
repoName: "pytorch-image-models",
|
|
652
|
+
repoUrl: "https://github.com/rwightman/pytorch-image-models",
|
|
653
|
+
docsUrl: "https://huggingface.co/docs/hub/timm",
|
|
654
|
+
snippets: timm
|
|
655
|
+
},
|
|
656
|
+
transformers: {
|
|
657
|
+
btnLabel: "Transformers",
|
|
658
|
+
repoName: "\u{1F917}/transformers",
|
|
659
|
+
repoUrl: "https://github.com/huggingface/transformers",
|
|
660
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers",
|
|
661
|
+
snippets: transformers
|
|
662
|
+
},
|
|
663
|
+
"transformers.js": {
|
|
664
|
+
btnLabel: "Transformers.js",
|
|
665
|
+
repoName: "transformers.js",
|
|
666
|
+
repoUrl: "https://github.com/xenova/transformers.js",
|
|
667
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers-js",
|
|
668
|
+
snippets: transformersJS
|
|
669
|
+
},
|
|
670
|
+
fasttext: {
|
|
671
|
+
btnLabel: "fastText",
|
|
672
|
+
repoName: "fastText",
|
|
673
|
+
repoUrl: "https://fasttext.cc/",
|
|
674
|
+
snippets: fasttext
|
|
675
|
+
},
|
|
676
|
+
"sample-factory": {
|
|
677
|
+
btnLabel: "sample-factory",
|
|
678
|
+
repoName: "sample-factory",
|
|
679
|
+
repoUrl: "https://github.com/alex-petrenko/sample-factory",
|
|
680
|
+
docsUrl: "https://huggingface.co/docs/hub/sample-factory",
|
|
681
|
+
snippets: sampleFactory
|
|
682
|
+
},
|
|
683
|
+
"stable-baselines3": {
|
|
684
|
+
btnLabel: "stable-baselines3",
|
|
685
|
+
repoName: "stable-baselines3",
|
|
686
|
+
repoUrl: "https://github.com/huggingface/huggingface_sb3",
|
|
687
|
+
docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
|
|
688
|
+
snippets: stableBaselines3
|
|
689
|
+
},
|
|
690
|
+
"ml-agents": {
|
|
691
|
+
btnLabel: "ml-agents",
|
|
692
|
+
repoName: "ml-agents",
|
|
693
|
+
repoUrl: "https://github.com/huggingface/ml-agents",
|
|
694
|
+
docsUrl: "https://huggingface.co/docs/hub/ml-agents",
|
|
695
|
+
snippets: mlAgents
|
|
696
|
+
},
|
|
697
|
+
pythae: {
|
|
698
|
+
btnLabel: "pythae",
|
|
699
|
+
repoName: "pythae",
|
|
700
|
+
repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
|
|
701
|
+
snippets: pythae
|
|
702
|
+
}
|
|
703
|
+
};
|
|
704
|
+
|
|
705
|
+
// src/default-widget-inputs.ts
|
|
706
|
+
var MAPPING_EN = /* @__PURE__ */ new Map([
|
|
707
|
+
["text-classification", [`I like you. I love you`]],
|
|
708
|
+
[
|
|
709
|
+
"token-classification",
|
|
710
|
+
[
|
|
711
|
+
`My name is Wolfgang and I live in Berlin`,
|
|
712
|
+
`My name is Sarah and I live in London`,
|
|
713
|
+
`My name is Clara and I live in Berkeley, California.`
|
|
714
|
+
]
|
|
715
|
+
],
|
|
716
|
+
[
|
|
717
|
+
"table-question-answering",
|
|
718
|
+
[
|
|
719
|
+
{
|
|
720
|
+
text: `How many stars does the transformers repository have?`,
|
|
721
|
+
table: {
|
|
722
|
+
Repository: ["Transformers", "Datasets", "Tokenizers"],
|
|
723
|
+
Stars: [36542, 4512, 3934],
|
|
724
|
+
Contributors: [651, 77, 34],
|
|
725
|
+
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
|
|
726
|
+
}
|
|
727
|
+
}
|
|
728
|
+
]
|
|
729
|
+
],
|
|
730
|
+
[
|
|
731
|
+
"question-answering",
|
|
732
|
+
[
|
|
733
|
+
{
|
|
734
|
+
text: `Where do I live?`,
|
|
735
|
+
context: `My name is Wolfgang and I live in Berlin`
|
|
736
|
+
},
|
|
737
|
+
{
|
|
738
|
+
text: `Where do I live?`,
|
|
739
|
+
context: `My name is Sarah and I live in London`
|
|
740
|
+
},
|
|
741
|
+
{
|
|
742
|
+
text: `What's my name?`,
|
|
743
|
+
context: `My name is Clara and I live in Berkeley.`
|
|
744
|
+
},
|
|
745
|
+
{
|
|
746
|
+
text: `Which name is also used to describe the Amazon rainforest in English?`,
|
|
747
|
+
context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
|
|
748
|
+
}
|
|
749
|
+
]
|
|
750
|
+
],
|
|
751
|
+
[
|
|
752
|
+
"zero-shot-classification",
|
|
753
|
+
[
|
|
754
|
+
{
|
|
755
|
+
text: "I have a problem with my iphone that needs to be resolved asap!!",
|
|
756
|
+
candidate_labels: "urgent, not urgent, phone, tablet, computer",
|
|
757
|
+
multi_class: true
|
|
758
|
+
},
|
|
759
|
+
{
|
|
760
|
+
text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
|
|
761
|
+
candidate_labels: "mobile, website, billing, account access",
|
|
762
|
+
multi_class: false
|
|
763
|
+
},
|
|
764
|
+
{
|
|
765
|
+
text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
|
|
766
|
+
candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
|
|
767
|
+
multi_class: true
|
|
768
|
+
}
|
|
769
|
+
]
|
|
770
|
+
],
|
|
771
|
+
["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
|
|
772
|
+
[
|
|
773
|
+
"summarization",
|
|
774
|
+
[
|
|
775
|
+
`The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
|
|
776
|
+
]
|
|
777
|
+
],
|
|
778
|
+
[
|
|
779
|
+
"conversational",
|
|
780
|
+
[
|
|
781
|
+
`Hey my name is Julien! How are you?`,
|
|
782
|
+
`Hey my name is Thomas! How are you?`,
|
|
783
|
+
`Hey my name is Mariama! How are you?`,
|
|
784
|
+
`Hey my name is Clara! How are you?`,
|
|
785
|
+
`Hey my name is Julien! How are you?`,
|
|
786
|
+
`Hi.`
|
|
787
|
+
]
|
|
788
|
+
],
|
|
789
|
+
[
|
|
790
|
+
"text-generation",
|
|
791
|
+
[
|
|
792
|
+
`My name is Julien and I like to`,
|
|
793
|
+
`My name is Thomas and my main`,
|
|
794
|
+
`My name is Mariama, my favorite`,
|
|
795
|
+
`My name is Clara and I am`,
|
|
796
|
+
`My name is Lewis and I like to`,
|
|
797
|
+
`My name is Merve and my favorite`,
|
|
798
|
+
`My name is Teven and I am`,
|
|
799
|
+
`Once upon a time,`
|
|
800
|
+
]
|
|
801
|
+
],
|
|
802
|
+
["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
|
|
803
|
+
[
|
|
804
|
+
"sentence-similarity",
|
|
805
|
+
[
|
|
806
|
+
{
|
|
807
|
+
source_sentence: "That is a happy person",
|
|
808
|
+
sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
|
|
809
|
+
}
|
|
810
|
+
]
|
|
811
|
+
]
|
|
812
|
+
]);
|
|
813
|
+
var MAPPING_ZH = /* @__PURE__ */ new Map([
|
|
814
|
+
["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
|
|
815
|
+
["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
|
|
816
|
+
[
|
|
817
|
+
"question-answering",
|
|
818
|
+
[
|
|
819
|
+
{
|
|
820
|
+
text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
|
|
821
|
+
context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
|
|
822
|
+
},
|
|
823
|
+
{
|
|
824
|
+
text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
|
|
825
|
+
context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
|
|
826
|
+
},
|
|
827
|
+
{
|
|
828
|
+
text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
|
|
829
|
+
context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
|
|
830
|
+
}
|
|
831
|
+
]
|
|
832
|
+
],
|
|
833
|
+
["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
|
|
834
|
+
[
|
|
835
|
+
"zero-shot-classification",
|
|
836
|
+
[
|
|
837
|
+
{
|
|
838
|
+
text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
|
|
839
|
+
candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
|
|
840
|
+
}
|
|
841
|
+
]
|
|
842
|
+
],
|
|
843
|
+
[
|
|
844
|
+
"summarization",
|
|
845
|
+
[
|
|
846
|
+
`\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
|
|
847
|
+
]
|
|
848
|
+
],
|
|
849
|
+
[
|
|
850
|
+
"text-generation",
|
|
851
|
+
[`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
|
|
852
|
+
],
|
|
853
|
+
["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
|
|
854
|
+
[
|
|
855
|
+
"sentence-similarity",
|
|
856
|
+
[
|
|
857
|
+
{
|
|
858
|
+
source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
|
|
859
|
+
sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
|
|
860
|
+
}
|
|
861
|
+
]
|
|
862
|
+
]
|
|
863
|
+
]);
|
|
864
|
+
var MAPPING_FR = /* @__PURE__ */ new Map([
|
|
865
|
+
["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
|
|
866
|
+
["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
|
|
867
|
+
[
|
|
868
|
+
"question-answering",
|
|
869
|
+
[
|
|
870
|
+
{
|
|
871
|
+
text: `O\xF9 est-ce que je vis?`,
|
|
872
|
+
context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
|
|
873
|
+
}
|
|
874
|
+
]
|
|
875
|
+
],
|
|
876
|
+
["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
|
|
877
|
+
[
|
|
878
|
+
"summarization",
|
|
879
|
+
[
|
|
880
|
+
`La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
|
|
881
|
+
]
|
|
882
|
+
],
|
|
883
|
+
["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
|
|
884
|
+
["fill-mask", [`Paris est la <mask> de la France.`]],
|
|
885
|
+
[
|
|
886
|
+
"sentence-similarity",
|
|
887
|
+
[
|
|
888
|
+
{
|
|
889
|
+
source_sentence: "C'est une personne heureuse",
|
|
890
|
+
sentences: [
|
|
891
|
+
"C'est un chien heureux",
|
|
892
|
+
"C'est une personne tr\xE8s heureuse",
|
|
893
|
+
"Aujourd'hui est une journ\xE9e ensoleill\xE9e"
|
|
894
|
+
]
|
|
895
|
+
}
|
|
896
|
+
]
|
|
897
|
+
]
|
|
898
|
+
]);
|
|
899
|
+
var MAPPING_ES = /* @__PURE__ */ new Map([
|
|
900
|
+
["text-classification", [`Te quiero. Te amo.`]],
|
|
901
|
+
["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
|
|
902
|
+
[
|
|
903
|
+
"question-answering",
|
|
904
|
+
[
|
|
905
|
+
{
|
|
906
|
+
text: `\xBFD\xF3nde vivo?`,
|
|
907
|
+
context: `Me llamo Wolfgang y vivo en Berlin`
|
|
908
|
+
},
|
|
909
|
+
{
|
|
910
|
+
text: `\xBFQui\xE9n invent\xF3 el submarino?`,
|
|
911
|
+
context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
|
|
912
|
+
},
|
|
913
|
+
{
|
|
914
|
+
text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
|
|
915
|
+
context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
|
|
916
|
+
}
|
|
917
|
+
]
|
|
918
|
+
],
|
|
919
|
+
[
|
|
920
|
+
"translation",
|
|
921
|
+
[
|
|
922
|
+
`Me llamo Wolfgang y vivo en Berlin`,
|
|
923
|
+
`Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
|
|
924
|
+
]
|
|
925
|
+
],
|
|
926
|
+
[
|
|
927
|
+
"summarization",
|
|
928
|
+
[
|
|
929
|
+
`La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
|
|
930
|
+
]
|
|
931
|
+
],
|
|
932
|
+
[
|
|
933
|
+
"text-generation",
|
|
934
|
+
[
|
|
935
|
+
`Me llamo Julien y me gusta`,
|
|
936
|
+
`Me llamo Thomas y mi principal`,
|
|
937
|
+
`Me llamo Manuel y trabajo en`,
|
|
938
|
+
`\xC9rase una vez,`,
|
|
939
|
+
`Si t\xFA me dices ven, `
|
|
940
|
+
]
|
|
941
|
+
],
|
|
942
|
+
["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
|
|
943
|
+
[
|
|
944
|
+
"sentence-similarity",
|
|
945
|
+
[
|
|
946
|
+
{
|
|
947
|
+
source_sentence: "Esa es una persona feliz",
|
|
948
|
+
sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
|
|
949
|
+
}
|
|
950
|
+
]
|
|
951
|
+
]
|
|
952
|
+
]);
|
|
953
|
+
var MAPPING_RU = /* @__PURE__ */ new Map([
|
|
954
|
+
["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
|
|
955
|
+
["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
|
|
956
|
+
[
|
|
957
|
+
"question-answering",
|
|
958
|
+
[
|
|
959
|
+
{
|
|
960
|
+
text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
|
|
961
|
+
context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
|
|
962
|
+
}
|
|
963
|
+
]
|
|
964
|
+
],
|
|
965
|
+
["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
|
|
966
|
+
[
|
|
967
|
+
"summarization",
|
|
968
|
+
[
|
|
969
|
+
`\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
|
|
970
|
+
]
|
|
971
|
+
],
|
|
972
|
+
["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
|
|
973
|
+
["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
|
|
974
|
+
[
|
|
975
|
+
"sentence-similarity",
|
|
976
|
+
[
|
|
977
|
+
{
|
|
978
|
+
source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
|
|
979
|
+
sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
|
|
980
|
+
}
|
|
981
|
+
]
|
|
982
|
+
]
|
|
983
|
+
]);
|
|
984
|
+
var MAPPING_UK = /* @__PURE__ */ new Map([
|
|
985
|
+
["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
|
|
986
|
+
["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
|
|
987
|
+
]);
|
|
988
|
+
var MAPPING_IT = /* @__PURE__ */ new Map([
|
|
989
|
+
["text-classification", [`Mi piaci. Ti amo`]],
|
|
990
|
+
[
|
|
991
|
+
"token-classification",
|
|
992
|
+
[
|
|
993
|
+
`Mi chiamo Wolfgang e vivo a Berlino`,
|
|
994
|
+
`Mi chiamo Sarah e vivo a Londra`,
|
|
995
|
+
`Mi chiamo Clara e vivo a Berkeley in California.`
|
|
996
|
+
]
|
|
997
|
+
],
|
|
998
|
+
[
|
|
999
|
+
"question-answering",
|
|
1000
|
+
[
|
|
1001
|
+
{
|
|
1002
|
+
text: `Dove vivo?`,
|
|
1003
|
+
context: `Mi chiamo Wolfgang e vivo a Berlino`
|
|
1004
|
+
},
|
|
1005
|
+
{
|
|
1006
|
+
text: `Dove vivo?`,
|
|
1007
|
+
context: `Mi chiamo Sarah e vivo a Londra`
|
|
1008
|
+
},
|
|
1009
|
+
{
|
|
1010
|
+
text: `Come mio chiamo?`,
|
|
1011
|
+
context: `Mi chiamo Clara e vivo a Berkeley.`
|
|
1012
|
+
}
|
|
1013
|
+
]
|
|
1014
|
+
],
|
|
1015
|
+
["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
|
|
1016
|
+
[
|
|
1017
|
+
"summarization",
|
|
1018
|
+
[
|
|
1019
|
+
`La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
|
|
1020
|
+
]
|
|
1021
|
+
],
|
|
1022
|
+
[
|
|
1023
|
+
"text-generation",
|
|
1024
|
+
[
|
|
1025
|
+
`Mi chiamo Loreto e mi piace`,
|
|
1026
|
+
`Mi chiamo Thomas e il mio principale`,
|
|
1027
|
+
`Mi chiamo Marianna, la mia cosa preferita`,
|
|
1028
|
+
`Mi chiamo Clara e sono`,
|
|
1029
|
+
`C'era una volta`
|
|
1030
|
+
]
|
|
1031
|
+
],
|
|
1032
|
+
["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
|
|
1033
|
+
[
|
|
1034
|
+
"sentence-similarity",
|
|
1035
|
+
[
|
|
1036
|
+
{
|
|
1037
|
+
source_sentence: "Questa \xE8 una persona felice",
|
|
1038
|
+
sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
|
|
1039
|
+
}
|
|
1040
|
+
]
|
|
1041
|
+
]
|
|
1042
|
+
]);
|
|
1043
|
+
var MAPPING_FA = /* @__PURE__ */ new Map([
|
|
1044
|
+
[
|
|
1045
|
+
"text-classification",
|
|
1046
|
+
[`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
|
|
1047
|
+
],
|
|
1048
|
+
[
|
|
1049
|
+
"token-classification",
|
|
1050
|
+
[
|
|
1051
|
+
`\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
|
|
1052
|
+
`\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
|
|
1053
|
+
`\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
|
|
1054
|
+
]
|
|
1055
|
+
],
|
|
1056
|
+
[
|
|
1057
|
+
"question-answering",
|
|
1058
|
+
[
|
|
1059
|
+
{
|
|
1060
|
+
text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
|
|
1061
|
+
context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
|
|
1062
|
+
},
|
|
1063
|
+
{
|
|
1064
|
+
text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
|
|
1065
|
+
context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
|
|
1066
|
+
},
|
|
1067
|
+
{
|
|
1068
|
+
text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
|
|
1069
|
+
context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
|
|
1070
|
+
},
|
|
1071
|
+
{
|
|
1072
|
+
text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
|
|
1073
|
+
context: [
|
|
1074
|
+
"\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
|
|
1075
|
+
"\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
|
|
1076
|
+
"\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
|
|
1077
|
+
].join("\n")
|
|
1078
|
+
}
|
|
1079
|
+
]
|
|
1080
|
+
],
|
|
1081
|
+
[
|
|
1082
|
+
"translation",
|
|
1083
|
+
[
|
|
1084
|
+
"\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
|
|
1085
|
+
"\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
|
|
1086
|
+
]
|
|
1087
|
+
],
|
|
1088
|
+
[
|
|
1089
|
+
"summarization",
|
|
1090
|
+
[
|
|
1091
|
+
[
|
|
1092
|
+
"\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
|
|
1093
|
+
"\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
|
|
1094
|
+
"\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
|
|
1095
|
+
"\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
|
|
1096
|
+
" \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
|
|
1097
|
+
" (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
|
|
1098
|
+
" \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
|
|
1099
|
+
" \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
|
|
1100
|
+
"\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
|
|
1101
|
+
" \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
|
|
1102
|
+
" \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
|
|
1103
|
+
" \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
|
|
1104
|
+
" \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
|
|
1105
|
+
" \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
|
|
1106
|
+
].join("\n")
|
|
1107
|
+
]
|
|
1108
|
+
],
|
|
1109
|
+
["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
|
|
1110
|
+
[
|
|
1111
|
+
"fill-mask",
|
|
1112
|
+
[
|
|
1113
|
+
`\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
|
|
1114
|
+
`\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
|
|
1115
|
+
]
|
|
1116
|
+
]
|
|
1117
|
+
]);
|
|
1118
|
+
var MAPPING_AR = /* @__PURE__ */ new Map([
|
|
1119
|
+
["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
|
|
1120
|
+
[
|
|
1121
|
+
"token-classification",
|
|
1122
|
+
[`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
|
|
1123
|
+
],
|
|
1124
|
+
[
|
|
1125
|
+
"question-answering",
|
|
1126
|
+
[
|
|
1127
|
+
{
|
|
1128
|
+
text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
|
|
1129
|
+
context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
|
|
1130
|
+
},
|
|
1131
|
+
{
|
|
1132
|
+
text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
|
|
1133
|
+
context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
|
|
1134
|
+
},
|
|
1135
|
+
{
|
|
1136
|
+
text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
|
|
1137
|
+
context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
|
|
1138
|
+
},
|
|
1139
|
+
{
|
|
1140
|
+
text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
|
|
1141
|
+
context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
|
|
1142
|
+
}
|
|
1143
|
+
]
|
|
1144
|
+
],
|
|
1145
|
+
["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
|
|
1146
|
+
[
|
|
1147
|
+
"summarization",
|
|
1148
|
+
[
|
|
1149
|
+
`\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
|
|
1150
|
+
]
|
|
1151
|
+
],
|
|
1152
|
+
[
|
|
1153
|
+
"text-generation",
|
|
1154
|
+
[
|
|
1155
|
+
`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
|
|
1156
|
+
`\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
|
|
1157
|
+
`\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
|
|
1158
|
+
`\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
|
|
1159
|
+
`\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
|
|
1160
|
+
]
|
|
1161
|
+
],
|
|
1162
|
+
["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
|
|
1163
|
+
[
|
|
1164
|
+
"sentence-similarity",
|
|
1165
|
+
[
|
|
1166
|
+
{
|
|
1167
|
+
source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
|
|
1168
|
+
sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
|
|
1169
|
+
}
|
|
1170
|
+
]
|
|
1171
|
+
]
|
|
1172
|
+
]);
|
|
1173
|
+
var MAPPING_BN = /* @__PURE__ */ new Map([
|
|
1174
|
+
["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
|
|
1175
|
+
[
|
|
1176
|
+
"token-classification",
|
|
1177
|
+
[`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
|
|
1178
|
+
],
|
|
1179
|
+
["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
|
|
1180
|
+
[
|
|
1181
|
+
"summarization",
|
|
1182
|
+
[
|
|
1183
|
+
`\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
|
|
1184
|
+
]
|
|
1185
|
+
],
|
|
1186
|
+
["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
|
|
1187
|
+
["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
|
|
1188
|
+
[
|
|
1189
|
+
"question-answering",
|
|
1190
|
+
[
|
|
1191
|
+
{
|
|
1192
|
+
text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
|
|
1193
|
+
context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
|
|
1194
|
+
},
|
|
1195
|
+
{
|
|
1196
|
+
text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
|
|
1197
|
+
context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
|
|
1198
|
+
},
|
|
1199
|
+
{
|
|
1200
|
+
text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
|
|
1201
|
+
context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
|
|
1202
|
+
}
|
|
1203
|
+
]
|
|
1204
|
+
],
|
|
1205
|
+
[
|
|
1206
|
+
"sentence-similarity",
|
|
1207
|
+
[
|
|
1208
|
+
{
|
|
1209
|
+
source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
|
|
1210
|
+
sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
|
|
1211
|
+
}
|
|
1212
|
+
]
|
|
1213
|
+
]
|
|
1214
|
+
]);
|
|
1215
|
+
var MAPPING_MN = /* @__PURE__ */ new Map([
|
|
1216
|
+
["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
|
|
1217
|
+
[
|
|
1218
|
+
"token-classification",
|
|
1219
|
+
[
|
|
1220
|
+
`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
|
|
1221
|
+
`\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
|
|
1222
|
+
`\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
|
|
1223
|
+
]
|
|
1224
|
+
],
|
|
1225
|
+
[
|
|
1226
|
+
"question-answering",
|
|
1227
|
+
[
|
|
1228
|
+
{
|
|
1229
|
+
text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
|
|
1230
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
|
|
1231
|
+
},
|
|
1232
|
+
{
|
|
1233
|
+
text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
|
|
1234
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
|
|
1235
|
+
},
|
|
1236
|
+
{
|
|
1237
|
+
text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
|
|
1238
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
|
|
1239
|
+
}
|
|
1240
|
+
]
|
|
1241
|
+
],
|
|
1242
|
+
["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
|
|
1243
|
+
[
|
|
1244
|
+
"summarization",
|
|
1245
|
+
[
|
|
1246
|
+
`\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
|
|
1247
|
+
]
|
|
1248
|
+
],
|
|
1249
|
+
[
|
|
1250
|
+
"text-generation",
|
|
1251
|
+
[`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
|
|
1252
|
+
],
|
|
1253
|
+
["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
|
|
1254
|
+
[
|
|
1255
|
+
"automatic-speech-recognition",
|
|
1256
|
+
[
|
|
1257
|
+
{
|
|
1258
|
+
label: `Common Voice Train Example`,
|
|
1259
|
+
src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
|
|
1260
|
+
},
|
|
1261
|
+
{
|
|
1262
|
+
label: `Common Voice Test Example`,
|
|
1263
|
+
src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
|
|
1264
|
+
}
|
|
1265
|
+
]
|
|
1266
|
+
],
|
|
1267
|
+
[
|
|
1268
|
+
"text-to-speech",
|
|
1269
|
+
[
|
|
1270
|
+
`\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
|
|
1271
|
+
`\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
|
|
1272
|
+
`\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
|
|
1273
|
+
]
|
|
1274
|
+
],
|
|
1275
|
+
[
|
|
1276
|
+
"sentence-similarity",
|
|
1277
|
+
[
|
|
1278
|
+
{
|
|
1279
|
+
source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
|
|
1280
|
+
sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
|
|
1281
|
+
}
|
|
1282
|
+
]
|
|
1283
|
+
]
|
|
1284
|
+
]);
|
|
1285
|
+
var MAPPING_SI = /* @__PURE__ */ new Map([
|
|
1286
|
+
["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
|
|
1287
|
+
["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
|
|
1288
|
+
]);
|
|
1289
|
+
var MAPPING_DE = /* @__PURE__ */ new Map([
|
|
1290
|
+
[
|
|
1291
|
+
"question-answering",
|
|
1292
|
+
[
|
|
1293
|
+
{
|
|
1294
|
+
text: `Wo wohne ich?`,
|
|
1295
|
+
context: `Mein Name ist Wolfgang und ich lebe in Berlin`
|
|
1296
|
+
},
|
|
1297
|
+
{
|
|
1298
|
+
text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
|
|
1299
|
+
context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
|
|
1300
|
+
}
|
|
1301
|
+
]
|
|
1302
|
+
],
|
|
1303
|
+
[
|
|
1304
|
+
"sentence-similarity",
|
|
1305
|
+
[
|
|
1306
|
+
{
|
|
1307
|
+
source_sentence: "Das ist eine gl\xFCckliche Person",
|
|
1308
|
+
sentences: [
|
|
1309
|
+
"Das ist ein gl\xFCcklicher Hund",
|
|
1310
|
+
"Das ist eine sehr gl\xFCckliche Person",
|
|
1311
|
+
"Heute ist ein sonniger Tag"
|
|
1312
|
+
]
|
|
1313
|
+
}
|
|
1314
|
+
]
|
|
1315
|
+
]
|
|
1316
|
+
]);
|
|
1317
|
+
var MAPPING_DV = /* @__PURE__ */ new Map([
|
|
1318
|
+
["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
|
|
1319
|
+
[
|
|
1320
|
+
"token-classification",
|
|
1321
|
+
[
|
|
1322
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
|
|
1323
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
|
|
1324
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
|
|
1325
|
+
]
|
|
1326
|
+
],
|
|
1327
|
+
[
|
|
1328
|
+
"question-answering",
|
|
1329
|
+
[
|
|
1330
|
+
{
|
|
1331
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
|
|
1332
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
|
|
1333
|
+
},
|
|
1334
|
+
{
|
|
1335
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
|
|
1336
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
|
|
1337
|
+
},
|
|
1338
|
+
{
|
|
1339
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
|
|
1340
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
|
|
1341
|
+
},
|
|
1342
|
+
{
|
|
1343
|
+
text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
|
|
1344
|
+
context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
|
|
1345
|
+
}
|
|
1346
|
+
]
|
|
1347
|
+
],
|
|
1348
|
+
[
|
|
1349
|
+
"translation",
|
|
1350
|
+
[
|
|
1351
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
|
|
1352
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
|
|
1353
|
+
]
|
|
1354
|
+
],
|
|
1355
|
+
[
|
|
1356
|
+
"summarization",
|
|
1357
|
+
[
|
|
1358
|
+
`\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
|
|
1359
|
+
]
|
|
1360
|
+
],
|
|
1361
|
+
[
|
|
1362
|
+
"text-generation",
|
|
1363
|
+
[
|
|
1364
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
|
|
1365
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
|
|
1366
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
|
|
1367
|
+
`\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
|
|
1368
|
+
]
|
|
1369
|
+
],
|
|
1370
|
+
["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
|
|
1371
|
+
]);
|
|
1372
|
+
var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
|
|
1373
|
+
["en", MAPPING_EN],
|
|
1374
|
+
["zh", MAPPING_ZH],
|
|
1375
|
+
["fr", MAPPING_FR],
|
|
1376
|
+
["es", MAPPING_ES],
|
|
1377
|
+
["ru", MAPPING_RU],
|
|
1378
|
+
["uk", MAPPING_UK],
|
|
1379
|
+
["it", MAPPING_IT],
|
|
1380
|
+
["fa", MAPPING_FA],
|
|
1381
|
+
["ar", MAPPING_AR],
|
|
1382
|
+
["bn", MAPPING_BN],
|
|
1383
|
+
["mn", MAPPING_MN],
|
|
1384
|
+
["si", MAPPING_SI],
|
|
1385
|
+
["de", MAPPING_DE],
|
|
1386
|
+
["dv", MAPPING_DV]
|
|
1387
|
+
]);
|
|
1388
|
+
|
|
1
1389
|
// src/pipelines.ts
|
|
2
1390
|
var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
|
|
3
1391
|
var MODALITY_LABELS = {
|
|
@@ -378,6 +1766,11 @@ var PIPELINE_DATA = {
|
|
|
378
1766
|
modality: "cv",
|
|
379
1767
|
color: "indigo"
|
|
380
1768
|
},
|
|
1769
|
+
"image-to-video": {
|
|
1770
|
+
name: "Image-to-Video",
|
|
1771
|
+
modality: "multimodal",
|
|
1772
|
+
color: "indigo"
|
|
1773
|
+
},
|
|
381
1774
|
"unconditional-image-generation": {
|
|
382
1775
|
name: "Unconditional Image Generation",
|
|
383
1776
|
modality: "cv",
|
|
@@ -546,6 +1939,16 @@ var PIPELINE_DATA = {
|
|
|
546
1939
|
modality: "multimodal",
|
|
547
1940
|
color: "green"
|
|
548
1941
|
},
|
|
1942
|
+
"mask-generation": {
|
|
1943
|
+
name: "Mask Generation",
|
|
1944
|
+
modality: "cv",
|
|
1945
|
+
color: "indigo"
|
|
1946
|
+
},
|
|
1947
|
+
"zero-shot-object-detection": {
|
|
1948
|
+
name: "Zero-Shot Object Detection",
|
|
1949
|
+
modality: "cv",
|
|
1950
|
+
color: "yellow"
|
|
1951
|
+
},
|
|
549
1952
|
other: {
|
|
550
1953
|
name: "Other",
|
|
551
1954
|
modality: "other",
|
|
@@ -555,8 +1958,10 @@ var PIPELINE_DATA = {
|
|
|
555
1958
|
}
|
|
556
1959
|
};
|
|
557
1960
|
var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
|
|
1961
|
+
var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
|
|
1962
|
+
var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
|
558
1963
|
|
|
559
|
-
// src/audio-classification/data.ts
|
|
1964
|
+
// src/tasks/audio-classification/data.ts
|
|
560
1965
|
var taskData = {
|
|
561
1966
|
datasets: [
|
|
562
1967
|
{
|
|
@@ -621,8 +2026,8 @@ var taskData = {
|
|
|
621
2026
|
],
|
|
622
2027
|
spaces: [
|
|
623
2028
|
{
|
|
624
|
-
description: "An application that can
|
|
625
|
-
id: "
|
|
2029
|
+
description: "An application that can classify music into different genre.",
|
|
2030
|
+
id: "kurianbenoy/audioclassification"
|
|
626
2031
|
}
|
|
627
2032
|
],
|
|
628
2033
|
summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
|
|
@@ -631,7 +2036,7 @@ var taskData = {
|
|
|
631
2036
|
};
|
|
632
2037
|
var data_default = taskData;
|
|
633
2038
|
|
|
634
|
-
// src/audio-to-audio/data.ts
|
|
2039
|
+
// src/tasks/audio-to-audio/data.ts
|
|
635
2040
|
var taskData2 = {
|
|
636
2041
|
datasets: [
|
|
637
2042
|
{
|
|
@@ -693,7 +2098,7 @@ var taskData2 = {
|
|
|
693
2098
|
};
|
|
694
2099
|
var data_default2 = taskData2;
|
|
695
2100
|
|
|
696
|
-
// src/automatic-speech-recognition/data.ts
|
|
2101
|
+
// src/tasks/automatic-speech-recognition/data.ts
|
|
697
2102
|
var taskData3 = {
|
|
698
2103
|
datasets: [
|
|
699
2104
|
{
|
|
@@ -738,7 +2143,7 @@ var taskData3 = {
|
|
|
738
2143
|
models: [
|
|
739
2144
|
{
|
|
740
2145
|
description: "A powerful ASR model by OpenAI.",
|
|
741
|
-
id: "openai/whisper-large-
|
|
2146
|
+
id: "openai/whisper-large-v3"
|
|
742
2147
|
},
|
|
743
2148
|
{
|
|
744
2149
|
description: "A good generic ASR model by MetaAI.",
|
|
@@ -752,24 +2157,24 @@ var taskData3 = {
|
|
|
752
2157
|
spaces: [
|
|
753
2158
|
{
|
|
754
2159
|
description: "A powerful general-purpose speech recognition application.",
|
|
755
|
-
id: "
|
|
2160
|
+
id: "hf-audio/whisper-large-v3"
|
|
756
2161
|
},
|
|
757
2162
|
{
|
|
758
2163
|
description: "Fastest speech recognition application.",
|
|
759
2164
|
id: "sanchit-gandhi/whisper-jax"
|
|
760
2165
|
},
|
|
761
2166
|
{
|
|
762
|
-
description: "
|
|
763
|
-
id: "
|
|
2167
|
+
description: "A high quality speech and text translation model by Meta.",
|
|
2168
|
+
id: "facebook/seamless_m4t"
|
|
764
2169
|
}
|
|
765
2170
|
],
|
|
766
2171
|
summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
|
|
767
|
-
widgetModels: ["openai/whisper-large-
|
|
2172
|
+
widgetModels: ["openai/whisper-large-v3"],
|
|
768
2173
|
youtubeId: "TksaY_FDgnk"
|
|
769
2174
|
};
|
|
770
2175
|
var data_default3 = taskData3;
|
|
771
2176
|
|
|
772
|
-
// src/conversational/data.ts
|
|
2177
|
+
// src/tasks/conversational/data.ts
|
|
773
2178
|
var taskData4 = {
|
|
774
2179
|
datasets: [
|
|
775
2180
|
{
|
|
@@ -829,7 +2234,7 @@ var taskData4 = {
|
|
|
829
2234
|
};
|
|
830
2235
|
var data_default4 = taskData4;
|
|
831
2236
|
|
|
832
|
-
// src/document-question-answering/data.ts
|
|
2237
|
+
// src/tasks/document-question-answering/data.ts
|
|
833
2238
|
var taskData5 = {
|
|
834
2239
|
datasets: [
|
|
835
2240
|
{
|
|
@@ -894,7 +2299,7 @@ var taskData5 = {
|
|
|
894
2299
|
};
|
|
895
2300
|
var data_default5 = taskData5;
|
|
896
2301
|
|
|
897
|
-
// src/feature-extraction/data.ts
|
|
2302
|
+
// src/tasks/feature-extraction/data.ts
|
|
898
2303
|
var taskData6 = {
|
|
899
2304
|
datasets: [
|
|
900
2305
|
{
|
|
@@ -923,12 +2328,7 @@ var taskData6 = {
|
|
|
923
2328
|
}
|
|
924
2329
|
]
|
|
925
2330
|
},
|
|
926
|
-
metrics: [
|
|
927
|
-
{
|
|
928
|
-
description: "",
|
|
929
|
-
id: ""
|
|
930
|
-
}
|
|
931
|
-
],
|
|
2331
|
+
metrics: [],
|
|
932
2332
|
models: [
|
|
933
2333
|
{
|
|
934
2334
|
description: "A powerful feature extraction model for natural language processing tasks.",
|
|
@@ -945,7 +2345,7 @@ var taskData6 = {
|
|
|
945
2345
|
};
|
|
946
2346
|
var data_default6 = taskData6;
|
|
947
2347
|
|
|
948
|
-
// src/fill-mask/data.ts
|
|
2348
|
+
// src/tasks/fill-mask/data.ts
|
|
949
2349
|
var taskData7 = {
|
|
950
2350
|
datasets: [
|
|
951
2351
|
{
|
|
@@ -1020,7 +2420,7 @@ var taskData7 = {
|
|
|
1020
2420
|
};
|
|
1021
2421
|
var data_default7 = taskData7;
|
|
1022
2422
|
|
|
1023
|
-
// src/image-classification/data.ts
|
|
2423
|
+
// src/tasks/image-classification/data.ts
|
|
1024
2424
|
var taskData8 = {
|
|
1025
2425
|
datasets: [
|
|
1026
2426
|
{
|
|
@@ -1106,7 +2506,7 @@ var taskData8 = {
|
|
|
1106
2506
|
};
|
|
1107
2507
|
var data_default8 = taskData8;
|
|
1108
2508
|
|
|
1109
|
-
// src/image-to-image/data.ts
|
|
2509
|
+
// src/tasks/image-to-image/data.ts
|
|
1110
2510
|
var taskData9 = {
|
|
1111
2511
|
datasets: [
|
|
1112
2512
|
{
|
|
@@ -1201,7 +2601,7 @@ var taskData9 = {
|
|
|
1201
2601
|
};
|
|
1202
2602
|
var data_default9 = taskData9;
|
|
1203
2603
|
|
|
1204
|
-
// src/image-to-text/data.ts
|
|
2604
|
+
// src/tasks/image-to-text/data.ts
|
|
1205
2605
|
var taskData10 = {
|
|
1206
2606
|
datasets: [
|
|
1207
2607
|
{
|
|
@@ -1285,7 +2685,7 @@ var taskData10 = {
|
|
|
1285
2685
|
};
|
|
1286
2686
|
var data_default10 = taskData10;
|
|
1287
2687
|
|
|
1288
|
-
// src/image-segmentation/data.ts
|
|
2688
|
+
// src/tasks/image-segmentation/data.ts
|
|
1289
2689
|
var taskData11 = {
|
|
1290
2690
|
datasets: [
|
|
1291
2691
|
{
|
|
@@ -1380,7 +2780,7 @@ var taskData11 = {
|
|
|
1380
2780
|
};
|
|
1381
2781
|
var data_default11 = taskData11;
|
|
1382
2782
|
|
|
1383
|
-
// src/object-detection/data.ts
|
|
2783
|
+
// src/tasks/object-detection/data.ts
|
|
1384
2784
|
var taskData12 = {
|
|
1385
2785
|
datasets: [
|
|
1386
2786
|
{
|
|
@@ -1452,7 +2852,7 @@ var taskData12 = {
|
|
|
1452
2852
|
};
|
|
1453
2853
|
var data_default12 = taskData12;
|
|
1454
2854
|
|
|
1455
|
-
// src/depth-estimation/data.ts
|
|
2855
|
+
// src/tasks/depth-estimation/data.ts
|
|
1456
2856
|
var taskData13 = {
|
|
1457
2857
|
datasets: [
|
|
1458
2858
|
{
|
|
@@ -1503,7 +2903,7 @@ var taskData13 = {
|
|
|
1503
2903
|
};
|
|
1504
2904
|
var data_default13 = taskData13;
|
|
1505
2905
|
|
|
1506
|
-
// src/placeholder/data.ts
|
|
2906
|
+
// src/tasks/placeholder/data.ts
|
|
1507
2907
|
var taskData14 = {
|
|
1508
2908
|
datasets: [],
|
|
1509
2909
|
demo: {
|
|
@@ -1520,7 +2920,7 @@ var taskData14 = {
|
|
|
1520
2920
|
};
|
|
1521
2921
|
var data_default14 = taskData14;
|
|
1522
2922
|
|
|
1523
|
-
// src/reinforcement-learning/data.ts
|
|
2923
|
+
// src/tasks/reinforcement-learning/data.ts
|
|
1524
2924
|
var taskData15 = {
|
|
1525
2925
|
datasets: [
|
|
1526
2926
|
{
|
|
@@ -1589,7 +2989,7 @@ var taskData15 = {
|
|
|
1589
2989
|
};
|
|
1590
2990
|
var data_default15 = taskData15;
|
|
1591
2991
|
|
|
1592
|
-
// src/question-answering/data.ts
|
|
2992
|
+
// src/tasks/question-answering/data.ts
|
|
1593
2993
|
var taskData16 = {
|
|
1594
2994
|
datasets: [
|
|
1595
2995
|
{
|
|
@@ -1656,7 +3056,7 @@ var taskData16 = {
|
|
|
1656
3056
|
};
|
|
1657
3057
|
var data_default16 = taskData16;
|
|
1658
3058
|
|
|
1659
|
-
// src/sentence-similarity/data.ts
|
|
3059
|
+
// src/tasks/sentence-similarity/data.ts
|
|
1660
3060
|
var taskData17 = {
|
|
1661
3061
|
datasets: [
|
|
1662
3062
|
{
|
|
@@ -1751,7 +3151,7 @@ var taskData17 = {
|
|
|
1751
3151
|
};
|
|
1752
3152
|
var data_default17 = taskData17;
|
|
1753
3153
|
|
|
1754
|
-
// src/summarization/data.ts
|
|
3154
|
+
// src/tasks/summarization/data.ts
|
|
1755
3155
|
var taskData18 = {
|
|
1756
3156
|
datasets: [
|
|
1757
3157
|
{
|
|
@@ -1819,7 +3219,7 @@ var taskData18 = {
|
|
|
1819
3219
|
};
|
|
1820
3220
|
var data_default18 = taskData18;
|
|
1821
3221
|
|
|
1822
|
-
// src/table-question-answering/data.ts
|
|
3222
|
+
// src/tasks/table-question-answering/data.ts
|
|
1823
3223
|
var taskData19 = {
|
|
1824
3224
|
datasets: [
|
|
1825
3225
|
{
|
|
@@ -1873,7 +3273,7 @@ var taskData19 = {
|
|
|
1873
3273
|
};
|
|
1874
3274
|
var data_default19 = taskData19;
|
|
1875
3275
|
|
|
1876
|
-
// src/tabular-classification/data.ts
|
|
3276
|
+
// src/tasks/tabular-classification/data.ts
|
|
1877
3277
|
var taskData20 = {
|
|
1878
3278
|
datasets: [
|
|
1879
3279
|
{
|
|
@@ -1940,7 +3340,7 @@ var taskData20 = {
|
|
|
1940
3340
|
};
|
|
1941
3341
|
var data_default20 = taskData20;
|
|
1942
3342
|
|
|
1943
|
-
// src/tabular-regression/data.ts
|
|
3343
|
+
// src/tasks/tabular-regression/data.ts
|
|
1944
3344
|
var taskData21 = {
|
|
1945
3345
|
datasets: [
|
|
1946
3346
|
{
|
|
@@ -1995,7 +3395,7 @@ var taskData21 = {
|
|
|
1995
3395
|
};
|
|
1996
3396
|
var data_default21 = taskData21;
|
|
1997
3397
|
|
|
1998
|
-
// src/text-to-image/data.ts
|
|
3398
|
+
// src/tasks/text-to-image/data.ts
|
|
1999
3399
|
var taskData22 = {
|
|
2000
3400
|
datasets: [
|
|
2001
3401
|
{
|
|
@@ -2082,7 +3482,7 @@ var taskData22 = {
|
|
|
2082
3482
|
};
|
|
2083
3483
|
var data_default22 = taskData22;
|
|
2084
3484
|
|
|
2085
|
-
// src/text-to-speech/data.ts
|
|
3485
|
+
// src/tasks/text-to-speech/data.ts
|
|
2086
3486
|
var taskData23 = {
|
|
2087
3487
|
datasets: [
|
|
2088
3488
|
{
|
|
@@ -2135,8 +3535,8 @@ var taskData23 = {
|
|
|
2135
3535
|
id: "suno/bark"
|
|
2136
3536
|
},
|
|
2137
3537
|
{
|
|
2138
|
-
description: "
|
|
2139
|
-
id: "coqui/
|
|
3538
|
+
description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
|
|
3539
|
+
id: "coqui/xtts"
|
|
2140
3540
|
},
|
|
2141
3541
|
{
|
|
2142
3542
|
description: "An application that synthesizes speech for various speaker types.",
|
|
@@ -2144,12 +3544,12 @@ var taskData23 = {
|
|
|
2144
3544
|
}
|
|
2145
3545
|
],
|
|
2146
3546
|
summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
|
|
2147
|
-
widgetModels: ["
|
|
3547
|
+
widgetModels: ["suno/bark"],
|
|
2148
3548
|
youtubeId: "NW62DpzJ274"
|
|
2149
3549
|
};
|
|
2150
3550
|
var data_default23 = taskData23;
|
|
2151
3551
|
|
|
2152
|
-
// src/token-classification/data.ts
|
|
3552
|
+
// src/tasks/token-classification/data.ts
|
|
2153
3553
|
var taskData24 = {
|
|
2154
3554
|
datasets: [
|
|
2155
3555
|
{
|
|
@@ -2228,7 +3628,7 @@ var taskData24 = {
|
|
|
2228
3628
|
};
|
|
2229
3629
|
var data_default24 = taskData24;
|
|
2230
3630
|
|
|
2231
|
-
// src/translation/data.ts
|
|
3631
|
+
// src/tasks/translation/data.ts
|
|
2232
3632
|
var taskData25 = {
|
|
2233
3633
|
datasets: [
|
|
2234
3634
|
{
|
|
@@ -2292,7 +3692,7 @@ var taskData25 = {
|
|
|
2292
3692
|
};
|
|
2293
3693
|
var data_default25 = taskData25;
|
|
2294
3694
|
|
|
2295
|
-
// src/text-classification/data.ts
|
|
3695
|
+
// src/tasks/text-classification/data.ts
|
|
2296
3696
|
var taskData26 = {
|
|
2297
3697
|
datasets: [
|
|
2298
3698
|
{
|
|
@@ -2380,7 +3780,7 @@ var taskData26 = {
|
|
|
2380
3780
|
};
|
|
2381
3781
|
var data_default26 = taskData26;
|
|
2382
3782
|
|
|
2383
|
-
// src/text-generation/data.ts
|
|
3783
|
+
// src/tasks/text-generation/data.ts
|
|
2384
3784
|
var taskData27 = {
|
|
2385
3785
|
datasets: [
|
|
2386
3786
|
{
|
|
@@ -2495,12 +3895,12 @@ var taskData27 = {
|
|
|
2495
3895
|
}
|
|
2496
3896
|
],
|
|
2497
3897
|
summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
|
|
2498
|
-
widgetModels: ["
|
|
3898
|
+
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
2499
3899
|
youtubeId: "Vpjb1lu0MDk"
|
|
2500
3900
|
};
|
|
2501
3901
|
var data_default27 = taskData27;
|
|
2502
3902
|
|
|
2503
|
-
// src/text-to-video/data.ts
|
|
3903
|
+
// src/tasks/text-to-video/data.ts
|
|
2504
3904
|
var taskData28 = {
|
|
2505
3905
|
datasets: [
|
|
2506
3906
|
{
|
|
@@ -2595,7 +3995,7 @@ var taskData28 = {
|
|
|
2595
3995
|
};
|
|
2596
3996
|
var data_default28 = taskData28;
|
|
2597
3997
|
|
|
2598
|
-
// src/unconditional-image-generation/data.ts
|
|
3998
|
+
// src/tasks/unconditional-image-generation/data.ts
|
|
2599
3999
|
var taskData29 = {
|
|
2600
4000
|
datasets: [
|
|
2601
4001
|
{
|
|
@@ -2660,7 +4060,7 @@ var taskData29 = {
|
|
|
2660
4060
|
};
|
|
2661
4061
|
var data_default29 = taskData29;
|
|
2662
4062
|
|
|
2663
|
-
// src/video-classification/data.ts
|
|
4063
|
+
// src/tasks/video-classification/data.ts
|
|
2664
4064
|
var taskData30 = {
|
|
2665
4065
|
datasets: [
|
|
2666
4066
|
{
|
|
@@ -2742,7 +4142,7 @@ var taskData30 = {
|
|
|
2742
4142
|
};
|
|
2743
4143
|
var data_default30 = taskData30;
|
|
2744
4144
|
|
|
2745
|
-
// src/visual-question-answering/data.ts
|
|
4145
|
+
// src/tasks/visual-question-answering/data.ts
|
|
2746
4146
|
var taskData31 = {
|
|
2747
4147
|
datasets: [
|
|
2748
4148
|
{
|
|
@@ -2831,7 +4231,7 @@ var taskData31 = {
|
|
|
2831
4231
|
};
|
|
2832
4232
|
var data_default31 = taskData31;
|
|
2833
4233
|
|
|
2834
|
-
// src/zero-shot-classification/data.ts
|
|
4234
|
+
// src/tasks/zero-shot-classification/data.ts
|
|
2835
4235
|
var taskData32 = {
|
|
2836
4236
|
datasets: [
|
|
2837
4237
|
{
|
|
@@ -2893,7 +4293,7 @@ var taskData32 = {
|
|
|
2893
4293
|
};
|
|
2894
4294
|
var data_default32 = taskData32;
|
|
2895
4295
|
|
|
2896
|
-
// src/zero-shot-image-classification/data.ts
|
|
4296
|
+
// src/tasks/zero-shot-image-classification/data.ts
|
|
2897
4297
|
var taskData33 = {
|
|
2898
4298
|
datasets: [
|
|
2899
4299
|
{
|
|
@@ -2966,7 +4366,7 @@ var taskData33 = {
|
|
|
2966
4366
|
};
|
|
2967
4367
|
var data_default33 = taskData33;
|
|
2968
4368
|
|
|
2969
|
-
// src/
|
|
4369
|
+
// src/tasks/index.ts
|
|
2970
4370
|
var TASKS_MODEL_LIBRARIES = {
|
|
2971
4371
|
"audio-classification": ["speechbrain", "transformers"],
|
|
2972
4372
|
"audio-to-audio": ["asteroid", "speechbrain"],
|
|
@@ -2979,9 +4379,11 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
2979
4379
|
"graph-ml": ["transformers"],
|
|
2980
4380
|
"image-classification": ["keras", "timm", "transformers", "transformers.js"],
|
|
2981
4381
|
"image-segmentation": ["transformers", "transformers.js"],
|
|
2982
|
-
"image-to-image": [],
|
|
4382
|
+
"image-to-image": ["diffusers"],
|
|
2983
4383
|
"image-to-text": ["transformers.js"],
|
|
2984
|
-
"video
|
|
4384
|
+
"image-to-video": ["diffusers"],
|
|
4385
|
+
"video-classification": ["transformers"],
|
|
4386
|
+
"mask-generation": ["transformers"],
|
|
2985
4387
|
"multiple-choice": ["transformers"],
|
|
2986
4388
|
"object-detection": ["transformers", "transformers.js"],
|
|
2987
4389
|
other: [],
|
|
@@ -2998,10 +4400,10 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
2998
4400
|
"text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
|
|
2999
4401
|
"text-generation": ["transformers", "transformers.js"],
|
|
3000
4402
|
"text-retrieval": [],
|
|
3001
|
-
"text-to-image": [],
|
|
4403
|
+
"text-to-image": ["diffusers"],
|
|
3002
4404
|
"text-to-speech": ["espnet", "tensorflowtts", "transformers"],
|
|
3003
4405
|
"text-to-audio": ["transformers"],
|
|
3004
|
-
"text-to-video": [],
|
|
4406
|
+
"text-to-video": ["diffusers"],
|
|
3005
4407
|
"text2text-generation": ["transformers", "transformers.js"],
|
|
3006
4408
|
"time-series-forecasting": [],
|
|
3007
4409
|
"token-classification": [
|
|
@@ -3014,14 +4416,21 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3014
4416
|
"transformers.js"
|
|
3015
4417
|
],
|
|
3016
4418
|
translation: ["transformers", "transformers.js"],
|
|
3017
|
-
"unconditional-image-generation": [],
|
|
3018
|
-
"visual-question-answering": [],
|
|
4419
|
+
"unconditional-image-generation": ["diffusers"],
|
|
4420
|
+
"visual-question-answering": ["transformers"],
|
|
3019
4421
|
"voice-activity-detection": [],
|
|
3020
4422
|
"zero-shot-classification": ["transformers", "transformers.js"],
|
|
3021
|
-
"zero-shot-image-classification": ["transformers.js"]
|
|
4423
|
+
"zero-shot-image-classification": ["transformers", "transformers.js"],
|
|
4424
|
+
"zero-shot-object-detection": ["transformers"]
|
|
3022
4425
|
};
|
|
3023
|
-
|
|
3024
|
-
|
|
4426
|
+
function getData(type, partialTaskData = data_default14) {
|
|
4427
|
+
return {
|
|
4428
|
+
...partialTaskData,
|
|
4429
|
+
id: type,
|
|
4430
|
+
label: PIPELINE_DATA[type].name,
|
|
4431
|
+
libraries: TASKS_MODEL_LIBRARIES[type]
|
|
4432
|
+
};
|
|
4433
|
+
}
|
|
3025
4434
|
var TASKS_DATA = {
|
|
3026
4435
|
"audio-classification": getData("audio-classification", data_default),
|
|
3027
4436
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
@@ -3036,6 +4445,8 @@ var TASKS_DATA = {
|
|
|
3036
4445
|
"image-segmentation": getData("image-segmentation", data_default11),
|
|
3037
4446
|
"image-to-image": getData("image-to-image", data_default9),
|
|
3038
4447
|
"image-to-text": getData("image-to-text", data_default10),
|
|
4448
|
+
"image-to-video": void 0,
|
|
4449
|
+
"mask-generation": getData("mask-generation", data_default14),
|
|
3039
4450
|
"multiple-choice": void 0,
|
|
3040
4451
|
"object-detection": getData("object-detection", data_default12),
|
|
3041
4452
|
"video-classification": getData("video-classification", data_default30),
|
|
@@ -3065,18 +4476,11 @@ var TASKS_DATA = {
|
|
|
3065
4476
|
"visual-question-answering": getData("visual-question-answering", data_default31),
|
|
3066
4477
|
"voice-activity-detection": void 0,
|
|
3067
4478
|
"zero-shot-classification": getData("zero-shot-classification", data_default32),
|
|
3068
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
|
|
4479
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
|
|
4480
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default14)
|
|
3069
4481
|
};
|
|
3070
|
-
function getData(type, partialTaskData = data_default14) {
|
|
3071
|
-
return {
|
|
3072
|
-
...partialTaskData,
|
|
3073
|
-
id: type,
|
|
3074
|
-
label: PIPELINE_DATA[type].name,
|
|
3075
|
-
libraries: TASKS_MODEL_LIBRARIES[type]
|
|
3076
|
-
};
|
|
3077
|
-
}
|
|
3078
4482
|
|
|
3079
|
-
// src/
|
|
4483
|
+
// src/model-libraries.ts
|
|
3080
4484
|
var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
3081
4485
|
ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
|
|
3082
4486
|
ModelLibrary2["allennlp"] = "allenNLP";
|
|
@@ -3113,11 +4517,470 @@ var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
|
3113
4517
|
ModelLibrary2["mindspore"] = "MindSpore";
|
|
3114
4518
|
return ModelLibrary2;
|
|
3115
4519
|
})(ModelLibrary || {});
|
|
4520
|
+
var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
|
|
4521
|
+
(k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
|
|
4522
|
+
);
|
|
4523
|
+
|
|
4524
|
+
// src/model-data.ts
|
|
4525
|
+
var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
|
|
4526
|
+
InferenceDisplayability2["Yes"] = "Yes";
|
|
4527
|
+
InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
|
|
4528
|
+
InferenceDisplayability2["CustomCode"] = "CustomCode";
|
|
4529
|
+
InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
|
|
4530
|
+
InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
|
|
4531
|
+
InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
|
|
4532
|
+
return InferenceDisplayability2;
|
|
4533
|
+
})(InferenceDisplayability || {});
|
|
4534
|
+
|
|
4535
|
+
// src/tags.ts
|
|
4536
|
+
var TAG_NFAA_CONTENT = "not-for-all-audiences";
|
|
4537
|
+
var OTHER_TAGS_SUGGESTIONS = [
|
|
4538
|
+
"chemistry",
|
|
4539
|
+
"biology",
|
|
4540
|
+
"finance",
|
|
4541
|
+
"legal",
|
|
4542
|
+
"music",
|
|
4543
|
+
"art",
|
|
4544
|
+
"code",
|
|
4545
|
+
"climate",
|
|
4546
|
+
"medical",
|
|
4547
|
+
TAG_NFAA_CONTENT
|
|
4548
|
+
];
|
|
4549
|
+
var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
|
|
4550
|
+
var TAG_CUSTOM_CODE = "custom_code";
|
|
4551
|
+
|
|
4552
|
+
// src/snippets/index.ts
|
|
4553
|
+
var snippets_exports = {};
|
|
4554
|
+
__export(snippets_exports, {
|
|
4555
|
+
curl: () => curl_exports,
|
|
4556
|
+
inputs: () => inputs_exports,
|
|
4557
|
+
js: () => js_exports,
|
|
4558
|
+
python: () => python_exports
|
|
4559
|
+
});
|
|
4560
|
+
|
|
4561
|
+
// src/snippets/inputs.ts
|
|
4562
|
+
var inputs_exports = {};
|
|
4563
|
+
__export(inputs_exports, {
|
|
4564
|
+
getModelInputSnippet: () => getModelInputSnippet
|
|
4565
|
+
});
|
|
4566
|
+
var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
|
|
4567
|
+
var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
|
|
4568
|
+
var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
|
|
4569
|
+
var inputsConversational = () => `{
|
|
4570
|
+
"past_user_inputs": ["Which movie is the best ?"],
|
|
4571
|
+
"generated_responses": ["It is Die Hard for sure."],
|
|
4572
|
+
"text": "Can you explain why ?"
|
|
4573
|
+
}`;
|
|
4574
|
+
var inputsTableQuestionAnswering = () => `{
|
|
4575
|
+
"query": "How many stars does the transformers repository have?",
|
|
4576
|
+
"table": {
|
|
4577
|
+
"Repository": ["Transformers", "Datasets", "Tokenizers"],
|
|
4578
|
+
"Stars": ["36542", "4512", "3934"],
|
|
4579
|
+
"Contributors": ["651", "77", "34"],
|
|
4580
|
+
"Programming language": [
|
|
4581
|
+
"Python",
|
|
4582
|
+
"Python",
|
|
4583
|
+
"Rust, Python and NodeJS"
|
|
4584
|
+
]
|
|
4585
|
+
}
|
|
4586
|
+
}`;
|
|
4587
|
+
var inputsQuestionAnswering = () => `{
|
|
4588
|
+
"question": "What is my name?",
|
|
4589
|
+
"context": "My name is Clara and I live in Berkeley."
|
|
4590
|
+
}`;
|
|
4591
|
+
var inputsTextClassification = () => `"I like you. I love you"`;
|
|
4592
|
+
var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
|
|
4593
|
+
var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
|
|
4594
|
+
var inputsText2TextGeneration = () => `"The answer to the universe is"`;
|
|
4595
|
+
var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
|
|
4596
|
+
var inputsSentenceSimilarity = () => `{
|
|
4597
|
+
"source_sentence": "That is a happy person",
|
|
4598
|
+
"sentences": [
|
|
4599
|
+
"That is a happy dog",
|
|
4600
|
+
"That is a very happy person",
|
|
4601
|
+
"Today is a sunny day"
|
|
4602
|
+
]
|
|
4603
|
+
}`;
|
|
4604
|
+
var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
|
|
4605
|
+
var inputsImageClassification = () => `"cats.jpg"`;
|
|
4606
|
+
var inputsImageToText = () => `"cats.jpg"`;
|
|
4607
|
+
var inputsImageSegmentation = () => `"cats.jpg"`;
|
|
4608
|
+
var inputsObjectDetection = () => `"cats.jpg"`;
|
|
4609
|
+
var inputsAudioToAudio = () => `"sample1.flac"`;
|
|
4610
|
+
var inputsAudioClassification = () => `"sample1.flac"`;
|
|
4611
|
+
var inputsTextToImage = () => `"Astronaut riding a horse"`;
|
|
4612
|
+
var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
|
|
4613
|
+
var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
|
|
4614
|
+
var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
|
|
4615
|
+
var modelInputSnippets = {
|
|
4616
|
+
"audio-to-audio": inputsAudioToAudio,
|
|
4617
|
+
"audio-classification": inputsAudioClassification,
|
|
4618
|
+
"automatic-speech-recognition": inputsAutomaticSpeechRecognition,
|
|
4619
|
+
conversational: inputsConversational,
|
|
4620
|
+
"feature-extraction": inputsFeatureExtraction,
|
|
4621
|
+
"fill-mask": inputsFillMask,
|
|
4622
|
+
"image-classification": inputsImageClassification,
|
|
4623
|
+
"image-to-text": inputsImageToText,
|
|
4624
|
+
"image-segmentation": inputsImageSegmentation,
|
|
4625
|
+
"object-detection": inputsObjectDetection,
|
|
4626
|
+
"question-answering": inputsQuestionAnswering,
|
|
4627
|
+
"sentence-similarity": inputsSentenceSimilarity,
|
|
4628
|
+
summarization: inputsSummarization,
|
|
4629
|
+
"table-question-answering": inputsTableQuestionAnswering,
|
|
4630
|
+
"text-classification": inputsTextClassification,
|
|
4631
|
+
"text-generation": inputsTextGeneration,
|
|
4632
|
+
"text-to-image": inputsTextToImage,
|
|
4633
|
+
"text-to-speech": inputsTextToSpeech,
|
|
4634
|
+
"text-to-audio": inputsTextToAudio,
|
|
4635
|
+
"text2text-generation": inputsText2TextGeneration,
|
|
4636
|
+
"token-classification": inputsTokenClassification,
|
|
4637
|
+
translation: inputsTranslation,
|
|
4638
|
+
"zero-shot-classification": inputsZeroShotClassification
|
|
4639
|
+
};
|
|
4640
|
+
function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
|
|
4641
|
+
if (model.pipeline_tag) {
|
|
4642
|
+
const inputs = modelInputSnippets[model.pipeline_tag];
|
|
4643
|
+
if (inputs) {
|
|
4644
|
+
let result = inputs(model);
|
|
4645
|
+
if (noWrap) {
|
|
4646
|
+
result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
|
|
4647
|
+
}
|
|
4648
|
+
if (noQuotes) {
|
|
4649
|
+
const REGEX_QUOTES = /^"(.+)"$/s;
|
|
4650
|
+
const match = result.match(REGEX_QUOTES);
|
|
4651
|
+
result = match ? match[1] : result;
|
|
4652
|
+
}
|
|
4653
|
+
return result;
|
|
4654
|
+
}
|
|
4655
|
+
}
|
|
4656
|
+
return "No input example has been defined for this model task.";
|
|
4657
|
+
}
|
|
4658
|
+
|
|
4659
|
+
// src/snippets/curl.ts
|
|
4660
|
+
var curl_exports = {};
|
|
4661
|
+
__export(curl_exports, {
|
|
4662
|
+
curlSnippets: () => curlSnippets,
|
|
4663
|
+
getCurlInferenceSnippet: () => getCurlInferenceSnippet,
|
|
4664
|
+
hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
|
|
4665
|
+
snippetBasic: () => snippetBasic,
|
|
4666
|
+
snippetFile: () => snippetFile,
|
|
4667
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification
|
|
4668
|
+
});
|
|
4669
|
+
var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4670
|
+
-X POST \\
|
|
4671
|
+
-d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
|
|
4672
|
+
-H 'Content-Type: application/json' \\
|
|
4673
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4674
|
+
`;
|
|
4675
|
+
var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4676
|
+
-X POST \\
|
|
4677
|
+
-d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
|
|
4678
|
+
-H 'Content-Type: application/json' \\
|
|
4679
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4680
|
+
`;
|
|
4681
|
+
var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4682
|
+
-X POST \\
|
|
4683
|
+
--data-binary '@${getModelInputSnippet(model, true, true)}' \\
|
|
4684
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4685
|
+
`;
|
|
4686
|
+
var curlSnippets = {
|
|
4687
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4688
|
+
"text-classification": snippetBasic,
|
|
4689
|
+
"token-classification": snippetBasic,
|
|
4690
|
+
"table-question-answering": snippetBasic,
|
|
4691
|
+
"question-answering": snippetBasic,
|
|
4692
|
+
"zero-shot-classification": snippetZeroShotClassification,
|
|
4693
|
+
translation: snippetBasic,
|
|
4694
|
+
summarization: snippetBasic,
|
|
4695
|
+
conversational: snippetBasic,
|
|
4696
|
+
"feature-extraction": snippetBasic,
|
|
4697
|
+
"text-generation": snippetBasic,
|
|
4698
|
+
"text2text-generation": snippetBasic,
|
|
4699
|
+
"fill-mask": snippetBasic,
|
|
4700
|
+
"sentence-similarity": snippetBasic,
|
|
4701
|
+
"automatic-speech-recognition": snippetFile,
|
|
4702
|
+
"text-to-image": snippetBasic,
|
|
4703
|
+
"text-to-speech": snippetBasic,
|
|
4704
|
+
"text-to-audio": snippetBasic,
|
|
4705
|
+
"audio-to-audio": snippetFile,
|
|
4706
|
+
"audio-classification": snippetFile,
|
|
4707
|
+
"image-classification": snippetFile,
|
|
4708
|
+
"image-to-text": snippetFile,
|
|
4709
|
+
"object-detection": snippetFile,
|
|
4710
|
+
"image-segmentation": snippetFile
|
|
4711
|
+
};
|
|
4712
|
+
function getCurlInferenceSnippet(model, accessToken) {
|
|
4713
|
+
return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
|
|
4714
|
+
}
|
|
4715
|
+
function hasCurlInferenceSnippet(model) {
|
|
4716
|
+
return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
|
|
4717
|
+
}
|
|
4718
|
+
|
|
4719
|
+
// src/snippets/python.ts
|
|
4720
|
+
var python_exports = {};
|
|
4721
|
+
__export(python_exports, {
|
|
4722
|
+
getPythonInferenceSnippet: () => getPythonInferenceSnippet,
|
|
4723
|
+
hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
|
|
4724
|
+
pythonSnippets: () => pythonSnippets,
|
|
4725
|
+
snippetBasic: () => snippetBasic2,
|
|
4726
|
+
snippetFile: () => snippetFile2,
|
|
4727
|
+
snippetTextToAudio: () => snippetTextToAudio,
|
|
4728
|
+
snippetTextToImage: () => snippetTextToImage,
|
|
4729
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification2
|
|
4730
|
+
});
|
|
4731
|
+
var snippetZeroShotClassification2 = (model) => `def query(payload):
|
|
4732
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4733
|
+
return response.json()
|
|
4734
|
+
|
|
4735
|
+
output = query({
|
|
4736
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4737
|
+
"parameters": {"candidate_labels": ["refund", "legal", "faq"]},
|
|
4738
|
+
})`;
|
|
4739
|
+
var snippetBasic2 = (model) => `def query(payload):
|
|
4740
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4741
|
+
return response.json()
|
|
4742
|
+
|
|
4743
|
+
output = query({
|
|
4744
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4745
|
+
})`;
|
|
4746
|
+
var snippetFile2 = (model) => `def query(filename):
|
|
4747
|
+
with open(filename, "rb") as f:
|
|
4748
|
+
data = f.read()
|
|
4749
|
+
response = requests.post(API_URL, headers=headers, data=data)
|
|
4750
|
+
return response.json()
|
|
4751
|
+
|
|
4752
|
+
output = query(${getModelInputSnippet(model)})`;
|
|
4753
|
+
var snippetTextToImage = (model) => `def query(payload):
|
|
4754
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4755
|
+
return response.content
|
|
4756
|
+
image_bytes = query({
|
|
4757
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4758
|
+
})
|
|
4759
|
+
# You can access the image with PIL.Image for example
|
|
4760
|
+
import io
|
|
4761
|
+
from PIL import Image
|
|
4762
|
+
image = Image.open(io.BytesIO(image_bytes))`;
|
|
4763
|
+
var snippetTextToAudio = (model) => {
|
|
4764
|
+
if (model.library_name === "transformers") {
|
|
4765
|
+
return `def query(payload):
|
|
4766
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4767
|
+
return response.content
|
|
4768
|
+
|
|
4769
|
+
audio_bytes = query({
|
|
4770
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4771
|
+
})
|
|
4772
|
+
# You can access the audio with IPython.display for example
|
|
4773
|
+
from IPython.display import Audio
|
|
4774
|
+
Audio(audio_bytes)`;
|
|
4775
|
+
} else {
|
|
4776
|
+
return `def query(payload):
|
|
4777
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4778
|
+
return response.json()
|
|
4779
|
+
|
|
4780
|
+
audio, sampling_rate = query({
|
|
4781
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4782
|
+
})
|
|
4783
|
+
# You can access the audio with IPython.display for example
|
|
4784
|
+
from IPython.display import Audio
|
|
4785
|
+
Audio(audio, rate=sampling_rate)`;
|
|
4786
|
+
}
|
|
4787
|
+
};
|
|
4788
|
+
var pythonSnippets = {
|
|
4789
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4790
|
+
"text-classification": snippetBasic2,
|
|
4791
|
+
"token-classification": snippetBasic2,
|
|
4792
|
+
"table-question-answering": snippetBasic2,
|
|
4793
|
+
"question-answering": snippetBasic2,
|
|
4794
|
+
"zero-shot-classification": snippetZeroShotClassification2,
|
|
4795
|
+
translation: snippetBasic2,
|
|
4796
|
+
summarization: snippetBasic2,
|
|
4797
|
+
conversational: snippetBasic2,
|
|
4798
|
+
"feature-extraction": snippetBasic2,
|
|
4799
|
+
"text-generation": snippetBasic2,
|
|
4800
|
+
"text2text-generation": snippetBasic2,
|
|
4801
|
+
"fill-mask": snippetBasic2,
|
|
4802
|
+
"sentence-similarity": snippetBasic2,
|
|
4803
|
+
"automatic-speech-recognition": snippetFile2,
|
|
4804
|
+
"text-to-image": snippetTextToImage,
|
|
4805
|
+
"text-to-speech": snippetTextToAudio,
|
|
4806
|
+
"text-to-audio": snippetTextToAudio,
|
|
4807
|
+
"audio-to-audio": snippetFile2,
|
|
4808
|
+
"audio-classification": snippetFile2,
|
|
4809
|
+
"image-classification": snippetFile2,
|
|
4810
|
+
"image-to-text": snippetFile2,
|
|
4811
|
+
"object-detection": snippetFile2,
|
|
4812
|
+
"image-segmentation": snippetFile2
|
|
4813
|
+
};
|
|
4814
|
+
function getPythonInferenceSnippet(model, accessToken) {
|
|
4815
|
+
const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
|
|
4816
|
+
return `import requests
|
|
4817
|
+
|
|
4818
|
+
API_URL = "https://api-inference.huggingface.co/models/${model.id}"
|
|
4819
|
+
headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
|
|
4820
|
+
|
|
4821
|
+
${body}`;
|
|
4822
|
+
}
|
|
4823
|
+
function hasPythonInferenceSnippet(model) {
|
|
4824
|
+
return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
|
|
4825
|
+
}
|
|
4826
|
+
|
|
4827
|
+
// src/snippets/js.ts
|
|
4828
|
+
var js_exports = {};
|
|
4829
|
+
__export(js_exports, {
|
|
4830
|
+
getJsInferenceSnippet: () => getJsInferenceSnippet,
|
|
4831
|
+
hasJsInferenceSnippet: () => hasJsInferenceSnippet,
|
|
4832
|
+
jsSnippets: () => jsSnippets,
|
|
4833
|
+
snippetBasic: () => snippetBasic3,
|
|
4834
|
+
snippetFile: () => snippetFile3,
|
|
4835
|
+
snippetTextToAudio: () => snippetTextToAudio2,
|
|
4836
|
+
snippetTextToImage: () => snippetTextToImage2,
|
|
4837
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification3
|
|
4838
|
+
});
|
|
4839
|
+
var snippetBasic3 = (model, accessToken) => `async function query(data) {
|
|
4840
|
+
const response = await fetch(
|
|
4841
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4842
|
+
{
|
|
4843
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4844
|
+
method: "POST",
|
|
4845
|
+
body: JSON.stringify(data),
|
|
4846
|
+
}
|
|
4847
|
+
);
|
|
4848
|
+
const result = await response.json();
|
|
4849
|
+
return result;
|
|
4850
|
+
}
|
|
4851
|
+
|
|
4852
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4853
|
+
console.log(JSON.stringify(response));
|
|
4854
|
+
});`;
|
|
4855
|
+
var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
|
|
4856
|
+
const response = await fetch(
|
|
4857
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4858
|
+
{
|
|
4859
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4860
|
+
method: "POST",
|
|
4861
|
+
body: JSON.stringify(data),
|
|
4862
|
+
}
|
|
4863
|
+
);
|
|
4864
|
+
const result = await response.json();
|
|
4865
|
+
return result;
|
|
4866
|
+
}
|
|
4867
|
+
|
|
4868
|
+
query({"inputs": ${getModelInputSnippet(
|
|
4869
|
+
model
|
|
4870
|
+
)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
|
|
4871
|
+
console.log(JSON.stringify(response));
|
|
4872
|
+
});`;
|
|
4873
|
+
var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
|
|
4874
|
+
const response = await fetch(
|
|
4875
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4876
|
+
{
|
|
4877
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4878
|
+
method: "POST",
|
|
4879
|
+
body: JSON.stringify(data),
|
|
4880
|
+
}
|
|
4881
|
+
);
|
|
4882
|
+
const result = await response.blob();
|
|
4883
|
+
return result;
|
|
4884
|
+
}
|
|
4885
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4886
|
+
// Use image
|
|
4887
|
+
});`;
|
|
4888
|
+
var snippetTextToAudio2 = (model, accessToken) => {
|
|
4889
|
+
const commonSnippet = `async function query(data) {
|
|
4890
|
+
const response = await fetch(
|
|
4891
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4892
|
+
{
|
|
4893
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4894
|
+
method: "POST",
|
|
4895
|
+
body: JSON.stringify(data),
|
|
4896
|
+
}
|
|
4897
|
+
);`;
|
|
4898
|
+
if (model.library_name === "transformers") {
|
|
4899
|
+
return commonSnippet + `
|
|
4900
|
+
const result = await response.blob();
|
|
4901
|
+
return result;
|
|
4902
|
+
}
|
|
4903
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4904
|
+
// Returns a byte object of the Audio wavform. Use it directly!
|
|
4905
|
+
});`;
|
|
4906
|
+
} else {
|
|
4907
|
+
return commonSnippet + `
|
|
4908
|
+
const result = await response.json();
|
|
4909
|
+
return result;
|
|
4910
|
+
}
|
|
4911
|
+
|
|
4912
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4913
|
+
console.log(JSON.stringify(response));
|
|
4914
|
+
});`;
|
|
4915
|
+
}
|
|
4916
|
+
};
|
|
4917
|
+
var snippetFile3 = (model, accessToken) => `async function query(filename) {
|
|
4918
|
+
const data = fs.readFileSync(filename);
|
|
4919
|
+
const response = await fetch(
|
|
4920
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4921
|
+
{
|
|
4922
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4923
|
+
method: "POST",
|
|
4924
|
+
body: data,
|
|
4925
|
+
}
|
|
4926
|
+
);
|
|
4927
|
+
const result = await response.json();
|
|
4928
|
+
return result;
|
|
4929
|
+
}
|
|
4930
|
+
|
|
4931
|
+
query(${getModelInputSnippet(model)}).then((response) => {
|
|
4932
|
+
console.log(JSON.stringify(response));
|
|
4933
|
+
});`;
|
|
4934
|
+
var jsSnippets = {
|
|
4935
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4936
|
+
"text-classification": snippetBasic3,
|
|
4937
|
+
"token-classification": snippetBasic3,
|
|
4938
|
+
"table-question-answering": snippetBasic3,
|
|
4939
|
+
"question-answering": snippetBasic3,
|
|
4940
|
+
"zero-shot-classification": snippetZeroShotClassification3,
|
|
4941
|
+
translation: snippetBasic3,
|
|
4942
|
+
summarization: snippetBasic3,
|
|
4943
|
+
conversational: snippetBasic3,
|
|
4944
|
+
"feature-extraction": snippetBasic3,
|
|
4945
|
+
"text-generation": snippetBasic3,
|
|
4946
|
+
"text2text-generation": snippetBasic3,
|
|
4947
|
+
"fill-mask": snippetBasic3,
|
|
4948
|
+
"sentence-similarity": snippetBasic3,
|
|
4949
|
+
"automatic-speech-recognition": snippetFile3,
|
|
4950
|
+
"text-to-image": snippetTextToImage2,
|
|
4951
|
+
"text-to-speech": snippetTextToAudio2,
|
|
4952
|
+
"text-to-audio": snippetTextToAudio2,
|
|
4953
|
+
"audio-to-audio": snippetFile3,
|
|
4954
|
+
"audio-classification": snippetFile3,
|
|
4955
|
+
"image-classification": snippetFile3,
|
|
4956
|
+
"image-to-text": snippetFile3,
|
|
4957
|
+
"object-detection": snippetFile3,
|
|
4958
|
+
"image-segmentation": snippetFile3
|
|
4959
|
+
};
|
|
4960
|
+
function getJsInferenceSnippet(model, accessToken) {
|
|
4961
|
+
return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
|
|
4962
|
+
}
|
|
4963
|
+
function hasJsInferenceSnippet(model) {
|
|
4964
|
+
return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
|
|
4965
|
+
}
|
|
3116
4966
|
export {
|
|
4967
|
+
ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
4968
|
+
InferenceDisplayability,
|
|
4969
|
+
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
4970
|
+
MAPPING_DEFAULT_WIDGET,
|
|
3117
4971
|
MODALITIES,
|
|
3118
4972
|
MODALITY_LABELS,
|
|
4973
|
+
MODEL_LIBRARIES_UI_ELEMENTS,
|
|
3119
4974
|
ModelLibrary,
|
|
4975
|
+
OTHER_TAGS_SUGGESTIONS,
|
|
3120
4976
|
PIPELINE_DATA,
|
|
3121
4977
|
PIPELINE_TYPES,
|
|
3122
|
-
|
|
4978
|
+
PIPELINE_TYPES_SET,
|
|
4979
|
+
SUBTASK_TYPES,
|
|
4980
|
+
TAG_CUSTOM_CODE,
|
|
4981
|
+
TAG_NFAA_CONTENT,
|
|
4982
|
+
TAG_TEXT_GENERATION_INFERENCE,
|
|
4983
|
+
TASKS_DATA,
|
|
4984
|
+
TASKS_MODEL_LIBRARIES,
|
|
4985
|
+
snippets_exports as snippets
|
|
3123
4986
|
};
|