@huggingface/tasks 0.0.5 → 0.0.7
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +16 -2
- package/dist/index.d.ts +364 -3
- package/dist/index.js +1942 -72
- package/dist/index.mjs +1934 -71
- package/package.json +1 -1
- package/src/default-widget-inputs.ts +718 -0
- package/src/index.ts +39 -4
- package/src/library-to-tasks.ts +47 -0
- package/src/library-ui-elements.ts +765 -0
- package/src/model-data.ts +239 -0
- package/src/{modelLibraries.ts → model-libraries.ts} +4 -0
- package/src/pipelines.ts +22 -0
- package/src/snippets/curl.ts +63 -0
- package/src/snippets/index.ts +6 -0
- package/src/snippets/inputs.ts +129 -0
- package/src/snippets/js.ts +150 -0
- package/src/snippets/python.ts +114 -0
- package/src/tags.ts +15 -0
- package/src/{audio-classification → tasks/audio-classification}/about.md +2 -1
- package/src/{audio-classification → tasks/audio-classification}/data.ts +3 -3
- package/src/{audio-to-audio → tasks/audio-to-audio}/data.ts +1 -1
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/about.md +3 -2
- package/src/{automatic-speech-recognition → tasks/automatic-speech-recognition}/data.ts +6 -6
- package/src/{conversational → tasks/conversational}/data.ts +1 -1
- package/src/{depth-estimation → tasks/depth-estimation}/data.ts +1 -1
- package/src/{document-question-answering → tasks/document-question-answering}/data.ts +1 -1
- package/src/{feature-extraction → tasks/feature-extraction}/data.ts +2 -7
- package/src/{fill-mask → tasks/fill-mask}/data.ts +1 -1
- package/src/{image-classification → tasks/image-classification}/data.ts +1 -1
- package/src/{image-segmentation → tasks/image-segmentation}/data.ts +1 -1
- package/src/{image-to-image → tasks/image-to-image}/about.md +8 -7
- package/src/{image-to-image → tasks/image-to-image}/data.ts +1 -1
- package/src/{image-to-text → tasks/image-to-text}/data.ts +1 -1
- package/src/{tasksData.ts → tasks/index.ts} +140 -15
- package/src/{object-detection → tasks/object-detection}/data.ts +1 -1
- package/src/{placeholder → tasks/placeholder}/data.ts +1 -1
- package/src/{question-answering → tasks/question-answering}/data.ts +1 -1
- package/src/{reinforcement-learning → tasks/reinforcement-learning}/data.ts +1 -1
- package/src/{sentence-similarity → tasks/sentence-similarity}/data.ts +1 -1
- package/src/{summarization → tasks/summarization}/data.ts +1 -1
- package/src/{table-question-answering → tasks/table-question-answering}/data.ts +1 -1
- package/src/{tabular-classification → tasks/tabular-classification}/data.ts +1 -1
- package/src/{tabular-regression → tasks/tabular-regression}/data.ts +1 -1
- package/src/{text-classification → tasks/text-classification}/data.ts +1 -1
- package/src/{text-generation → tasks/text-generation}/about.md +3 -3
- package/src/{text-generation → tasks/text-generation}/data.ts +2 -2
- package/src/{text-to-image → tasks/text-to-image}/data.ts +1 -1
- package/src/{text-to-speech → tasks/text-to-speech}/about.md +2 -1
- package/src/{text-to-speech → tasks/text-to-speech}/data.ts +4 -4
- package/src/{text-to-video → tasks/text-to-video}/data.ts +1 -1
- package/src/{token-classification → tasks/token-classification}/data.ts +1 -1
- package/src/{translation → tasks/translation}/data.ts +1 -1
- package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/data.ts +1 -1
- package/src/{video-classification → tasks/video-classification}/about.md +8 -28
- package/src/{video-classification → tasks/video-classification}/data.ts +1 -1
- package/src/{visual-question-answering → tasks/visual-question-answering}/data.ts +1 -1
- package/src/{zero-shot-classification → tasks/zero-shot-classification}/data.ts +1 -1
- package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/data.ts +1 -1
- package/src/Types.ts +0 -64
- package/src/const.ts +0 -59
- /package/src/{audio-to-audio → tasks/audio-to-audio}/about.md +0 -0
- /package/src/{conversational → tasks/conversational}/about.md +0 -0
- /package/src/{depth-estimation → tasks/depth-estimation}/about.md +0 -0
- /package/src/{document-question-answering → tasks/document-question-answering}/about.md +0 -0
- /package/src/{feature-extraction → tasks/feature-extraction}/about.md +0 -0
- /package/src/{fill-mask → tasks/fill-mask}/about.md +0 -0
- /package/src/{image-classification → tasks/image-classification}/about.md +0 -0
- /package/src/{image-segmentation → tasks/image-segmentation}/about.md +0 -0
- /package/src/{image-to-text → tasks/image-to-text}/about.md +0 -0
- /package/src/{object-detection → tasks/object-detection}/about.md +0 -0
- /package/src/{placeholder → tasks/placeholder}/about.md +0 -0
- /package/src/{question-answering → tasks/question-answering}/about.md +0 -0
- /package/src/{reinforcement-learning → tasks/reinforcement-learning}/about.md +0 -0
- /package/src/{sentence-similarity → tasks/sentence-similarity}/about.md +0 -0
- /package/src/{summarization → tasks/summarization}/about.md +0 -0
- /package/src/{table-question-answering → tasks/table-question-answering}/about.md +0 -0
- /package/src/{tabular-classification → tasks/tabular-classification}/about.md +0 -0
- /package/src/{tabular-regression → tasks/tabular-regression}/about.md +0 -0
- /package/src/{text-classification → tasks/text-classification}/about.md +0 -0
- /package/src/{text-to-image → tasks/text-to-image}/about.md +0 -0
- /package/src/{text-to-video → tasks/text-to-video}/about.md +0 -0
- /package/src/{token-classification → tasks/token-classification}/about.md +0 -0
- /package/src/{translation → tasks/translation}/about.md +0 -0
- /package/src/{unconditional-image-generation → tasks/unconditional-image-generation}/about.md +0 -0
- /package/src/{visual-question-answering → tasks/visual-question-answering}/about.md +0 -0
- /package/src/{zero-shot-classification → tasks/zero-shot-classification}/about.md +0 -0
- /package/src/{zero-shot-image-classification → tasks/zero-shot-image-classification}/about.md +0 -0
package/dist/index.js
CHANGED
|
@@ -20,15 +20,1410 @@ var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: tru
|
|
|
20
20
|
// src/index.ts
|
|
21
21
|
var src_exports = {};
|
|
22
22
|
__export(src_exports, {
|
|
23
|
+
ALL_DISPLAY_MODEL_LIBRARY_KEYS: () => ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
24
|
+
InferenceDisplayability: () => InferenceDisplayability,
|
|
25
|
+
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS: () => LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
26
|
+
MAPPING_DEFAULT_WIDGET: () => MAPPING_DEFAULT_WIDGET,
|
|
23
27
|
MODALITIES: () => MODALITIES,
|
|
24
28
|
MODALITY_LABELS: () => MODALITY_LABELS,
|
|
29
|
+
MODEL_LIBRARIES_UI_ELEMENTS: () => MODEL_LIBRARIES_UI_ELEMENTS,
|
|
25
30
|
ModelLibrary: () => ModelLibrary,
|
|
31
|
+
OTHER_TAGS_SUGGESTIONS: () => OTHER_TAGS_SUGGESTIONS,
|
|
26
32
|
PIPELINE_DATA: () => PIPELINE_DATA,
|
|
27
33
|
PIPELINE_TYPES: () => PIPELINE_TYPES,
|
|
28
|
-
|
|
34
|
+
PIPELINE_TYPES_SET: () => PIPELINE_TYPES_SET,
|
|
35
|
+
SUBTASK_TYPES: () => SUBTASK_TYPES,
|
|
36
|
+
TAG_CUSTOM_CODE: () => TAG_CUSTOM_CODE,
|
|
37
|
+
TAG_NFAA_CONTENT: () => TAG_NFAA_CONTENT,
|
|
38
|
+
TAG_TEXT_GENERATION_INFERENCE: () => TAG_TEXT_GENERATION_INFERENCE,
|
|
39
|
+
TASKS_DATA: () => TASKS_DATA,
|
|
40
|
+
TASKS_MODEL_LIBRARIES: () => TASKS_MODEL_LIBRARIES,
|
|
41
|
+
snippets: () => snippets_exports
|
|
29
42
|
});
|
|
30
43
|
module.exports = __toCommonJS(src_exports);
|
|
31
44
|
|
|
45
|
+
// src/library-to-tasks.ts
|
|
46
|
+
var LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS = {
|
|
47
|
+
"adapter-transformers": ["question-answering", "text-classification", "token-classification"],
|
|
48
|
+
allennlp: ["question-answering"],
|
|
49
|
+
asteroid: [
|
|
50
|
+
// "audio-source-separation",
|
|
51
|
+
"audio-to-audio"
|
|
52
|
+
],
|
|
53
|
+
bertopic: ["text-classification"],
|
|
54
|
+
diffusers: ["image-to-image", "text-to-image"],
|
|
55
|
+
doctr: ["object-detection"],
|
|
56
|
+
espnet: ["text-to-speech", "automatic-speech-recognition"],
|
|
57
|
+
fairseq: ["text-to-speech", "audio-to-audio"],
|
|
58
|
+
fastai: ["image-classification"],
|
|
59
|
+
fasttext: ["feature-extraction", "text-classification"],
|
|
60
|
+
flair: ["token-classification"],
|
|
61
|
+
k2: ["automatic-speech-recognition"],
|
|
62
|
+
keras: ["image-classification"],
|
|
63
|
+
nemo: ["automatic-speech-recognition"],
|
|
64
|
+
open_clip: ["zero-shot-classification", "zero-shot-image-classification"],
|
|
65
|
+
paddlenlp: ["conversational", "fill-mask", "summarization", "zero-shot-classification"],
|
|
66
|
+
peft: ["text-generation"],
|
|
67
|
+
"pyannote-audio": ["automatic-speech-recognition"],
|
|
68
|
+
"sentence-transformers": ["feature-extraction", "sentence-similarity"],
|
|
69
|
+
sklearn: ["tabular-classification", "tabular-regression", "text-classification"],
|
|
70
|
+
spacy: ["token-classification", "text-classification", "sentence-similarity"],
|
|
71
|
+
"span-marker": ["token-classification"],
|
|
72
|
+
speechbrain: [
|
|
73
|
+
"audio-classification",
|
|
74
|
+
"audio-to-audio",
|
|
75
|
+
"automatic-speech-recognition",
|
|
76
|
+
"text-to-speech",
|
|
77
|
+
"text2text-generation"
|
|
78
|
+
],
|
|
79
|
+
stanza: ["token-classification"],
|
|
80
|
+
timm: ["image-classification"],
|
|
81
|
+
mindspore: ["image-classification"]
|
|
82
|
+
};
|
|
83
|
+
|
|
84
|
+
// src/library-ui-elements.ts
|
|
85
|
+
function nameWithoutNamespace(modelId) {
|
|
86
|
+
const splitted = modelId.split("/");
|
|
87
|
+
return splitted.length === 1 ? splitted[0] : splitted[1];
|
|
88
|
+
}
|
|
89
|
+
var adapter_transformers = (model) => [
|
|
90
|
+
`from transformers import ${model.config?.adapter_transformers?.model_class}
|
|
91
|
+
|
|
92
|
+
model = ${model.config?.adapter_transformers?.model_class}.from_pretrained("${model.config?.adapter_transformers?.model_name}")
|
|
93
|
+
model.load_adapter("${model.id}", source="hf")`
|
|
94
|
+
];
|
|
95
|
+
var allennlpUnknown = (model) => [
|
|
96
|
+
`import allennlp_models
|
|
97
|
+
from allennlp.predictors.predictor import Predictor
|
|
98
|
+
|
|
99
|
+
predictor = Predictor.from_path("hf://${model.id}")`
|
|
100
|
+
];
|
|
101
|
+
var allennlpQuestionAnswering = (model) => [
|
|
102
|
+
`import allennlp_models
|
|
103
|
+
from allennlp.predictors.predictor import Predictor
|
|
104
|
+
|
|
105
|
+
predictor = Predictor.from_path("hf://${model.id}")
|
|
106
|
+
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"}
|
|
107
|
+
predictions = predictor.predict_json(predictor_input)`
|
|
108
|
+
];
|
|
109
|
+
var allennlp = (model) => {
|
|
110
|
+
if (model.tags?.includes("question-answering")) {
|
|
111
|
+
return allennlpQuestionAnswering(model);
|
|
112
|
+
}
|
|
113
|
+
return allennlpUnknown(model);
|
|
114
|
+
};
|
|
115
|
+
var asteroid = (model) => [
|
|
116
|
+
`from asteroid.models import BaseModel
|
|
117
|
+
|
|
118
|
+
model = BaseModel.from_pretrained("${model.id}")`
|
|
119
|
+
];
|
|
120
|
+
function get_base_diffusers_model(model) {
|
|
121
|
+
return model.cardData?.base_model ?? "fill-in-base-model";
|
|
122
|
+
}
|
|
123
|
+
var bertopic = (model) => [
|
|
124
|
+
`from bertopic import BERTopic
|
|
125
|
+
|
|
126
|
+
model = BERTopic.load("${model.id}")`
|
|
127
|
+
];
|
|
128
|
+
var diffusers_default = (model) => [
|
|
129
|
+
`from diffusers import DiffusionPipeline
|
|
130
|
+
|
|
131
|
+
pipeline = DiffusionPipeline.from_pretrained("${model.id}")`
|
|
132
|
+
];
|
|
133
|
+
var diffusers_controlnet = (model) => [
|
|
134
|
+
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline
|
|
135
|
+
|
|
136
|
+
controlnet = ControlNetModel.from_pretrained("${model.id}")
|
|
137
|
+
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
|
|
138
|
+
"${get_base_diffusers_model(model)}", controlnet=controlnet
|
|
139
|
+
)`
|
|
140
|
+
];
|
|
141
|
+
var diffusers_lora = (model) => [
|
|
142
|
+
`from diffusers import DiffusionPipeline
|
|
143
|
+
|
|
144
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
145
|
+
pipeline.load_lora_weights("${model.id}")`
|
|
146
|
+
];
|
|
147
|
+
var diffusers_textual_inversion = (model) => [
|
|
148
|
+
`from diffusers import DiffusionPipeline
|
|
149
|
+
|
|
150
|
+
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}")
|
|
151
|
+
pipeline.load_textual_inversion("${model.id}")`
|
|
152
|
+
];
|
|
153
|
+
var diffusers = (model) => {
|
|
154
|
+
if (model.tags?.includes("controlnet")) {
|
|
155
|
+
return diffusers_controlnet(model);
|
|
156
|
+
} else if (model.tags?.includes("lora")) {
|
|
157
|
+
return diffusers_lora(model);
|
|
158
|
+
} else if (model.tags?.includes("textual_inversion")) {
|
|
159
|
+
return diffusers_textual_inversion(model);
|
|
160
|
+
} else {
|
|
161
|
+
return diffusers_default(model);
|
|
162
|
+
}
|
|
163
|
+
};
|
|
164
|
+
var espnetTTS = (model) => [
|
|
165
|
+
`from espnet2.bin.tts_inference import Text2Speech
|
|
166
|
+
|
|
167
|
+
model = Text2Speech.from_pretrained("${model.id}")
|
|
168
|
+
|
|
169
|
+
speech, *_ = model("text to generate speech from")`
|
|
170
|
+
];
|
|
171
|
+
var espnetASR = (model) => [
|
|
172
|
+
`from espnet2.bin.asr_inference import Speech2Text
|
|
173
|
+
|
|
174
|
+
model = Speech2Text.from_pretrained(
|
|
175
|
+
"${model.id}"
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
speech, rate = soundfile.read("speech.wav")
|
|
179
|
+
text, *_ = model(speech)[0]`
|
|
180
|
+
];
|
|
181
|
+
var espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`];
|
|
182
|
+
var espnet = (model) => {
|
|
183
|
+
if (model.tags?.includes("text-to-speech")) {
|
|
184
|
+
return espnetTTS(model);
|
|
185
|
+
} else if (model.tags?.includes("automatic-speech-recognition")) {
|
|
186
|
+
return espnetASR(model);
|
|
187
|
+
}
|
|
188
|
+
return espnetUnknown();
|
|
189
|
+
};
|
|
190
|
+
var fairseq = (model) => [
|
|
191
|
+
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub
|
|
192
|
+
|
|
193
|
+
models, cfg, task = load_model_ensemble_and_task_from_hf_hub(
|
|
194
|
+
"${model.id}"
|
|
195
|
+
)`
|
|
196
|
+
];
|
|
197
|
+
var flair = (model) => [
|
|
198
|
+
`from flair.models import SequenceTagger
|
|
199
|
+
|
|
200
|
+
tagger = SequenceTagger.load("${model.id}")`
|
|
201
|
+
];
|
|
202
|
+
var keras = (model) => [
|
|
203
|
+
`from huggingface_hub import from_pretrained_keras
|
|
204
|
+
|
|
205
|
+
model = from_pretrained_keras("${model.id}")
|
|
206
|
+
`
|
|
207
|
+
];
|
|
208
|
+
var open_clip = (model) => [
|
|
209
|
+
`import open_clip
|
|
210
|
+
|
|
211
|
+
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}')
|
|
212
|
+
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`
|
|
213
|
+
];
|
|
214
|
+
var paddlenlp = (model) => {
|
|
215
|
+
if (model.config?.architectures?.[0]) {
|
|
216
|
+
const architecture = model.config.architectures[0];
|
|
217
|
+
return [
|
|
218
|
+
[
|
|
219
|
+
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`,
|
|
220
|
+
"",
|
|
221
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
|
|
222
|
+
`model = ${architecture}.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
|
|
223
|
+
].join("\n")
|
|
224
|
+
];
|
|
225
|
+
} else {
|
|
226
|
+
return [
|
|
227
|
+
[
|
|
228
|
+
`# \u26A0\uFE0F Type of model unknown`,
|
|
229
|
+
`from paddlenlp.transformers import AutoTokenizer, AutoModel`,
|
|
230
|
+
"",
|
|
231
|
+
`tokenizer = AutoTokenizer.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`,
|
|
232
|
+
`model = AutoModel.from_pretrained("${model.id}"${model.private ? ", use_auth_token=True" : ""}, from_hf_hub=True)`
|
|
233
|
+
].join("\n")
|
|
234
|
+
];
|
|
235
|
+
}
|
|
236
|
+
};
|
|
237
|
+
var pyannote_audio_pipeline = (model) => [
|
|
238
|
+
`from pyannote.audio import Pipeline
|
|
239
|
+
|
|
240
|
+
pipeline = Pipeline.from_pretrained("${model.id}")
|
|
241
|
+
|
|
242
|
+
# inference on the whole file
|
|
243
|
+
pipeline("file.wav")
|
|
244
|
+
|
|
245
|
+
# inference on an excerpt
|
|
246
|
+
from pyannote.core import Segment
|
|
247
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
248
|
+
|
|
249
|
+
from pyannote.audio import Audio
|
|
250
|
+
waveform, sample_rate = Audio().crop("file.wav", excerpt)
|
|
251
|
+
pipeline({"waveform": waveform, "sample_rate": sample_rate})`
|
|
252
|
+
];
|
|
253
|
+
var pyannote_audio_model = (model) => [
|
|
254
|
+
`from pyannote.audio import Model, Inference
|
|
255
|
+
|
|
256
|
+
model = Model.from_pretrained("${model.id}")
|
|
257
|
+
inference = Inference(model)
|
|
258
|
+
|
|
259
|
+
# inference on the whole file
|
|
260
|
+
inference("file.wav")
|
|
261
|
+
|
|
262
|
+
# inference on an excerpt
|
|
263
|
+
from pyannote.core import Segment
|
|
264
|
+
excerpt = Segment(start=2.0, end=5.0)
|
|
265
|
+
inference.crop("file.wav", excerpt)`
|
|
266
|
+
];
|
|
267
|
+
var pyannote_audio = (model) => {
|
|
268
|
+
if (model.tags?.includes("pyannote-audio-pipeline")) {
|
|
269
|
+
return pyannote_audio_pipeline(model);
|
|
270
|
+
}
|
|
271
|
+
return pyannote_audio_model(model);
|
|
272
|
+
};
|
|
273
|
+
var tensorflowttsTextToMel = (model) => [
|
|
274
|
+
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel
|
|
275
|
+
|
|
276
|
+
processor = AutoProcessor.from_pretrained("${model.id}")
|
|
277
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
278
|
+
`
|
|
279
|
+
];
|
|
280
|
+
var tensorflowttsMelToWav = (model) => [
|
|
281
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
282
|
+
|
|
283
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
284
|
+
audios = model.inference(mels)
|
|
285
|
+
`
|
|
286
|
+
];
|
|
287
|
+
var tensorflowttsUnknown = (model) => [
|
|
288
|
+
`from tensorflow_tts.inference import TFAutoModel
|
|
289
|
+
|
|
290
|
+
model = TFAutoModel.from_pretrained("${model.id}")
|
|
291
|
+
`
|
|
292
|
+
];
|
|
293
|
+
var tensorflowtts = (model) => {
|
|
294
|
+
if (model.tags?.includes("text-to-mel")) {
|
|
295
|
+
return tensorflowttsTextToMel(model);
|
|
296
|
+
} else if (model.tags?.includes("mel-to-wav")) {
|
|
297
|
+
return tensorflowttsMelToWav(model);
|
|
298
|
+
}
|
|
299
|
+
return tensorflowttsUnknown(model);
|
|
300
|
+
};
|
|
301
|
+
var timm = (model) => [
|
|
302
|
+
`import timm
|
|
303
|
+
|
|
304
|
+
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`
|
|
305
|
+
];
|
|
306
|
+
var skopsPickle = (model, modelFile) => {
|
|
307
|
+
return [
|
|
308
|
+
`import joblib
|
|
309
|
+
from skops.hub_utils import download
|
|
310
|
+
download("${model.id}", "path_to_folder")
|
|
311
|
+
model = joblib.load(
|
|
312
|
+
"${modelFile}"
|
|
313
|
+
)
|
|
314
|
+
# only load pickle files from sources you trust
|
|
315
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
|
|
316
|
+
];
|
|
317
|
+
};
|
|
318
|
+
var skopsFormat = (model, modelFile) => {
|
|
319
|
+
return [
|
|
320
|
+
`from skops.hub_utils import download
|
|
321
|
+
from skops.io import load
|
|
322
|
+
download("${model.id}", "path_to_folder")
|
|
323
|
+
# make sure model file is in skops format
|
|
324
|
+
# if model is a pickle file, make sure it's from a source you trust
|
|
325
|
+
model = load("path_to_folder/${modelFile}")`
|
|
326
|
+
];
|
|
327
|
+
};
|
|
328
|
+
var skopsJobLib = (model) => {
|
|
329
|
+
return [
|
|
330
|
+
`from huggingface_hub import hf_hub_download
|
|
331
|
+
import joblib
|
|
332
|
+
model = joblib.load(
|
|
333
|
+
hf_hub_download("${model.id}", "sklearn_model.joblib")
|
|
334
|
+
)
|
|
335
|
+
# only load pickle files from sources you trust
|
|
336
|
+
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`
|
|
337
|
+
];
|
|
338
|
+
};
|
|
339
|
+
var sklearn = (model) => {
|
|
340
|
+
if (model.tags?.includes("skops")) {
|
|
341
|
+
const skopsmodelFile = model.config?.sklearn?.filename;
|
|
342
|
+
const skopssaveFormat = model.config?.sklearn?.model_format;
|
|
343
|
+
if (!skopsmodelFile) {
|
|
344
|
+
return [`# \u26A0\uFE0F Model filename not specified in config.json`];
|
|
345
|
+
}
|
|
346
|
+
if (skopssaveFormat === "pickle") {
|
|
347
|
+
return skopsPickle(model, skopsmodelFile);
|
|
348
|
+
} else {
|
|
349
|
+
return skopsFormat(model, skopsmodelFile);
|
|
350
|
+
}
|
|
351
|
+
} else {
|
|
352
|
+
return skopsJobLib(model);
|
|
353
|
+
}
|
|
354
|
+
};
|
|
355
|
+
var fastai = (model) => [
|
|
356
|
+
`from huggingface_hub import from_pretrained_fastai
|
|
357
|
+
|
|
358
|
+
learn = from_pretrained_fastai("${model.id}")`
|
|
359
|
+
];
|
|
360
|
+
var sampleFactory = (model) => [
|
|
361
|
+
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`
|
|
362
|
+
];
|
|
363
|
+
var sentenceTransformers = (model) => [
|
|
364
|
+
`from sentence_transformers import SentenceTransformer
|
|
365
|
+
|
|
366
|
+
model = SentenceTransformer("${model.id}")`
|
|
367
|
+
];
|
|
368
|
+
var spacy = (model) => [
|
|
369
|
+
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl
|
|
370
|
+
|
|
371
|
+
# Using spacy.load().
|
|
372
|
+
import spacy
|
|
373
|
+
nlp = spacy.load("${nameWithoutNamespace(model.id)}")
|
|
374
|
+
|
|
375
|
+
# Importing as module.
|
|
376
|
+
import ${nameWithoutNamespace(model.id)}
|
|
377
|
+
nlp = ${nameWithoutNamespace(model.id)}.load()`
|
|
378
|
+
];
|
|
379
|
+
var span_marker = (model) => [
|
|
380
|
+
`from span_marker import SpanMarkerModel
|
|
381
|
+
|
|
382
|
+
model = SpanMarkerModel.from_pretrained("${model.id}")`
|
|
383
|
+
];
|
|
384
|
+
var stanza = (model) => [
|
|
385
|
+
`import stanza
|
|
386
|
+
|
|
387
|
+
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}")
|
|
388
|
+
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`
|
|
389
|
+
];
|
|
390
|
+
var speechBrainMethod = (speechbrainInterface) => {
|
|
391
|
+
switch (speechbrainInterface) {
|
|
392
|
+
case "EncoderClassifier":
|
|
393
|
+
return "classify_file";
|
|
394
|
+
case "EncoderDecoderASR":
|
|
395
|
+
case "EncoderASR":
|
|
396
|
+
return "transcribe_file";
|
|
397
|
+
case "SpectralMaskEnhancement":
|
|
398
|
+
return "enhance_file";
|
|
399
|
+
case "SepformerSeparation":
|
|
400
|
+
return "separate_file";
|
|
401
|
+
default:
|
|
402
|
+
return void 0;
|
|
403
|
+
}
|
|
404
|
+
};
|
|
405
|
+
var speechbrain = (model) => {
|
|
406
|
+
const speechbrainInterface = model.config?.speechbrain?.interface;
|
|
407
|
+
if (speechbrainInterface === void 0) {
|
|
408
|
+
return [`# interface not specified in config.json`];
|
|
409
|
+
}
|
|
410
|
+
const speechbrainMethod = speechBrainMethod(speechbrainInterface);
|
|
411
|
+
if (speechbrainMethod === void 0) {
|
|
412
|
+
return [`# interface in config.json invalid`];
|
|
413
|
+
}
|
|
414
|
+
return [
|
|
415
|
+
`from speechbrain.pretrained import ${speechbrainInterface}
|
|
416
|
+
model = ${speechbrainInterface}.from_hparams(
|
|
417
|
+
"${model.id}"
|
|
418
|
+
)
|
|
419
|
+
model.${speechbrainMethod}("file.wav")`
|
|
420
|
+
];
|
|
421
|
+
};
|
|
422
|
+
var transformers = (model) => {
|
|
423
|
+
const info = model.transformersInfo;
|
|
424
|
+
if (!info) {
|
|
425
|
+
return [`# \u26A0\uFE0F Type of model unknown`];
|
|
426
|
+
}
|
|
427
|
+
const remote_code_snippet = info.custom_class ? ", trust_remote_code=True" : "";
|
|
428
|
+
let autoSnippet;
|
|
429
|
+
if (info.processor) {
|
|
430
|
+
const varName = info.processor === "AutoTokenizer" ? "tokenizer" : info.processor === "AutoFeatureExtractor" ? "extractor" : "processor";
|
|
431
|
+
autoSnippet = [
|
|
432
|
+
"# Load model directly",
|
|
433
|
+
`from transformers import ${info.processor}, ${info.auto_model}`,
|
|
434
|
+
"",
|
|
435
|
+
`${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")",
|
|
436
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
|
|
437
|
+
].join("\n");
|
|
438
|
+
} else {
|
|
439
|
+
autoSnippet = [
|
|
440
|
+
"# Load model directly",
|
|
441
|
+
`from transformers import ${info.auto_model}`,
|
|
442
|
+
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")"
|
|
443
|
+
].join("\n");
|
|
444
|
+
}
|
|
445
|
+
if (model.pipeline_tag) {
|
|
446
|
+
const pipelineSnippet = [
|
|
447
|
+
"# Use a pipeline as a high-level helper",
|
|
448
|
+
"from transformers import pipeline",
|
|
449
|
+
"",
|
|
450
|
+
`pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")"
|
|
451
|
+
].join("\n");
|
|
452
|
+
return [pipelineSnippet, autoSnippet];
|
|
453
|
+
}
|
|
454
|
+
return [autoSnippet];
|
|
455
|
+
};
|
|
456
|
+
var transformersJS = (model) => {
|
|
457
|
+
if (!model.pipeline_tag) {
|
|
458
|
+
return [`// \u26A0\uFE0F Unknown pipeline tag`];
|
|
459
|
+
}
|
|
460
|
+
const libName = "@xenova/transformers";
|
|
461
|
+
return [
|
|
462
|
+
`// npm i ${libName}
|
|
463
|
+
import { pipeline } from '${libName}';
|
|
464
|
+
|
|
465
|
+
// Allocate pipeline
|
|
466
|
+
const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`
|
|
467
|
+
];
|
|
468
|
+
};
|
|
469
|
+
var peftTask = (peftTaskType) => {
|
|
470
|
+
switch (peftTaskType) {
|
|
471
|
+
case "CAUSAL_LM":
|
|
472
|
+
return "CausalLM";
|
|
473
|
+
case "SEQ_2_SEQ_LM":
|
|
474
|
+
return "Seq2SeqLM";
|
|
475
|
+
case "TOKEN_CLS":
|
|
476
|
+
return "TokenClassification";
|
|
477
|
+
case "SEQ_CLS":
|
|
478
|
+
return "SequenceClassification";
|
|
479
|
+
default:
|
|
480
|
+
return void 0;
|
|
481
|
+
}
|
|
482
|
+
};
|
|
483
|
+
var peft = (model) => {
|
|
484
|
+
const { base_model_name: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {};
|
|
485
|
+
const pefttask = peftTask(peftTaskType);
|
|
486
|
+
if (!pefttask) {
|
|
487
|
+
return [`Task type is invalid.`];
|
|
488
|
+
}
|
|
489
|
+
if (!peftBaseModel) {
|
|
490
|
+
return [`Base model is not found.`];
|
|
491
|
+
}
|
|
492
|
+
return [
|
|
493
|
+
`from peft import PeftModel, PeftConfig
|
|
494
|
+
from transformers import AutoModelFor${pefttask}
|
|
495
|
+
|
|
496
|
+
config = PeftConfig.from_pretrained("${model.id}")
|
|
497
|
+
model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}")
|
|
498
|
+
model = PeftModel.from_pretrained(model, "${model.id}")`
|
|
499
|
+
];
|
|
500
|
+
};
|
|
501
|
+
var fasttext = (model) => [
|
|
502
|
+
`from huggingface_hub import hf_hub_download
|
|
503
|
+
import fasttext
|
|
504
|
+
|
|
505
|
+
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`
|
|
506
|
+
];
|
|
507
|
+
var stableBaselines3 = (model) => [
|
|
508
|
+
`from huggingface_sb3 import load_from_hub
|
|
509
|
+
checkpoint = load_from_hub(
|
|
510
|
+
repo_id="${model.id}",
|
|
511
|
+
filename="{MODEL FILENAME}.zip",
|
|
512
|
+
)`
|
|
513
|
+
];
|
|
514
|
+
var nemoDomainResolver = (domain, model) => {
|
|
515
|
+
switch (domain) {
|
|
516
|
+
case "ASR":
|
|
517
|
+
return [
|
|
518
|
+
`import nemo.collections.asr as nemo_asr
|
|
519
|
+
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}")
|
|
520
|
+
|
|
521
|
+
transcriptions = asr_model.transcribe(["file.wav"])`
|
|
522
|
+
];
|
|
523
|
+
default:
|
|
524
|
+
return void 0;
|
|
525
|
+
}
|
|
526
|
+
};
|
|
527
|
+
var mlAgents = (model) => [`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./downloads"`];
|
|
528
|
+
var nemo = (model) => {
|
|
529
|
+
let command = void 0;
|
|
530
|
+
if (model.tags?.includes("automatic-speech-recognition")) {
|
|
531
|
+
command = nemoDomainResolver("ASR", model);
|
|
532
|
+
}
|
|
533
|
+
return command ?? [`# tag did not correspond to a valid NeMo domain.`];
|
|
534
|
+
};
|
|
535
|
+
var pythae = (model) => [
|
|
536
|
+
`from pythae.models import AutoModel
|
|
537
|
+
|
|
538
|
+
model = AutoModel.load_from_hf_hub("${model.id}")`
|
|
539
|
+
];
|
|
540
|
+
var MODEL_LIBRARIES_UI_ELEMENTS = {
|
|
541
|
+
"adapter-transformers": {
|
|
542
|
+
btnLabel: "Adapter Transformers",
|
|
543
|
+
repoName: "adapter-transformers",
|
|
544
|
+
repoUrl: "https://github.com/Adapter-Hub/adapter-transformers",
|
|
545
|
+
docsUrl: "https://huggingface.co/docs/hub/adapter-transformers",
|
|
546
|
+
snippets: adapter_transformers
|
|
547
|
+
},
|
|
548
|
+
allennlp: {
|
|
549
|
+
btnLabel: "AllenNLP",
|
|
550
|
+
repoName: "AllenNLP",
|
|
551
|
+
repoUrl: "https://github.com/allenai/allennlp",
|
|
552
|
+
docsUrl: "https://huggingface.co/docs/hub/allennlp",
|
|
553
|
+
snippets: allennlp
|
|
554
|
+
},
|
|
555
|
+
asteroid: {
|
|
556
|
+
btnLabel: "Asteroid",
|
|
557
|
+
repoName: "Asteroid",
|
|
558
|
+
repoUrl: "https://github.com/asteroid-team/asteroid",
|
|
559
|
+
docsUrl: "https://huggingface.co/docs/hub/asteroid",
|
|
560
|
+
snippets: asteroid
|
|
561
|
+
},
|
|
562
|
+
bertopic: {
|
|
563
|
+
btnLabel: "BERTopic",
|
|
564
|
+
repoName: "BERTopic",
|
|
565
|
+
repoUrl: "https://github.com/MaartenGr/BERTopic",
|
|
566
|
+
snippets: bertopic
|
|
567
|
+
},
|
|
568
|
+
diffusers: {
|
|
569
|
+
btnLabel: "Diffusers",
|
|
570
|
+
repoName: "\u{1F917}/diffusers",
|
|
571
|
+
repoUrl: "https://github.com/huggingface/diffusers",
|
|
572
|
+
docsUrl: "https://huggingface.co/docs/hub/diffusers",
|
|
573
|
+
snippets: diffusers
|
|
574
|
+
},
|
|
575
|
+
espnet: {
|
|
576
|
+
btnLabel: "ESPnet",
|
|
577
|
+
repoName: "ESPnet",
|
|
578
|
+
repoUrl: "https://github.com/espnet/espnet",
|
|
579
|
+
docsUrl: "https://huggingface.co/docs/hub/espnet",
|
|
580
|
+
snippets: espnet
|
|
581
|
+
},
|
|
582
|
+
fairseq: {
|
|
583
|
+
btnLabel: "Fairseq",
|
|
584
|
+
repoName: "fairseq",
|
|
585
|
+
repoUrl: "https://github.com/pytorch/fairseq",
|
|
586
|
+
snippets: fairseq
|
|
587
|
+
},
|
|
588
|
+
flair: {
|
|
589
|
+
btnLabel: "Flair",
|
|
590
|
+
repoName: "Flair",
|
|
591
|
+
repoUrl: "https://github.com/flairNLP/flair",
|
|
592
|
+
docsUrl: "https://huggingface.co/docs/hub/flair",
|
|
593
|
+
snippets: flair
|
|
594
|
+
},
|
|
595
|
+
keras: {
|
|
596
|
+
btnLabel: "Keras",
|
|
597
|
+
repoName: "Keras",
|
|
598
|
+
repoUrl: "https://github.com/keras-team/keras",
|
|
599
|
+
docsUrl: "https://huggingface.co/docs/hub/keras",
|
|
600
|
+
snippets: keras
|
|
601
|
+
},
|
|
602
|
+
nemo: {
|
|
603
|
+
btnLabel: "NeMo",
|
|
604
|
+
repoName: "NeMo",
|
|
605
|
+
repoUrl: "https://github.com/NVIDIA/NeMo",
|
|
606
|
+
snippets: nemo
|
|
607
|
+
},
|
|
608
|
+
open_clip: {
|
|
609
|
+
btnLabel: "OpenCLIP",
|
|
610
|
+
repoName: "OpenCLIP",
|
|
611
|
+
repoUrl: "https://github.com/mlfoundations/open_clip",
|
|
612
|
+
snippets: open_clip
|
|
613
|
+
},
|
|
614
|
+
paddlenlp: {
|
|
615
|
+
btnLabel: "paddlenlp",
|
|
616
|
+
repoName: "PaddleNLP",
|
|
617
|
+
repoUrl: "https://github.com/PaddlePaddle/PaddleNLP",
|
|
618
|
+
docsUrl: "https://huggingface.co/docs/hub/paddlenlp",
|
|
619
|
+
snippets: paddlenlp
|
|
620
|
+
},
|
|
621
|
+
peft: {
|
|
622
|
+
btnLabel: "PEFT",
|
|
623
|
+
repoName: "PEFT",
|
|
624
|
+
repoUrl: "https://github.com/huggingface/peft",
|
|
625
|
+
snippets: peft
|
|
626
|
+
},
|
|
627
|
+
"pyannote-audio": {
|
|
628
|
+
btnLabel: "pyannote.audio",
|
|
629
|
+
repoName: "pyannote-audio",
|
|
630
|
+
repoUrl: "https://github.com/pyannote/pyannote-audio",
|
|
631
|
+
snippets: pyannote_audio
|
|
632
|
+
},
|
|
633
|
+
"sentence-transformers": {
|
|
634
|
+
btnLabel: "sentence-transformers",
|
|
635
|
+
repoName: "sentence-transformers",
|
|
636
|
+
repoUrl: "https://github.com/UKPLab/sentence-transformers",
|
|
637
|
+
docsUrl: "https://huggingface.co/docs/hub/sentence-transformers",
|
|
638
|
+
snippets: sentenceTransformers
|
|
639
|
+
},
|
|
640
|
+
sklearn: {
|
|
641
|
+
btnLabel: "Scikit-learn",
|
|
642
|
+
repoName: "Scikit-learn",
|
|
643
|
+
repoUrl: "https://github.com/scikit-learn/scikit-learn",
|
|
644
|
+
snippets: sklearn
|
|
645
|
+
},
|
|
646
|
+
fastai: {
|
|
647
|
+
btnLabel: "fastai",
|
|
648
|
+
repoName: "fastai",
|
|
649
|
+
repoUrl: "https://github.com/fastai/fastai",
|
|
650
|
+
docsUrl: "https://huggingface.co/docs/hub/fastai",
|
|
651
|
+
snippets: fastai
|
|
652
|
+
},
|
|
653
|
+
spacy: {
|
|
654
|
+
btnLabel: "spaCy",
|
|
655
|
+
repoName: "spaCy",
|
|
656
|
+
repoUrl: "https://github.com/explosion/spaCy",
|
|
657
|
+
docsUrl: "https://huggingface.co/docs/hub/spacy",
|
|
658
|
+
snippets: spacy
|
|
659
|
+
},
|
|
660
|
+
"span-marker": {
|
|
661
|
+
btnLabel: "SpanMarker",
|
|
662
|
+
repoName: "SpanMarkerNER",
|
|
663
|
+
repoUrl: "https://github.com/tomaarsen/SpanMarkerNER",
|
|
664
|
+
docsUrl: "https://huggingface.co/docs/hub/span_marker",
|
|
665
|
+
snippets: span_marker
|
|
666
|
+
},
|
|
667
|
+
speechbrain: {
|
|
668
|
+
btnLabel: "speechbrain",
|
|
669
|
+
repoName: "speechbrain",
|
|
670
|
+
repoUrl: "https://github.com/speechbrain/speechbrain",
|
|
671
|
+
docsUrl: "https://huggingface.co/docs/hub/speechbrain",
|
|
672
|
+
snippets: speechbrain
|
|
673
|
+
},
|
|
674
|
+
stanza: {
|
|
675
|
+
btnLabel: "Stanza",
|
|
676
|
+
repoName: "stanza",
|
|
677
|
+
repoUrl: "https://github.com/stanfordnlp/stanza",
|
|
678
|
+
docsUrl: "https://huggingface.co/docs/hub/stanza",
|
|
679
|
+
snippets: stanza
|
|
680
|
+
},
|
|
681
|
+
tensorflowtts: {
|
|
682
|
+
btnLabel: "TensorFlowTTS",
|
|
683
|
+
repoName: "TensorFlowTTS",
|
|
684
|
+
repoUrl: "https://github.com/TensorSpeech/TensorFlowTTS",
|
|
685
|
+
snippets: tensorflowtts
|
|
686
|
+
},
|
|
687
|
+
timm: {
|
|
688
|
+
btnLabel: "timm",
|
|
689
|
+
repoName: "pytorch-image-models",
|
|
690
|
+
repoUrl: "https://github.com/rwightman/pytorch-image-models",
|
|
691
|
+
docsUrl: "https://huggingface.co/docs/hub/timm",
|
|
692
|
+
snippets: timm
|
|
693
|
+
},
|
|
694
|
+
transformers: {
|
|
695
|
+
btnLabel: "Transformers",
|
|
696
|
+
repoName: "\u{1F917}/transformers",
|
|
697
|
+
repoUrl: "https://github.com/huggingface/transformers",
|
|
698
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers",
|
|
699
|
+
snippets: transformers
|
|
700
|
+
},
|
|
701
|
+
"transformers.js": {
|
|
702
|
+
btnLabel: "Transformers.js",
|
|
703
|
+
repoName: "transformers.js",
|
|
704
|
+
repoUrl: "https://github.com/xenova/transformers.js",
|
|
705
|
+
docsUrl: "https://huggingface.co/docs/hub/transformers-js",
|
|
706
|
+
snippets: transformersJS
|
|
707
|
+
},
|
|
708
|
+
fasttext: {
|
|
709
|
+
btnLabel: "fastText",
|
|
710
|
+
repoName: "fastText",
|
|
711
|
+
repoUrl: "https://fasttext.cc/",
|
|
712
|
+
snippets: fasttext
|
|
713
|
+
},
|
|
714
|
+
"sample-factory": {
|
|
715
|
+
btnLabel: "sample-factory",
|
|
716
|
+
repoName: "sample-factory",
|
|
717
|
+
repoUrl: "https://github.com/alex-petrenko/sample-factory",
|
|
718
|
+
docsUrl: "https://huggingface.co/docs/hub/sample-factory",
|
|
719
|
+
snippets: sampleFactory
|
|
720
|
+
},
|
|
721
|
+
"stable-baselines3": {
|
|
722
|
+
btnLabel: "stable-baselines3",
|
|
723
|
+
repoName: "stable-baselines3",
|
|
724
|
+
repoUrl: "https://github.com/huggingface/huggingface_sb3",
|
|
725
|
+
docsUrl: "https://huggingface.co/docs/hub/stable-baselines3",
|
|
726
|
+
snippets: stableBaselines3
|
|
727
|
+
},
|
|
728
|
+
"ml-agents": {
|
|
729
|
+
btnLabel: "ml-agents",
|
|
730
|
+
repoName: "ml-agents",
|
|
731
|
+
repoUrl: "https://github.com/huggingface/ml-agents",
|
|
732
|
+
docsUrl: "https://huggingface.co/docs/hub/ml-agents",
|
|
733
|
+
snippets: mlAgents
|
|
734
|
+
},
|
|
735
|
+
pythae: {
|
|
736
|
+
btnLabel: "pythae",
|
|
737
|
+
repoName: "pythae",
|
|
738
|
+
repoUrl: "https://github.com/clementchadebec/benchmark_VAE",
|
|
739
|
+
snippets: pythae
|
|
740
|
+
}
|
|
741
|
+
};
|
|
742
|
+
|
|
743
|
+
// src/default-widget-inputs.ts
|
|
744
|
+
var MAPPING_EN = /* @__PURE__ */ new Map([
|
|
745
|
+
["text-classification", [`I like you. I love you`]],
|
|
746
|
+
[
|
|
747
|
+
"token-classification",
|
|
748
|
+
[
|
|
749
|
+
`My name is Wolfgang and I live in Berlin`,
|
|
750
|
+
`My name is Sarah and I live in London`,
|
|
751
|
+
`My name is Clara and I live in Berkeley, California.`
|
|
752
|
+
]
|
|
753
|
+
],
|
|
754
|
+
[
|
|
755
|
+
"table-question-answering",
|
|
756
|
+
[
|
|
757
|
+
{
|
|
758
|
+
text: `How many stars does the transformers repository have?`,
|
|
759
|
+
table: {
|
|
760
|
+
Repository: ["Transformers", "Datasets", "Tokenizers"],
|
|
761
|
+
Stars: [36542, 4512, 3934],
|
|
762
|
+
Contributors: [651, 77, 34],
|
|
763
|
+
"Programming language": ["Python", "Python", "Rust, Python and NodeJS"]
|
|
764
|
+
}
|
|
765
|
+
}
|
|
766
|
+
]
|
|
767
|
+
],
|
|
768
|
+
[
|
|
769
|
+
"question-answering",
|
|
770
|
+
[
|
|
771
|
+
{
|
|
772
|
+
text: `Where do I live?`,
|
|
773
|
+
context: `My name is Wolfgang and I live in Berlin`
|
|
774
|
+
},
|
|
775
|
+
{
|
|
776
|
+
text: `Where do I live?`,
|
|
777
|
+
context: `My name is Sarah and I live in London`
|
|
778
|
+
},
|
|
779
|
+
{
|
|
780
|
+
text: `What's my name?`,
|
|
781
|
+
context: `My name is Clara and I live in Berkeley.`
|
|
782
|
+
},
|
|
783
|
+
{
|
|
784
|
+
text: `Which name is also used to describe the Amazon rainforest in English?`,
|
|
785
|
+
context: `The Amazon rainforest (Portuguese: Floresta Amaz\xF4nica or Amaz\xF4nia; Spanish: Selva Amaz\xF3nica, Amazon\xEDa or usually Amazonia; French: For\xEAt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 square kilometres (2,700,000 sq mi), of which 5,500,000 square kilometres (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and French Guiana. States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests, and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.`
|
|
786
|
+
}
|
|
787
|
+
]
|
|
788
|
+
],
|
|
789
|
+
[
|
|
790
|
+
"zero-shot-classification",
|
|
791
|
+
[
|
|
792
|
+
{
|
|
793
|
+
text: "I have a problem with my iphone that needs to be resolved asap!!",
|
|
794
|
+
candidate_labels: "urgent, not urgent, phone, tablet, computer",
|
|
795
|
+
multi_class: true
|
|
796
|
+
},
|
|
797
|
+
{
|
|
798
|
+
text: "Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.",
|
|
799
|
+
candidate_labels: "mobile, website, billing, account access",
|
|
800
|
+
multi_class: false
|
|
801
|
+
},
|
|
802
|
+
{
|
|
803
|
+
text: "A new model offers an explanation for how the Galilean satellites formed around the solar system\u2019s largest world. Konstantin Batygin did not set out to solve one of the solar system\u2019s most puzzling mysteries when he went for a run up a hill in Nice, France. Dr. Batygin, a Caltech researcher, best known for his contributions to the search for the solar system\u2019s missing \u201CPlanet Nine,\u201D spotted a beer bottle. At a steep, 20 degree grade, he wondered why it wasn\u2019t rolling down the hill. He realized there was a breeze at his back holding the bottle in place. Then he had a thought that would only pop into the mind of a theoretical astrophysicist: \u201COh! This is how Europa formed.\u201D Europa is one of Jupiter\u2019s four large Galilean moons. And in a paper published Monday in the Astrophysical Journal, Dr. Batygin and a co-author, Alessandro Morbidelli, a planetary scientist at the C\xF4te d\u2019Azur Observatory in France, present a theory explaining how some moons form around gas giants like Jupiter and Saturn, suggesting that millimeter-sized grains of hail produced during the solar system\u2019s formation became trapped around these massive worlds, taking shape one at a time into the potentially habitable moons we know today.",
|
|
804
|
+
candidate_labels: "space & cosmos, scientific discovery, microbiology, robots, archeology",
|
|
805
|
+
multi_class: true
|
|
806
|
+
}
|
|
807
|
+
]
|
|
808
|
+
],
|
|
809
|
+
["translation", [`My name is Wolfgang and I live in Berlin`, `My name is Sarah and I live in London`]],
|
|
810
|
+
[
|
|
811
|
+
"summarization",
|
|
812
|
+
[
|
|
813
|
+
`The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.`
|
|
814
|
+
]
|
|
815
|
+
],
|
|
816
|
+
[
|
|
817
|
+
"conversational",
|
|
818
|
+
[
|
|
819
|
+
`Hey my name is Julien! How are you?`,
|
|
820
|
+
`Hey my name is Thomas! How are you?`,
|
|
821
|
+
`Hey my name is Mariama! How are you?`,
|
|
822
|
+
`Hey my name is Clara! How are you?`,
|
|
823
|
+
`Hey my name is Julien! How are you?`,
|
|
824
|
+
`Hi.`
|
|
825
|
+
]
|
|
826
|
+
],
|
|
827
|
+
[
|
|
828
|
+
"text-generation",
|
|
829
|
+
[
|
|
830
|
+
`My name is Julien and I like to`,
|
|
831
|
+
`My name is Thomas and my main`,
|
|
832
|
+
`My name is Mariama, my favorite`,
|
|
833
|
+
`My name is Clara and I am`,
|
|
834
|
+
`My name is Lewis and I like to`,
|
|
835
|
+
`My name is Merve and my favorite`,
|
|
836
|
+
`My name is Teven and I am`,
|
|
837
|
+
`Once upon a time,`
|
|
838
|
+
]
|
|
839
|
+
],
|
|
840
|
+
["fill-mask", [`Paris is the <mask> of France.`, `The goal of life is <mask>.`]],
|
|
841
|
+
[
|
|
842
|
+
"sentence-similarity",
|
|
843
|
+
[
|
|
844
|
+
{
|
|
845
|
+
source_sentence: "That is a happy person",
|
|
846
|
+
sentences: ["That is a happy dog", "That is a very happy person", "Today is a sunny day"]
|
|
847
|
+
}
|
|
848
|
+
]
|
|
849
|
+
]
|
|
850
|
+
]);
|
|
851
|
+
var MAPPING_ZH = /* @__PURE__ */ new Map([
|
|
852
|
+
["text-classification", [`\u6211\u559C\u6B22\u4F60\u3002 \u6211\u7231\u4F60`]],
|
|
853
|
+
["token-classification", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u52A0\u5DDE\u4F2F\u514B\u5229\u3002`]],
|
|
854
|
+
[
|
|
855
|
+
"question-answering",
|
|
856
|
+
[
|
|
857
|
+
{
|
|
858
|
+
text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
|
|
859
|
+
context: `\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`
|
|
860
|
+
},
|
|
861
|
+
{
|
|
862
|
+
text: `\u6211\u4F4F\u5728\u54EA\u91CC\uFF1F`,
|
|
863
|
+
context: `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`
|
|
864
|
+
},
|
|
865
|
+
{
|
|
866
|
+
text: `\u6211\u7684\u540D\u5B57\u662F\u4EC0\u4E48\uFF1F`,
|
|
867
|
+
context: `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u4F4F\u5728\u4F2F\u514B\u5229\u3002`
|
|
868
|
+
}
|
|
869
|
+
]
|
|
870
|
+
],
|
|
871
|
+
["translation", [`\u6211\u53EB\u6C83\u5C14\u592B\u5188\uFF0C\u6211\u4F4F\u5728\u67CF\u6797\u3002`, `\u6211\u53EB\u8428\u62C9\uFF0C\u6211\u4F4F\u5728\u4F26\u6566\u3002`]],
|
|
872
|
+
[
|
|
873
|
+
"zero-shot-classification",
|
|
874
|
+
[
|
|
875
|
+
{
|
|
876
|
+
text: "\u623F\u95F4\u5E72\u51C0\u660E\u4EAE\uFF0C\u975E\u5E38\u4E0D\u9519",
|
|
877
|
+
candidate_labels: "\u8FD9\u662F\u4E00\u6761\u5DEE\u8BC4, \u8FD9\u662F\u4E00\u6761\u597D\u8BC4"
|
|
878
|
+
}
|
|
879
|
+
]
|
|
880
|
+
],
|
|
881
|
+
[
|
|
882
|
+
"summarization",
|
|
883
|
+
[
|
|
884
|
+
`\u8BE5\u5854\u9AD8324\u7C73\uFF081063\u82F1\u5C3A\uFF09\uFF0C\u4E0E\u4E00\u5E6281\u5C42\u7684\u5EFA\u7B51\u7269\u4E00\u6837\u9AD8\uFF0C\u662F\u5DF4\u9ECE\u6700\u9AD8\u7684\u5EFA\u7B51\u7269\u3002 \u5B83\u7684\u5E95\u5EA7\u662F\u65B9\u5F62\u7684\uFF0C\u6BCF\u8FB9\u957F125\u7C73\uFF08410\u82F1\u5C3A\uFF09\u3002 \u5728\u5EFA\u9020\u8FC7\u7A0B\u4E2D\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u8D85\u8FC7\u4E86\u534E\u76DB\u987F\u7EAA\u5FF5\u7891\uFF0C\u6210\u4E3A\u4E16\u754C\u4E0A\u6700\u9AD8\u7684\u4EBA\u9020\u7ED3\u6784\uFF0C\u5B83\u4FDD\u6301\u4E8641\u5E74\u7684\u5934\u8854\uFF0C\u76F4\u52301930\u5E74\u7EBD\u7EA6\u5E02\u7684\u514B\u83B1\u65AF\u52D2\u5927\u697C\u7AE3\u5DE5\u3002\u8FD9\u662F\u7B2C\u4E00\u4E2A\u5230\u8FBE300\u7C73\u9AD8\u5EA6\u7684\u7ED3\u6784\u3002 \u7531\u4E8E1957\u5E74\u5728\u5854\u9876\u589E\u52A0\u4E86\u5E7F\u64AD\u5929\u7EBF\uFF0C\u56E0\u6B64\u5B83\u73B0\u5728\u6BD4\u514B\u83B1\u65AF\u52D2\u5927\u53A6\u9AD85.2\u7C73\uFF0817\u82F1\u5C3A\uFF09\u3002 \u9664\u53D1\u5C04\u5668\u5916\uFF0C\u827E\u83F2\u5C14\u94C1\u5854\u662F\u6CD5\u56FD\u7B2C\u4E8C\u9AD8\u7684\u72EC\u7ACB\u5F0F\u5EFA\u7B51\uFF0C\u4EC5\u6B21\u4E8E\u7C73\u52B3\u9AD8\u67B6\u6865\u3002`
|
|
885
|
+
]
|
|
886
|
+
],
|
|
887
|
+
[
|
|
888
|
+
"text-generation",
|
|
889
|
+
[`\u6211\u53EB\u6731\u5229\u5B89\uFF0C\u6211\u559C\u6B22`, `\u6211\u53EB\u6258\u9A6C\u65AF\uFF0C\u6211\u7684\u4E3B\u8981`, `\u6211\u53EB\u739B\u4E3D\u4E9A\uFF0C\u6211\u6700\u559C\u6B22\u7684`, `\u6211\u53EB\u514B\u62C9\u62C9\uFF0C\u6211\u662F`, `\u4ECE\u524D\uFF0C`]
|
|
890
|
+
],
|
|
891
|
+
["fill-mask", [`\u5DF4\u9ECE\u662F<mask>\u56FD\u7684\u9996\u90FD\u3002`, `\u751F\u6D3B\u7684\u771F\u8C1B\u662F<mask>\u3002`]],
|
|
892
|
+
[
|
|
893
|
+
"sentence-similarity",
|
|
894
|
+
[
|
|
895
|
+
{
|
|
896
|
+
source_sentence: "\u90A3\u662F \u500B\u5FEB\u6A02\u7684\u4EBA",
|
|
897
|
+
sentences: ["\u90A3\u662F \u689D\u5FEB\u6A02\u7684\u72D7", "\u90A3\u662F \u500B\u975E\u5E38\u5E78\u798F\u7684\u4EBA", "\u4ECA\u5929\u662F\u6674\u5929"]
|
|
898
|
+
}
|
|
899
|
+
]
|
|
900
|
+
]
|
|
901
|
+
]);
|
|
902
|
+
var MAPPING_FR = /* @__PURE__ */ new Map([
|
|
903
|
+
["text-classification", [`Je t'appr\xE9cie beaucoup. Je t'aime.`]],
|
|
904
|
+
["token-classification", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
|
|
905
|
+
[
|
|
906
|
+
"question-answering",
|
|
907
|
+
[
|
|
908
|
+
{
|
|
909
|
+
text: `O\xF9 est-ce que je vis?`,
|
|
910
|
+
context: `Mon nom est Wolfgang et je vis \xE0 Berlin`
|
|
911
|
+
}
|
|
912
|
+
]
|
|
913
|
+
],
|
|
914
|
+
["translation", [`Mon nom est Wolfgang et je vis \xE0 Berlin`]],
|
|
915
|
+
[
|
|
916
|
+
"summarization",
|
|
917
|
+
[
|
|
918
|
+
`La tour fait 324 m\xE8tres (1,063 pieds) de haut, environ la m\xEAme hauteur qu'un immeuble de 81 \xE9tages, et est la plus haute structure de Paris. Sa base est carr\xE9e, mesurant 125 m\xE8tres (410 pieds) sur chaque c\xF4t\xE9. Durant sa construction, la tour Eiffel surpassa le Washington Monument pour devenir la plus haute structure construite par l'homme dans le monde, un titre qu'elle conserva pendant 41 ans jusqu'\xE0 l'ach\xE8vement du Chrysler Building \xE0 New-York City en 1930. Ce fut la premi\xE8re structure \xE0 atteindre une hauteur de 300 m\xE8tres. Avec l'ajout d'une antenne de radiodiffusion au sommet de la tour Eiffel en 1957, celle-ci redevint plus haute que le Chrysler Building de 5,2 m\xE8tres (17 pieds). En excluant les transmetteurs, elle est la seconde plus haute stucture autoportante de France apr\xE8s le viaduc de Millau.`
|
|
919
|
+
]
|
|
920
|
+
],
|
|
921
|
+
["text-generation", [`Mon nom est Julien et j'aime`, `Mon nom est Thomas et mon principal`, `Il \xE9tait une fois`]],
|
|
922
|
+
["fill-mask", [`Paris est la <mask> de la France.`]],
|
|
923
|
+
[
|
|
924
|
+
"sentence-similarity",
|
|
925
|
+
[
|
|
926
|
+
{
|
|
927
|
+
source_sentence: "C'est une personne heureuse",
|
|
928
|
+
sentences: [
|
|
929
|
+
"C'est un chien heureux",
|
|
930
|
+
"C'est une personne tr\xE8s heureuse",
|
|
931
|
+
"Aujourd'hui est une journ\xE9e ensoleill\xE9e"
|
|
932
|
+
]
|
|
933
|
+
}
|
|
934
|
+
]
|
|
935
|
+
]
|
|
936
|
+
]);
|
|
937
|
+
var MAPPING_ES = /* @__PURE__ */ new Map([
|
|
938
|
+
["text-classification", [`Te quiero. Te amo.`]],
|
|
939
|
+
["token-classification", [`Me llamo Wolfgang y vivo en Berlin`]],
|
|
940
|
+
[
|
|
941
|
+
"question-answering",
|
|
942
|
+
[
|
|
943
|
+
{
|
|
944
|
+
text: `\xBFD\xF3nde vivo?`,
|
|
945
|
+
context: `Me llamo Wolfgang y vivo en Berlin`
|
|
946
|
+
},
|
|
947
|
+
{
|
|
948
|
+
text: `\xBFQui\xE9n invent\xF3 el submarino?`,
|
|
949
|
+
context: `Isaac Peral fue un murciano que invent\xF3 el submarino`
|
|
950
|
+
},
|
|
951
|
+
{
|
|
952
|
+
text: `\xBFCu\xE1ntas personas hablan espa\xF1ol?`,
|
|
953
|
+
context: `El espa\xF1ol es el segundo idioma m\xE1s hablado del mundo con m\xE1s de 442 millones de hablantes`
|
|
954
|
+
}
|
|
955
|
+
]
|
|
956
|
+
],
|
|
957
|
+
[
|
|
958
|
+
"translation",
|
|
959
|
+
[
|
|
960
|
+
`Me llamo Wolfgang y vivo en Berlin`,
|
|
961
|
+
`Los ingredientes de una tortilla de patatas son: huevos, patatas y cebolla`
|
|
962
|
+
]
|
|
963
|
+
],
|
|
964
|
+
[
|
|
965
|
+
"summarization",
|
|
966
|
+
[
|
|
967
|
+
`La torre tiene 324 metros (1.063 pies) de altura, aproximadamente la misma altura que un edificio de 81 pisos y la estructura m\xE1s alta de Par\xEDs. Su base es cuadrada, mide 125 metros (410 pies) a cada lado. Durante su construcci\xF3n, la Torre Eiffel super\xF3 al Washington Monument para convertirse en la estructura artificial m\xE1s alta del mundo, un t\xEDtulo que mantuvo durante 41 a\xF1os hasta que el Chrysler Building en la ciudad de Nueva York se termin\xF3 en 1930. Fue la primera estructura en llegar Una altura de 300 metros. Debido a la adici\xF3n de una antena de transmisi\xF3n en la parte superior de la torre en 1957, ahora es m\xE1s alta que el Chrysler Building en 5,2 metros (17 pies). Excluyendo los transmisores, la Torre Eiffel es la segunda estructura independiente m\xE1s alta de Francia despu\xE9s del Viaducto de Millau.`
|
|
968
|
+
]
|
|
969
|
+
],
|
|
970
|
+
[
|
|
971
|
+
"text-generation",
|
|
972
|
+
[
|
|
973
|
+
`Me llamo Julien y me gusta`,
|
|
974
|
+
`Me llamo Thomas y mi principal`,
|
|
975
|
+
`Me llamo Manuel y trabajo en`,
|
|
976
|
+
`\xC9rase una vez,`,
|
|
977
|
+
`Si t\xFA me dices ven, `
|
|
978
|
+
]
|
|
979
|
+
],
|
|
980
|
+
["fill-mask", [`Mi nombre es <mask> y vivo en Nueva York.`, `El espa\xF1ol es un idioma muy <mask> en el mundo.`]],
|
|
981
|
+
[
|
|
982
|
+
"sentence-similarity",
|
|
983
|
+
[
|
|
984
|
+
{
|
|
985
|
+
source_sentence: "Esa es una persona feliz",
|
|
986
|
+
sentences: ["Ese es un perro feliz", "Esa es una persona muy feliz", "Hoy es un d\xEDa soleado"]
|
|
987
|
+
}
|
|
988
|
+
]
|
|
989
|
+
]
|
|
990
|
+
]);
|
|
991
|
+
var MAPPING_RU = /* @__PURE__ */ new Map([
|
|
992
|
+
["text-classification", [`\u0422\u044B \u043C\u043D\u0435 \u043D\u0440\u0430\u0432\u0438\u0448\u044C\u0441\u044F. \u042F \u0442\u0435\u0431\u044F \u043B\u044E\u0431\u043B\u044E`]],
|
|
993
|
+
["token-classification", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
|
|
994
|
+
[
|
|
995
|
+
"question-answering",
|
|
996
|
+
[
|
|
997
|
+
{
|
|
998
|
+
text: `\u0413\u0434\u0435 \u0436\u0438\u0432\u0443?`,
|
|
999
|
+
context: `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`
|
|
1000
|
+
}
|
|
1001
|
+
]
|
|
1002
|
+
],
|
|
1003
|
+
["translation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435`]],
|
|
1004
|
+
[
|
|
1005
|
+
"summarization",
|
|
1006
|
+
[
|
|
1007
|
+
`\u0412\u044B\u0441\u043E\u0442\u0430 \u0431\u0430\u0448\u043D\u0438 \u0441\u043E\u0441\u0442\u0430\u0432\u043B\u044F\u0435\u0442 324 \u043C\u0435\u0442\u0440\u0430 (1063 \u0444\u0443\u0442\u0430), \u043F\u0440\u0438\u043C\u0435\u0440\u043D\u043E \u0442\u0430\u043A\u0430\u044F \u0436\u0435 \u0432\u044B\u0441\u043E\u0442\u0430, \u043A\u0430\u043A \u0443 81-\u044D\u0442\u0430\u0436\u043D\u043E\u0433\u043E \u0437\u0434\u0430\u043D\u0438\u044F, \u0438 \u0441\u0430\u043C\u043E\u0435 \u0432\u044B\u0441\u043E\u043A\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u0432 \u041F\u0430\u0440\u0438\u0436\u0435. \u0415\u0433\u043E \u043E\u0441\u043D\u043E\u0432\u0430\u043D\u0438\u0435 \u043A\u0432\u0430\u0434\u0440\u0430\u0442\u043D\u043E, \u0440\u0430\u0437\u043C\u0435\u0440\u043E\u043C 125 \u043C\u0435\u0442\u0440\u043E\u0432 (410 \u0444\u0443\u0442\u043E\u0432) \u0441 \u043B\u044E\u0431\u043E\u0439 \u0441\u0442\u043E\u0440\u043E\u043D\u044B. \u0412\u043E \u0432\u0440\u0435\u043C\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u0430 \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u043F\u0440\u0435\u0432\u0437\u043E\u0448\u043B\u0430 \u043C\u043E\u043D\u0443\u043C\u0435\u043D\u0442 \u0412\u0430\u0448\u0438\u043D\u0433\u0442\u043E\u043D\u0430, \u0441\u0442\u0430\u0432 \u0441\u0430\u043C\u044B\u043C \u0432\u044B\u0441\u043E\u043A\u0438\u043C \u0438\u0441\u043A\u0443\u0441\u0441\u0442\u0432\u0435\u043D\u043D\u044B\u043C \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435\u043C \u0432 \u043C\u0438\u0440\u0435, \u0438 \u044D\u0442\u043E\u0442 \u0442\u0438\u0442\u0443\u043B \u043E\u043D\u0430 \u0443\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u043B\u0430 \u0432 \u0442\u0435\u0447\u0435\u043D\u0438\u0435 41 \u0433\u043E\u0434\u0430 \u0434\u043E \u0437\u0430\u0432\u0435\u0440\u0448\u0435\u043D\u0438\u044F \u0441\u0442\u0440\u043E\u0438\u0442\u0435\u043B\u044C\u0441\u0442\u0432\u043E \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435 \u0432 1930 \u0433\u043E\u0434\u0443. \u042D\u0442\u043E \u043F\u0435\u0440\u0432\u043E\u0435 \u0441\u043E\u043E\u0440\u0443\u0436\u0435\u043D\u0438\u0435 \u043A\u043E\u0442\u043E\u0440\u043E\u0435 \u0434\u043E\u0441\u0442\u0438\u0433\u043B\u043E \u0432\u044B\u0441\u043E\u0442\u044B 300 \u043C\u0435\u0442\u0440\u043E\u0432. \u0418\u0437-\u0437\u0430 \u0434\u043E\u0431\u0430\u0432\u043B\u0435\u043D\u0438\u044F \u0432\u0435\u0449\u0430\u0442\u0435\u043B\u044C\u043D\u043E\u0439 \u0430\u043D\u0442\u0435\u043D\u043D\u044B \u043D\u0430 \u0432\u0435\u0440\u0448\u0438\u043D\u0435 \u0431\u0430\u0448\u043D\u0438 \u0432 1957 \u0433\u043E\u0434\u0443 \u043E\u043D\u0430 \u0441\u0435\u0439\u0447\u0430\u0441 \u0432\u044B\u0448\u0435 \u0437\u0434\u0430\u043D\u0438\u044F \u041A\u0440\u0430\u0439\u0441\u043B\u0435\u0440 \u043D\u0430 5,2 \u043C\u0435\u0442\u0440\u0430 (17 \u0444\u0443\u0442\u043E\u0432). \u0417\u0430 \u0438\u0441\u043A\u043B\u044E\u0447\u0435\u043D\u0438\u0435\u043C \u043F\u0435\u0440\u0435\u0434\u0430\u0442\u0447\u0438\u043A\u043E\u0432, \u042D\u0439\u0444\u0435\u043B\u0435\u0432\u0430 \u0431\u0430\u0448\u043D\u044F \u044F\u0432\u043B\u044F\u0435\u0442\u0441\u044F \u0432\u0442\u043E\u0440\u043E\u0439 \u0441\u0430\u043C\u043E\u0439 \u0432\u044B\u0441\u043E\u043A\u043E\u0439 \u043E\u0442\u0434\u0435\u043B\u044C\u043D\u043E \u0441\u0442\u043E\u044F\u0449\u0435\u0439 \u0441\u0442\u0440\u0443\u043A\u0442\u0443\u0440\u043E\u0439 \u0432\u043E \u0424\u0440\u0430\u043D\u0446\u0438\u0438 \u043F\u043E\u0441\u043B\u0435 \u0432\u0438\u0430\u0434\u0443\u043A\u0430 \u041C\u0438\u0439\u043E.`
|
|
1008
|
+
]
|
|
1009
|
+
],
|
|
1010
|
+
["text-generation", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0416\u044E\u043B\u044C\u0435\u043D \u0438`, `\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0422\u043E\u043C\u0430\u0441 \u0438 \u043C\u043E\u0439 \u043E\u0441\u043D\u043E\u0432\u043D\u043E\u0439`, `\u041E\u0434\u043D\u0430\u0436\u0434\u044B`]],
|
|
1011
|
+
["fill-mask", [`\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 <mask> \u0438 \u044F \u0438\u043D\u0436\u0435\u043D\u0435\u0440 \u0436\u0438\u0432\u0443\u0449\u0438\u0439 \u0432 \u041D\u044C\u044E-\u0419\u043E\u0440\u043A\u0435.`]],
|
|
1012
|
+
[
|
|
1013
|
+
"sentence-similarity",
|
|
1014
|
+
[
|
|
1015
|
+
{
|
|
1016
|
+
source_sentence: "\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A",
|
|
1017
|
+
sentences: ["\u042D\u0442\u043E \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u0430\u044F \u0441\u043E\u0431\u0430\u043A\u0430", "\u042D\u0442\u043E \u043E\u0447\u0435\u043D\u044C \u0441\u0447\u0430\u0441\u0442\u043B\u0438\u0432\u044B\u0439 \u0447\u0435\u043B\u043E\u0432\u0435\u043A", "\u0421\u0435\u0433\u043E\u0434\u043D\u044F \u0441\u043E\u043B\u043D\u0435\u0447\u043D\u044B\u0439 \u0434\u0435\u043D\u044C"]
|
|
1018
|
+
}
|
|
1019
|
+
]
|
|
1020
|
+
]
|
|
1021
|
+
]);
|
|
1022
|
+
var MAPPING_UK = /* @__PURE__ */ new Map([
|
|
1023
|
+
["translation", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 \u0412\u043E\u043B\u044C\u0444\u0491\u0430\u043D\u0491 \u0456 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0456\u043D\u0456.`]],
|
|
1024
|
+
["fill-mask", [`\u041C\u0435\u043D\u0435 \u0437\u0432\u0430\u0442\u0438 <mask>.`]]
|
|
1025
|
+
]);
|
|
1026
|
+
var MAPPING_IT = /* @__PURE__ */ new Map([
|
|
1027
|
+
["text-classification", [`Mi piaci. Ti amo`]],
|
|
1028
|
+
[
|
|
1029
|
+
"token-classification",
|
|
1030
|
+
[
|
|
1031
|
+
`Mi chiamo Wolfgang e vivo a Berlino`,
|
|
1032
|
+
`Mi chiamo Sarah e vivo a Londra`,
|
|
1033
|
+
`Mi chiamo Clara e vivo a Berkeley in California.`
|
|
1034
|
+
]
|
|
1035
|
+
],
|
|
1036
|
+
[
|
|
1037
|
+
"question-answering",
|
|
1038
|
+
[
|
|
1039
|
+
{
|
|
1040
|
+
text: `Dove vivo?`,
|
|
1041
|
+
context: `Mi chiamo Wolfgang e vivo a Berlino`
|
|
1042
|
+
},
|
|
1043
|
+
{
|
|
1044
|
+
text: `Dove vivo?`,
|
|
1045
|
+
context: `Mi chiamo Sarah e vivo a Londra`
|
|
1046
|
+
},
|
|
1047
|
+
{
|
|
1048
|
+
text: `Come mio chiamo?`,
|
|
1049
|
+
context: `Mi chiamo Clara e vivo a Berkeley.`
|
|
1050
|
+
}
|
|
1051
|
+
]
|
|
1052
|
+
],
|
|
1053
|
+
["translation", [`Mi chiamo Wolfgang e vivo a Berlino`, `Mi chiamo Sarah e vivo a Londra`]],
|
|
1054
|
+
[
|
|
1055
|
+
"summarization",
|
|
1056
|
+
[
|
|
1057
|
+
`La torre degli Asinelli \xE8 una delle cosiddette due torri di Bologna, simbolo della citt\xE0, situate in piazza di porta Ravegnana, all'incrocio tra le antiche strade San Donato (ora via Zamboni), San Vitale, Maggiore e Castiglione. Eretta, secondo la tradizione, fra il 1109 e il 1119 dal nobile Gherardo Asinelli, la torre \xE8 alta 97,20 metri, pende verso ovest per 2,23 metri e presenta all'interno una scalinata composta da 498 gradini. Ancora non si pu\xF2 dire con certezza quando e da chi fu costruita la torre degli Asinelli. Si presume che la torre debba il proprio nome a Gherardo Asinelli, il nobile cavaliere di fazione ghibellina al quale se ne attribuisce la costruzione, iniziata secondo una consolidata tradizione l'11 ottobre 1109 e terminata dieci anni dopo, nel 1119.`
|
|
1058
|
+
]
|
|
1059
|
+
],
|
|
1060
|
+
[
|
|
1061
|
+
"text-generation",
|
|
1062
|
+
[
|
|
1063
|
+
`Mi chiamo Loreto e mi piace`,
|
|
1064
|
+
`Mi chiamo Thomas e il mio principale`,
|
|
1065
|
+
`Mi chiamo Marianna, la mia cosa preferita`,
|
|
1066
|
+
`Mi chiamo Clara e sono`,
|
|
1067
|
+
`C'era una volta`
|
|
1068
|
+
]
|
|
1069
|
+
],
|
|
1070
|
+
["fill-mask", [`Roma \xE8 la <mask> d'Italia.`, `Lo scopo della vita \xE8 <mask>.`]],
|
|
1071
|
+
[
|
|
1072
|
+
"sentence-similarity",
|
|
1073
|
+
[
|
|
1074
|
+
{
|
|
1075
|
+
source_sentence: "Questa \xE8 una persona felice",
|
|
1076
|
+
sentences: ["Questo \xE8 un cane felice", "Questa \xE8 una persona molto felice", "Oggi \xE8 una giornata di sole"]
|
|
1077
|
+
}
|
|
1078
|
+
]
|
|
1079
|
+
]
|
|
1080
|
+
]);
|
|
1081
|
+
var MAPPING_FA = /* @__PURE__ */ new Map([
|
|
1082
|
+
[
|
|
1083
|
+
"text-classification",
|
|
1084
|
+
[`\u067E\u0631\u0648\u0698\u0647 \u0628\u0647 \u0645\u0648\u0642\u0639 \u062A\u062D\u0648\u06CC\u0644 \u0634\u062F \u0648 \u0647\u0645\u0647 \u0686\u06CC\u0632 \u062E\u0648\u0628 \u0628\u0648\u062F.`, `\u0633\u06CC\u0628\u200C\u0632\u0645\u06CC\u0646\u06CC \u0628\u06CC\u200C\u06A9\u06CC\u0641\u06CC\u062A \u0628\u0648\u062F.`, `\u0642\u06CC\u0645\u062A \u0648 \u06A9\u06CC\u0641\u06CC\u062A \u0639\u0627\u0644\u06CC`, `\u062E\u0648\u0628 \u0646\u0628\u0648\u062F \u0627\u0635\u0644\u0627`]
|
|
1085
|
+
],
|
|
1086
|
+
[
|
|
1087
|
+
"token-classification",
|
|
1088
|
+
[
|
|
1089
|
+
`\u0627\u06CC\u0646 \u0633\u0631\u06CC\u0627\u0644 \u0628\u0647 \u0635\u0648\u0631\u062A \u0631\u0633\u0645\u06CC \u062F\u0631 \u062A\u0627\u0631\u06CC\u062E \u062F\u0647\u0645 \u0645\u06CC \u06F2\u06F0\u06F1\u06F1 \u062A\u0648\u0633\u0637 \u0634\u0628\u06A9\u0647 \u0641\u0627\u06A9\u0633 \u0628\u0631\u0627\u06CC \u067E\u062E\u0634 \u0631\u0632\u0631\u0648 \u0634\u062F.`,
|
|
1090
|
+
`\u062F\u0641\u062A\u0631 \u0645\u0631\u06A9\u0632\u06CC \u0634\u0631\u06A9\u062A \u067E\u0627\u0631\u0633\u200C\u0645\u06CC\u0646\u0648 \u062F\u0631 \u0634\u0647\u0631 \u0627\u0631\u0627\u06A9 \u062F\u0631 \u0627\u0633\u062A\u0627\u0646 \u0645\u0631\u06A9\u0632\u06CC \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.`,
|
|
1091
|
+
`\u0648\u06CC \u062F\u0631 \u0633\u0627\u0644 \u06F2\u06F0\u06F1\u06F3 \u062F\u0631\u06AF\u0630\u0634\u062A \u0648 \u0645\u0633\u0626\u0648\u0644 \u062E\u0627\u06A9\u0633\u067E\u0627\u0631\u06CC \u0648 \u0627\u0642\u0648\u0627\u0645\u0634 \u0628\u0631\u0627\u06CC \u0627\u0648 \u0645\u0631\u0627\u0633\u0645 \u06CC\u0627\u062F\u0628\u0648\u062F \u06AF\u0631\u0641\u062A\u0646\u062F.`
|
|
1092
|
+
]
|
|
1093
|
+
],
|
|
1094
|
+
[
|
|
1095
|
+
"question-answering",
|
|
1096
|
+
[
|
|
1097
|
+
{
|
|
1098
|
+
text: `\u0645\u0646 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645\u061F`,
|
|
1099
|
+
context: `\u0646\u0627\u0645 \u0645\u0646 \u067E\u0698\u0645\u0627\u0646 \u0627\u0633\u062A \u0648 \u062F\u0631 \u06AF\u0631\u06AF\u0627\u0646 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
|
|
1100
|
+
},
|
|
1101
|
+
{
|
|
1102
|
+
text: `\u0646\u0627\u0645\u0645 \u0686\u06CC\u0633\u062A \u0648 \u06A9\u062C\u0627 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645\u061F`,
|
|
1103
|
+
context: `\u0627\u0633\u0645\u0645 \u0633\u0627\u0631\u0627 \u0627\u0633\u062A \u0648 \u062F\u0631 \u0622\u0641\u0631\u06CC\u0642\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u06A9\u0646\u0645.`
|
|
1104
|
+
},
|
|
1105
|
+
{
|
|
1106
|
+
text: `\u0646\u0627\u0645 \u0645\u0646 \u0686\u06CC\u0633\u062A\u061F`,
|
|
1107
|
+
context: `\u0645\u0646 \u0645\u0631\u06CC\u0645 \u0647\u0633\u062A\u0645 \u0648 \u062F\u0631 \u062A\u0628\u0631\u06CC\u0632 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0646\u0645.`
|
|
1108
|
+
},
|
|
1109
|
+
{
|
|
1110
|
+
text: `\u0628\u06CC\u0634\u062A\u0631\u06CC\u0646 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644 \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u06A9\u062F\u0627\u0645 \u06A9\u0634\u0648\u0631 \u0627\u0633\u062A\u061F`,
|
|
1111
|
+
context: [
|
|
1112
|
+
"\u0622\u0645\u0627\u0632\u0648\u0646 \u0646\u0627\u0645 \u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u062C\u0646\u06AF\u0644 \u0628\u0627\u0631\u0627\u0646\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u062F\u0631 \u0634\u0645\u0627\u0644 \u0622\u0645\u0631\u06CC\u06A9\u0627\u06CC \u062C\u0646\u0648\u0628\u06CC \u0642\u0631\u0627\u0631 \u06AF\u0631\u0641\u062A\u0647 \u0648 \u0628\u06CC\u0634\u062A\u0631 \u0622\u0646 \u062F\u0631 \u062E\u0627\u06A9 \u0628\u0631\u0632\u06CC\u0644 \u0648 \u067E\u0631\u0648",
|
|
1113
|
+
"\u062C\u0627\u06CC \u062F\u0627\u0631\u062F. \u0628\u06CC\u0634 \u0627\u0632 \u0646\u06CC\u0645\u06CC \u0627\u0632 \u0647\u0645\u0647 \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0628\u0627\u0631\u0627\u0646\u06CC \u0628\u0627\u0642\u06CC\u200C\u0645\u0627\u0646\u062F\u0647 \u062F\u0631 \u062C\u0647\u0627\u0646 \u062F\u0631 \u0622\u0645\u0627\u0632\u0648\u0646 \u0642\u0631\u0627\u0631 \u062F\u0627\u0631\u062F.",
|
|
1114
|
+
"\u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u06F5\u066B\u06F5 \u0645\u06CC\u0644\u06CC\u0648\u0646 \u06A9\u06CC\u0644\u0648\u0645\u062A\u0631 \u0645\u0631\u0628\u0639 \u0627\u0633\u062A \u06A9\u0647 \u0628\u06CC\u0646 \u06F9 \u06A9\u0634\u0648\u0631 \u062A\u0642\u0633\u06CC\u0645 \u0634\u062F\u0647\u200C\u0627\u0633\u062A."
|
|
1115
|
+
].join("\n")
|
|
1116
|
+
}
|
|
1117
|
+
]
|
|
1118
|
+
],
|
|
1119
|
+
[
|
|
1120
|
+
"translation",
|
|
1121
|
+
[
|
|
1122
|
+
"\u0628\u06CC\u0634\u062A\u0631 \u0645\u0633\u0627\u062D\u062A \u062C\u0646\u06AF\u0644\u200C\u0647\u0627\u06CC \u0622\u0645\u0627\u0632\u0648\u0646 \u062F\u0631 \u062D\u0648\u0636\u0647 \u0622\u0628\u0631\u06CC\u0632 \u0631\u0648\u062F \u0622\u0645\u0627\u0632\u0648\u0646 \u0648 \u06F1\u06F1\u06F0\u06F0 \u0634\u0627\u062E\u0647 \u0622\u0646 \u0648\u0627\u0642\u0639 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
|
|
1123
|
+
"\u0645\u0631\u062F\u0645\u0627\u0646 \u0646\u064E\u0628\u064E\u0637\u06CC \u0627\u0632 \u0647\u0632\u0627\u0631\u0647\u200C\u0647\u0627\u06CC \u06CC\u06A9\u0645 \u0648 \u062F\u0648\u0645 \u067E\u06CC\u0634 \u0627\u0632 \u0645\u06CC\u0644\u0627\u062F \u062F\u0631 \u0627\u06CC\u0646 \u0645\u0646\u0637\u0642\u0647 \u0632\u0646\u062F\u06AF\u06CC \u0645\u06CC\u200C\u06A9\u0631\u062F\u0646\u062F."
|
|
1124
|
+
]
|
|
1125
|
+
],
|
|
1126
|
+
[
|
|
1127
|
+
"summarization",
|
|
1128
|
+
[
|
|
1129
|
+
[
|
|
1130
|
+
"\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u062B\u0631 \u062D\u06A9\u06CC\u0645 \u0627\u0628\u0648\u0627\u0644\u0642\u0627\u0633\u0645 \u0641\u0631\u062F\u0648\u0633\u06CC \u062A\u0648\u0633\u06CC\u060C \u062D\u0645\u0627\u0633\u0647\u200C\u0627\u06CC \u0645\u0646\u0638\u0648\u0645\u060C \u0628\u0631 \u062D\u0633\u0628 \u062F\u0633\u062A \u0646\u0648\u0634\u062A\u0647\u200C\u0647\u0627\u06CC ",
|
|
1131
|
+
"\u0645\u0648\u062C\u0648\u062F \u062F\u0631\u0628\u0631\u06AF\u06CC\u0631\u0646\u062F\u0647 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F5\u06F0\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u062A\u0627 \u0646\u0632\u062F\u06CC\u06A9 \u0628\u0647 \u06F6\u06F1\u066C\u06F0\u06F0\u06F0 \u0628\u06CC\u062A \u0648 \u06CC\u06A9\u06CC \u0627\u0632 ",
|
|
1132
|
+
"\u0628\u0632\u0631\u06AF\u200C\u062A\u0631\u06CC\u0646 \u0648 \u0628\u0631\u062C\u0633\u062A\u0647\u200C\u062A\u0631\u06CC\u0646 \u0633\u0631\u0648\u062F\u0647\u200C\u0647\u0627\u06CC \u062D\u0645\u0627\u0633\u06CC \u062C\u0647\u0627\u0646 \u0627\u0633\u062A \u06A9\u0647 \u0633\u0631\u0627\u06CC\u0634 \u0622\u0646 \u062F\u0633\u062A\u200C\u0622\u0648\u0631\u062F\u0650 ",
|
|
1133
|
+
"\u062F\u0633\u062A\u200C\u06A9\u0645 \u0633\u06CC \u0633\u0627\u0644 \u06A9\u0627\u0631\u0650 \u067E\u06CC\u0648\u0633\u062A\u0647\u0654 \u0627\u06CC\u0646 \u0633\u062E\u0646\u200C\u0633\u0631\u0627\u06CC \u0646\u0627\u0645\u062F\u0627\u0631 \u0627\u06CC\u0631\u0627\u0646\u06CC \u0627\u0633\u062A. \u0645\u0648\u0636\u0648\u0639 \u0627\u06CC\u0646 \u0634\u0627\u0647\u06A9\u0627\u0631 \u0627\u062F\u0628\u06CC\u060C",
|
|
1134
|
+
" \u0627\u0641\u0633\u0627\u0646\u0647\u200C\u0647\u0627 \u0648 \u062A\u0627\u0631\u06CC\u062E \u0627\u06CC\u0631\u0627\u0646 \u0627\u0632 \u0622\u063A\u0627\u0632 \u062A\u0627 \u062D\u0645\u0644\u0647\u0654 \u0639\u0631\u0628\u200C\u0647\u0627 \u0628\u0647 \u0627\u06CC\u0631\u0627\u0646 \u062F\u0631 \u0633\u062F\u0647\u0654 \u0647\u0641\u062A\u0645 \u0645\u06CC\u0644\u0627\u062F\u06CC \u0627\u0633\u062A",
|
|
1135
|
+
" (\u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0633\u0647 \u0628\u062E\u0634 \u0627\u0633\u0637\u0648\u0631\u0647\u060C \u067E\u0647\u0644\u0648\u0627\u0646\u06CC \u0648 \u062A\u0627\u0631\u06CC\u062E\u06CC \u062A\u0634\u06A9\u06CC\u0644 \u0634\u062F\u0647\u200C\u0627\u0633\u062A) \u06A9\u0647 \u062F\u0631 \u0686\u0647\u0627\u0631",
|
|
1136
|
+
" \u062F\u0648\u062F\u0645\u0627\u0646 \u067E\u0627\u062F\u0634\u0627\u0647\u06CC\u0650 \u067E\u06CC\u0634\u062F\u0627\u062F\u06CC\u0627\u0646\u060C \u06A9\u06CC\u0627\u0646\u06CC\u0627\u0646\u060C \u0627\u0634\u06A9\u0627\u0646\u06CC\u0627\u0646 \u0648 \u0633\u0627\u0633\u0627\u0646\u06CC\u0627\u0646 \u06AF\u0646\u062C\u0627\u0646\u062F\u0647 \u0645\u06CC\u200C\u0634\u0648\u062F.",
|
|
1137
|
+
" \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0628\u0631 \u0648\u0632\u0646 \xAB\u0641\u064E\u0639\u0648\u0644\u064F\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u0639\u0648\u0644\u0646 \u0641\u064E\u0639\u064E\u0644\u0652\xBB\u060C \u062F\u0631 \u0628\u062D\u0631\u0650 \u0645\u064F\u062A\u064E\u0642\u0627\u0631\u0650\u0628\u0650 \u0645\u062B\u0645\u064E\u0651\u0646\u0650 \u0645\u062D\u0630\u0648\u0641 \u0646\u06AF\u0627\u0634\u062A\u0647 \u0634\u062F\u0647\u200C\u0627\u0633\u062A.",
|
|
1138
|
+
"\u0647\u0646\u06AF\u0627\u0645\u06CC \u06A9\u0647 \u0632\u0628\u0627\u0646 \u062F\u0627\u0646\u0634 \u0648 \u0627\u062F\u0628\u06CC\u0627\u062A \u062F\u0631 \u0627\u06CC\u0631\u0627\u0646 \u0632\u0628\u0627\u0646 \u0639\u0631\u0628\u06CC \u0628\u0648\u062F\u060C \u0641\u0631\u062F\u0648\u0633\u06CC\u060C \u0628\u0627 \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647",
|
|
1139
|
+
" \u0628\u0627 \u0648\u06CC\u0698\u06AF\u06CC\u200C\u0647\u0627\u06CC \u0647\u062F\u0641\u200C\u0645\u0646\u062F\u06CC \u06A9\u0647 \u062F\u0627\u0634\u062A\u060C \u0632\u0628\u0627\u0646 \u067E\u0627\u0631\u0633\u06CC \u0631\u0627 \u0632\u0646\u062F\u0647 \u0648 \u067E\u0627\u06CC\u062F\u0627\u0631 \u06A9\u0631\u062F. \u06CC\u06A9\u06CC \u0627\u0632 ",
|
|
1140
|
+
" \u0628\u0646\u200C\u0645\u0627\u06CC\u0647\u200C\u0647\u0627\u06CC \u0645\u0647\u0645\u06CC \u06A9\u0647 \u0641\u0631\u062F\u0648\u0633\u06CC \u0628\u0631\u0627\u06CC \u0633\u0631\u0648\u062F\u0646 \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0627\u0632 \u0622\u0646 \u0627\u0633\u062A\u0641\u0627\u062F\u0647 \u06A9\u0631\u062F\u060C",
|
|
1141
|
+
" \u0634\u0627\u0647\u0646\u0627\u0645\u0647\u0654 \u0627\u0628\u0648\u0645\u0646\u0635\u0648\u0631\u06CC \u0628\u0648\u062F. \u0634\u0627\u0647\u0646\u0627\u0645\u0647 \u0646\u0641\u0648\u0630 \u0628\u0633\u06CC\u0627\u0631\u06CC \u062F\u0631 \u062C\u0647\u062A\u200C\u06AF\u06CC\u0631\u06CC ",
|
|
1142
|
+
" \u0641\u0631\u0647\u0646\u06AF \u0641\u0627\u0631\u0633\u06CC \u0648 \u0646\u06CC\u0632 \u0628\u0627\u0632\u062A\u0627\u0628\u200C\u0647\u0627\u06CC \u0634\u06A9\u0648\u0647\u200C\u0645\u0646\u062F\u06CC \u062F\u0631 \u0627\u062F\u0628\u06CC\u0627\u062A \u062C\u0647\u0627\u0646 \u062F\u0627\u0634\u062A\u0647\u200C\u0627\u0633\u062A \u0648 \u0634\u0627\u0639\u0631\u0627\u0646 ",
|
|
1143
|
+
" \u0628\u0632\u0631\u06AF\u06CC \u0645\u0627\u0646\u0646\u062F \u06AF\u0648\u062A\u0647 \u0648 \u0648\u06CC\u06A9\u062A\u0648\u0631 \u0647\u0648\u06AF\u0648 \u0627\u0632 \u0622\u0646 \u0628\u0647 \u0646\u06CC\u06A9\u06CC \u06CC\u0627\u062F \u06A9\u0631\u062F\u0647\u200C\u0627\u0646\u062F."
|
|
1144
|
+
].join("\n")
|
|
1145
|
+
]
|
|
1146
|
+
],
|
|
1147
|
+
["text-generation", ["\u0627\u0633\u0645 \u0645\u0646 \u0646\u0627\u0632\u0646\u06CC\u0646 \u0627\u0633\u062A \u0648 \u0645\u0646", "\u0631\u0648\u0632\u06CC \u0631\u0648\u0632\u06AF\u0627\u0631\u06CC"]],
|
|
1148
|
+
[
|
|
1149
|
+
"fill-mask",
|
|
1150
|
+
[
|
|
1151
|
+
`\u0632\u0646\u062F\u06AF\u06CC \u06CC\u06A9 \u0633\u0648\u0627\u0644 \u0627\u0633\u062A \u0648 \u0627\u06CC\u0646 \u06A9\u0647 \u0686\u06AF\u0648\u0646\u0647 <mask> \u06A9\u0646\u06CC\u0645 \u067E\u0627\u0633\u062E \u0627\u06CC\u0646 \u0633\u0648\u0627\u0644!`,
|
|
1152
|
+
`\u0632\u0646\u062F\u06AF\u06CC \u0627\u0632 \u0645\u0631\u06AF \u067E\u0631\u0633\u06CC\u062F: \u0686\u0631\u0627 \u0647\u0645\u0647 \u0645\u0646 \u0631\u0627 <mask> \u062F\u0627\u0631\u0646\u062F \u0627\u0645\u0627 \u0627\u0632 \u062A\u0648 \u0645\u062A\u0646\u0641\u0631\u0646\u062F\u061F`
|
|
1153
|
+
]
|
|
1154
|
+
]
|
|
1155
|
+
]);
|
|
1156
|
+
var MAPPING_AR = /* @__PURE__ */ new Map([
|
|
1157
|
+
["text-classification", [`\u0623\u062D\u0628\u0643. \u0623\u0647\u0648\u0627\u0643`]],
|
|
1158
|
+
[
|
|
1159
|
+
"token-classification",
|
|
1160
|
+
[`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0645\u064A \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0627\u0644\u0642\u062F\u0633 \u0641\u064A \u0641\u0644\u0633\u0637\u064A\u0646.`]
|
|
1161
|
+
],
|
|
1162
|
+
[
|
|
1163
|
+
"question-answering",
|
|
1164
|
+
[
|
|
1165
|
+
{
|
|
1166
|
+
text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
|
|
1167
|
+
context: `\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u064A\u0631\u0648\u062A`
|
|
1168
|
+
},
|
|
1169
|
+
{
|
|
1170
|
+
text: `\u0623\u064A\u0646 \u0623\u0633\u0643\u0646\u061F`,
|
|
1171
|
+
context: `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`
|
|
1172
|
+
},
|
|
1173
|
+
{
|
|
1174
|
+
text: `\u0645\u0627 \u0627\u0633\u0645\u064A\u061F`,
|
|
1175
|
+
context: `\u0627\u0633\u0645\u064A \u0633\u0639\u064A\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u062D\u064A\u0641\u0627.`
|
|
1176
|
+
},
|
|
1177
|
+
{
|
|
1178
|
+
text: `\u0645\u0627 \u0644\u0642\u0628 \u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0628\u0627\u0644\u0639\u0631\u0628\u064A\u0629\u061F`,
|
|
1179
|
+
context: `\u062E\u0627\u0644\u062F \u0628\u0646 \u0627\u0644\u0648\u0644\u064A\u062F \u0645\u0646 \u0623\u0628\u0637\u0627\u0644 \u0648\u0642\u0627\u062F\u0629 \u0627\u0644\u0641\u062A\u062D \u0627\u0644\u0625\u0633\u0644\u0627\u0645\u064A \u0648\u0642\u062F \u062A\u062D\u062F\u062B\u062A \u0639\u0646\u0647 \u0627\u0644\u0644\u063A\u0627\u062A \u0627\u0644\u0625\u0646\u062C\u0644\u064A\u0632\u064A\u0629 \u0648\u0627\u0644\u0641\u0631\u0646\u0633\u064A\u0629 \u0648\u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064A\u0629 \u0648\u0644\u0642\u0628 \u0628\u0633\u064A\u0641 \u0627\u0644\u0644\u0647 \u0627\u0644\u0645\u0633\u0644\u0648\u0644.`
|
|
1180
|
+
}
|
|
1181
|
+
]
|
|
1182
|
+
],
|
|
1183
|
+
["translation", [`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0628\u0631\u0644\u064A\u0646`, `\u0625\u0633\u0645\u064A \u0633\u0627\u0631\u0647 \u0648\u0623\u0633\u0643\u0646 \u0641\u064A \u0644\u0646\u062F\u0646`]],
|
|
1184
|
+
[
|
|
1185
|
+
"summarization",
|
|
1186
|
+
[
|
|
1187
|
+
`\u062A\u0642\u0639 \u0627\u0644\u0623\u0647\u0631\u0627\u0645\u0627\u062A \u0641\u064A \u0627\u0644\u062C\u064A\u0632\u0629 \u0642\u0631\u0628 \u0627\u0644\u0642\u0627\u0647\u0631\u0629 \u0641\u064A \u0645\u0635\u0631 \u0648\u0642\u062F \u0628\u0646\u064A\u062A \u0645\u0646\u0630 \u0639\u062F\u0629 \u0642\u0631\u0648\u0646\u060C \u0648\u0642\u064A\u0644 \u0625\u0646\u0647\u0627 \u0643\u0627\u0646\u062A \u0642\u0628\u0648\u0631\u0627 \u0644\u0644\u0641\u0631\u0627\u0639\u0646\u0629 \u0648\u062A\u0645 \u0628\u0646\u0627\u0624\u0647\u0627 \u0628\u0639\u0645\u0644\u064A\u0629 \u0647\u0646\u062F\u0633\u064A\u0629 \u0631\u0627\u0626\u0639\u0629 \u0648\u0627\u0633\u062A\u0642\u062F\u0645\u062A \u062D\u062C\u0627\u0631\u062A\u0647\u0627 \u0645\u0646 \u062C\u0628\u0644 \u0627\u0644\u0645\u0642\u0637\u0645 \u0648\u062A\u0645 \u0646\u0642\u0644\u0647\u0627 \u0628\u0627\u0644\u0633\u0641\u0646 \u0623\u0648 \u0639\u0644\u0649 \u0627\u0644\u0631\u0645\u0644\u060C \u0648\u0645\u0627 \u062A\u0632\u0627\u0644 \u0634\u0627\u0645\u062E\u0629 \u0648\u064A\u0642\u0635\u062F\u0647\u0627 \u0627\u0644\u0633\u064A\u0627\u062D \u0645\u0646 \u0643\u0627\u0641\u0629 \u0623\u0631\u062C\u0627\u0621 \u0627\u0644\u0645\u0639\u0645\u0648\u0631\u0629.`
|
|
1188
|
+
]
|
|
1189
|
+
],
|
|
1190
|
+
[
|
|
1191
|
+
"text-generation",
|
|
1192
|
+
[
|
|
1193
|
+
`\u0625\u0633\u0645\u064A \u0645\u062D\u0645\u062F \u0648\u0623\u062D\u0628 \u0623\u0646`,
|
|
1194
|
+
`\u062F\u0639 \u0627\u0644\u0645\u0643\u0627\u0631\u0645 \u0644\u0627 \u062A\u0631\u062D\u0644 \u0644\u0628\u063A\u064A\u062A\u0647\u0627 - \u0648\u0627\u0642\u0639\u062F \u0641\u0625\u0646\u0643 \u0623\u0646\u062A \u0627\u0644\u0637\u0627\u0639\u0645 \u0627\u0644\u0643\u0627\u0633\u064A.`,
|
|
1195
|
+
`\u0644\u0645\u0627\u0630\u0627 \u0646\u062D\u0646 \u0647\u0646\u0627\u061F`,
|
|
1196
|
+
`\u0627\u0644\u0642\u062F\u0633 \u0645\u062F\u064A\u0646\u0629 \u062A\u0627\u0631\u064A\u062E\u064A\u0629\u060C \u0628\u0646\u0627\u0647\u0627 \u0627\u0644\u0643\u0646\u0639\u0627\u0646\u064A\u0648\u0646 \u0641\u064A`,
|
|
1197
|
+
`\u0643\u0627\u0646 \u064A\u0627 \u0645\u0627 \u0643\u0627\u0646 \u0641\u064A \u0642\u062F\u064A\u0645 \u0627\u0644\u0632\u0645\u0627\u0646`
|
|
1198
|
+
]
|
|
1199
|
+
],
|
|
1200
|
+
["fill-mask", [`\u0628\u0627\u0631\u064A\u0633 <mask> \u0641\u0631\u0646\u0633\u0627.`, `\u0641\u0644\u0633\u0641\u0629 \u0627\u0644\u062D\u064A\u0627\u0629 \u0647\u064A <mask>.`]],
|
|
1201
|
+
[
|
|
1202
|
+
"sentence-similarity",
|
|
1203
|
+
[
|
|
1204
|
+
{
|
|
1205
|
+
source_sentence: "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F",
|
|
1206
|
+
sentences: ["\u0647\u0630\u0627 \u0643\u0644\u0628 \u0633\u0639\u064A\u062F", "\u0647\u0630\u0627 \u0634\u062E\u0635 \u0633\u0639\u064A\u062F \u062C\u062F\u0627", "\u0627\u0644\u064A\u0648\u0645 \u0647\u0648 \u064A\u0648\u0645 \u0645\u0634\u0645\u0633"]
|
|
1207
|
+
}
|
|
1208
|
+
]
|
|
1209
|
+
]
|
|
1210
|
+
]);
|
|
1211
|
+
var MAPPING_BN = /* @__PURE__ */ new Map([
|
|
1212
|
+
["text-classification", [`\u09AC\u09BE\u0999\u09BE\u09B2\u09BF\u09B0 \u0998\u09B0\u09C7 \u0998\u09B0\u09C7 \u0986\u099C \u09A8\u09AC\u09BE\u09A8\u09CD\u09A8 \u0989\u09CE\u09B8\u09AC\u0964`]],
|
|
1213
|
+
[
|
|
1214
|
+
"token-classification",
|
|
1215
|
+
[`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6 \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u09A2\u09BE\u0995\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u09A4\u09BF\u09A8\u09BF \u0997\u09C1\u0997\u09B2\u09C7 \u099A\u09BE\u0995\u09B0\u09C0 \u0995\u09B0\u09C7\u09A8\u0964`, `\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C1\u09B8\u09CD\u09AE\u09BF\u09A4\u09BE \u098F\u09AC\u0982 \u0986\u09AE\u09BF \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09DF \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`]
|
|
1216
|
+
],
|
|
1217
|
+
["translation", [`\u0986\u09AE\u09BE\u09B0 \u09A8\u09BE\u09AE \u099C\u09BE\u09B9\u09BF\u09A6, \u0986\u09AE\u09BF \u09B0\u0982\u09AA\u09C1\u09B0\u09C7 \u09AC\u09BE\u09B8 \u0995\u09B0\u09BF\u0964`, `\u0986\u09AA\u09A8\u09BF \u0995\u09C0 \u0986\u099C\u0995\u09C7 \u09AC\u09BE\u09B8\u09BE\u09DF \u0986\u09B8\u09AC\u09C7\u09A8?`]],
|
|
1218
|
+
[
|
|
1219
|
+
"summarization",
|
|
1220
|
+
[
|
|
1221
|
+
`\u2018\u0987\u0995\u09CB\u09A8\u09AE\u09BF\u09B8\u09CD\u099F\u2019 \u09B2\u09BF\u0996\u09C7\u099B\u09C7, \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u099A\u09BE\u09B0 \u09AE\u09BE\u09B8 \u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B9\u0993\u09DF\u09BE\u09B0 \u0996\u09AC\u09B0\u099F\u09BF \u09A6\u09C1\u0987 \u0995\u09BE\u09B0\u09A3\u09C7 \u0986\u09A8\u09A8\u09CD\u09A6\u09C7\u09B0\u0964 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09AF\u09A4 \u09A6\u09BF\u09A8 \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4 \u09B6\u09B0\u09C0\u09B0\u09C7 \u099F\u09BF\u0995\u09AC\u09C7, \u09A4\u09A4 \u09A6\u09BF\u09A8 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09A5\u09C7\u0995\u09C7 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BF\u09A4 \u09A5\u09BE\u0995\u09BE \u09B8\u09AE\u09CD\u09AD\u09AC\u0964 \u0985\u09B0\u09CD\u09A5\u09BE\u09CE, \u098F\u09AE\u09A8 \u098F\u0995 \u099F\u09BF\u0995\u09BE\u09B0 \u09AA\u09CD\u09B0\u09DF\u09CB\u099C\u09A8 \u09B9\u09AC\u09C7, \u09AF\u09BE \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u0989\u09A4\u09CD\u09AA\u09BE\u09A6\u09A8\u0995\u09C7 \u09AA\u09CD\u09B0\u09B0\u09CB\u099A\u09BF\u09A4 \u0995\u09B0\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09B8\u09CD\u09A5\u09BE\u09DF\u09C0 \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE \u09A6\u09BF\u09A4\u09C7 \u09AA\u09BE\u09B0\u09C7\u0964 \u098F\u0997\u09C1\u09B2\u09CB \u0996\u09C1\u0981\u099C\u09C7 \u09AC\u09C7\u09B0 \u0995\u09B0\u09BE\u0993 \u09B8\u09B9\u099C\u0964 \u098F\u099F\u09BF \u0986\u09AD\u09BE\u09B8 \u09A6\u09C7\u09DF, \u09AC\u09CD\u09AF\u09BE\u09AA\u0995 \u09B9\u09BE\u09B0\u09C7 \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3 \u09AB\u09B2\u09BE\u09AB\u09B2 \u09AE\u09CB\u099F\u09BE\u09AE\u09C1\u099F\u09BF \u09A8\u09BF\u09B0\u09CD\u09AD\u09C1\u09B2 \u09B9\u0993\u09DF\u09BE \u0989\u099A\u09BF\u09A4\u0964 \u09A6\u09CD\u09AC\u09BF\u09A4\u09C0\u09DF \u0986\u09B0\u09C7\u0995\u099F\u09BF \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u09A8\u09C7\u09A4\u09C3\u09A4\u09CD\u09AC \u09A6\u09BF\u09DF\u09C7\u099B\u09C7\u09A8 \u09AF\u09C1\u0995\u09CD\u09A4\u09B0\u09BE\u099C\u09CD\u09AF\u09C7\u09B0 \u09AE\u09C7\u09A1\u09BF\u0995\u09C7\u09B2 \u09B0\u09BF\u09B8\u09BE\u09B0\u09CD\u099A \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 (\u098F\u09AE\u0986\u09B0\u09B8\u09BF) \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u09B8\u09CD\u099F \u09A4\u09BE\u0993 \u09A6\u0982\u0964 \u09A4\u09BF\u09A8\u09BF \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7 \u0995\u09BE\u099C \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u099F\u09BF-\u09B8\u09C7\u09B2 \u09B6\u09A8\u09BE\u0995\u09CD\u09A4\u0995\u09B0\u09A3\u09C7\u09B0 \u09AA\u09CD\u09B0\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u0985\u09AC\u09B6\u09CD\u09AF \u0985\u09CD\u09AF\u09BE\u09A8\u09CD\u099F\u09BF\u09AC\u09A1\u09BF\u09B0 \u09AE\u09A4\u09CB \u098F\u09A4 \u0986\u09B2\u09CB\u099A\u09BF\u09A4 \u09A8\u09DF\u0964 \u09A4\u09AC\u09C7 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09AC\u09BF\u09B0\u09C1\u09A6\u09CD\u09A7\u09C7 \u09B2\u09DC\u09BE\u0987 \u098F\u09AC\u0982 \u09A6\u09C0\u09B0\u09CD\u0998\u09AE\u09C7\u09DF\u09BE\u09A6\u09BF \u09B8\u09C1\u09B0\u0995\u09CD\u09B7\u09BE\u09DF \u09B8\u09AE\u09BE\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09CD\u09AC\u09AA\u09C2\u09B0\u09CD\u09A3 \u09AD\u09C2\u09AE\u09BF\u0995\u09BE \u09AA\u09BE\u09B2\u09A8 \u0995\u09B0\u09C7\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B8\u0982\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7 \u09AA\u09CD\u09B0\u0995\u09BE\u09B6\u09BF\u09A4 \u09B9\u09DF\u09C7\u099B\u09C7 \u2018\u09A8\u09C7\u099A\u09BE\u09B0 \u0987\u09AE\u09BF\u0989\u09A8\u09CB\u09B2\u099C\u09BF\u2019 \u09B8\u09BE\u09AE\u09DF\u09BF\u0995\u09C0\u09A4\u09C7\u0964 \u09A4\u09BE\u0981\u09B0\u09BE \u09AC\u09B2\u099B\u09C7\u09A8, \u0997\u09AC\u09C7\u09B7\u09A3\u09BE\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u0995\u09CB\u09AD\u09BF\u09A1-\u09E7\u09EF \u09AE\u09C3\u09A6\u09C1 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3\u09C7\u09B0 \u09B6\u09BF\u0995\u09BE\u09B0 \u09E8\u09EE \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE, \u09E7\u09EA \u099C\u09A8 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u0993 \u09E7\u09EC \u099C\u09A8 \u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09B0 \u09B0\u0995\u09CD\u09A4\u09C7\u09B0 \u09A8\u09AE\u09C1\u09A8\u09BE \u09AA\u09B0\u09C0\u0995\u09CD\u09B7\u09BE \u0995\u09B0\u09C7\u099B\u09C7\u09A8\u0964 \u0997\u09AC\u09C7\u09B7\u09A3\u09BE \u09A8\u09BF\u09AC\u09A8\u09CD\u09A7\u09C7 \u09AC\u09B2\u09BE \u09B9\u09DF, \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09BF\u09A4 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u099F\u09BF-\u09B8\u09C7\u09B2\u09C7\u09B0 \u09A4\u09C0\u09AC\u09CD\u09B0 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE \u09A4\u09BE\u0981\u09B0\u09BE \u09A6\u09C7\u0996\u09C7\u099B\u09C7\u09A8\u0964 \u098F \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AE\u09C3\u09A6\u09C1 \u0993 \u0997\u09C1\u09B0\u09C1\u09A4\u09B0 \u0985\u09B8\u09C1\u09B8\u09CD\u09A5 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF\u09A6\u09C7\u09B0 \u0995\u09CD\u09B7\u09C7\u09A4\u09CD\u09B0\u09C7 \u09AA\u09CD\u09B0\u09A4\u09BF\u0995\u09CD\u09B0\u09BF\u09DF\u09BE\u09B0 \u09AD\u09BF\u09A8\u09CD\u09A8\u09A4\u09BE \u09AA\u09BE\u0993\u09DF\u09BE \u0997\u09C7\u099B\u09C7\u0964`
|
|
1222
|
+
]
|
|
1223
|
+
],
|
|
1224
|
+
["text-generation", [`\u0986\u09AE\u09BF \u09B0\u09A4\u09A8 \u098F\u09AC\u0982 \u0986\u09AE\u09BF`, `\u09A4\u09C1\u09AE\u09BF \u09AF\u09A6\u09BF \u099A\u09BE\u0993 \u09A4\u09AC\u09C7`, `\u09AE\u09BF\u09A5\u09BF\u09B2\u09BE \u0986\u099C\u0995\u09C7 \u09AC\u09A1\u09CD\u09A1`]],
|
|
1225
|
+
["fill-mask", [`\u0986\u09AE\u09BF \u09AC\u09BE\u0982\u09B2\u09BE\u09DF <mask> \u0997\u09BE\u0987\u0964`, `\u0986\u09AE\u09BF <mask> \u0996\u09C1\u09AC \u09AD\u09BE\u09B2\u09CB\u09AC\u09BE\u09B8\u09BF\u0964 `]],
|
|
1226
|
+
[
|
|
1227
|
+
"question-answering",
|
|
1228
|
+
[
|
|
1229
|
+
{
|
|
1230
|
+
text: `\u09AA\u09CD\u09B0\u09A5\u09AE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0995\u09CB\u09A5\u09BE\u09DF \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09DF ?`,
|
|
1231
|
+
context: `\u09AA\u09CD\u09B0\u09A5\u09AE \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E7\u09EF\u09EE\u09EA \u09B8\u09BE\u09B2\u09C7 \u09B8\u0982\u09AF\u09C1\u0995\u09CD\u09A4 \u0986\u09B0\u09AC \u0986\u09AE\u09BF\u09B0\u09BE\u09A4 \u098F\u09B0 \u09B6\u09BE\u09B0\u099C\u09BE\u09B9 \u09A4\u09C7 \u09AF\u09C7\u0996\u09BE\u09A8\u09C7 \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2\u09C7\u09B0 \u09AE\u09C2\u09B2 \u0985\u09AB\u09BF\u09B8 \u099B\u09BF\u09B2 (\u09E7\u09EF\u09EF\u09EB \u09AA\u09B0\u09CD\u09AF\u09A8\u09CD\u09A4)\u0964 \u09AD\u09BE\u09B0\u09A4 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE\u09B0 \u09B8\u09BE\u09A5\u09C7 \u0986\u09A8\u09CD\u09A4\u09B0\u09BF\u0995\u09A4\u09BE\u09B9\u09C0\u09A8 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B8\u09AE\u09CD\u09AA\u09B0\u09CD\u0995\u09C7\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u09E7\u09EF\u09EE\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u09AC\u09B0\u09CD\u099C\u09A8 \u0995\u09B0\u09C7\u0964 \u09E7\u09EF\u09EF\u09E9 \u09B8\u09BE\u09B2\u09C7 \u09AD\u09BE\u09B0\u09A4 \u0993 \u09AA\u09BE\u0995\u09BF\u09B8\u09CD\u09A4\u09BE\u09A8 \u098F\u09B0 \u09AE\u09A7\u09CD\u09AF\u09C7 \u09B0\u09BE\u099C\u09A8\u09C8\u09A4\u09BF\u0995 \u0985\u09B8\u09CD\u09A5\u09BF\u09B0\u09A4\u09BE\u09B0 \u0995\u09BE\u09B0\u09A3\u09C7 \u098F\u099F\u09BF \u09AC\u09BE\u09A4\u09BF\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09AF\u09BE\u09AF\u09BC\u0964 \u09B6\u09CD\u09B0\u09C0\u09B2\u0999\u09CD\u0995\u09BE \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA \u09B6\u09C1\u09B0\u09C1 \u09A5\u09C7\u0995\u09C7 \u0985\u0982\u09B6 \u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7 \u0986\u09B8\u099B\u09C7\u0964 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u0995\u09BE\u0989\u09A8\u09CD\u09B8\u09BF\u09B2 \u09A8\u09BF\u09AF\u09BC\u09AE \u0995\u09B0\u09C7 \u09A6\u09BF\u09AF\u09BC\u09C7\u099B\u09C7 \u09AF\u09C7 \u098F\u09B6\u09BF\u09AF\u09BC\u09BE \u0995\u09BE\u09AA\u09C7\u09B0 \u09B8\u0995\u09B2 \u0996\u09C7\u09B2\u09BE \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AC\u09C7 \u0985\u09AB\u09BF\u09B8\u09BF\u09AF\u09BC\u09BE\u09B2 \u098F\u0995\u09A6\u09BF\u09A8\u09C7\u09B0 \u0986\u09A8\u09CD\u09A4\u09B0\u09CD\u099C\u09BE\u09A4\u09BF\u0995 \u0995\u09CD\u09B0\u09BF\u0995\u09C7\u099F \u09B9\u09BF\u09B8\u09C7\u09AC\u09C7\u0964 \u098F\u09B8\u09BF\u09B8\u09BF \u0998\u09CB\u09B7\u09A8\u09BE \u0985\u09A8\u09C1\u09AF\u09BE\u09AF\u09BC\u09C0 \u09AA\u09CD\u09B0\u09A4\u09BF \u09A6\u09C1\u0987 \u09AC\u099B\u09B0 \u09AA\u09B0 \u09AA\u09B0 \u099F\u09C1\u09B0\u09CD\u09A8\u09BE\u09AE\u09C7\u09A8\u09CD\u099F \u0985\u09A8\u09C1\u09B7\u09CD\u09A0\u09BF\u09A4 \u09B9\u09AF\u09BC \u09E8\u09E6\u09E6\u09EE \u09B8\u09BE\u09B2 \u09A5\u09C7\u0995\u09C7\u0964`
|
|
1232
|
+
},
|
|
1233
|
+
{
|
|
1234
|
+
text: `\u09AD\u09BE\u09B0\u09A4\u09C0\u09AF\u09BC \u09AC\u09BE\u0999\u09BE\u09B2\u09BF \u0995\u09A5\u09BE\u09B8\u09BE\u09B9\u09BF\u09A4\u09CD\u09AF\u09BF\u0995 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0995\u09AC\u09C7 \u09B9\u09DF ?`,
|
|
1235
|
+
context: `\u09E8\u09E6\u09E7\u09EC \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E9 \u099C\u09C1\u09B2\u09BE\u0987 \u09B9\u09C3\u09A6\u09B0\u09CB\u0997\u09C7 \u0986\u0995\u09CD\u09B0\u09BE\u09A8\u09CD\u09A4 \u09B9\u09AF\u09BC\u09C7 \u09AE\u09B9\u09BE\u09B6\u09CD\u09AC\u09C7\u09A4\u09BE \u09A6\u09C7\u09AC\u09C0 \u0995\u09B2\u0995\u09BE\u09A4\u09BE\u09B0 \u09AC\u09C7\u09B2 \u09AD\u09BF\u0989 \u0995\u09CD\u09B2\u09BF\u09A8\u09BF\u0995\u09C7 \u09AD\u09B0\u09CD\u09A4\u09BF \u09B9\u09A8\u0964 \u09B8\u09C7\u0987 \u09AC\u099B\u09B0\u0987 \u09E8\u09EE \u099C\u09C1\u09B2\u09BE\u0987 \u098F\u0995\u09BE\u09A7\u09BF\u0995 \u0985\u0999\u09CD\u0997 \u09AC\u09BF\u0995\u09B2 \u09B9\u09AF\u09BC\u09C7 \u09A4\u09BE\u0981\u09B0 \u09AE\u09C3\u09A4\u09CD\u09AF\u09C1 \u0998\u099F\u09C7\u0964 \u09A4\u09BF\u09A8\u09BF \u09AE\u09A7\u09C1\u09AE\u09C7\u09B9, \u09B8\u09C7\u09AA\u09CD\u099F\u09BF\u09B8\u09C7\u09AE\u09BF\u09AF\u09BC\u09BE \u0993 \u09AE\u09C2\u09A4\u09CD\u09B0 \u09B8\u0982\u0995\u09CD\u09B0\u09AE\u09A3 \u09B0\u09CB\u0997\u09C7\u0993 \u09AD\u09C1\u0997\u099B\u09BF\u09B2\u09C7\u09A8\u0964`
|
|
1236
|
+
},
|
|
1237
|
+
{
|
|
1238
|
+
text: `\u09AE\u09BE\u09B8\u09CD\u099F\u09BE\u09B0\u09A6\u09BE \u09B8\u09C2\u09B0\u09CD\u09AF\u0995\u09C1\u09AE\u09BE\u09B0 \u09B8\u09C7\u09A8\u09C7\u09B0 \u09AC\u09BE\u09AC\u09BE\u09B0 \u09A8\u09BE\u09AE \u0995\u09C0 \u099B\u09BF\u09B2 ?`,
|
|
1239
|
+
context: `\u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09E7\u09EE\u09EF\u09EA \u09B8\u09BE\u09B2\u09C7\u09B0 \u09E8\u09E8 \u09AE\u09BE\u09B0\u09CD\u099A \u099A\u099F\u09CD\u099F\u0997\u09CD\u09B0\u09BE\u09AE\u09C7\u09B0 \u09B0\u09BE\u0989\u099C\u09BE\u09A8 \u09A5\u09BE\u09A8\u09BE\u09B0 \u09A8\u09CB\u09AF\u09BC\u09BE\u09AA\u09BE\u09A1\u09BC\u09BE\u09AF\u09BC \u0985\u09B0\u09CD\u09A5\u09A8\u09C8\u09A4\u09BF\u0995 \u09AD\u09BE\u09AC\u09C7 \u0985\u09B8\u09CD\u09AC\u099A\u09CD\u099B\u09B2 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7 \u099C\u09A8\u09CD\u09AE\u0997\u09CD\u09B0\u09B9\u09A3 \u0995\u09B0\u09C7\u09A8\u0964 \u09A4\u09BE\u0981\u09B0 \u09AA\u09BF\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8 \u098F\u09AC\u0982 \u09AE\u09BE\u09A4\u09BE\u09B0 \u09A8\u09BE\u09AE \u09B6\u09B6\u09C0 \u09AC\u09BE\u09B2\u09BE \u09B8\u09C7\u09A8\u0964 \u09B0\u09BE\u099C\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7 \u0986\u09B0 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u09A4\u09BE\u0981\u09A6\u09C7\u09B0 \u09AA\u09B0\u09BF\u09AC\u09BE\u09B0\u09C7\u09B0 \u099A\u09A4\u09C1\u09B0\u09CD\u09A5 \u09B8\u09A8\u09CD\u09A4\u09BE\u09A8\u0964 \u09A6\u09C1\u0987 \u099B\u09C7\u09B2\u09C7\u09B0 \u09A8\u09BE\u09AE \u09B8\u09C2\u09B0\u09CD\u09AF \u0993 \u0995\u09AE\u09B2\u0964 \u099A\u09BE\u09B0 \u09AE\u09C7\u09AF\u09BC\u09C7\u09B0 \u09A8\u09BE\u09AE \u09AC\u09B0\u09A6\u09BE\u09B8\u09C1\u09A8\u09CD\u09A6\u09B0\u09C0, \u09B8\u09BE\u09AC\u09BF\u09A4\u09CD\u09B0\u09C0, \u09AD\u09BE\u09A8\u09C1\u09AE\u09A4\u09C0 \u0993 \u09AA\u09CD\u09B0\u09AE\u09BF\u09B2\u09BE\u0964 \u09B6\u09C8\u09B6\u09AC\u09C7 \u09AA\u09BF\u09A4\u09BE \u09AE\u09BE\u09A4\u09BE\u0995\u09C7 \u09B9\u09BE\u09B0\u09BE\u09A8\u09CB \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u0995\u09BE\u0995\u09BE \u0997\u09CC\u09B0\u09AE\u09A8\u09BF \u09B8\u09C7\u09A8\u09C7\u09B0 \u0995\u09BE\u099B\u09C7 \u09AE\u09BE\u09A8\u09C1\u09B7 \u09B9\u09AF\u09BC\u09C7\u099B\u09C7\u09A8\u0964 \u09B8\u09C2\u09B0\u09CD\u09AF \u09B8\u09C7\u09A8 \u099B\u09C7\u09B2\u09C7\u09AC\u09C7\u09B2\u09BE \u09A5\u09C7\u0995\u09C7\u0987 \u0996\u09C1\u09AC \u09AE\u09A8\u09CB\u09AF\u09CB\u0997\u09C0 \u09AD\u09BE\u09B2 \u099B\u09BE\u09A4\u09CD\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8 \u098F\u09AC\u0982 \u09A7\u09B0\u09CD\u09AE\u09AD\u09BE\u09AC\u09BE\u09AA\u09A8\u09CD\u09A8 \u0997\u09AE\u09CD\u09AD\u09C0\u09B0 \u09AA\u09CD\u09B0\u0995\u09C3\u09A4\u09BF\u09B0 \u099B\u09BF\u09B2\u09C7\u09A8\u0964`
|
|
1240
|
+
}
|
|
1241
|
+
]
|
|
1242
|
+
],
|
|
1243
|
+
[
|
|
1244
|
+
"sentence-similarity",
|
|
1245
|
+
[
|
|
1246
|
+
{
|
|
1247
|
+
source_sentence: "\u09B8\u09C7 \u098F\u0995\u099C\u09A8 \u09B8\u09C1\u0996\u09C0 \u09AC\u09CD\u09AF\u0995\u09CD\u09A4\u09BF",
|
|
1248
|
+
sentences: ["\u09B8\u09C7 \u09B9\u09CD\u09AF\u09BE\u09AA\u09BF \u0995\u09C1\u0995\u09C1\u09B0", "\u09B8\u09C7 \u0996\u09C1\u09AC \u09B8\u09C1\u0996\u09C0 \u09AE\u09BE\u09A8\u09C1\u09B7", "\u0986\u099C \u098F\u0995\u099F\u09BF \u09B0\u09CC\u09A6\u09CD\u09B0\u09CB\u099C\u09CD\u099C\u09CD\u09AC\u09B2 \u09A6\u09BF\u09A8"]
|
|
1249
|
+
}
|
|
1250
|
+
]
|
|
1251
|
+
]
|
|
1252
|
+
]);
|
|
1253
|
+
var MAPPING_MN = /* @__PURE__ */ new Map([
|
|
1254
|
+
["text-classification", [`\u0411\u0438 \u0447\u0430\u043C\u0434 \u0445\u0430\u0439\u0440\u0442\u0430\u0439`]],
|
|
1255
|
+
[
|
|
1256
|
+
"token-classification",
|
|
1257
|
+
[
|
|
1258
|
+
`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`,
|
|
1259
|
+
`\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`,
|
|
1260
|
+
`\u041C\u0430\u043D\u0430\u0439 \u0443\u043B\u0441 \u0442\u0430\u0432\u0430\u043D \u0445\u043E\u0448\u0443\u0443 \u043C\u0430\u043B\u0442\u0430\u0439.`
|
|
1261
|
+
]
|
|
1262
|
+
],
|
|
1263
|
+
[
|
|
1264
|
+
"question-answering",
|
|
1265
|
+
[
|
|
1266
|
+
{
|
|
1267
|
+
text: `\u0422\u0430 \u0445\u0430\u0430\u043D\u0430 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433 \u0432\u044D?`,
|
|
1268
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
|
|
1269
|
+
},
|
|
1270
|
+
{
|
|
1271
|
+
text: `\u0422\u0430\u043D\u044B\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
|
|
1272
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`
|
|
1273
|
+
},
|
|
1274
|
+
{
|
|
1275
|
+
text: `\u041C\u0438\u043D\u0438\u0439 \u043D\u044D\u0440\u0438\u0439\u0433 \u0445\u044D\u043D \u0433\u044D\u0434\u044D\u0433 \u0432\u044D?`,
|
|
1276
|
+
context: `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`
|
|
1277
|
+
}
|
|
1278
|
+
]
|
|
1279
|
+
],
|
|
1280
|
+
["translation", [`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440\u0442 \u0430\u043C\u044C\u0434\u0430\u0440\u0434\u0430\u0433.`, `\u041D\u0430\u043C\u0430\u0439\u0433 \u0413\u0430\u043D\u0431\u0430\u0442 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438 \u0423\u0432\u0441 \u0430\u0439\u043C\u0430\u0433\u0442 \u0442\u04E9\u0440\u0441\u04E9\u043D.`]],
|
|
1281
|
+
[
|
|
1282
|
+
"summarization",
|
|
1283
|
+
[
|
|
1284
|
+
`\u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441 (1992 \u043E\u043D\u043E\u043E\u0441 \u0445\u043E\u0439\u0448) \u2014 \u0434\u043E\u0440\u043D\u043E \u0431\u043E\u043B\u043E\u043D \u0442\u04E9\u0432 \u0410\u0437\u0438\u0434 \u043E\u0440\u0448\u0434\u043E\u0433 \u0431\u04AF\u0440\u044D\u043D \u044D\u0440\u0445\u0442 \u0443\u043B\u0441. \u0425\u043E\u0439\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u041E\u0440\u043E\u0441, \u0431\u0443\u0441\u0430\u0434 \u0442\u0430\u043B\u0430\u0430\u0440\u0430\u0430 \u0425\u044F\u0442\u0430\u0434 \u0443\u043B\u0441\u0442\u0430\u0439 \u0445\u0438\u043B\u043B\u044D\u0434\u044D\u0433 \u0434\u0430\u043B\u0430\u0439\u0434 \u0433\u0430\u0440\u0446\u0433\u04AF\u0439 \u043E\u0440\u043E\u043D. \u041D\u0438\u0439\u0441\u043B\u044D\u043B \u2014 \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442. \u0410\u043B\u0442\u0430\u0439\u043D \u043D\u0443\u0440\u0443\u0443\u043D\u0430\u0430\u0441 \u0425\u044F\u043D\u0433\u0430\u043D, \u0421\u043E\u0451\u043D\u043E\u043E\u0441 \u0413\u043E\u0432\u044C \u0445\u04AF\u0440\u0441\u044D\u043D 1 \u0441\u0430\u044F 566 \u043C\u044F\u043D\u0433\u0430\u043D \u043A\u043C2 \u0443\u0443\u0434\u0430\u043C \u043D\u0443\u0442\u0430\u0433\u0442\u0430\u0439, \u0434\u044D\u043B\u0445\u0438\u0439\u0434 \u043D\u0443\u0442\u0430\u0433 \u0434\u044D\u0432\u0441\u0433\u044D\u0440\u0438\u0439\u043D \u0445\u044D\u043C\u0436\u044D\u044D\u0433\u044D\u044D\u0440 19-\u0440\u0442 \u0436\u0430\u0433\u0441\u0434\u0430\u0433. 2015 \u043E\u043D\u044B \u044D\u0445\u044D\u043D\u0434 \u041C\u043E\u043D\u0433\u043E\u043B \u0423\u043B\u0441\u044B\u043D \u0445\u04AF\u043D \u0430\u043C 3 \u0441\u0430\u044F \u0445\u04AF\u0440\u0441\u044D\u043D (135-\u0440 \u043E\u043B\u043E\u043D). \u04AE\u043D\u0434\u0441\u044D\u043D\u0434\u044D\u044D \u043C\u043E\u043D\u0433\u043E\u043B \u04AF\u043D\u0434\u044D\u0441\u0442\u044D\u043D (95 \u0445\u0443\u0432\u044C), \u043C\u04E9\u043D \u0445\u0430\u0441\u0430\u0433, \u0442\u0443\u0432\u0430 \u0445\u04AF\u043D \u0431\u0430\u0439\u043D\u0430. 16-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0445\u043E\u0439\u0448 \u0431\u0443\u0434\u0434\u044B\u043D \u0448\u0430\u0448\u0438\u043D, 20-\u0440 \u0437\u0443\u0443\u043D\u0430\u0430\u0441 \u0448\u0430\u0448\u0438\u043D\u0433\u04AF\u0439 \u0431\u0430\u0439\u0434\u0430\u043B \u0434\u044D\u043B\u0433\u044D\u0440\u0441\u044D\u043D \u0431\u0430 \u0430\u043B\u0431\u0430\u043D \u0445\u044D\u0440\u044D\u0433\u0442 \u043C\u043E\u043D\u0433\u043E\u043B \u0445\u044D\u043B\u044D\u044D\u0440 \u0445\u0430\u0440\u0438\u043B\u0446\u0430\u043D\u0430.`
|
|
1285
|
+
]
|
|
1286
|
+
],
|
|
1287
|
+
[
|
|
1288
|
+
"text-generation",
|
|
1289
|
+
[`\u041D\u0430\u043C\u0430\u0439\u0433 \u0414\u043E\u0440\u0436 \u0433\u044D\u0434\u044D\u0433. \u0411\u0438`, `\u0425\u0430\u043C\u0433\u0438\u0439\u043D \u0441\u0430\u0439\u043D \u0434\u0443\u0443\u0447\u0438\u043D \u0431\u043E\u043B`, `\u041C\u0438\u043D\u0438\u0439 \u0434\u0443\u0440\u0442\u0430\u0439 \u0445\u0430\u043C\u0442\u043B\u0430\u0433 \u0431\u043E\u043B`, `\u042D\u0440\u0442 \u0443\u0440\u044C\u0434\u044B\u043D \u0446\u0430\u0433\u0442`]
|
|
1290
|
+
],
|
|
1291
|
+
["fill-mask", [`\u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D <mask> \u0423\u043B\u0430\u0430\u043D\u0431\u0430\u0430\u0442\u0430\u0440 \u0445\u043E\u0442\u043E\u043E\u0441 \u044F\u0440\u044C\u0436 \u0431\u0430\u0439\u043D\u0430.`, `\u041C\u0438\u043D\u0438\u0439 \u0430\u043C\u044C\u0434\u0440\u0430\u043B\u044B\u043D \u0437\u043E\u0440\u0438\u043B\u0433\u043E \u0431\u043E\u043B <mask>.`]],
|
|
1292
|
+
[
|
|
1293
|
+
"automatic-speech-recognition",
|
|
1294
|
+
[
|
|
1295
|
+
{
|
|
1296
|
+
label: `Common Voice Train Example`,
|
|
1297
|
+
src: `https://cdn-media.huggingface.co/common_voice/train/common_voice_mn_18577472.wav`
|
|
1298
|
+
},
|
|
1299
|
+
{
|
|
1300
|
+
label: `Common Voice Test Example`,
|
|
1301
|
+
src: `https://cdn-media.huggingface.co/common_voice/test/common_voice_mn_18577346.wav`
|
|
1302
|
+
}
|
|
1303
|
+
]
|
|
1304
|
+
],
|
|
1305
|
+
[
|
|
1306
|
+
"text-to-speech",
|
|
1307
|
+
[
|
|
1308
|
+
`\u0411\u0438 \u041C\u043E\u043D\u0433\u043E\u043B \u0443\u043B\u0441\u044B\u043D \u0438\u0440\u0433\u044D\u043D.`,
|
|
1309
|
+
`\u042D\u043D\u044D\u0445\u04AF\u04AF \u0436\u0438\u0448\u044D\u044D \u043D\u044C \u0446\u0430\u0430\u043D\u0430\u0430 \u044F\u043C\u0430\u0440 \u0447 \u0443\u0442\u0433\u0430 \u0430\u0433\u0443\u0443\u043B\u0430\u0430\u0433\u04AF\u0439 \u0431\u043E\u043B\u043D\u043E`,
|
|
1310
|
+
`\u0421\u0430\u0440 \u0448\u0438\u043D\u044D\u0434\u044D\u044D \u0441\u0430\u0439\u0445\u0430\u043D \u0448\u0438\u043D\u044D\u043B\u044D\u0436 \u0431\u0430\u0439\u043D\u0430 \u0443\u0443?`
|
|
1311
|
+
]
|
|
1312
|
+
],
|
|
1313
|
+
[
|
|
1314
|
+
"sentence-similarity",
|
|
1315
|
+
[
|
|
1316
|
+
{
|
|
1317
|
+
source_sentence: "\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C",
|
|
1318
|
+
sentences: ["\u042D\u043D\u044D \u0431\u043E\u043B \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u043D\u043E\u0445\u043E\u0439 \u044E\u043C", "\u042D\u043D\u044D \u0431\u043E\u043B \u043C\u0430\u0448 \u0438\u0445 \u0430\u0437 \u0436\u0430\u0440\u0433\u0430\u043B\u0442\u0430\u0439 \u0445\u04AF\u043D \u044E\u043C", "\u04E8\u043D\u04E9\u04E9\u0434\u04E9\u0440 \u043D\u0430\u0440\u043B\u0430\u0433 \u04E9\u0434\u04E9\u0440 \u0431\u0430\u0439\u043D\u0430"]
|
|
1319
|
+
}
|
|
1320
|
+
]
|
|
1321
|
+
]
|
|
1322
|
+
]);
|
|
1323
|
+
var MAPPING_SI = /* @__PURE__ */ new Map([
|
|
1324
|
+
["translation", [`\u0DC3\u0DD2\u0D82\u0DC4\u0DBD \u0D89\u0DAD\u0DCF \u0D85\u0DBD\u0D82\u0D9A\u0DCF\u0DBB \u0DB7\u0DCF\u0DC2\u0DCF\u0DC0\u0D9A\u0DD2.`, `\u0DB8\u0DD9\u0DB8 \u0DAD\u0DCF\u0D9A\u0DCA\u0DC2\u0DAB\u0DBA \u0DB7\u0DCF\u0DC0\u0DD2\u0DAD\u0DCF \u0D9A\u0DBB\u0DB1 \u0D94\u0DB6\u0DA7 \u0DC3\u0DCA\u0DAD\u0DD6\u0DAD\u0DD2\u0DBA\u0DD2.`]],
|
|
1325
|
+
["fill-mask", [`\u0DB8\u0DB8 \u0D9C\u0DD9\u0DAF\u0DBB <mask>.`, `<mask> \u0D89\u0D9C\u0DD9\u0DB1\u0DD3\u0DB8\u0DA7 \u0D9C\u0DD2\u0DBA\u0DCF\u0DBA.`]]
|
|
1326
|
+
]);
|
|
1327
|
+
var MAPPING_DE = /* @__PURE__ */ new Map([
|
|
1328
|
+
[
|
|
1329
|
+
"question-answering",
|
|
1330
|
+
[
|
|
1331
|
+
{
|
|
1332
|
+
text: `Wo wohne ich?`,
|
|
1333
|
+
context: `Mein Name ist Wolfgang und ich lebe in Berlin`
|
|
1334
|
+
},
|
|
1335
|
+
{
|
|
1336
|
+
text: `Welcher Name wird auch verwendet, um den Amazonas-Regenwald auf Englisch zu beschreiben?`,
|
|
1337
|
+
context: `Der Amazonas-Regenwald, auf Englisch auch als Amazonien oder Amazonas-Dschungel bekannt, ist ein feuchter Laubwald, der den gr\xF6\xDFten Teil des Amazonas-Beckens S\xFCdamerikas bedeckt. Dieses Becken umfasst 7.000.000 Quadratkilometer (2.700.000 Quadratmeilen), von denen 5.500.000 Quadratkilometer (2.100.000 Quadratmeilen) vom Regenwald bedeckt sind. Diese Region umfasst Gebiete von neun Nationen. Der gr\xF6\xDFte Teil des Waldes befindet sich in Brasilien mit 60% des Regenwaldes, gefolgt von Peru mit 13%, Kolumbien mit 10% und geringen Mengen in Venezuela, Ecuador, Bolivien, Guyana, Suriname und Franz\xF6sisch-Guayana. Staaten oder Abteilungen in vier Nationen enthalten "Amazonas" in ihren Namen. Der Amazonas repr\xE4sentiert mehr als die H\xE4lfte der verbleibenden Regenw\xE4lder des Planeten und umfasst den gr\xF6\xDFten und artenreichsten tropischen Regenwald der Welt mit gesch\xE4tzten 390 Milliarden Einzelb\xE4umen, die in 16.000 Arten unterteilt sind.`
|
|
1338
|
+
}
|
|
1339
|
+
]
|
|
1340
|
+
],
|
|
1341
|
+
[
|
|
1342
|
+
"sentence-similarity",
|
|
1343
|
+
[
|
|
1344
|
+
{
|
|
1345
|
+
source_sentence: "Das ist eine gl\xFCckliche Person",
|
|
1346
|
+
sentences: [
|
|
1347
|
+
"Das ist ein gl\xFCcklicher Hund",
|
|
1348
|
+
"Das ist eine sehr gl\xFCckliche Person",
|
|
1349
|
+
"Heute ist ein sonniger Tag"
|
|
1350
|
+
]
|
|
1351
|
+
}
|
|
1352
|
+
]
|
|
1353
|
+
]
|
|
1354
|
+
]);
|
|
1355
|
+
var MAPPING_DV = /* @__PURE__ */ new Map([
|
|
1356
|
+
["text-classification", [`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078E\u07A6\u0794\u07A7\u0788\u07AD. \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078D\u07AF\u0784\u07A8\u0788\u07AD`]],
|
|
1357
|
+
[
|
|
1358
|
+
"token-classification",
|
|
1359
|
+
[
|
|
1360
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
|
|
1361
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`,
|
|
1362
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u060C \u0787\u07A6\u0787\u07B0\u0791\u07AB\u078E\u07A6`
|
|
1363
|
+
]
|
|
1364
|
+
],
|
|
1365
|
+
[
|
|
1366
|
+
"question-answering",
|
|
1367
|
+
[
|
|
1368
|
+
{
|
|
1369
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
|
|
1370
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`
|
|
1371
|
+
},
|
|
1372
|
+
{
|
|
1373
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u078C\u07A7\u0786\u07AA\u061F`,
|
|
1374
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
|
|
1375
|
+
},
|
|
1376
|
+
{
|
|
1377
|
+
text: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0786\u07AE\u0784\u07A7\u061F`,
|
|
1378
|
+
context: `\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0787\u07A8\u079D\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u078A\u07AD\u078B\u07AB\u078E\u07A6`
|
|
1379
|
+
},
|
|
1380
|
+
{
|
|
1381
|
+
text: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0790\u07A8\u078A\u07A6\u0786\u07AE\u0781\u07B0\u078B\u07A8\u0782\u07AA\u0789\u07A6\u0781\u07B0 \u0787\u07A8\u0782\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AD\u0782\u07AA\u0782\u07B0\u0786\u07AA\u0783\u07A7\u0782\u07A9 \u0786\u07AE\u0782\u07B0\u0782\u07A6\u0789\u07AC\u0787\u07B0\u061F`,
|
|
1382
|
+
context: `\u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 (\u0795\u07AF\u0797\u07AA\u0796\u07A9\u0792\u07B0: \u078A\u07B0\u078D\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7\u061B \u0790\u07B0\u0795\u07AC\u0782\u07A8\u079D\u07B0: \u0790\u07AC\u078D\u07B0\u0788\u07A7 \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0786\u07A7, \u0787\u07AC\u0789\u07A6\u0790\u07AE\u0782\u07A8\u0787\u07A7 \u0782\u07AB\u0782\u07A9 \u0787\u07A7\u0782\u07B0\u0789\u07AA\u0786\u07AE\u0781\u07B0 \u0787\u07AC\u0789\u07A6\u0792\u07AF\u0782\u07A8\u0787\u07A7\u061B \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0: \u078A\u07AE\u0783\u07AD \u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A8\u0787\u07AC\u0782\u07B0\u061B \u0791\u07A6\u0797\u07B0: \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07B0\u0783\u07AD\u078E\u07AC\u0788\u07A6\u0787\u07AA\u0791\u07B0)\u060C \u0787\u07A8\u078E\u07A8\u0783\u07AD\u0790\u07A8 \u0784\u07A6\u0780\u07AA\u0782\u07B0 \u0784\u07AA\u0782\u07A7 \u0787\u07AC\u0789\u07AC\u0792\u07AF\u0782\u07A8\u0787\u07A7 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u078B\u07A6 \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0796\u07A6\u0782\u07B0\u078E\u07A6\u078D\u07B0 \u0787\u07A6\u0786\u07A9, \u0790\u07A6\u0787\u07AA\u078C\u07AA \u0787\u07AC\u0789\u07AC\u0783\u07A8\u0786\u07A7\u078E\u07AC \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA\u0784\u07A6\u0787\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u0789\u07AE\u0787\u07A8\u0790\u07B0\u0793\u07B0 \u0784\u07AE\u0783\u07AF\u0791\u07B0\u078D\u07A9\u078A\u07B0 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0787\u07AC\u0786\u07AC\u0788\u07AC. \u0787\u07AC\u0789\u07AD\u0792\u07A6\u0782\u07B0 \u0784\u07AD\u0790\u07A8\u0782\u07B0 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07AC \u0784\u07AE\u0791\u07AA \u0789\u07A8\u0782\u07A6\u0786\u07A9 7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.7 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0(. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 5.5 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0786\u07A8\u078D\u07AF\u0789\u07A9\u0793\u07A6\u0783 (2.1 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0787\u07A6\u0786\u07A6 \u0789\u07A6\u0787\u07A8\u078D\u07B0) \u0787\u07A6\u0786\u07A9 \u0789\u07A8 \u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07AC\u0788\u07AC. \u0789\u07A8 \u0790\u07A6\u0783\u07A6\u0780\u07A6\u0787\u07B0\u078B\u07AA\u078E\u07A6\u0787\u07A8 9 \u078E\u07A6\u0787\u07AA\u0789\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A7 \u0793\u07AC\u0783\u07A8\u0793\u07A6\u0783\u07A9 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC. 60% \u0787\u07A7\u0787\u07A8\u0787\u07AC\u0786\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07AE\u0791\u07AA \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07A6\u0782\u07A9 \u0784\u07B0\u0783\u07AC\u0792\u07A8\u078D\u07B0\u0787\u07A6\u0781\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u078A\u07A6\u0780\u07AA\u078C\u07AA\u0782\u07B0 13% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0795\u07AC\u0783\u07AB \u0787\u07A7\u0787\u07A8 10% \u0787\u07A7\u0787\u07AC\u0786\u07AA \u0786\u07AE\u078D\u07A6\u0789\u07B0\u0784\u07A8\u0787\u07A7 \u0787\u07A6\u078B\u07A8 \u0786\u07AA\u0791\u07A6 \u0784\u07A6\u0787\u07AC\u0787\u07B0 \u0780\u07A8\u0789\u07AC\u0782\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 \u0788\u07AC\u0782\u07AC\u0792\u07AA\u0787\u07AC\u078D\u07A7, \u0787\u07AC\u0786\u07B0\u0787\u07A6\u0791\u07AF, \u0784\u07AE\u078D\u07A8\u0788\u07A8\u0787\u07A7, \u078E\u07AA\u0794\u07A7\u0782\u07A7, \u0790\u07AA\u0783\u07A8\u0782\u07A7\u0789\u07B0 \u0787\u07A6\u078B\u07A8 \u078A\u07B0\u0783\u07AC\u0782\u07B0\u0797\u07B0 \u078E\u07B0\u0787\u07A7\u0782\u07A7 \u0787\u07A6\u0781\u07B0 \u0788\u07AC\u0790\u07B0 \u0782\u07A8\u0790\u07B0\u0784\u07A6\u078C\u07B0\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A9\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 4 \u078E\u07A6\u0787\u07AA\u0789\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8 "\u0787\u07AC\u0789\u07AC\u0792\u07AE\u0782\u07A7\u0790\u07B0" \u0780\u07A8\u0789\u07A6\u0782\u07A6\u0787\u07A8\u078E\u07AC\u0782\u07B0 \u0790\u07B0\u0793\u07AD\u0793\u07B0 \u0782\u07AA\u0788\u07A6\u078C\u07A6 \u0791\u07A8\u0795\u07A7\u0793\u07B0\u0789\u07A6\u0782\u07B0\u0793\u07B0 \u0787\u07A6\u0786\u07A6\u0781\u07B0 \u0782\u07A6\u0782\u07B0\u078B\u07A9\u078A\u07A6\u0787\u07A8\u0788\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0784\u07A7\u0786\u07A9 \u0780\u07AA\u0783\u07A8 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u078B\u07AC\u0784\u07A6\u0787\u07A8\u0786\u07AA\u0785\u07A6 \u0787\u07AC\u0787\u07B0\u0784\u07A6\u0794\u07A6\u0781\u07B0\u0788\u07AA\u0783\u07AC\u0784\u07AE\u0791\u07AA\u0788\u07A6\u0783\u07AC\u0787\u07B0 \u0787\u07AC\u0789\u07AD\u0792\u07AE\u0782\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0780\u07A8\u0787\u07B0\u0790\u07A7\u0786\u07AA\u0783\u07AC\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 \u0789\u07AA\u0785\u07A8 \u078B\u07AA\u0782\u07A8\u0794\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AE \u0784\u07AE\u0791\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0784\u07A6\u0787\u07AE\u0791\u07A6\u0787\u07A8\u0788\u07A6\u0783\u0790\u07B0 \u0783\u07AC\u0787\u07A8\u0782\u07B0\u078A\u07AE\u0783\u07AC\u0790\u07B0\u0793\u07B0 \u0793\u07B0\u0783\u07AC\u0786\u07B0\u0793\u07AC\u0788\u07AC. \u078D\u07A6\u078A\u07A7\u0786\u07AA\u0783\u07AC\u0788\u07AD \u078E\u07AE\u078C\u07AA\u0782\u07B0 16 \u0780\u07A7\u0790\u07B0 \u0790\u07B0\u0795\u07A9\u079D\u07A9\u0790\u07B0\u0787\u07A6\u0781\u07B0 \u0784\u07AC\u0780\u07A8\u078E\u07AC\u0782\u07B0\u0788\u07A7 390 \u0789\u07A8\u078D\u07A8\u0787\u07A6\u0782\u07B0 \u0788\u07A6\u0787\u07B0\u078C\u07A6\u0783\u07AA\u078E\u07AC \u078E\u07A6\u0790\u07B0 \u0789\u07A8\u078C\u07A7\u078E\u07A6\u0787\u07A8 \u0780\u07A8\u0789\u07AC\u0782\u07AC\u0787\u07AC\u0788\u07AC`
|
|
1383
|
+
}
|
|
1384
|
+
]
|
|
1385
|
+
],
|
|
1386
|
+
[
|
|
1387
|
+
"translation",
|
|
1388
|
+
[
|
|
1389
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0787\u07A6\u0780\u07AA\u0789\u07A6\u078B\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0789\u07A7\u078D\u07AD\u078E\u07A6`,
|
|
1390
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0790\u07A7\u0783\u07A7 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u078B\u07A8\u0783\u07A8\u0787\u07AA\u0785\u07AC\u0782\u07A9 \u0787\u07AA\u078C\u07A9\u0789\u07AA\u078E\u07A6`
|
|
1391
|
+
]
|
|
1392
|
+
],
|
|
1393
|
+
[
|
|
1394
|
+
"summarization",
|
|
1395
|
+
[
|
|
1396
|
+
`\u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07A6\u0786\u07A9 324 \u0789\u07A9\u0793\u07A6\u0783\u07AA\u060C \u0787\u07AC\u0787\u07A9 \u078E\u07A7\u078C\u07B0\u078E\u07A6\u0782\u0791\u07A6\u0786\u07A6\u0781\u07B0 81 \u0784\u07AA\u0783\u07A9\u078E\u07AC \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07A6\u0786\u07A7\u0787\u07A8 \u0787\u07AC\u0787\u07B0\u0788\u07A6\u0783\u07AC\u0788\u07AC. \u0787\u07AC\u0787\u07A9 \u0795\u07AC\u0783\u07A8\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC. \u0787\u07AD\u078E\u07AC \u0780\u07A6\u078C\u07A6\u0783\u07AC\u0790\u07B0\u0786\u07A6\u0782\u07A6\u0781\u07B0 \u0780\u07AA\u0783\u07A8 \u0784\u07AA\u0791\u07AA\u078E\u07AC \u078B\u07A8\u078E\u07AA\u0789\u07A8\u0782\u07A6\u0786\u07A9 \u0786\u07AE\u0782\u07B0\u0789\u07AC \u078A\u07A6\u0783\u07A7\u078C\u07A6\u0786\u07AA\u0782\u07B0 125 \u0789\u07A9\u0793\u07A6\u0783\u07AC\u0788\u07AC. (410 \u078A\u07AB\u0793\u07AA) \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07A8 \u0787\u07A8\u0783\u07AA\u060C \u0788\u07AE\u079D\u07A8\u0782\u07B0\u078E\u07B0\u0793\u07A6\u0782\u07B0 \u0789\u07AE\u0782\u07A8\u0787\u07AA\u0789\u07AC\u0782\u07B0\u0793\u07B0\u078E\u07AC \u0787\u07AA\u0790\u07B0\u0789\u07A8\u0782\u07B0 \u078A\u07A6\u0780\u07A6\u0782\u07A6\u0787\u07A6\u0785\u07A7 \u078E\u07AE\u0790\u07B0\u060C \u078B\u07AA\u0782\u07A8\u0794\u07AD\u078E\u07A6\u0787\u07A8 \u0789\u07A9\u0780\u07AA\u0782\u07B0 \u0787\u07AA\u078A\u07AC\u0787\u07B0\u078B\u07A8 \u078C\u07A6\u0782\u07B0\u078C\u07A6\u0782\u07AA\u078E\u07AC \u078C\u07AC\u0783\u07AC\u0787\u07A8\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078C\u07A6\u0782\u07AA\u078E\u07AC \u078D\u07A6\u078E\u07A6\u0784\u07AA \u078D\u07A8\u0784\u07AA\u0782\u07AC\u0788\u07AC. \u0787\u07A6\u078B\u07A8 1930 \u078E\u07A6\u0787\u07A8 \u0782\u07A8\u0787\u07AA \u0794\u07AF\u0786\u07B0\u078E\u07AC \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u07B0 \u0784\u07A8\u0782\u07A7\u0786\u07AA\u0783\u07AA\u0789\u07A7\u0787\u07A8 \u0780\u07A6\u0789\u07A6\u0787\u07A6\u0781\u07B0 41 \u0787\u07A6\u0780\u07A6\u0783\u07AA \u0788\u07A6\u0782\u07B0\u078B\u07AC\u0782\u07B0 \u0789\u07A8\u078D\u07A6\u078E\u07A6\u0784\u07AA \u0780\u07A8\u078A\u07AC\u0780\u07AC\u0787\u07B0\u0793\u07A8\u0787\u07AC\u0788\u07AC. \u0789\u07A8\u0787\u07A9 300 \u0789\u07A9\u0793\u07A6\u0783\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC \u0787\u07AA\u0790\u07B0\u0786\u07AE\u0781\u07B0 \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07B0\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u078A\u07AA\u0783\u07A6\u078C\u07A6\u0789\u07A6 \u078C\u07A6\u0782\u07AC\u0788\u07AC. 1957 \u078E\u07A6\u0787\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA\u078E\u07AC \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0789\u07A6\u078C\u07A9\u078E\u07A6\u0787\u07A8 \u0780\u07A6\u0783\u07AA\u0786\u07AA\u0783\u07AC\u0788\u07AA\u0782\u07AA \u0784\u07B0\u0783\u07AF\u0791\u07B0\u0786\u07A7\u0790\u07B0\u0793\u07A8\u0782\u07B0\u078E \u0787\u07AD\u0783\u07A8\u0787\u07A6\u078D\u07B0\u078E\u07AC \u0790\u07A6\u0784\u07A6\u0784\u07AA\u0782\u07B0 \u0789\u07A8\u0780\u07A7\u0783\u07AA \u0789\u07A8 \u0793\u07A6\u0788\u07A6\u0783\u07AA \u0786\u07B0\u0783\u07A6\u0787\u07A8\u0790\u07B0\u078D\u07A6\u0783 \u0784\u07A8\u078D\u07B0\u0791\u07A8\u0782\u07B0\u078E\u0787\u07A6\u0781\u07B0 \u0788\u07AA\u0783\u07AC 5.2 \u0789\u07A9\u0793\u07A6\u0783 (17 \u078A\u07AB\u0793\u07AA) \u0787\u07AA\u0780\u07AC\u0788\u07AC. \u0789\u07A8 \u0793\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u0789\u07A8\u0793\u07A6\u0783\u07AA \u0782\u07AA\u078D\u07A7\u060C \u0787\u07A6\u0787\u07A8\u078A\u07A8\u078D\u07B0 \u0793\u07A6\u0788\u07A6\u0783\u07A6\u0786\u07A9\u060C \u0789\u07A8\u078D\u07A7\u0787\u07AA \u0788\u07A8\u0787\u07A7\u0791\u07A6\u0786\u07B0\u0793\u07A6\u0781\u07B0 \u078A\u07A6\u0780\u07AA \u078A\u07B0\u0783\u07A7\u0782\u07B0\u0790\u07B0\u078E\u07A6\u0787\u07A8 \u0780\u07AA\u0783\u07A8 2 \u0788\u07A6\u0782\u07A6\u0787\u07A6\u0781\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u0787\u07AA\u0790\u07B0 \u078A\u07B0\u0783\u07A9\u0790\u07B0\u0793\u07AD\u0782\u07B0\u0791\u07A8\u0782\u07B0\u078E \u0787\u07A8\u0789\u07A7\u0783\u07A7\u078C\u07AC\u0788\u07AC`
|
|
1397
|
+
]
|
|
1398
|
+
],
|
|
1399
|
+
[
|
|
1400
|
+
"text-generation",
|
|
1401
|
+
[
|
|
1402
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0794\u07AB\u0790\u07AA\u078A\u07B0 \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0789\u07A6\u0787\u07A8\u078E\u07A6\u0782\u0791\u07AA`,
|
|
1403
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u0789\u07A6\u0783\u07A8\u0787\u07A6\u0789\u07B0\u060C \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0 \u0787\u07AC\u0782\u07B0\u0789\u07AC \u078E\u07A6\u0794\u07A7\u0788\u07A7`,
|
|
1404
|
+
`\u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0\u078E\u07AC \u0782\u07A6\u0789\u07A6\u0786\u07A9 \u078A\u07A7\u078C\u07AA\u0789\u07A6\u078C\u07AA \u0787\u07A6\u078B\u07A8 \u0787\u07A6\u0780\u07A6\u0783\u07AC\u0782\u07B0`,
|
|
1405
|
+
`\u060C\u0787\u07AC\u0787\u07B0 \u0792\u07A6\u0789\u07A7\u0782\u07AC\u0787\u07B0\u078E\u07A6\u0787\u07A8`
|
|
1406
|
+
]
|
|
1407
|
+
],
|
|
1408
|
+
["fill-mask", [`.<mask> \u0789\u07A7\u078D\u07AC \u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0783\u07A7\u0787\u07B0\u0796\u07AD\u078E\u07AC`, `\u078E\u07A6\u0783\u07AA\u078B\u07A8\u0794\u07A6\u0787\u07A6\u0786\u07A9 \u078B\u07A8\u0788\u07AC\u0780\u07A8\u0782\u07B0\u078E\u07AC \u0789\u07AC\u078B\u07AA\u078E\u07A6\u0787\u07A8 <mask> \u0786\u07AC\u0787\u07AA\u0789\u07AC\u0787\u07B0.`]]
|
|
1409
|
+
]);
|
|
1410
|
+
var MAPPING_DEFAULT_WIDGET = /* @__PURE__ */ new Map([
|
|
1411
|
+
["en", MAPPING_EN],
|
|
1412
|
+
["zh", MAPPING_ZH],
|
|
1413
|
+
["fr", MAPPING_FR],
|
|
1414
|
+
["es", MAPPING_ES],
|
|
1415
|
+
["ru", MAPPING_RU],
|
|
1416
|
+
["uk", MAPPING_UK],
|
|
1417
|
+
["it", MAPPING_IT],
|
|
1418
|
+
["fa", MAPPING_FA],
|
|
1419
|
+
["ar", MAPPING_AR],
|
|
1420
|
+
["bn", MAPPING_BN],
|
|
1421
|
+
["mn", MAPPING_MN],
|
|
1422
|
+
["si", MAPPING_SI],
|
|
1423
|
+
["de", MAPPING_DE],
|
|
1424
|
+
["dv", MAPPING_DV]
|
|
1425
|
+
]);
|
|
1426
|
+
|
|
32
1427
|
// src/pipelines.ts
|
|
33
1428
|
var MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"];
|
|
34
1429
|
var MODALITY_LABELS = {
|
|
@@ -409,6 +1804,11 @@ var PIPELINE_DATA = {
|
|
|
409
1804
|
modality: "cv",
|
|
410
1805
|
color: "indigo"
|
|
411
1806
|
},
|
|
1807
|
+
"image-to-video": {
|
|
1808
|
+
name: "Image-to-Video",
|
|
1809
|
+
modality: "multimodal",
|
|
1810
|
+
color: "indigo"
|
|
1811
|
+
},
|
|
412
1812
|
"unconditional-image-generation": {
|
|
413
1813
|
name: "Unconditional Image Generation",
|
|
414
1814
|
modality: "cv",
|
|
@@ -577,6 +1977,16 @@ var PIPELINE_DATA = {
|
|
|
577
1977
|
modality: "multimodal",
|
|
578
1978
|
color: "green"
|
|
579
1979
|
},
|
|
1980
|
+
"mask-generation": {
|
|
1981
|
+
name: "Mask Generation",
|
|
1982
|
+
modality: "cv",
|
|
1983
|
+
color: "indigo"
|
|
1984
|
+
},
|
|
1985
|
+
"zero-shot-object-detection": {
|
|
1986
|
+
name: "Zero-Shot Object Detection",
|
|
1987
|
+
modality: "cv",
|
|
1988
|
+
color: "yellow"
|
|
1989
|
+
},
|
|
580
1990
|
other: {
|
|
581
1991
|
name: "Other",
|
|
582
1992
|
modality: "other",
|
|
@@ -586,8 +1996,10 @@ var PIPELINE_DATA = {
|
|
|
586
1996
|
}
|
|
587
1997
|
};
|
|
588
1998
|
var PIPELINE_TYPES = Object.keys(PIPELINE_DATA);
|
|
1999
|
+
var SUBTASK_TYPES = Object.values(PIPELINE_DATA).flatMap((data) => "subtasks" in data ? data.subtasks : []).map((s) => s.type);
|
|
2000
|
+
var PIPELINE_TYPES_SET = new Set(PIPELINE_TYPES);
|
|
589
2001
|
|
|
590
|
-
// src/audio-classification/data.ts
|
|
2002
|
+
// src/tasks/audio-classification/data.ts
|
|
591
2003
|
var taskData = {
|
|
592
2004
|
datasets: [
|
|
593
2005
|
{
|
|
@@ -652,8 +2064,8 @@ var taskData = {
|
|
|
652
2064
|
],
|
|
653
2065
|
spaces: [
|
|
654
2066
|
{
|
|
655
|
-
description: "An application that can
|
|
656
|
-
id: "
|
|
2067
|
+
description: "An application that can classify music into different genre.",
|
|
2068
|
+
id: "kurianbenoy/audioclassification"
|
|
657
2069
|
}
|
|
658
2070
|
],
|
|
659
2071
|
summary: "Audio classification is the task of assigning a label or class to a given audio. It can be used for recognizing which command a user is giving or the emotion of a statement, as well as identifying a speaker.",
|
|
@@ -662,7 +2074,7 @@ var taskData = {
|
|
|
662
2074
|
};
|
|
663
2075
|
var data_default = taskData;
|
|
664
2076
|
|
|
665
|
-
// src/audio-to-audio/data.ts
|
|
2077
|
+
// src/tasks/audio-to-audio/data.ts
|
|
666
2078
|
var taskData2 = {
|
|
667
2079
|
datasets: [
|
|
668
2080
|
{
|
|
@@ -724,7 +2136,7 @@ var taskData2 = {
|
|
|
724
2136
|
};
|
|
725
2137
|
var data_default2 = taskData2;
|
|
726
2138
|
|
|
727
|
-
// src/automatic-speech-recognition/data.ts
|
|
2139
|
+
// src/tasks/automatic-speech-recognition/data.ts
|
|
728
2140
|
var taskData3 = {
|
|
729
2141
|
datasets: [
|
|
730
2142
|
{
|
|
@@ -769,7 +2181,7 @@ var taskData3 = {
|
|
|
769
2181
|
models: [
|
|
770
2182
|
{
|
|
771
2183
|
description: "A powerful ASR model by OpenAI.",
|
|
772
|
-
id: "openai/whisper-large-
|
|
2184
|
+
id: "openai/whisper-large-v3"
|
|
773
2185
|
},
|
|
774
2186
|
{
|
|
775
2187
|
description: "A good generic ASR model by MetaAI.",
|
|
@@ -783,24 +2195,24 @@ var taskData3 = {
|
|
|
783
2195
|
spaces: [
|
|
784
2196
|
{
|
|
785
2197
|
description: "A powerful general-purpose speech recognition application.",
|
|
786
|
-
id: "
|
|
2198
|
+
id: "hf-audio/whisper-large-v3"
|
|
787
2199
|
},
|
|
788
2200
|
{
|
|
789
2201
|
description: "Fastest speech recognition application.",
|
|
790
2202
|
id: "sanchit-gandhi/whisper-jax"
|
|
791
2203
|
},
|
|
792
2204
|
{
|
|
793
|
-
description: "
|
|
794
|
-
id: "
|
|
2205
|
+
description: "A high quality speech and text translation model by Meta.",
|
|
2206
|
+
id: "facebook/seamless_m4t"
|
|
795
2207
|
}
|
|
796
2208
|
],
|
|
797
2209
|
summary: "Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing a given audio to text. It has many applications, such as voice user interfaces.",
|
|
798
|
-
widgetModels: ["openai/whisper-large-
|
|
2210
|
+
widgetModels: ["openai/whisper-large-v3"],
|
|
799
2211
|
youtubeId: "TksaY_FDgnk"
|
|
800
2212
|
};
|
|
801
2213
|
var data_default3 = taskData3;
|
|
802
2214
|
|
|
803
|
-
// src/conversational/data.ts
|
|
2215
|
+
// src/tasks/conversational/data.ts
|
|
804
2216
|
var taskData4 = {
|
|
805
2217
|
datasets: [
|
|
806
2218
|
{
|
|
@@ -860,7 +2272,7 @@ var taskData4 = {
|
|
|
860
2272
|
};
|
|
861
2273
|
var data_default4 = taskData4;
|
|
862
2274
|
|
|
863
|
-
// src/document-question-answering/data.ts
|
|
2275
|
+
// src/tasks/document-question-answering/data.ts
|
|
864
2276
|
var taskData5 = {
|
|
865
2277
|
datasets: [
|
|
866
2278
|
{
|
|
@@ -925,7 +2337,7 @@ var taskData5 = {
|
|
|
925
2337
|
};
|
|
926
2338
|
var data_default5 = taskData5;
|
|
927
2339
|
|
|
928
|
-
// src/feature-extraction/data.ts
|
|
2340
|
+
// src/tasks/feature-extraction/data.ts
|
|
929
2341
|
var taskData6 = {
|
|
930
2342
|
datasets: [
|
|
931
2343
|
{
|
|
@@ -954,12 +2366,7 @@ var taskData6 = {
|
|
|
954
2366
|
}
|
|
955
2367
|
]
|
|
956
2368
|
},
|
|
957
|
-
metrics: [
|
|
958
|
-
{
|
|
959
|
-
description: "",
|
|
960
|
-
id: ""
|
|
961
|
-
}
|
|
962
|
-
],
|
|
2369
|
+
metrics: [],
|
|
963
2370
|
models: [
|
|
964
2371
|
{
|
|
965
2372
|
description: "A powerful feature extraction model for natural language processing tasks.",
|
|
@@ -976,7 +2383,7 @@ var taskData6 = {
|
|
|
976
2383
|
};
|
|
977
2384
|
var data_default6 = taskData6;
|
|
978
2385
|
|
|
979
|
-
// src/fill-mask/data.ts
|
|
2386
|
+
// src/tasks/fill-mask/data.ts
|
|
980
2387
|
var taskData7 = {
|
|
981
2388
|
datasets: [
|
|
982
2389
|
{
|
|
@@ -1051,7 +2458,7 @@ var taskData7 = {
|
|
|
1051
2458
|
};
|
|
1052
2459
|
var data_default7 = taskData7;
|
|
1053
2460
|
|
|
1054
|
-
// src/image-classification/data.ts
|
|
2461
|
+
// src/tasks/image-classification/data.ts
|
|
1055
2462
|
var taskData8 = {
|
|
1056
2463
|
datasets: [
|
|
1057
2464
|
{
|
|
@@ -1137,7 +2544,7 @@ var taskData8 = {
|
|
|
1137
2544
|
};
|
|
1138
2545
|
var data_default8 = taskData8;
|
|
1139
2546
|
|
|
1140
|
-
// src/image-to-image/data.ts
|
|
2547
|
+
// src/tasks/image-to-image/data.ts
|
|
1141
2548
|
var taskData9 = {
|
|
1142
2549
|
datasets: [
|
|
1143
2550
|
{
|
|
@@ -1232,7 +2639,7 @@ var taskData9 = {
|
|
|
1232
2639
|
};
|
|
1233
2640
|
var data_default9 = taskData9;
|
|
1234
2641
|
|
|
1235
|
-
// src/image-to-text/data.ts
|
|
2642
|
+
// src/tasks/image-to-text/data.ts
|
|
1236
2643
|
var taskData10 = {
|
|
1237
2644
|
datasets: [
|
|
1238
2645
|
{
|
|
@@ -1316,7 +2723,7 @@ var taskData10 = {
|
|
|
1316
2723
|
};
|
|
1317
2724
|
var data_default10 = taskData10;
|
|
1318
2725
|
|
|
1319
|
-
// src/image-segmentation/data.ts
|
|
2726
|
+
// src/tasks/image-segmentation/data.ts
|
|
1320
2727
|
var taskData11 = {
|
|
1321
2728
|
datasets: [
|
|
1322
2729
|
{
|
|
@@ -1411,7 +2818,7 @@ var taskData11 = {
|
|
|
1411
2818
|
};
|
|
1412
2819
|
var data_default11 = taskData11;
|
|
1413
2820
|
|
|
1414
|
-
// src/object-detection/data.ts
|
|
2821
|
+
// src/tasks/object-detection/data.ts
|
|
1415
2822
|
var taskData12 = {
|
|
1416
2823
|
datasets: [
|
|
1417
2824
|
{
|
|
@@ -1483,7 +2890,7 @@ var taskData12 = {
|
|
|
1483
2890
|
};
|
|
1484
2891
|
var data_default12 = taskData12;
|
|
1485
2892
|
|
|
1486
|
-
// src/depth-estimation/data.ts
|
|
2893
|
+
// src/tasks/depth-estimation/data.ts
|
|
1487
2894
|
var taskData13 = {
|
|
1488
2895
|
datasets: [
|
|
1489
2896
|
{
|
|
@@ -1534,7 +2941,7 @@ var taskData13 = {
|
|
|
1534
2941
|
};
|
|
1535
2942
|
var data_default13 = taskData13;
|
|
1536
2943
|
|
|
1537
|
-
// src/placeholder/data.ts
|
|
2944
|
+
// src/tasks/placeholder/data.ts
|
|
1538
2945
|
var taskData14 = {
|
|
1539
2946
|
datasets: [],
|
|
1540
2947
|
demo: {
|
|
@@ -1551,7 +2958,7 @@ var taskData14 = {
|
|
|
1551
2958
|
};
|
|
1552
2959
|
var data_default14 = taskData14;
|
|
1553
2960
|
|
|
1554
|
-
// src/reinforcement-learning/data.ts
|
|
2961
|
+
// src/tasks/reinforcement-learning/data.ts
|
|
1555
2962
|
var taskData15 = {
|
|
1556
2963
|
datasets: [
|
|
1557
2964
|
{
|
|
@@ -1620,7 +3027,7 @@ var taskData15 = {
|
|
|
1620
3027
|
};
|
|
1621
3028
|
var data_default15 = taskData15;
|
|
1622
3029
|
|
|
1623
|
-
// src/question-answering/data.ts
|
|
3030
|
+
// src/tasks/question-answering/data.ts
|
|
1624
3031
|
var taskData16 = {
|
|
1625
3032
|
datasets: [
|
|
1626
3033
|
{
|
|
@@ -1687,7 +3094,7 @@ var taskData16 = {
|
|
|
1687
3094
|
};
|
|
1688
3095
|
var data_default16 = taskData16;
|
|
1689
3096
|
|
|
1690
|
-
// src/sentence-similarity/data.ts
|
|
3097
|
+
// src/tasks/sentence-similarity/data.ts
|
|
1691
3098
|
var taskData17 = {
|
|
1692
3099
|
datasets: [
|
|
1693
3100
|
{
|
|
@@ -1782,7 +3189,7 @@ var taskData17 = {
|
|
|
1782
3189
|
};
|
|
1783
3190
|
var data_default17 = taskData17;
|
|
1784
3191
|
|
|
1785
|
-
// src/summarization/data.ts
|
|
3192
|
+
// src/tasks/summarization/data.ts
|
|
1786
3193
|
var taskData18 = {
|
|
1787
3194
|
datasets: [
|
|
1788
3195
|
{
|
|
@@ -1850,7 +3257,7 @@ var taskData18 = {
|
|
|
1850
3257
|
};
|
|
1851
3258
|
var data_default18 = taskData18;
|
|
1852
3259
|
|
|
1853
|
-
// src/table-question-answering/data.ts
|
|
3260
|
+
// src/tasks/table-question-answering/data.ts
|
|
1854
3261
|
var taskData19 = {
|
|
1855
3262
|
datasets: [
|
|
1856
3263
|
{
|
|
@@ -1904,7 +3311,7 @@ var taskData19 = {
|
|
|
1904
3311
|
};
|
|
1905
3312
|
var data_default19 = taskData19;
|
|
1906
3313
|
|
|
1907
|
-
// src/tabular-classification/data.ts
|
|
3314
|
+
// src/tasks/tabular-classification/data.ts
|
|
1908
3315
|
var taskData20 = {
|
|
1909
3316
|
datasets: [
|
|
1910
3317
|
{
|
|
@@ -1971,7 +3378,7 @@ var taskData20 = {
|
|
|
1971
3378
|
};
|
|
1972
3379
|
var data_default20 = taskData20;
|
|
1973
3380
|
|
|
1974
|
-
// src/tabular-regression/data.ts
|
|
3381
|
+
// src/tasks/tabular-regression/data.ts
|
|
1975
3382
|
var taskData21 = {
|
|
1976
3383
|
datasets: [
|
|
1977
3384
|
{
|
|
@@ -2026,7 +3433,7 @@ var taskData21 = {
|
|
|
2026
3433
|
};
|
|
2027
3434
|
var data_default21 = taskData21;
|
|
2028
3435
|
|
|
2029
|
-
// src/text-to-image/data.ts
|
|
3436
|
+
// src/tasks/text-to-image/data.ts
|
|
2030
3437
|
var taskData22 = {
|
|
2031
3438
|
datasets: [
|
|
2032
3439
|
{
|
|
@@ -2113,7 +3520,7 @@ var taskData22 = {
|
|
|
2113
3520
|
};
|
|
2114
3521
|
var data_default22 = taskData22;
|
|
2115
3522
|
|
|
2116
|
-
// src/text-to-speech/data.ts
|
|
3523
|
+
// src/tasks/text-to-speech/data.ts
|
|
2117
3524
|
var taskData23 = {
|
|
2118
3525
|
datasets: [
|
|
2119
3526
|
{
|
|
@@ -2166,8 +3573,8 @@ var taskData23 = {
|
|
|
2166
3573
|
id: "suno/bark"
|
|
2167
3574
|
},
|
|
2168
3575
|
{
|
|
2169
|
-
description: "
|
|
2170
|
-
id: "coqui/
|
|
3576
|
+
description: "XTTS is a Voice generation model that lets you clone voices into different languages.",
|
|
3577
|
+
id: "coqui/xtts"
|
|
2171
3578
|
},
|
|
2172
3579
|
{
|
|
2173
3580
|
description: "An application that synthesizes speech for various speaker types.",
|
|
@@ -2175,12 +3582,12 @@ var taskData23 = {
|
|
|
2175
3582
|
}
|
|
2176
3583
|
],
|
|
2177
3584
|
summary: "Text-to-Speech (TTS) is the task of generating natural sounding speech given text input. TTS models can be extended to have a single model that generates speech for multiple speakers and multiple languages.",
|
|
2178
|
-
widgetModels: ["
|
|
3585
|
+
widgetModels: ["suno/bark"],
|
|
2179
3586
|
youtubeId: "NW62DpzJ274"
|
|
2180
3587
|
};
|
|
2181
3588
|
var data_default23 = taskData23;
|
|
2182
3589
|
|
|
2183
|
-
// src/token-classification/data.ts
|
|
3590
|
+
// src/tasks/token-classification/data.ts
|
|
2184
3591
|
var taskData24 = {
|
|
2185
3592
|
datasets: [
|
|
2186
3593
|
{
|
|
@@ -2259,7 +3666,7 @@ var taskData24 = {
|
|
|
2259
3666
|
};
|
|
2260
3667
|
var data_default24 = taskData24;
|
|
2261
3668
|
|
|
2262
|
-
// src/translation/data.ts
|
|
3669
|
+
// src/tasks/translation/data.ts
|
|
2263
3670
|
var taskData25 = {
|
|
2264
3671
|
datasets: [
|
|
2265
3672
|
{
|
|
@@ -2323,7 +3730,7 @@ var taskData25 = {
|
|
|
2323
3730
|
};
|
|
2324
3731
|
var data_default25 = taskData25;
|
|
2325
3732
|
|
|
2326
|
-
// src/text-classification/data.ts
|
|
3733
|
+
// src/tasks/text-classification/data.ts
|
|
2327
3734
|
var taskData26 = {
|
|
2328
3735
|
datasets: [
|
|
2329
3736
|
{
|
|
@@ -2411,7 +3818,7 @@ var taskData26 = {
|
|
|
2411
3818
|
};
|
|
2412
3819
|
var data_default26 = taskData26;
|
|
2413
3820
|
|
|
2414
|
-
// src/text-generation/data.ts
|
|
3821
|
+
// src/tasks/text-generation/data.ts
|
|
2415
3822
|
var taskData27 = {
|
|
2416
3823
|
datasets: [
|
|
2417
3824
|
{
|
|
@@ -2526,12 +3933,12 @@ var taskData27 = {
|
|
|
2526
3933
|
}
|
|
2527
3934
|
],
|
|
2528
3935
|
summary: "Generating text is the task of producing new text. These models can, for example, fill in incomplete text or paraphrase.",
|
|
2529
|
-
widgetModels: ["
|
|
3936
|
+
widgetModels: ["HuggingFaceH4/zephyr-7b-beta"],
|
|
2530
3937
|
youtubeId: "Vpjb1lu0MDk"
|
|
2531
3938
|
};
|
|
2532
3939
|
var data_default27 = taskData27;
|
|
2533
3940
|
|
|
2534
|
-
// src/text-to-video/data.ts
|
|
3941
|
+
// src/tasks/text-to-video/data.ts
|
|
2535
3942
|
var taskData28 = {
|
|
2536
3943
|
datasets: [
|
|
2537
3944
|
{
|
|
@@ -2626,7 +4033,7 @@ var taskData28 = {
|
|
|
2626
4033
|
};
|
|
2627
4034
|
var data_default28 = taskData28;
|
|
2628
4035
|
|
|
2629
|
-
// src/unconditional-image-generation/data.ts
|
|
4036
|
+
// src/tasks/unconditional-image-generation/data.ts
|
|
2630
4037
|
var taskData29 = {
|
|
2631
4038
|
datasets: [
|
|
2632
4039
|
{
|
|
@@ -2691,7 +4098,7 @@ var taskData29 = {
|
|
|
2691
4098
|
};
|
|
2692
4099
|
var data_default29 = taskData29;
|
|
2693
4100
|
|
|
2694
|
-
// src/video-classification/data.ts
|
|
4101
|
+
// src/tasks/video-classification/data.ts
|
|
2695
4102
|
var taskData30 = {
|
|
2696
4103
|
datasets: [
|
|
2697
4104
|
{
|
|
@@ -2773,7 +4180,7 @@ var taskData30 = {
|
|
|
2773
4180
|
};
|
|
2774
4181
|
var data_default30 = taskData30;
|
|
2775
4182
|
|
|
2776
|
-
// src/visual-question-answering/data.ts
|
|
4183
|
+
// src/tasks/visual-question-answering/data.ts
|
|
2777
4184
|
var taskData31 = {
|
|
2778
4185
|
datasets: [
|
|
2779
4186
|
{
|
|
@@ -2862,7 +4269,7 @@ var taskData31 = {
|
|
|
2862
4269
|
};
|
|
2863
4270
|
var data_default31 = taskData31;
|
|
2864
4271
|
|
|
2865
|
-
// src/zero-shot-classification/data.ts
|
|
4272
|
+
// src/tasks/zero-shot-classification/data.ts
|
|
2866
4273
|
var taskData32 = {
|
|
2867
4274
|
datasets: [
|
|
2868
4275
|
{
|
|
@@ -2924,7 +4331,7 @@ var taskData32 = {
|
|
|
2924
4331
|
};
|
|
2925
4332
|
var data_default32 = taskData32;
|
|
2926
4333
|
|
|
2927
|
-
// src/zero-shot-image-classification/data.ts
|
|
4334
|
+
// src/tasks/zero-shot-image-classification/data.ts
|
|
2928
4335
|
var taskData33 = {
|
|
2929
4336
|
datasets: [
|
|
2930
4337
|
{
|
|
@@ -2997,7 +4404,7 @@ var taskData33 = {
|
|
|
2997
4404
|
};
|
|
2998
4405
|
var data_default33 = taskData33;
|
|
2999
4406
|
|
|
3000
|
-
// src/
|
|
4407
|
+
// src/tasks/index.ts
|
|
3001
4408
|
var TASKS_MODEL_LIBRARIES = {
|
|
3002
4409
|
"audio-classification": ["speechbrain", "transformers"],
|
|
3003
4410
|
"audio-to-audio": ["asteroid", "speechbrain"],
|
|
@@ -3010,9 +4417,11 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3010
4417
|
"graph-ml": ["transformers"],
|
|
3011
4418
|
"image-classification": ["keras", "timm", "transformers", "transformers.js"],
|
|
3012
4419
|
"image-segmentation": ["transformers", "transformers.js"],
|
|
3013
|
-
"image-to-image": [],
|
|
4420
|
+
"image-to-image": ["diffusers"],
|
|
3014
4421
|
"image-to-text": ["transformers.js"],
|
|
3015
|
-
"video
|
|
4422
|
+
"image-to-video": ["diffusers"],
|
|
4423
|
+
"video-classification": ["transformers"],
|
|
4424
|
+
"mask-generation": ["transformers"],
|
|
3016
4425
|
"multiple-choice": ["transformers"],
|
|
3017
4426
|
"object-detection": ["transformers", "transformers.js"],
|
|
3018
4427
|
other: [],
|
|
@@ -3029,10 +4438,10 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3029
4438
|
"text-classification": ["adapter-transformers", "spacy", "transformers", "transformers.js"],
|
|
3030
4439
|
"text-generation": ["transformers", "transformers.js"],
|
|
3031
4440
|
"text-retrieval": [],
|
|
3032
|
-
"text-to-image": [],
|
|
4441
|
+
"text-to-image": ["diffusers"],
|
|
3033
4442
|
"text-to-speech": ["espnet", "tensorflowtts", "transformers"],
|
|
3034
4443
|
"text-to-audio": ["transformers"],
|
|
3035
|
-
"text-to-video": [],
|
|
4444
|
+
"text-to-video": ["diffusers"],
|
|
3036
4445
|
"text2text-generation": ["transformers", "transformers.js"],
|
|
3037
4446
|
"time-series-forecasting": [],
|
|
3038
4447
|
"token-classification": [
|
|
@@ -3045,14 +4454,21 @@ var TASKS_MODEL_LIBRARIES = {
|
|
|
3045
4454
|
"transformers.js"
|
|
3046
4455
|
],
|
|
3047
4456
|
translation: ["transformers", "transformers.js"],
|
|
3048
|
-
"unconditional-image-generation": [],
|
|
3049
|
-
"visual-question-answering": [],
|
|
4457
|
+
"unconditional-image-generation": ["diffusers"],
|
|
4458
|
+
"visual-question-answering": ["transformers"],
|
|
3050
4459
|
"voice-activity-detection": [],
|
|
3051
4460
|
"zero-shot-classification": ["transformers", "transformers.js"],
|
|
3052
|
-
"zero-shot-image-classification": ["transformers.js"]
|
|
4461
|
+
"zero-shot-image-classification": ["transformers", "transformers.js"],
|
|
4462
|
+
"zero-shot-object-detection": ["transformers"]
|
|
3053
4463
|
};
|
|
3054
|
-
|
|
3055
|
-
|
|
4464
|
+
function getData(type, partialTaskData = data_default14) {
|
|
4465
|
+
return {
|
|
4466
|
+
...partialTaskData,
|
|
4467
|
+
id: type,
|
|
4468
|
+
label: PIPELINE_DATA[type].name,
|
|
4469
|
+
libraries: TASKS_MODEL_LIBRARIES[type]
|
|
4470
|
+
};
|
|
4471
|
+
}
|
|
3056
4472
|
var TASKS_DATA = {
|
|
3057
4473
|
"audio-classification": getData("audio-classification", data_default),
|
|
3058
4474
|
"audio-to-audio": getData("audio-to-audio", data_default2),
|
|
@@ -3067,6 +4483,8 @@ var TASKS_DATA = {
|
|
|
3067
4483
|
"image-segmentation": getData("image-segmentation", data_default11),
|
|
3068
4484
|
"image-to-image": getData("image-to-image", data_default9),
|
|
3069
4485
|
"image-to-text": getData("image-to-text", data_default10),
|
|
4486
|
+
"image-to-video": void 0,
|
|
4487
|
+
"mask-generation": getData("mask-generation", data_default14),
|
|
3070
4488
|
"multiple-choice": void 0,
|
|
3071
4489
|
"object-detection": getData("object-detection", data_default12),
|
|
3072
4490
|
"video-classification": getData("video-classification", data_default30),
|
|
@@ -3096,18 +4514,11 @@ var TASKS_DATA = {
|
|
|
3096
4514
|
"visual-question-answering": getData("visual-question-answering", data_default31),
|
|
3097
4515
|
"voice-activity-detection": void 0,
|
|
3098
4516
|
"zero-shot-classification": getData("zero-shot-classification", data_default32),
|
|
3099
|
-
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33)
|
|
4517
|
+
"zero-shot-image-classification": getData("zero-shot-image-classification", data_default33),
|
|
4518
|
+
"zero-shot-object-detection": getData("zero-shot-object-detection", data_default14)
|
|
3100
4519
|
};
|
|
3101
|
-
function getData(type, partialTaskData = data_default14) {
|
|
3102
|
-
return {
|
|
3103
|
-
...partialTaskData,
|
|
3104
|
-
id: type,
|
|
3105
|
-
label: PIPELINE_DATA[type].name,
|
|
3106
|
-
libraries: TASKS_MODEL_LIBRARIES[type]
|
|
3107
|
-
};
|
|
3108
|
-
}
|
|
3109
4520
|
|
|
3110
|
-
// src/
|
|
4521
|
+
// src/model-libraries.ts
|
|
3111
4522
|
var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
3112
4523
|
ModelLibrary2["adapter-transformers"] = "Adapter Transformers";
|
|
3113
4524
|
ModelLibrary2["allennlp"] = "allenNLP";
|
|
@@ -3144,12 +4555,471 @@ var ModelLibrary = /* @__PURE__ */ ((ModelLibrary2) => {
|
|
|
3144
4555
|
ModelLibrary2["mindspore"] = "MindSpore";
|
|
3145
4556
|
return ModelLibrary2;
|
|
3146
4557
|
})(ModelLibrary || {});
|
|
4558
|
+
var ALL_DISPLAY_MODEL_LIBRARY_KEYS = Object.keys(ModelLibrary).filter(
|
|
4559
|
+
(k) => !["doctr", "k2", "mindspore", "tensorflowtts"].includes(k)
|
|
4560
|
+
);
|
|
4561
|
+
|
|
4562
|
+
// src/model-data.ts
|
|
4563
|
+
var InferenceDisplayability = /* @__PURE__ */ ((InferenceDisplayability2) => {
|
|
4564
|
+
InferenceDisplayability2["Yes"] = "Yes";
|
|
4565
|
+
InferenceDisplayability2["ExplicitOptOut"] = "ExplicitOptOut";
|
|
4566
|
+
InferenceDisplayability2["CustomCode"] = "CustomCode";
|
|
4567
|
+
InferenceDisplayability2["LibraryNotDetected"] = "LibraryNotDetected";
|
|
4568
|
+
InferenceDisplayability2["PipelineNotDetected"] = "PipelineNotDetected";
|
|
4569
|
+
InferenceDisplayability2["PipelineLibraryPairNotSupported"] = "PipelineLibraryPairNotSupported";
|
|
4570
|
+
return InferenceDisplayability2;
|
|
4571
|
+
})(InferenceDisplayability || {});
|
|
4572
|
+
|
|
4573
|
+
// src/tags.ts
|
|
4574
|
+
var TAG_NFAA_CONTENT = "not-for-all-audiences";
|
|
4575
|
+
var OTHER_TAGS_SUGGESTIONS = [
|
|
4576
|
+
"chemistry",
|
|
4577
|
+
"biology",
|
|
4578
|
+
"finance",
|
|
4579
|
+
"legal",
|
|
4580
|
+
"music",
|
|
4581
|
+
"art",
|
|
4582
|
+
"code",
|
|
4583
|
+
"climate",
|
|
4584
|
+
"medical",
|
|
4585
|
+
TAG_NFAA_CONTENT
|
|
4586
|
+
];
|
|
4587
|
+
var TAG_TEXT_GENERATION_INFERENCE = "text-generation-inference";
|
|
4588
|
+
var TAG_CUSTOM_CODE = "custom_code";
|
|
4589
|
+
|
|
4590
|
+
// src/snippets/index.ts
|
|
4591
|
+
var snippets_exports = {};
|
|
4592
|
+
__export(snippets_exports, {
|
|
4593
|
+
curl: () => curl_exports,
|
|
4594
|
+
inputs: () => inputs_exports,
|
|
4595
|
+
js: () => js_exports,
|
|
4596
|
+
python: () => python_exports
|
|
4597
|
+
});
|
|
4598
|
+
|
|
4599
|
+
// src/snippets/inputs.ts
|
|
4600
|
+
var inputs_exports = {};
|
|
4601
|
+
__export(inputs_exports, {
|
|
4602
|
+
getModelInputSnippet: () => getModelInputSnippet
|
|
4603
|
+
});
|
|
4604
|
+
var inputsZeroShotClassification = () => `"Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"`;
|
|
4605
|
+
var inputsTranslation = () => `"\u041C\u0435\u043D\u044F \u0437\u043E\u0432\u0443\u0442 \u0412\u043E\u043B\u044C\u0444\u0433\u0430\u043D\u0433 \u0438 \u044F \u0436\u0438\u0432\u0443 \u0432 \u0411\u0435\u0440\u043B\u0438\u043D\u0435"`;
|
|
4606
|
+
var inputsSummarization = () => `"The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct."`;
|
|
4607
|
+
var inputsConversational = () => `{
|
|
4608
|
+
"past_user_inputs": ["Which movie is the best ?"],
|
|
4609
|
+
"generated_responses": ["It is Die Hard for sure."],
|
|
4610
|
+
"text": "Can you explain why ?"
|
|
4611
|
+
}`;
|
|
4612
|
+
var inputsTableQuestionAnswering = () => `{
|
|
4613
|
+
"query": "How many stars does the transformers repository have?",
|
|
4614
|
+
"table": {
|
|
4615
|
+
"Repository": ["Transformers", "Datasets", "Tokenizers"],
|
|
4616
|
+
"Stars": ["36542", "4512", "3934"],
|
|
4617
|
+
"Contributors": ["651", "77", "34"],
|
|
4618
|
+
"Programming language": [
|
|
4619
|
+
"Python",
|
|
4620
|
+
"Python",
|
|
4621
|
+
"Rust, Python and NodeJS"
|
|
4622
|
+
]
|
|
4623
|
+
}
|
|
4624
|
+
}`;
|
|
4625
|
+
var inputsQuestionAnswering = () => `{
|
|
4626
|
+
"question": "What is my name?",
|
|
4627
|
+
"context": "My name is Clara and I live in Berkeley."
|
|
4628
|
+
}`;
|
|
4629
|
+
var inputsTextClassification = () => `"I like you. I love you"`;
|
|
4630
|
+
var inputsTokenClassification = () => `"My name is Sarah Jessica Parker but you can call me Jessica"`;
|
|
4631
|
+
var inputsTextGeneration = () => `"Can you please let us know more details about your "`;
|
|
4632
|
+
var inputsText2TextGeneration = () => `"The answer to the universe is"`;
|
|
4633
|
+
var inputsFillMask = (model) => `"The answer to the universe is ${model.mask_token}."`;
|
|
4634
|
+
var inputsSentenceSimilarity = () => `{
|
|
4635
|
+
"source_sentence": "That is a happy person",
|
|
4636
|
+
"sentences": [
|
|
4637
|
+
"That is a happy dog",
|
|
4638
|
+
"That is a very happy person",
|
|
4639
|
+
"Today is a sunny day"
|
|
4640
|
+
]
|
|
4641
|
+
}`;
|
|
4642
|
+
var inputsFeatureExtraction = () => `"Today is a sunny day and I will get some ice cream."`;
|
|
4643
|
+
var inputsImageClassification = () => `"cats.jpg"`;
|
|
4644
|
+
var inputsImageToText = () => `"cats.jpg"`;
|
|
4645
|
+
var inputsImageSegmentation = () => `"cats.jpg"`;
|
|
4646
|
+
var inputsObjectDetection = () => `"cats.jpg"`;
|
|
4647
|
+
var inputsAudioToAudio = () => `"sample1.flac"`;
|
|
4648
|
+
var inputsAudioClassification = () => `"sample1.flac"`;
|
|
4649
|
+
var inputsTextToImage = () => `"Astronaut riding a horse"`;
|
|
4650
|
+
var inputsTextToSpeech = () => `"The answer to the universe is 42"`;
|
|
4651
|
+
var inputsTextToAudio = () => `"liquid drum and bass, atmospheric synths, airy sounds"`;
|
|
4652
|
+
var inputsAutomaticSpeechRecognition = () => `"sample1.flac"`;
|
|
4653
|
+
var modelInputSnippets = {
|
|
4654
|
+
"audio-to-audio": inputsAudioToAudio,
|
|
4655
|
+
"audio-classification": inputsAudioClassification,
|
|
4656
|
+
"automatic-speech-recognition": inputsAutomaticSpeechRecognition,
|
|
4657
|
+
conversational: inputsConversational,
|
|
4658
|
+
"feature-extraction": inputsFeatureExtraction,
|
|
4659
|
+
"fill-mask": inputsFillMask,
|
|
4660
|
+
"image-classification": inputsImageClassification,
|
|
4661
|
+
"image-to-text": inputsImageToText,
|
|
4662
|
+
"image-segmentation": inputsImageSegmentation,
|
|
4663
|
+
"object-detection": inputsObjectDetection,
|
|
4664
|
+
"question-answering": inputsQuestionAnswering,
|
|
4665
|
+
"sentence-similarity": inputsSentenceSimilarity,
|
|
4666
|
+
summarization: inputsSummarization,
|
|
4667
|
+
"table-question-answering": inputsTableQuestionAnswering,
|
|
4668
|
+
"text-classification": inputsTextClassification,
|
|
4669
|
+
"text-generation": inputsTextGeneration,
|
|
4670
|
+
"text-to-image": inputsTextToImage,
|
|
4671
|
+
"text-to-speech": inputsTextToSpeech,
|
|
4672
|
+
"text-to-audio": inputsTextToAudio,
|
|
4673
|
+
"text2text-generation": inputsText2TextGeneration,
|
|
4674
|
+
"token-classification": inputsTokenClassification,
|
|
4675
|
+
translation: inputsTranslation,
|
|
4676
|
+
"zero-shot-classification": inputsZeroShotClassification
|
|
4677
|
+
};
|
|
4678
|
+
function getModelInputSnippet(model, noWrap = false, noQuotes = false) {
|
|
4679
|
+
if (model.pipeline_tag) {
|
|
4680
|
+
const inputs = modelInputSnippets[model.pipeline_tag];
|
|
4681
|
+
if (inputs) {
|
|
4682
|
+
let result = inputs(model);
|
|
4683
|
+
if (noWrap) {
|
|
4684
|
+
result = result.replace(/(?:(?:\r?\n|\r)\t*)|\t+/g, " ");
|
|
4685
|
+
}
|
|
4686
|
+
if (noQuotes) {
|
|
4687
|
+
const REGEX_QUOTES = /^"(.+)"$/s;
|
|
4688
|
+
const match = result.match(REGEX_QUOTES);
|
|
4689
|
+
result = match ? match[1] : result;
|
|
4690
|
+
}
|
|
4691
|
+
return result;
|
|
4692
|
+
}
|
|
4693
|
+
}
|
|
4694
|
+
return "No input example has been defined for this model task.";
|
|
4695
|
+
}
|
|
4696
|
+
|
|
4697
|
+
// src/snippets/curl.ts
|
|
4698
|
+
var curl_exports = {};
|
|
4699
|
+
__export(curl_exports, {
|
|
4700
|
+
curlSnippets: () => curlSnippets,
|
|
4701
|
+
getCurlInferenceSnippet: () => getCurlInferenceSnippet,
|
|
4702
|
+
hasCurlInferenceSnippet: () => hasCurlInferenceSnippet,
|
|
4703
|
+
snippetBasic: () => snippetBasic,
|
|
4704
|
+
snippetFile: () => snippetFile,
|
|
4705
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification
|
|
4706
|
+
});
|
|
4707
|
+
var snippetBasic = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4708
|
+
-X POST \\
|
|
4709
|
+
-d '{"inputs": ${getModelInputSnippet(model, true)}}' \\
|
|
4710
|
+
-H 'Content-Type: application/json' \\
|
|
4711
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4712
|
+
`;
|
|
4713
|
+
var snippetZeroShotClassification = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4714
|
+
-X POST \\
|
|
4715
|
+
-d '{"inputs": ${getModelInputSnippet(model, true)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}' \\
|
|
4716
|
+
-H 'Content-Type: application/json' \\
|
|
4717
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4718
|
+
`;
|
|
4719
|
+
var snippetFile = (model, accessToken) => `curl https://api-inference.huggingface.co/models/${model.id} \\
|
|
4720
|
+
-X POST \\
|
|
4721
|
+
--data-binary '@${getModelInputSnippet(model, true, true)}' \\
|
|
4722
|
+
-H "Authorization: Bearer ${accessToken || `{API_TOKEN}`}"
|
|
4723
|
+
`;
|
|
4724
|
+
var curlSnippets = {
|
|
4725
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4726
|
+
"text-classification": snippetBasic,
|
|
4727
|
+
"token-classification": snippetBasic,
|
|
4728
|
+
"table-question-answering": snippetBasic,
|
|
4729
|
+
"question-answering": snippetBasic,
|
|
4730
|
+
"zero-shot-classification": snippetZeroShotClassification,
|
|
4731
|
+
translation: snippetBasic,
|
|
4732
|
+
summarization: snippetBasic,
|
|
4733
|
+
conversational: snippetBasic,
|
|
4734
|
+
"feature-extraction": snippetBasic,
|
|
4735
|
+
"text-generation": snippetBasic,
|
|
4736
|
+
"text2text-generation": snippetBasic,
|
|
4737
|
+
"fill-mask": snippetBasic,
|
|
4738
|
+
"sentence-similarity": snippetBasic,
|
|
4739
|
+
"automatic-speech-recognition": snippetFile,
|
|
4740
|
+
"text-to-image": snippetBasic,
|
|
4741
|
+
"text-to-speech": snippetBasic,
|
|
4742
|
+
"text-to-audio": snippetBasic,
|
|
4743
|
+
"audio-to-audio": snippetFile,
|
|
4744
|
+
"audio-classification": snippetFile,
|
|
4745
|
+
"image-classification": snippetFile,
|
|
4746
|
+
"image-to-text": snippetFile,
|
|
4747
|
+
"object-detection": snippetFile,
|
|
4748
|
+
"image-segmentation": snippetFile
|
|
4749
|
+
};
|
|
4750
|
+
function getCurlInferenceSnippet(model, accessToken) {
|
|
4751
|
+
return model.pipeline_tag && model.pipeline_tag in curlSnippets ? curlSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
|
|
4752
|
+
}
|
|
4753
|
+
function hasCurlInferenceSnippet(model) {
|
|
4754
|
+
return !!model.pipeline_tag && model.pipeline_tag in curlSnippets;
|
|
4755
|
+
}
|
|
4756
|
+
|
|
4757
|
+
// src/snippets/python.ts
|
|
4758
|
+
var python_exports = {};
|
|
4759
|
+
__export(python_exports, {
|
|
4760
|
+
getPythonInferenceSnippet: () => getPythonInferenceSnippet,
|
|
4761
|
+
hasPythonInferenceSnippet: () => hasPythonInferenceSnippet,
|
|
4762
|
+
pythonSnippets: () => pythonSnippets,
|
|
4763
|
+
snippetBasic: () => snippetBasic2,
|
|
4764
|
+
snippetFile: () => snippetFile2,
|
|
4765
|
+
snippetTextToAudio: () => snippetTextToAudio,
|
|
4766
|
+
snippetTextToImage: () => snippetTextToImage,
|
|
4767
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification2
|
|
4768
|
+
});
|
|
4769
|
+
var snippetZeroShotClassification2 = (model) => `def query(payload):
|
|
4770
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4771
|
+
return response.json()
|
|
4772
|
+
|
|
4773
|
+
output = query({
|
|
4774
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4775
|
+
"parameters": {"candidate_labels": ["refund", "legal", "faq"]},
|
|
4776
|
+
})`;
|
|
4777
|
+
var snippetBasic2 = (model) => `def query(payload):
|
|
4778
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4779
|
+
return response.json()
|
|
4780
|
+
|
|
4781
|
+
output = query({
|
|
4782
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4783
|
+
})`;
|
|
4784
|
+
var snippetFile2 = (model) => `def query(filename):
|
|
4785
|
+
with open(filename, "rb") as f:
|
|
4786
|
+
data = f.read()
|
|
4787
|
+
response = requests.post(API_URL, headers=headers, data=data)
|
|
4788
|
+
return response.json()
|
|
4789
|
+
|
|
4790
|
+
output = query(${getModelInputSnippet(model)})`;
|
|
4791
|
+
var snippetTextToImage = (model) => `def query(payload):
|
|
4792
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4793
|
+
return response.content
|
|
4794
|
+
image_bytes = query({
|
|
4795
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4796
|
+
})
|
|
4797
|
+
# You can access the image with PIL.Image for example
|
|
4798
|
+
import io
|
|
4799
|
+
from PIL import Image
|
|
4800
|
+
image = Image.open(io.BytesIO(image_bytes))`;
|
|
4801
|
+
var snippetTextToAudio = (model) => {
|
|
4802
|
+
if (model.library_name === "transformers") {
|
|
4803
|
+
return `def query(payload):
|
|
4804
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4805
|
+
return response.content
|
|
4806
|
+
|
|
4807
|
+
audio_bytes = query({
|
|
4808
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4809
|
+
})
|
|
4810
|
+
# You can access the audio with IPython.display for example
|
|
4811
|
+
from IPython.display import Audio
|
|
4812
|
+
Audio(audio_bytes)`;
|
|
4813
|
+
} else {
|
|
4814
|
+
return `def query(payload):
|
|
4815
|
+
response = requests.post(API_URL, headers=headers, json=payload)
|
|
4816
|
+
return response.json()
|
|
4817
|
+
|
|
4818
|
+
audio, sampling_rate = query({
|
|
4819
|
+
"inputs": ${getModelInputSnippet(model)},
|
|
4820
|
+
})
|
|
4821
|
+
# You can access the audio with IPython.display for example
|
|
4822
|
+
from IPython.display import Audio
|
|
4823
|
+
Audio(audio, rate=sampling_rate)`;
|
|
4824
|
+
}
|
|
4825
|
+
};
|
|
4826
|
+
var pythonSnippets = {
|
|
4827
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4828
|
+
"text-classification": snippetBasic2,
|
|
4829
|
+
"token-classification": snippetBasic2,
|
|
4830
|
+
"table-question-answering": snippetBasic2,
|
|
4831
|
+
"question-answering": snippetBasic2,
|
|
4832
|
+
"zero-shot-classification": snippetZeroShotClassification2,
|
|
4833
|
+
translation: snippetBasic2,
|
|
4834
|
+
summarization: snippetBasic2,
|
|
4835
|
+
conversational: snippetBasic2,
|
|
4836
|
+
"feature-extraction": snippetBasic2,
|
|
4837
|
+
"text-generation": snippetBasic2,
|
|
4838
|
+
"text2text-generation": snippetBasic2,
|
|
4839
|
+
"fill-mask": snippetBasic2,
|
|
4840
|
+
"sentence-similarity": snippetBasic2,
|
|
4841
|
+
"automatic-speech-recognition": snippetFile2,
|
|
4842
|
+
"text-to-image": snippetTextToImage,
|
|
4843
|
+
"text-to-speech": snippetTextToAudio,
|
|
4844
|
+
"text-to-audio": snippetTextToAudio,
|
|
4845
|
+
"audio-to-audio": snippetFile2,
|
|
4846
|
+
"audio-classification": snippetFile2,
|
|
4847
|
+
"image-classification": snippetFile2,
|
|
4848
|
+
"image-to-text": snippetFile2,
|
|
4849
|
+
"object-detection": snippetFile2,
|
|
4850
|
+
"image-segmentation": snippetFile2
|
|
4851
|
+
};
|
|
4852
|
+
function getPythonInferenceSnippet(model, accessToken) {
|
|
4853
|
+
const body = model.pipeline_tag && model.pipeline_tag in pythonSnippets ? pythonSnippets[model.pipeline_tag]?.(model) ?? "" : "";
|
|
4854
|
+
return `import requests
|
|
4855
|
+
|
|
4856
|
+
API_URL = "https://api-inference.huggingface.co/models/${model.id}"
|
|
4857
|
+
headers = {"Authorization": ${accessToken ? `"Bearer ${accessToken}"` : `f"Bearer {API_TOKEN}"`}}
|
|
4858
|
+
|
|
4859
|
+
${body}`;
|
|
4860
|
+
}
|
|
4861
|
+
function hasPythonInferenceSnippet(model) {
|
|
4862
|
+
return !!model.pipeline_tag && model.pipeline_tag in pythonSnippets;
|
|
4863
|
+
}
|
|
4864
|
+
|
|
4865
|
+
// src/snippets/js.ts
|
|
4866
|
+
var js_exports = {};
|
|
4867
|
+
__export(js_exports, {
|
|
4868
|
+
getJsInferenceSnippet: () => getJsInferenceSnippet,
|
|
4869
|
+
hasJsInferenceSnippet: () => hasJsInferenceSnippet,
|
|
4870
|
+
jsSnippets: () => jsSnippets,
|
|
4871
|
+
snippetBasic: () => snippetBasic3,
|
|
4872
|
+
snippetFile: () => snippetFile3,
|
|
4873
|
+
snippetTextToAudio: () => snippetTextToAudio2,
|
|
4874
|
+
snippetTextToImage: () => snippetTextToImage2,
|
|
4875
|
+
snippetZeroShotClassification: () => snippetZeroShotClassification3
|
|
4876
|
+
});
|
|
4877
|
+
var snippetBasic3 = (model, accessToken) => `async function query(data) {
|
|
4878
|
+
const response = await fetch(
|
|
4879
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4880
|
+
{
|
|
4881
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4882
|
+
method: "POST",
|
|
4883
|
+
body: JSON.stringify(data),
|
|
4884
|
+
}
|
|
4885
|
+
);
|
|
4886
|
+
const result = await response.json();
|
|
4887
|
+
return result;
|
|
4888
|
+
}
|
|
4889
|
+
|
|
4890
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4891
|
+
console.log(JSON.stringify(response));
|
|
4892
|
+
});`;
|
|
4893
|
+
var snippetZeroShotClassification3 = (model, accessToken) => `async function query(data) {
|
|
4894
|
+
const response = await fetch(
|
|
4895
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4896
|
+
{
|
|
4897
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4898
|
+
method: "POST",
|
|
4899
|
+
body: JSON.stringify(data),
|
|
4900
|
+
}
|
|
4901
|
+
);
|
|
4902
|
+
const result = await response.json();
|
|
4903
|
+
return result;
|
|
4904
|
+
}
|
|
4905
|
+
|
|
4906
|
+
query({"inputs": ${getModelInputSnippet(
|
|
4907
|
+
model
|
|
4908
|
+
)}, "parameters": {"candidate_labels": ["refund", "legal", "faq"]}}).then((response) => {
|
|
4909
|
+
console.log(JSON.stringify(response));
|
|
4910
|
+
});`;
|
|
4911
|
+
var snippetTextToImage2 = (model, accessToken) => `async function query(data) {
|
|
4912
|
+
const response = await fetch(
|
|
4913
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4914
|
+
{
|
|
4915
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4916
|
+
method: "POST",
|
|
4917
|
+
body: JSON.stringify(data),
|
|
4918
|
+
}
|
|
4919
|
+
);
|
|
4920
|
+
const result = await response.blob();
|
|
4921
|
+
return result;
|
|
4922
|
+
}
|
|
4923
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4924
|
+
// Use image
|
|
4925
|
+
});`;
|
|
4926
|
+
var snippetTextToAudio2 = (model, accessToken) => {
|
|
4927
|
+
const commonSnippet = `async function query(data) {
|
|
4928
|
+
const response = await fetch(
|
|
4929
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4930
|
+
{
|
|
4931
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4932
|
+
method: "POST",
|
|
4933
|
+
body: JSON.stringify(data),
|
|
4934
|
+
}
|
|
4935
|
+
);`;
|
|
4936
|
+
if (model.library_name === "transformers") {
|
|
4937
|
+
return commonSnippet + `
|
|
4938
|
+
const result = await response.blob();
|
|
4939
|
+
return result;
|
|
4940
|
+
}
|
|
4941
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4942
|
+
// Returns a byte object of the Audio wavform. Use it directly!
|
|
4943
|
+
});`;
|
|
4944
|
+
} else {
|
|
4945
|
+
return commonSnippet + `
|
|
4946
|
+
const result = await response.json();
|
|
4947
|
+
return result;
|
|
4948
|
+
}
|
|
4949
|
+
|
|
4950
|
+
query({"inputs": ${getModelInputSnippet(model)}}).then((response) => {
|
|
4951
|
+
console.log(JSON.stringify(response));
|
|
4952
|
+
});`;
|
|
4953
|
+
}
|
|
4954
|
+
};
|
|
4955
|
+
var snippetFile3 = (model, accessToken) => `async function query(filename) {
|
|
4956
|
+
const data = fs.readFileSync(filename);
|
|
4957
|
+
const response = await fetch(
|
|
4958
|
+
"https://api-inference.huggingface.co/models/${model.id}",
|
|
4959
|
+
{
|
|
4960
|
+
headers: { Authorization: "Bearer ${accessToken || `{API_TOKEN}`}" },
|
|
4961
|
+
method: "POST",
|
|
4962
|
+
body: data,
|
|
4963
|
+
}
|
|
4964
|
+
);
|
|
4965
|
+
const result = await response.json();
|
|
4966
|
+
return result;
|
|
4967
|
+
}
|
|
4968
|
+
|
|
4969
|
+
query(${getModelInputSnippet(model)}).then((response) => {
|
|
4970
|
+
console.log(JSON.stringify(response));
|
|
4971
|
+
});`;
|
|
4972
|
+
var jsSnippets = {
|
|
4973
|
+
// Same order as in js/src/lib/interfaces/Types.ts
|
|
4974
|
+
"text-classification": snippetBasic3,
|
|
4975
|
+
"token-classification": snippetBasic3,
|
|
4976
|
+
"table-question-answering": snippetBasic3,
|
|
4977
|
+
"question-answering": snippetBasic3,
|
|
4978
|
+
"zero-shot-classification": snippetZeroShotClassification3,
|
|
4979
|
+
translation: snippetBasic3,
|
|
4980
|
+
summarization: snippetBasic3,
|
|
4981
|
+
conversational: snippetBasic3,
|
|
4982
|
+
"feature-extraction": snippetBasic3,
|
|
4983
|
+
"text-generation": snippetBasic3,
|
|
4984
|
+
"text2text-generation": snippetBasic3,
|
|
4985
|
+
"fill-mask": snippetBasic3,
|
|
4986
|
+
"sentence-similarity": snippetBasic3,
|
|
4987
|
+
"automatic-speech-recognition": snippetFile3,
|
|
4988
|
+
"text-to-image": snippetTextToImage2,
|
|
4989
|
+
"text-to-speech": snippetTextToAudio2,
|
|
4990
|
+
"text-to-audio": snippetTextToAudio2,
|
|
4991
|
+
"audio-to-audio": snippetFile3,
|
|
4992
|
+
"audio-classification": snippetFile3,
|
|
4993
|
+
"image-classification": snippetFile3,
|
|
4994
|
+
"image-to-text": snippetFile3,
|
|
4995
|
+
"object-detection": snippetFile3,
|
|
4996
|
+
"image-segmentation": snippetFile3
|
|
4997
|
+
};
|
|
4998
|
+
function getJsInferenceSnippet(model, accessToken) {
|
|
4999
|
+
return model.pipeline_tag && model.pipeline_tag in jsSnippets ? jsSnippets[model.pipeline_tag]?.(model, accessToken) ?? "" : "";
|
|
5000
|
+
}
|
|
5001
|
+
function hasJsInferenceSnippet(model) {
|
|
5002
|
+
return !!model.pipeline_tag && model.pipeline_tag in jsSnippets;
|
|
5003
|
+
}
|
|
3147
5004
|
// Annotate the CommonJS export names for ESM import in node:
|
|
3148
5005
|
0 && (module.exports = {
|
|
5006
|
+
ALL_DISPLAY_MODEL_LIBRARY_KEYS,
|
|
5007
|
+
InferenceDisplayability,
|
|
5008
|
+
LIBRARY_TASK_MAPPING_EXCLUDING_TRANSFORMERS,
|
|
5009
|
+
MAPPING_DEFAULT_WIDGET,
|
|
3149
5010
|
MODALITIES,
|
|
3150
5011
|
MODALITY_LABELS,
|
|
5012
|
+
MODEL_LIBRARIES_UI_ELEMENTS,
|
|
3151
5013
|
ModelLibrary,
|
|
5014
|
+
OTHER_TAGS_SUGGESTIONS,
|
|
3152
5015
|
PIPELINE_DATA,
|
|
3153
5016
|
PIPELINE_TYPES,
|
|
3154
|
-
|
|
5017
|
+
PIPELINE_TYPES_SET,
|
|
5018
|
+
SUBTASK_TYPES,
|
|
5019
|
+
TAG_CUSTOM_CODE,
|
|
5020
|
+
TAG_NFAA_CONTENT,
|
|
5021
|
+
TAG_TEXT_GENERATION_INFERENCE,
|
|
5022
|
+
TASKS_DATA,
|
|
5023
|
+
TASKS_MODEL_LIBRARIES,
|
|
5024
|
+
snippets
|
|
3155
5025
|
});
|