@google-cloud/discoveryengine 2.4.0 → 2.5.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +3 -0
- package/build/protos/google/cloud/discoveryengine/v1/search_service.proto +152 -0
- package/build/protos/google/cloud/discoveryengine/v1alpha/search_service.proto +128 -4
- package/build/protos/google/cloud/discoveryengine/v1beta/search_service.proto +128 -4
- package/build/protos/protos.d.ts +825 -0
- package/build/protos/protos.js +2438 -0
- package/build/protos/protos.json +517 -0
- package/build/src/v1/identity_mapping_store_service_client.js +5 -5
- package/build/src/v1/search_service_client.d.ts +558 -0
- package/build/src/v1/search_service_client.js +372 -0
- package/build/src/v1alpha/search_service_client.d.ts +210 -12
- package/build/src/v1alpha/search_service_client.js +140 -8
- package/build/src/v1beta/search_service_client.d.ts +420 -24
- package/build/src/v1beta/search_service_client.js +280 -16
- package/package.json +1 -1
@@ -579,6 +579,99 @@ class SearchServiceClient {
|
|
579
579
|
* This feature is not supported for healthcare search.
|
580
580
|
* @param {google.cloud.discoveryengine.v1.SearchRequest.RelevanceScoreSpec} [request.relevanceScoreSpec]
|
581
581
|
* Optional. The specification for returning the relevance score.
|
582
|
+
* @param {string} request.rankingExpression
|
583
|
+
* The ranking expression controls the customized ranking on retrieval
|
584
|
+
* documents. This overrides
|
585
|
+
* {@link protos.google.cloud.discoveryengine.v1.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
586
|
+
* The syntax and supported features depend on the
|
587
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
588
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
589
|
+
*
|
590
|
+
* If
|
591
|
+
* {@link protos.google.cloud.discoveryengine.v1.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
592
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
593
|
+
* function or multiple functions that are joined by "+".
|
594
|
+
*
|
595
|
+
* * ranking_expression = function, { " + ", function };
|
596
|
+
*
|
597
|
+
* Supported functions:
|
598
|
+
*
|
599
|
+
* * double * relevance_score
|
600
|
+
* * double * dotProduct(embedding_field_path)
|
601
|
+
*
|
602
|
+
* Function variables:
|
603
|
+
*
|
604
|
+
* * `relevance_score`: pre-defined keywords, used for measure relevance
|
605
|
+
* between query and document.
|
606
|
+
* * `embedding_field_path`: the document embedding field
|
607
|
+
* used with query embedding vector.
|
608
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
609
|
+
* query embedding vector.
|
610
|
+
*
|
611
|
+
* Example ranking expression:
|
612
|
+
*
|
613
|
+
* If document has an embedding field doc_embedding, the ranking expression
|
614
|
+
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
615
|
+
*
|
616
|
+
* If
|
617
|
+
* {@link protos.google.cloud.discoveryengine.v1.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
618
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
619
|
+
* combinations of those chained using + or
|
620
|
+
* * operators) are supported:
|
621
|
+
*
|
622
|
+
* * `double`
|
623
|
+
* * `signal`
|
624
|
+
* * `log(signal)`
|
625
|
+
* * `exp(signal)`
|
626
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
627
|
+
* argument being a denominator constant.
|
628
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
629
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
630
|
+
* signal2 | double, else returns signal1.
|
631
|
+
*
|
632
|
+
* Here are a few examples of ranking formulas that use the supported
|
633
|
+
* ranking expression types:
|
634
|
+
*
|
635
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
636
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
637
|
+
* `semantic_smilarity_score` adjustment.
|
638
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
639
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
640
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
641
|
+
* add constant 0.3 adjustment to the final score if
|
642
|
+
* `semantic_similarity_score` is NaN.
|
643
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
644
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
645
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
646
|
+
* of `semantic_smilarity_score`.
|
647
|
+
*
|
648
|
+
* The following signals are supported:
|
649
|
+
*
|
650
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
651
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
652
|
+
* This score determines how semantically similar a search query is to a
|
653
|
+
* document.
|
654
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
655
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
656
|
+
* probabilistic model to estimate the probability that a document is
|
657
|
+
* relevant to a given query.
|
658
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
659
|
+
* proprietary Google model to determine the meaning and intent behind a
|
660
|
+
* user's query in context with the content in the documents.
|
661
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
662
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
663
|
+
* attractiveness of a search result from a user's perspective. A higher
|
664
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
665
|
+
* and intent, making it a valuable signal for ranking.
|
666
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
667
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
668
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
669
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
670
|
+
* Google model to determine the keyword-based overlap between the query and
|
671
|
+
* the document.
|
672
|
+
* * `base_rank`: the default rank of the result
|
673
|
+
* @param {google.cloud.discoveryengine.v1.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
674
|
+
* The backend to use for the ranking expression evaluation.
|
582
675
|
* @param {object} [options]
|
583
676
|
* Call options. See {@link https://googleapis.dev/nodejs/google-gax/latest/interfaces/CallOptions.html|CallOptions} for more details.
|
584
677
|
* @returns {Stream}
|
@@ -831,6 +924,99 @@ class SearchServiceClient {
|
|
831
924
|
* This feature is not supported for healthcare search.
|
832
925
|
* @param {google.cloud.discoveryengine.v1.SearchRequest.RelevanceScoreSpec} [request.relevanceScoreSpec]
|
833
926
|
* Optional. The specification for returning the relevance score.
|
927
|
+
* @param {string} request.rankingExpression
|
928
|
+
* The ranking expression controls the customized ranking on retrieval
|
929
|
+
* documents. This overrides
|
930
|
+
* {@link protos.google.cloud.discoveryengine.v1.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
931
|
+
* The syntax and supported features depend on the
|
932
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
933
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
934
|
+
*
|
935
|
+
* If
|
936
|
+
* {@link protos.google.cloud.discoveryengine.v1.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
937
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
938
|
+
* function or multiple functions that are joined by "+".
|
939
|
+
*
|
940
|
+
* * ranking_expression = function, { " + ", function };
|
941
|
+
*
|
942
|
+
* Supported functions:
|
943
|
+
*
|
944
|
+
* * double * relevance_score
|
945
|
+
* * double * dotProduct(embedding_field_path)
|
946
|
+
*
|
947
|
+
* Function variables:
|
948
|
+
*
|
949
|
+
* * `relevance_score`: pre-defined keywords, used for measure relevance
|
950
|
+
* between query and document.
|
951
|
+
* * `embedding_field_path`: the document embedding field
|
952
|
+
* used with query embedding vector.
|
953
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
954
|
+
* query embedding vector.
|
955
|
+
*
|
956
|
+
* Example ranking expression:
|
957
|
+
*
|
958
|
+
* If document has an embedding field doc_embedding, the ranking expression
|
959
|
+
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
960
|
+
*
|
961
|
+
* If
|
962
|
+
* {@link protos.google.cloud.discoveryengine.v1.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
963
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
964
|
+
* combinations of those chained using + or
|
965
|
+
* * operators) are supported:
|
966
|
+
*
|
967
|
+
* * `double`
|
968
|
+
* * `signal`
|
969
|
+
* * `log(signal)`
|
970
|
+
* * `exp(signal)`
|
971
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
972
|
+
* argument being a denominator constant.
|
973
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
974
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
975
|
+
* signal2 | double, else returns signal1.
|
976
|
+
*
|
977
|
+
* Here are a few examples of ranking formulas that use the supported
|
978
|
+
* ranking expression types:
|
979
|
+
*
|
980
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
981
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
982
|
+
* `semantic_smilarity_score` adjustment.
|
983
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
984
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
985
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
986
|
+
* add constant 0.3 adjustment to the final score if
|
987
|
+
* `semantic_similarity_score` is NaN.
|
988
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
989
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
990
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
991
|
+
* of `semantic_smilarity_score`.
|
992
|
+
*
|
993
|
+
* The following signals are supported:
|
994
|
+
*
|
995
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
996
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
997
|
+
* This score determines how semantically similar a search query is to a
|
998
|
+
* document.
|
999
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
1000
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
1001
|
+
* probabilistic model to estimate the probability that a document is
|
1002
|
+
* relevant to a given query.
|
1003
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
1004
|
+
* proprietary Google model to determine the meaning and intent behind a
|
1005
|
+
* user's query in context with the content in the documents.
|
1006
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
1007
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
1008
|
+
* attractiveness of a search result from a user's perspective. A higher
|
1009
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
1010
|
+
* and intent, making it a valuable signal for ranking.
|
1011
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
1012
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
1013
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
1014
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
1015
|
+
* Google model to determine the keyword-based overlap between the query and
|
1016
|
+
* the document.
|
1017
|
+
* * `base_rank`: the default rank of the result
|
1018
|
+
* @param {google.cloud.discoveryengine.v1.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
1019
|
+
* The backend to use for the ranking expression evaluation.
|
834
1020
|
* @param {object} [options]
|
835
1021
|
* Call options. See {@link https://googleapis.dev/nodejs/google-gax/latest/interfaces/CallOptions.html|CallOptions} for more details.
|
836
1022
|
* @returns {Object}
|
@@ -1113,6 +1299,99 @@ class SearchServiceClient {
|
|
1113
1299
|
* This feature is not supported for healthcare search.
|
1114
1300
|
* @param {google.cloud.discoveryengine.v1.SearchRequest.RelevanceScoreSpec} [request.relevanceScoreSpec]
|
1115
1301
|
* Optional. The specification for returning the relevance score.
|
1302
|
+
* @param {string} request.rankingExpression
|
1303
|
+
* The ranking expression controls the customized ranking on retrieval
|
1304
|
+
* documents. This overrides
|
1305
|
+
* {@link protos.google.cloud.discoveryengine.v1.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
1306
|
+
* The syntax and supported features depend on the
|
1307
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
1308
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
1309
|
+
*
|
1310
|
+
* If
|
1311
|
+
* {@link protos.google.cloud.discoveryengine.v1.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1312
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
1313
|
+
* function or multiple functions that are joined by "+".
|
1314
|
+
*
|
1315
|
+
* * ranking_expression = function, { " + ", function };
|
1316
|
+
*
|
1317
|
+
* Supported functions:
|
1318
|
+
*
|
1319
|
+
* * double * relevance_score
|
1320
|
+
* * double * dotProduct(embedding_field_path)
|
1321
|
+
*
|
1322
|
+
* Function variables:
|
1323
|
+
*
|
1324
|
+
* * `relevance_score`: pre-defined keywords, used for measure relevance
|
1325
|
+
* between query and document.
|
1326
|
+
* * `embedding_field_path`: the document embedding field
|
1327
|
+
* used with query embedding vector.
|
1328
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
1329
|
+
* query embedding vector.
|
1330
|
+
*
|
1331
|
+
* Example ranking expression:
|
1332
|
+
*
|
1333
|
+
* If document has an embedding field doc_embedding, the ranking expression
|
1334
|
+
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
1335
|
+
*
|
1336
|
+
* If
|
1337
|
+
* {@link protos.google.cloud.discoveryengine.v1.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1338
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
1339
|
+
* combinations of those chained using + or
|
1340
|
+
* * operators) are supported:
|
1341
|
+
*
|
1342
|
+
* * `double`
|
1343
|
+
* * `signal`
|
1344
|
+
* * `log(signal)`
|
1345
|
+
* * `exp(signal)`
|
1346
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
1347
|
+
* argument being a denominator constant.
|
1348
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
1349
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
1350
|
+
* signal2 | double, else returns signal1.
|
1351
|
+
*
|
1352
|
+
* Here are a few examples of ranking formulas that use the supported
|
1353
|
+
* ranking expression types:
|
1354
|
+
*
|
1355
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
1356
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
1357
|
+
* `semantic_smilarity_score` adjustment.
|
1358
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
1359
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
1360
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
1361
|
+
* add constant 0.3 adjustment to the final score if
|
1362
|
+
* `semantic_similarity_score` is NaN.
|
1363
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
1364
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
1365
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
1366
|
+
* of `semantic_smilarity_score`.
|
1367
|
+
*
|
1368
|
+
* The following signals are supported:
|
1369
|
+
*
|
1370
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
1371
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
1372
|
+
* This score determines how semantically similar a search query is to a
|
1373
|
+
* document.
|
1374
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
1375
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
1376
|
+
* probabilistic model to estimate the probability that a document is
|
1377
|
+
* relevant to a given query.
|
1378
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
1379
|
+
* proprietary Google model to determine the meaning and intent behind a
|
1380
|
+
* user's query in context with the content in the documents.
|
1381
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
1382
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
1383
|
+
* attractiveness of a search result from a user's perspective. A higher
|
1384
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
1385
|
+
* and intent, making it a valuable signal for ranking.
|
1386
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
1387
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
1388
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
1389
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
1390
|
+
* Google model to determine the keyword-based overlap between the query and
|
1391
|
+
* the document.
|
1392
|
+
* * `base_rank`: the default rank of the result
|
1393
|
+
* @param {google.cloud.discoveryengine.v1.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
1394
|
+
* The backend to use for the ranking expression evaluation.
|
1116
1395
|
* @param {object} [options]
|
1117
1396
|
* Call options. See {@link https://googleapis.dev/nodejs/google-gax/latest/interfaces/CallOptions.html|CallOptions} for more details.
|
1118
1397
|
* @returns {Stream}
|
@@ -1365,6 +1644,99 @@ class SearchServiceClient {
|
|
1365
1644
|
* This feature is not supported for healthcare search.
|
1366
1645
|
* @param {google.cloud.discoveryengine.v1.SearchRequest.RelevanceScoreSpec} [request.relevanceScoreSpec]
|
1367
1646
|
* Optional. The specification for returning the relevance score.
|
1647
|
+
* @param {string} request.rankingExpression
|
1648
|
+
* The ranking expression controls the customized ranking on retrieval
|
1649
|
+
* documents. This overrides
|
1650
|
+
* {@link protos.google.cloud.discoveryengine.v1.ServingConfig.ranking_expression|ServingConfig.ranking_expression}.
|
1651
|
+
* The syntax and supported features depend on the
|
1652
|
+
* `ranking_expression_backend` value. If `ranking_expression_backend` is not
|
1653
|
+
* provided, it defaults to `RANK_BY_EMBEDDING`.
|
1654
|
+
*
|
1655
|
+
* If
|
1656
|
+
* {@link protos.google.cloud.discoveryengine.v1.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1657
|
+
* is not provided or set to `RANK_BY_EMBEDDING`, it should be a single
|
1658
|
+
* function or multiple functions that are joined by "+".
|
1659
|
+
*
|
1660
|
+
* * ranking_expression = function, { " + ", function };
|
1661
|
+
*
|
1662
|
+
* Supported functions:
|
1663
|
+
*
|
1664
|
+
* * double * relevance_score
|
1665
|
+
* * double * dotProduct(embedding_field_path)
|
1666
|
+
*
|
1667
|
+
* Function variables:
|
1668
|
+
*
|
1669
|
+
* * `relevance_score`: pre-defined keywords, used for measure relevance
|
1670
|
+
* between query and document.
|
1671
|
+
* * `embedding_field_path`: the document embedding field
|
1672
|
+
* used with query embedding vector.
|
1673
|
+
* * `dotProduct`: embedding function between `embedding_field_path` and
|
1674
|
+
* query embedding vector.
|
1675
|
+
*
|
1676
|
+
* Example ranking expression:
|
1677
|
+
*
|
1678
|
+
* If document has an embedding field doc_embedding, the ranking expression
|
1679
|
+
* could be `0.5 * relevance_score + 0.3 * dotProduct(doc_embedding)`.
|
1680
|
+
*
|
1681
|
+
* If
|
1682
|
+
* {@link protos.google.cloud.discoveryengine.v1.SearchRequest.ranking_expression_backend|ranking_expression_backend}
|
1683
|
+
* is set to `RANK_BY_FORMULA`, the following expression types (and
|
1684
|
+
* combinations of those chained using + or
|
1685
|
+
* * operators) are supported:
|
1686
|
+
*
|
1687
|
+
* * `double`
|
1688
|
+
* * `signal`
|
1689
|
+
* * `log(signal)`
|
1690
|
+
* * `exp(signal)`
|
1691
|
+
* * `rr(signal, double > 0)` -- reciprocal rank transformation with second
|
1692
|
+
* argument being a denominator constant.
|
1693
|
+
* * `is_nan(signal)` -- returns 0 if signal is NaN, 1 otherwise.
|
1694
|
+
* * `fill_nan(signal1, signal2 | double)` -- if signal1 is NaN, returns
|
1695
|
+
* signal2 | double, else returns signal1.
|
1696
|
+
*
|
1697
|
+
* Here are a few examples of ranking formulas that use the supported
|
1698
|
+
* ranking expression types:
|
1699
|
+
*
|
1700
|
+
* - `0.2 * semantic_similarity_score + 0.8 * log(keyword_similarity_score)`
|
1701
|
+
* -- mostly rank by the logarithm of `keyword_similarity_score` with slight
|
1702
|
+
* `semantic_smilarity_score` adjustment.
|
1703
|
+
* - `0.2 * exp(fill_nan(semantic_similarity_score, 0)) + 0.3 *
|
1704
|
+
* is_nan(keyword_similarity_score)` -- rank by the exponent of
|
1705
|
+
* `semantic_similarity_score` filling the value with 0 if it's NaN, also
|
1706
|
+
* add constant 0.3 adjustment to the final score if
|
1707
|
+
* `semantic_similarity_score` is NaN.
|
1708
|
+
* - `0.2 * rr(semantic_similarity_score, 16) + 0.8 *
|
1709
|
+
* rr(keyword_similarity_score, 16)` -- mostly rank by the reciprocal rank
|
1710
|
+
* of `keyword_similarity_score` with slight adjustment of reciprocal rank
|
1711
|
+
* of `semantic_smilarity_score`.
|
1712
|
+
*
|
1713
|
+
* The following signals are supported:
|
1714
|
+
*
|
1715
|
+
* * `semantic_similarity_score`: semantic similarity adjustment that is
|
1716
|
+
* calculated using the embeddings generated by a proprietary Google model.
|
1717
|
+
* This score determines how semantically similar a search query is to a
|
1718
|
+
* document.
|
1719
|
+
* * `keyword_similarity_score`: keyword match adjustment uses the Best
|
1720
|
+
* Match 25 (BM25) ranking function. This score is calculated using a
|
1721
|
+
* probabilistic model to estimate the probability that a document is
|
1722
|
+
* relevant to a given query.
|
1723
|
+
* * `relevance_score`: semantic relevance adjustment that uses a
|
1724
|
+
* proprietary Google model to determine the meaning and intent behind a
|
1725
|
+
* user's query in context with the content in the documents.
|
1726
|
+
* * `pctr_rank`: predicted conversion rate adjustment as a rank use
|
1727
|
+
* predicted Click-through rate (pCTR) to gauge the relevance and
|
1728
|
+
* attractiveness of a search result from a user's perspective. A higher
|
1729
|
+
* pCTR suggests that the result is more likely to satisfy the user's query
|
1730
|
+
* and intent, making it a valuable signal for ranking.
|
1731
|
+
* * `freshness_rank`: freshness adjustment as a rank
|
1732
|
+
* * `document_age`: The time in hours elapsed since the document was last
|
1733
|
+
* updated, a floating-point number (e.g., 0.25 means 15 minutes).
|
1734
|
+
* * `topicality_rank`: topicality adjustment as a rank. Uses proprietary
|
1735
|
+
* Google model to determine the keyword-based overlap between the query and
|
1736
|
+
* the document.
|
1737
|
+
* * `base_rank`: the default rank of the result
|
1738
|
+
* @param {google.cloud.discoveryengine.v1.SearchRequest.RankingExpressionBackend} [request.rankingExpressionBackend]
|
1739
|
+
* The backend to use for the ranking expression evaluation.
|
1368
1740
|
* @param {object} [options]
|
1369
1741
|
* Call options. See {@link https://googleapis.dev/nodejs/google-gax/latest/interfaces/CallOptions.html|CallOptions} for more details.
|
1370
1742
|
* @returns {Object}
|