@fleet-frontend/mower-maps 0.0.9-beta.11 → 0.0.9-beta.13

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.js CHANGED
@@ -1693,13 +1693,13 @@ const DEFAULT_STYLES = {
1693
1693
  function convertPointsFormat(points) {
1694
1694
  if (!points || points.length === 0)
1695
1695
  return null;
1696
- return points.map(point => {
1696
+ return points.map((point) => {
1697
1697
  if (point.length >= 2) {
1698
1698
  // 对前两个元素应用缩放因子,保留其他元素
1699
1699
  return [
1700
1700
  point[0] * SCALE_FACTOR,
1701
1701
  -point[1] * SCALE_FACTOR, // Y轴翻转,与Python代码一致
1702
- ...point.slice(2) // 保留第三个及以后的元素
1702
+ ...point.slice(2), // 保留第三个及以后的元素
1703
1703
  ];
1704
1704
  }
1705
1705
  return point;
@@ -1714,7 +1714,7 @@ function convertPositionFormat(position) {
1714
1714
  return null;
1715
1715
  return {
1716
1716
  x: position[0] * SCALE_FACTOR,
1717
- y: -position[1] * SCALE_FACTOR // Y轴翻转
1717
+ y: -position[1] * SCALE_FACTOR, // Y轴翻转
1718
1718
  };
1719
1719
  }
1720
1720
  /**
@@ -1723,9 +1723,146 @@ function convertPositionFormat(position) {
1723
1723
  function convertCoordinate(x, y) {
1724
1724
  return {
1725
1725
  x: x * SCALE_FACTOR,
1726
- y: -y * SCALE_FACTOR // Y轴翻转
1726
+ y: -y * SCALE_FACTOR, // Y轴翻转
1727
1727
  };
1728
1728
  }
1729
+ /**
1730
+ * @param x x坐标
1731
+ * @param y y坐标
1732
+ * @param isAllowInBoundary 是否允许点在边界上的判断
1733
+ * @return ture-点在边界上即可视为在边界内,false-严格判断点在边界内
1734
+ */
1735
+ function isPointIn$1(x, y, pointList, isAllowInBoundary) {
1736
+ let count = 0;
1737
+ let size = pointList.length;
1738
+ let p1, p2, p3;
1739
+ for (let i = 0; i < size; i++) {
1740
+ p1 = pointList[i];
1741
+ p2 = pointList[(i + 1) % size];
1742
+ if (p1.y == null || p2.y == null || p1.x == null || p2.x == null) {
1743
+ continue;
1744
+ }
1745
+ if (p1.y === p2.y) {
1746
+ continue;
1747
+ }
1748
+ if (y > Math.min(p1.y, p2.y) && y < Math.max(p1.y, p2.y)) {
1749
+ const interX = ((y - p1.y) * (p2.x - p1.x)) / (p2.y - p1.y) + p1.x;
1750
+ if (interX >= x) {
1751
+ count++;
1752
+ }
1753
+ else if (interX == x) {
1754
+ return isAllowInBoundary;
1755
+ }
1756
+ }
1757
+ else {
1758
+ if (y == p2.y && x <= p2.x) {
1759
+ p3 = pointList[(i + 2) % size];
1760
+ if (y >= Math.min(p1.y, p3.y) && y <= Math.max(p1.y, p3.y)) {
1761
+ // 若当前点的y坐标位于 p1和p3组成的线段关于y轴的投影中,则记为该点的射线只穿过端点一次。
1762
+ ++count;
1763
+ }
1764
+ else {
1765
+ // 若当前点的y坐标不能包含在p1和p3组成的线段关于y轴的投影中,则点射线通过的两条线段组成了一个弯折的部分,
1766
+ // 此时我们记射线穿过该端点两次
1767
+ count += 2;
1768
+ }
1769
+ }
1770
+ }
1771
+ }
1772
+ return count % 2 == 1;
1773
+ }
1774
+ /**
1775
+ * 用于判断三个点的方向的辅助方法
1776
+ */
1777
+ function orientation(p, q, r) {
1778
+ const val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
1779
+ if (val == 0)
1780
+ return 0; // colinear
1781
+ return val > 0 ? 1 : 2; // clock or counterclock wise
1782
+ }
1783
+ /**
1784
+ * 检查点q是否在线段pr上的辅助方法
1785
+ */
1786
+ function onSegment(p, q, r) {
1787
+ if (q.x <= Math.max(p.x, r.x) &&
1788
+ q.x >= Math.min(p.x, r.x) &&
1789
+ q.y <= Math.max(p.y, r.y) &&
1790
+ q.y >= Math.min(p.y, r.y)) {
1791
+ return true;
1792
+ }
1793
+ return false;
1794
+ }
1795
+ /**
1796
+ * 判断两条线段是否相交的方法
1797
+ */
1798
+ function doTwoLinesIntersect(p1, q1, p2, q2) {
1799
+ //处理p1和q1两个点相同的情况
1800
+ if (p1.x - q1.x == 0 && p1.y - q1.y == 0) {
1801
+ return false;
1802
+ }
1803
+ if (p2.x - q2.x == 0 && p2.y - q2.y == 0) {
1804
+ return false;
1805
+ }
1806
+ // 计算四个点的方向
1807
+ const o1 = orientation(p1, q1, p2);
1808
+ const o2 = orientation(p1, q1, q2);
1809
+ const o3 = orientation(p2, q2, p1);
1810
+ const o4 = orientation(p2, q2, q1);
1811
+ // 一般情况,如果四个方向两两不同,则线段相交
1812
+ if (o1 != o2 && o3 != o4) {
1813
+ return true;
1814
+ }
1815
+ // 特殊情况,当线段的端点在另一条线段上时
1816
+ if (o1 == 0 && onSegment(p1, q1, p2))
1817
+ return true;
1818
+ if (o2 == 0 && onSegment(p1, q1, q2))
1819
+ return true;
1820
+ if (o3 == 0 && onSegment(p2, q2, p1))
1821
+ return true;
1822
+ if (o4 == 0 && onSegment(p2, q2, q1))
1823
+ return true;
1824
+ // 如果以上情况都不满足,则线段不相交
1825
+ return false;
1826
+ }
1827
+ /**
1828
+ * 判断多点折线是否相交
1829
+ */
1830
+ function doIntersect(points1, points2) {
1831
+ if (points1 == null || points2 == null || points1.length < 3 || points2.length < 3) {
1832
+ return false;
1833
+ }
1834
+ for (let i = 0; i < points1.length - 1; i++) {
1835
+ for (let j = 0; j < points2.length - 1; j++) {
1836
+ if (doTwoLinesIntersect(points1[i], points1[i + 1], points2[j], points2[j + 1])) {
1837
+ return true;
1838
+ }
1839
+ }
1840
+ }
1841
+ return false;
1842
+ }
1843
+ /**
1844
+ * 两个图形是否完全分离,互相不包含
1845
+ */
1846
+ function isOutsideToEachOther(points1, points2) {
1847
+ // 相交关系
1848
+ if (doIntersect(points1, points2)) {
1849
+ return false;
1850
+ }
1851
+ // 点关系,判断每个图形的点都在另一个图形外部
1852
+ for (let point of points1) {
1853
+ if (isPointIn$1(point.x, point.y, points2, true)) {
1854
+ // Log.i("ycf", "isOutsideToEachOther: mapPoint1=" + mapPoint);
1855
+ return false;
1856
+ }
1857
+ }
1858
+ for (let point of points2) {
1859
+ if (isPointIn$1(point.x, point.y, points1, true)) {
1860
+ // Log.i("ycf", "isOutsideToEachOther: mapPoint2=" + mapPoint);
1861
+ return false;
1862
+ }
1863
+ }
1864
+ return true;
1865
+ }
1729
1866
 
1730
1867
  /**
1731
1868
  * 按Python逻辑创建路径段:根据连续的两点之间的关系确定线段类型
@@ -1988,6 +2125,136 @@ function calculateMapGpsCenter(mapData) {
1988
2125
  };
1989
2126
  }
1990
2127
 
2128
+ /**
2129
+ * 并查集(Union-Find)是一种非常高效的数据结构,用于处理动态连通性问题。
2130
+ * 它可以快速判断网络中任意两点是否连通,并能将不连通的集合合并。
2131
+ */
2132
+ class UnionFind {
2133
+ /**
2134
+ * 构造函数,n为图的节点总数
2135
+ * @param {number} n - 节点总数
2136
+ */
2137
+ constructor(n) {
2138
+ this.count = n; // 连通分量的数量
2139
+ this.parent = new Array(n); // parent[i]表示第i个元素所指向的父节点
2140
+ // 初始时,每个节点的父节点是自己
2141
+ for (let i = 0; i < n; i++) {
2142
+ this.parent[i] = i;
2143
+ }
2144
+ }
2145
+ /**
2146
+ * 查找元素p所对应的集合编号(根节点)
2147
+ * @param {number} p - 要查找的元素
2148
+ * @returns {number} 根节点的编号
2149
+ */
2150
+ find(p) {
2151
+ while (p !== this.parent[p]) {
2152
+ this.parent[p] = this.parent[this.parent[p]]; // 路径压缩
2153
+ p = this.parent[p];
2154
+ }
2155
+ return p;
2156
+ }
2157
+ /**
2158
+ * 判断元素p和元素q是否属于同一集合
2159
+ * @param {number} p - 第一个元素
2160
+ * @param {number} q - 第二个元素
2161
+ * @returns {boolean} 是否连通
2162
+ */
2163
+ isConnected(p, q) {
2164
+ return this.find(p) === this.find(q);
2165
+ }
2166
+ /**
2167
+ * 合并元素p和元素q所属的集合
2168
+ * @param {number} p - 第一个元素
2169
+ * @param {number} q - 第二个元素
2170
+ */
2171
+ union(p, q) {
2172
+ const rootP = this.find(p);
2173
+ const rootQ = this.find(q);
2174
+ if (rootP === rootQ) {
2175
+ return; // 已经在同一个集合中
2176
+ }
2177
+ // 将较小的根节点作为父节点(按秩合并的简化版本)
2178
+ if (rootP < rootQ) {
2179
+ this.parent[rootQ] = rootP;
2180
+ }
2181
+ else {
2182
+ this.parent[rootP] = rootQ;
2183
+ }
2184
+ // 两个集合合并成一个集合,连通分量减1
2185
+ this.count--;
2186
+ }
2187
+ /**
2188
+ * 获取当前的连通分量个数
2189
+ * @returns {number} 连通分量数量
2190
+ */
2191
+ getCount() {
2192
+ return this.count;
2193
+ }
2194
+ /**
2195
+ * 获取联通的组
2196
+ * @param {Array} list - 原始元素列表
2197
+ * @returns {Array<Set>} 联通组列表
2198
+ */
2199
+ getConnectedGroup(list) {
2200
+ if (!list || list.length === 0 || !this.parent || this.parent.length === 0) {
2201
+ return null;
2202
+ }
2203
+ if (list.length !== this.parent.length) {
2204
+ return null;
2205
+ }
2206
+ const map = new Map();
2207
+ // 遍历所有元素,按根节点分组
2208
+ for (let i = 0; i < this.parent.length; i++) {
2209
+ const root = this.parent[i];
2210
+ if (!map.has(root)) {
2211
+ map.set(root, new Set());
2212
+ }
2213
+ map.get(root).add(list[i]);
2214
+ }
2215
+ return Array.from(map.values());
2216
+ }
2217
+ /**
2218
+ * 重置并查集
2219
+ * @param {number} n - 新的节点总数
2220
+ */
2221
+ reset(n) {
2222
+ this.count = n;
2223
+ this.parent = new Array(n);
2224
+ for (let i = 0; i < n; i++) {
2225
+ this.parent[i] = i;
2226
+ }
2227
+ }
2228
+ }
2229
+
2230
+ function isTunnelConnected(a, b, connectIds) {
2231
+ if (!a || !b)
2232
+ return false;
2233
+ if (!connectIds || connectIds?.length === 0)
2234
+ return false;
2235
+ const temp = [a?.id, b?.id];
2236
+ temp.sort();
2237
+ return connectIds?.includes(temp?.join('-'));
2238
+ }
2239
+ function isOverlayConnected(a, b) {
2240
+ if (!a || !b) {
2241
+ return false;
2242
+ }
2243
+ if (!a?.points?.length || !b?.points?.length) {
2244
+ return false;
2245
+ }
2246
+ const aPoints = a?.points?.map(item => ({ x: item[0], y: item[1] }));
2247
+ const bPoints = b?.points?.map(item => ({ x: item[0], y: item[1] }));
2248
+ try {
2249
+ if (isOutsideToEachOther(aPoints, bPoints)) {
2250
+ return false;
2251
+ }
2252
+ }
2253
+ catch (error) {
2254
+ console.log('error->', error);
2255
+ }
2256
+ return true;
2257
+ }
1991
2258
  /**
1992
2259
  * 通过 mapData 和 pathData 生成所有 boundary 的数据
1993
2260
  * @param mapData 地图数据
@@ -1996,11 +2263,12 @@ function calculateMapGpsCenter(mapData) {
1996
2263
  */
1997
2264
  function generateBoundaryData(mapData, pathData) {
1998
2265
  const boundaryData = [];
2266
+ let chargingPileBoundary;
1999
2267
  if (!mapData || !mapData.sub_maps) {
2000
2268
  return boundaryData;
2001
2269
  }
2002
2270
  // 第一步:收集所有TUNNEL数据的connection信息
2003
- const connectedBoundaryIds = new Set();
2271
+ const connectIds = [];
2004
2272
  // 遍历mapData中的tunnels字段
2005
2273
  if (mapData.tunnels && Array.isArray(mapData.tunnels)) {
2006
2274
  for (const tunnel of mapData.tunnels) {
@@ -2008,10 +2276,8 @@ function generateBoundaryData(mapData, pathData) {
2008
2276
  if (connection) {
2009
2277
  // connection可能是单个数字或数组
2010
2278
  if (Array.isArray(connection)) {
2011
- connection.forEach(id => connectedBoundaryIds.add(id));
2012
- }
2013
- else if (typeof connection === 'number') {
2014
- connectedBoundaryIds.add(connection);
2279
+ connection.sort();
2280
+ connectIds.push(connection.join('-'));
2015
2281
  }
2016
2282
  }
2017
2283
  }
@@ -2022,9 +2288,9 @@ function generateBoundaryData(mapData, pathData) {
2022
2288
  if (!subMap.elements)
2023
2289
  continue;
2024
2290
  // 每个sub_map的elements是边界坐标,没有sub_map只有一个boundary数据
2025
- const boundaryElement = subMap.elements.find(element => element.type === 'BOUNDARY');
2291
+ const boundaryElement = subMap.elements.find((element) => element.type === 'BOUNDARY');
2026
2292
  // 如果当前subMap存在充电桩且充电桩存在tunnel,说明当前subMap中的boundary是初始boundary,这个boundary不为孤立区域
2027
- const hasTunnelToChargingPile = subMap.elements.some(element => element.type === 'CHARGING_PILE' && element.tunnel);
2293
+ const hasTunnelToChargingPile = subMap.elements.some((element) => element.type === 'CHARGING_PILE' && element.tunnel);
2028
2294
  // 创建基础的 boundary 数据(来自 mapData)
2029
2295
  const boundary = {
2030
2296
  // 从 BOUNDARY 元素复制属性
@@ -2033,8 +2299,6 @@ function generateBoundaryData(mapData, pathData) {
2033
2299
  area: subMap?.area,
2034
2300
  points: convertPointsFormat(boundaryElement?.points) || [],
2035
2301
  type: boundaryElement.type,
2036
- // 判断是否为孤立子区域
2037
- isIsolated: hasTunnelToChargingPile ? false : !connectedBoundaryIds.has(boundaryElement.id)
2038
2302
  };
2039
2303
  // 如果有 pathData,尝试匹配对应的分区数据
2040
2304
  if (pathData) {
@@ -2050,8 +2314,33 @@ function generateBoundaryData(mapData, pathData) {
2050
2314
  boundary.endTime = partitionData.endTime;
2051
2315
  }
2052
2316
  }
2317
+ if (hasTunnelToChargingPile) {
2318
+ chargingPileBoundary = boundary;
2319
+ }
2053
2320
  boundaryData.push(boundary);
2054
2321
  }
2322
+ const unionFind = new UnionFind(boundaryData?.length);
2323
+ for (let i = 0; i < boundaryData?.length - 1; i++) {
2324
+ for (let j = i + 1; j < boundaryData?.length; j++) {
2325
+ const boundary1 = boundaryData[i];
2326
+ const boundary2 = boundaryData[j];
2327
+ const isChannelConnect = isTunnelConnected(boundary1, boundary2, connectIds);
2328
+ const isOverlayConnect = isOverlayConnected(boundary1, boundary2);
2329
+ if (isChannelConnect || isOverlayConnect) {
2330
+ unionFind.union(i, j);
2331
+ }
2332
+ }
2333
+ }
2334
+ const tunnelAndOverlayList = unionFind.getConnectedGroup(boundaryData);
2335
+ const chargingPileConnectBoundarys = tunnelAndOverlayList?.find(item => item?.has(chargingPileBoundary));
2336
+ for (let boundary of boundaryData) {
2337
+ if (chargingPileConnectBoundarys?.has(boundary)) {
2338
+ boundary.isIsolated = false;
2339
+ }
2340
+ else {
2341
+ boundary.isIsolated = true;
2342
+ }
2343
+ }
2055
2344
  return boundaryData;
2056
2345
  }
2057
2346
 
@@ -2268,13 +2557,15 @@ var hNoPosition = "
2268
2557
 
2269
2558
  var hDisabled = "";
2270
2559
 
2560
+ var x3Edger = "";
2561
+
2271
2562
  var x3Mower = "";
2272
2563
 
2273
2564
  var x3NoPosition = "";
2274
2565
 
2275
2566
  var x3Disabled = "";
2276
2567
 
2277
- function getMowerImageByModal(mowerModal) {
2568
+ function getMowerImageByModal(mowerModal, hasEdger) {
2278
2569
  if (mowerModal.includes('i')) {
2279
2570
  return iMower;
2280
2571
  }
@@ -2282,7 +2573,7 @@ function getMowerImageByModal(mowerModal) {
2282
2573
  return hMower;
2283
2574
  }
2284
2575
  else if (mowerModal.includes('x3')) {
2285
- return x3Mower;
2576
+ return hasEdger ? x3Edger : x3Mower;
2286
2577
  }
2287
2578
  return iMower;
2288
2579
  }
@@ -2310,12 +2601,12 @@ function getNoPositionMowerImageByModal(mowerModal) {
2310
2601
  }
2311
2602
  return iNoPosition;
2312
2603
  }
2313
- function getMowerImage(positonConfig, modelType) {
2604
+ function getMowerImage(positonConfig, modelType, hasEdger) {
2314
2605
  if (!positonConfig)
2315
2606
  return '';
2316
2607
  const model = modelType?.toLowerCase() || 'i';
2317
2608
  const state = positonConfig.vehicleState;
2318
- const mowerImage = getMowerImageByModal(model);
2609
+ const mowerImage = getMowerImageByModal(model, hasEdger);
2319
2610
  const disabledImage = getDisabledMowerImageByModal(model);
2320
2611
  const noPositionImage = getNoPositionMowerImageByModal(model);
2321
2612
  const positonOutOfRange = isOutOfRange(positonConfig);
@@ -5085,6 +5376,12 @@ class BoundaryBorderLayer extends BaseLayer {
5085
5376
  this.mowingBoundarys = mowingBoundarys;
5086
5377
  }
5087
5378
  }
5379
+ /**
5380
+ * 获取当前割草任务的边界
5381
+ */
5382
+ getMowingBoundarys() {
5383
+ return this.mowingBoundarys;
5384
+ }
5088
5385
  /**
5089
5386
  * SVG渲染方法
5090
5387
  */
@@ -5093,12 +5390,31 @@ class BoundaryBorderLayer extends BaseLayer {
5093
5390
  return;
5094
5391
  }
5095
5392
  this.scale = scale;
5096
- // 只渲染边界边框类型的元素
5393
+ // 将元素分为两组:非割草边界和割草边界
5394
+ const nonMowingElements = [];
5395
+ const mowingElements = [];
5396
+ // 只处理边界边框类型的元素
5097
5397
  for (const element of this.elements) {
5098
5398
  if (element.type === 'boundary_border') {
5099
- this.renderBoundaryBorder(svgGroup, element);
5399
+ const { originalData } = element;
5400
+ const { id } = originalData || {};
5401
+ // 检查是否为割草边界
5402
+ if (this.mowingBoundarys.includes(Number(id))) {
5403
+ mowingElements.push(element);
5404
+ }
5405
+ else {
5406
+ nonMowingElements.push(element);
5407
+ }
5100
5408
  }
5101
5409
  }
5410
+ // 先渲染非割草边界
5411
+ for (const element of nonMowingElements) {
5412
+ this.renderBoundaryBorder(svgGroup, element);
5413
+ }
5414
+ // 再渲染割草边界(放在最后)
5415
+ for (const element of mowingElements) {
5416
+ this.renderBoundaryBorder(svgGroup, element);
5417
+ }
5102
5418
  }
5103
5419
  /**
5104
5420
  * 渲染边界边框
@@ -6245,7 +6561,7 @@ class BoundaryLabelsManager {
6245
6561
  labelDiv.setAttribute('data-boundary-id', boundary.id.toString());
6246
6562
  // 样式设置
6247
6563
  labelDiv.style.position = 'absolute';
6248
- labelDiv.style.backgroundColor = 'rgba(30, 30, 31, 0.3)';
6564
+ labelDiv.style.backgroundColor = 'rgba(30, 30, 31, 0.6)';
6249
6565
  labelDiv.style.color = 'rgba(255, 255, 255, 1)';
6250
6566
  labelDiv.style.padding = '6px';
6251
6567
  labelDiv.style.borderRadius = '12px';
@@ -6262,7 +6578,7 @@ class BoundaryLabelsManager {
6262
6578
  labelDiv.style.zIndex = BoundaryLabelsManager.Z_INDEX.DEFAULT.toString();
6263
6579
  // 计算进度
6264
6580
  const progress = boundary.finishedArea && boundary.area
6265
- ? `${Math.round((boundary.finishedArea / boundary.area) * 100)}%`
6581
+ ? `${Math.floor((boundary.finishedArea / boundary.area) * 100)}%`
6266
6582
  : '0%';
6267
6583
  // 基础内容(始终显示)
6268
6584
  const baseContent = document.createElement('div');
@@ -6279,13 +6595,15 @@ class BoundaryLabelsManager {
6279
6595
  this.currentExpandedBoundaryId === boundary.id ? 'block' : 'none';
6280
6596
  extendedContent.style.borderTop = '1px solid rgba(255,255,255,0.2)';
6281
6597
  extendedContent.style.paddingTop = '6px';
6282
- console.log('this.unitType->', this.unitType);
6598
+ const boundaryLayer = this.svgView.getLayer(LAYER_DEFAULT_TYPE.BOUNDARY_BORDER);
6599
+ const mowingBoundarys = boundaryLayer.getMowingBoundarys();
6283
6600
  // 面积信息
6284
6601
  const totalArea = convertAreaByUnits(boundary.area || 0, this.unitType);
6285
6602
  const finishedArea = convertAreaByUnits(boundary.finishedArea || 0, this.unitType);
6286
6603
  const coverageText = `Coverage: ${finishedArea.value}/${totalArea.value}`;
6604
+ const isMowing = mowingBoundarys.includes(boundary.id);
6287
6605
  // 日期信息
6288
- const dateText = formatBoundaryDateText(boundary.endTime || 0);
6606
+ const dateText = formatBoundaryDateText(isMowing ? Date.now() / 1000 : boundary.endTime || 0);
6289
6607
  const covertHtml = `<div style="margin-bottom: 3px; font-weight: bold;">${coverageText}</div>`;
6290
6608
  const dateHtml = `<div>${dateText}</div>`;
6291
6609
  extendedContent.innerHTML = boundary.finishedArea > 0 ? `${covertHtml}${dateHtml}` : covertHtml;
@@ -6403,7 +6721,6 @@ class BoundaryLabelsManager {
6403
6721
  // 计算边界中心点的地图坐标
6404
6722
  const mapCenter = this.calculatePolygonCentroid(boundary.points);
6405
6723
  if (!mapCenter) {
6406
- console.warn(`BoundaryLabelsManager: 无法计算边界 ${boundary.name} (ID: ${boundary.id}) 的中心点`);
6407
6724
  return;
6408
6725
  }
6409
6726
  // 直接使用预计算的数据进行坐标转换
@@ -6488,7 +6805,6 @@ class BoundaryLabelsManager {
6488
6805
  area = area / 2;
6489
6806
  // 如果面积为0,回退到简单的平均值计算
6490
6807
  if (Math.abs(area) < 1e-10) {
6491
- console.warn('BoundaryLabelsManager: 多边形面积为0,使用平均值计算重心');
6492
6808
  return this.calculateAverageCenter(validPoints);
6493
6809
  }
6494
6810
  centroidX = centroidX / (6 * area);
@@ -7399,6 +7715,10 @@ class MowerPositionManager {
7399
7715
  getElement() {
7400
7716
  return this.container;
7401
7717
  }
7718
+ //
7719
+ setEdger(edger) {
7720
+ this.hasEdger = edger;
7721
+ }
7402
7722
  /**
7403
7723
  * 根据最后一次有效的位置更新数据
7404
7724
  */
@@ -7468,7 +7788,7 @@ class MowerPositionManager {
7468
7788
  const imgElement = this.mowerElement.querySelector('img');
7469
7789
  if (!imgElement)
7470
7790
  return;
7471
- const imageSrc = getMowerImage(positonConfig, this.modelType);
7791
+ const imageSrc = getMowerImage(positonConfig, this.modelType, this.hasEdger);
7472
7792
  if (imageSrc) {
7473
7793
  imgElement.src = imageSrc;
7474
7794
  imgElement.style.display = 'block';
@@ -7732,6 +8052,7 @@ class MowerMapOverlay {
7732
8052
  this.offscreenContainer = null;
7733
8053
  this.overlayView = null;
7734
8054
  this.defaultTransform = { x: 0, y: 0, rotation: 0 };
8055
+ this.hasEdger = false;
7735
8056
  // boundary数据
7736
8057
  this.boundaryData = [];
7737
8058
  // 边界标签管理器
@@ -7839,6 +8160,12 @@ class MowerMapOverlay {
7839
8160
  this.overlayView.setMap(map);
7840
8161
  }
7841
8162
  }
8163
+ setEdger(edger) {
8164
+ this.hasEdger = edger;
8165
+ if (this.mowerPositionManager) {
8166
+ this.mowerPositionManager.setEdger(edger);
8167
+ }
8168
+ }
7842
8169
  getMap() {
7843
8170
  return this.overlayView ? this.overlayView.getMap() : null;
7844
8171
  }
@@ -7984,6 +8311,7 @@ class MowerMapOverlay {
7984
8311
  this.mowerPositionManager = new MowerPositionManager(this.svgMapView, this.mowerPositionConfig, this.modelType, this.div, () => { }, this.updatePathDataByMowingPositionThrottled.bind(this));
7985
8312
  // 设置叠加层div引用
7986
8313
  this.mowerPositionManager.setOverlayDiv(this.div);
8314
+ this.mowerPositionManager.setEdger(this.hasEdger);
7987
8315
  // 获取容器并添加到主div
7988
8316
  const container = this.mowerPositionManager.getElement();
7989
8317
  if (container) {
@@ -9004,7 +9332,7 @@ const getValidGpsBounds = (mapData, rotation = 0) => {
9004
9332
  // 默认配置
9005
9333
  const defaultMapConfig = DEFAULT_STYLES;
9006
9334
  // 地图渲染器组件
9007
- const MowerMapRenderer = React.forwardRef(({ unitType = UnitsType.Imperial, language = 'en', mapConfig, modelType, mapRef, mapJson, pathJson, realTimeData, antennaConfig, onMapLoad, onPathLoad, onError, className, style, googleMapInstance, isEditMode = false, dragCallbacks, defaultTransform, debug = false, }, ref) => {
9335
+ const MowerMapRenderer = React.forwardRef(({ edger = false, unitType = UnitsType.Imperial, language = 'en', mapConfig, modelType, mapRef, mapJson, pathJson, realTimeData, antennaConfig, onMapLoad, onPathLoad, onError, className, style, googleMapInstance, isEditMode = false, dragCallbacks, defaultTransform, debug = false, }, ref) => {
9008
9336
  const [elementCount, setElementCount] = React.useState(0);
9009
9337
  const [pathCount, setPathCount] = React.useState(0);
9010
9338
  const [currentError, setCurrentError] = React.useState(null);
@@ -9150,6 +9478,7 @@ const MowerMapRenderer = React.forwardRef(({ unitType = UnitsType.Imperial, lang
9150
9478
  // 设置地图
9151
9479
  overlay.setMap(mapInstance);
9152
9480
  overlayRef.current = overlay;
9481
+ overlay.setEdger(edger);
9153
9482
  // 只在首次初始化时自适应视图
9154
9483
  if (!hasInitializedBounds) {
9155
9484
  mapInstance.fitBounds(googleBounds);
@@ -9383,8 +9712,8 @@ const MowerMapRenderer = React.forwardRef(({ unitType = UnitsType.Imperial, lang
9383
9712
  else if (currentStatus === RobotStatus.WORKING) {
9384
9713
  // 兜底收不到割草地块的实时数据,使用状态来兜底
9385
9714
  overlayRef.current.resetBorderLayerHighlight();
9386
- setMowPartitionData(null);
9387
- curMowPartitionData = null;
9715
+ setMowPartitionData({});
9716
+ curMowPartitionData = {};
9388
9717
  }
9389
9718
  else if (currentStatus === RobotStatus.MOWING &&
9390
9719
  curMowPartitionData &&
@@ -9457,6 +9786,11 @@ const MowerMapRenderer = React.forwardRef(({ unitType = UnitsType.Imperial, lang
9457
9786
  );
9458
9787
  mapRef.fitBounds(googleBounds);
9459
9788
  }, [defaultTransform]);
9789
+ React.useEffect(() => {
9790
+ if (!overlayRef || !overlayRef.current)
9791
+ return;
9792
+ overlayRef.current.setEdger(edger);
9793
+ }, [edger]);
9460
9794
  // 提供ref方法
9461
9795
  React.useImperativeHandle(ref, () => ({
9462
9796
  fitToView: () => {