@fleet-frontend/mower-maps 0.0.9-beta.11 → 0.0.9-beta.13

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/dist/index.esm.js CHANGED
@@ -1691,13 +1691,13 @@ const DEFAULT_STYLES = {
1691
1691
  function convertPointsFormat(points) {
1692
1692
  if (!points || points.length === 0)
1693
1693
  return null;
1694
- return points.map(point => {
1694
+ return points.map((point) => {
1695
1695
  if (point.length >= 2) {
1696
1696
  // 对前两个元素应用缩放因子,保留其他元素
1697
1697
  return [
1698
1698
  point[0] * SCALE_FACTOR,
1699
1699
  -point[1] * SCALE_FACTOR, // Y轴翻转,与Python代码一致
1700
- ...point.slice(2) // 保留第三个及以后的元素
1700
+ ...point.slice(2), // 保留第三个及以后的元素
1701
1701
  ];
1702
1702
  }
1703
1703
  return point;
@@ -1712,7 +1712,7 @@ function convertPositionFormat(position) {
1712
1712
  return null;
1713
1713
  return {
1714
1714
  x: position[0] * SCALE_FACTOR,
1715
- y: -position[1] * SCALE_FACTOR // Y轴翻转
1715
+ y: -position[1] * SCALE_FACTOR, // Y轴翻转
1716
1716
  };
1717
1717
  }
1718
1718
  /**
@@ -1721,9 +1721,146 @@ function convertPositionFormat(position) {
1721
1721
  function convertCoordinate(x, y) {
1722
1722
  return {
1723
1723
  x: x * SCALE_FACTOR,
1724
- y: -y * SCALE_FACTOR // Y轴翻转
1724
+ y: -y * SCALE_FACTOR, // Y轴翻转
1725
1725
  };
1726
1726
  }
1727
+ /**
1728
+ * @param x x坐标
1729
+ * @param y y坐标
1730
+ * @param isAllowInBoundary 是否允许点在边界上的判断
1731
+ * @return ture-点在边界上即可视为在边界内,false-严格判断点在边界内
1732
+ */
1733
+ function isPointIn$1(x, y, pointList, isAllowInBoundary) {
1734
+ let count = 0;
1735
+ let size = pointList.length;
1736
+ let p1, p2, p3;
1737
+ for (let i = 0; i < size; i++) {
1738
+ p1 = pointList[i];
1739
+ p2 = pointList[(i + 1) % size];
1740
+ if (p1.y == null || p2.y == null || p1.x == null || p2.x == null) {
1741
+ continue;
1742
+ }
1743
+ if (p1.y === p2.y) {
1744
+ continue;
1745
+ }
1746
+ if (y > Math.min(p1.y, p2.y) && y < Math.max(p1.y, p2.y)) {
1747
+ const interX = ((y - p1.y) * (p2.x - p1.x)) / (p2.y - p1.y) + p1.x;
1748
+ if (interX >= x) {
1749
+ count++;
1750
+ }
1751
+ else if (interX == x) {
1752
+ return isAllowInBoundary;
1753
+ }
1754
+ }
1755
+ else {
1756
+ if (y == p2.y && x <= p2.x) {
1757
+ p3 = pointList[(i + 2) % size];
1758
+ if (y >= Math.min(p1.y, p3.y) && y <= Math.max(p1.y, p3.y)) {
1759
+ // 若当前点的y坐标位于 p1和p3组成的线段关于y轴的投影中,则记为该点的射线只穿过端点一次。
1760
+ ++count;
1761
+ }
1762
+ else {
1763
+ // 若当前点的y坐标不能包含在p1和p3组成的线段关于y轴的投影中,则点射线通过的两条线段组成了一个弯折的部分,
1764
+ // 此时我们记射线穿过该端点两次
1765
+ count += 2;
1766
+ }
1767
+ }
1768
+ }
1769
+ }
1770
+ return count % 2 == 1;
1771
+ }
1772
+ /**
1773
+ * 用于判断三个点的方向的辅助方法
1774
+ */
1775
+ function orientation(p, q, r) {
1776
+ const val = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
1777
+ if (val == 0)
1778
+ return 0; // colinear
1779
+ return val > 0 ? 1 : 2; // clock or counterclock wise
1780
+ }
1781
+ /**
1782
+ * 检查点q是否在线段pr上的辅助方法
1783
+ */
1784
+ function onSegment(p, q, r) {
1785
+ if (q.x <= Math.max(p.x, r.x) &&
1786
+ q.x >= Math.min(p.x, r.x) &&
1787
+ q.y <= Math.max(p.y, r.y) &&
1788
+ q.y >= Math.min(p.y, r.y)) {
1789
+ return true;
1790
+ }
1791
+ return false;
1792
+ }
1793
+ /**
1794
+ * 判断两条线段是否相交的方法
1795
+ */
1796
+ function doTwoLinesIntersect(p1, q1, p2, q2) {
1797
+ //处理p1和q1两个点相同的情况
1798
+ if (p1.x - q1.x == 0 && p1.y - q1.y == 0) {
1799
+ return false;
1800
+ }
1801
+ if (p2.x - q2.x == 0 && p2.y - q2.y == 0) {
1802
+ return false;
1803
+ }
1804
+ // 计算四个点的方向
1805
+ const o1 = orientation(p1, q1, p2);
1806
+ const o2 = orientation(p1, q1, q2);
1807
+ const o3 = orientation(p2, q2, p1);
1808
+ const o4 = orientation(p2, q2, q1);
1809
+ // 一般情况,如果四个方向两两不同,则线段相交
1810
+ if (o1 != o2 && o3 != o4) {
1811
+ return true;
1812
+ }
1813
+ // 特殊情况,当线段的端点在另一条线段上时
1814
+ if (o1 == 0 && onSegment(p1, q1, p2))
1815
+ return true;
1816
+ if (o2 == 0 && onSegment(p1, q1, q2))
1817
+ return true;
1818
+ if (o3 == 0 && onSegment(p2, q2, p1))
1819
+ return true;
1820
+ if (o4 == 0 && onSegment(p2, q2, q1))
1821
+ return true;
1822
+ // 如果以上情况都不满足,则线段不相交
1823
+ return false;
1824
+ }
1825
+ /**
1826
+ * 判断多点折线是否相交
1827
+ */
1828
+ function doIntersect(points1, points2) {
1829
+ if (points1 == null || points2 == null || points1.length < 3 || points2.length < 3) {
1830
+ return false;
1831
+ }
1832
+ for (let i = 0; i < points1.length - 1; i++) {
1833
+ for (let j = 0; j < points2.length - 1; j++) {
1834
+ if (doTwoLinesIntersect(points1[i], points1[i + 1], points2[j], points2[j + 1])) {
1835
+ return true;
1836
+ }
1837
+ }
1838
+ }
1839
+ return false;
1840
+ }
1841
+ /**
1842
+ * 两个图形是否完全分离,互相不包含
1843
+ */
1844
+ function isOutsideToEachOther(points1, points2) {
1845
+ // 相交关系
1846
+ if (doIntersect(points1, points2)) {
1847
+ return false;
1848
+ }
1849
+ // 点关系,判断每个图形的点都在另一个图形外部
1850
+ for (let point of points1) {
1851
+ if (isPointIn$1(point.x, point.y, points2, true)) {
1852
+ // Log.i("ycf", "isOutsideToEachOther: mapPoint1=" + mapPoint);
1853
+ return false;
1854
+ }
1855
+ }
1856
+ for (let point of points2) {
1857
+ if (isPointIn$1(point.x, point.y, points1, true)) {
1858
+ // Log.i("ycf", "isOutsideToEachOther: mapPoint2=" + mapPoint);
1859
+ return false;
1860
+ }
1861
+ }
1862
+ return true;
1863
+ }
1727
1864
 
1728
1865
  /**
1729
1866
  * 按Python逻辑创建路径段:根据连续的两点之间的关系确定线段类型
@@ -1986,6 +2123,136 @@ function calculateMapGpsCenter(mapData) {
1986
2123
  };
1987
2124
  }
1988
2125
 
2126
+ /**
2127
+ * 并查集(Union-Find)是一种非常高效的数据结构,用于处理动态连通性问题。
2128
+ * 它可以快速判断网络中任意两点是否连通,并能将不连通的集合合并。
2129
+ */
2130
+ class UnionFind {
2131
+ /**
2132
+ * 构造函数,n为图的节点总数
2133
+ * @param {number} n - 节点总数
2134
+ */
2135
+ constructor(n) {
2136
+ this.count = n; // 连通分量的数量
2137
+ this.parent = new Array(n); // parent[i]表示第i个元素所指向的父节点
2138
+ // 初始时,每个节点的父节点是自己
2139
+ for (let i = 0; i < n; i++) {
2140
+ this.parent[i] = i;
2141
+ }
2142
+ }
2143
+ /**
2144
+ * 查找元素p所对应的集合编号(根节点)
2145
+ * @param {number} p - 要查找的元素
2146
+ * @returns {number} 根节点的编号
2147
+ */
2148
+ find(p) {
2149
+ while (p !== this.parent[p]) {
2150
+ this.parent[p] = this.parent[this.parent[p]]; // 路径压缩
2151
+ p = this.parent[p];
2152
+ }
2153
+ return p;
2154
+ }
2155
+ /**
2156
+ * 判断元素p和元素q是否属于同一集合
2157
+ * @param {number} p - 第一个元素
2158
+ * @param {number} q - 第二个元素
2159
+ * @returns {boolean} 是否连通
2160
+ */
2161
+ isConnected(p, q) {
2162
+ return this.find(p) === this.find(q);
2163
+ }
2164
+ /**
2165
+ * 合并元素p和元素q所属的集合
2166
+ * @param {number} p - 第一个元素
2167
+ * @param {number} q - 第二个元素
2168
+ */
2169
+ union(p, q) {
2170
+ const rootP = this.find(p);
2171
+ const rootQ = this.find(q);
2172
+ if (rootP === rootQ) {
2173
+ return; // 已经在同一个集合中
2174
+ }
2175
+ // 将较小的根节点作为父节点(按秩合并的简化版本)
2176
+ if (rootP < rootQ) {
2177
+ this.parent[rootQ] = rootP;
2178
+ }
2179
+ else {
2180
+ this.parent[rootP] = rootQ;
2181
+ }
2182
+ // 两个集合合并成一个集合,连通分量减1
2183
+ this.count--;
2184
+ }
2185
+ /**
2186
+ * 获取当前的连通分量个数
2187
+ * @returns {number} 连通分量数量
2188
+ */
2189
+ getCount() {
2190
+ return this.count;
2191
+ }
2192
+ /**
2193
+ * 获取联通的组
2194
+ * @param {Array} list - 原始元素列表
2195
+ * @returns {Array<Set>} 联通组列表
2196
+ */
2197
+ getConnectedGroup(list) {
2198
+ if (!list || list.length === 0 || !this.parent || this.parent.length === 0) {
2199
+ return null;
2200
+ }
2201
+ if (list.length !== this.parent.length) {
2202
+ return null;
2203
+ }
2204
+ const map = new Map();
2205
+ // 遍历所有元素,按根节点分组
2206
+ for (let i = 0; i < this.parent.length; i++) {
2207
+ const root = this.parent[i];
2208
+ if (!map.has(root)) {
2209
+ map.set(root, new Set());
2210
+ }
2211
+ map.get(root).add(list[i]);
2212
+ }
2213
+ return Array.from(map.values());
2214
+ }
2215
+ /**
2216
+ * 重置并查集
2217
+ * @param {number} n - 新的节点总数
2218
+ */
2219
+ reset(n) {
2220
+ this.count = n;
2221
+ this.parent = new Array(n);
2222
+ for (let i = 0; i < n; i++) {
2223
+ this.parent[i] = i;
2224
+ }
2225
+ }
2226
+ }
2227
+
2228
+ function isTunnelConnected(a, b, connectIds) {
2229
+ if (!a || !b)
2230
+ return false;
2231
+ if (!connectIds || connectIds?.length === 0)
2232
+ return false;
2233
+ const temp = [a?.id, b?.id];
2234
+ temp.sort();
2235
+ return connectIds?.includes(temp?.join('-'));
2236
+ }
2237
+ function isOverlayConnected(a, b) {
2238
+ if (!a || !b) {
2239
+ return false;
2240
+ }
2241
+ if (!a?.points?.length || !b?.points?.length) {
2242
+ return false;
2243
+ }
2244
+ const aPoints = a?.points?.map(item => ({ x: item[0], y: item[1] }));
2245
+ const bPoints = b?.points?.map(item => ({ x: item[0], y: item[1] }));
2246
+ try {
2247
+ if (isOutsideToEachOther(aPoints, bPoints)) {
2248
+ return false;
2249
+ }
2250
+ }
2251
+ catch (error) {
2252
+ console.log('error->', error);
2253
+ }
2254
+ return true;
2255
+ }
1989
2256
  /**
1990
2257
  * 通过 mapData 和 pathData 生成所有 boundary 的数据
1991
2258
  * @param mapData 地图数据
@@ -1994,11 +2261,12 @@ function calculateMapGpsCenter(mapData) {
1994
2261
  */
1995
2262
  function generateBoundaryData(mapData, pathData) {
1996
2263
  const boundaryData = [];
2264
+ let chargingPileBoundary;
1997
2265
  if (!mapData || !mapData.sub_maps) {
1998
2266
  return boundaryData;
1999
2267
  }
2000
2268
  // 第一步:收集所有TUNNEL数据的connection信息
2001
- const connectedBoundaryIds = new Set();
2269
+ const connectIds = [];
2002
2270
  // 遍历mapData中的tunnels字段
2003
2271
  if (mapData.tunnels && Array.isArray(mapData.tunnels)) {
2004
2272
  for (const tunnel of mapData.tunnels) {
@@ -2006,10 +2274,8 @@ function generateBoundaryData(mapData, pathData) {
2006
2274
  if (connection) {
2007
2275
  // connection可能是单个数字或数组
2008
2276
  if (Array.isArray(connection)) {
2009
- connection.forEach(id => connectedBoundaryIds.add(id));
2010
- }
2011
- else if (typeof connection === 'number') {
2012
- connectedBoundaryIds.add(connection);
2277
+ connection.sort();
2278
+ connectIds.push(connection.join('-'));
2013
2279
  }
2014
2280
  }
2015
2281
  }
@@ -2020,9 +2286,9 @@ function generateBoundaryData(mapData, pathData) {
2020
2286
  if (!subMap.elements)
2021
2287
  continue;
2022
2288
  // 每个sub_map的elements是边界坐标,没有sub_map只有一个boundary数据
2023
- const boundaryElement = subMap.elements.find(element => element.type === 'BOUNDARY');
2289
+ const boundaryElement = subMap.elements.find((element) => element.type === 'BOUNDARY');
2024
2290
  // 如果当前subMap存在充电桩且充电桩存在tunnel,说明当前subMap中的boundary是初始boundary,这个boundary不为孤立区域
2025
- const hasTunnelToChargingPile = subMap.elements.some(element => element.type === 'CHARGING_PILE' && element.tunnel);
2291
+ const hasTunnelToChargingPile = subMap.elements.some((element) => element.type === 'CHARGING_PILE' && element.tunnel);
2026
2292
  // 创建基础的 boundary 数据(来自 mapData)
2027
2293
  const boundary = {
2028
2294
  // 从 BOUNDARY 元素复制属性
@@ -2031,8 +2297,6 @@ function generateBoundaryData(mapData, pathData) {
2031
2297
  area: subMap?.area,
2032
2298
  points: convertPointsFormat(boundaryElement?.points) || [],
2033
2299
  type: boundaryElement.type,
2034
- // 判断是否为孤立子区域
2035
- isIsolated: hasTunnelToChargingPile ? false : !connectedBoundaryIds.has(boundaryElement.id)
2036
2300
  };
2037
2301
  // 如果有 pathData,尝试匹配对应的分区数据
2038
2302
  if (pathData) {
@@ -2048,8 +2312,33 @@ function generateBoundaryData(mapData, pathData) {
2048
2312
  boundary.endTime = partitionData.endTime;
2049
2313
  }
2050
2314
  }
2315
+ if (hasTunnelToChargingPile) {
2316
+ chargingPileBoundary = boundary;
2317
+ }
2051
2318
  boundaryData.push(boundary);
2052
2319
  }
2320
+ const unionFind = new UnionFind(boundaryData?.length);
2321
+ for (let i = 0; i < boundaryData?.length - 1; i++) {
2322
+ for (let j = i + 1; j < boundaryData?.length; j++) {
2323
+ const boundary1 = boundaryData[i];
2324
+ const boundary2 = boundaryData[j];
2325
+ const isChannelConnect = isTunnelConnected(boundary1, boundary2, connectIds);
2326
+ const isOverlayConnect = isOverlayConnected(boundary1, boundary2);
2327
+ if (isChannelConnect || isOverlayConnect) {
2328
+ unionFind.union(i, j);
2329
+ }
2330
+ }
2331
+ }
2332
+ const tunnelAndOverlayList = unionFind.getConnectedGroup(boundaryData);
2333
+ const chargingPileConnectBoundarys = tunnelAndOverlayList?.find(item => item?.has(chargingPileBoundary));
2334
+ for (let boundary of boundaryData) {
2335
+ if (chargingPileConnectBoundarys?.has(boundary)) {
2336
+ boundary.isIsolated = false;
2337
+ }
2338
+ else {
2339
+ boundary.isIsolated = true;
2340
+ }
2341
+ }
2053
2342
  return boundaryData;
2054
2343
  }
2055
2344
 
@@ -2266,13 +2555,15 @@ var hNoPosition = "
2266
2555
 
2267
2556
  var hDisabled = "";
2268
2557
 
2558
+ var x3Edger = "";
2559
+
2269
2560
  var x3Mower = "";
2270
2561
 
2271
2562
  var x3NoPosition = "";
2272
2563
 
2273
2564
  var x3Disabled = "";
2274
2565
 
2275
- function getMowerImageByModal(mowerModal) {
2566
+ function getMowerImageByModal(mowerModal, hasEdger) {
2276
2567
  if (mowerModal.includes('i')) {
2277
2568
  return iMower;
2278
2569
  }
@@ -2280,7 +2571,7 @@ function getMowerImageByModal(mowerModal) {
2280
2571
  return hMower;
2281
2572
  }
2282
2573
  else if (mowerModal.includes('x3')) {
2283
- return x3Mower;
2574
+ return hasEdger ? x3Edger : x3Mower;
2284
2575
  }
2285
2576
  return iMower;
2286
2577
  }
@@ -2308,12 +2599,12 @@ function getNoPositionMowerImageByModal(mowerModal) {
2308
2599
  }
2309
2600
  return iNoPosition;
2310
2601
  }
2311
- function getMowerImage(positonConfig, modelType) {
2602
+ function getMowerImage(positonConfig, modelType, hasEdger) {
2312
2603
  if (!positonConfig)
2313
2604
  return '';
2314
2605
  const model = modelType?.toLowerCase() || 'i';
2315
2606
  const state = positonConfig.vehicleState;
2316
- const mowerImage = getMowerImageByModal(model);
2607
+ const mowerImage = getMowerImageByModal(model, hasEdger);
2317
2608
  const disabledImage = getDisabledMowerImageByModal(model);
2318
2609
  const noPositionImage = getNoPositionMowerImageByModal(model);
2319
2610
  const positonOutOfRange = isOutOfRange(positonConfig);
@@ -5083,6 +5374,12 @@ class BoundaryBorderLayer extends BaseLayer {
5083
5374
  this.mowingBoundarys = mowingBoundarys;
5084
5375
  }
5085
5376
  }
5377
+ /**
5378
+ * 获取当前割草任务的边界
5379
+ */
5380
+ getMowingBoundarys() {
5381
+ return this.mowingBoundarys;
5382
+ }
5086
5383
  /**
5087
5384
  * SVG渲染方法
5088
5385
  */
@@ -5091,12 +5388,31 @@ class BoundaryBorderLayer extends BaseLayer {
5091
5388
  return;
5092
5389
  }
5093
5390
  this.scale = scale;
5094
- // 只渲染边界边框类型的元素
5391
+ // 将元素分为两组:非割草边界和割草边界
5392
+ const nonMowingElements = [];
5393
+ const mowingElements = [];
5394
+ // 只处理边界边框类型的元素
5095
5395
  for (const element of this.elements) {
5096
5396
  if (element.type === 'boundary_border') {
5097
- this.renderBoundaryBorder(svgGroup, element);
5397
+ const { originalData } = element;
5398
+ const { id } = originalData || {};
5399
+ // 检查是否为割草边界
5400
+ if (this.mowingBoundarys.includes(Number(id))) {
5401
+ mowingElements.push(element);
5402
+ }
5403
+ else {
5404
+ nonMowingElements.push(element);
5405
+ }
5098
5406
  }
5099
5407
  }
5408
+ // 先渲染非割草边界
5409
+ for (const element of nonMowingElements) {
5410
+ this.renderBoundaryBorder(svgGroup, element);
5411
+ }
5412
+ // 再渲染割草边界(放在最后)
5413
+ for (const element of mowingElements) {
5414
+ this.renderBoundaryBorder(svgGroup, element);
5415
+ }
5100
5416
  }
5101
5417
  /**
5102
5418
  * 渲染边界边框
@@ -6243,7 +6559,7 @@ class BoundaryLabelsManager {
6243
6559
  labelDiv.setAttribute('data-boundary-id', boundary.id.toString());
6244
6560
  // 样式设置
6245
6561
  labelDiv.style.position = 'absolute';
6246
- labelDiv.style.backgroundColor = 'rgba(30, 30, 31, 0.3)';
6562
+ labelDiv.style.backgroundColor = 'rgba(30, 30, 31, 0.6)';
6247
6563
  labelDiv.style.color = 'rgba(255, 255, 255, 1)';
6248
6564
  labelDiv.style.padding = '6px';
6249
6565
  labelDiv.style.borderRadius = '12px';
@@ -6260,7 +6576,7 @@ class BoundaryLabelsManager {
6260
6576
  labelDiv.style.zIndex = BoundaryLabelsManager.Z_INDEX.DEFAULT.toString();
6261
6577
  // 计算进度
6262
6578
  const progress = boundary.finishedArea && boundary.area
6263
- ? `${Math.round((boundary.finishedArea / boundary.area) * 100)}%`
6579
+ ? `${Math.floor((boundary.finishedArea / boundary.area) * 100)}%`
6264
6580
  : '0%';
6265
6581
  // 基础内容(始终显示)
6266
6582
  const baseContent = document.createElement('div');
@@ -6277,13 +6593,15 @@ class BoundaryLabelsManager {
6277
6593
  this.currentExpandedBoundaryId === boundary.id ? 'block' : 'none';
6278
6594
  extendedContent.style.borderTop = '1px solid rgba(255,255,255,0.2)';
6279
6595
  extendedContent.style.paddingTop = '6px';
6280
- console.log('this.unitType->', this.unitType);
6596
+ const boundaryLayer = this.svgView.getLayer(LAYER_DEFAULT_TYPE.BOUNDARY_BORDER);
6597
+ const mowingBoundarys = boundaryLayer.getMowingBoundarys();
6281
6598
  // 面积信息
6282
6599
  const totalArea = convertAreaByUnits(boundary.area || 0, this.unitType);
6283
6600
  const finishedArea = convertAreaByUnits(boundary.finishedArea || 0, this.unitType);
6284
6601
  const coverageText = `Coverage: ${finishedArea.value}/${totalArea.value}`;
6602
+ const isMowing = mowingBoundarys.includes(boundary.id);
6285
6603
  // 日期信息
6286
- const dateText = formatBoundaryDateText(boundary.endTime || 0);
6604
+ const dateText = formatBoundaryDateText(isMowing ? Date.now() / 1000 : boundary.endTime || 0);
6287
6605
  const covertHtml = `<div style="margin-bottom: 3px; font-weight: bold;">${coverageText}</div>`;
6288
6606
  const dateHtml = `<div>${dateText}</div>`;
6289
6607
  extendedContent.innerHTML = boundary.finishedArea > 0 ? `${covertHtml}${dateHtml}` : covertHtml;
@@ -6401,7 +6719,6 @@ class BoundaryLabelsManager {
6401
6719
  // 计算边界中心点的地图坐标
6402
6720
  const mapCenter = this.calculatePolygonCentroid(boundary.points);
6403
6721
  if (!mapCenter) {
6404
- console.warn(`BoundaryLabelsManager: 无法计算边界 ${boundary.name} (ID: ${boundary.id}) 的中心点`);
6405
6722
  return;
6406
6723
  }
6407
6724
  // 直接使用预计算的数据进行坐标转换
@@ -6486,7 +6803,6 @@ class BoundaryLabelsManager {
6486
6803
  area = area / 2;
6487
6804
  // 如果面积为0,回退到简单的平均值计算
6488
6805
  if (Math.abs(area) < 1e-10) {
6489
- console.warn('BoundaryLabelsManager: 多边形面积为0,使用平均值计算重心');
6490
6806
  return this.calculateAverageCenter(validPoints);
6491
6807
  }
6492
6808
  centroidX = centroidX / (6 * area);
@@ -7397,6 +7713,10 @@ class MowerPositionManager {
7397
7713
  getElement() {
7398
7714
  return this.container;
7399
7715
  }
7716
+ //
7717
+ setEdger(edger) {
7718
+ this.hasEdger = edger;
7719
+ }
7400
7720
  /**
7401
7721
  * 根据最后一次有效的位置更新数据
7402
7722
  */
@@ -7466,7 +7786,7 @@ class MowerPositionManager {
7466
7786
  const imgElement = this.mowerElement.querySelector('img');
7467
7787
  if (!imgElement)
7468
7788
  return;
7469
- const imageSrc = getMowerImage(positonConfig, this.modelType);
7789
+ const imageSrc = getMowerImage(positonConfig, this.modelType, this.hasEdger);
7470
7790
  if (imageSrc) {
7471
7791
  imgElement.src = imageSrc;
7472
7792
  imgElement.style.display = 'block';
@@ -7730,6 +8050,7 @@ class MowerMapOverlay {
7730
8050
  this.offscreenContainer = null;
7731
8051
  this.overlayView = null;
7732
8052
  this.defaultTransform = { x: 0, y: 0, rotation: 0 };
8053
+ this.hasEdger = false;
7733
8054
  // boundary数据
7734
8055
  this.boundaryData = [];
7735
8056
  // 边界标签管理器
@@ -7837,6 +8158,12 @@ class MowerMapOverlay {
7837
8158
  this.overlayView.setMap(map);
7838
8159
  }
7839
8160
  }
8161
+ setEdger(edger) {
8162
+ this.hasEdger = edger;
8163
+ if (this.mowerPositionManager) {
8164
+ this.mowerPositionManager.setEdger(edger);
8165
+ }
8166
+ }
7840
8167
  getMap() {
7841
8168
  return this.overlayView ? this.overlayView.getMap() : null;
7842
8169
  }
@@ -7982,6 +8309,7 @@ class MowerMapOverlay {
7982
8309
  this.mowerPositionManager = new MowerPositionManager(this.svgMapView, this.mowerPositionConfig, this.modelType, this.div, () => { }, this.updatePathDataByMowingPositionThrottled.bind(this));
7983
8310
  // 设置叠加层div引用
7984
8311
  this.mowerPositionManager.setOverlayDiv(this.div);
8312
+ this.mowerPositionManager.setEdger(this.hasEdger);
7985
8313
  // 获取容器并添加到主div
7986
8314
  const container = this.mowerPositionManager.getElement();
7987
8315
  if (container) {
@@ -9002,7 +9330,7 @@ const getValidGpsBounds = (mapData, rotation = 0) => {
9002
9330
  // 默认配置
9003
9331
  const defaultMapConfig = DEFAULT_STYLES;
9004
9332
  // 地图渲染器组件
9005
- const MowerMapRenderer = forwardRef(({ unitType = UnitsType.Imperial, language = 'en', mapConfig, modelType, mapRef, mapJson, pathJson, realTimeData, antennaConfig, onMapLoad, onPathLoad, onError, className, style, googleMapInstance, isEditMode = false, dragCallbacks, defaultTransform, debug = false, }, ref) => {
9333
+ const MowerMapRenderer = forwardRef(({ edger = false, unitType = UnitsType.Imperial, language = 'en', mapConfig, modelType, mapRef, mapJson, pathJson, realTimeData, antennaConfig, onMapLoad, onPathLoad, onError, className, style, googleMapInstance, isEditMode = false, dragCallbacks, defaultTransform, debug = false, }, ref) => {
9006
9334
  const [elementCount, setElementCount] = useState(0);
9007
9335
  const [pathCount, setPathCount] = useState(0);
9008
9336
  const [currentError, setCurrentError] = useState(null);
@@ -9148,6 +9476,7 @@ const MowerMapRenderer = forwardRef(({ unitType = UnitsType.Imperial, language =
9148
9476
  // 设置地图
9149
9477
  overlay.setMap(mapInstance);
9150
9478
  overlayRef.current = overlay;
9479
+ overlay.setEdger(edger);
9151
9480
  // 只在首次初始化时自适应视图
9152
9481
  if (!hasInitializedBounds) {
9153
9482
  mapInstance.fitBounds(googleBounds);
@@ -9381,8 +9710,8 @@ const MowerMapRenderer = forwardRef(({ unitType = UnitsType.Imperial, language =
9381
9710
  else if (currentStatus === RobotStatus.WORKING) {
9382
9711
  // 兜底收不到割草地块的实时数据,使用状态来兜底
9383
9712
  overlayRef.current.resetBorderLayerHighlight();
9384
- setMowPartitionData(null);
9385
- curMowPartitionData = null;
9713
+ setMowPartitionData({});
9714
+ curMowPartitionData = {};
9386
9715
  }
9387
9716
  else if (currentStatus === RobotStatus.MOWING &&
9388
9717
  curMowPartitionData &&
@@ -9455,6 +9784,11 @@ const MowerMapRenderer = forwardRef(({ unitType = UnitsType.Imperial, language =
9455
9784
  );
9456
9785
  mapRef.fitBounds(googleBounds);
9457
9786
  }, [defaultTransform]);
9787
+ useEffect(() => {
9788
+ if (!overlayRef || !overlayRef.current)
9789
+ return;
9790
+ overlayRef.current.setEdger(edger);
9791
+ }, [edger]);
9458
9792
  // 提供ref方法
9459
9793
  useImperativeHandle(ref, () => ({
9460
9794
  fitToView: () => {