@elaraai/east-py-datascience 0.0.2-beta.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE.md +18 -0
- package/README.md +104 -0
- package/dist/gp/gp.d.ts +398 -0
- package/dist/gp/gp.d.ts.map +1 -0
- package/dist/gp/gp.js +170 -0
- package/dist/gp/gp.js.map +1 -0
- package/dist/index.d.ts +27 -0
- package/dist/index.d.ts.map +1 -0
- package/dist/index.js +39 -0
- package/dist/index.js.map +1 -0
- package/dist/lightgbm/lightgbm.d.ts +494 -0
- package/dist/lightgbm/lightgbm.d.ts.map +1 -0
- package/dist/lightgbm/lightgbm.js +155 -0
- package/dist/lightgbm/lightgbm.js.map +1 -0
- package/dist/mads/mads.d.ts +413 -0
- package/dist/mads/mads.d.ts.map +1 -0
- package/dist/mads/mads.js +221 -0
- package/dist/mads/mads.js.map +1 -0
- package/dist/ngboost/ngboost.d.ts +433 -0
- package/dist/ngboost/ngboost.d.ts.map +1 -0
- package/dist/ngboost/ngboost.js +178 -0
- package/dist/ngboost/ngboost.js.map +1 -0
- package/dist/optuna/optuna.d.ts +797 -0
- package/dist/optuna/optuna.d.ts.map +1 -0
- package/dist/optuna/optuna.js +268 -0
- package/dist/optuna/optuna.js.map +1 -0
- package/dist/scipy/scipy.d.ts +954 -0
- package/dist/scipy/scipy.d.ts.map +1 -0
- package/dist/scipy/scipy.js +287 -0
- package/dist/scipy/scipy.js.map +1 -0
- package/dist/shap/shap.d.ts +657 -0
- package/dist/shap/shap.d.ts.map +1 -0
- package/dist/shap/shap.js +241 -0
- package/dist/shap/shap.js.map +1 -0
- package/dist/simanneal/simanneal.d.ts +531 -0
- package/dist/simanneal/simanneal.d.ts.map +1 -0
- package/dist/simanneal/simanneal.js +231 -0
- package/dist/simanneal/simanneal.js.map +1 -0
- package/dist/sklearn/sklearn.d.ts +1272 -0
- package/dist/sklearn/sklearn.d.ts.map +1 -0
- package/dist/sklearn/sklearn.js +307 -0
- package/dist/sklearn/sklearn.js.map +1 -0
- package/dist/torch/torch.d.ts +658 -0
- package/dist/torch/torch.d.ts.map +1 -0
- package/dist/torch/torch.js +233 -0
- package/dist/torch/torch.js.map +1 -0
- package/dist/tsconfig.tsbuildinfo +1 -0
- package/dist/types.d.ts +80 -0
- package/dist/types.d.ts.map +1 -0
- package/dist/types.js +81 -0
- package/dist/types.js.map +1 -0
- package/dist/xgboost/xgboost.d.ts +504 -0
- package/dist/xgboost/xgboost.d.ts.map +1 -0
- package/dist/xgboost/xgboost.js +177 -0
- package/dist/xgboost/xgboost.js.map +1 -0
- package/package.json +82 -0
|
@@ -0,0 +1,954 @@
|
|
|
1
|
+
/**
|
|
2
|
+
* Copyright (c) 2025 Elara AI Pty Ltd
|
|
3
|
+
* Dual-licensed under AGPL-3.0 and commercial license. See LICENSE for details.
|
|
4
|
+
*/
|
|
5
|
+
/**
|
|
6
|
+
* SciPy platform functions for East.
|
|
7
|
+
*
|
|
8
|
+
* Provides scientific computing utilities: statistics, optimization,
|
|
9
|
+
* interpolation, and curve fitting.
|
|
10
|
+
*
|
|
11
|
+
* @packageDocumentation
|
|
12
|
+
*/
|
|
13
|
+
import { StructType, VariantType, OptionType, IntegerType, BooleanType, FloatType, BlobType, NullType, FunctionType } from "@elaraai/east";
|
|
14
|
+
export { VectorType, MatrixType, ScalarObjectiveType } from "../types.js";
|
|
15
|
+
/**
|
|
16
|
+
* Optimization method for scipy.optimize.minimize.
|
|
17
|
+
*/
|
|
18
|
+
export declare const OptimizeMethodType: VariantType<{
|
|
19
|
+
/** BFGS algorithm */
|
|
20
|
+
bfgs: NullType;
|
|
21
|
+
/** L-BFGS-B algorithm (default) */
|
|
22
|
+
l_bfgs_b: NullType;
|
|
23
|
+
/** Nelder-Mead simplex */
|
|
24
|
+
nelder_mead: NullType;
|
|
25
|
+
/** Powell's method */
|
|
26
|
+
powell: NullType;
|
|
27
|
+
/** Conjugate gradient */
|
|
28
|
+
cg: NullType;
|
|
29
|
+
}>;
|
|
30
|
+
/**
|
|
31
|
+
* Interpolation method for scipy.interpolate.interp1d.
|
|
32
|
+
*/
|
|
33
|
+
export declare const InterpolationKindType: VariantType<{
|
|
34
|
+
/** Linear interpolation (default) */
|
|
35
|
+
linear: NullType;
|
|
36
|
+
/** Cubic interpolation */
|
|
37
|
+
cubic: NullType;
|
|
38
|
+
/** Quadratic interpolation */
|
|
39
|
+
quadratic: NullType;
|
|
40
|
+
}>;
|
|
41
|
+
/**
|
|
42
|
+
* Configuration for scipy.optimize.minimize.
|
|
43
|
+
*/
|
|
44
|
+
export declare const OptimizeConfigType: StructType<{
|
|
45
|
+
/** Optimization method */
|
|
46
|
+
method: OptionType<VariantType<{
|
|
47
|
+
/** BFGS algorithm */
|
|
48
|
+
bfgs: NullType;
|
|
49
|
+
/** L-BFGS-B algorithm (default) */
|
|
50
|
+
l_bfgs_b: NullType;
|
|
51
|
+
/** Nelder-Mead simplex */
|
|
52
|
+
nelder_mead: NullType;
|
|
53
|
+
/** Powell's method */
|
|
54
|
+
powell: NullType;
|
|
55
|
+
/** Conjugate gradient */
|
|
56
|
+
cg: NullType;
|
|
57
|
+
}>>;
|
|
58
|
+
/** Maximum number of iterations */
|
|
59
|
+
max_iter: OptionType<IntegerType>;
|
|
60
|
+
/** Tolerance for convergence */
|
|
61
|
+
tol: OptionType<FloatType>;
|
|
62
|
+
}>;
|
|
63
|
+
/**
|
|
64
|
+
* Configuration for scipy.interpolate.interp1d.
|
|
65
|
+
*/
|
|
66
|
+
export declare const InterpolateConfigType: StructType<{
|
|
67
|
+
/** Interpolation method */
|
|
68
|
+
kind: OptionType<VariantType<{
|
|
69
|
+
/** Linear interpolation (default) */
|
|
70
|
+
linear: NullType;
|
|
71
|
+
/** Cubic interpolation */
|
|
72
|
+
cubic: NullType;
|
|
73
|
+
/** Quadratic interpolation */
|
|
74
|
+
quadratic: NullType;
|
|
75
|
+
}>>;
|
|
76
|
+
}>;
|
|
77
|
+
/**
|
|
78
|
+
* Parameter bounds for curve fitting.
|
|
79
|
+
*/
|
|
80
|
+
export declare const ParamBoundsType: StructType<{
|
|
81
|
+
/** Lower bounds for each parameter */
|
|
82
|
+
lower: import("@elaraai/east").ArrayType<FloatType>;
|
|
83
|
+
/** Upper bounds for each parameter */
|
|
84
|
+
upper: import("@elaraai/east").ArrayType<FloatType>;
|
|
85
|
+
}>;
|
|
86
|
+
/**
|
|
87
|
+
* Custom curve function type: (x: Float, params: Vector) -> Float
|
|
88
|
+
*/
|
|
89
|
+
export declare const CustomCurveFunctionType: FunctionType<[FloatType, import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
90
|
+
/**
|
|
91
|
+
* Curve function type for scipy_curve_fit.
|
|
92
|
+
*
|
|
93
|
+
* Includes built-in standard mathematical functions and a custom option
|
|
94
|
+
* for user-defined functions.
|
|
95
|
+
*/
|
|
96
|
+
export declare const CurveFunctionType: VariantType<{
|
|
97
|
+
/** y = a * exp(-b * x), 2 params: [a, b] */
|
|
98
|
+
exponential_decay: NullType;
|
|
99
|
+
/** y = a + b * exp(-c * x), 3 params: [a, b, c] */
|
|
100
|
+
exponential_with_offset: NullType;
|
|
101
|
+
/** y = a * exp(b * x), 2 params: [a, b] */
|
|
102
|
+
exponential_growth: NullType;
|
|
103
|
+
/** y = L / (1 + exp(-k * (x - x0))), 3 params: [L, k, x0] */
|
|
104
|
+
logistic: NullType;
|
|
105
|
+
/** y = a * exp(-b * exp(-c * x)), 3 params: [a, b, c] */
|
|
106
|
+
gompertz: NullType;
|
|
107
|
+
/** y = a * x^b, 2 params: [a, b] */
|
|
108
|
+
power_law: NullType;
|
|
109
|
+
/** y = a + b * x, 2 params: [a, b] */
|
|
110
|
+
linear: NullType;
|
|
111
|
+
/** y = a + b*x + c*x^2, 3 params: [a, b, c] */
|
|
112
|
+
quadratic: NullType;
|
|
113
|
+
/** y = a + b*x + c*x^2 + d*x^3, 4 params: [a, b, c, d] */
|
|
114
|
+
cubic: NullType;
|
|
115
|
+
/** Custom function provided by user */
|
|
116
|
+
custom: StructType<{
|
|
117
|
+
/** The curve function */
|
|
118
|
+
fn: FunctionType<[FloatType, import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
119
|
+
/** Number of parameters to optimize */
|
|
120
|
+
n_params: IntegerType;
|
|
121
|
+
/** Optional parameter bounds */
|
|
122
|
+
param_bounds: OptionType<StructType<{
|
|
123
|
+
/** Lower bounds for each parameter */
|
|
124
|
+
lower: import("@elaraai/east").ArrayType<FloatType>;
|
|
125
|
+
/** Upper bounds for each parameter */
|
|
126
|
+
upper: import("@elaraai/east").ArrayType<FloatType>;
|
|
127
|
+
}>>;
|
|
128
|
+
}>;
|
|
129
|
+
}>;
|
|
130
|
+
/**
|
|
131
|
+
* Configuration for curve fitting.
|
|
132
|
+
*/
|
|
133
|
+
export declare const CurveFitConfigType: StructType<{
|
|
134
|
+
/** Maximum number of function evaluations */
|
|
135
|
+
max_iter: OptionType<IntegerType>;
|
|
136
|
+
/** Initial guess for parameters */
|
|
137
|
+
initial_guess: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
138
|
+
}>;
|
|
139
|
+
/**
|
|
140
|
+
* Configuration for quadratic optimization: f(x) = 0.5 * x'Ax + b'x + c
|
|
141
|
+
*/
|
|
142
|
+
export declare const QuadraticConfigType: StructType<{
|
|
143
|
+
/** Quadratic term (symmetric positive definite) */
|
|
144
|
+
A: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
145
|
+
/** Linear term */
|
|
146
|
+
b: import("@elaraai/east").ArrayType<FloatType>;
|
|
147
|
+
/** Constant term */
|
|
148
|
+
c: FloatType;
|
|
149
|
+
}>;
|
|
150
|
+
/**
|
|
151
|
+
* Descriptive statistics result.
|
|
152
|
+
*/
|
|
153
|
+
export declare const StatsDescribeResultType: StructType<{
|
|
154
|
+
/** Number of observations */
|
|
155
|
+
count: IntegerType;
|
|
156
|
+
/** Mean value */
|
|
157
|
+
mean: FloatType;
|
|
158
|
+
/** Variance */
|
|
159
|
+
variance: FloatType;
|
|
160
|
+
/** Skewness */
|
|
161
|
+
skewness: FloatType;
|
|
162
|
+
/** Kurtosis */
|
|
163
|
+
kurtosis: FloatType;
|
|
164
|
+
/** Minimum value */
|
|
165
|
+
min: FloatType;
|
|
166
|
+
/** Maximum value */
|
|
167
|
+
max: FloatType;
|
|
168
|
+
}>;
|
|
169
|
+
/**
|
|
170
|
+
* Correlation result (Pearson or Spearman).
|
|
171
|
+
*/
|
|
172
|
+
export declare const CorrelationResultType: StructType<{
|
|
173
|
+
/** Correlation coefficient */
|
|
174
|
+
correlation: FloatType;
|
|
175
|
+
/** P-value for hypothesis test */
|
|
176
|
+
pvalue: FloatType;
|
|
177
|
+
}>;
|
|
178
|
+
/**
|
|
179
|
+
* Curve fitting result.
|
|
180
|
+
*/
|
|
181
|
+
export declare const CurveFitResultType: StructType<{
|
|
182
|
+
/** Fitted parameters */
|
|
183
|
+
params: import("@elaraai/east").ArrayType<FloatType>;
|
|
184
|
+
/** Whether fit converged */
|
|
185
|
+
success: BooleanType;
|
|
186
|
+
/** Coefficient of determination (R²) */
|
|
187
|
+
r_squared: FloatType;
|
|
188
|
+
}>;
|
|
189
|
+
/**
|
|
190
|
+
* Optimization result.
|
|
191
|
+
*/
|
|
192
|
+
export declare const OptimizeResultType: StructType<{
|
|
193
|
+
/** Optimal parameters */
|
|
194
|
+
x: import("@elaraai/east").ArrayType<FloatType>;
|
|
195
|
+
/** Function value at optimum */
|
|
196
|
+
fun: FloatType;
|
|
197
|
+
/** Whether optimization succeeded */
|
|
198
|
+
success: BooleanType;
|
|
199
|
+
/** Number of iterations */
|
|
200
|
+
nit: IntegerType;
|
|
201
|
+
}>;
|
|
202
|
+
/**
|
|
203
|
+
* Model blob type for scipy interpolators.
|
|
204
|
+
*/
|
|
205
|
+
export declare const ScipyModelBlobType: VariantType<{
|
|
206
|
+
/** 1D interpolator (cloudpickle serialized) */
|
|
207
|
+
scipy_interp_1d: StructType<{
|
|
208
|
+
/** Serialized interpolator */
|
|
209
|
+
data: BlobType;
|
|
210
|
+
/** Interpolation method used */
|
|
211
|
+
kind: VariantType<{
|
|
212
|
+
/** Linear interpolation (default) */
|
|
213
|
+
linear: NullType;
|
|
214
|
+
/** Cubic interpolation */
|
|
215
|
+
cubic: NullType;
|
|
216
|
+
/** Quadratic interpolation */
|
|
217
|
+
quadratic: NullType;
|
|
218
|
+
}>;
|
|
219
|
+
}>;
|
|
220
|
+
}>;
|
|
221
|
+
/**
|
|
222
|
+
* Fit a parametric curve to data using nonlinear least squares.
|
|
223
|
+
*/
|
|
224
|
+
export declare const scipy_curve_fit: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
225
|
+
/** y = a * exp(-b * x), 2 params: [a, b] */
|
|
226
|
+
exponential_decay: NullType;
|
|
227
|
+
/** y = a + b * exp(-c * x), 3 params: [a, b, c] */
|
|
228
|
+
exponential_with_offset: NullType;
|
|
229
|
+
/** y = a * exp(b * x), 2 params: [a, b] */
|
|
230
|
+
exponential_growth: NullType;
|
|
231
|
+
/** y = L / (1 + exp(-k * (x - x0))), 3 params: [L, k, x0] */
|
|
232
|
+
logistic: NullType;
|
|
233
|
+
/** y = a * exp(-b * exp(-c * x)), 3 params: [a, b, c] */
|
|
234
|
+
gompertz: NullType;
|
|
235
|
+
/** y = a * x^b, 2 params: [a, b] */
|
|
236
|
+
power_law: NullType;
|
|
237
|
+
/** y = a + b * x, 2 params: [a, b] */
|
|
238
|
+
linear: NullType;
|
|
239
|
+
/** y = a + b*x + c*x^2, 3 params: [a, b, c] */
|
|
240
|
+
quadratic: NullType;
|
|
241
|
+
/** y = a + b*x + c*x^2 + d*x^3, 4 params: [a, b, c, d] */
|
|
242
|
+
cubic: NullType;
|
|
243
|
+
/** Custom function provided by user */
|
|
244
|
+
custom: StructType<{
|
|
245
|
+
/** The curve function */
|
|
246
|
+
fn: FunctionType<[FloatType, import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
247
|
+
/** Number of parameters to optimize */
|
|
248
|
+
n_params: IntegerType;
|
|
249
|
+
/** Optional parameter bounds */
|
|
250
|
+
param_bounds: OptionType<StructType<{
|
|
251
|
+
/** Lower bounds for each parameter */
|
|
252
|
+
lower: import("@elaraai/east").ArrayType<FloatType>;
|
|
253
|
+
/** Upper bounds for each parameter */
|
|
254
|
+
upper: import("@elaraai/east").ArrayType<FloatType>;
|
|
255
|
+
}>>;
|
|
256
|
+
}>;
|
|
257
|
+
}>, import("@elaraai/east").ArrayType<FloatType>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
258
|
+
/** Maximum number of function evaluations */
|
|
259
|
+
max_iter: OptionType<IntegerType>;
|
|
260
|
+
/** Initial guess for parameters */
|
|
261
|
+
initial_guess: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
262
|
+
}>], StructType<{
|
|
263
|
+
/** Fitted parameters */
|
|
264
|
+
params: import("@elaraai/east").ArrayType<FloatType>;
|
|
265
|
+
/** Whether fit converged */
|
|
266
|
+
success: BooleanType;
|
|
267
|
+
/** Coefficient of determination (R²) */
|
|
268
|
+
r_squared: FloatType;
|
|
269
|
+
}>>;
|
|
270
|
+
/**
|
|
271
|
+
* Compute descriptive statistics for data.
|
|
272
|
+
*/
|
|
273
|
+
export declare const scipy_stats_describe: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>], StructType<{
|
|
274
|
+
/** Number of observations */
|
|
275
|
+
count: IntegerType;
|
|
276
|
+
/** Mean value */
|
|
277
|
+
mean: FloatType;
|
|
278
|
+
/** Variance */
|
|
279
|
+
variance: FloatType;
|
|
280
|
+
/** Skewness */
|
|
281
|
+
skewness: FloatType;
|
|
282
|
+
/** Kurtosis */
|
|
283
|
+
kurtosis: FloatType;
|
|
284
|
+
/** Minimum value */
|
|
285
|
+
min: FloatType;
|
|
286
|
+
/** Maximum value */
|
|
287
|
+
max: FloatType;
|
|
288
|
+
}>>;
|
|
289
|
+
/**
|
|
290
|
+
* Compute Pearson correlation coefficient.
|
|
291
|
+
*/
|
|
292
|
+
export declare const scipy_stats_pearsonr: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>, import("@elaraai/east").ArrayType<FloatType>], StructType<{
|
|
293
|
+
/** Correlation coefficient */
|
|
294
|
+
correlation: FloatType;
|
|
295
|
+
/** P-value for hypothesis test */
|
|
296
|
+
pvalue: FloatType;
|
|
297
|
+
}>>;
|
|
298
|
+
/**
|
|
299
|
+
* Compute Spearman rank correlation.
|
|
300
|
+
*/
|
|
301
|
+
export declare const scipy_stats_spearmanr: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>, import("@elaraai/east").ArrayType<FloatType>], StructType<{
|
|
302
|
+
/** Correlation coefficient */
|
|
303
|
+
correlation: FloatType;
|
|
304
|
+
/** P-value for hypothesis test */
|
|
305
|
+
pvalue: FloatType;
|
|
306
|
+
}>>;
|
|
307
|
+
/**
|
|
308
|
+
* Fit 1D interpolator to data.
|
|
309
|
+
*/
|
|
310
|
+
export declare const scipy_interpolate_1d_fit: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
311
|
+
/** Interpolation method */
|
|
312
|
+
kind: OptionType<VariantType<{
|
|
313
|
+
/** Linear interpolation (default) */
|
|
314
|
+
linear: NullType;
|
|
315
|
+
/** Cubic interpolation */
|
|
316
|
+
cubic: NullType;
|
|
317
|
+
/** Quadratic interpolation */
|
|
318
|
+
quadratic: NullType;
|
|
319
|
+
}>>;
|
|
320
|
+
}>], VariantType<{
|
|
321
|
+
/** 1D interpolator (cloudpickle serialized) */
|
|
322
|
+
scipy_interp_1d: StructType<{
|
|
323
|
+
/** Serialized interpolator */
|
|
324
|
+
data: BlobType;
|
|
325
|
+
/** Interpolation method used */
|
|
326
|
+
kind: VariantType<{
|
|
327
|
+
/** Linear interpolation (default) */
|
|
328
|
+
linear: NullType;
|
|
329
|
+
/** Cubic interpolation */
|
|
330
|
+
cubic: NullType;
|
|
331
|
+
/** Quadratic interpolation */
|
|
332
|
+
quadratic: NullType;
|
|
333
|
+
}>;
|
|
334
|
+
}>;
|
|
335
|
+
}>>;
|
|
336
|
+
/**
|
|
337
|
+
* Evaluate 1D interpolator at given points.
|
|
338
|
+
*/
|
|
339
|
+
export declare const scipy_interpolate_1d_predict: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
340
|
+
/** 1D interpolator (cloudpickle serialized) */
|
|
341
|
+
scipy_interp_1d: StructType<{
|
|
342
|
+
/** Serialized interpolator */
|
|
343
|
+
data: BlobType;
|
|
344
|
+
/** Interpolation method used */
|
|
345
|
+
kind: VariantType<{
|
|
346
|
+
/** Linear interpolation (default) */
|
|
347
|
+
linear: NullType;
|
|
348
|
+
/** Cubic interpolation */
|
|
349
|
+
cubic: NullType;
|
|
350
|
+
/** Quadratic interpolation */
|
|
351
|
+
quadratic: NullType;
|
|
352
|
+
}>;
|
|
353
|
+
}>;
|
|
354
|
+
}>, import("@elaraai/east").ArrayType<FloatType>], import("@elaraai/east").ArrayType<FloatType>>;
|
|
355
|
+
/**
|
|
356
|
+
* Minimize a scalar function using scipy.optimize.minimize.
|
|
357
|
+
*/
|
|
358
|
+
export declare const scipy_optimize_minimize: import("@elaraai/east").PlatformDefinition<[FunctionType<[import("@elaraai/east").ArrayType<FloatType>], FloatType>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
359
|
+
/** Optimization method */
|
|
360
|
+
method: OptionType<VariantType<{
|
|
361
|
+
/** BFGS algorithm */
|
|
362
|
+
bfgs: NullType;
|
|
363
|
+
/** L-BFGS-B algorithm (default) */
|
|
364
|
+
l_bfgs_b: NullType;
|
|
365
|
+
/** Nelder-Mead simplex */
|
|
366
|
+
nelder_mead: NullType;
|
|
367
|
+
/** Powell's method */
|
|
368
|
+
powell: NullType;
|
|
369
|
+
/** Conjugate gradient */
|
|
370
|
+
cg: NullType;
|
|
371
|
+
}>>;
|
|
372
|
+
/** Maximum number of iterations */
|
|
373
|
+
max_iter: OptionType<IntegerType>;
|
|
374
|
+
/** Tolerance for convergence */
|
|
375
|
+
tol: OptionType<FloatType>;
|
|
376
|
+
}>], StructType<{
|
|
377
|
+
/** Optimal parameters */
|
|
378
|
+
x: import("@elaraai/east").ArrayType<FloatType>;
|
|
379
|
+
/** Function value at optimum */
|
|
380
|
+
fun: FloatType;
|
|
381
|
+
/** Whether optimization succeeded */
|
|
382
|
+
success: BooleanType;
|
|
383
|
+
/** Number of iterations */
|
|
384
|
+
nit: IntegerType;
|
|
385
|
+
}>>;
|
|
386
|
+
/**
|
|
387
|
+
* Minimize a quadratic function with analytical gradient.
|
|
388
|
+
*/
|
|
389
|
+
export declare const scipy_optimize_minimize_quadratic: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
390
|
+
/** Quadratic term (symmetric positive definite) */
|
|
391
|
+
A: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
392
|
+
/** Linear term */
|
|
393
|
+
b: import("@elaraai/east").ArrayType<FloatType>;
|
|
394
|
+
/** Constant term */
|
|
395
|
+
c: FloatType;
|
|
396
|
+
}>, StructType<{
|
|
397
|
+
/** Optimization method */
|
|
398
|
+
method: OptionType<VariantType<{
|
|
399
|
+
/** BFGS algorithm */
|
|
400
|
+
bfgs: NullType;
|
|
401
|
+
/** L-BFGS-B algorithm (default) */
|
|
402
|
+
l_bfgs_b: NullType;
|
|
403
|
+
/** Nelder-Mead simplex */
|
|
404
|
+
nelder_mead: NullType;
|
|
405
|
+
/** Powell's method */
|
|
406
|
+
powell: NullType;
|
|
407
|
+
/** Conjugate gradient */
|
|
408
|
+
cg: NullType;
|
|
409
|
+
}>>;
|
|
410
|
+
/** Maximum number of iterations */
|
|
411
|
+
max_iter: OptionType<IntegerType>;
|
|
412
|
+
/** Tolerance for convergence */
|
|
413
|
+
tol: OptionType<FloatType>;
|
|
414
|
+
}>], StructType<{
|
|
415
|
+
/** Optimal parameters */
|
|
416
|
+
x: import("@elaraai/east").ArrayType<FloatType>;
|
|
417
|
+
/** Function value at optimum */
|
|
418
|
+
fun: FloatType;
|
|
419
|
+
/** Whether optimization succeeded */
|
|
420
|
+
success: BooleanType;
|
|
421
|
+
/** Number of iterations */
|
|
422
|
+
nit: IntegerType;
|
|
423
|
+
}>>;
|
|
424
|
+
/**
|
|
425
|
+
* Type definitions for scipy functions.
|
|
426
|
+
*/
|
|
427
|
+
export declare const ScipyTypes: {
|
|
428
|
+
readonly VectorType: import("@elaraai/east").ArrayType<FloatType>;
|
|
429
|
+
readonly MatrixType: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
430
|
+
readonly ScalarObjectiveType: FunctionType<[import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
431
|
+
readonly OptimizeMethodType: VariantType<{
|
|
432
|
+
/** BFGS algorithm */
|
|
433
|
+
bfgs: NullType;
|
|
434
|
+
/** L-BFGS-B algorithm (default) */
|
|
435
|
+
l_bfgs_b: NullType;
|
|
436
|
+
/** Nelder-Mead simplex */
|
|
437
|
+
nelder_mead: NullType;
|
|
438
|
+
/** Powell's method */
|
|
439
|
+
powell: NullType;
|
|
440
|
+
/** Conjugate gradient */
|
|
441
|
+
cg: NullType;
|
|
442
|
+
}>;
|
|
443
|
+
readonly InterpolationKindType: VariantType<{
|
|
444
|
+
/** Linear interpolation (default) */
|
|
445
|
+
linear: NullType;
|
|
446
|
+
/** Cubic interpolation */
|
|
447
|
+
cubic: NullType;
|
|
448
|
+
/** Quadratic interpolation */
|
|
449
|
+
quadratic: NullType;
|
|
450
|
+
}>;
|
|
451
|
+
readonly OptimizeConfigType: StructType<{
|
|
452
|
+
/** Optimization method */
|
|
453
|
+
method: OptionType<VariantType<{
|
|
454
|
+
/** BFGS algorithm */
|
|
455
|
+
bfgs: NullType;
|
|
456
|
+
/** L-BFGS-B algorithm (default) */
|
|
457
|
+
l_bfgs_b: NullType;
|
|
458
|
+
/** Nelder-Mead simplex */
|
|
459
|
+
nelder_mead: NullType;
|
|
460
|
+
/** Powell's method */
|
|
461
|
+
powell: NullType;
|
|
462
|
+
/** Conjugate gradient */
|
|
463
|
+
cg: NullType;
|
|
464
|
+
}>>;
|
|
465
|
+
/** Maximum number of iterations */
|
|
466
|
+
max_iter: OptionType<IntegerType>;
|
|
467
|
+
/** Tolerance for convergence */
|
|
468
|
+
tol: OptionType<FloatType>;
|
|
469
|
+
}>;
|
|
470
|
+
readonly InterpolateConfigType: StructType<{
|
|
471
|
+
/** Interpolation method */
|
|
472
|
+
kind: OptionType<VariantType<{
|
|
473
|
+
/** Linear interpolation (default) */
|
|
474
|
+
linear: NullType;
|
|
475
|
+
/** Cubic interpolation */
|
|
476
|
+
cubic: NullType;
|
|
477
|
+
/** Quadratic interpolation */
|
|
478
|
+
quadratic: NullType;
|
|
479
|
+
}>>;
|
|
480
|
+
}>;
|
|
481
|
+
readonly ParamBoundsType: StructType<{
|
|
482
|
+
/** Lower bounds for each parameter */
|
|
483
|
+
lower: import("@elaraai/east").ArrayType<FloatType>;
|
|
484
|
+
/** Upper bounds for each parameter */
|
|
485
|
+
upper: import("@elaraai/east").ArrayType<FloatType>;
|
|
486
|
+
}>;
|
|
487
|
+
readonly CustomCurveFunctionType: FunctionType<[FloatType, import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
488
|
+
readonly CurveFunctionType: VariantType<{
|
|
489
|
+
/** y = a * exp(-b * x), 2 params: [a, b] */
|
|
490
|
+
exponential_decay: NullType;
|
|
491
|
+
/** y = a + b * exp(-c * x), 3 params: [a, b, c] */
|
|
492
|
+
exponential_with_offset: NullType;
|
|
493
|
+
/** y = a * exp(b * x), 2 params: [a, b] */
|
|
494
|
+
exponential_growth: NullType;
|
|
495
|
+
/** y = L / (1 + exp(-k * (x - x0))), 3 params: [L, k, x0] */
|
|
496
|
+
logistic: NullType;
|
|
497
|
+
/** y = a * exp(-b * exp(-c * x)), 3 params: [a, b, c] */
|
|
498
|
+
gompertz: NullType;
|
|
499
|
+
/** y = a * x^b, 2 params: [a, b] */
|
|
500
|
+
power_law: NullType;
|
|
501
|
+
/** y = a + b * x, 2 params: [a, b] */
|
|
502
|
+
linear: NullType;
|
|
503
|
+
/** y = a + b*x + c*x^2, 3 params: [a, b, c] */
|
|
504
|
+
quadratic: NullType;
|
|
505
|
+
/** y = a + b*x + c*x^2 + d*x^3, 4 params: [a, b, c, d] */
|
|
506
|
+
cubic: NullType;
|
|
507
|
+
/** Custom function provided by user */
|
|
508
|
+
custom: StructType<{
|
|
509
|
+
/** The curve function */
|
|
510
|
+
fn: FunctionType<[FloatType, import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
511
|
+
/** Number of parameters to optimize */
|
|
512
|
+
n_params: IntegerType;
|
|
513
|
+
/** Optional parameter bounds */
|
|
514
|
+
param_bounds: OptionType<StructType<{
|
|
515
|
+
/** Lower bounds for each parameter */
|
|
516
|
+
lower: import("@elaraai/east").ArrayType<FloatType>;
|
|
517
|
+
/** Upper bounds for each parameter */
|
|
518
|
+
upper: import("@elaraai/east").ArrayType<FloatType>;
|
|
519
|
+
}>>;
|
|
520
|
+
}>;
|
|
521
|
+
}>;
|
|
522
|
+
readonly CurveFitConfigType: StructType<{
|
|
523
|
+
/** Maximum number of function evaluations */
|
|
524
|
+
max_iter: OptionType<IntegerType>;
|
|
525
|
+
/** Initial guess for parameters */
|
|
526
|
+
initial_guess: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
527
|
+
}>;
|
|
528
|
+
readonly QuadraticConfigType: StructType<{
|
|
529
|
+
/** Quadratic term (symmetric positive definite) */
|
|
530
|
+
A: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
531
|
+
/** Linear term */
|
|
532
|
+
b: import("@elaraai/east").ArrayType<FloatType>;
|
|
533
|
+
/** Constant term */
|
|
534
|
+
c: FloatType;
|
|
535
|
+
}>;
|
|
536
|
+
readonly StatsDescribeResultType: StructType<{
|
|
537
|
+
/** Number of observations */
|
|
538
|
+
count: IntegerType;
|
|
539
|
+
/** Mean value */
|
|
540
|
+
mean: FloatType;
|
|
541
|
+
/** Variance */
|
|
542
|
+
variance: FloatType;
|
|
543
|
+
/** Skewness */
|
|
544
|
+
skewness: FloatType;
|
|
545
|
+
/** Kurtosis */
|
|
546
|
+
kurtosis: FloatType;
|
|
547
|
+
/** Minimum value */
|
|
548
|
+
min: FloatType;
|
|
549
|
+
/** Maximum value */
|
|
550
|
+
max: FloatType;
|
|
551
|
+
}>;
|
|
552
|
+
readonly CorrelationResultType: StructType<{
|
|
553
|
+
/** Correlation coefficient */
|
|
554
|
+
correlation: FloatType;
|
|
555
|
+
/** P-value for hypothesis test */
|
|
556
|
+
pvalue: FloatType;
|
|
557
|
+
}>;
|
|
558
|
+
readonly CurveFitResultType: StructType<{
|
|
559
|
+
/** Fitted parameters */
|
|
560
|
+
params: import("@elaraai/east").ArrayType<FloatType>;
|
|
561
|
+
/** Whether fit converged */
|
|
562
|
+
success: BooleanType;
|
|
563
|
+
/** Coefficient of determination (R²) */
|
|
564
|
+
r_squared: FloatType;
|
|
565
|
+
}>;
|
|
566
|
+
readonly OptimizeResultType: StructType<{
|
|
567
|
+
/** Optimal parameters */
|
|
568
|
+
x: import("@elaraai/east").ArrayType<FloatType>;
|
|
569
|
+
/** Function value at optimum */
|
|
570
|
+
fun: FloatType;
|
|
571
|
+
/** Whether optimization succeeded */
|
|
572
|
+
success: BooleanType;
|
|
573
|
+
/** Number of iterations */
|
|
574
|
+
nit: IntegerType;
|
|
575
|
+
}>;
|
|
576
|
+
readonly ModelBlobType: VariantType<{
|
|
577
|
+
/** 1D interpolator (cloudpickle serialized) */
|
|
578
|
+
scipy_interp_1d: StructType<{
|
|
579
|
+
/** Serialized interpolator */
|
|
580
|
+
data: BlobType;
|
|
581
|
+
/** Interpolation method used */
|
|
582
|
+
kind: VariantType<{
|
|
583
|
+
/** Linear interpolation (default) */
|
|
584
|
+
linear: NullType;
|
|
585
|
+
/** Cubic interpolation */
|
|
586
|
+
cubic: NullType;
|
|
587
|
+
/** Quadratic interpolation */
|
|
588
|
+
quadratic: NullType;
|
|
589
|
+
}>;
|
|
590
|
+
}>;
|
|
591
|
+
}>;
|
|
592
|
+
};
|
|
593
|
+
/**
|
|
594
|
+
* SciPy scientific computing utilities.
|
|
595
|
+
*
|
|
596
|
+
* Provides statistics, optimization, interpolation, and curve fitting.
|
|
597
|
+
*/
|
|
598
|
+
export declare const Scipy: {
|
|
599
|
+
/** Fit parametric curve to data */
|
|
600
|
+
readonly curveFit: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
601
|
+
/** y = a * exp(-b * x), 2 params: [a, b] */
|
|
602
|
+
exponential_decay: NullType;
|
|
603
|
+
/** y = a + b * exp(-c * x), 3 params: [a, b, c] */
|
|
604
|
+
exponential_with_offset: NullType;
|
|
605
|
+
/** y = a * exp(b * x), 2 params: [a, b] */
|
|
606
|
+
exponential_growth: NullType;
|
|
607
|
+
/** y = L / (1 + exp(-k * (x - x0))), 3 params: [L, k, x0] */
|
|
608
|
+
logistic: NullType;
|
|
609
|
+
/** y = a * exp(-b * exp(-c * x)), 3 params: [a, b, c] */
|
|
610
|
+
gompertz: NullType;
|
|
611
|
+
/** y = a * x^b, 2 params: [a, b] */
|
|
612
|
+
power_law: NullType;
|
|
613
|
+
/** y = a + b * x, 2 params: [a, b] */
|
|
614
|
+
linear: NullType;
|
|
615
|
+
/** y = a + b*x + c*x^2, 3 params: [a, b, c] */
|
|
616
|
+
quadratic: NullType;
|
|
617
|
+
/** y = a + b*x + c*x^2 + d*x^3, 4 params: [a, b, c, d] */
|
|
618
|
+
cubic: NullType;
|
|
619
|
+
/** Custom function provided by user */
|
|
620
|
+
custom: StructType<{
|
|
621
|
+
/** The curve function */
|
|
622
|
+
fn: FunctionType<[FloatType, import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
623
|
+
/** Number of parameters to optimize */
|
|
624
|
+
n_params: IntegerType;
|
|
625
|
+
/** Optional parameter bounds */
|
|
626
|
+
param_bounds: OptionType<StructType<{
|
|
627
|
+
/** Lower bounds for each parameter */
|
|
628
|
+
lower: import("@elaraai/east").ArrayType<FloatType>;
|
|
629
|
+
/** Upper bounds for each parameter */
|
|
630
|
+
upper: import("@elaraai/east").ArrayType<FloatType>;
|
|
631
|
+
}>>;
|
|
632
|
+
}>;
|
|
633
|
+
}>, import("@elaraai/east").ArrayType<FloatType>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
634
|
+
/** Maximum number of function evaluations */
|
|
635
|
+
max_iter: OptionType<IntegerType>;
|
|
636
|
+
/** Initial guess for parameters */
|
|
637
|
+
initial_guess: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
638
|
+
}>], StructType<{
|
|
639
|
+
/** Fitted parameters */
|
|
640
|
+
params: import("@elaraai/east").ArrayType<FloatType>;
|
|
641
|
+
/** Whether fit converged */
|
|
642
|
+
success: BooleanType;
|
|
643
|
+
/** Coefficient of determination (R²) */
|
|
644
|
+
r_squared: FloatType;
|
|
645
|
+
}>>;
|
|
646
|
+
/** Compute descriptive statistics */
|
|
647
|
+
readonly statsDescribe: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>], StructType<{
|
|
648
|
+
/** Number of observations */
|
|
649
|
+
count: IntegerType;
|
|
650
|
+
/** Mean value */
|
|
651
|
+
mean: FloatType;
|
|
652
|
+
/** Variance */
|
|
653
|
+
variance: FloatType;
|
|
654
|
+
/** Skewness */
|
|
655
|
+
skewness: FloatType;
|
|
656
|
+
/** Kurtosis */
|
|
657
|
+
kurtosis: FloatType;
|
|
658
|
+
/** Minimum value */
|
|
659
|
+
min: FloatType;
|
|
660
|
+
/** Maximum value */
|
|
661
|
+
max: FloatType;
|
|
662
|
+
}>>;
|
|
663
|
+
/** Compute Pearson correlation */
|
|
664
|
+
readonly statsPearsonr: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>, import("@elaraai/east").ArrayType<FloatType>], StructType<{
|
|
665
|
+
/** Correlation coefficient */
|
|
666
|
+
correlation: FloatType;
|
|
667
|
+
/** P-value for hypothesis test */
|
|
668
|
+
pvalue: FloatType;
|
|
669
|
+
}>>;
|
|
670
|
+
/** Compute Spearman correlation */
|
|
671
|
+
readonly statsSpearmanr: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>, import("@elaraai/east").ArrayType<FloatType>], StructType<{
|
|
672
|
+
/** Correlation coefficient */
|
|
673
|
+
correlation: FloatType;
|
|
674
|
+
/** P-value for hypothesis test */
|
|
675
|
+
pvalue: FloatType;
|
|
676
|
+
}>>;
|
|
677
|
+
/** Fit 1D interpolator */
|
|
678
|
+
readonly interpolate1dFit: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
679
|
+
/** Interpolation method */
|
|
680
|
+
kind: OptionType<VariantType<{
|
|
681
|
+
/** Linear interpolation (default) */
|
|
682
|
+
linear: NullType;
|
|
683
|
+
/** Cubic interpolation */
|
|
684
|
+
cubic: NullType;
|
|
685
|
+
/** Quadratic interpolation */
|
|
686
|
+
quadratic: NullType;
|
|
687
|
+
}>>;
|
|
688
|
+
}>], VariantType<{
|
|
689
|
+
/** 1D interpolator (cloudpickle serialized) */
|
|
690
|
+
scipy_interp_1d: StructType<{
|
|
691
|
+
/** Serialized interpolator */
|
|
692
|
+
data: BlobType;
|
|
693
|
+
/** Interpolation method used */
|
|
694
|
+
kind: VariantType<{
|
|
695
|
+
/** Linear interpolation (default) */
|
|
696
|
+
linear: NullType;
|
|
697
|
+
/** Cubic interpolation */
|
|
698
|
+
cubic: NullType;
|
|
699
|
+
/** Quadratic interpolation */
|
|
700
|
+
quadratic: NullType;
|
|
701
|
+
}>;
|
|
702
|
+
}>;
|
|
703
|
+
}>>;
|
|
704
|
+
/** Evaluate 1D interpolator */
|
|
705
|
+
readonly interpolate1dPredict: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
706
|
+
/** 1D interpolator (cloudpickle serialized) */
|
|
707
|
+
scipy_interp_1d: StructType<{
|
|
708
|
+
/** Serialized interpolator */
|
|
709
|
+
data: BlobType;
|
|
710
|
+
/** Interpolation method used */
|
|
711
|
+
kind: VariantType<{
|
|
712
|
+
/** Linear interpolation (default) */
|
|
713
|
+
linear: NullType;
|
|
714
|
+
/** Cubic interpolation */
|
|
715
|
+
cubic: NullType;
|
|
716
|
+
/** Quadratic interpolation */
|
|
717
|
+
quadratic: NullType;
|
|
718
|
+
}>;
|
|
719
|
+
}>;
|
|
720
|
+
}>, import("@elaraai/east").ArrayType<FloatType>], import("@elaraai/east").ArrayType<FloatType>>;
|
|
721
|
+
/** Minimize scalar function */
|
|
722
|
+
readonly optimizeMinimize: import("@elaraai/east").PlatformDefinition<[FunctionType<[import("@elaraai/east").ArrayType<FloatType>], FloatType>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
723
|
+
/** Optimization method */
|
|
724
|
+
method: OptionType<VariantType<{
|
|
725
|
+
/** BFGS algorithm */
|
|
726
|
+
bfgs: NullType;
|
|
727
|
+
/** L-BFGS-B algorithm (default) */
|
|
728
|
+
l_bfgs_b: NullType;
|
|
729
|
+
/** Nelder-Mead simplex */
|
|
730
|
+
nelder_mead: NullType;
|
|
731
|
+
/** Powell's method */
|
|
732
|
+
powell: NullType;
|
|
733
|
+
/** Conjugate gradient */
|
|
734
|
+
cg: NullType;
|
|
735
|
+
}>>;
|
|
736
|
+
/** Maximum number of iterations */
|
|
737
|
+
max_iter: OptionType<IntegerType>;
|
|
738
|
+
/** Tolerance for convergence */
|
|
739
|
+
tol: OptionType<FloatType>;
|
|
740
|
+
}>], StructType<{
|
|
741
|
+
/** Optimal parameters */
|
|
742
|
+
x: import("@elaraai/east").ArrayType<FloatType>;
|
|
743
|
+
/** Function value at optimum */
|
|
744
|
+
fun: FloatType;
|
|
745
|
+
/** Whether optimization succeeded */
|
|
746
|
+
success: BooleanType;
|
|
747
|
+
/** Number of iterations */
|
|
748
|
+
nit: IntegerType;
|
|
749
|
+
}>>;
|
|
750
|
+
/** Minimize quadratic function */
|
|
751
|
+
readonly optimizeMinimizeQuadratic: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
752
|
+
/** Quadratic term (symmetric positive definite) */
|
|
753
|
+
A: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
754
|
+
/** Linear term */
|
|
755
|
+
b: import("@elaraai/east").ArrayType<FloatType>;
|
|
756
|
+
/** Constant term */
|
|
757
|
+
c: FloatType;
|
|
758
|
+
}>, StructType<{
|
|
759
|
+
/** Optimization method */
|
|
760
|
+
method: OptionType<VariantType<{
|
|
761
|
+
/** BFGS algorithm */
|
|
762
|
+
bfgs: NullType;
|
|
763
|
+
/** L-BFGS-B algorithm (default) */
|
|
764
|
+
l_bfgs_b: NullType;
|
|
765
|
+
/** Nelder-Mead simplex */
|
|
766
|
+
nelder_mead: NullType;
|
|
767
|
+
/** Powell's method */
|
|
768
|
+
powell: NullType;
|
|
769
|
+
/** Conjugate gradient */
|
|
770
|
+
cg: NullType;
|
|
771
|
+
}>>;
|
|
772
|
+
/** Maximum number of iterations */
|
|
773
|
+
max_iter: OptionType<IntegerType>;
|
|
774
|
+
/** Tolerance for convergence */
|
|
775
|
+
tol: OptionType<FloatType>;
|
|
776
|
+
}>], StructType<{
|
|
777
|
+
/** Optimal parameters */
|
|
778
|
+
x: import("@elaraai/east").ArrayType<FloatType>;
|
|
779
|
+
/** Function value at optimum */
|
|
780
|
+
fun: FloatType;
|
|
781
|
+
/** Whether optimization succeeded */
|
|
782
|
+
success: BooleanType;
|
|
783
|
+
/** Number of iterations */
|
|
784
|
+
nit: IntegerType;
|
|
785
|
+
}>>;
|
|
786
|
+
/** Type definitions */
|
|
787
|
+
readonly Types: {
|
|
788
|
+
readonly VectorType: import("@elaraai/east").ArrayType<FloatType>;
|
|
789
|
+
readonly MatrixType: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
790
|
+
readonly ScalarObjectiveType: FunctionType<[import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
791
|
+
readonly OptimizeMethodType: VariantType<{
|
|
792
|
+
/** BFGS algorithm */
|
|
793
|
+
bfgs: NullType;
|
|
794
|
+
/** L-BFGS-B algorithm (default) */
|
|
795
|
+
l_bfgs_b: NullType;
|
|
796
|
+
/** Nelder-Mead simplex */
|
|
797
|
+
nelder_mead: NullType;
|
|
798
|
+
/** Powell's method */
|
|
799
|
+
powell: NullType;
|
|
800
|
+
/** Conjugate gradient */
|
|
801
|
+
cg: NullType;
|
|
802
|
+
}>;
|
|
803
|
+
readonly InterpolationKindType: VariantType<{
|
|
804
|
+
/** Linear interpolation (default) */
|
|
805
|
+
linear: NullType;
|
|
806
|
+
/** Cubic interpolation */
|
|
807
|
+
cubic: NullType;
|
|
808
|
+
/** Quadratic interpolation */
|
|
809
|
+
quadratic: NullType;
|
|
810
|
+
}>;
|
|
811
|
+
readonly OptimizeConfigType: StructType<{
|
|
812
|
+
/** Optimization method */
|
|
813
|
+
method: OptionType<VariantType<{
|
|
814
|
+
/** BFGS algorithm */
|
|
815
|
+
bfgs: NullType;
|
|
816
|
+
/** L-BFGS-B algorithm (default) */
|
|
817
|
+
l_bfgs_b: NullType;
|
|
818
|
+
/** Nelder-Mead simplex */
|
|
819
|
+
nelder_mead: NullType;
|
|
820
|
+
/** Powell's method */
|
|
821
|
+
powell: NullType;
|
|
822
|
+
/** Conjugate gradient */
|
|
823
|
+
cg: NullType;
|
|
824
|
+
}>>;
|
|
825
|
+
/** Maximum number of iterations */
|
|
826
|
+
max_iter: OptionType<IntegerType>;
|
|
827
|
+
/** Tolerance for convergence */
|
|
828
|
+
tol: OptionType<FloatType>;
|
|
829
|
+
}>;
|
|
830
|
+
readonly InterpolateConfigType: StructType<{
|
|
831
|
+
/** Interpolation method */
|
|
832
|
+
kind: OptionType<VariantType<{
|
|
833
|
+
/** Linear interpolation (default) */
|
|
834
|
+
linear: NullType;
|
|
835
|
+
/** Cubic interpolation */
|
|
836
|
+
cubic: NullType;
|
|
837
|
+
/** Quadratic interpolation */
|
|
838
|
+
quadratic: NullType;
|
|
839
|
+
}>>;
|
|
840
|
+
}>;
|
|
841
|
+
readonly ParamBoundsType: StructType<{
|
|
842
|
+
/** Lower bounds for each parameter */
|
|
843
|
+
lower: import("@elaraai/east").ArrayType<FloatType>;
|
|
844
|
+
/** Upper bounds for each parameter */
|
|
845
|
+
upper: import("@elaraai/east").ArrayType<FloatType>;
|
|
846
|
+
}>;
|
|
847
|
+
readonly CustomCurveFunctionType: FunctionType<[FloatType, import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
848
|
+
readonly CurveFunctionType: VariantType<{
|
|
849
|
+
/** y = a * exp(-b * x), 2 params: [a, b] */
|
|
850
|
+
exponential_decay: NullType;
|
|
851
|
+
/** y = a + b * exp(-c * x), 3 params: [a, b, c] */
|
|
852
|
+
exponential_with_offset: NullType;
|
|
853
|
+
/** y = a * exp(b * x), 2 params: [a, b] */
|
|
854
|
+
exponential_growth: NullType;
|
|
855
|
+
/** y = L / (1 + exp(-k * (x - x0))), 3 params: [L, k, x0] */
|
|
856
|
+
logistic: NullType;
|
|
857
|
+
/** y = a * exp(-b * exp(-c * x)), 3 params: [a, b, c] */
|
|
858
|
+
gompertz: NullType;
|
|
859
|
+
/** y = a * x^b, 2 params: [a, b] */
|
|
860
|
+
power_law: NullType;
|
|
861
|
+
/** y = a + b * x, 2 params: [a, b] */
|
|
862
|
+
linear: NullType;
|
|
863
|
+
/** y = a + b*x + c*x^2, 3 params: [a, b, c] */
|
|
864
|
+
quadratic: NullType;
|
|
865
|
+
/** y = a + b*x + c*x^2 + d*x^3, 4 params: [a, b, c, d] */
|
|
866
|
+
cubic: NullType;
|
|
867
|
+
/** Custom function provided by user */
|
|
868
|
+
custom: StructType<{
|
|
869
|
+
/** The curve function */
|
|
870
|
+
fn: FunctionType<[FloatType, import("@elaraai/east").ArrayType<FloatType>], FloatType>;
|
|
871
|
+
/** Number of parameters to optimize */
|
|
872
|
+
n_params: IntegerType;
|
|
873
|
+
/** Optional parameter bounds */
|
|
874
|
+
param_bounds: OptionType<StructType<{
|
|
875
|
+
/** Lower bounds for each parameter */
|
|
876
|
+
lower: import("@elaraai/east").ArrayType<FloatType>;
|
|
877
|
+
/** Upper bounds for each parameter */
|
|
878
|
+
upper: import("@elaraai/east").ArrayType<FloatType>;
|
|
879
|
+
}>>;
|
|
880
|
+
}>;
|
|
881
|
+
}>;
|
|
882
|
+
readonly CurveFitConfigType: StructType<{
|
|
883
|
+
/** Maximum number of function evaluations */
|
|
884
|
+
max_iter: OptionType<IntegerType>;
|
|
885
|
+
/** Initial guess for parameters */
|
|
886
|
+
initial_guess: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
887
|
+
}>;
|
|
888
|
+
readonly QuadraticConfigType: StructType<{
|
|
889
|
+
/** Quadratic term (symmetric positive definite) */
|
|
890
|
+
A: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
891
|
+
/** Linear term */
|
|
892
|
+
b: import("@elaraai/east").ArrayType<FloatType>;
|
|
893
|
+
/** Constant term */
|
|
894
|
+
c: FloatType;
|
|
895
|
+
}>;
|
|
896
|
+
readonly StatsDescribeResultType: StructType<{
|
|
897
|
+
/** Number of observations */
|
|
898
|
+
count: IntegerType;
|
|
899
|
+
/** Mean value */
|
|
900
|
+
mean: FloatType;
|
|
901
|
+
/** Variance */
|
|
902
|
+
variance: FloatType;
|
|
903
|
+
/** Skewness */
|
|
904
|
+
skewness: FloatType;
|
|
905
|
+
/** Kurtosis */
|
|
906
|
+
kurtosis: FloatType;
|
|
907
|
+
/** Minimum value */
|
|
908
|
+
min: FloatType;
|
|
909
|
+
/** Maximum value */
|
|
910
|
+
max: FloatType;
|
|
911
|
+
}>;
|
|
912
|
+
readonly CorrelationResultType: StructType<{
|
|
913
|
+
/** Correlation coefficient */
|
|
914
|
+
correlation: FloatType;
|
|
915
|
+
/** P-value for hypothesis test */
|
|
916
|
+
pvalue: FloatType;
|
|
917
|
+
}>;
|
|
918
|
+
readonly CurveFitResultType: StructType<{
|
|
919
|
+
/** Fitted parameters */
|
|
920
|
+
params: import("@elaraai/east").ArrayType<FloatType>;
|
|
921
|
+
/** Whether fit converged */
|
|
922
|
+
success: BooleanType;
|
|
923
|
+
/** Coefficient of determination (R²) */
|
|
924
|
+
r_squared: FloatType;
|
|
925
|
+
}>;
|
|
926
|
+
readonly OptimizeResultType: StructType<{
|
|
927
|
+
/** Optimal parameters */
|
|
928
|
+
x: import("@elaraai/east").ArrayType<FloatType>;
|
|
929
|
+
/** Function value at optimum */
|
|
930
|
+
fun: FloatType;
|
|
931
|
+
/** Whether optimization succeeded */
|
|
932
|
+
success: BooleanType;
|
|
933
|
+
/** Number of iterations */
|
|
934
|
+
nit: IntegerType;
|
|
935
|
+
}>;
|
|
936
|
+
readonly ModelBlobType: VariantType<{
|
|
937
|
+
/** 1D interpolator (cloudpickle serialized) */
|
|
938
|
+
scipy_interp_1d: StructType<{
|
|
939
|
+
/** Serialized interpolator */
|
|
940
|
+
data: BlobType;
|
|
941
|
+
/** Interpolation method used */
|
|
942
|
+
kind: VariantType<{
|
|
943
|
+
/** Linear interpolation (default) */
|
|
944
|
+
linear: NullType;
|
|
945
|
+
/** Cubic interpolation */
|
|
946
|
+
cubic: NullType;
|
|
947
|
+
/** Quadratic interpolation */
|
|
948
|
+
quadratic: NullType;
|
|
949
|
+
}>;
|
|
950
|
+
}>;
|
|
951
|
+
}>;
|
|
952
|
+
};
|
|
953
|
+
};
|
|
954
|
+
//# sourceMappingURL=scipy.d.ts.map
|