@elaraai/east-py-datascience 0.0.2-beta.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. package/LICENSE.md +18 -0
  2. package/README.md +104 -0
  3. package/dist/gp/gp.d.ts +398 -0
  4. package/dist/gp/gp.d.ts.map +1 -0
  5. package/dist/gp/gp.js +170 -0
  6. package/dist/gp/gp.js.map +1 -0
  7. package/dist/index.d.ts +27 -0
  8. package/dist/index.d.ts.map +1 -0
  9. package/dist/index.js +39 -0
  10. package/dist/index.js.map +1 -0
  11. package/dist/lightgbm/lightgbm.d.ts +494 -0
  12. package/dist/lightgbm/lightgbm.d.ts.map +1 -0
  13. package/dist/lightgbm/lightgbm.js +155 -0
  14. package/dist/lightgbm/lightgbm.js.map +1 -0
  15. package/dist/mads/mads.d.ts +413 -0
  16. package/dist/mads/mads.d.ts.map +1 -0
  17. package/dist/mads/mads.js +221 -0
  18. package/dist/mads/mads.js.map +1 -0
  19. package/dist/ngboost/ngboost.d.ts +433 -0
  20. package/dist/ngboost/ngboost.d.ts.map +1 -0
  21. package/dist/ngboost/ngboost.js +178 -0
  22. package/dist/ngboost/ngboost.js.map +1 -0
  23. package/dist/optuna/optuna.d.ts +797 -0
  24. package/dist/optuna/optuna.d.ts.map +1 -0
  25. package/dist/optuna/optuna.js +268 -0
  26. package/dist/optuna/optuna.js.map +1 -0
  27. package/dist/scipy/scipy.d.ts +954 -0
  28. package/dist/scipy/scipy.d.ts.map +1 -0
  29. package/dist/scipy/scipy.js +287 -0
  30. package/dist/scipy/scipy.js.map +1 -0
  31. package/dist/shap/shap.d.ts +657 -0
  32. package/dist/shap/shap.d.ts.map +1 -0
  33. package/dist/shap/shap.js +241 -0
  34. package/dist/shap/shap.js.map +1 -0
  35. package/dist/simanneal/simanneal.d.ts +531 -0
  36. package/dist/simanneal/simanneal.d.ts.map +1 -0
  37. package/dist/simanneal/simanneal.js +231 -0
  38. package/dist/simanneal/simanneal.js.map +1 -0
  39. package/dist/sklearn/sklearn.d.ts +1272 -0
  40. package/dist/sklearn/sklearn.d.ts.map +1 -0
  41. package/dist/sklearn/sklearn.js +307 -0
  42. package/dist/sklearn/sklearn.js.map +1 -0
  43. package/dist/torch/torch.d.ts +658 -0
  44. package/dist/torch/torch.d.ts.map +1 -0
  45. package/dist/torch/torch.js +233 -0
  46. package/dist/torch/torch.js.map +1 -0
  47. package/dist/tsconfig.tsbuildinfo +1 -0
  48. package/dist/types.d.ts +80 -0
  49. package/dist/types.d.ts.map +1 -0
  50. package/dist/types.js +81 -0
  51. package/dist/types.js.map +1 -0
  52. package/dist/xgboost/xgboost.d.ts +504 -0
  53. package/dist/xgboost/xgboost.d.ts.map +1 -0
  54. package/dist/xgboost/xgboost.js +177 -0
  55. package/dist/xgboost/xgboost.js.map +1 -0
  56. package/package.json +82 -0
package/LICENSE.md ADDED
@@ -0,0 +1,18 @@
1
+ Copyright (c) 2025 Elara AI Pty Ltd
2
+
3
+ DUAL LICENSING
4
+
5
+ This software is available under two licenses. You may choose which license
6
+ applies to your use:
7
+
8
+ OPEN SOURCE LICENSE (AGPL-3.0)
9
+ You may use, modify, and distribute this software under the terms of the
10
+ GNU Affero General Public License v3.0. This requires that if you use this
11
+ software in a network service, you must make your complete source code
12
+ available under AGPL-3.0.
13
+
14
+ COMMERCIAL LICENSE
15
+ If you wish to use this software without the source code disclosure requirements
16
+ of AGPL-3.0, you must obtain a separate commercial license from Elara AI Pty Ltd.
17
+
18
+ Contact: support@elara.ai
package/README.md ADDED
@@ -0,0 +1,104 @@
1
+ # East Data Science
2
+
3
+ > Data science and ML platform functions for the East language
4
+
5
+ [![License](https://img.shields.io/badge/license-AGPL--3.0-blue.svg)](LICENSE.md)
6
+ [![Node Version](https://img.shields.io/badge/node-%3E%3D22.0.0-brightgreen.svg)](https://nodejs.org)
7
+
8
+ **East Data Science** provides machine learning and optimization platform functions for the [East language](https://github.com/elaraai/East).
9
+
10
+ ## Installation
11
+
12
+ ```bash
13
+ npm install @elaraai/east-py-datascience @elaraai/east
14
+ ```
15
+
16
+ ## Quick Start
17
+
18
+ ```typescript
19
+ import { East, FloatType, variant } from "@elaraai/east";
20
+ import { MADS } from "@elaraai/east-py-datascience";
21
+
22
+ // Define objective function: minimize sum of squares
23
+ const objective = East.function([MADS.Types.VectorType], FloatType, ($, x) => {
24
+ const x0 = $.let(x.get(0n));
25
+ const x1 = $.let(x.get(1n));
26
+ return $.return(x0.multiply(x0).add(x1.multiply(x1)));
27
+ });
28
+
29
+ // Optimize
30
+ const optimize = East.function([], MADS.Types.ResultType, $ => {
31
+ const x0 = $.let([0.5, 0.5]);
32
+ const bounds = $.let({
33
+ lower: [-1.0, -1.0],
34
+ upper: [1.0, 1.0],
35
+ });
36
+ const config = $.let({
37
+ max_bb_eval: variant('some', 100n),
38
+ display_degree: variant('some', 0n),
39
+ direction_type: variant('none', null),
40
+ initial_mesh_size: variant('none', null),
41
+ min_mesh_size: variant('none', null),
42
+ seed: variant('some', 42n),
43
+ });
44
+
45
+ return $.return(MADS.optimize(objective, x0, bounds, variant('none', null), config));
46
+ });
47
+ ```
48
+
49
+ ## Modules
50
+
51
+ ### Optimization
52
+
53
+ | Module | Description | Use Cases |
54
+ |--------|-------------|-----------|
55
+ | **MADS** | Derivative-free blackbox optimization using NOMAD algorithm | Functions without derivatives, expensive evaluations, noisy/discontinuous objectives |
56
+ | **Optuna** | Bayesian optimization with TPE sampler | Hyperparameter tuning, mixed-type parameters, efficient search with few evaluations |
57
+ | **SimAnneal** | Simulated annealing for discrete optimization | TSP, scheduling, subset selection, knapsack, assignment problems |
58
+ | **Scipy** | Scientific optimization and curve fitting | Gradient-based minimization, curve fitting, interpolation, statistics |
59
+
60
+ ### Machine Learning
61
+
62
+ | Module | Description | Use Cases |
63
+ |--------|-------------|-----------|
64
+ | **Sklearn** | Core ML utilities from scikit-learn | Train/test split, preprocessing (StandardScaler, MinMaxScaler), metrics, multi-target regression |
65
+ | **XGBoost** | Gradient boosting with XGBoost | Regression, classification, feature importance, fast training |
66
+ | **LightGBM** | Fast gradient boosting with leaf-wise growth | Large datasets, high cardinality features, faster than XGBoost on big data |
67
+ | **NGBoost** | Natural gradient boosting with uncertainty | Probabilistic predictions, confidence intervals, uncertainty quantification |
68
+ | **Torch** | Neural networks with PyTorch | MLP regression/classification, deep learning, custom architectures |
69
+ | **GP** | Gaussian Process regression | Small datasets, uncertainty quantification, Bayesian optimization surrogate |
70
+
71
+ ### Explainability
72
+
73
+ | Module | Description | Use Cases |
74
+ |--------|-------------|-----------|
75
+ | **Shap** | SHAP values for model interpretation | Feature importance, model explanations, debugging predictions |
76
+
77
+ ## Documentation
78
+
79
+ See [USAGE.md](./USAGE.md) for detailed API reference with examples.
80
+
81
+ ## Development
82
+
83
+ ```bash
84
+ npm run build # Compile TypeScript
85
+ npm run test # Run test suite
86
+ npm run lint # Check code quality
87
+ ```
88
+
89
+ ## License
90
+
91
+ Dual-licensed:
92
+ - **Open Source**: [AGPL-3.0](LICENSE.md) - Free for open source use
93
+ - **Commercial**: Available for proprietary use - contact support@elara.ai
94
+
95
+ ## Links
96
+
97
+ - **Website**: [https://elaraai.com/](https://elaraai.com/)
98
+ - **East Repository**: [https://github.com/elaraai/East](https://github.com/elaraai/East)
99
+ - **Issues**: [https://github.com/elaraai/east-py/issues](https://github.com/elaraai/east-py/issues)
100
+ - **Email**: support@elara.ai
101
+
102
+ ---
103
+
104
+ *Developed by [Elara AI Pty Ltd](https://elaraai.com/)*
@@ -0,0 +1,398 @@
1
+ /**
2
+ * Copyright (c) 2025 Elara AI Pty Ltd
3
+ * Dual-licensed under AGPL-3.0 and commercial license. See LICENSE for details.
4
+ */
5
+ /**
6
+ * Gaussian Process platform functions for East.
7
+ *
8
+ * Provides Gaussian Process regression using scikit-learn.
9
+ * Uses cloudpickle for model serialization.
10
+ *
11
+ * @packageDocumentation
12
+ */
13
+ import { StructType, VariantType, OptionType, IntegerType, FloatType, BooleanType, BlobType, StringType } from "@elaraai/east";
14
+ export { VectorType, MatrixType } from "../types.js";
15
+ /**
16
+ * Kernel type for Gaussian Process.
17
+ */
18
+ export declare const GPKernelType: VariantType<{
19
+ /** Radial Basis Function (squared exponential) */
20
+ rbf: StructType<{}>;
21
+ /** Matern with nu=1/2 (exponential) */
22
+ matern_1_2: StructType<{}>;
23
+ /** Matern with nu=3/2 */
24
+ matern_3_2: StructType<{}>;
25
+ /** Matern with nu=5/2 */
26
+ matern_5_2: StructType<{}>;
27
+ /** Rational Quadratic */
28
+ rational_quadratic: StructType<{}>;
29
+ /** Dot Product (linear) */
30
+ dot_product: StructType<{}>;
31
+ }>;
32
+ /**
33
+ * Configuration for Gaussian Process Regressor.
34
+ */
35
+ export declare const GPConfigType: StructType<{
36
+ /** Kernel type (default rbf) */
37
+ kernel: OptionType<VariantType<{
38
+ /** Radial Basis Function (squared exponential) */
39
+ rbf: StructType<{}>;
40
+ /** Matern with nu=1/2 (exponential) */
41
+ matern_1_2: StructType<{}>;
42
+ /** Matern with nu=3/2 */
43
+ matern_3_2: StructType<{}>;
44
+ /** Matern with nu=5/2 */
45
+ matern_5_2: StructType<{}>;
46
+ /** Rational Quadratic */
47
+ rational_quadratic: StructType<{}>;
48
+ /** Dot Product (linear) */
49
+ dot_product: StructType<{}>;
50
+ }>>;
51
+ /** Noise level added to diagonal (default 1e-10) */
52
+ alpha: OptionType<FloatType>;
53
+ /** Number of restarts for optimizer (default 0) */
54
+ n_restarts_optimizer: OptionType<IntegerType>;
55
+ /** Whether to normalize target values (default false) */
56
+ normalize_y: OptionType<BooleanType>;
57
+ /** Random seed for reproducibility */
58
+ random_state: OptionType<IntegerType>;
59
+ }>;
60
+ /**
61
+ * Result type for GP prediction with uncertainty.
62
+ */
63
+ export declare const GPPredictResultType: StructType<{
64
+ /** Predicted mean values */
65
+ mean: import("@elaraai/east").ArrayType<FloatType>;
66
+ /** Predicted standard deviation (uncertainty) */
67
+ std: import("@elaraai/east").ArrayType<FloatType>;
68
+ }>;
69
+ /**
70
+ * Model blob type for serialized GP models.
71
+ */
72
+ export declare const GPModelBlobType: VariantType<{
73
+ /** Gaussian Process Regressor */
74
+ gp_regressor: StructType<{
75
+ /** Cloudpickle serialized model */
76
+ data: BlobType;
77
+ /** Number of input features */
78
+ n_features: IntegerType;
79
+ /** Kernel type name for reference */
80
+ kernel_type: StringType;
81
+ }>;
82
+ }>;
83
+ /**
84
+ * Train a Gaussian Process Regressor.
85
+ *
86
+ * @param X - Feature matrix
87
+ * @param y - Target vector
88
+ * @param config - GP configuration
89
+ * @returns Trained GP model blob
90
+ */
91
+ export declare const gp_train: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
92
+ /** Kernel type (default rbf) */
93
+ kernel: OptionType<VariantType<{
94
+ /** Radial Basis Function (squared exponential) */
95
+ rbf: StructType<{}>;
96
+ /** Matern with nu=1/2 (exponential) */
97
+ matern_1_2: StructType<{}>;
98
+ /** Matern with nu=3/2 */
99
+ matern_3_2: StructType<{}>;
100
+ /** Matern with nu=5/2 */
101
+ matern_5_2: StructType<{}>;
102
+ /** Rational Quadratic */
103
+ rational_quadratic: StructType<{}>;
104
+ /** Dot Product (linear) */
105
+ dot_product: StructType<{}>;
106
+ }>>;
107
+ /** Noise level added to diagonal (default 1e-10) */
108
+ alpha: OptionType<FloatType>;
109
+ /** Number of restarts for optimizer (default 0) */
110
+ n_restarts_optimizer: OptionType<IntegerType>;
111
+ /** Whether to normalize target values (default false) */
112
+ normalize_y: OptionType<BooleanType>;
113
+ /** Random seed for reproducibility */
114
+ random_state: OptionType<IntegerType>;
115
+ }>], VariantType<{
116
+ /** Gaussian Process Regressor */
117
+ gp_regressor: StructType<{
118
+ /** Cloudpickle serialized model */
119
+ data: BlobType;
120
+ /** Number of input features */
121
+ n_features: IntegerType;
122
+ /** Kernel type name for reference */
123
+ kernel_type: StringType;
124
+ }>;
125
+ }>>;
126
+ /**
127
+ * Make predictions with a trained Gaussian Process.
128
+ *
129
+ * Returns point predictions (mean only).
130
+ *
131
+ * @param model - Trained GP model blob
132
+ * @param X - Feature matrix
133
+ * @returns Predicted values
134
+ */
135
+ export declare const gp_predict: import("@elaraai/east").PlatformDefinition<[VariantType<{
136
+ /** Gaussian Process Regressor */
137
+ gp_regressor: StructType<{
138
+ /** Cloudpickle serialized model */
139
+ data: BlobType;
140
+ /** Number of input features */
141
+ n_features: IntegerType;
142
+ /** Kernel type name for reference */
143
+ kernel_type: StringType;
144
+ }>;
145
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<FloatType>>;
146
+ /**
147
+ * Make predictions with uncertainty estimates.
148
+ *
149
+ * Returns both mean and standard deviation.
150
+ *
151
+ * @param model - Trained GP model blob
152
+ * @param X - Feature matrix
153
+ * @returns Prediction result with mean and std
154
+ */
155
+ export declare const gp_predict_std: import("@elaraai/east").PlatformDefinition<[VariantType<{
156
+ /** Gaussian Process Regressor */
157
+ gp_regressor: StructType<{
158
+ /** Cloudpickle serialized model */
159
+ data: BlobType;
160
+ /** Number of input features */
161
+ n_features: IntegerType;
162
+ /** Kernel type name for reference */
163
+ kernel_type: StringType;
164
+ }>;
165
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], StructType<{
166
+ /** Predicted mean values */
167
+ mean: import("@elaraai/east").ArrayType<FloatType>;
168
+ /** Predicted standard deviation (uncertainty) */
169
+ std: import("@elaraai/east").ArrayType<FloatType>;
170
+ }>>;
171
+ /**
172
+ * Type definitions for GP functions.
173
+ */
174
+ export declare const GPTypes: {
175
+ /** Vector type (array of floats) */
176
+ readonly VectorType: import("@elaraai/east").ArrayType<FloatType>;
177
+ /** Matrix type (2D array of floats) */
178
+ readonly MatrixType: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
179
+ /** Kernel type */
180
+ readonly GPKernelType: VariantType<{
181
+ /** Radial Basis Function (squared exponential) */
182
+ rbf: StructType<{}>;
183
+ /** Matern with nu=1/2 (exponential) */
184
+ matern_1_2: StructType<{}>;
185
+ /** Matern with nu=3/2 */
186
+ matern_3_2: StructType<{}>;
187
+ /** Matern with nu=5/2 */
188
+ matern_5_2: StructType<{}>;
189
+ /** Rational Quadratic */
190
+ rational_quadratic: StructType<{}>;
191
+ /** Dot Product (linear) */
192
+ dot_product: StructType<{}>;
193
+ }>;
194
+ /** Configuration type */
195
+ readonly GPConfigType: StructType<{
196
+ /** Kernel type (default rbf) */
197
+ kernel: OptionType<VariantType<{
198
+ /** Radial Basis Function (squared exponential) */
199
+ rbf: StructType<{}>;
200
+ /** Matern with nu=1/2 (exponential) */
201
+ matern_1_2: StructType<{}>;
202
+ /** Matern with nu=3/2 */
203
+ matern_3_2: StructType<{}>;
204
+ /** Matern with nu=5/2 */
205
+ matern_5_2: StructType<{}>;
206
+ /** Rational Quadratic */
207
+ rational_quadratic: StructType<{}>;
208
+ /** Dot Product (linear) */
209
+ dot_product: StructType<{}>;
210
+ }>>;
211
+ /** Noise level added to diagonal (default 1e-10) */
212
+ alpha: OptionType<FloatType>;
213
+ /** Number of restarts for optimizer (default 0) */
214
+ n_restarts_optimizer: OptionType<IntegerType>;
215
+ /** Whether to normalize target values (default false) */
216
+ normalize_y: OptionType<BooleanType>;
217
+ /** Random seed for reproducibility */
218
+ random_state: OptionType<IntegerType>;
219
+ }>;
220
+ /** Prediction result type with uncertainty */
221
+ readonly GPPredictResultType: StructType<{
222
+ /** Predicted mean values */
223
+ mean: import("@elaraai/east").ArrayType<FloatType>;
224
+ /** Predicted standard deviation (uncertainty) */
225
+ std: import("@elaraai/east").ArrayType<FloatType>;
226
+ }>;
227
+ /** Model blob type for GP models */
228
+ readonly ModelBlobType: VariantType<{
229
+ /** Gaussian Process Regressor */
230
+ gp_regressor: StructType<{
231
+ /** Cloudpickle serialized model */
232
+ data: BlobType;
233
+ /** Number of input features */
234
+ n_features: IntegerType;
235
+ /** Kernel type name for reference */
236
+ kernel_type: StringType;
237
+ }>;
238
+ }>;
239
+ };
240
+ /**
241
+ * Gaussian Process regression.
242
+ *
243
+ * Provides probabilistic regression with uncertainty quantification.
244
+ *
245
+ * @example
246
+ * ```ts
247
+ * import { East, variant } from "@elaraai/east";
248
+ * import { GP } from "@elaraai/east-py-datascience";
249
+ *
250
+ * const train = East.function([], GP.Types.ModelBlobType, $ => {
251
+ * const X = $.let([[1.0], [2.0], [3.0], [4.0]]);
252
+ * const y = $.let([1.0, 4.0, 9.0, 16.0]);
253
+ * const config = $.let({
254
+ * kernel: variant('some', variant('rbf', {})),
255
+ * alpha: variant('some', 1e-10),
256
+ * n_restarts_optimizer: variant('some', 5n),
257
+ * normalize_y: variant('some', true),
258
+ * random_state: variant('some', 42n),
259
+ * });
260
+ * return $.return(GP.train(X, y, config));
261
+ * });
262
+ * ```
263
+ */
264
+ export declare const GP: {
265
+ /** Train GP regressor */
266
+ readonly train: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
267
+ /** Kernel type (default rbf) */
268
+ kernel: OptionType<VariantType<{
269
+ /** Radial Basis Function (squared exponential) */
270
+ rbf: StructType<{}>;
271
+ /** Matern with nu=1/2 (exponential) */
272
+ matern_1_2: StructType<{}>;
273
+ /** Matern with nu=3/2 */
274
+ matern_3_2: StructType<{}>;
275
+ /** Matern with nu=5/2 */
276
+ matern_5_2: StructType<{}>;
277
+ /** Rational Quadratic */
278
+ rational_quadratic: StructType<{}>;
279
+ /** Dot Product (linear) */
280
+ dot_product: StructType<{}>;
281
+ }>>;
282
+ /** Noise level added to diagonal (default 1e-10) */
283
+ alpha: OptionType<FloatType>;
284
+ /** Number of restarts for optimizer (default 0) */
285
+ n_restarts_optimizer: OptionType<IntegerType>;
286
+ /** Whether to normalize target values (default false) */
287
+ normalize_y: OptionType<BooleanType>;
288
+ /** Random seed for reproducibility */
289
+ random_state: OptionType<IntegerType>;
290
+ }>], VariantType<{
291
+ /** Gaussian Process Regressor */
292
+ gp_regressor: StructType<{
293
+ /** Cloudpickle serialized model */
294
+ data: BlobType;
295
+ /** Number of input features */
296
+ n_features: IntegerType;
297
+ /** Kernel type name for reference */
298
+ kernel_type: StringType;
299
+ }>;
300
+ }>>;
301
+ /** Make predictions (mean only) */
302
+ readonly predict: import("@elaraai/east").PlatformDefinition<[VariantType<{
303
+ /** Gaussian Process Regressor */
304
+ gp_regressor: StructType<{
305
+ /** Cloudpickle serialized model */
306
+ data: BlobType;
307
+ /** Number of input features */
308
+ n_features: IntegerType;
309
+ /** Kernel type name for reference */
310
+ kernel_type: StringType;
311
+ }>;
312
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<FloatType>>;
313
+ /** Make predictions with uncertainty */
314
+ readonly predictStd: import("@elaraai/east").PlatformDefinition<[VariantType<{
315
+ /** Gaussian Process Regressor */
316
+ gp_regressor: StructType<{
317
+ /** Cloudpickle serialized model */
318
+ data: BlobType;
319
+ /** Number of input features */
320
+ n_features: IntegerType;
321
+ /** Kernel type name for reference */
322
+ kernel_type: StringType;
323
+ }>;
324
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], StructType<{
325
+ /** Predicted mean values */
326
+ mean: import("@elaraai/east").ArrayType<FloatType>;
327
+ /** Predicted standard deviation (uncertainty) */
328
+ std: import("@elaraai/east").ArrayType<FloatType>;
329
+ }>>;
330
+ /** Type definitions */
331
+ readonly Types: {
332
+ /** Vector type (array of floats) */
333
+ readonly VectorType: import("@elaraai/east").ArrayType<FloatType>;
334
+ /** Matrix type (2D array of floats) */
335
+ readonly MatrixType: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
336
+ /** Kernel type */
337
+ readonly GPKernelType: VariantType<{
338
+ /** Radial Basis Function (squared exponential) */
339
+ rbf: StructType<{}>;
340
+ /** Matern with nu=1/2 (exponential) */
341
+ matern_1_2: StructType<{}>;
342
+ /** Matern with nu=3/2 */
343
+ matern_3_2: StructType<{}>;
344
+ /** Matern with nu=5/2 */
345
+ matern_5_2: StructType<{}>;
346
+ /** Rational Quadratic */
347
+ rational_quadratic: StructType<{}>;
348
+ /** Dot Product (linear) */
349
+ dot_product: StructType<{}>;
350
+ }>;
351
+ /** Configuration type */
352
+ readonly GPConfigType: StructType<{
353
+ /** Kernel type (default rbf) */
354
+ kernel: OptionType<VariantType<{
355
+ /** Radial Basis Function (squared exponential) */
356
+ rbf: StructType<{}>;
357
+ /** Matern with nu=1/2 (exponential) */
358
+ matern_1_2: StructType<{}>;
359
+ /** Matern with nu=3/2 */
360
+ matern_3_2: StructType<{}>;
361
+ /** Matern with nu=5/2 */
362
+ matern_5_2: StructType<{}>;
363
+ /** Rational Quadratic */
364
+ rational_quadratic: StructType<{}>;
365
+ /** Dot Product (linear) */
366
+ dot_product: StructType<{}>;
367
+ }>>;
368
+ /** Noise level added to diagonal (default 1e-10) */
369
+ alpha: OptionType<FloatType>;
370
+ /** Number of restarts for optimizer (default 0) */
371
+ n_restarts_optimizer: OptionType<IntegerType>;
372
+ /** Whether to normalize target values (default false) */
373
+ normalize_y: OptionType<BooleanType>;
374
+ /** Random seed for reproducibility */
375
+ random_state: OptionType<IntegerType>;
376
+ }>;
377
+ /** Prediction result type with uncertainty */
378
+ readonly GPPredictResultType: StructType<{
379
+ /** Predicted mean values */
380
+ mean: import("@elaraai/east").ArrayType<FloatType>;
381
+ /** Predicted standard deviation (uncertainty) */
382
+ std: import("@elaraai/east").ArrayType<FloatType>;
383
+ }>;
384
+ /** Model blob type for GP models */
385
+ readonly ModelBlobType: VariantType<{
386
+ /** Gaussian Process Regressor */
387
+ gp_regressor: StructType<{
388
+ /** Cloudpickle serialized model */
389
+ data: BlobType;
390
+ /** Number of input features */
391
+ n_features: IntegerType;
392
+ /** Kernel type name for reference */
393
+ kernel_type: StringType;
394
+ }>;
395
+ }>;
396
+ };
397
+ };
398
+ //# sourceMappingURL=gp.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"gp.d.ts","sourceRoot":"","sources":["../../src/gp/gp.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH;;;;;;;GAOG;AAEH,OAAO,EAEH,UAAU,EACV,WAAW,EACX,UAAU,EACV,WAAW,EACX,SAAS,EACT,WAAW,EACX,QAAQ,EACR,UAAU,EACb,MAAM,eAAe,CAAC;AAIvB,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,MAAM,aAAa,CAAC;AAMrD;;GAEG;AACH,eAAO,MAAM,YAAY;IACrB,kDAAkD;;IAElD,uCAAuC;;IAEvC,yBAAyB;;IAEzB,yBAAyB;;IAEzB,yBAAyB;;IAEzB,2BAA2B;;EAE7B,CAAC;AAMH;;GAEG;AACH,eAAO,MAAM,YAAY;IACrB,gCAAgC;;QAtBhC,kDAAkD;;QAElD,uCAAuC;;QAEvC,yBAAyB;;QAEzB,yBAAyB;;QAEzB,yBAAyB;;QAEzB,2BAA2B;;;IAc3B,oDAAoD;;IAEpD,mDAAmD;;IAEnD,yDAAyD;;IAEzD,sCAAsC;;EAExC,CAAC;AAMH;;GAEG;AACH,eAAO,MAAM,mBAAmB;IAC5B,4BAA4B;;IAE5B,iDAAiD;;EAEnD,CAAC;AAMH;;GAEG;AACH,eAAO,MAAM,eAAe;IACxB,iCAAiC;;QAE7B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,qCAAqC;;;EAG3C,CAAC;AAMH;;;;;;;GAOG;AACH,eAAO,MAAM,QAAQ;IAzDjB,gCAAgC;;QAtBhC,kDAAkD;;QAElD,uCAAuC;;QAEvC,yBAAyB;;QAEzB,yBAAyB;;QAEzB,yBAAyB;;QAEzB,2BAA2B;;;IAc3B,oDAAoD;;IAEpD,mDAAmD;;IAEnD,yDAAyD;;IAEzD,sCAAsC;;;IA0BtC,iCAAiC;;QAE7B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,qCAAqC;;;GAqB5C,CAAC;AAEF;;;;;;;;GAQG;AACH,eAAO,MAAM,UAAU;IAtCnB,iCAAiC;;QAE7B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,qCAAqC;;;mIAoC5C,CAAC;AAEF;;;;;;;;GAQG;AACH,eAAO,MAAM,cAAc;IArDvB,iCAAiC;;QAE7B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,qCAAqC;;;;IApBzC,4BAA4B;;IAE5B,iDAAiD;;GAqEpD,CAAC;AAMF;;GAEG;AACH,eAAO,MAAM,OAAO;IAChB,oCAAoC;;IAEpC,uCAAuC;;IAEvC,kBAAkB;;QA/HlB,kDAAkD;;QAElD,uCAAuC;;QAEvC,yBAAyB;;QAEzB,yBAAyB;;QAEzB,yBAAyB;;QAEzB,2BAA2B;;;IAuH3B,yBAAyB;;QA3GzB,gCAAgC;;YAtBhC,kDAAkD;;YAElD,uCAAuC;;YAEvC,yBAAyB;;YAEzB,yBAAyB;;YAEzB,yBAAyB;;YAEzB,2BAA2B;;;QAc3B,oDAAoD;;QAEpD,mDAAmD;;QAEnD,yDAAyD;;QAEzD,sCAAsC;;;IAqGtC,8CAA8C;;QAzF9C,4BAA4B;;QAE5B,iDAAiD;;;IAyFjD,oCAAoC;;QA7EpC,iCAAiC;;YAE7B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,qCAAqC;;;;CAyEnC,CAAC;AAEX;;;;;;;;;;;;;;;;;;;;;;;GAuBG;AACH,eAAO,MAAM,EAAE;IACX,yBAAyB;;QA5IzB,gCAAgC;;YAtBhC,kDAAkD;;YAElD,uCAAuC;;YAEvC,yBAAyB;;YAEzB,yBAAyB;;YAEzB,yBAAyB;;YAEzB,2BAA2B;;;QAc3B,oDAAoD;;QAEpD,mDAAmD;;QAEnD,yDAAyD;;QAEzD,sCAAsC;;;QA0BtC,iCAAiC;;YAE7B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,qCAAqC;;;;IAsGzC,mCAAmC;;QA5GnC,iCAAiC;;YAE7B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,qCAAqC;;;;IAwGzC,wCAAwC;;QA9GxC,iCAAiC;;YAE7B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,qCAAqC;;;;QApBzC,4BAA4B;;QAE5B,iDAAiD;;;IA4HjD,uBAAuB;;QA7CvB,oCAAoC;;QAEpC,uCAAuC;;QAEvC,kBAAkB;;YA/HlB,kDAAkD;;YAElD,uCAAuC;;YAEvC,yBAAyB;;YAEzB,yBAAyB;;YAEzB,yBAAyB;;YAEzB,2BAA2B;;;QAuH3B,yBAAyB;;YA3GzB,gCAAgC;;gBAtBhC,kDAAkD;;gBAElD,uCAAuC;;gBAEvC,yBAAyB;;gBAEzB,yBAAyB;;gBAEzB,yBAAyB;;gBAEzB,2BAA2B;;;YAc3B,oDAAoD;;YAEpD,mDAAmD;;YAEnD,yDAAyD;;YAEzD,sCAAsC;;;QAqGtC,8CAA8C;;YAzF9C,4BAA4B;;YAE5B,iDAAiD;;;QAyFjD,oCAAoC;;YA7EpC,iCAAiC;;gBAE7B,mCAAmC;;gBAEnC,+BAA+B;;gBAE/B,qCAAqC;;;;;CA4GnC,CAAC"}