@elaraai/east-py-datascience 0.0.2-beta.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. package/LICENSE.md +18 -0
  2. package/README.md +104 -0
  3. package/dist/gp/gp.d.ts +398 -0
  4. package/dist/gp/gp.d.ts.map +1 -0
  5. package/dist/gp/gp.js +170 -0
  6. package/dist/gp/gp.js.map +1 -0
  7. package/dist/index.d.ts +27 -0
  8. package/dist/index.d.ts.map +1 -0
  9. package/dist/index.js +39 -0
  10. package/dist/index.js.map +1 -0
  11. package/dist/lightgbm/lightgbm.d.ts +494 -0
  12. package/dist/lightgbm/lightgbm.d.ts.map +1 -0
  13. package/dist/lightgbm/lightgbm.js +155 -0
  14. package/dist/lightgbm/lightgbm.js.map +1 -0
  15. package/dist/mads/mads.d.ts +413 -0
  16. package/dist/mads/mads.d.ts.map +1 -0
  17. package/dist/mads/mads.js +221 -0
  18. package/dist/mads/mads.js.map +1 -0
  19. package/dist/ngboost/ngboost.d.ts +433 -0
  20. package/dist/ngboost/ngboost.d.ts.map +1 -0
  21. package/dist/ngboost/ngboost.js +178 -0
  22. package/dist/ngboost/ngboost.js.map +1 -0
  23. package/dist/optuna/optuna.d.ts +797 -0
  24. package/dist/optuna/optuna.d.ts.map +1 -0
  25. package/dist/optuna/optuna.js +268 -0
  26. package/dist/optuna/optuna.js.map +1 -0
  27. package/dist/scipy/scipy.d.ts +954 -0
  28. package/dist/scipy/scipy.d.ts.map +1 -0
  29. package/dist/scipy/scipy.js +287 -0
  30. package/dist/scipy/scipy.js.map +1 -0
  31. package/dist/shap/shap.d.ts +657 -0
  32. package/dist/shap/shap.d.ts.map +1 -0
  33. package/dist/shap/shap.js +241 -0
  34. package/dist/shap/shap.js.map +1 -0
  35. package/dist/simanneal/simanneal.d.ts +531 -0
  36. package/dist/simanneal/simanneal.d.ts.map +1 -0
  37. package/dist/simanneal/simanneal.js +231 -0
  38. package/dist/simanneal/simanneal.js.map +1 -0
  39. package/dist/sklearn/sklearn.d.ts +1272 -0
  40. package/dist/sklearn/sklearn.d.ts.map +1 -0
  41. package/dist/sklearn/sklearn.js +307 -0
  42. package/dist/sklearn/sklearn.js.map +1 -0
  43. package/dist/torch/torch.d.ts +658 -0
  44. package/dist/torch/torch.d.ts.map +1 -0
  45. package/dist/torch/torch.js +233 -0
  46. package/dist/torch/torch.js.map +1 -0
  47. package/dist/tsconfig.tsbuildinfo +1 -0
  48. package/dist/types.d.ts +80 -0
  49. package/dist/types.d.ts.map +1 -0
  50. package/dist/types.js +81 -0
  51. package/dist/types.js.map +1 -0
  52. package/dist/xgboost/xgboost.d.ts +504 -0
  53. package/dist/xgboost/xgboost.d.ts.map +1 -0
  54. package/dist/xgboost/xgboost.js +177 -0
  55. package/dist/xgboost/xgboost.js.map +1 -0
  56. package/package.json +82 -0
@@ -0,0 +1,504 @@
1
+ /**
2
+ * Copyright (c) 2025 Elara AI Pty Ltd
3
+ * Dual-licensed under AGPL-3.0 and commercial license. See LICENSE for details.
4
+ */
5
+ /**
6
+ * XGBoost platform functions for East.
7
+ *
8
+ * Provides gradient boosting for regression and classification.
9
+ * Uses ONNX for model serialization to enable portable inference.
10
+ *
11
+ * @packageDocumentation
12
+ */
13
+ import { StructType, VariantType, OptionType, IntegerType, FloatType, BlobType } from "@elaraai/east";
14
+ export { VectorType, MatrixType, LabelVectorType } from "../types.js";
15
+ /**
16
+ * Configuration for XGBoost models.
17
+ */
18
+ export declare const XGBoostConfigType: StructType<{
19
+ /** Number of boosting rounds (default 100) */
20
+ n_estimators: OptionType<IntegerType>;
21
+ /** Maximum tree depth (default 6) */
22
+ max_depth: OptionType<IntegerType>;
23
+ /** Learning rate / step size shrinkage (default 0.3) */
24
+ learning_rate: OptionType<FloatType>;
25
+ /** Minimum sum of instance weight needed in a child (default 1) */
26
+ min_child_weight: OptionType<IntegerType>;
27
+ /** Subsample ratio of training instances (default 1.0) */
28
+ subsample: OptionType<FloatType>;
29
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
30
+ colsample_bytree: OptionType<FloatType>;
31
+ /** L1 regularization term (default 0) */
32
+ reg_alpha: OptionType<FloatType>;
33
+ /** L2 regularization term (default 1) */
34
+ reg_lambda: OptionType<FloatType>;
35
+ /** Random seed for reproducibility */
36
+ random_state: OptionType<IntegerType>;
37
+ /** Number of parallel threads (default -1 for all cores) */
38
+ n_jobs: OptionType<IntegerType>;
39
+ }>;
40
+ /**
41
+ * Model blob type for serialized XGBoost models.
42
+ *
43
+ * Each model type has its own variant case containing cloudpickle bytes and metadata.
44
+ */
45
+ export declare const XGBoostModelBlobType: VariantType<{
46
+ /** XGBoost regressor model */
47
+ xgboost_regressor: StructType<{
48
+ /** Cloudpickle serialized model */
49
+ data: BlobType;
50
+ /** Number of input features */
51
+ n_features: IntegerType;
52
+ }>;
53
+ /** XGBoost classifier model */
54
+ xgboost_classifier: StructType<{
55
+ /** Cloudpickle serialized model */
56
+ data: BlobType;
57
+ /** Number of input features */
58
+ n_features: IntegerType;
59
+ /** Number of classes */
60
+ n_classes: IntegerType;
61
+ }>;
62
+ }>;
63
+ /**
64
+ * Train an XGBoost regression model.
65
+ *
66
+ * @param X - Feature matrix
67
+ * @param y - Target vector
68
+ * @param config - XGBoost configuration
69
+ * @returns Model blob containing trained regressor
70
+ */
71
+ export declare const xgboost_train_regressor: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
72
+ /** Number of boosting rounds (default 100) */
73
+ n_estimators: OptionType<IntegerType>;
74
+ /** Maximum tree depth (default 6) */
75
+ max_depth: OptionType<IntegerType>;
76
+ /** Learning rate / step size shrinkage (default 0.3) */
77
+ learning_rate: OptionType<FloatType>;
78
+ /** Minimum sum of instance weight needed in a child (default 1) */
79
+ min_child_weight: OptionType<IntegerType>;
80
+ /** Subsample ratio of training instances (default 1.0) */
81
+ subsample: OptionType<FloatType>;
82
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
83
+ colsample_bytree: OptionType<FloatType>;
84
+ /** L1 regularization term (default 0) */
85
+ reg_alpha: OptionType<FloatType>;
86
+ /** L2 regularization term (default 1) */
87
+ reg_lambda: OptionType<FloatType>;
88
+ /** Random seed for reproducibility */
89
+ random_state: OptionType<IntegerType>;
90
+ /** Number of parallel threads (default -1 for all cores) */
91
+ n_jobs: OptionType<IntegerType>;
92
+ }>], VariantType<{
93
+ /** XGBoost regressor model */
94
+ xgboost_regressor: StructType<{
95
+ /** Cloudpickle serialized model */
96
+ data: BlobType;
97
+ /** Number of input features */
98
+ n_features: IntegerType;
99
+ }>;
100
+ /** XGBoost classifier model */
101
+ xgboost_classifier: StructType<{
102
+ /** Cloudpickle serialized model */
103
+ data: BlobType;
104
+ /** Number of input features */
105
+ n_features: IntegerType;
106
+ /** Number of classes */
107
+ n_classes: IntegerType;
108
+ }>;
109
+ }>>;
110
+ /**
111
+ * Train an XGBoost classification model.
112
+ *
113
+ * @param X - Feature matrix
114
+ * @param y - Label vector (integer class labels)
115
+ * @param config - XGBoost configuration
116
+ * @returns Model blob containing trained classifier
117
+ */
118
+ export declare const xgboost_train_classifier: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<IntegerType>, StructType<{
119
+ /** Number of boosting rounds (default 100) */
120
+ n_estimators: OptionType<IntegerType>;
121
+ /** Maximum tree depth (default 6) */
122
+ max_depth: OptionType<IntegerType>;
123
+ /** Learning rate / step size shrinkage (default 0.3) */
124
+ learning_rate: OptionType<FloatType>;
125
+ /** Minimum sum of instance weight needed in a child (default 1) */
126
+ min_child_weight: OptionType<IntegerType>;
127
+ /** Subsample ratio of training instances (default 1.0) */
128
+ subsample: OptionType<FloatType>;
129
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
130
+ colsample_bytree: OptionType<FloatType>;
131
+ /** L1 regularization term (default 0) */
132
+ reg_alpha: OptionType<FloatType>;
133
+ /** L2 regularization term (default 1) */
134
+ reg_lambda: OptionType<FloatType>;
135
+ /** Random seed for reproducibility */
136
+ random_state: OptionType<IntegerType>;
137
+ /** Number of parallel threads (default -1 for all cores) */
138
+ n_jobs: OptionType<IntegerType>;
139
+ }>], VariantType<{
140
+ /** XGBoost regressor model */
141
+ xgboost_regressor: StructType<{
142
+ /** Cloudpickle serialized model */
143
+ data: BlobType;
144
+ /** Number of input features */
145
+ n_features: IntegerType;
146
+ }>;
147
+ /** XGBoost classifier model */
148
+ xgboost_classifier: StructType<{
149
+ /** Cloudpickle serialized model */
150
+ data: BlobType;
151
+ /** Number of input features */
152
+ n_features: IntegerType;
153
+ /** Number of classes */
154
+ n_classes: IntegerType;
155
+ }>;
156
+ }>>;
157
+ /**
158
+ * Make predictions with a trained XGBoost regressor.
159
+ *
160
+ * @param model - Trained regressor model blob
161
+ * @param X - Feature matrix
162
+ * @returns Predicted values
163
+ */
164
+ export declare const xgboost_predict: import("@elaraai/east").PlatformDefinition<[VariantType<{
165
+ /** XGBoost regressor model */
166
+ xgboost_regressor: StructType<{
167
+ /** Cloudpickle serialized model */
168
+ data: BlobType;
169
+ /** Number of input features */
170
+ n_features: IntegerType;
171
+ }>;
172
+ /** XGBoost classifier model */
173
+ xgboost_classifier: StructType<{
174
+ /** Cloudpickle serialized model */
175
+ data: BlobType;
176
+ /** Number of input features */
177
+ n_features: IntegerType;
178
+ /** Number of classes */
179
+ n_classes: IntegerType;
180
+ }>;
181
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<FloatType>>;
182
+ /**
183
+ * Predict class labels with a trained XGBoost classifier.
184
+ *
185
+ * @param model - Trained classifier model blob
186
+ * @param X - Feature matrix
187
+ * @returns Predicted class labels
188
+ */
189
+ export declare const xgboost_predict_class: import("@elaraai/east").PlatformDefinition<[VariantType<{
190
+ /** XGBoost regressor model */
191
+ xgboost_regressor: StructType<{
192
+ /** Cloudpickle serialized model */
193
+ data: BlobType;
194
+ /** Number of input features */
195
+ n_features: IntegerType;
196
+ }>;
197
+ /** XGBoost classifier model */
198
+ xgboost_classifier: StructType<{
199
+ /** Cloudpickle serialized model */
200
+ data: BlobType;
201
+ /** Number of input features */
202
+ n_features: IntegerType;
203
+ /** Number of classes */
204
+ n_classes: IntegerType;
205
+ }>;
206
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<IntegerType>>;
207
+ /**
208
+ * Get class probabilities from a trained XGBoost classifier.
209
+ *
210
+ * @param model - Trained classifier model blob
211
+ * @param X - Feature matrix
212
+ * @returns Probability matrix (n_samples x n_classes)
213
+ */
214
+ export declare const xgboost_predict_proba: import("@elaraai/east").PlatformDefinition<[VariantType<{
215
+ /** XGBoost regressor model */
216
+ xgboost_regressor: StructType<{
217
+ /** Cloudpickle serialized model */
218
+ data: BlobType;
219
+ /** Number of input features */
220
+ n_features: IntegerType;
221
+ }>;
222
+ /** XGBoost classifier model */
223
+ xgboost_classifier: StructType<{
224
+ /** Cloudpickle serialized model */
225
+ data: BlobType;
226
+ /** Number of input features */
227
+ n_features: IntegerType;
228
+ /** Number of classes */
229
+ n_classes: IntegerType;
230
+ }>;
231
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>>;
232
+ /**
233
+ * Type definitions for XGBoost functions.
234
+ */
235
+ export declare const XGBoostTypes: {
236
+ /** Vector type (array of floats) */
237
+ readonly VectorType: import("@elaraai/east").ArrayType<FloatType>;
238
+ /** Matrix type (2D array of floats) */
239
+ readonly MatrixType: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
240
+ /** Label vector type (array of integers) */
241
+ readonly LabelVectorType: import("@elaraai/east").ArrayType<IntegerType>;
242
+ /** XGBoost configuration type */
243
+ readonly XGBoostConfigType: StructType<{
244
+ /** Number of boosting rounds (default 100) */
245
+ n_estimators: OptionType<IntegerType>;
246
+ /** Maximum tree depth (default 6) */
247
+ max_depth: OptionType<IntegerType>;
248
+ /** Learning rate / step size shrinkage (default 0.3) */
249
+ learning_rate: OptionType<FloatType>;
250
+ /** Minimum sum of instance weight needed in a child (default 1) */
251
+ min_child_weight: OptionType<IntegerType>;
252
+ /** Subsample ratio of training instances (default 1.0) */
253
+ subsample: OptionType<FloatType>;
254
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
255
+ colsample_bytree: OptionType<FloatType>;
256
+ /** L1 regularization term (default 0) */
257
+ reg_alpha: OptionType<FloatType>;
258
+ /** L2 regularization term (default 1) */
259
+ reg_lambda: OptionType<FloatType>;
260
+ /** Random seed for reproducibility */
261
+ random_state: OptionType<IntegerType>;
262
+ /** Number of parallel threads (default -1 for all cores) */
263
+ n_jobs: OptionType<IntegerType>;
264
+ }>;
265
+ /** Model blob type for XGBoost models */
266
+ readonly ModelBlobType: VariantType<{
267
+ /** XGBoost regressor model */
268
+ xgboost_regressor: StructType<{
269
+ /** Cloudpickle serialized model */
270
+ data: BlobType;
271
+ /** Number of input features */
272
+ n_features: IntegerType;
273
+ }>;
274
+ /** XGBoost classifier model */
275
+ xgboost_classifier: StructType<{
276
+ /** Cloudpickle serialized model */
277
+ data: BlobType;
278
+ /** Number of input features */
279
+ n_features: IntegerType;
280
+ /** Number of classes */
281
+ n_classes: IntegerType;
282
+ }>;
283
+ }>;
284
+ };
285
+ /**
286
+ * XGBoost gradient boosting.
287
+ *
288
+ * Provides regression and classification with gradient boosted decision trees.
289
+ *
290
+ * @example
291
+ * ```ts
292
+ * import { East, variant } from "@elaraai/east";
293
+ * import { XGBoost } from "@elaraai/east-py-datascience";
294
+ *
295
+ * const train = East.function([], XGBoost.Types.ModelBlobType, $ => {
296
+ * const X = $.let([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]]);
297
+ * const y = $.let([1.0, 2.0, 3.0, 4.0]);
298
+ * const config = $.let({
299
+ * n_estimators: variant('some', 100n),
300
+ * max_depth: variant('some', 3n),
301
+ * learning_rate: variant('some', 0.1),
302
+ * min_child_weight: variant('none', null),
303
+ * subsample: variant('none', null),
304
+ * colsample_bytree: variant('none', null),
305
+ * reg_alpha: variant('none', null),
306
+ * reg_lambda: variant('none', null),
307
+ * random_state: variant('some', 42n),
308
+ * n_jobs: variant('none', null),
309
+ * });
310
+ * return $.return(XGBoost.trainRegressor(X, y, config));
311
+ * });
312
+ * ```
313
+ */
314
+ export declare const XGBoost: {
315
+ /** Train XGBoost regressor */
316
+ readonly trainRegressor: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
317
+ /** Number of boosting rounds (default 100) */
318
+ n_estimators: OptionType<IntegerType>;
319
+ /** Maximum tree depth (default 6) */
320
+ max_depth: OptionType<IntegerType>;
321
+ /** Learning rate / step size shrinkage (default 0.3) */
322
+ learning_rate: OptionType<FloatType>;
323
+ /** Minimum sum of instance weight needed in a child (default 1) */
324
+ min_child_weight: OptionType<IntegerType>;
325
+ /** Subsample ratio of training instances (default 1.0) */
326
+ subsample: OptionType<FloatType>;
327
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
328
+ colsample_bytree: OptionType<FloatType>;
329
+ /** L1 regularization term (default 0) */
330
+ reg_alpha: OptionType<FloatType>;
331
+ /** L2 regularization term (default 1) */
332
+ reg_lambda: OptionType<FloatType>;
333
+ /** Random seed for reproducibility */
334
+ random_state: OptionType<IntegerType>;
335
+ /** Number of parallel threads (default -1 for all cores) */
336
+ n_jobs: OptionType<IntegerType>;
337
+ }>], VariantType<{
338
+ /** XGBoost regressor model */
339
+ xgboost_regressor: StructType<{
340
+ /** Cloudpickle serialized model */
341
+ data: BlobType;
342
+ /** Number of input features */
343
+ n_features: IntegerType;
344
+ }>;
345
+ /** XGBoost classifier model */
346
+ xgboost_classifier: StructType<{
347
+ /** Cloudpickle serialized model */
348
+ data: BlobType;
349
+ /** Number of input features */
350
+ n_features: IntegerType;
351
+ /** Number of classes */
352
+ n_classes: IntegerType;
353
+ }>;
354
+ }>>;
355
+ /** Train XGBoost classifier */
356
+ readonly trainClassifier: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<IntegerType>, StructType<{
357
+ /** Number of boosting rounds (default 100) */
358
+ n_estimators: OptionType<IntegerType>;
359
+ /** Maximum tree depth (default 6) */
360
+ max_depth: OptionType<IntegerType>;
361
+ /** Learning rate / step size shrinkage (default 0.3) */
362
+ learning_rate: OptionType<FloatType>;
363
+ /** Minimum sum of instance weight needed in a child (default 1) */
364
+ min_child_weight: OptionType<IntegerType>;
365
+ /** Subsample ratio of training instances (default 1.0) */
366
+ subsample: OptionType<FloatType>;
367
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
368
+ colsample_bytree: OptionType<FloatType>;
369
+ /** L1 regularization term (default 0) */
370
+ reg_alpha: OptionType<FloatType>;
371
+ /** L2 regularization term (default 1) */
372
+ reg_lambda: OptionType<FloatType>;
373
+ /** Random seed for reproducibility */
374
+ random_state: OptionType<IntegerType>;
375
+ /** Number of parallel threads (default -1 for all cores) */
376
+ n_jobs: OptionType<IntegerType>;
377
+ }>], VariantType<{
378
+ /** XGBoost regressor model */
379
+ xgboost_regressor: StructType<{
380
+ /** Cloudpickle serialized model */
381
+ data: BlobType;
382
+ /** Number of input features */
383
+ n_features: IntegerType;
384
+ }>;
385
+ /** XGBoost classifier model */
386
+ xgboost_classifier: StructType<{
387
+ /** Cloudpickle serialized model */
388
+ data: BlobType;
389
+ /** Number of input features */
390
+ n_features: IntegerType;
391
+ /** Number of classes */
392
+ n_classes: IntegerType;
393
+ }>;
394
+ }>>;
395
+ /** Make predictions with regressor */
396
+ readonly predict: import("@elaraai/east").PlatformDefinition<[VariantType<{
397
+ /** XGBoost regressor model */
398
+ xgboost_regressor: StructType<{
399
+ /** Cloudpickle serialized model */
400
+ data: BlobType;
401
+ /** Number of input features */
402
+ n_features: IntegerType;
403
+ }>;
404
+ /** XGBoost classifier model */
405
+ xgboost_classifier: StructType<{
406
+ /** Cloudpickle serialized model */
407
+ data: BlobType;
408
+ /** Number of input features */
409
+ n_features: IntegerType;
410
+ /** Number of classes */
411
+ n_classes: IntegerType;
412
+ }>;
413
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<FloatType>>;
414
+ /** Predict class labels with classifier */
415
+ readonly predictClass: import("@elaraai/east").PlatformDefinition<[VariantType<{
416
+ /** XGBoost regressor model */
417
+ xgboost_regressor: StructType<{
418
+ /** Cloudpickle serialized model */
419
+ data: BlobType;
420
+ /** Number of input features */
421
+ n_features: IntegerType;
422
+ }>;
423
+ /** XGBoost classifier model */
424
+ xgboost_classifier: StructType<{
425
+ /** Cloudpickle serialized model */
426
+ data: BlobType;
427
+ /** Number of input features */
428
+ n_features: IntegerType;
429
+ /** Number of classes */
430
+ n_classes: IntegerType;
431
+ }>;
432
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<IntegerType>>;
433
+ /** Get class probabilities from classifier */
434
+ readonly predictProba: import("@elaraai/east").PlatformDefinition<[VariantType<{
435
+ /** XGBoost regressor model */
436
+ xgboost_regressor: StructType<{
437
+ /** Cloudpickle serialized model */
438
+ data: BlobType;
439
+ /** Number of input features */
440
+ n_features: IntegerType;
441
+ }>;
442
+ /** XGBoost classifier model */
443
+ xgboost_classifier: StructType<{
444
+ /** Cloudpickle serialized model */
445
+ data: BlobType;
446
+ /** Number of input features */
447
+ n_features: IntegerType;
448
+ /** Number of classes */
449
+ n_classes: IntegerType;
450
+ }>;
451
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>>;
452
+ /** Type definitions */
453
+ readonly Types: {
454
+ /** Vector type (array of floats) */
455
+ readonly VectorType: import("@elaraai/east").ArrayType<FloatType>;
456
+ /** Matrix type (2D array of floats) */
457
+ readonly MatrixType: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
458
+ /** Label vector type (array of integers) */
459
+ readonly LabelVectorType: import("@elaraai/east").ArrayType<IntegerType>;
460
+ /** XGBoost configuration type */
461
+ readonly XGBoostConfigType: StructType<{
462
+ /** Number of boosting rounds (default 100) */
463
+ n_estimators: OptionType<IntegerType>;
464
+ /** Maximum tree depth (default 6) */
465
+ max_depth: OptionType<IntegerType>;
466
+ /** Learning rate / step size shrinkage (default 0.3) */
467
+ learning_rate: OptionType<FloatType>;
468
+ /** Minimum sum of instance weight needed in a child (default 1) */
469
+ min_child_weight: OptionType<IntegerType>;
470
+ /** Subsample ratio of training instances (default 1.0) */
471
+ subsample: OptionType<FloatType>;
472
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
473
+ colsample_bytree: OptionType<FloatType>;
474
+ /** L1 regularization term (default 0) */
475
+ reg_alpha: OptionType<FloatType>;
476
+ /** L2 regularization term (default 1) */
477
+ reg_lambda: OptionType<FloatType>;
478
+ /** Random seed for reproducibility */
479
+ random_state: OptionType<IntegerType>;
480
+ /** Number of parallel threads (default -1 for all cores) */
481
+ n_jobs: OptionType<IntegerType>;
482
+ }>;
483
+ /** Model blob type for XGBoost models */
484
+ readonly ModelBlobType: VariantType<{
485
+ /** XGBoost regressor model */
486
+ xgboost_regressor: StructType<{
487
+ /** Cloudpickle serialized model */
488
+ data: BlobType;
489
+ /** Number of input features */
490
+ n_features: IntegerType;
491
+ }>;
492
+ /** XGBoost classifier model */
493
+ xgboost_classifier: StructType<{
494
+ /** Cloudpickle serialized model */
495
+ data: BlobType;
496
+ /** Number of input features */
497
+ n_features: IntegerType;
498
+ /** Number of classes */
499
+ n_classes: IntegerType;
500
+ }>;
501
+ }>;
502
+ };
503
+ };
504
+ //# sourceMappingURL=xgboost.d.ts.map
@@ -0,0 +1 @@
1
+ {"version":3,"file":"xgboost.d.ts","sourceRoot":"","sources":["../../src/xgboost/xgboost.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH;;;;;;;GAOG;AAEH,OAAO,EAEH,UAAU,EACV,WAAW,EACX,UAAU,EACV,WAAW,EACX,SAAS,EACT,QAAQ,EACX,MAAM,eAAe,CAAC;AAIvB,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAMtE;;GAEG;AACH,eAAO,MAAM,iBAAiB;IAC1B,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;EAE9D,CAAC;AAMH;;;;GAIG;AACH,eAAO,MAAM,oBAAoB;IAC7B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;EAG9B,CAAC;AAMH;;;;;;;GAOG;AACH,eAAO,MAAM,uBAAuB;IA9DhC,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;;IAc5D,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;GAqB/B,CAAC;AAEF;;;;;;;GAOG;AACH,eAAO,MAAM,wBAAwB;IA5EjC,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;;IAc5D,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;GAmC/B,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,eAAe;IAzDxB,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;mIAgD/B,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,qBAAqB;IAtE9B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;qIA6D/B,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,qBAAqB;IAnF9B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;sKA0E/B,CAAC;AAMF;;GAEG;AACH,eAAO,MAAM,YAAY;IACrB,oCAAoC;;IAEpC,uCAAuC;;IAEvC,4CAA4C;;IAE5C,iCAAiC;;QAvIjC,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;;IAuH5D,yCAAyC;;QAzGzC,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;CA8FtB,CAAC;AAEX;;;;;;;;;;;;;;;;;;;;;;;;;;;;GA4BG;AACH,eAAO,MAAM,OAAO;IAChB,8BAA8B;;QA3K9B,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;;QAc5D,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAgI5B,+BAA+B;;QA7K/B,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;;QAc5D,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAkI5B,sCAAsC;;QA/ItC,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAoI5B,2CAA2C;;QAjJ3C,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAsI5B,8CAA8C;;QAnJ9C,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAwI5B,uBAAuB;;QApDvB,oCAAoC;;QAEpC,uCAAuC;;QAEvC,4CAA4C;;QAE5C,iCAAiC;;YAvIjC,8CAA8C;;YAE9C,qCAAqC;;YAErC,wDAAwD;;YAExD,mEAAmE;;YAEnE,0DAA0D;;YAE1D,uEAAuE;;YAEvE,yCAAyC;;YAEzC,yCAAyC;;YAEzC,sCAAsC;;YAEtC,4DAA4D;;;QAuH5D,yCAAyC;;YAzGzC,8BAA8B;;gBAE1B,mCAAmC;;gBAEnC,+BAA+B;;;YAGnC,+BAA+B;;gBAE3B,mCAAmC;;gBAEnC,+BAA+B;;gBAE/B,wBAAwB;;;;;CA0ItB,CAAC"}