@elaraai/east-py-datascience 0.0.2-beta.1 → 0.0.2-beta.11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -36,6 +36,38 @@ export declare const XGBoostConfigType: StructType<{
36
36
  random_state: OptionType<IntegerType>;
37
37
  /** Number of parallel threads (default -1 for all cores) */
38
38
  n_jobs: OptionType<IntegerType>;
39
+ /** Sample weights for training (one per sample, default uniform) */
40
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
41
+ }>;
42
+ /**
43
+ * Configuration for XGBoost quantile regression.
44
+ * Trains separate models for each quantile.
45
+ */
46
+ export declare const XGBoostQuantileConfigType: StructType<{
47
+ /** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
48
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
49
+ /** Number of boosting rounds (default 100) */
50
+ n_estimators: OptionType<IntegerType>;
51
+ /** Maximum tree depth (default 6) */
52
+ max_depth: OptionType<IntegerType>;
53
+ /** Learning rate / step size shrinkage (default 0.3) */
54
+ learning_rate: OptionType<FloatType>;
55
+ /** Minimum sum of instance weight needed in a child (default 1) */
56
+ min_child_weight: OptionType<IntegerType>;
57
+ /** Subsample ratio of training instances (default 1.0) */
58
+ subsample: OptionType<FloatType>;
59
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
60
+ colsample_bytree: OptionType<FloatType>;
61
+ /** L1 regularization term (default 0) */
62
+ reg_alpha: OptionType<FloatType>;
63
+ /** L2 regularization term (default 1) */
64
+ reg_lambda: OptionType<FloatType>;
65
+ /** Random seed for reproducibility */
66
+ random_state: OptionType<IntegerType>;
67
+ /** Number of parallel threads (default -1 for all cores) */
68
+ n_jobs: OptionType<IntegerType>;
69
+ /** Sample weights for training (one per sample, default uniform) */
70
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
39
71
  }>;
40
72
  /**
41
73
  * Model blob type for serialized XGBoost models.
@@ -59,6 +91,24 @@ export declare const XGBoostModelBlobType: VariantType<{
59
91
  /** Number of classes */
60
92
  n_classes: IntegerType;
61
93
  }>;
94
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
95
+ xgboost_quantile: StructType<{
96
+ /** Cloudpickle serialized dict of {quantile: model} */
97
+ data: BlobType;
98
+ /** Quantiles this model predicts */
99
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
100
+ /** Number of input features */
101
+ n_features: IntegerType;
102
+ }>;
103
+ }>;
104
+ /**
105
+ * Result from XGBoost quantile prediction.
106
+ */
107
+ export declare const XGBoostQuantilePredictResultType: StructType<{
108
+ /** Quantile values that were predicted */
109
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
110
+ /** Predictions matrix: (n_samples x n_quantiles) */
111
+ predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
62
112
  }>;
63
113
  /**
64
114
  * Train an XGBoost regression model.
@@ -89,6 +139,8 @@ export declare const xgboost_train_regressor: import("@elaraai/east").PlatformDe
89
139
  random_state: OptionType<IntegerType>;
90
140
  /** Number of parallel threads (default -1 for all cores) */
91
141
  n_jobs: OptionType<IntegerType>;
142
+ /** Sample weights for training (one per sample, default uniform) */
143
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
92
144
  }>], VariantType<{
93
145
  /** XGBoost regressor model */
94
146
  xgboost_regressor: StructType<{
@@ -106,6 +158,15 @@ export declare const xgboost_train_regressor: import("@elaraai/east").PlatformDe
106
158
  /** Number of classes */
107
159
  n_classes: IntegerType;
108
160
  }>;
161
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
162
+ xgboost_quantile: StructType<{
163
+ /** Cloudpickle serialized dict of {quantile: model} */
164
+ data: BlobType;
165
+ /** Quantiles this model predicts */
166
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
167
+ /** Number of input features */
168
+ n_features: IntegerType;
169
+ }>;
109
170
  }>>;
110
171
  /**
111
172
  * Train an XGBoost classification model.
@@ -136,6 +197,8 @@ export declare const xgboost_train_classifier: import("@elaraai/east").PlatformD
136
197
  random_state: OptionType<IntegerType>;
137
198
  /** Number of parallel threads (default -1 for all cores) */
138
199
  n_jobs: OptionType<IntegerType>;
200
+ /** Sample weights for training (one per sample, default uniform) */
201
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
139
202
  }>], VariantType<{
140
203
  /** XGBoost regressor model */
141
204
  xgboost_regressor: StructType<{
@@ -153,6 +216,15 @@ export declare const xgboost_train_classifier: import("@elaraai/east").PlatformD
153
216
  /** Number of classes */
154
217
  n_classes: IntegerType;
155
218
  }>;
219
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
220
+ xgboost_quantile: StructType<{
221
+ /** Cloudpickle serialized dict of {quantile: model} */
222
+ data: BlobType;
223
+ /** Quantiles this model predicts */
224
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
225
+ /** Number of input features */
226
+ n_features: IntegerType;
227
+ }>;
156
228
  }>>;
157
229
  /**
158
230
  * Make predictions with a trained XGBoost regressor.
@@ -178,6 +250,15 @@ export declare const xgboost_predict: import("@elaraai/east").PlatformDefinition
178
250
  /** Number of classes */
179
251
  n_classes: IntegerType;
180
252
  }>;
253
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
254
+ xgboost_quantile: StructType<{
255
+ /** Cloudpickle serialized dict of {quantile: model} */
256
+ data: BlobType;
257
+ /** Quantiles this model predicts */
258
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
259
+ /** Number of input features */
260
+ n_features: IntegerType;
261
+ }>;
181
262
  }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<FloatType>>;
182
263
  /**
183
264
  * Predict class labels with a trained XGBoost classifier.
@@ -203,6 +284,15 @@ export declare const xgboost_predict_class: import("@elaraai/east").PlatformDefi
203
284
  /** Number of classes */
204
285
  n_classes: IntegerType;
205
286
  }>;
287
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
288
+ xgboost_quantile: StructType<{
289
+ /** Cloudpickle serialized dict of {quantile: model} */
290
+ data: BlobType;
291
+ /** Quantiles this model predicts */
292
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
293
+ /** Number of input features */
294
+ n_features: IntegerType;
295
+ }>;
206
296
  }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<IntegerType>>;
207
297
  /**
208
298
  * Get class probabilities from a trained XGBoost classifier.
@@ -228,7 +318,118 @@ export declare const xgboost_predict_proba: import("@elaraai/east").PlatformDefi
228
318
  /** Number of classes */
229
319
  n_classes: IntegerType;
230
320
  }>;
321
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
322
+ xgboost_quantile: StructType<{
323
+ /** Cloudpickle serialized dict of {quantile: model} */
324
+ data: BlobType;
325
+ /** Quantiles this model predicts */
326
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
327
+ /** Number of input features */
328
+ n_features: IntegerType;
329
+ }>;
231
330
  }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>>;
331
+ /**
332
+ * Train XGBoost quantile regression models.
333
+ *
334
+ * Trains one model per quantile using pinball loss (reg:quantileerror).
335
+ * This provides prediction intervals and uncertainty quantification.
336
+ *
337
+ * @param X - Feature matrix
338
+ * @param y - Target vector
339
+ * @param config - Quantile regression configuration (includes quantiles array)
340
+ * @returns Model blob containing trained quantile models
341
+ */
342
+ export declare const xgboost_train_quantile: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
343
+ /** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
344
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
345
+ /** Number of boosting rounds (default 100) */
346
+ n_estimators: OptionType<IntegerType>;
347
+ /** Maximum tree depth (default 6) */
348
+ max_depth: OptionType<IntegerType>;
349
+ /** Learning rate / step size shrinkage (default 0.3) */
350
+ learning_rate: OptionType<FloatType>;
351
+ /** Minimum sum of instance weight needed in a child (default 1) */
352
+ min_child_weight: OptionType<IntegerType>;
353
+ /** Subsample ratio of training instances (default 1.0) */
354
+ subsample: OptionType<FloatType>;
355
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
356
+ colsample_bytree: OptionType<FloatType>;
357
+ /** L1 regularization term (default 0) */
358
+ reg_alpha: OptionType<FloatType>;
359
+ /** L2 regularization term (default 1) */
360
+ reg_lambda: OptionType<FloatType>;
361
+ /** Random seed for reproducibility */
362
+ random_state: OptionType<IntegerType>;
363
+ /** Number of parallel threads (default -1 for all cores) */
364
+ n_jobs: OptionType<IntegerType>;
365
+ /** Sample weights for training (one per sample, default uniform) */
366
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
367
+ }>], VariantType<{
368
+ /** XGBoost regressor model */
369
+ xgboost_regressor: StructType<{
370
+ /** Cloudpickle serialized model */
371
+ data: BlobType;
372
+ /** Number of input features */
373
+ n_features: IntegerType;
374
+ }>;
375
+ /** XGBoost classifier model */
376
+ xgboost_classifier: StructType<{
377
+ /** Cloudpickle serialized model */
378
+ data: BlobType;
379
+ /** Number of input features */
380
+ n_features: IntegerType;
381
+ /** Number of classes */
382
+ n_classes: IntegerType;
383
+ }>;
384
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
385
+ xgboost_quantile: StructType<{
386
+ /** Cloudpickle serialized dict of {quantile: model} */
387
+ data: BlobType;
388
+ /** Quantiles this model predicts */
389
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
390
+ /** Number of input features */
391
+ n_features: IntegerType;
392
+ }>;
393
+ }>>;
394
+ /**
395
+ * Predict quantiles with trained XGBoost quantile regressor.
396
+ *
397
+ * @param model - Trained quantile model blob
398
+ * @param X - Feature matrix
399
+ * @returns Quantiles and predictions matrix (n_samples x n_quantiles)
400
+ */
401
+ export declare const xgboost_predict_quantile: import("@elaraai/east").PlatformDefinition<[VariantType<{
402
+ /** XGBoost regressor model */
403
+ xgboost_regressor: StructType<{
404
+ /** Cloudpickle serialized model */
405
+ data: BlobType;
406
+ /** Number of input features */
407
+ n_features: IntegerType;
408
+ }>;
409
+ /** XGBoost classifier model */
410
+ xgboost_classifier: StructType<{
411
+ /** Cloudpickle serialized model */
412
+ data: BlobType;
413
+ /** Number of input features */
414
+ n_features: IntegerType;
415
+ /** Number of classes */
416
+ n_classes: IntegerType;
417
+ }>;
418
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
419
+ xgboost_quantile: StructType<{
420
+ /** Cloudpickle serialized dict of {quantile: model} */
421
+ data: BlobType;
422
+ /** Quantiles this model predicts */
423
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
424
+ /** Number of input features */
425
+ n_features: IntegerType;
426
+ }>;
427
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], StructType<{
428
+ /** Quantile values that were predicted */
429
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
430
+ /** Predictions matrix: (n_samples x n_quantiles) */
431
+ predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
432
+ }>>;
232
433
  /**
233
434
  * Type definitions for XGBoost functions.
234
435
  */
@@ -261,6 +462,42 @@ export declare const XGBoostTypes: {
261
462
  random_state: OptionType<IntegerType>;
262
463
  /** Number of parallel threads (default -1 for all cores) */
263
464
  n_jobs: OptionType<IntegerType>;
465
+ /** Sample weights for training (one per sample, default uniform) */
466
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
467
+ }>;
468
+ /** XGBoost quantile configuration type */
469
+ readonly XGBoostQuantileConfigType: StructType<{
470
+ /** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
471
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
472
+ /** Number of boosting rounds (default 100) */
473
+ n_estimators: OptionType<IntegerType>;
474
+ /** Maximum tree depth (default 6) */
475
+ max_depth: OptionType<IntegerType>;
476
+ /** Learning rate / step size shrinkage (default 0.3) */
477
+ learning_rate: OptionType<FloatType>;
478
+ /** Minimum sum of instance weight needed in a child (default 1) */
479
+ min_child_weight: OptionType<IntegerType>;
480
+ /** Subsample ratio of training instances (default 1.0) */
481
+ subsample: OptionType<FloatType>;
482
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
483
+ colsample_bytree: OptionType<FloatType>;
484
+ /** L1 regularization term (default 0) */
485
+ reg_alpha: OptionType<FloatType>;
486
+ /** L2 regularization term (default 1) */
487
+ reg_lambda: OptionType<FloatType>;
488
+ /** Random seed for reproducibility */
489
+ random_state: OptionType<IntegerType>;
490
+ /** Number of parallel threads (default -1 for all cores) */
491
+ n_jobs: OptionType<IntegerType>;
492
+ /** Sample weights for training (one per sample, default uniform) */
493
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
494
+ }>;
495
+ /** Quantile prediction result type */
496
+ readonly XGBoostQuantilePredictResultType: StructType<{
497
+ /** Quantile values that were predicted */
498
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
499
+ /** Predictions matrix: (n_samples x n_quantiles) */
500
+ predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
264
501
  }>;
265
502
  /** Model blob type for XGBoost models */
266
503
  readonly ModelBlobType: VariantType<{
@@ -280,6 +517,15 @@ export declare const XGBoostTypes: {
280
517
  /** Number of classes */
281
518
  n_classes: IntegerType;
282
519
  }>;
520
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
521
+ xgboost_quantile: StructType<{
522
+ /** Cloudpickle serialized dict of {quantile: model} */
523
+ data: BlobType;
524
+ /** Quantiles this model predicts */
525
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
526
+ /** Number of input features */
527
+ n_features: IntegerType;
528
+ }>;
283
529
  }>;
284
530
  };
285
531
  /**
@@ -306,6 +552,7 @@ export declare const XGBoostTypes: {
306
552
  * reg_lambda: variant('none', null),
307
553
  * random_state: variant('some', 42n),
308
554
  * n_jobs: variant('none', null),
555
+ * sample_weight: variant('none', null),
309
556
  * });
310
557
  * return $.return(XGBoost.trainRegressor(X, y, config));
311
558
  * });
@@ -334,6 +581,8 @@ export declare const XGBoost: {
334
581
  random_state: OptionType<IntegerType>;
335
582
  /** Number of parallel threads (default -1 for all cores) */
336
583
  n_jobs: OptionType<IntegerType>;
584
+ /** Sample weights for training (one per sample, default uniform) */
585
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
337
586
  }>], VariantType<{
338
587
  /** XGBoost regressor model */
339
588
  xgboost_regressor: StructType<{
@@ -351,6 +600,15 @@ export declare const XGBoost: {
351
600
  /** Number of classes */
352
601
  n_classes: IntegerType;
353
602
  }>;
603
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
604
+ xgboost_quantile: StructType<{
605
+ /** Cloudpickle serialized dict of {quantile: model} */
606
+ data: BlobType;
607
+ /** Quantiles this model predicts */
608
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
609
+ /** Number of input features */
610
+ n_features: IntegerType;
611
+ }>;
354
612
  }>>;
355
613
  /** Train XGBoost classifier */
356
614
  readonly trainClassifier: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<IntegerType>, StructType<{
@@ -374,6 +632,8 @@ export declare const XGBoost: {
374
632
  random_state: OptionType<IntegerType>;
375
633
  /** Number of parallel threads (default -1 for all cores) */
376
634
  n_jobs: OptionType<IntegerType>;
635
+ /** Sample weights for training (one per sample, default uniform) */
636
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
377
637
  }>], VariantType<{
378
638
  /** XGBoost regressor model */
379
639
  xgboost_regressor: StructType<{
@@ -391,6 +651,68 @@ export declare const XGBoost: {
391
651
  /** Number of classes */
392
652
  n_classes: IntegerType;
393
653
  }>;
654
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
655
+ xgboost_quantile: StructType<{
656
+ /** Cloudpickle serialized dict of {quantile: model} */
657
+ data: BlobType;
658
+ /** Quantiles this model predicts */
659
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
660
+ /** Number of input features */
661
+ n_features: IntegerType;
662
+ }>;
663
+ }>>;
664
+ /** Train XGBoost quantile regressor */
665
+ readonly trainQuantile: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
666
+ /** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
667
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
668
+ /** Number of boosting rounds (default 100) */
669
+ n_estimators: OptionType<IntegerType>;
670
+ /** Maximum tree depth (default 6) */
671
+ max_depth: OptionType<IntegerType>;
672
+ /** Learning rate / step size shrinkage (default 0.3) */
673
+ learning_rate: OptionType<FloatType>;
674
+ /** Minimum sum of instance weight needed in a child (default 1) */
675
+ min_child_weight: OptionType<IntegerType>;
676
+ /** Subsample ratio of training instances (default 1.0) */
677
+ subsample: OptionType<FloatType>;
678
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
679
+ colsample_bytree: OptionType<FloatType>;
680
+ /** L1 regularization term (default 0) */
681
+ reg_alpha: OptionType<FloatType>;
682
+ /** L2 regularization term (default 1) */
683
+ reg_lambda: OptionType<FloatType>;
684
+ /** Random seed for reproducibility */
685
+ random_state: OptionType<IntegerType>;
686
+ /** Number of parallel threads (default -1 for all cores) */
687
+ n_jobs: OptionType<IntegerType>;
688
+ /** Sample weights for training (one per sample, default uniform) */
689
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
690
+ }>], VariantType<{
691
+ /** XGBoost regressor model */
692
+ xgboost_regressor: StructType<{
693
+ /** Cloudpickle serialized model */
694
+ data: BlobType;
695
+ /** Number of input features */
696
+ n_features: IntegerType;
697
+ }>;
698
+ /** XGBoost classifier model */
699
+ xgboost_classifier: StructType<{
700
+ /** Cloudpickle serialized model */
701
+ data: BlobType;
702
+ /** Number of input features */
703
+ n_features: IntegerType;
704
+ /** Number of classes */
705
+ n_classes: IntegerType;
706
+ }>;
707
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
708
+ xgboost_quantile: StructType<{
709
+ /** Cloudpickle serialized dict of {quantile: model} */
710
+ data: BlobType;
711
+ /** Quantiles this model predicts */
712
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
713
+ /** Number of input features */
714
+ n_features: IntegerType;
715
+ }>;
394
716
  }>>;
395
717
  /** Make predictions with regressor */
396
718
  readonly predict: import("@elaraai/east").PlatformDefinition<[VariantType<{
@@ -410,6 +732,15 @@ export declare const XGBoost: {
410
732
  /** Number of classes */
411
733
  n_classes: IntegerType;
412
734
  }>;
735
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
736
+ xgboost_quantile: StructType<{
737
+ /** Cloudpickle serialized dict of {quantile: model} */
738
+ data: BlobType;
739
+ /** Quantiles this model predicts */
740
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
741
+ /** Number of input features */
742
+ n_features: IntegerType;
743
+ }>;
413
744
  }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<FloatType>>;
414
745
  /** Predict class labels with classifier */
415
746
  readonly predictClass: import("@elaraai/east").PlatformDefinition<[VariantType<{
@@ -429,6 +760,15 @@ export declare const XGBoost: {
429
760
  /** Number of classes */
430
761
  n_classes: IntegerType;
431
762
  }>;
763
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
764
+ xgboost_quantile: StructType<{
765
+ /** Cloudpickle serialized dict of {quantile: model} */
766
+ data: BlobType;
767
+ /** Quantiles this model predicts */
768
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
769
+ /** Number of input features */
770
+ n_features: IntegerType;
771
+ }>;
432
772
  }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<IntegerType>>;
433
773
  /** Get class probabilities from classifier */
434
774
  readonly predictProba: import("@elaraai/east").PlatformDefinition<[VariantType<{
@@ -448,7 +788,49 @@ export declare const XGBoost: {
448
788
  /** Number of classes */
449
789
  n_classes: IntegerType;
450
790
  }>;
791
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
792
+ xgboost_quantile: StructType<{
793
+ /** Cloudpickle serialized dict of {quantile: model} */
794
+ data: BlobType;
795
+ /** Quantiles this model predicts */
796
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
797
+ /** Number of input features */
798
+ n_features: IntegerType;
799
+ }>;
451
800
  }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>>;
801
+ /** Predict quantiles with quantile regressor */
802
+ readonly predictQuantile: import("@elaraai/east").PlatformDefinition<[VariantType<{
803
+ /** XGBoost regressor model */
804
+ xgboost_regressor: StructType<{
805
+ /** Cloudpickle serialized model */
806
+ data: BlobType;
807
+ /** Number of input features */
808
+ n_features: IntegerType;
809
+ }>;
810
+ /** XGBoost classifier model */
811
+ xgboost_classifier: StructType<{
812
+ /** Cloudpickle serialized model */
813
+ data: BlobType;
814
+ /** Number of input features */
815
+ n_features: IntegerType;
816
+ /** Number of classes */
817
+ n_classes: IntegerType;
818
+ }>;
819
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
820
+ xgboost_quantile: StructType<{
821
+ /** Cloudpickle serialized dict of {quantile: model} */
822
+ data: BlobType;
823
+ /** Quantiles this model predicts */
824
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
825
+ /** Number of input features */
826
+ n_features: IntegerType;
827
+ }>;
828
+ }>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], StructType<{
829
+ /** Quantile values that were predicted */
830
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
831
+ /** Predictions matrix: (n_samples x n_quantiles) */
832
+ predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
833
+ }>>;
452
834
  /** Type definitions */
453
835
  readonly Types: {
454
836
  /** Vector type (array of floats) */
@@ -479,6 +861,42 @@ export declare const XGBoost: {
479
861
  random_state: OptionType<IntegerType>;
480
862
  /** Number of parallel threads (default -1 for all cores) */
481
863
  n_jobs: OptionType<IntegerType>;
864
+ /** Sample weights for training (one per sample, default uniform) */
865
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
866
+ }>;
867
+ /** XGBoost quantile configuration type */
868
+ readonly XGBoostQuantileConfigType: StructType<{
869
+ /** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
870
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
871
+ /** Number of boosting rounds (default 100) */
872
+ n_estimators: OptionType<IntegerType>;
873
+ /** Maximum tree depth (default 6) */
874
+ max_depth: OptionType<IntegerType>;
875
+ /** Learning rate / step size shrinkage (default 0.3) */
876
+ learning_rate: OptionType<FloatType>;
877
+ /** Minimum sum of instance weight needed in a child (default 1) */
878
+ min_child_weight: OptionType<IntegerType>;
879
+ /** Subsample ratio of training instances (default 1.0) */
880
+ subsample: OptionType<FloatType>;
881
+ /** Subsample ratio of columns when constructing trees (default 1.0) */
882
+ colsample_bytree: OptionType<FloatType>;
883
+ /** L1 regularization term (default 0) */
884
+ reg_alpha: OptionType<FloatType>;
885
+ /** L2 regularization term (default 1) */
886
+ reg_lambda: OptionType<FloatType>;
887
+ /** Random seed for reproducibility */
888
+ random_state: OptionType<IntegerType>;
889
+ /** Number of parallel threads (default -1 for all cores) */
890
+ n_jobs: OptionType<IntegerType>;
891
+ /** Sample weights for training (one per sample, default uniform) */
892
+ sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
893
+ }>;
894
+ /** Quantile prediction result type */
895
+ readonly XGBoostQuantilePredictResultType: StructType<{
896
+ /** Quantile values that were predicted */
897
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
898
+ /** Predictions matrix: (n_samples x n_quantiles) */
899
+ predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
482
900
  }>;
483
901
  /** Model blob type for XGBoost models */
484
902
  readonly ModelBlobType: VariantType<{
@@ -498,6 +916,15 @@ export declare const XGBoost: {
498
916
  /** Number of classes */
499
917
  n_classes: IntegerType;
500
918
  }>;
919
+ /** XGBoost quantile regressor (multiple models, one per quantile) */
920
+ xgboost_quantile: StructType<{
921
+ /** Cloudpickle serialized dict of {quantile: model} */
922
+ data: BlobType;
923
+ /** Quantiles this model predicts */
924
+ quantiles: import("@elaraai/east").ArrayType<FloatType>;
925
+ /** Number of input features */
926
+ n_features: IntegerType;
927
+ }>;
501
928
  }>;
502
929
  };
503
930
  };
@@ -1 +1 @@
1
- {"version":3,"file":"xgboost.d.ts","sourceRoot":"","sources":["../../src/xgboost/xgboost.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH;;;;;;;GAOG;AAEH,OAAO,EAEH,UAAU,EACV,WAAW,EACX,UAAU,EACV,WAAW,EACX,SAAS,EACT,QAAQ,EACX,MAAM,eAAe,CAAC;AAIvB,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAMtE;;GAEG;AACH,eAAO,MAAM,iBAAiB;IAC1B,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;EAE9D,CAAC;AAMH;;;;GAIG;AACH,eAAO,MAAM,oBAAoB;IAC7B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;EAG9B,CAAC;AAMH;;;;;;;GAOG;AACH,eAAO,MAAM,uBAAuB;IA9DhC,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;;IAc5D,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;GAqB/B,CAAC;AAEF;;;;;;;GAOG;AACH,eAAO,MAAM,wBAAwB;IA5EjC,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;;IAc5D,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;GAmC/B,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,eAAe;IAzDxB,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;mIAgD/B,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,qBAAqB;IAtE9B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;qIA6D/B,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,qBAAqB;IAnF9B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;sKA0E/B,CAAC;AAMF;;GAEG;AACH,eAAO,MAAM,YAAY;IACrB,oCAAoC;;IAEpC,uCAAuC;;IAEvC,4CAA4C;;IAE5C,iCAAiC;;QAvIjC,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;;IAuH5D,yCAAyC;;QAzGzC,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;CA8FtB,CAAC;AAEX;;;;;;;;;;;;;;;;;;;;;;;;;;;;GA4BG;AACH,eAAO,MAAM,OAAO;IAChB,8BAA8B;;QA3K9B,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;;QAc5D,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAgI5B,+BAA+B;;QA7K/B,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;;QAc5D,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAkI5B,sCAAsC;;QA/ItC,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAoI5B,2CAA2C;;QAjJ3C,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAsI5B,8CAA8C;;QAnJ9C,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;;IAwI5B,uBAAuB;;QApDvB,oCAAoC;;QAEpC,uCAAuC;;QAEvC,4CAA4C;;QAE5C,iCAAiC;;YAvIjC,8CAA8C;;YAE9C,qCAAqC;;YAErC,wDAAwD;;YAExD,mEAAmE;;YAEnE,0DAA0D;;YAE1D,uEAAuE;;YAEvE,yCAAyC;;YAEzC,yCAAyC;;YAEzC,sCAAsC;;YAEtC,4DAA4D;;;QAuH5D,yCAAyC;;YAzGzC,8BAA8B;;gBAE1B,mCAAmC;;gBAEnC,+BAA+B;;;YAGnC,+BAA+B;;gBAE3B,mCAAmC;;gBAEnC,+BAA+B;;gBAE/B,wBAAwB;;;;;CA0ItB,CAAC"}
1
+ {"version":3,"file":"xgboost.d.ts","sourceRoot":"","sources":["../../src/xgboost/xgboost.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH;;;;;;;GAOG;AAEH,OAAO,EAEH,UAAU,EACV,WAAW,EACX,UAAU,EACV,WAAW,EACX,SAAS,EACT,QAAQ,EACX,MAAM,eAAe,CAAC;AAIvB,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAMtE;;GAEG;AACH,eAAO,MAAM,iBAAiB;IAC1B,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;EAEtE,CAAC;AAEH;;;GAGG;AACH,eAAO,MAAM,yBAAyB;IAClC,6EAA6E;;IAE7E,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;EAEtE,CAAC;AAMH;;;;GAIG;AACH,eAAO,MAAM,oBAAoB;IAC7B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;EAGrC,CAAC;AAEH;;GAEG;AACH,eAAO,MAAM,gCAAgC;IACzC,0CAA0C;;IAE1C,oDAAoD;;EAEtD,CAAC;AAMH;;;;;;;GAOG;AACH,eAAO,MAAM,uBAAuB;IAlHhC,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;;IA6CpE,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;GA+BtC,CAAC;AAEF;;;;;;;GAOG;AACH,eAAO,MAAM,wBAAwB;IAhIjC,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;;IA6CpE,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;GA6CtC,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,eAAe;IA5ExB,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;mIA0DtC,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,qBAAqB;IAzF9B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;qIAuEtC,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,qBAAqB;IAtG9B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;sKAoFtC,CAAC;AAEF;;;;;;;;;;GAUG;AACH,eAAO,MAAM,sBAAsB;IA3J/B,6EAA6E;;IAE7E,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;;IAcpE,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;GAqGtC,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,wBAAwB;IApIjC,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;;IASnC,0CAA0C;;IAE1C,oDAAoD;;GAuGvD,CAAC;AAMF;;GAEG;AACH,eAAO,MAAM,YAAY;IACrB,oCAAoC;;IAEpC,uCAAuC;;IAEvC,4CAA4C;;IAE5C,iCAAiC;;QAzNjC,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;IAuMpE,0CAA0C;;QA9L1C,6EAA6E;;QAE7E,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;IA0KpE,sCAAsC;;QA7HtC,0CAA0C;;QAE1C,oDAAoD;;;IA6HpD,yCAAyC;;QA9JzC,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;CA0I7B,CAAC;AAEX;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GA6BG;AACH,eAAO,MAAM,OAAO;IAChB,8BAA8B;;QAlQ9B,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;QA6CpE,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IA6KnC,+BAA+B;;QApQ/B,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;QA6CpE,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IA+KnC,uCAAuC;;QAzOvC,6EAA6E;;QAE7E,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;QAcpE,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IAiLnC,sCAAsC;;QAvMtC,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IAmLnC,2CAA2C;;QAzM3C,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IAqLnC,8CAA8C;;QA3M9C,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IAuLnC,gDAAgD;;QA7MhD,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;QASnC,0CAA0C;;QAE1C,oDAAoD;;;IA8KpD,uBAAuB;;QA7DvB,oCAAoC;;QAEpC,uCAAuC;;QAEvC,4CAA4C;;QAE5C,iCAAiC;;YAzNjC,8CAA8C;;YAE9C,qCAAqC;;YAErC,wDAAwD;;YAExD,mEAAmE;;YAEnE,0DAA0D;;YAE1D,uEAAuE;;YAEvE,yCAAyC;;YAEzC,yCAAyC;;YAEzC,sCAAsC;;YAEtC,4DAA4D;;YAE5D,oEAAoE;;;QAuMpE,0CAA0C;;YA9L1C,6EAA6E;;YAE7E,8CAA8C;;YAE9C,qCAAqC;;YAErC,wDAAwD;;YAExD,mEAAmE;;YAEnE,0DAA0D;;YAE1D,uEAAuE;;YAEvE,yCAAyC;;YAEzC,yCAAyC;;YAEzC,sCAAsC;;YAEtC,4DAA4D;;YAE5D,oEAAoE;;;QA0KpE,sCAAsC;;YA7HtC,0CAA0C;;YAE1C,oDAAoD;;;QA6HpD,yCAAyC;;YA9JzC,8BAA8B;;gBAE1B,mCAAmC;;gBAEnC,+BAA+B;;;YAGnC,+BAA+B;;gBAE3B,mCAAmC;;gBAEnC,+BAA+B;;gBAE/B,wBAAwB;;;YAG5B,qEAAqE;;gBAEjE,uDAAuD;;gBAEvD,oCAAoC;;gBAEpC,+BAA+B;;;;;CA2L7B,CAAC"}