@elaraai/east-py-datascience 0.0.2-beta.1 → 0.0.2-beta.11
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE.md +56 -12
- package/README.md +42 -4
- package/dist/gp/gp.d.ts +49 -49
- package/dist/gp/gp.d.ts.map +1 -1
- package/dist/gp/gp.js +7 -7
- package/dist/gp/gp.js.map +1 -1
- package/dist/index.d.ts +2 -2
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +4 -2
- package/dist/index.js.map +1 -1
- package/dist/mads/mads.d.ts +33 -33
- package/dist/mads/mads.d.ts.map +1 -1
- package/dist/mads/mads.js +5 -5
- package/dist/mads/mads.js.map +1 -1
- package/dist/ngboost/ngboost.d.ts +35 -35
- package/dist/ngboost/ngboost.d.ts.map +1 -1
- package/dist/ngboost/ngboost.js +3 -3
- package/dist/ngboost/ngboost.js.map +1 -1
- package/dist/scipy/scipy.d.ts +307 -1
- package/dist/scipy/scipy.d.ts.map +1 -1
- package/dist/scipy/scipy.js +127 -1
- package/dist/scipy/scipy.js.map +1 -1
- package/dist/shap/shap.d.ts +66 -11
- package/dist/shap/shap.d.ts.map +1 -1
- package/dist/shap/shap.js +14 -3
- package/dist/shap/shap.js.map +1 -1
- package/dist/sklearn/sklearn.d.ts +1627 -200
- package/dist/sklearn/sklearn.d.ts.map +1 -1
- package/dist/sklearn/sklearn.js +274 -57
- package/dist/sklearn/sklearn.js.map +1 -1
- package/dist/torch/torch.d.ts +522 -99
- package/dist/torch/torch.d.ts.map +1 -1
- package/dist/torch/torch.js +133 -17
- package/dist/torch/torch.js.map +1 -1
- package/dist/tsconfig.tsbuildinfo +1 -1
- package/dist/xgboost/xgboost.d.ts +427 -0
- package/dist/xgboost/xgboost.d.ts.map +1 -1
- package/dist/xgboost/xgboost.js +79 -0
- package/dist/xgboost/xgboost.js.map +1 -1
- package/package.json +3 -3
|
@@ -36,6 +36,38 @@ export declare const XGBoostConfigType: StructType<{
|
|
|
36
36
|
random_state: OptionType<IntegerType>;
|
|
37
37
|
/** Number of parallel threads (default -1 for all cores) */
|
|
38
38
|
n_jobs: OptionType<IntegerType>;
|
|
39
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
40
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
41
|
+
}>;
|
|
42
|
+
/**
|
|
43
|
+
* Configuration for XGBoost quantile regression.
|
|
44
|
+
* Trains separate models for each quantile.
|
|
45
|
+
*/
|
|
46
|
+
export declare const XGBoostQuantileConfigType: StructType<{
|
|
47
|
+
/** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
|
|
48
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
49
|
+
/** Number of boosting rounds (default 100) */
|
|
50
|
+
n_estimators: OptionType<IntegerType>;
|
|
51
|
+
/** Maximum tree depth (default 6) */
|
|
52
|
+
max_depth: OptionType<IntegerType>;
|
|
53
|
+
/** Learning rate / step size shrinkage (default 0.3) */
|
|
54
|
+
learning_rate: OptionType<FloatType>;
|
|
55
|
+
/** Minimum sum of instance weight needed in a child (default 1) */
|
|
56
|
+
min_child_weight: OptionType<IntegerType>;
|
|
57
|
+
/** Subsample ratio of training instances (default 1.0) */
|
|
58
|
+
subsample: OptionType<FloatType>;
|
|
59
|
+
/** Subsample ratio of columns when constructing trees (default 1.0) */
|
|
60
|
+
colsample_bytree: OptionType<FloatType>;
|
|
61
|
+
/** L1 regularization term (default 0) */
|
|
62
|
+
reg_alpha: OptionType<FloatType>;
|
|
63
|
+
/** L2 regularization term (default 1) */
|
|
64
|
+
reg_lambda: OptionType<FloatType>;
|
|
65
|
+
/** Random seed for reproducibility */
|
|
66
|
+
random_state: OptionType<IntegerType>;
|
|
67
|
+
/** Number of parallel threads (default -1 for all cores) */
|
|
68
|
+
n_jobs: OptionType<IntegerType>;
|
|
69
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
70
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
39
71
|
}>;
|
|
40
72
|
/**
|
|
41
73
|
* Model blob type for serialized XGBoost models.
|
|
@@ -59,6 +91,24 @@ export declare const XGBoostModelBlobType: VariantType<{
|
|
|
59
91
|
/** Number of classes */
|
|
60
92
|
n_classes: IntegerType;
|
|
61
93
|
}>;
|
|
94
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
95
|
+
xgboost_quantile: StructType<{
|
|
96
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
97
|
+
data: BlobType;
|
|
98
|
+
/** Quantiles this model predicts */
|
|
99
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
100
|
+
/** Number of input features */
|
|
101
|
+
n_features: IntegerType;
|
|
102
|
+
}>;
|
|
103
|
+
}>;
|
|
104
|
+
/**
|
|
105
|
+
* Result from XGBoost quantile prediction.
|
|
106
|
+
*/
|
|
107
|
+
export declare const XGBoostQuantilePredictResultType: StructType<{
|
|
108
|
+
/** Quantile values that were predicted */
|
|
109
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
110
|
+
/** Predictions matrix: (n_samples x n_quantiles) */
|
|
111
|
+
predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
62
112
|
}>;
|
|
63
113
|
/**
|
|
64
114
|
* Train an XGBoost regression model.
|
|
@@ -89,6 +139,8 @@ export declare const xgboost_train_regressor: import("@elaraai/east").PlatformDe
|
|
|
89
139
|
random_state: OptionType<IntegerType>;
|
|
90
140
|
/** Number of parallel threads (default -1 for all cores) */
|
|
91
141
|
n_jobs: OptionType<IntegerType>;
|
|
142
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
143
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
92
144
|
}>], VariantType<{
|
|
93
145
|
/** XGBoost regressor model */
|
|
94
146
|
xgboost_regressor: StructType<{
|
|
@@ -106,6 +158,15 @@ export declare const xgboost_train_regressor: import("@elaraai/east").PlatformDe
|
|
|
106
158
|
/** Number of classes */
|
|
107
159
|
n_classes: IntegerType;
|
|
108
160
|
}>;
|
|
161
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
162
|
+
xgboost_quantile: StructType<{
|
|
163
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
164
|
+
data: BlobType;
|
|
165
|
+
/** Quantiles this model predicts */
|
|
166
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
167
|
+
/** Number of input features */
|
|
168
|
+
n_features: IntegerType;
|
|
169
|
+
}>;
|
|
109
170
|
}>>;
|
|
110
171
|
/**
|
|
111
172
|
* Train an XGBoost classification model.
|
|
@@ -136,6 +197,8 @@ export declare const xgboost_train_classifier: import("@elaraai/east").PlatformD
|
|
|
136
197
|
random_state: OptionType<IntegerType>;
|
|
137
198
|
/** Number of parallel threads (default -1 for all cores) */
|
|
138
199
|
n_jobs: OptionType<IntegerType>;
|
|
200
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
201
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
139
202
|
}>], VariantType<{
|
|
140
203
|
/** XGBoost regressor model */
|
|
141
204
|
xgboost_regressor: StructType<{
|
|
@@ -153,6 +216,15 @@ export declare const xgboost_train_classifier: import("@elaraai/east").PlatformD
|
|
|
153
216
|
/** Number of classes */
|
|
154
217
|
n_classes: IntegerType;
|
|
155
218
|
}>;
|
|
219
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
220
|
+
xgboost_quantile: StructType<{
|
|
221
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
222
|
+
data: BlobType;
|
|
223
|
+
/** Quantiles this model predicts */
|
|
224
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
225
|
+
/** Number of input features */
|
|
226
|
+
n_features: IntegerType;
|
|
227
|
+
}>;
|
|
156
228
|
}>>;
|
|
157
229
|
/**
|
|
158
230
|
* Make predictions with a trained XGBoost regressor.
|
|
@@ -178,6 +250,15 @@ export declare const xgboost_predict: import("@elaraai/east").PlatformDefinition
|
|
|
178
250
|
/** Number of classes */
|
|
179
251
|
n_classes: IntegerType;
|
|
180
252
|
}>;
|
|
253
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
254
|
+
xgboost_quantile: StructType<{
|
|
255
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
256
|
+
data: BlobType;
|
|
257
|
+
/** Quantiles this model predicts */
|
|
258
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
259
|
+
/** Number of input features */
|
|
260
|
+
n_features: IntegerType;
|
|
261
|
+
}>;
|
|
181
262
|
}>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<FloatType>>;
|
|
182
263
|
/**
|
|
183
264
|
* Predict class labels with a trained XGBoost classifier.
|
|
@@ -203,6 +284,15 @@ export declare const xgboost_predict_class: import("@elaraai/east").PlatformDefi
|
|
|
203
284
|
/** Number of classes */
|
|
204
285
|
n_classes: IntegerType;
|
|
205
286
|
}>;
|
|
287
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
288
|
+
xgboost_quantile: StructType<{
|
|
289
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
290
|
+
data: BlobType;
|
|
291
|
+
/** Quantiles this model predicts */
|
|
292
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
293
|
+
/** Number of input features */
|
|
294
|
+
n_features: IntegerType;
|
|
295
|
+
}>;
|
|
206
296
|
}>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<IntegerType>>;
|
|
207
297
|
/**
|
|
208
298
|
* Get class probabilities from a trained XGBoost classifier.
|
|
@@ -228,7 +318,118 @@ export declare const xgboost_predict_proba: import("@elaraai/east").PlatformDefi
|
|
|
228
318
|
/** Number of classes */
|
|
229
319
|
n_classes: IntegerType;
|
|
230
320
|
}>;
|
|
321
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
322
|
+
xgboost_quantile: StructType<{
|
|
323
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
324
|
+
data: BlobType;
|
|
325
|
+
/** Quantiles this model predicts */
|
|
326
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
327
|
+
/** Number of input features */
|
|
328
|
+
n_features: IntegerType;
|
|
329
|
+
}>;
|
|
231
330
|
}>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>>;
|
|
331
|
+
/**
|
|
332
|
+
* Train XGBoost quantile regression models.
|
|
333
|
+
*
|
|
334
|
+
* Trains one model per quantile using pinball loss (reg:quantileerror).
|
|
335
|
+
* This provides prediction intervals and uncertainty quantification.
|
|
336
|
+
*
|
|
337
|
+
* @param X - Feature matrix
|
|
338
|
+
* @param y - Target vector
|
|
339
|
+
* @param config - Quantile regression configuration (includes quantiles array)
|
|
340
|
+
* @returns Model blob containing trained quantile models
|
|
341
|
+
*/
|
|
342
|
+
export declare const xgboost_train_quantile: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
343
|
+
/** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
|
|
344
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
345
|
+
/** Number of boosting rounds (default 100) */
|
|
346
|
+
n_estimators: OptionType<IntegerType>;
|
|
347
|
+
/** Maximum tree depth (default 6) */
|
|
348
|
+
max_depth: OptionType<IntegerType>;
|
|
349
|
+
/** Learning rate / step size shrinkage (default 0.3) */
|
|
350
|
+
learning_rate: OptionType<FloatType>;
|
|
351
|
+
/** Minimum sum of instance weight needed in a child (default 1) */
|
|
352
|
+
min_child_weight: OptionType<IntegerType>;
|
|
353
|
+
/** Subsample ratio of training instances (default 1.0) */
|
|
354
|
+
subsample: OptionType<FloatType>;
|
|
355
|
+
/** Subsample ratio of columns when constructing trees (default 1.0) */
|
|
356
|
+
colsample_bytree: OptionType<FloatType>;
|
|
357
|
+
/** L1 regularization term (default 0) */
|
|
358
|
+
reg_alpha: OptionType<FloatType>;
|
|
359
|
+
/** L2 regularization term (default 1) */
|
|
360
|
+
reg_lambda: OptionType<FloatType>;
|
|
361
|
+
/** Random seed for reproducibility */
|
|
362
|
+
random_state: OptionType<IntegerType>;
|
|
363
|
+
/** Number of parallel threads (default -1 for all cores) */
|
|
364
|
+
n_jobs: OptionType<IntegerType>;
|
|
365
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
366
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
367
|
+
}>], VariantType<{
|
|
368
|
+
/** XGBoost regressor model */
|
|
369
|
+
xgboost_regressor: StructType<{
|
|
370
|
+
/** Cloudpickle serialized model */
|
|
371
|
+
data: BlobType;
|
|
372
|
+
/** Number of input features */
|
|
373
|
+
n_features: IntegerType;
|
|
374
|
+
}>;
|
|
375
|
+
/** XGBoost classifier model */
|
|
376
|
+
xgboost_classifier: StructType<{
|
|
377
|
+
/** Cloudpickle serialized model */
|
|
378
|
+
data: BlobType;
|
|
379
|
+
/** Number of input features */
|
|
380
|
+
n_features: IntegerType;
|
|
381
|
+
/** Number of classes */
|
|
382
|
+
n_classes: IntegerType;
|
|
383
|
+
}>;
|
|
384
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
385
|
+
xgboost_quantile: StructType<{
|
|
386
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
387
|
+
data: BlobType;
|
|
388
|
+
/** Quantiles this model predicts */
|
|
389
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
390
|
+
/** Number of input features */
|
|
391
|
+
n_features: IntegerType;
|
|
392
|
+
}>;
|
|
393
|
+
}>>;
|
|
394
|
+
/**
|
|
395
|
+
* Predict quantiles with trained XGBoost quantile regressor.
|
|
396
|
+
*
|
|
397
|
+
* @param model - Trained quantile model blob
|
|
398
|
+
* @param X - Feature matrix
|
|
399
|
+
* @returns Quantiles and predictions matrix (n_samples x n_quantiles)
|
|
400
|
+
*/
|
|
401
|
+
export declare const xgboost_predict_quantile: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
402
|
+
/** XGBoost regressor model */
|
|
403
|
+
xgboost_regressor: StructType<{
|
|
404
|
+
/** Cloudpickle serialized model */
|
|
405
|
+
data: BlobType;
|
|
406
|
+
/** Number of input features */
|
|
407
|
+
n_features: IntegerType;
|
|
408
|
+
}>;
|
|
409
|
+
/** XGBoost classifier model */
|
|
410
|
+
xgboost_classifier: StructType<{
|
|
411
|
+
/** Cloudpickle serialized model */
|
|
412
|
+
data: BlobType;
|
|
413
|
+
/** Number of input features */
|
|
414
|
+
n_features: IntegerType;
|
|
415
|
+
/** Number of classes */
|
|
416
|
+
n_classes: IntegerType;
|
|
417
|
+
}>;
|
|
418
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
419
|
+
xgboost_quantile: StructType<{
|
|
420
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
421
|
+
data: BlobType;
|
|
422
|
+
/** Quantiles this model predicts */
|
|
423
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
424
|
+
/** Number of input features */
|
|
425
|
+
n_features: IntegerType;
|
|
426
|
+
}>;
|
|
427
|
+
}>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], StructType<{
|
|
428
|
+
/** Quantile values that were predicted */
|
|
429
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
430
|
+
/** Predictions matrix: (n_samples x n_quantiles) */
|
|
431
|
+
predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
432
|
+
}>>;
|
|
232
433
|
/**
|
|
233
434
|
* Type definitions for XGBoost functions.
|
|
234
435
|
*/
|
|
@@ -261,6 +462,42 @@ export declare const XGBoostTypes: {
|
|
|
261
462
|
random_state: OptionType<IntegerType>;
|
|
262
463
|
/** Number of parallel threads (default -1 for all cores) */
|
|
263
464
|
n_jobs: OptionType<IntegerType>;
|
|
465
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
466
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
467
|
+
}>;
|
|
468
|
+
/** XGBoost quantile configuration type */
|
|
469
|
+
readonly XGBoostQuantileConfigType: StructType<{
|
|
470
|
+
/** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
|
|
471
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
472
|
+
/** Number of boosting rounds (default 100) */
|
|
473
|
+
n_estimators: OptionType<IntegerType>;
|
|
474
|
+
/** Maximum tree depth (default 6) */
|
|
475
|
+
max_depth: OptionType<IntegerType>;
|
|
476
|
+
/** Learning rate / step size shrinkage (default 0.3) */
|
|
477
|
+
learning_rate: OptionType<FloatType>;
|
|
478
|
+
/** Minimum sum of instance weight needed in a child (default 1) */
|
|
479
|
+
min_child_weight: OptionType<IntegerType>;
|
|
480
|
+
/** Subsample ratio of training instances (default 1.0) */
|
|
481
|
+
subsample: OptionType<FloatType>;
|
|
482
|
+
/** Subsample ratio of columns when constructing trees (default 1.0) */
|
|
483
|
+
colsample_bytree: OptionType<FloatType>;
|
|
484
|
+
/** L1 regularization term (default 0) */
|
|
485
|
+
reg_alpha: OptionType<FloatType>;
|
|
486
|
+
/** L2 regularization term (default 1) */
|
|
487
|
+
reg_lambda: OptionType<FloatType>;
|
|
488
|
+
/** Random seed for reproducibility */
|
|
489
|
+
random_state: OptionType<IntegerType>;
|
|
490
|
+
/** Number of parallel threads (default -1 for all cores) */
|
|
491
|
+
n_jobs: OptionType<IntegerType>;
|
|
492
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
493
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
494
|
+
}>;
|
|
495
|
+
/** Quantile prediction result type */
|
|
496
|
+
readonly XGBoostQuantilePredictResultType: StructType<{
|
|
497
|
+
/** Quantile values that were predicted */
|
|
498
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
499
|
+
/** Predictions matrix: (n_samples x n_quantiles) */
|
|
500
|
+
predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
264
501
|
}>;
|
|
265
502
|
/** Model blob type for XGBoost models */
|
|
266
503
|
readonly ModelBlobType: VariantType<{
|
|
@@ -280,6 +517,15 @@ export declare const XGBoostTypes: {
|
|
|
280
517
|
/** Number of classes */
|
|
281
518
|
n_classes: IntegerType;
|
|
282
519
|
}>;
|
|
520
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
521
|
+
xgboost_quantile: StructType<{
|
|
522
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
523
|
+
data: BlobType;
|
|
524
|
+
/** Quantiles this model predicts */
|
|
525
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
526
|
+
/** Number of input features */
|
|
527
|
+
n_features: IntegerType;
|
|
528
|
+
}>;
|
|
283
529
|
}>;
|
|
284
530
|
};
|
|
285
531
|
/**
|
|
@@ -306,6 +552,7 @@ export declare const XGBoostTypes: {
|
|
|
306
552
|
* reg_lambda: variant('none', null),
|
|
307
553
|
* random_state: variant('some', 42n),
|
|
308
554
|
* n_jobs: variant('none', null),
|
|
555
|
+
* sample_weight: variant('none', null),
|
|
309
556
|
* });
|
|
310
557
|
* return $.return(XGBoost.trainRegressor(X, y, config));
|
|
311
558
|
* });
|
|
@@ -334,6 +581,8 @@ export declare const XGBoost: {
|
|
|
334
581
|
random_state: OptionType<IntegerType>;
|
|
335
582
|
/** Number of parallel threads (default -1 for all cores) */
|
|
336
583
|
n_jobs: OptionType<IntegerType>;
|
|
584
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
585
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
337
586
|
}>], VariantType<{
|
|
338
587
|
/** XGBoost regressor model */
|
|
339
588
|
xgboost_regressor: StructType<{
|
|
@@ -351,6 +600,15 @@ export declare const XGBoost: {
|
|
|
351
600
|
/** Number of classes */
|
|
352
601
|
n_classes: IntegerType;
|
|
353
602
|
}>;
|
|
603
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
604
|
+
xgboost_quantile: StructType<{
|
|
605
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
606
|
+
data: BlobType;
|
|
607
|
+
/** Quantiles this model predicts */
|
|
608
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
609
|
+
/** Number of input features */
|
|
610
|
+
n_features: IntegerType;
|
|
611
|
+
}>;
|
|
354
612
|
}>>;
|
|
355
613
|
/** Train XGBoost classifier */
|
|
356
614
|
readonly trainClassifier: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<IntegerType>, StructType<{
|
|
@@ -374,6 +632,8 @@ export declare const XGBoost: {
|
|
|
374
632
|
random_state: OptionType<IntegerType>;
|
|
375
633
|
/** Number of parallel threads (default -1 for all cores) */
|
|
376
634
|
n_jobs: OptionType<IntegerType>;
|
|
635
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
636
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
377
637
|
}>], VariantType<{
|
|
378
638
|
/** XGBoost regressor model */
|
|
379
639
|
xgboost_regressor: StructType<{
|
|
@@ -391,6 +651,68 @@ export declare const XGBoost: {
|
|
|
391
651
|
/** Number of classes */
|
|
392
652
|
n_classes: IntegerType;
|
|
393
653
|
}>;
|
|
654
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
655
|
+
xgboost_quantile: StructType<{
|
|
656
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
657
|
+
data: BlobType;
|
|
658
|
+
/** Quantiles this model predicts */
|
|
659
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
660
|
+
/** Number of input features */
|
|
661
|
+
n_features: IntegerType;
|
|
662
|
+
}>;
|
|
663
|
+
}>>;
|
|
664
|
+
/** Train XGBoost quantile regressor */
|
|
665
|
+
readonly trainQuantile: import("@elaraai/east").PlatformDefinition<[import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>, import("@elaraai/east").ArrayType<FloatType>, StructType<{
|
|
666
|
+
/** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
|
|
667
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
668
|
+
/** Number of boosting rounds (default 100) */
|
|
669
|
+
n_estimators: OptionType<IntegerType>;
|
|
670
|
+
/** Maximum tree depth (default 6) */
|
|
671
|
+
max_depth: OptionType<IntegerType>;
|
|
672
|
+
/** Learning rate / step size shrinkage (default 0.3) */
|
|
673
|
+
learning_rate: OptionType<FloatType>;
|
|
674
|
+
/** Minimum sum of instance weight needed in a child (default 1) */
|
|
675
|
+
min_child_weight: OptionType<IntegerType>;
|
|
676
|
+
/** Subsample ratio of training instances (default 1.0) */
|
|
677
|
+
subsample: OptionType<FloatType>;
|
|
678
|
+
/** Subsample ratio of columns when constructing trees (default 1.0) */
|
|
679
|
+
colsample_bytree: OptionType<FloatType>;
|
|
680
|
+
/** L1 regularization term (default 0) */
|
|
681
|
+
reg_alpha: OptionType<FloatType>;
|
|
682
|
+
/** L2 regularization term (default 1) */
|
|
683
|
+
reg_lambda: OptionType<FloatType>;
|
|
684
|
+
/** Random seed for reproducibility */
|
|
685
|
+
random_state: OptionType<IntegerType>;
|
|
686
|
+
/** Number of parallel threads (default -1 for all cores) */
|
|
687
|
+
n_jobs: OptionType<IntegerType>;
|
|
688
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
689
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
690
|
+
}>], VariantType<{
|
|
691
|
+
/** XGBoost regressor model */
|
|
692
|
+
xgboost_regressor: StructType<{
|
|
693
|
+
/** Cloudpickle serialized model */
|
|
694
|
+
data: BlobType;
|
|
695
|
+
/** Number of input features */
|
|
696
|
+
n_features: IntegerType;
|
|
697
|
+
}>;
|
|
698
|
+
/** XGBoost classifier model */
|
|
699
|
+
xgboost_classifier: StructType<{
|
|
700
|
+
/** Cloudpickle serialized model */
|
|
701
|
+
data: BlobType;
|
|
702
|
+
/** Number of input features */
|
|
703
|
+
n_features: IntegerType;
|
|
704
|
+
/** Number of classes */
|
|
705
|
+
n_classes: IntegerType;
|
|
706
|
+
}>;
|
|
707
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
708
|
+
xgboost_quantile: StructType<{
|
|
709
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
710
|
+
data: BlobType;
|
|
711
|
+
/** Quantiles this model predicts */
|
|
712
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
713
|
+
/** Number of input features */
|
|
714
|
+
n_features: IntegerType;
|
|
715
|
+
}>;
|
|
394
716
|
}>>;
|
|
395
717
|
/** Make predictions with regressor */
|
|
396
718
|
readonly predict: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
@@ -410,6 +732,15 @@ export declare const XGBoost: {
|
|
|
410
732
|
/** Number of classes */
|
|
411
733
|
n_classes: IntegerType;
|
|
412
734
|
}>;
|
|
735
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
736
|
+
xgboost_quantile: StructType<{
|
|
737
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
738
|
+
data: BlobType;
|
|
739
|
+
/** Quantiles this model predicts */
|
|
740
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
741
|
+
/** Number of input features */
|
|
742
|
+
n_features: IntegerType;
|
|
743
|
+
}>;
|
|
413
744
|
}>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<FloatType>>;
|
|
414
745
|
/** Predict class labels with classifier */
|
|
415
746
|
readonly predictClass: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
@@ -429,6 +760,15 @@ export declare const XGBoost: {
|
|
|
429
760
|
/** Number of classes */
|
|
430
761
|
n_classes: IntegerType;
|
|
431
762
|
}>;
|
|
763
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
764
|
+
xgboost_quantile: StructType<{
|
|
765
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
766
|
+
data: BlobType;
|
|
767
|
+
/** Quantiles this model predicts */
|
|
768
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
769
|
+
/** Number of input features */
|
|
770
|
+
n_features: IntegerType;
|
|
771
|
+
}>;
|
|
432
772
|
}>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<IntegerType>>;
|
|
433
773
|
/** Get class probabilities from classifier */
|
|
434
774
|
readonly predictProba: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
@@ -448,7 +788,49 @@ export declare const XGBoost: {
|
|
|
448
788
|
/** Number of classes */
|
|
449
789
|
n_classes: IntegerType;
|
|
450
790
|
}>;
|
|
791
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
792
|
+
xgboost_quantile: StructType<{
|
|
793
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
794
|
+
data: BlobType;
|
|
795
|
+
/** Quantiles this model predicts */
|
|
796
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
797
|
+
/** Number of input features */
|
|
798
|
+
n_features: IntegerType;
|
|
799
|
+
}>;
|
|
451
800
|
}>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>>;
|
|
801
|
+
/** Predict quantiles with quantile regressor */
|
|
802
|
+
readonly predictQuantile: import("@elaraai/east").PlatformDefinition<[VariantType<{
|
|
803
|
+
/** XGBoost regressor model */
|
|
804
|
+
xgboost_regressor: StructType<{
|
|
805
|
+
/** Cloudpickle serialized model */
|
|
806
|
+
data: BlobType;
|
|
807
|
+
/** Number of input features */
|
|
808
|
+
n_features: IntegerType;
|
|
809
|
+
}>;
|
|
810
|
+
/** XGBoost classifier model */
|
|
811
|
+
xgboost_classifier: StructType<{
|
|
812
|
+
/** Cloudpickle serialized model */
|
|
813
|
+
data: BlobType;
|
|
814
|
+
/** Number of input features */
|
|
815
|
+
n_features: IntegerType;
|
|
816
|
+
/** Number of classes */
|
|
817
|
+
n_classes: IntegerType;
|
|
818
|
+
}>;
|
|
819
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
820
|
+
xgboost_quantile: StructType<{
|
|
821
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
822
|
+
data: BlobType;
|
|
823
|
+
/** Quantiles this model predicts */
|
|
824
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
825
|
+
/** Number of input features */
|
|
826
|
+
n_features: IntegerType;
|
|
827
|
+
}>;
|
|
828
|
+
}>, import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>], StructType<{
|
|
829
|
+
/** Quantile values that were predicted */
|
|
830
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
831
|
+
/** Predictions matrix: (n_samples x n_quantiles) */
|
|
832
|
+
predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
833
|
+
}>>;
|
|
452
834
|
/** Type definitions */
|
|
453
835
|
readonly Types: {
|
|
454
836
|
/** Vector type (array of floats) */
|
|
@@ -479,6 +861,42 @@ export declare const XGBoost: {
|
|
|
479
861
|
random_state: OptionType<IntegerType>;
|
|
480
862
|
/** Number of parallel threads (default -1 for all cores) */
|
|
481
863
|
n_jobs: OptionType<IntegerType>;
|
|
864
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
865
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
866
|
+
}>;
|
|
867
|
+
/** XGBoost quantile configuration type */
|
|
868
|
+
readonly XGBoostQuantileConfigType: StructType<{
|
|
869
|
+
/** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
|
|
870
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
871
|
+
/** Number of boosting rounds (default 100) */
|
|
872
|
+
n_estimators: OptionType<IntegerType>;
|
|
873
|
+
/** Maximum tree depth (default 6) */
|
|
874
|
+
max_depth: OptionType<IntegerType>;
|
|
875
|
+
/** Learning rate / step size shrinkage (default 0.3) */
|
|
876
|
+
learning_rate: OptionType<FloatType>;
|
|
877
|
+
/** Minimum sum of instance weight needed in a child (default 1) */
|
|
878
|
+
min_child_weight: OptionType<IntegerType>;
|
|
879
|
+
/** Subsample ratio of training instances (default 1.0) */
|
|
880
|
+
subsample: OptionType<FloatType>;
|
|
881
|
+
/** Subsample ratio of columns when constructing trees (default 1.0) */
|
|
882
|
+
colsample_bytree: OptionType<FloatType>;
|
|
883
|
+
/** L1 regularization term (default 0) */
|
|
884
|
+
reg_alpha: OptionType<FloatType>;
|
|
885
|
+
/** L2 regularization term (default 1) */
|
|
886
|
+
reg_lambda: OptionType<FloatType>;
|
|
887
|
+
/** Random seed for reproducibility */
|
|
888
|
+
random_state: OptionType<IntegerType>;
|
|
889
|
+
/** Number of parallel threads (default -1 for all cores) */
|
|
890
|
+
n_jobs: OptionType<IntegerType>;
|
|
891
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
892
|
+
sample_weight: OptionType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
893
|
+
}>;
|
|
894
|
+
/** Quantile prediction result type */
|
|
895
|
+
readonly XGBoostQuantilePredictResultType: StructType<{
|
|
896
|
+
/** Quantile values that were predicted */
|
|
897
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
898
|
+
/** Predictions matrix: (n_samples x n_quantiles) */
|
|
899
|
+
predictions: import("@elaraai/east").ArrayType<import("@elaraai/east").ArrayType<FloatType>>;
|
|
482
900
|
}>;
|
|
483
901
|
/** Model blob type for XGBoost models */
|
|
484
902
|
readonly ModelBlobType: VariantType<{
|
|
@@ -498,6 +916,15 @@ export declare const XGBoost: {
|
|
|
498
916
|
/** Number of classes */
|
|
499
917
|
n_classes: IntegerType;
|
|
500
918
|
}>;
|
|
919
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
920
|
+
xgboost_quantile: StructType<{
|
|
921
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
922
|
+
data: BlobType;
|
|
923
|
+
/** Quantiles this model predicts */
|
|
924
|
+
quantiles: import("@elaraai/east").ArrayType<FloatType>;
|
|
925
|
+
/** Number of input features */
|
|
926
|
+
n_features: IntegerType;
|
|
927
|
+
}>;
|
|
501
928
|
}>;
|
|
502
929
|
};
|
|
503
930
|
};
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"xgboost.d.ts","sourceRoot":"","sources":["../../src/xgboost/xgboost.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH;;;;;;;GAOG;AAEH,OAAO,EAEH,UAAU,EACV,WAAW,EACX,UAAU,EACV,WAAW,EACX,SAAS,EACT,QAAQ,EACX,MAAM,eAAe,CAAC;AAIvB,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAMtE;;GAEG;AACH,eAAO,MAAM,iBAAiB;IAC1B,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;
|
|
1
|
+
{"version":3,"file":"xgboost.d.ts","sourceRoot":"","sources":["../../src/xgboost/xgboost.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH;;;;;;;GAOG;AAEH,OAAO,EAEH,UAAU,EACV,WAAW,EACX,UAAU,EACV,WAAW,EACX,SAAS,EACT,QAAQ,EACX,MAAM,eAAe,CAAC;AAIvB,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAMtE;;GAEG;AACH,eAAO,MAAM,iBAAiB;IAC1B,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;EAEtE,CAAC;AAEH;;;GAGG;AACH,eAAO,MAAM,yBAAyB;IAClC,6EAA6E;;IAE7E,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;EAEtE,CAAC;AAMH;;;;GAIG;AACH,eAAO,MAAM,oBAAoB;IAC7B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;EAGrC,CAAC;AAEH;;GAEG;AACH,eAAO,MAAM,gCAAgC;IACzC,0CAA0C;;IAE1C,oDAAoD;;EAEtD,CAAC;AAMH;;;;;;;GAOG;AACH,eAAO,MAAM,uBAAuB;IAlHhC,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;;IA6CpE,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;GA+BtC,CAAC;AAEF;;;;;;;GAOG;AACH,eAAO,MAAM,wBAAwB;IAhIjC,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;;IA6CpE,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;GA6CtC,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,eAAe;IA5ExB,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;mIA0DtC,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,qBAAqB;IAzF9B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;qIAuEtC,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,qBAAqB;IAtG9B,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;sKAoFtC,CAAC;AAEF;;;;;;;;;;GAUG;AACH,eAAO,MAAM,sBAAsB;IA3J/B,6EAA6E;;IAE7E,8CAA8C;;IAE9C,qCAAqC;;IAErC,wDAAwD;;IAExD,mEAAmE;;IAEnE,0DAA0D;;IAE1D,uEAAuE;;IAEvE,yCAAyC;;IAEzC,yCAAyC;;IAEzC,sCAAsC;;IAEtC,4DAA4D;;IAE5D,oEAAoE;;;IAcpE,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;GAqGtC,CAAC;AAEF;;;;;;GAMG;AACH,eAAO,MAAM,wBAAwB;IApIjC,8BAA8B;;QAE1B,mCAAmC;;QAEnC,+BAA+B;;;IAGnC,+BAA+B;;QAE3B,mCAAmC;;QAEnC,+BAA+B;;QAE/B,wBAAwB;;;IAG5B,qEAAqE;;QAEjE,uDAAuD;;QAEvD,oCAAoC;;QAEpC,+BAA+B;;;;IASnC,0CAA0C;;IAE1C,oDAAoD;;GAuGvD,CAAC;AAMF;;GAEG;AACH,eAAO,MAAM,YAAY;IACrB,oCAAoC;;IAEpC,uCAAuC;;IAEvC,4CAA4C;;IAE5C,iCAAiC;;QAzNjC,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;IAuMpE,0CAA0C;;QA9L1C,6EAA6E;;QAE7E,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;IA0KpE,sCAAsC;;QA7HtC,0CAA0C;;QAE1C,oDAAoD;;;IA6HpD,yCAAyC;;QA9JzC,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;CA0I7B,CAAC;AAEX;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GA6BG;AACH,eAAO,MAAM,OAAO;IAChB,8BAA8B;;QAlQ9B,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;QA6CpE,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IA6KnC,+BAA+B;;QApQ/B,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;QA6CpE,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IA+KnC,uCAAuC;;QAzOvC,6EAA6E;;QAE7E,8CAA8C;;QAE9C,qCAAqC;;QAErC,wDAAwD;;QAExD,mEAAmE;;QAEnE,0DAA0D;;QAE1D,uEAAuE;;QAEvE,yCAAyC;;QAEzC,yCAAyC;;QAEzC,sCAAsC;;QAEtC,4DAA4D;;QAE5D,oEAAoE;;;QAcpE,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IAiLnC,sCAAsC;;QAvMtC,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IAmLnC,2CAA2C;;QAzM3C,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IAqLnC,8CAA8C;;QA3M9C,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;IAuLnC,gDAAgD;;QA7MhD,8BAA8B;;YAE1B,mCAAmC;;YAEnC,+BAA+B;;;QAGnC,+BAA+B;;YAE3B,mCAAmC;;YAEnC,+BAA+B;;YAE/B,wBAAwB;;;QAG5B,qEAAqE;;YAEjE,uDAAuD;;YAEvD,oCAAoC;;YAEpC,+BAA+B;;;;QASnC,0CAA0C;;QAE1C,oDAAoD;;;IA8KpD,uBAAuB;;QA7DvB,oCAAoC;;QAEpC,uCAAuC;;QAEvC,4CAA4C;;QAE5C,iCAAiC;;YAzNjC,8CAA8C;;YAE9C,qCAAqC;;YAErC,wDAAwD;;YAExD,mEAAmE;;YAEnE,0DAA0D;;YAE1D,uEAAuE;;YAEvE,yCAAyC;;YAEzC,yCAAyC;;YAEzC,sCAAsC;;YAEtC,4DAA4D;;YAE5D,oEAAoE;;;QAuMpE,0CAA0C;;YA9L1C,6EAA6E;;YAE7E,8CAA8C;;YAE9C,qCAAqC;;YAErC,wDAAwD;;YAExD,mEAAmE;;YAEnE,0DAA0D;;YAE1D,uEAAuE;;YAEvE,yCAAyC;;YAEzC,yCAAyC;;YAEzC,sCAAsC;;YAEtC,4DAA4D;;YAE5D,oEAAoE;;;QA0KpE,sCAAsC;;YA7HtC,0CAA0C;;YAE1C,oDAAoD;;;QA6HpD,yCAAyC;;YA9JzC,8BAA8B;;gBAE1B,mCAAmC;;gBAEnC,+BAA+B;;;YAGnC,+BAA+B;;gBAE3B,mCAAmC;;gBAEnC,+BAA+B;;gBAE/B,wBAAwB;;;YAG5B,qEAAqE;;gBAEjE,uDAAuD;;gBAEvD,oCAAoC;;gBAEpC,+BAA+B;;;;;CA2L7B,CAAC"}
|