@elaraai/east-py-datascience 0.0.2-beta.1 → 0.0.2-beta.11
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE.md +56 -12
- package/README.md +42 -4
- package/dist/gp/gp.d.ts +49 -49
- package/dist/gp/gp.d.ts.map +1 -1
- package/dist/gp/gp.js +7 -7
- package/dist/gp/gp.js.map +1 -1
- package/dist/index.d.ts +2 -2
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +4 -2
- package/dist/index.js.map +1 -1
- package/dist/mads/mads.d.ts +33 -33
- package/dist/mads/mads.d.ts.map +1 -1
- package/dist/mads/mads.js +5 -5
- package/dist/mads/mads.js.map +1 -1
- package/dist/ngboost/ngboost.d.ts +35 -35
- package/dist/ngboost/ngboost.d.ts.map +1 -1
- package/dist/ngboost/ngboost.js +3 -3
- package/dist/ngboost/ngboost.js.map +1 -1
- package/dist/scipy/scipy.d.ts +307 -1
- package/dist/scipy/scipy.d.ts.map +1 -1
- package/dist/scipy/scipy.js +127 -1
- package/dist/scipy/scipy.js.map +1 -1
- package/dist/shap/shap.d.ts +66 -11
- package/dist/shap/shap.d.ts.map +1 -1
- package/dist/shap/shap.js +14 -3
- package/dist/shap/shap.js.map +1 -1
- package/dist/sklearn/sklearn.d.ts +1627 -200
- package/dist/sklearn/sklearn.d.ts.map +1 -1
- package/dist/sklearn/sklearn.js +274 -57
- package/dist/sklearn/sklearn.js.map +1 -1
- package/dist/torch/torch.d.ts +522 -99
- package/dist/torch/torch.d.ts.map +1 -1
- package/dist/torch/torch.js +133 -17
- package/dist/torch/torch.js.map +1 -1
- package/dist/tsconfig.tsbuildinfo +1 -1
- package/dist/xgboost/xgboost.d.ts +427 -0
- package/dist/xgboost/xgboost.d.ts.map +1 -1
- package/dist/xgboost/xgboost.js +79 -0
- package/dist/xgboost/xgboost.js.map +1 -1
- package/package.json +3 -3
package/dist/xgboost/xgboost.js
CHANGED
|
@@ -41,6 +41,38 @@ export const XGBoostConfigType = StructType({
|
|
|
41
41
|
random_state: OptionType(IntegerType),
|
|
42
42
|
/** Number of parallel threads (default -1 for all cores) */
|
|
43
43
|
n_jobs: OptionType(IntegerType),
|
|
44
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
45
|
+
sample_weight: OptionType(VectorType),
|
|
46
|
+
});
|
|
47
|
+
/**
|
|
48
|
+
* Configuration for XGBoost quantile regression.
|
|
49
|
+
* Trains separate models for each quantile.
|
|
50
|
+
*/
|
|
51
|
+
export const XGBoostQuantileConfigType = StructType({
|
|
52
|
+
/** Quantiles to predict (e.g., [0.1, 0.5, 0.9] for 80% interval + median) */
|
|
53
|
+
quantiles: VectorType,
|
|
54
|
+
/** Number of boosting rounds (default 100) */
|
|
55
|
+
n_estimators: OptionType(IntegerType),
|
|
56
|
+
/** Maximum tree depth (default 6) */
|
|
57
|
+
max_depth: OptionType(IntegerType),
|
|
58
|
+
/** Learning rate / step size shrinkage (default 0.3) */
|
|
59
|
+
learning_rate: OptionType(FloatType),
|
|
60
|
+
/** Minimum sum of instance weight needed in a child (default 1) */
|
|
61
|
+
min_child_weight: OptionType(IntegerType),
|
|
62
|
+
/** Subsample ratio of training instances (default 1.0) */
|
|
63
|
+
subsample: OptionType(FloatType),
|
|
64
|
+
/** Subsample ratio of columns when constructing trees (default 1.0) */
|
|
65
|
+
colsample_bytree: OptionType(FloatType),
|
|
66
|
+
/** L1 regularization term (default 0) */
|
|
67
|
+
reg_alpha: OptionType(FloatType),
|
|
68
|
+
/** L2 regularization term (default 1) */
|
|
69
|
+
reg_lambda: OptionType(FloatType),
|
|
70
|
+
/** Random seed for reproducibility */
|
|
71
|
+
random_state: OptionType(IntegerType),
|
|
72
|
+
/** Number of parallel threads (default -1 for all cores) */
|
|
73
|
+
n_jobs: OptionType(IntegerType),
|
|
74
|
+
/** Sample weights for training (one per sample, default uniform) */
|
|
75
|
+
sample_weight: OptionType(VectorType),
|
|
44
76
|
});
|
|
45
77
|
// ============================================================================
|
|
46
78
|
// Model Blob Types
|
|
@@ -67,6 +99,24 @@ export const XGBoostModelBlobType = VariantType({
|
|
|
67
99
|
/** Number of classes */
|
|
68
100
|
n_classes: IntegerType,
|
|
69
101
|
}),
|
|
102
|
+
/** XGBoost quantile regressor (multiple models, one per quantile) */
|
|
103
|
+
xgboost_quantile: StructType({
|
|
104
|
+
/** Cloudpickle serialized dict of {quantile: model} */
|
|
105
|
+
data: BlobType,
|
|
106
|
+
/** Quantiles this model predicts */
|
|
107
|
+
quantiles: VectorType,
|
|
108
|
+
/** Number of input features */
|
|
109
|
+
n_features: IntegerType,
|
|
110
|
+
}),
|
|
111
|
+
});
|
|
112
|
+
/**
|
|
113
|
+
* Result from XGBoost quantile prediction.
|
|
114
|
+
*/
|
|
115
|
+
export const XGBoostQuantilePredictResultType = StructType({
|
|
116
|
+
/** Quantile values that were predicted */
|
|
117
|
+
quantiles: VectorType,
|
|
118
|
+
/** Predictions matrix: (n_samples x n_quantiles) */
|
|
119
|
+
predictions: MatrixType,
|
|
70
120
|
});
|
|
71
121
|
// ============================================================================
|
|
72
122
|
// Platform Functions
|
|
@@ -113,6 +163,26 @@ export const xgboost_predict_class = East.platform("xgboost_predict_class", [XGB
|
|
|
113
163
|
* @returns Probability matrix (n_samples x n_classes)
|
|
114
164
|
*/
|
|
115
165
|
export const xgboost_predict_proba = East.platform("xgboost_predict_proba", [XGBoostModelBlobType, MatrixType], MatrixType);
|
|
166
|
+
/**
|
|
167
|
+
* Train XGBoost quantile regression models.
|
|
168
|
+
*
|
|
169
|
+
* Trains one model per quantile using pinball loss (reg:quantileerror).
|
|
170
|
+
* This provides prediction intervals and uncertainty quantification.
|
|
171
|
+
*
|
|
172
|
+
* @param X - Feature matrix
|
|
173
|
+
* @param y - Target vector
|
|
174
|
+
* @param config - Quantile regression configuration (includes quantiles array)
|
|
175
|
+
* @returns Model blob containing trained quantile models
|
|
176
|
+
*/
|
|
177
|
+
export const xgboost_train_quantile = East.platform("xgboost_train_quantile", [MatrixType, VectorType, XGBoostQuantileConfigType], XGBoostModelBlobType);
|
|
178
|
+
/**
|
|
179
|
+
* Predict quantiles with trained XGBoost quantile regressor.
|
|
180
|
+
*
|
|
181
|
+
* @param model - Trained quantile model blob
|
|
182
|
+
* @param X - Feature matrix
|
|
183
|
+
* @returns Quantiles and predictions matrix (n_samples x n_quantiles)
|
|
184
|
+
*/
|
|
185
|
+
export const xgboost_predict_quantile = East.platform("xgboost_predict_quantile", [XGBoostModelBlobType, MatrixType], XGBoostQuantilePredictResultType);
|
|
116
186
|
// ============================================================================
|
|
117
187
|
// Grouped Export
|
|
118
188
|
// ============================================================================
|
|
@@ -128,6 +198,10 @@ export const XGBoostTypes = {
|
|
|
128
198
|
LabelVectorType,
|
|
129
199
|
/** XGBoost configuration type */
|
|
130
200
|
XGBoostConfigType,
|
|
201
|
+
/** XGBoost quantile configuration type */
|
|
202
|
+
XGBoostQuantileConfigType,
|
|
203
|
+
/** Quantile prediction result type */
|
|
204
|
+
XGBoostQuantilePredictResultType,
|
|
131
205
|
/** Model blob type for XGBoost models */
|
|
132
206
|
ModelBlobType: XGBoostModelBlobType,
|
|
133
207
|
};
|
|
@@ -155,6 +229,7 @@ export const XGBoostTypes = {
|
|
|
155
229
|
* reg_lambda: variant('none', null),
|
|
156
230
|
* random_state: variant('some', 42n),
|
|
157
231
|
* n_jobs: variant('none', null),
|
|
232
|
+
* sample_weight: variant('none', null),
|
|
158
233
|
* });
|
|
159
234
|
* return $.return(XGBoost.trainRegressor(X, y, config));
|
|
160
235
|
* });
|
|
@@ -165,12 +240,16 @@ export const XGBoost = {
|
|
|
165
240
|
trainRegressor: xgboost_train_regressor,
|
|
166
241
|
/** Train XGBoost classifier */
|
|
167
242
|
trainClassifier: xgboost_train_classifier,
|
|
243
|
+
/** Train XGBoost quantile regressor */
|
|
244
|
+
trainQuantile: xgboost_train_quantile,
|
|
168
245
|
/** Make predictions with regressor */
|
|
169
246
|
predict: xgboost_predict,
|
|
170
247
|
/** Predict class labels with classifier */
|
|
171
248
|
predictClass: xgboost_predict_class,
|
|
172
249
|
/** Get class probabilities from classifier */
|
|
173
250
|
predictProba: xgboost_predict_proba,
|
|
251
|
+
/** Predict quantiles with quantile regressor */
|
|
252
|
+
predictQuantile: xgboost_predict_quantile,
|
|
174
253
|
/** Type definitions */
|
|
175
254
|
Types: XGBoostTypes,
|
|
176
255
|
};
|
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"xgboost.js","sourceRoot":"","sources":["../../src/xgboost/xgboost.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH;;;;;;;GAOG;AAEH,OAAO,EACH,IAAI,EACJ,UAAU,EACV,WAAW,EACX,UAAU,EACV,WAAW,EACX,SAAS,EACT,QAAQ,GACX,MAAM,eAAe,CAAC;AACvB,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAEtE,yCAAyC;AACzC,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAEtE,+EAA+E;AAC/E,eAAe;AACf,+EAA+E;AAE/E;;GAEG;AACH,MAAM,CAAC,MAAM,iBAAiB,GAAG,UAAU,CAAC;IACxC,8CAA8C;IAC9C,YAAY,EAAE,UAAU,CAAC,WAAW,CAAC;IACrC,qCAAqC;IACrC,SAAS,EAAE,UAAU,CAAC,WAAW,CAAC;IAClC,wDAAwD;IACxD,aAAa,EAAE,UAAU,CAAC,SAAS,CAAC;IACpC,mEAAmE;IACnE,gBAAgB,EAAE,UAAU,CAAC,WAAW,CAAC;IACzC,0DAA0D;IAC1D,SAAS,EAAE,UAAU,CAAC,SAAS,CAAC;IAChC,uEAAuE;IACvE,gBAAgB,EAAE,UAAU,CAAC,SAAS,CAAC;IACvC,yCAAyC;IACzC,SAAS,EAAE,UAAU,CAAC,SAAS,CAAC;IAChC,yCAAyC;IACzC,UAAU,EAAE,UAAU,CAAC,SAAS,CAAC;IACjC,sCAAsC;IACtC,YAAY,EAAE,UAAU,CAAC,WAAW,CAAC;IACrC,4DAA4D;IAC5D,MAAM,EAAE,UAAU,CAAC,WAAW,CAAC;
|
|
1
|
+
{"version":3,"file":"xgboost.js","sourceRoot":"","sources":["../../src/xgboost/xgboost.ts"],"names":[],"mappings":"AAAA;;;GAGG;AAEH;;;;;;;GAOG;AAEH,OAAO,EACH,IAAI,EACJ,UAAU,EACV,WAAW,EACX,UAAU,EACV,WAAW,EACX,SAAS,EACT,QAAQ,GACX,MAAM,eAAe,CAAC;AACvB,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAEtE,yCAAyC;AACzC,OAAO,EAAE,UAAU,EAAE,UAAU,EAAE,eAAe,EAAE,MAAM,aAAa,CAAC;AAEtE,+EAA+E;AAC/E,eAAe;AACf,+EAA+E;AAE/E;;GAEG;AACH,MAAM,CAAC,MAAM,iBAAiB,GAAG,UAAU,CAAC;IACxC,8CAA8C;IAC9C,YAAY,EAAE,UAAU,CAAC,WAAW,CAAC;IACrC,qCAAqC;IACrC,SAAS,EAAE,UAAU,CAAC,WAAW,CAAC;IAClC,wDAAwD;IACxD,aAAa,EAAE,UAAU,CAAC,SAAS,CAAC;IACpC,mEAAmE;IACnE,gBAAgB,EAAE,UAAU,CAAC,WAAW,CAAC;IACzC,0DAA0D;IAC1D,SAAS,EAAE,UAAU,CAAC,SAAS,CAAC;IAChC,uEAAuE;IACvE,gBAAgB,EAAE,UAAU,CAAC,SAAS,CAAC;IACvC,yCAAyC;IACzC,SAAS,EAAE,UAAU,CAAC,SAAS,CAAC;IAChC,yCAAyC;IACzC,UAAU,EAAE,UAAU,CAAC,SAAS,CAAC;IACjC,sCAAsC;IACtC,YAAY,EAAE,UAAU,CAAC,WAAW,CAAC;IACrC,4DAA4D;IAC5D,MAAM,EAAE,UAAU,CAAC,WAAW,CAAC;IAC/B,oEAAoE;IACpE,aAAa,EAAE,UAAU,CAAC,UAAU,CAAC;CACxC,CAAC,CAAC;AAEH;;;GAGG;AACH,MAAM,CAAC,MAAM,yBAAyB,GAAG,UAAU,CAAC;IAChD,6EAA6E;IAC7E,SAAS,EAAE,UAAU;IACrB,8CAA8C;IAC9C,YAAY,EAAE,UAAU,CAAC,WAAW,CAAC;IACrC,qCAAqC;IACrC,SAAS,EAAE,UAAU,CAAC,WAAW,CAAC;IAClC,wDAAwD;IACxD,aAAa,EAAE,UAAU,CAAC,SAAS,CAAC;IACpC,mEAAmE;IACnE,gBAAgB,EAAE,UAAU,CAAC,WAAW,CAAC;IACzC,0DAA0D;IAC1D,SAAS,EAAE,UAAU,CAAC,SAAS,CAAC;IAChC,uEAAuE;IACvE,gBAAgB,EAAE,UAAU,CAAC,SAAS,CAAC;IACvC,yCAAyC;IACzC,SAAS,EAAE,UAAU,CAAC,SAAS,CAAC;IAChC,yCAAyC;IACzC,UAAU,EAAE,UAAU,CAAC,SAAS,CAAC;IACjC,sCAAsC;IACtC,YAAY,EAAE,UAAU,CAAC,WAAW,CAAC;IACrC,4DAA4D;IAC5D,MAAM,EAAE,UAAU,CAAC,WAAW,CAAC;IAC/B,oEAAoE;IACpE,aAAa,EAAE,UAAU,CAAC,UAAU,CAAC;CACxC,CAAC,CAAC;AAEH,+EAA+E;AAC/E,mBAAmB;AACnB,+EAA+E;AAE/E;;;;GAIG;AACH,MAAM,CAAC,MAAM,oBAAoB,GAAG,WAAW,CAAC;IAC5C,8BAA8B;IAC9B,iBAAiB,EAAE,UAAU,CAAC;QAC1B,mCAAmC;QACnC,IAAI,EAAE,QAAQ;QACd,+BAA+B;QAC/B,UAAU,EAAE,WAAW;KAC1B,CAAC;IACF,+BAA+B;IAC/B,kBAAkB,EAAE,UAAU,CAAC;QAC3B,mCAAmC;QACnC,IAAI,EAAE,QAAQ;QACd,+BAA+B;QAC/B,UAAU,EAAE,WAAW;QACvB,wBAAwB;QACxB,SAAS,EAAE,WAAW;KACzB,CAAC;IACF,qEAAqE;IACrE,gBAAgB,EAAE,UAAU,CAAC;QACzB,uDAAuD;QACvD,IAAI,EAAE,QAAQ;QACd,oCAAoC;QACpC,SAAS,EAAE,UAAU;QACrB,+BAA+B;QAC/B,UAAU,EAAE,WAAW;KAC1B,CAAC;CACL,CAAC,CAAC;AAEH;;GAEG;AACH,MAAM,CAAC,MAAM,gCAAgC,GAAG,UAAU,CAAC;IACvD,0CAA0C;IAC1C,SAAS,EAAE,UAAU;IACrB,oDAAoD;IACpD,WAAW,EAAE,UAAU;CAC1B,CAAC,CAAC;AAEH,+EAA+E;AAC/E,qBAAqB;AACrB,+EAA+E;AAE/E;;;;;;;GAOG;AACH,MAAM,CAAC,MAAM,uBAAuB,GAAG,IAAI,CAAC,QAAQ,CAChD,yBAAyB,EACzB,CAAC,UAAU,EAAE,UAAU,EAAE,iBAAiB,CAAC,EAC3C,oBAAoB,CACvB,CAAC;AAEF;;;;;;;GAOG;AACH,MAAM,CAAC,MAAM,wBAAwB,GAAG,IAAI,CAAC,QAAQ,CACjD,0BAA0B,EAC1B,CAAC,UAAU,EAAE,eAAe,EAAE,iBAAiB,CAAC,EAChD,oBAAoB,CACvB,CAAC;AAEF;;;;;;GAMG;AACH,MAAM,CAAC,MAAM,eAAe,GAAG,IAAI,CAAC,QAAQ,CACxC,iBAAiB,EACjB,CAAC,oBAAoB,EAAE,UAAU,CAAC,EAClC,UAAU,CACb,CAAC;AAEF;;;;;;GAMG;AACH,MAAM,CAAC,MAAM,qBAAqB,GAAG,IAAI,CAAC,QAAQ,CAC9C,uBAAuB,EACvB,CAAC,oBAAoB,EAAE,UAAU,CAAC,EAClC,eAAe,CAClB,CAAC;AAEF;;;;;;GAMG;AACH,MAAM,CAAC,MAAM,qBAAqB,GAAG,IAAI,CAAC,QAAQ,CAC9C,uBAAuB,EACvB,CAAC,oBAAoB,EAAE,UAAU,CAAC,EAClC,UAAU,CACb,CAAC;AAEF;;;;;;;;;;GAUG;AACH,MAAM,CAAC,MAAM,sBAAsB,GAAG,IAAI,CAAC,QAAQ,CAC/C,wBAAwB,EACxB,CAAC,UAAU,EAAE,UAAU,EAAE,yBAAyB,CAAC,EACnD,oBAAoB,CACvB,CAAC;AAEF;;;;;;GAMG;AACH,MAAM,CAAC,MAAM,wBAAwB,GAAG,IAAI,CAAC,QAAQ,CACjD,0BAA0B,EAC1B,CAAC,oBAAoB,EAAE,UAAU,CAAC,EAClC,gCAAgC,CACnC,CAAC;AAEF,+EAA+E;AAC/E,iBAAiB;AACjB,+EAA+E;AAE/E;;GAEG;AACH,MAAM,CAAC,MAAM,YAAY,GAAG;IACxB,oCAAoC;IACpC,UAAU;IACV,uCAAuC;IACvC,UAAU;IACV,4CAA4C;IAC5C,eAAe;IACf,iCAAiC;IACjC,iBAAiB;IACjB,0CAA0C;IAC1C,yBAAyB;IACzB,sCAAsC;IACtC,gCAAgC;IAChC,yCAAyC;IACzC,aAAa,EAAE,oBAAoB;CAC7B,CAAC;AAEX;;;;;;;;;;;;;;;;;;;;;;;;;;;;;GA6BG;AACH,MAAM,CAAC,MAAM,OAAO,GAAG;IACnB,8BAA8B;IAC9B,cAAc,EAAE,uBAAuB;IACvC,+BAA+B;IAC/B,eAAe,EAAE,wBAAwB;IACzC,uCAAuC;IACvC,aAAa,EAAE,sBAAsB;IACrC,sCAAsC;IACtC,OAAO,EAAE,eAAe;IACxB,2CAA2C;IAC3C,YAAY,EAAE,qBAAqB;IACnC,8CAA8C;IAC9C,YAAY,EAAE,qBAAqB;IACnC,gDAAgD;IAChD,eAAe,EAAE,wBAAwB;IACzC,uBAAuB;IACvB,KAAK,EAAE,YAAY;CACb,CAAC"}
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@elaraai/east-py-datascience",
|
|
3
|
-
"version": "0.0.2-beta.
|
|
3
|
+
"version": "0.0.2-beta.11",
|
|
4
4
|
"description": "East Data Science - ML/optimization platform functions for East (TypeScript definitions)",
|
|
5
5
|
"main": "dist/index.js",
|
|
6
6
|
"types": "dist/index.d.ts",
|
|
@@ -76,7 +76,7 @@
|
|
|
76
76
|
"typescript": "~5.9.2"
|
|
77
77
|
},
|
|
78
78
|
"dependencies": {
|
|
79
|
-
"@elaraai/east": "^0.0.1-beta.
|
|
80
|
-
"@elaraai/east-node-std": "^0.0.1-beta.
|
|
79
|
+
"@elaraai/east": "^0.0.1-beta.16",
|
|
80
|
+
"@elaraai/east-node-std": "^0.0.1-beta.9"
|
|
81
81
|
}
|
|
82
82
|
}
|