@elaraai/east-py-datascience 0.0.2-beta.1 → 0.0.2-beta.11

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -10,7 +10,7 @@
10
10
  *
11
11
  * @packageDocumentation
12
12
  */
13
- import { StructType, VariantType, OptionType, IntegerType, BooleanType, FloatType, BlobType, ArrayType, StringType } from "@elaraai/east";
13
+ import { StructType, VariantType, OptionType, IntegerType, BooleanType, FloatType, BlobType, ArrayType, StringType, NullType } from "@elaraai/east";
14
14
  export { VectorType, MatrixType, LabelVectorType } from "../types.js";
15
15
  export { XGBoostConfigType } from "../xgboost/xgboost.js";
16
16
  export { LightGBMConfigType } from "../lightgbm/lightgbm.js";
@@ -27,6 +27,19 @@ export declare const SplitConfigType: StructType<{
27
27
  /** Whether to shuffle data before splitting (default true) */
28
28
  shuffle: OptionType<BooleanType>;
29
29
  }>;
30
+ /**
31
+ * Configuration for 3-way train/val/test split.
32
+ */
33
+ export declare const ThreeWaySplitConfigType: StructType<{
34
+ /** Proportion of data for validation (default 0.15) */
35
+ val_size: OptionType<FloatType>;
36
+ /** Proportion of data for test/holdout (default 0.15) */
37
+ test_size: OptionType<FloatType>;
38
+ /** Random seed for reproducibility */
39
+ random_state: OptionType<IntegerType>;
40
+ /** Whether to shuffle data before splitting (default true) */
41
+ shuffle: OptionType<BooleanType>;
42
+ }>;
30
43
  /**
31
44
  * Result of train/test split.
32
45
  */
@@ -41,33 +54,365 @@ export declare const SplitResultType: StructType<{
41
54
  y_test: ArrayType<FloatType>;
42
55
  }>;
43
56
  /**
44
- * Regression metrics result.
57
+ * Result of 3-way train/val/test split.
58
+ */
59
+ export declare const ThreeWaySplitResultType: StructType<{
60
+ /** Training features */
61
+ X_train: ArrayType<ArrayType<FloatType>>;
62
+ /** Validation features */
63
+ X_val: ArrayType<ArrayType<FloatType>>;
64
+ /** Test/holdout features */
65
+ X_test: ArrayType<ArrayType<FloatType>>;
66
+ /** Training targets (matrix) */
67
+ Y_train: ArrayType<ArrayType<FloatType>>;
68
+ /** Validation targets (matrix) */
69
+ Y_val: ArrayType<ArrayType<FloatType>>;
70
+ /** Test/holdout targets (matrix) */
71
+ Y_test: ArrayType<ArrayType<FloatType>>;
72
+ }>;
73
+ /**
74
+ * Available regression metrics from sklearn.metrics.
75
+ */
76
+ export declare const RegressionMetricType: VariantType<{
77
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
78
+ mse: NullType;
79
+ /** Root Mean Squared Error - sqrt(MSE) */
80
+ rmse: NullType;
81
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
82
+ mae: NullType;
83
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
84
+ r2: NullType;
85
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
86
+ mape: NullType;
87
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
88
+ explained_variance: NullType;
89
+ /** Max Error - sklearn.metrics.max_error */
90
+ max_error: NullType;
91
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
92
+ median_ae: NullType;
93
+ }>;
94
+ /**
95
+ * Single metric result (scalar value).
96
+ */
97
+ export declare const MetricResultType: StructType<{
98
+ /** Which metric was computed */
99
+ metric: VariantType<{
100
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
101
+ mse: NullType;
102
+ /** Root Mean Squared Error - sqrt(MSE) */
103
+ rmse: NullType;
104
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
105
+ mae: NullType;
106
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
107
+ r2: NullType;
108
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
109
+ mape: NullType;
110
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
111
+ explained_variance: NullType;
112
+ /** Max Error - sklearn.metrics.max_error */
113
+ max_error: NullType;
114
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
115
+ median_ae: NullType;
116
+ }>;
117
+ /** Scalar metric value */
118
+ value: FloatType;
119
+ }>;
120
+ /**
121
+ * Result containing multiple computed metrics.
122
+ */
123
+ export declare const MetricsResultType: ArrayType<StructType<{
124
+ /** Which metric was computed */
125
+ metric: VariantType<{
126
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
127
+ mse: NullType;
128
+ /** Root Mean Squared Error - sqrt(MSE) */
129
+ rmse: NullType;
130
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
131
+ mae: NullType;
132
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
133
+ r2: NullType;
134
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
135
+ mape: NullType;
136
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
137
+ explained_variance: NullType;
138
+ /** Max Error - sklearn.metrics.max_error */
139
+ max_error: NullType;
140
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
141
+ median_ae: NullType;
142
+ }>;
143
+ /** Scalar metric value */
144
+ value: FloatType;
145
+ }>>;
146
+ /**
147
+ * Aggregation strategy for multi-target metrics.
148
+ */
149
+ export declare const MetricAggregationType: VariantType<{
150
+ /** Return metric for each target separately (default) */
151
+ per_target: NullType;
152
+ /** Average across all targets (uniform weights) */
153
+ uniform_average: NullType;
154
+ }>;
155
+ /**
156
+ * Configuration for multi-target metrics computation.
157
+ */
158
+ export declare const MultiMetricsConfigType: StructType<{
159
+ /** How to aggregate metrics across targets (default: per_target) */
160
+ aggregation: OptionType<VariantType<{
161
+ /** Return metric for each target separately (default) */
162
+ per_target: NullType;
163
+ /** Average across all targets (uniform weights) */
164
+ uniform_average: NullType;
165
+ }>>;
166
+ }>;
167
+ /**
168
+ * Multi-target metric result.
169
+ */
170
+ export declare const MultiMetricResultType: StructType<{
171
+ /** Which metric was computed */
172
+ metric: VariantType<{
173
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
174
+ mse: NullType;
175
+ /** Root Mean Squared Error - sqrt(MSE) */
176
+ rmse: NullType;
177
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
178
+ mae: NullType;
179
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
180
+ r2: NullType;
181
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
182
+ mape: NullType;
183
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
184
+ explained_variance: NullType;
185
+ /** Max Error - sklearn.metrics.max_error */
186
+ max_error: NullType;
187
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
188
+ median_ae: NullType;
189
+ }>;
190
+ /** Metric value(s) */
191
+ value: VariantType<{
192
+ /** Aggregated scalar value */
193
+ scalar: FloatType;
194
+ /** Per-target values [target_0, target_1, ...] */
195
+ per_target: ArrayType<FloatType>;
196
+ }>;
197
+ }>;
198
+ /**
199
+ * Result containing multiple computed metrics (multi-target).
200
+ */
201
+ export declare const MultiMetricsResultType: ArrayType<StructType<{
202
+ /** Which metric was computed */
203
+ metric: VariantType<{
204
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
205
+ mse: NullType;
206
+ /** Root Mean Squared Error - sqrt(MSE) */
207
+ rmse: NullType;
208
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
209
+ mae: NullType;
210
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
211
+ r2: NullType;
212
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
213
+ mape: NullType;
214
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
215
+ explained_variance: NullType;
216
+ /** Max Error - sklearn.metrics.max_error */
217
+ max_error: NullType;
218
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
219
+ median_ae: NullType;
220
+ }>;
221
+ /** Metric value(s) */
222
+ value: VariantType<{
223
+ /** Aggregated scalar value */
224
+ scalar: FloatType;
225
+ /** Per-target values [target_0, target_1, ...] */
226
+ per_target: ArrayType<FloatType>;
227
+ }>;
228
+ }>>;
229
+ /**
230
+ * Available classification metrics from sklearn.metrics.
231
+ */
232
+ export declare const ClassificationMetricType: VariantType<{
233
+ /** Accuracy - sklearn.metrics.accuracy_score */
234
+ accuracy: NullType;
235
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
236
+ balanced_accuracy: NullType;
237
+ /** Precision - sklearn.metrics.precision_score */
238
+ precision: NullType;
239
+ /** Recall - sklearn.metrics.recall_score */
240
+ recall: NullType;
241
+ /** F1 Score - sklearn.metrics.f1_score */
242
+ f1: NullType;
243
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
244
+ matthews_corrcoef: NullType;
245
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
246
+ cohen_kappa: NullType;
247
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
248
+ jaccard: NullType;
249
+ }>;
250
+ /**
251
+ * Averaging strategy for multi-class classification metrics.
252
+ */
253
+ export declare const ClassificationAverageType: VariantType<{
254
+ /** Calculate metrics for each label, return unweighted mean */
255
+ macro: NullType;
256
+ /** Calculate metrics globally by counting total TP, FP, FN */
257
+ micro: NullType;
258
+ /** Calculate metrics for each label, return weighted mean by support */
259
+ weighted: NullType;
260
+ /** Only for binary classification */
261
+ binary: NullType;
262
+ }>;
263
+ /**
264
+ * Configuration for classification metrics.
265
+ */
266
+ export declare const ClassificationMetricsConfigType: StructType<{
267
+ /** Averaging strategy for multi-class (default: macro) */
268
+ average: OptionType<VariantType<{
269
+ /** Calculate metrics for each label, return unweighted mean */
270
+ macro: NullType;
271
+ /** Calculate metrics globally by counting total TP, FP, FN */
272
+ micro: NullType;
273
+ /** Calculate metrics for each label, return weighted mean by support */
274
+ weighted: NullType;
275
+ /** Only for binary classification */
276
+ binary: NullType;
277
+ }>>;
278
+ }>;
279
+ /**
280
+ * Single classification metric result.
281
+ */
282
+ export declare const ClassificationMetricResultType: StructType<{
283
+ /** Which metric was computed */
284
+ metric: VariantType<{
285
+ /** Accuracy - sklearn.metrics.accuracy_score */
286
+ accuracy: NullType;
287
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
288
+ balanced_accuracy: NullType;
289
+ /** Precision - sklearn.metrics.precision_score */
290
+ precision: NullType;
291
+ /** Recall - sklearn.metrics.recall_score */
292
+ recall: NullType;
293
+ /** F1 Score - sklearn.metrics.f1_score */
294
+ f1: NullType;
295
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
296
+ matthews_corrcoef: NullType;
297
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
298
+ cohen_kappa: NullType;
299
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
300
+ jaccard: NullType;
301
+ }>;
302
+ /** Scalar metric value */
303
+ value: FloatType;
304
+ }>;
305
+ /**
306
+ * Result containing multiple computed classification metrics.
45
307
  */
46
- export declare const RegressionMetricsType: StructType<{
47
- /** Mean Squared Error */
48
- mse: FloatType;
49
- /** Root Mean Squared Error */
50
- rmse: FloatType;
51
- /** Mean Absolute Error */
52
- mae: FloatType;
53
- /** R-squared (coefficient of determination) */
54
- r2: FloatType;
55
- /** Mean Absolute Percentage Error */
56
- mape: FloatType;
308
+ export declare const ClassificationMetricResultsType: ArrayType<StructType<{
309
+ /** Which metric was computed */
310
+ metric: VariantType<{
311
+ /** Accuracy - sklearn.metrics.accuracy_score */
312
+ accuracy: NullType;
313
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
314
+ balanced_accuracy: NullType;
315
+ /** Precision - sklearn.metrics.precision_score */
316
+ precision: NullType;
317
+ /** Recall - sklearn.metrics.recall_score */
318
+ recall: NullType;
319
+ /** F1 Score - sklearn.metrics.f1_score */
320
+ f1: NullType;
321
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
322
+ matthews_corrcoef: NullType;
323
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
324
+ cohen_kappa: NullType;
325
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
326
+ jaccard: NullType;
327
+ }>;
328
+ /** Scalar metric value */
329
+ value: FloatType;
330
+ }>>;
331
+ /**
332
+ * Configuration for multi-target classification metrics.
333
+ */
334
+ export declare const MultiClassificationConfigType: StructType<{
335
+ /** Averaging strategy for multi-class (default: macro) */
336
+ average: OptionType<VariantType<{
337
+ /** Calculate metrics for each label, return unweighted mean */
338
+ macro: NullType;
339
+ /** Calculate metrics globally by counting total TP, FP, FN */
340
+ micro: NullType;
341
+ /** Calculate metrics for each label, return weighted mean by support */
342
+ weighted: NullType;
343
+ /** Only for binary classification */
344
+ binary: NullType;
345
+ }>>;
346
+ /** How to aggregate across targets (default: per_target) */
347
+ aggregation: OptionType<VariantType<{
348
+ /** Return metric for each target separately (default) */
349
+ per_target: NullType;
350
+ /** Average across all targets (uniform weights) */
351
+ uniform_average: NullType;
352
+ }>>;
57
353
  }>;
58
354
  /**
59
- * Classification metrics result.
355
+ * Multi-target classification metric result.
60
356
  */
61
- export declare const ClassificationMetricsType: StructType<{
62
- /** Accuracy score */
63
- accuracy: FloatType;
64
- /** Precision (weighted average) */
65
- precision: FloatType;
66
- /** Recall (weighted average) */
67
- recall: FloatType;
68
- /** F1 score (weighted average) */
69
- f1: FloatType;
357
+ export declare const MultiClassificationMetricResultType: StructType<{
358
+ /** Which metric was computed */
359
+ metric: VariantType<{
360
+ /** Accuracy - sklearn.metrics.accuracy_score */
361
+ accuracy: NullType;
362
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
363
+ balanced_accuracy: NullType;
364
+ /** Precision - sklearn.metrics.precision_score */
365
+ precision: NullType;
366
+ /** Recall - sklearn.metrics.recall_score */
367
+ recall: NullType;
368
+ /** F1 Score - sklearn.metrics.f1_score */
369
+ f1: NullType;
370
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
371
+ matthews_corrcoef: NullType;
372
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
373
+ cohen_kappa: NullType;
374
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
375
+ jaccard: NullType;
376
+ }>;
377
+ /** Metric value(s) */
378
+ value: VariantType<{
379
+ /** Aggregated scalar value */
380
+ scalar: FloatType;
381
+ /** Per-target values */
382
+ per_target: ArrayType<FloatType>;
383
+ }>;
70
384
  }>;
385
+ /**
386
+ * Result containing multiple computed classification metrics (multi-target).
387
+ */
388
+ export declare const MultiClassificationMetricResultsType: ArrayType<StructType<{
389
+ /** Which metric was computed */
390
+ metric: VariantType<{
391
+ /** Accuracy - sklearn.metrics.accuracy_score */
392
+ accuracy: NullType;
393
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
394
+ balanced_accuracy: NullType;
395
+ /** Precision - sklearn.metrics.precision_score */
396
+ precision: NullType;
397
+ /** Recall - sklearn.metrics.recall_score */
398
+ recall: NullType;
399
+ /** F1 Score - sklearn.metrics.f1_score */
400
+ f1: NullType;
401
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
402
+ matthews_corrcoef: NullType;
403
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
404
+ cohen_kappa: NullType;
405
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
406
+ jaccard: NullType;
407
+ }>;
408
+ /** Metric value(s) */
409
+ value: VariantType<{
410
+ /** Aggregated scalar value */
411
+ scalar: FloatType;
412
+ /** Per-target values */
413
+ per_target: ArrayType<FloatType>;
414
+ }>;
415
+ }>>;
71
416
  /**
72
417
  * Model blob type for serialized sklearn models.
73
418
  *
@@ -117,6 +462,7 @@ export declare const RegressorChainBaseConfigType: VariantType<{
117
462
  reg_lambda: OptionType<FloatType>;
118
463
  random_state: OptionType<IntegerType>;
119
464
  n_jobs: OptionType<IntegerType>;
465
+ sample_weight: OptionType<ArrayType<FloatType>>;
120
466
  }>;
121
467
  /** LightGBM regressor */
122
468
  lightgbm: StructType<{
@@ -140,19 +486,19 @@ export declare const RegressorChainBaseConfigType: VariantType<{
140
486
  col_sample: OptionType<FloatType>;
141
487
  random_state: OptionType<IntegerType>;
142
488
  distribution: OptionType<VariantType<{
143
- normal: StructType<{}>;
144
- lognormal: StructType<{}>;
489
+ normal: NullType;
490
+ lognormal: NullType;
145
491
  }>>;
146
492
  }>;
147
493
  /** Gaussian Process regressor */
148
494
  gp: StructType<{
149
495
  kernel: OptionType<VariantType<{
150
- rbf: StructType<{}>;
151
- matern_1_2: StructType<{}>;
152
- matern_3_2: StructType<{}>;
153
- matern_5_2: StructType<{}>;
154
- rational_quadratic: StructType<{}>;
155
- dot_product: StructType<{}>;
496
+ rbf: NullType;
497
+ matern_1_2: NullType;
498
+ matern_3_2: NullType;
499
+ matern_5_2: NullType;
500
+ rational_quadratic: NullType;
501
+ dot_product: NullType;
156
502
  }>>;
157
503
  alpha: OptionType<FloatType>;
158
504
  n_restarts_optimizer: OptionType<IntegerType>;
@@ -178,6 +524,7 @@ export declare const RegressorChainConfigType: StructType<{
178
524
  reg_lambda: OptionType<FloatType>;
179
525
  random_state: OptionType<IntegerType>;
180
526
  n_jobs: OptionType<IntegerType>;
527
+ sample_weight: OptionType<ArrayType<FloatType>>;
181
528
  }>;
182
529
  /** LightGBM regressor */
183
530
  lightgbm: StructType<{
@@ -201,19 +548,19 @@ export declare const RegressorChainConfigType: StructType<{
201
548
  col_sample: OptionType<FloatType>;
202
549
  random_state: OptionType<IntegerType>;
203
550
  distribution: OptionType<VariantType<{
204
- normal: StructType<{}>;
205
- lognormal: StructType<{}>;
551
+ normal: NullType;
552
+ lognormal: NullType;
206
553
  }>>;
207
554
  }>;
208
555
  /** Gaussian Process regressor */
209
556
  gp: StructType<{
210
557
  kernel: OptionType<VariantType<{
211
- rbf: StructType<{}>;
212
- matern_1_2: StructType<{}>;
213
- matern_3_2: StructType<{}>;
214
- matern_5_2: StructType<{}>;
215
- rational_quadratic: StructType<{}>;
216
- dot_product: StructType<{}>;
558
+ rbf: NullType;
559
+ matern_1_2: NullType;
560
+ matern_3_2: NullType;
561
+ matern_5_2: NullType;
562
+ rational_quadratic: NullType;
563
+ dot_product: NullType;
217
564
  }>>;
218
565
  alpha: OptionType<FloatType>;
219
566
  n_restarts_optimizer: OptionType<IntegerType>;
@@ -389,46 +736,6 @@ export declare const sklearn_min_max_scaler_transform: import("@elaraai/east").P
389
736
  base_estimator_type: StringType;
390
737
  }>;
391
738
  }>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
392
- /**
393
- * Compute regression metrics.
394
- *
395
- * @param y_true - True target values
396
- * @param y_pred - Predicted target values
397
- * @returns Regression metrics (MSE, RMSE, MAE, R2, MAPE)
398
- */
399
- export declare const sklearn_metrics_regression: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>], StructType<{
400
- /** Mean Squared Error */
401
- mse: FloatType;
402
- /** Root Mean Squared Error */
403
- rmse: FloatType;
404
- /** Mean Absolute Error */
405
- mae: FloatType;
406
- /** R-squared (coefficient of determination) */
407
- r2: FloatType;
408
- /** Mean Absolute Percentage Error */
409
- mape: FloatType;
410
- }>>;
411
- /**
412
- * Compute classification metrics.
413
- *
414
- * @param y_true - True class labels
415
- * @param y_pred - Predicted class labels
416
- * @returns Classification metrics (accuracy, precision, recall, F1)
417
- */
418
- export declare const sklearn_metrics_classification: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>], StructType<{
419
- /** Accuracy score */
420
- accuracy: FloatType;
421
- /** Precision (weighted average) */
422
- precision: FloatType;
423
- /** Recall (weighted average) */
424
- recall: FloatType;
425
- /** F1 score (weighted average) */
426
- f1: FloatType;
427
- }>>;
428
- /**
429
- * Multi-target output type for RegressorChain.
430
- */
431
- export declare const MultiTargetType: ArrayType<ArrayType<FloatType>>;
432
739
  /**
433
740
  * Train a RegressorChain for multi-target regression.
434
741
  *
@@ -455,6 +762,7 @@ export declare const sklearn_regressor_chain_train: import("@elaraai/east").Plat
455
762
  reg_lambda: OptionType<FloatType>;
456
763
  random_state: OptionType<IntegerType>;
457
764
  n_jobs: OptionType<IntegerType>;
765
+ sample_weight: OptionType<ArrayType<FloatType>>;
458
766
  }>;
459
767
  /** LightGBM regressor */
460
768
  lightgbm: StructType<{
@@ -478,19 +786,19 @@ export declare const sklearn_regressor_chain_train: import("@elaraai/east").Plat
478
786
  col_sample: OptionType<FloatType>;
479
787
  random_state: OptionType<IntegerType>;
480
788
  distribution: OptionType<VariantType<{
481
- normal: StructType<{}>;
482
- lognormal: StructType<{}>;
789
+ normal: NullType;
790
+ lognormal: NullType;
483
791
  }>>;
484
792
  }>;
485
793
  /** Gaussian Process regressor */
486
794
  gp: StructType<{
487
795
  kernel: OptionType<VariantType<{
488
- rbf: StructType<{}>;
489
- matern_1_2: StructType<{}>;
490
- matern_3_2: StructType<{}>;
491
- matern_5_2: StructType<{}>;
492
- rational_quadratic: StructType<{}>;
493
- dot_product: StructType<{}>;
796
+ rbf: NullType;
797
+ matern_1_2: NullType;
798
+ matern_3_2: NullType;
799
+ matern_5_2: NullType;
800
+ rational_quadratic: NullType;
801
+ dot_product: NullType;
494
802
  }>>;
495
803
  alpha: OptionType<FloatType>;
496
804
  n_restarts_optimizer: OptionType<IntegerType>;
@@ -563,6 +871,281 @@ export declare const sklearn_regressor_chain_predict: import("@elaraai/east").Pl
563
871
  base_estimator_type: StringType;
564
872
  }>;
565
873
  }>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
874
+ /**
875
+ * Split arrays into train, validation, and test subsets.
876
+ *
877
+ * @param X - Feature matrix
878
+ * @param Y - Target matrix (multi-target)
879
+ * @param config - Split configuration with val_size and test_size
880
+ * @returns Split result with X_train, X_val, X_test, Y_train, Y_val, Y_test
881
+ */
882
+ export declare const sklearn_train_val_test_split: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
883
+ /** Proportion of data for validation (default 0.15) */
884
+ val_size: OptionType<FloatType>;
885
+ /** Proportion of data for test/holdout (default 0.15) */
886
+ test_size: OptionType<FloatType>;
887
+ /** Random seed for reproducibility */
888
+ random_state: OptionType<IntegerType>;
889
+ /** Whether to shuffle data before splitting (default true) */
890
+ shuffle: OptionType<BooleanType>;
891
+ }>], StructType<{
892
+ /** Training features */
893
+ X_train: ArrayType<ArrayType<FloatType>>;
894
+ /** Validation features */
895
+ X_val: ArrayType<ArrayType<FloatType>>;
896
+ /** Test/holdout features */
897
+ X_test: ArrayType<ArrayType<FloatType>>;
898
+ /** Training targets (matrix) */
899
+ Y_train: ArrayType<ArrayType<FloatType>>;
900
+ /** Validation targets (matrix) */
901
+ Y_val: ArrayType<ArrayType<FloatType>>;
902
+ /** Test/holdout targets (matrix) */
903
+ Y_test: ArrayType<ArrayType<FloatType>>;
904
+ }>>;
905
+ /**
906
+ * Compute regression metrics for single-target predictions.
907
+ *
908
+ * @param y_true - True target values (1D vector)
909
+ * @param y_pred - Predicted target values (1D vector)
910
+ * @param metrics - Array of metrics to compute
911
+ * @returns Array of metric results with scalar values
912
+ */
913
+ export declare const sklearn_compute_metrics: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>, ArrayType<VariantType<{
914
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
915
+ mse: NullType;
916
+ /** Root Mean Squared Error - sqrt(MSE) */
917
+ rmse: NullType;
918
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
919
+ mae: NullType;
920
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
921
+ r2: NullType;
922
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
923
+ mape: NullType;
924
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
925
+ explained_variance: NullType;
926
+ /** Max Error - sklearn.metrics.max_error */
927
+ max_error: NullType;
928
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
929
+ median_ae: NullType;
930
+ }>>], ArrayType<StructType<{
931
+ /** Which metric was computed */
932
+ metric: VariantType<{
933
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
934
+ mse: NullType;
935
+ /** Root Mean Squared Error - sqrt(MSE) */
936
+ rmse: NullType;
937
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
938
+ mae: NullType;
939
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
940
+ r2: NullType;
941
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
942
+ mape: NullType;
943
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
944
+ explained_variance: NullType;
945
+ /** Max Error - sklearn.metrics.max_error */
946
+ max_error: NullType;
947
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
948
+ median_ae: NullType;
949
+ }>;
950
+ /** Scalar metric value */
951
+ value: FloatType;
952
+ }>>>;
953
+ /**
954
+ * Compute regression metrics for multi-target predictions.
955
+ *
956
+ * @param Y_true - True target matrix [n_samples, n_targets]
957
+ * @param Y_pred - Predicted target matrix [n_samples, n_targets]
958
+ * @param metrics - Array of metrics to compute
959
+ * @param config - Aggregation configuration
960
+ * @returns Array of metric results with per-target or aggregated values
961
+ */
962
+ export declare const sklearn_compute_metrics_multi: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
963
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
964
+ mse: NullType;
965
+ /** Root Mean Squared Error - sqrt(MSE) */
966
+ rmse: NullType;
967
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
968
+ mae: NullType;
969
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
970
+ r2: NullType;
971
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
972
+ mape: NullType;
973
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
974
+ explained_variance: NullType;
975
+ /** Max Error - sklearn.metrics.max_error */
976
+ max_error: NullType;
977
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
978
+ median_ae: NullType;
979
+ }>>, StructType<{
980
+ /** How to aggregate metrics across targets (default: per_target) */
981
+ aggregation: OptionType<VariantType<{
982
+ /** Return metric for each target separately (default) */
983
+ per_target: NullType;
984
+ /** Average across all targets (uniform weights) */
985
+ uniform_average: NullType;
986
+ }>>;
987
+ }>], ArrayType<StructType<{
988
+ /** Which metric was computed */
989
+ metric: VariantType<{
990
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
991
+ mse: NullType;
992
+ /** Root Mean Squared Error - sqrt(MSE) */
993
+ rmse: NullType;
994
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
995
+ mae: NullType;
996
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
997
+ r2: NullType;
998
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
999
+ mape: NullType;
1000
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1001
+ explained_variance: NullType;
1002
+ /** Max Error - sklearn.metrics.max_error */
1003
+ max_error: NullType;
1004
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1005
+ median_ae: NullType;
1006
+ }>;
1007
+ /** Metric value(s) */
1008
+ value: VariantType<{
1009
+ /** Aggregated scalar value */
1010
+ scalar: FloatType;
1011
+ /** Per-target values [target_0, target_1, ...] */
1012
+ per_target: ArrayType<FloatType>;
1013
+ }>;
1014
+ }>>>;
1015
+ /**
1016
+ * Compute classification metrics for single-target predictions.
1017
+ *
1018
+ * @param y_true - True class labels (1D integer array)
1019
+ * @param y_pred - Predicted class labels (1D integer array)
1020
+ * @param metrics - Array of metrics to compute
1021
+ * @param config - Configuration (averaging strategy)
1022
+ * @returns Array of metric results with scalar values
1023
+ */
1024
+ export declare const sklearn_compute_classification_metrics: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>, ArrayType<VariantType<{
1025
+ /** Accuracy - sklearn.metrics.accuracy_score */
1026
+ accuracy: NullType;
1027
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1028
+ balanced_accuracy: NullType;
1029
+ /** Precision - sklearn.metrics.precision_score */
1030
+ precision: NullType;
1031
+ /** Recall - sklearn.metrics.recall_score */
1032
+ recall: NullType;
1033
+ /** F1 Score - sklearn.metrics.f1_score */
1034
+ f1: NullType;
1035
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1036
+ matthews_corrcoef: NullType;
1037
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1038
+ cohen_kappa: NullType;
1039
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1040
+ jaccard: NullType;
1041
+ }>>, StructType<{
1042
+ /** Averaging strategy for multi-class (default: macro) */
1043
+ average: OptionType<VariantType<{
1044
+ /** Calculate metrics for each label, return unweighted mean */
1045
+ macro: NullType;
1046
+ /** Calculate metrics globally by counting total TP, FP, FN */
1047
+ micro: NullType;
1048
+ /** Calculate metrics for each label, return weighted mean by support */
1049
+ weighted: NullType;
1050
+ /** Only for binary classification */
1051
+ binary: NullType;
1052
+ }>>;
1053
+ }>], ArrayType<StructType<{
1054
+ /** Which metric was computed */
1055
+ metric: VariantType<{
1056
+ /** Accuracy - sklearn.metrics.accuracy_score */
1057
+ accuracy: NullType;
1058
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1059
+ balanced_accuracy: NullType;
1060
+ /** Precision - sklearn.metrics.precision_score */
1061
+ precision: NullType;
1062
+ /** Recall - sklearn.metrics.recall_score */
1063
+ recall: NullType;
1064
+ /** F1 Score - sklearn.metrics.f1_score */
1065
+ f1: NullType;
1066
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1067
+ matthews_corrcoef: NullType;
1068
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1069
+ cohen_kappa: NullType;
1070
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1071
+ jaccard: NullType;
1072
+ }>;
1073
+ /** Scalar metric value */
1074
+ value: FloatType;
1075
+ }>>>;
1076
+ /**
1077
+ * Compute classification metrics for multi-target predictions.
1078
+ *
1079
+ * @param Y_true - True class labels matrix [n_samples, n_targets]
1080
+ * @param Y_pred - Predicted class labels matrix [n_samples, n_targets]
1081
+ * @param metrics - Array of metrics to compute
1082
+ * @param config - Configuration (averaging, aggregation)
1083
+ * @returns Array of metric results with per-target or aggregated values
1084
+ */
1085
+ export declare const sklearn_compute_classification_metrics_multi: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
1086
+ /** Accuracy - sklearn.metrics.accuracy_score */
1087
+ accuracy: NullType;
1088
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1089
+ balanced_accuracy: NullType;
1090
+ /** Precision - sklearn.metrics.precision_score */
1091
+ precision: NullType;
1092
+ /** Recall - sklearn.metrics.recall_score */
1093
+ recall: NullType;
1094
+ /** F1 Score - sklearn.metrics.f1_score */
1095
+ f1: NullType;
1096
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1097
+ matthews_corrcoef: NullType;
1098
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1099
+ cohen_kappa: NullType;
1100
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1101
+ jaccard: NullType;
1102
+ }>>, StructType<{
1103
+ /** Averaging strategy for multi-class (default: macro) */
1104
+ average: OptionType<VariantType<{
1105
+ /** Calculate metrics for each label, return unweighted mean */
1106
+ macro: NullType;
1107
+ /** Calculate metrics globally by counting total TP, FP, FN */
1108
+ micro: NullType;
1109
+ /** Calculate metrics for each label, return weighted mean by support */
1110
+ weighted: NullType;
1111
+ /** Only for binary classification */
1112
+ binary: NullType;
1113
+ }>>;
1114
+ /** How to aggregate across targets (default: per_target) */
1115
+ aggregation: OptionType<VariantType<{
1116
+ /** Return metric for each target separately (default) */
1117
+ per_target: NullType;
1118
+ /** Average across all targets (uniform weights) */
1119
+ uniform_average: NullType;
1120
+ }>>;
1121
+ }>], ArrayType<StructType<{
1122
+ /** Which metric was computed */
1123
+ metric: VariantType<{
1124
+ /** Accuracy - sklearn.metrics.accuracy_score */
1125
+ accuracy: NullType;
1126
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1127
+ balanced_accuracy: NullType;
1128
+ /** Precision - sklearn.metrics.precision_score */
1129
+ precision: NullType;
1130
+ /** Recall - sklearn.metrics.recall_score */
1131
+ recall: NullType;
1132
+ /** F1 Score - sklearn.metrics.f1_score */
1133
+ f1: NullType;
1134
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1135
+ matthews_corrcoef: NullType;
1136
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1137
+ cohen_kappa: NullType;
1138
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1139
+ jaccard: NullType;
1140
+ }>;
1141
+ /** Metric value(s) */
1142
+ value: VariantType<{
1143
+ /** Aggregated scalar value */
1144
+ scalar: FloatType;
1145
+ /** Per-target values */
1146
+ per_target: ArrayType<FloatType>;
1147
+ }>;
1148
+ }>>>;
566
1149
  /**
567
1150
  * Type definitions for sklearn functions.
568
1151
  */
@@ -593,29 +1176,31 @@ export declare const SklearnTypes: {
593
1176
  /** Test labels */
594
1177
  y_test: ArrayType<FloatType>;
595
1178
  }>;
596
- /** Regression metrics type */
597
- readonly RegressionMetricsType: StructType<{
598
- /** Mean Squared Error */
599
- mse: FloatType;
600
- /** Root Mean Squared Error */
601
- rmse: FloatType;
602
- /** Mean Absolute Error */
603
- mae: FloatType;
604
- /** R-squared (coefficient of determination) */
605
- r2: FloatType;
606
- /** Mean Absolute Percentage Error */
607
- mape: FloatType;
1179
+ /** 3-way split configuration type */
1180
+ readonly ThreeWaySplitConfigType: StructType<{
1181
+ /** Proportion of data for validation (default 0.15) */
1182
+ val_size: OptionType<FloatType>;
1183
+ /** Proportion of data for test/holdout (default 0.15) */
1184
+ test_size: OptionType<FloatType>;
1185
+ /** Random seed for reproducibility */
1186
+ random_state: OptionType<IntegerType>;
1187
+ /** Whether to shuffle data before splitting (default true) */
1188
+ shuffle: OptionType<BooleanType>;
608
1189
  }>;
609
- /** Classification metrics type */
610
- readonly ClassificationMetricsType: StructType<{
611
- /** Accuracy score */
612
- accuracy: FloatType;
613
- /** Precision (weighted average) */
614
- precision: FloatType;
615
- /** Recall (weighted average) */
616
- recall: FloatType;
617
- /** F1 score (weighted average) */
618
- f1: FloatType;
1190
+ /** 3-way split result type */
1191
+ readonly ThreeWaySplitResultType: StructType<{
1192
+ /** Training features */
1193
+ X_train: ArrayType<ArrayType<FloatType>>;
1194
+ /** Validation features */
1195
+ X_val: ArrayType<ArrayType<FloatType>>;
1196
+ /** Test/holdout features */
1197
+ X_test: ArrayType<ArrayType<FloatType>>;
1198
+ /** Training targets (matrix) */
1199
+ Y_train: ArrayType<ArrayType<FloatType>>;
1200
+ /** Validation targets (matrix) */
1201
+ Y_val: ArrayType<ArrayType<FloatType>>;
1202
+ /** Test/holdout targets (matrix) */
1203
+ Y_test: ArrayType<ArrayType<FloatType>>;
619
1204
  }>;
620
1205
  /** Model blob type for sklearn models */
621
1206
  readonly ModelBlobType: VariantType<{
@@ -645,8 +1230,6 @@ export declare const SklearnTypes: {
645
1230
  base_estimator_type: StringType;
646
1231
  }>;
647
1232
  }>;
648
- /** Multi-target output type */
649
- readonly MultiTargetType: ArrayType<ArrayType<FloatType>>;
650
1233
  /** RegressorChain base estimator config type */
651
1234
  readonly RegressorChainBaseConfigType: VariantType<{
652
1235
  /** XGBoost regressor */
@@ -661,6 +1244,7 @@ export declare const SklearnTypes: {
661
1244
  reg_lambda: OptionType<FloatType>;
662
1245
  random_state: OptionType<IntegerType>;
663
1246
  n_jobs: OptionType<IntegerType>;
1247
+ sample_weight: OptionType<ArrayType<FloatType>>;
664
1248
  }>;
665
1249
  /** LightGBM regressor */
666
1250
  lightgbm: StructType<{
@@ -684,19 +1268,19 @@ export declare const SklearnTypes: {
684
1268
  col_sample: OptionType<FloatType>;
685
1269
  random_state: OptionType<IntegerType>;
686
1270
  distribution: OptionType<VariantType<{
687
- normal: StructType<{}>;
688
- lognormal: StructType<{}>;
1271
+ normal: NullType;
1272
+ lognormal: NullType;
689
1273
  }>>;
690
1274
  }>;
691
1275
  /** Gaussian Process regressor */
692
1276
  gp: StructType<{
693
1277
  kernel: OptionType<VariantType<{
694
- rbf: StructType<{}>;
695
- matern_1_2: StructType<{}>;
696
- matern_3_2: StructType<{}>;
697
- matern_5_2: StructType<{}>;
698
- rational_quadratic: StructType<{}>;
699
- dot_product: StructType<{}>;
1278
+ rbf: NullType;
1279
+ matern_1_2: NullType;
1280
+ matern_3_2: NullType;
1281
+ matern_5_2: NullType;
1282
+ rational_quadratic: NullType;
1283
+ dot_product: NullType;
700
1284
  }>>;
701
1285
  alpha: OptionType<FloatType>;
702
1286
  n_restarts_optimizer: OptionType<IntegerType>;
@@ -720,6 +1304,7 @@ export declare const SklearnTypes: {
720
1304
  reg_lambda: OptionType<FloatType>;
721
1305
  random_state: OptionType<IntegerType>;
722
1306
  n_jobs: OptionType<IntegerType>;
1307
+ sample_weight: OptionType<ArrayType<FloatType>>;
723
1308
  }>;
724
1309
  /** LightGBM regressor */
725
1310
  lightgbm: StructType<{
@@ -743,19 +1328,19 @@ export declare const SklearnTypes: {
743
1328
  col_sample: OptionType<FloatType>;
744
1329
  random_state: OptionType<IntegerType>;
745
1330
  distribution: OptionType<VariantType<{
746
- normal: StructType<{}>;
747
- lognormal: StructType<{}>;
1331
+ normal: NullType;
1332
+ lognormal: NullType;
748
1333
  }>>;
749
1334
  }>;
750
1335
  /** Gaussian Process regressor */
751
1336
  gp: StructType<{
752
1337
  kernel: OptionType<VariantType<{
753
- rbf: StructType<{}>;
754
- matern_1_2: StructType<{}>;
755
- matern_3_2: StructType<{}>;
756
- matern_5_2: StructType<{}>;
757
- rational_quadratic: StructType<{}>;
758
- dot_product: StructType<{}>;
1338
+ rbf: NullType;
1339
+ matern_1_2: NullType;
1340
+ matern_3_2: NullType;
1341
+ matern_5_2: NullType;
1342
+ rational_quadratic: NullType;
1343
+ dot_product: NullType;
759
1344
  }>>;
760
1345
  alpha: OptionType<FloatType>;
761
1346
  n_restarts_optimizer: OptionType<IntegerType>;
@@ -768,6 +1353,319 @@ export declare const SklearnTypes: {
768
1353
  /** Random seed for reproducibility */
769
1354
  random_state: OptionType<IntegerType>;
770
1355
  }>;
1356
+ /** Regression metric variant */
1357
+ readonly RegressionMetricType: VariantType<{
1358
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1359
+ mse: NullType;
1360
+ /** Root Mean Squared Error - sqrt(MSE) */
1361
+ rmse: NullType;
1362
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1363
+ mae: NullType;
1364
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1365
+ r2: NullType;
1366
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1367
+ mape: NullType;
1368
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1369
+ explained_variance: NullType;
1370
+ /** Max Error - sklearn.metrics.max_error */
1371
+ max_error: NullType;
1372
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1373
+ median_ae: NullType;
1374
+ }>;
1375
+ /** Single metric result */
1376
+ readonly MetricResultType: StructType<{
1377
+ /** Which metric was computed */
1378
+ metric: VariantType<{
1379
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1380
+ mse: NullType;
1381
+ /** Root Mean Squared Error - sqrt(MSE) */
1382
+ rmse: NullType;
1383
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1384
+ mae: NullType;
1385
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1386
+ r2: NullType;
1387
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1388
+ mape: NullType;
1389
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1390
+ explained_variance: NullType;
1391
+ /** Max Error - sklearn.metrics.max_error */
1392
+ max_error: NullType;
1393
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1394
+ median_ae: NullType;
1395
+ }>;
1396
+ /** Scalar metric value */
1397
+ value: FloatType;
1398
+ }>;
1399
+ /** Multiple metrics result */
1400
+ readonly MetricsResultType: ArrayType<StructType<{
1401
+ /** Which metric was computed */
1402
+ metric: VariantType<{
1403
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1404
+ mse: NullType;
1405
+ /** Root Mean Squared Error - sqrt(MSE) */
1406
+ rmse: NullType;
1407
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1408
+ mae: NullType;
1409
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1410
+ r2: NullType;
1411
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1412
+ mape: NullType;
1413
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1414
+ explained_variance: NullType;
1415
+ /** Max Error - sklearn.metrics.max_error */
1416
+ max_error: NullType;
1417
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1418
+ median_ae: NullType;
1419
+ }>;
1420
+ /** Scalar metric value */
1421
+ value: FloatType;
1422
+ }>>;
1423
+ /** Metric aggregation type */
1424
+ readonly MetricAggregationType: VariantType<{
1425
+ /** Return metric for each target separately (default) */
1426
+ per_target: NullType;
1427
+ /** Average across all targets (uniform weights) */
1428
+ uniform_average: NullType;
1429
+ }>;
1430
+ /** Multi-target metrics config */
1431
+ readonly MultiMetricsConfigType: StructType<{
1432
+ /** How to aggregate metrics across targets (default: per_target) */
1433
+ aggregation: OptionType<VariantType<{
1434
+ /** Return metric for each target separately (default) */
1435
+ per_target: NullType;
1436
+ /** Average across all targets (uniform weights) */
1437
+ uniform_average: NullType;
1438
+ }>>;
1439
+ }>;
1440
+ /** Multi-target metric result */
1441
+ readonly MultiMetricResultType: StructType<{
1442
+ /** Which metric was computed */
1443
+ metric: VariantType<{
1444
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1445
+ mse: NullType;
1446
+ /** Root Mean Squared Error - sqrt(MSE) */
1447
+ rmse: NullType;
1448
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1449
+ mae: NullType;
1450
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1451
+ r2: NullType;
1452
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1453
+ mape: NullType;
1454
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1455
+ explained_variance: NullType;
1456
+ /** Max Error - sklearn.metrics.max_error */
1457
+ max_error: NullType;
1458
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1459
+ median_ae: NullType;
1460
+ }>;
1461
+ /** Metric value(s) */
1462
+ value: VariantType<{
1463
+ /** Aggregated scalar value */
1464
+ scalar: FloatType;
1465
+ /** Per-target values [target_0, target_1, ...] */
1466
+ per_target: ArrayType<FloatType>;
1467
+ }>;
1468
+ }>;
1469
+ /** Multi-target metrics result */
1470
+ readonly MultiMetricsResultType: ArrayType<StructType<{
1471
+ /** Which metric was computed */
1472
+ metric: VariantType<{
1473
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1474
+ mse: NullType;
1475
+ /** Root Mean Squared Error - sqrt(MSE) */
1476
+ rmse: NullType;
1477
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1478
+ mae: NullType;
1479
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1480
+ r2: NullType;
1481
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1482
+ mape: NullType;
1483
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1484
+ explained_variance: NullType;
1485
+ /** Max Error - sklearn.metrics.max_error */
1486
+ max_error: NullType;
1487
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1488
+ median_ae: NullType;
1489
+ }>;
1490
+ /** Metric value(s) */
1491
+ value: VariantType<{
1492
+ /** Aggregated scalar value */
1493
+ scalar: FloatType;
1494
+ /** Per-target values [target_0, target_1, ...] */
1495
+ per_target: ArrayType<FloatType>;
1496
+ }>;
1497
+ }>>;
1498
+ /** Classification metric variant */
1499
+ readonly ClassificationMetricType: VariantType<{
1500
+ /** Accuracy - sklearn.metrics.accuracy_score */
1501
+ accuracy: NullType;
1502
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1503
+ balanced_accuracy: NullType;
1504
+ /** Precision - sklearn.metrics.precision_score */
1505
+ precision: NullType;
1506
+ /** Recall - sklearn.metrics.recall_score */
1507
+ recall: NullType;
1508
+ /** F1 Score - sklearn.metrics.f1_score */
1509
+ f1: NullType;
1510
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1511
+ matthews_corrcoef: NullType;
1512
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1513
+ cohen_kappa: NullType;
1514
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1515
+ jaccard: NullType;
1516
+ }>;
1517
+ /** Classification averaging type */
1518
+ readonly ClassificationAverageType: VariantType<{
1519
+ /** Calculate metrics for each label, return unweighted mean */
1520
+ macro: NullType;
1521
+ /** Calculate metrics globally by counting total TP, FP, FN */
1522
+ micro: NullType;
1523
+ /** Calculate metrics for each label, return weighted mean by support */
1524
+ weighted: NullType;
1525
+ /** Only for binary classification */
1526
+ binary: NullType;
1527
+ }>;
1528
+ /** Classification metrics config */
1529
+ readonly ClassificationMetricsConfigType: StructType<{
1530
+ /** Averaging strategy for multi-class (default: macro) */
1531
+ average: OptionType<VariantType<{
1532
+ /** Calculate metrics for each label, return unweighted mean */
1533
+ macro: NullType;
1534
+ /** Calculate metrics globally by counting total TP, FP, FN */
1535
+ micro: NullType;
1536
+ /** Calculate metrics for each label, return weighted mean by support */
1537
+ weighted: NullType;
1538
+ /** Only for binary classification */
1539
+ binary: NullType;
1540
+ }>>;
1541
+ }>;
1542
+ /** Classification metric result */
1543
+ readonly ClassificationMetricResultType: StructType<{
1544
+ /** Which metric was computed */
1545
+ metric: VariantType<{
1546
+ /** Accuracy - sklearn.metrics.accuracy_score */
1547
+ accuracy: NullType;
1548
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1549
+ balanced_accuracy: NullType;
1550
+ /** Precision - sklearn.metrics.precision_score */
1551
+ precision: NullType;
1552
+ /** Recall - sklearn.metrics.recall_score */
1553
+ recall: NullType;
1554
+ /** F1 Score - sklearn.metrics.f1_score */
1555
+ f1: NullType;
1556
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1557
+ matthews_corrcoef: NullType;
1558
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1559
+ cohen_kappa: NullType;
1560
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1561
+ jaccard: NullType;
1562
+ }>;
1563
+ /** Scalar metric value */
1564
+ value: FloatType;
1565
+ }>;
1566
+ /** Classification metrics result */
1567
+ readonly ClassificationMetricResultsType: ArrayType<StructType<{
1568
+ /** Which metric was computed */
1569
+ metric: VariantType<{
1570
+ /** Accuracy - sklearn.metrics.accuracy_score */
1571
+ accuracy: NullType;
1572
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1573
+ balanced_accuracy: NullType;
1574
+ /** Precision - sklearn.metrics.precision_score */
1575
+ precision: NullType;
1576
+ /** Recall - sklearn.metrics.recall_score */
1577
+ recall: NullType;
1578
+ /** F1 Score - sklearn.metrics.f1_score */
1579
+ f1: NullType;
1580
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1581
+ matthews_corrcoef: NullType;
1582
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1583
+ cohen_kappa: NullType;
1584
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1585
+ jaccard: NullType;
1586
+ }>;
1587
+ /** Scalar metric value */
1588
+ value: FloatType;
1589
+ }>>;
1590
+ /** Multi-target classification config */
1591
+ readonly MultiClassificationConfigType: StructType<{
1592
+ /** Averaging strategy for multi-class (default: macro) */
1593
+ average: OptionType<VariantType<{
1594
+ /** Calculate metrics for each label, return unweighted mean */
1595
+ macro: NullType;
1596
+ /** Calculate metrics globally by counting total TP, FP, FN */
1597
+ micro: NullType;
1598
+ /** Calculate metrics for each label, return weighted mean by support */
1599
+ weighted: NullType;
1600
+ /** Only for binary classification */
1601
+ binary: NullType;
1602
+ }>>;
1603
+ /** How to aggregate across targets (default: per_target) */
1604
+ aggregation: OptionType<VariantType<{
1605
+ /** Return metric for each target separately (default) */
1606
+ per_target: NullType;
1607
+ /** Average across all targets (uniform weights) */
1608
+ uniform_average: NullType;
1609
+ }>>;
1610
+ }>;
1611
+ /** Multi-target classification metric result */
1612
+ readonly MultiClassificationMetricResultType: StructType<{
1613
+ /** Which metric was computed */
1614
+ metric: VariantType<{
1615
+ /** Accuracy - sklearn.metrics.accuracy_score */
1616
+ accuracy: NullType;
1617
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1618
+ balanced_accuracy: NullType;
1619
+ /** Precision - sklearn.metrics.precision_score */
1620
+ precision: NullType;
1621
+ /** Recall - sklearn.metrics.recall_score */
1622
+ recall: NullType;
1623
+ /** F1 Score - sklearn.metrics.f1_score */
1624
+ f1: NullType;
1625
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1626
+ matthews_corrcoef: NullType;
1627
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1628
+ cohen_kappa: NullType;
1629
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1630
+ jaccard: NullType;
1631
+ }>;
1632
+ /** Metric value(s) */
1633
+ value: VariantType<{
1634
+ /** Aggregated scalar value */
1635
+ scalar: FloatType;
1636
+ /** Per-target values */
1637
+ per_target: ArrayType<FloatType>;
1638
+ }>;
1639
+ }>;
1640
+ /** Multi-target classification metrics result */
1641
+ readonly MultiClassificationMetricResultsType: ArrayType<StructType<{
1642
+ /** Which metric was computed */
1643
+ metric: VariantType<{
1644
+ /** Accuracy - sklearn.metrics.accuracy_score */
1645
+ accuracy: NullType;
1646
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1647
+ balanced_accuracy: NullType;
1648
+ /** Precision - sklearn.metrics.precision_score */
1649
+ precision: NullType;
1650
+ /** Recall - sklearn.metrics.recall_score */
1651
+ recall: NullType;
1652
+ /** F1 Score - sklearn.metrics.f1_score */
1653
+ f1: NullType;
1654
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1655
+ matthews_corrcoef: NullType;
1656
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1657
+ cohen_kappa: NullType;
1658
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1659
+ jaccard: NullType;
1660
+ }>;
1661
+ /** Metric value(s) */
1662
+ value: VariantType<{
1663
+ /** Aggregated scalar value */
1664
+ scalar: FloatType;
1665
+ /** Per-target values */
1666
+ per_target: ArrayType<FloatType>;
1667
+ }>;
1668
+ }>>;
771
1669
  };
772
1670
  /**
773
1671
  * Scikit-learn machine learning utilities.
@@ -810,6 +1708,30 @@ export declare const Sklearn: {
810
1708
  /** Test labels */
811
1709
  y_test: ArrayType<FloatType>;
812
1710
  }>>;
1711
+ /** Split arrays into train, validation, and test subsets */
1712
+ readonly trainValTestSplit: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
1713
+ /** Proportion of data for validation (default 0.15) */
1714
+ val_size: OptionType<FloatType>;
1715
+ /** Proportion of data for test/holdout (default 0.15) */
1716
+ test_size: OptionType<FloatType>;
1717
+ /** Random seed for reproducibility */
1718
+ random_state: OptionType<IntegerType>;
1719
+ /** Whether to shuffle data before splitting (default true) */
1720
+ shuffle: OptionType<BooleanType>;
1721
+ }>], StructType<{
1722
+ /** Training features */
1723
+ X_train: ArrayType<ArrayType<FloatType>>;
1724
+ /** Validation features */
1725
+ X_val: ArrayType<ArrayType<FloatType>>;
1726
+ /** Test/holdout features */
1727
+ X_test: ArrayType<ArrayType<FloatType>>;
1728
+ /** Training targets (matrix) */
1729
+ Y_train: ArrayType<ArrayType<FloatType>>;
1730
+ /** Validation targets (matrix) */
1731
+ Y_val: ArrayType<ArrayType<FloatType>>;
1732
+ /** Test/holdout targets (matrix) */
1733
+ Y_test: ArrayType<ArrayType<FloatType>>;
1734
+ }>>;
813
1735
  /** Fit a StandardScaler to data */
814
1736
  readonly standardScalerFit: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>], VariantType<{
815
1737
  /** StandardScaler model */
@@ -922,30 +1844,219 @@ export declare const Sklearn: {
922
1844
  base_estimator_type: StringType;
923
1845
  }>;
924
1846
  }>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
925
- /** Compute regression metrics */
926
- readonly metricsRegression: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>], StructType<{
927
- /** Mean Squared Error */
928
- mse: FloatType;
929
- /** Root Mean Squared Error */
930
- rmse: FloatType;
931
- /** Mean Absolute Error */
932
- mae: FloatType;
933
- /** R-squared (coefficient of determination) */
934
- r2: FloatType;
935
- /** Mean Absolute Percentage Error */
936
- mape: FloatType;
937
- }>>;
938
- /** Compute classification metrics */
939
- readonly metricsClassification: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>], StructType<{
940
- /** Accuracy score */
941
- accuracy: FloatType;
942
- /** Precision (weighted average) */
943
- precision: FloatType;
944
- /** Recall (weighted average) */
945
- recall: FloatType;
946
- /** F1 score (weighted average) */
947
- f1: FloatType;
948
- }>>;
1847
+ /** Compute regression metrics (single-target) */
1848
+ readonly computeMetrics: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>, ArrayType<VariantType<{
1849
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1850
+ mse: NullType;
1851
+ /** Root Mean Squared Error - sqrt(MSE) */
1852
+ rmse: NullType;
1853
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1854
+ mae: NullType;
1855
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1856
+ r2: NullType;
1857
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1858
+ mape: NullType;
1859
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1860
+ explained_variance: NullType;
1861
+ /** Max Error - sklearn.metrics.max_error */
1862
+ max_error: NullType;
1863
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1864
+ median_ae: NullType;
1865
+ }>>], ArrayType<StructType<{
1866
+ /** Which metric was computed */
1867
+ metric: VariantType<{
1868
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1869
+ mse: NullType;
1870
+ /** Root Mean Squared Error - sqrt(MSE) */
1871
+ rmse: NullType;
1872
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1873
+ mae: NullType;
1874
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1875
+ r2: NullType;
1876
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1877
+ mape: NullType;
1878
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1879
+ explained_variance: NullType;
1880
+ /** Max Error - sklearn.metrics.max_error */
1881
+ max_error: NullType;
1882
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1883
+ median_ae: NullType;
1884
+ }>;
1885
+ /** Scalar metric value */
1886
+ value: FloatType;
1887
+ }>>>;
1888
+ /** Compute regression metrics (multi-target) */
1889
+ readonly computeMetricsMulti: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
1890
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1891
+ mse: NullType;
1892
+ /** Root Mean Squared Error - sqrt(MSE) */
1893
+ rmse: NullType;
1894
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1895
+ mae: NullType;
1896
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1897
+ r2: NullType;
1898
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1899
+ mape: NullType;
1900
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1901
+ explained_variance: NullType;
1902
+ /** Max Error - sklearn.metrics.max_error */
1903
+ max_error: NullType;
1904
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1905
+ median_ae: NullType;
1906
+ }>>, StructType<{
1907
+ /** How to aggregate metrics across targets (default: per_target) */
1908
+ aggregation: OptionType<VariantType<{
1909
+ /** Return metric for each target separately (default) */
1910
+ per_target: NullType;
1911
+ /** Average across all targets (uniform weights) */
1912
+ uniform_average: NullType;
1913
+ }>>;
1914
+ }>], ArrayType<StructType<{
1915
+ /** Which metric was computed */
1916
+ metric: VariantType<{
1917
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
1918
+ mse: NullType;
1919
+ /** Root Mean Squared Error - sqrt(MSE) */
1920
+ rmse: NullType;
1921
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
1922
+ mae: NullType;
1923
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
1924
+ r2: NullType;
1925
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
1926
+ mape: NullType;
1927
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
1928
+ explained_variance: NullType;
1929
+ /** Max Error - sklearn.metrics.max_error */
1930
+ max_error: NullType;
1931
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
1932
+ median_ae: NullType;
1933
+ }>;
1934
+ /** Metric value(s) */
1935
+ value: VariantType<{
1936
+ /** Aggregated scalar value */
1937
+ scalar: FloatType;
1938
+ /** Per-target values [target_0, target_1, ...] */
1939
+ per_target: ArrayType<FloatType>;
1940
+ }>;
1941
+ }>>>;
1942
+ /** Compute classification metrics (single-target) */
1943
+ readonly computeClassificationMetrics: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>, ArrayType<VariantType<{
1944
+ /** Accuracy - sklearn.metrics.accuracy_score */
1945
+ accuracy: NullType;
1946
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1947
+ balanced_accuracy: NullType;
1948
+ /** Precision - sklearn.metrics.precision_score */
1949
+ precision: NullType;
1950
+ /** Recall - sklearn.metrics.recall_score */
1951
+ recall: NullType;
1952
+ /** F1 Score - sklearn.metrics.f1_score */
1953
+ f1: NullType;
1954
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1955
+ matthews_corrcoef: NullType;
1956
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1957
+ cohen_kappa: NullType;
1958
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1959
+ jaccard: NullType;
1960
+ }>>, StructType<{
1961
+ /** Averaging strategy for multi-class (default: macro) */
1962
+ average: OptionType<VariantType<{
1963
+ /** Calculate metrics for each label, return unweighted mean */
1964
+ macro: NullType;
1965
+ /** Calculate metrics globally by counting total TP, FP, FN */
1966
+ micro: NullType;
1967
+ /** Calculate metrics for each label, return weighted mean by support */
1968
+ weighted: NullType;
1969
+ /** Only for binary classification */
1970
+ binary: NullType;
1971
+ }>>;
1972
+ }>], ArrayType<StructType<{
1973
+ /** Which metric was computed */
1974
+ metric: VariantType<{
1975
+ /** Accuracy - sklearn.metrics.accuracy_score */
1976
+ accuracy: NullType;
1977
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
1978
+ balanced_accuracy: NullType;
1979
+ /** Precision - sklearn.metrics.precision_score */
1980
+ precision: NullType;
1981
+ /** Recall - sklearn.metrics.recall_score */
1982
+ recall: NullType;
1983
+ /** F1 Score - sklearn.metrics.f1_score */
1984
+ f1: NullType;
1985
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
1986
+ matthews_corrcoef: NullType;
1987
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
1988
+ cohen_kappa: NullType;
1989
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
1990
+ jaccard: NullType;
1991
+ }>;
1992
+ /** Scalar metric value */
1993
+ value: FloatType;
1994
+ }>>>;
1995
+ /** Compute classification metrics (multi-target) */
1996
+ readonly computeClassificationMetricsMulti: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
1997
+ /** Accuracy - sklearn.metrics.accuracy_score */
1998
+ accuracy: NullType;
1999
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
2000
+ balanced_accuracy: NullType;
2001
+ /** Precision - sklearn.metrics.precision_score */
2002
+ precision: NullType;
2003
+ /** Recall - sklearn.metrics.recall_score */
2004
+ recall: NullType;
2005
+ /** F1 Score - sklearn.metrics.f1_score */
2006
+ f1: NullType;
2007
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
2008
+ matthews_corrcoef: NullType;
2009
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
2010
+ cohen_kappa: NullType;
2011
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
2012
+ jaccard: NullType;
2013
+ }>>, StructType<{
2014
+ /** Averaging strategy for multi-class (default: macro) */
2015
+ average: OptionType<VariantType<{
2016
+ /** Calculate metrics for each label, return unweighted mean */
2017
+ macro: NullType;
2018
+ /** Calculate metrics globally by counting total TP, FP, FN */
2019
+ micro: NullType;
2020
+ /** Calculate metrics for each label, return weighted mean by support */
2021
+ weighted: NullType;
2022
+ /** Only for binary classification */
2023
+ binary: NullType;
2024
+ }>>;
2025
+ /** How to aggregate across targets (default: per_target) */
2026
+ aggregation: OptionType<VariantType<{
2027
+ /** Return metric for each target separately (default) */
2028
+ per_target: NullType;
2029
+ /** Average across all targets (uniform weights) */
2030
+ uniform_average: NullType;
2031
+ }>>;
2032
+ }>], ArrayType<StructType<{
2033
+ /** Which metric was computed */
2034
+ metric: VariantType<{
2035
+ /** Accuracy - sklearn.metrics.accuracy_score */
2036
+ accuracy: NullType;
2037
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
2038
+ balanced_accuracy: NullType;
2039
+ /** Precision - sklearn.metrics.precision_score */
2040
+ precision: NullType;
2041
+ /** Recall - sklearn.metrics.recall_score */
2042
+ recall: NullType;
2043
+ /** F1 Score - sklearn.metrics.f1_score */
2044
+ f1: NullType;
2045
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
2046
+ matthews_corrcoef: NullType;
2047
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
2048
+ cohen_kappa: NullType;
2049
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
2050
+ jaccard: NullType;
2051
+ }>;
2052
+ /** Metric value(s) */
2053
+ value: VariantType<{
2054
+ /** Aggregated scalar value */
2055
+ scalar: FloatType;
2056
+ /** Per-target values */
2057
+ per_target: ArrayType<FloatType>;
2058
+ }>;
2059
+ }>>>;
949
2060
  /** Train a RegressorChain for multi-target regression */
950
2061
  readonly regressorChainTrain: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
951
2062
  /** Base estimator with its configuration */
@@ -962,6 +2073,7 @@ export declare const Sklearn: {
962
2073
  reg_lambda: OptionType<FloatType>;
963
2074
  random_state: OptionType<IntegerType>;
964
2075
  n_jobs: OptionType<IntegerType>;
2076
+ sample_weight: OptionType<ArrayType<FloatType>>;
965
2077
  }>;
966
2078
  /** LightGBM regressor */
967
2079
  lightgbm: StructType<{
@@ -985,19 +2097,19 @@ export declare const Sklearn: {
985
2097
  col_sample: OptionType<FloatType>;
986
2098
  random_state: OptionType<IntegerType>;
987
2099
  distribution: OptionType<VariantType<{
988
- normal: StructType<{}>;
989
- lognormal: StructType<{}>;
2100
+ normal: NullType;
2101
+ lognormal: NullType;
990
2102
  }>>;
991
2103
  }>;
992
2104
  /** Gaussian Process regressor */
993
2105
  gp: StructType<{
994
2106
  kernel: OptionType<VariantType<{
995
- rbf: StructType<{}>;
996
- matern_1_2: StructType<{}>;
997
- matern_3_2: StructType<{}>;
998
- matern_5_2: StructType<{}>;
999
- rational_quadratic: StructType<{}>;
1000
- dot_product: StructType<{}>;
2107
+ rbf: NullType;
2108
+ matern_1_2: NullType;
2109
+ matern_3_2: NullType;
2110
+ matern_5_2: NullType;
2111
+ rational_quadratic: NullType;
2112
+ dot_product: NullType;
1001
2113
  }>>;
1002
2114
  alpha: OptionType<FloatType>;
1003
2115
  n_restarts_optimizer: OptionType<IntegerType>;
@@ -1092,29 +2204,31 @@ export declare const Sklearn: {
1092
2204
  /** Test labels */
1093
2205
  y_test: ArrayType<FloatType>;
1094
2206
  }>;
1095
- /** Regression metrics type */
1096
- readonly RegressionMetricsType: StructType<{
1097
- /** Mean Squared Error */
1098
- mse: FloatType;
1099
- /** Root Mean Squared Error */
1100
- rmse: FloatType;
1101
- /** Mean Absolute Error */
1102
- mae: FloatType;
1103
- /** R-squared (coefficient of determination) */
1104
- r2: FloatType;
1105
- /** Mean Absolute Percentage Error */
1106
- mape: FloatType;
1107
- }>;
1108
- /** Classification metrics type */
1109
- readonly ClassificationMetricsType: StructType<{
1110
- /** Accuracy score */
1111
- accuracy: FloatType;
1112
- /** Precision (weighted average) */
1113
- precision: FloatType;
1114
- /** Recall (weighted average) */
1115
- recall: FloatType;
1116
- /** F1 score (weighted average) */
1117
- f1: FloatType;
2207
+ /** 3-way split configuration type */
2208
+ readonly ThreeWaySplitConfigType: StructType<{
2209
+ /** Proportion of data for validation (default 0.15) */
2210
+ val_size: OptionType<FloatType>;
2211
+ /** Proportion of data for test/holdout (default 0.15) */
2212
+ test_size: OptionType<FloatType>;
2213
+ /** Random seed for reproducibility */
2214
+ random_state: OptionType<IntegerType>;
2215
+ /** Whether to shuffle data before splitting (default true) */
2216
+ shuffle: OptionType<BooleanType>;
2217
+ }>;
2218
+ /** 3-way split result type */
2219
+ readonly ThreeWaySplitResultType: StructType<{
2220
+ /** Training features */
2221
+ X_train: ArrayType<ArrayType<FloatType>>;
2222
+ /** Validation features */
2223
+ X_val: ArrayType<ArrayType<FloatType>>;
2224
+ /** Test/holdout features */
2225
+ X_test: ArrayType<ArrayType<FloatType>>;
2226
+ /** Training targets (matrix) */
2227
+ Y_train: ArrayType<ArrayType<FloatType>>;
2228
+ /** Validation targets (matrix) */
2229
+ Y_val: ArrayType<ArrayType<FloatType>>;
2230
+ /** Test/holdout targets (matrix) */
2231
+ Y_test: ArrayType<ArrayType<FloatType>>;
1118
2232
  }>;
1119
2233
  /** Model blob type for sklearn models */
1120
2234
  readonly ModelBlobType: VariantType<{
@@ -1144,8 +2258,6 @@ export declare const Sklearn: {
1144
2258
  base_estimator_type: StringType;
1145
2259
  }>;
1146
2260
  }>;
1147
- /** Multi-target output type */
1148
- readonly MultiTargetType: ArrayType<ArrayType<FloatType>>;
1149
2261
  /** RegressorChain base estimator config type */
1150
2262
  readonly RegressorChainBaseConfigType: VariantType<{
1151
2263
  /** XGBoost regressor */
@@ -1160,6 +2272,7 @@ export declare const Sklearn: {
1160
2272
  reg_lambda: OptionType<FloatType>;
1161
2273
  random_state: OptionType<IntegerType>;
1162
2274
  n_jobs: OptionType<IntegerType>;
2275
+ sample_weight: OptionType<ArrayType<FloatType>>;
1163
2276
  }>;
1164
2277
  /** LightGBM regressor */
1165
2278
  lightgbm: StructType<{
@@ -1183,19 +2296,19 @@ export declare const Sklearn: {
1183
2296
  col_sample: OptionType<FloatType>;
1184
2297
  random_state: OptionType<IntegerType>;
1185
2298
  distribution: OptionType<VariantType<{
1186
- normal: StructType<{}>;
1187
- lognormal: StructType<{}>;
2299
+ normal: NullType;
2300
+ lognormal: NullType;
1188
2301
  }>>;
1189
2302
  }>;
1190
2303
  /** Gaussian Process regressor */
1191
2304
  gp: StructType<{
1192
2305
  kernel: OptionType<VariantType<{
1193
- rbf: StructType<{}>;
1194
- matern_1_2: StructType<{}>;
1195
- matern_3_2: StructType<{}>;
1196
- matern_5_2: StructType<{}>;
1197
- rational_quadratic: StructType<{}>;
1198
- dot_product: StructType<{}>;
2306
+ rbf: NullType;
2307
+ matern_1_2: NullType;
2308
+ matern_3_2: NullType;
2309
+ matern_5_2: NullType;
2310
+ rational_quadratic: NullType;
2311
+ dot_product: NullType;
1199
2312
  }>>;
1200
2313
  alpha: OptionType<FloatType>;
1201
2314
  n_restarts_optimizer: OptionType<IntegerType>;
@@ -1219,6 +2332,7 @@ export declare const Sklearn: {
1219
2332
  reg_lambda: OptionType<FloatType>;
1220
2333
  random_state: OptionType<IntegerType>;
1221
2334
  n_jobs: OptionType<IntegerType>;
2335
+ sample_weight: OptionType<ArrayType<FloatType>>;
1222
2336
  }>;
1223
2337
  /** LightGBM regressor */
1224
2338
  lightgbm: StructType<{
@@ -1242,19 +2356,19 @@ export declare const Sklearn: {
1242
2356
  col_sample: OptionType<FloatType>;
1243
2357
  random_state: OptionType<IntegerType>;
1244
2358
  distribution: OptionType<VariantType<{
1245
- normal: StructType<{}>;
1246
- lognormal: StructType<{}>;
2359
+ normal: NullType;
2360
+ lognormal: NullType;
1247
2361
  }>>;
1248
2362
  }>;
1249
2363
  /** Gaussian Process regressor */
1250
2364
  gp: StructType<{
1251
2365
  kernel: OptionType<VariantType<{
1252
- rbf: StructType<{}>;
1253
- matern_1_2: StructType<{}>;
1254
- matern_3_2: StructType<{}>;
1255
- matern_5_2: StructType<{}>;
1256
- rational_quadratic: StructType<{}>;
1257
- dot_product: StructType<{}>;
2366
+ rbf: NullType;
2367
+ matern_1_2: NullType;
2368
+ matern_3_2: NullType;
2369
+ matern_5_2: NullType;
2370
+ rational_quadratic: NullType;
2371
+ dot_product: NullType;
1258
2372
  }>>;
1259
2373
  alpha: OptionType<FloatType>;
1260
2374
  n_restarts_optimizer: OptionType<IntegerType>;
@@ -1267,6 +2381,319 @@ export declare const Sklearn: {
1267
2381
  /** Random seed for reproducibility */
1268
2382
  random_state: OptionType<IntegerType>;
1269
2383
  }>;
2384
+ /** Regression metric variant */
2385
+ readonly RegressionMetricType: VariantType<{
2386
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
2387
+ mse: NullType;
2388
+ /** Root Mean Squared Error - sqrt(MSE) */
2389
+ rmse: NullType;
2390
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
2391
+ mae: NullType;
2392
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
2393
+ r2: NullType;
2394
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
2395
+ mape: NullType;
2396
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
2397
+ explained_variance: NullType;
2398
+ /** Max Error - sklearn.metrics.max_error */
2399
+ max_error: NullType;
2400
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
2401
+ median_ae: NullType;
2402
+ }>;
2403
+ /** Single metric result */
2404
+ readonly MetricResultType: StructType<{
2405
+ /** Which metric was computed */
2406
+ metric: VariantType<{
2407
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
2408
+ mse: NullType;
2409
+ /** Root Mean Squared Error - sqrt(MSE) */
2410
+ rmse: NullType;
2411
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
2412
+ mae: NullType;
2413
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
2414
+ r2: NullType;
2415
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
2416
+ mape: NullType;
2417
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
2418
+ explained_variance: NullType;
2419
+ /** Max Error - sklearn.metrics.max_error */
2420
+ max_error: NullType;
2421
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
2422
+ median_ae: NullType;
2423
+ }>;
2424
+ /** Scalar metric value */
2425
+ value: FloatType;
2426
+ }>;
2427
+ /** Multiple metrics result */
2428
+ readonly MetricsResultType: ArrayType<StructType<{
2429
+ /** Which metric was computed */
2430
+ metric: VariantType<{
2431
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
2432
+ mse: NullType;
2433
+ /** Root Mean Squared Error - sqrt(MSE) */
2434
+ rmse: NullType;
2435
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
2436
+ mae: NullType;
2437
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
2438
+ r2: NullType;
2439
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
2440
+ mape: NullType;
2441
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
2442
+ explained_variance: NullType;
2443
+ /** Max Error - sklearn.metrics.max_error */
2444
+ max_error: NullType;
2445
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
2446
+ median_ae: NullType;
2447
+ }>;
2448
+ /** Scalar metric value */
2449
+ value: FloatType;
2450
+ }>>;
2451
+ /** Metric aggregation type */
2452
+ readonly MetricAggregationType: VariantType<{
2453
+ /** Return metric for each target separately (default) */
2454
+ per_target: NullType;
2455
+ /** Average across all targets (uniform weights) */
2456
+ uniform_average: NullType;
2457
+ }>;
2458
+ /** Multi-target metrics config */
2459
+ readonly MultiMetricsConfigType: StructType<{
2460
+ /** How to aggregate metrics across targets (default: per_target) */
2461
+ aggregation: OptionType<VariantType<{
2462
+ /** Return metric for each target separately (default) */
2463
+ per_target: NullType;
2464
+ /** Average across all targets (uniform weights) */
2465
+ uniform_average: NullType;
2466
+ }>>;
2467
+ }>;
2468
+ /** Multi-target metric result */
2469
+ readonly MultiMetricResultType: StructType<{
2470
+ /** Which metric was computed */
2471
+ metric: VariantType<{
2472
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
2473
+ mse: NullType;
2474
+ /** Root Mean Squared Error - sqrt(MSE) */
2475
+ rmse: NullType;
2476
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
2477
+ mae: NullType;
2478
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
2479
+ r2: NullType;
2480
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
2481
+ mape: NullType;
2482
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
2483
+ explained_variance: NullType;
2484
+ /** Max Error - sklearn.metrics.max_error */
2485
+ max_error: NullType;
2486
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
2487
+ median_ae: NullType;
2488
+ }>;
2489
+ /** Metric value(s) */
2490
+ value: VariantType<{
2491
+ /** Aggregated scalar value */
2492
+ scalar: FloatType;
2493
+ /** Per-target values [target_0, target_1, ...] */
2494
+ per_target: ArrayType<FloatType>;
2495
+ }>;
2496
+ }>;
2497
+ /** Multi-target metrics result */
2498
+ readonly MultiMetricsResultType: ArrayType<StructType<{
2499
+ /** Which metric was computed */
2500
+ metric: VariantType<{
2501
+ /** Mean Squared Error - sklearn.metrics.mean_squared_error */
2502
+ mse: NullType;
2503
+ /** Root Mean Squared Error - sqrt(MSE) */
2504
+ rmse: NullType;
2505
+ /** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
2506
+ mae: NullType;
2507
+ /** R² (coefficient of determination) - sklearn.metrics.r2_score */
2508
+ r2: NullType;
2509
+ /** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
2510
+ mape: NullType;
2511
+ /** Explained Variance Score - sklearn.metrics.explained_variance_score */
2512
+ explained_variance: NullType;
2513
+ /** Max Error - sklearn.metrics.max_error */
2514
+ max_error: NullType;
2515
+ /** Median Absolute Error - sklearn.metrics.median_absolute_error */
2516
+ median_ae: NullType;
2517
+ }>;
2518
+ /** Metric value(s) */
2519
+ value: VariantType<{
2520
+ /** Aggregated scalar value */
2521
+ scalar: FloatType;
2522
+ /** Per-target values [target_0, target_1, ...] */
2523
+ per_target: ArrayType<FloatType>;
2524
+ }>;
2525
+ }>>;
2526
+ /** Classification metric variant */
2527
+ readonly ClassificationMetricType: VariantType<{
2528
+ /** Accuracy - sklearn.metrics.accuracy_score */
2529
+ accuracy: NullType;
2530
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
2531
+ balanced_accuracy: NullType;
2532
+ /** Precision - sklearn.metrics.precision_score */
2533
+ precision: NullType;
2534
+ /** Recall - sklearn.metrics.recall_score */
2535
+ recall: NullType;
2536
+ /** F1 Score - sklearn.metrics.f1_score */
2537
+ f1: NullType;
2538
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
2539
+ matthews_corrcoef: NullType;
2540
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
2541
+ cohen_kappa: NullType;
2542
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
2543
+ jaccard: NullType;
2544
+ }>;
2545
+ /** Classification averaging type */
2546
+ readonly ClassificationAverageType: VariantType<{
2547
+ /** Calculate metrics for each label, return unweighted mean */
2548
+ macro: NullType;
2549
+ /** Calculate metrics globally by counting total TP, FP, FN */
2550
+ micro: NullType;
2551
+ /** Calculate metrics for each label, return weighted mean by support */
2552
+ weighted: NullType;
2553
+ /** Only for binary classification */
2554
+ binary: NullType;
2555
+ }>;
2556
+ /** Classification metrics config */
2557
+ readonly ClassificationMetricsConfigType: StructType<{
2558
+ /** Averaging strategy for multi-class (default: macro) */
2559
+ average: OptionType<VariantType<{
2560
+ /** Calculate metrics for each label, return unweighted mean */
2561
+ macro: NullType;
2562
+ /** Calculate metrics globally by counting total TP, FP, FN */
2563
+ micro: NullType;
2564
+ /** Calculate metrics for each label, return weighted mean by support */
2565
+ weighted: NullType;
2566
+ /** Only for binary classification */
2567
+ binary: NullType;
2568
+ }>>;
2569
+ }>;
2570
+ /** Classification metric result */
2571
+ readonly ClassificationMetricResultType: StructType<{
2572
+ /** Which metric was computed */
2573
+ metric: VariantType<{
2574
+ /** Accuracy - sklearn.metrics.accuracy_score */
2575
+ accuracy: NullType;
2576
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
2577
+ balanced_accuracy: NullType;
2578
+ /** Precision - sklearn.metrics.precision_score */
2579
+ precision: NullType;
2580
+ /** Recall - sklearn.metrics.recall_score */
2581
+ recall: NullType;
2582
+ /** F1 Score - sklearn.metrics.f1_score */
2583
+ f1: NullType;
2584
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
2585
+ matthews_corrcoef: NullType;
2586
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
2587
+ cohen_kappa: NullType;
2588
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
2589
+ jaccard: NullType;
2590
+ }>;
2591
+ /** Scalar metric value */
2592
+ value: FloatType;
2593
+ }>;
2594
+ /** Classification metrics result */
2595
+ readonly ClassificationMetricResultsType: ArrayType<StructType<{
2596
+ /** Which metric was computed */
2597
+ metric: VariantType<{
2598
+ /** Accuracy - sklearn.metrics.accuracy_score */
2599
+ accuracy: NullType;
2600
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
2601
+ balanced_accuracy: NullType;
2602
+ /** Precision - sklearn.metrics.precision_score */
2603
+ precision: NullType;
2604
+ /** Recall - sklearn.metrics.recall_score */
2605
+ recall: NullType;
2606
+ /** F1 Score - sklearn.metrics.f1_score */
2607
+ f1: NullType;
2608
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
2609
+ matthews_corrcoef: NullType;
2610
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
2611
+ cohen_kappa: NullType;
2612
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
2613
+ jaccard: NullType;
2614
+ }>;
2615
+ /** Scalar metric value */
2616
+ value: FloatType;
2617
+ }>>;
2618
+ /** Multi-target classification config */
2619
+ readonly MultiClassificationConfigType: StructType<{
2620
+ /** Averaging strategy for multi-class (default: macro) */
2621
+ average: OptionType<VariantType<{
2622
+ /** Calculate metrics for each label, return unweighted mean */
2623
+ macro: NullType;
2624
+ /** Calculate metrics globally by counting total TP, FP, FN */
2625
+ micro: NullType;
2626
+ /** Calculate metrics for each label, return weighted mean by support */
2627
+ weighted: NullType;
2628
+ /** Only for binary classification */
2629
+ binary: NullType;
2630
+ }>>;
2631
+ /** How to aggregate across targets (default: per_target) */
2632
+ aggregation: OptionType<VariantType<{
2633
+ /** Return metric for each target separately (default) */
2634
+ per_target: NullType;
2635
+ /** Average across all targets (uniform weights) */
2636
+ uniform_average: NullType;
2637
+ }>>;
2638
+ }>;
2639
+ /** Multi-target classification metric result */
2640
+ readonly MultiClassificationMetricResultType: StructType<{
2641
+ /** Which metric was computed */
2642
+ metric: VariantType<{
2643
+ /** Accuracy - sklearn.metrics.accuracy_score */
2644
+ accuracy: NullType;
2645
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
2646
+ balanced_accuracy: NullType;
2647
+ /** Precision - sklearn.metrics.precision_score */
2648
+ precision: NullType;
2649
+ /** Recall - sklearn.metrics.recall_score */
2650
+ recall: NullType;
2651
+ /** F1 Score - sklearn.metrics.f1_score */
2652
+ f1: NullType;
2653
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
2654
+ matthews_corrcoef: NullType;
2655
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
2656
+ cohen_kappa: NullType;
2657
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
2658
+ jaccard: NullType;
2659
+ }>;
2660
+ /** Metric value(s) */
2661
+ value: VariantType<{
2662
+ /** Aggregated scalar value */
2663
+ scalar: FloatType;
2664
+ /** Per-target values */
2665
+ per_target: ArrayType<FloatType>;
2666
+ }>;
2667
+ }>;
2668
+ /** Multi-target classification metrics result */
2669
+ readonly MultiClassificationMetricResultsType: ArrayType<StructType<{
2670
+ /** Which metric was computed */
2671
+ metric: VariantType<{
2672
+ /** Accuracy - sklearn.metrics.accuracy_score */
2673
+ accuracy: NullType;
2674
+ /** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
2675
+ balanced_accuracy: NullType;
2676
+ /** Precision - sklearn.metrics.precision_score */
2677
+ precision: NullType;
2678
+ /** Recall - sklearn.metrics.recall_score */
2679
+ recall: NullType;
2680
+ /** F1 Score - sklearn.metrics.f1_score */
2681
+ f1: NullType;
2682
+ /** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
2683
+ matthews_corrcoef: NullType;
2684
+ /** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
2685
+ cohen_kappa: NullType;
2686
+ /** Jaccard Score - sklearn.metrics.jaccard_score */
2687
+ jaccard: NullType;
2688
+ }>;
2689
+ /** Metric value(s) */
2690
+ value: VariantType<{
2691
+ /** Aggregated scalar value */
2692
+ scalar: FloatType;
2693
+ /** Per-target values */
2694
+ per_target: ArrayType<FloatType>;
2695
+ }>;
2696
+ }>>;
1270
2697
  };
1271
2698
  };
1272
2699
  //# sourceMappingURL=sklearn.d.ts.map