@elaraai/east-py-datascience 0.0.2-beta.1 → 0.0.2-beta.11
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/LICENSE.md +56 -12
- package/README.md +42 -4
- package/dist/gp/gp.d.ts +49 -49
- package/dist/gp/gp.d.ts.map +1 -1
- package/dist/gp/gp.js +7 -7
- package/dist/gp/gp.js.map +1 -1
- package/dist/index.d.ts +2 -2
- package/dist/index.d.ts.map +1 -1
- package/dist/index.js +4 -2
- package/dist/index.js.map +1 -1
- package/dist/mads/mads.d.ts +33 -33
- package/dist/mads/mads.d.ts.map +1 -1
- package/dist/mads/mads.js +5 -5
- package/dist/mads/mads.js.map +1 -1
- package/dist/ngboost/ngboost.d.ts +35 -35
- package/dist/ngboost/ngboost.d.ts.map +1 -1
- package/dist/ngboost/ngboost.js +3 -3
- package/dist/ngboost/ngboost.js.map +1 -1
- package/dist/scipy/scipy.d.ts +307 -1
- package/dist/scipy/scipy.d.ts.map +1 -1
- package/dist/scipy/scipy.js +127 -1
- package/dist/scipy/scipy.js.map +1 -1
- package/dist/shap/shap.d.ts +66 -11
- package/dist/shap/shap.d.ts.map +1 -1
- package/dist/shap/shap.js +14 -3
- package/dist/shap/shap.js.map +1 -1
- package/dist/sklearn/sklearn.d.ts +1627 -200
- package/dist/sklearn/sklearn.d.ts.map +1 -1
- package/dist/sklearn/sklearn.js +274 -57
- package/dist/sklearn/sklearn.js.map +1 -1
- package/dist/torch/torch.d.ts +522 -99
- package/dist/torch/torch.d.ts.map +1 -1
- package/dist/torch/torch.js +133 -17
- package/dist/torch/torch.js.map +1 -1
- package/dist/tsconfig.tsbuildinfo +1 -1
- package/dist/xgboost/xgboost.d.ts +427 -0
- package/dist/xgboost/xgboost.d.ts.map +1 -1
- package/dist/xgboost/xgboost.js +79 -0
- package/dist/xgboost/xgboost.js.map +1 -1
- package/package.json +3 -3
|
@@ -10,7 +10,7 @@
|
|
|
10
10
|
*
|
|
11
11
|
* @packageDocumentation
|
|
12
12
|
*/
|
|
13
|
-
import { StructType, VariantType, OptionType, IntegerType, BooleanType, FloatType, BlobType, ArrayType, StringType } from "@elaraai/east";
|
|
13
|
+
import { StructType, VariantType, OptionType, IntegerType, BooleanType, FloatType, BlobType, ArrayType, StringType, NullType } from "@elaraai/east";
|
|
14
14
|
export { VectorType, MatrixType, LabelVectorType } from "../types.js";
|
|
15
15
|
export { XGBoostConfigType } from "../xgboost/xgboost.js";
|
|
16
16
|
export { LightGBMConfigType } from "../lightgbm/lightgbm.js";
|
|
@@ -27,6 +27,19 @@ export declare const SplitConfigType: StructType<{
|
|
|
27
27
|
/** Whether to shuffle data before splitting (default true) */
|
|
28
28
|
shuffle: OptionType<BooleanType>;
|
|
29
29
|
}>;
|
|
30
|
+
/**
|
|
31
|
+
* Configuration for 3-way train/val/test split.
|
|
32
|
+
*/
|
|
33
|
+
export declare const ThreeWaySplitConfigType: StructType<{
|
|
34
|
+
/** Proportion of data for validation (default 0.15) */
|
|
35
|
+
val_size: OptionType<FloatType>;
|
|
36
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
37
|
+
test_size: OptionType<FloatType>;
|
|
38
|
+
/** Random seed for reproducibility */
|
|
39
|
+
random_state: OptionType<IntegerType>;
|
|
40
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
41
|
+
shuffle: OptionType<BooleanType>;
|
|
42
|
+
}>;
|
|
30
43
|
/**
|
|
31
44
|
* Result of train/test split.
|
|
32
45
|
*/
|
|
@@ -41,33 +54,365 @@ export declare const SplitResultType: StructType<{
|
|
|
41
54
|
y_test: ArrayType<FloatType>;
|
|
42
55
|
}>;
|
|
43
56
|
/**
|
|
44
|
-
*
|
|
57
|
+
* Result of 3-way train/val/test split.
|
|
58
|
+
*/
|
|
59
|
+
export declare const ThreeWaySplitResultType: StructType<{
|
|
60
|
+
/** Training features */
|
|
61
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
62
|
+
/** Validation features */
|
|
63
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
64
|
+
/** Test/holdout features */
|
|
65
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
66
|
+
/** Training targets (matrix) */
|
|
67
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
68
|
+
/** Validation targets (matrix) */
|
|
69
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
70
|
+
/** Test/holdout targets (matrix) */
|
|
71
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
72
|
+
}>;
|
|
73
|
+
/**
|
|
74
|
+
* Available regression metrics from sklearn.metrics.
|
|
75
|
+
*/
|
|
76
|
+
export declare const RegressionMetricType: VariantType<{
|
|
77
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
78
|
+
mse: NullType;
|
|
79
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
80
|
+
rmse: NullType;
|
|
81
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
82
|
+
mae: NullType;
|
|
83
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
84
|
+
r2: NullType;
|
|
85
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
86
|
+
mape: NullType;
|
|
87
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
88
|
+
explained_variance: NullType;
|
|
89
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
90
|
+
max_error: NullType;
|
|
91
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
92
|
+
median_ae: NullType;
|
|
93
|
+
}>;
|
|
94
|
+
/**
|
|
95
|
+
* Single metric result (scalar value).
|
|
96
|
+
*/
|
|
97
|
+
export declare const MetricResultType: StructType<{
|
|
98
|
+
/** Which metric was computed */
|
|
99
|
+
metric: VariantType<{
|
|
100
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
101
|
+
mse: NullType;
|
|
102
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
103
|
+
rmse: NullType;
|
|
104
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
105
|
+
mae: NullType;
|
|
106
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
107
|
+
r2: NullType;
|
|
108
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
109
|
+
mape: NullType;
|
|
110
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
111
|
+
explained_variance: NullType;
|
|
112
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
113
|
+
max_error: NullType;
|
|
114
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
115
|
+
median_ae: NullType;
|
|
116
|
+
}>;
|
|
117
|
+
/** Scalar metric value */
|
|
118
|
+
value: FloatType;
|
|
119
|
+
}>;
|
|
120
|
+
/**
|
|
121
|
+
* Result containing multiple computed metrics.
|
|
122
|
+
*/
|
|
123
|
+
export declare const MetricsResultType: ArrayType<StructType<{
|
|
124
|
+
/** Which metric was computed */
|
|
125
|
+
metric: VariantType<{
|
|
126
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
127
|
+
mse: NullType;
|
|
128
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
129
|
+
rmse: NullType;
|
|
130
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
131
|
+
mae: NullType;
|
|
132
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
133
|
+
r2: NullType;
|
|
134
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
135
|
+
mape: NullType;
|
|
136
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
137
|
+
explained_variance: NullType;
|
|
138
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
139
|
+
max_error: NullType;
|
|
140
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
141
|
+
median_ae: NullType;
|
|
142
|
+
}>;
|
|
143
|
+
/** Scalar metric value */
|
|
144
|
+
value: FloatType;
|
|
145
|
+
}>>;
|
|
146
|
+
/**
|
|
147
|
+
* Aggregation strategy for multi-target metrics.
|
|
148
|
+
*/
|
|
149
|
+
export declare const MetricAggregationType: VariantType<{
|
|
150
|
+
/** Return metric for each target separately (default) */
|
|
151
|
+
per_target: NullType;
|
|
152
|
+
/** Average across all targets (uniform weights) */
|
|
153
|
+
uniform_average: NullType;
|
|
154
|
+
}>;
|
|
155
|
+
/**
|
|
156
|
+
* Configuration for multi-target metrics computation.
|
|
157
|
+
*/
|
|
158
|
+
export declare const MultiMetricsConfigType: StructType<{
|
|
159
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
160
|
+
aggregation: OptionType<VariantType<{
|
|
161
|
+
/** Return metric for each target separately (default) */
|
|
162
|
+
per_target: NullType;
|
|
163
|
+
/** Average across all targets (uniform weights) */
|
|
164
|
+
uniform_average: NullType;
|
|
165
|
+
}>>;
|
|
166
|
+
}>;
|
|
167
|
+
/**
|
|
168
|
+
* Multi-target metric result.
|
|
169
|
+
*/
|
|
170
|
+
export declare const MultiMetricResultType: StructType<{
|
|
171
|
+
/** Which metric was computed */
|
|
172
|
+
metric: VariantType<{
|
|
173
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
174
|
+
mse: NullType;
|
|
175
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
176
|
+
rmse: NullType;
|
|
177
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
178
|
+
mae: NullType;
|
|
179
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
180
|
+
r2: NullType;
|
|
181
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
182
|
+
mape: NullType;
|
|
183
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
184
|
+
explained_variance: NullType;
|
|
185
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
186
|
+
max_error: NullType;
|
|
187
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
188
|
+
median_ae: NullType;
|
|
189
|
+
}>;
|
|
190
|
+
/** Metric value(s) */
|
|
191
|
+
value: VariantType<{
|
|
192
|
+
/** Aggregated scalar value */
|
|
193
|
+
scalar: FloatType;
|
|
194
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
195
|
+
per_target: ArrayType<FloatType>;
|
|
196
|
+
}>;
|
|
197
|
+
}>;
|
|
198
|
+
/**
|
|
199
|
+
* Result containing multiple computed metrics (multi-target).
|
|
200
|
+
*/
|
|
201
|
+
export declare const MultiMetricsResultType: ArrayType<StructType<{
|
|
202
|
+
/** Which metric was computed */
|
|
203
|
+
metric: VariantType<{
|
|
204
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
205
|
+
mse: NullType;
|
|
206
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
207
|
+
rmse: NullType;
|
|
208
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
209
|
+
mae: NullType;
|
|
210
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
211
|
+
r2: NullType;
|
|
212
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
213
|
+
mape: NullType;
|
|
214
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
215
|
+
explained_variance: NullType;
|
|
216
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
217
|
+
max_error: NullType;
|
|
218
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
219
|
+
median_ae: NullType;
|
|
220
|
+
}>;
|
|
221
|
+
/** Metric value(s) */
|
|
222
|
+
value: VariantType<{
|
|
223
|
+
/** Aggregated scalar value */
|
|
224
|
+
scalar: FloatType;
|
|
225
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
226
|
+
per_target: ArrayType<FloatType>;
|
|
227
|
+
}>;
|
|
228
|
+
}>>;
|
|
229
|
+
/**
|
|
230
|
+
* Available classification metrics from sklearn.metrics.
|
|
231
|
+
*/
|
|
232
|
+
export declare const ClassificationMetricType: VariantType<{
|
|
233
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
234
|
+
accuracy: NullType;
|
|
235
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
236
|
+
balanced_accuracy: NullType;
|
|
237
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
238
|
+
precision: NullType;
|
|
239
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
240
|
+
recall: NullType;
|
|
241
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
242
|
+
f1: NullType;
|
|
243
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
244
|
+
matthews_corrcoef: NullType;
|
|
245
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
246
|
+
cohen_kappa: NullType;
|
|
247
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
248
|
+
jaccard: NullType;
|
|
249
|
+
}>;
|
|
250
|
+
/**
|
|
251
|
+
* Averaging strategy for multi-class classification metrics.
|
|
252
|
+
*/
|
|
253
|
+
export declare const ClassificationAverageType: VariantType<{
|
|
254
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
255
|
+
macro: NullType;
|
|
256
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
257
|
+
micro: NullType;
|
|
258
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
259
|
+
weighted: NullType;
|
|
260
|
+
/** Only for binary classification */
|
|
261
|
+
binary: NullType;
|
|
262
|
+
}>;
|
|
263
|
+
/**
|
|
264
|
+
* Configuration for classification metrics.
|
|
265
|
+
*/
|
|
266
|
+
export declare const ClassificationMetricsConfigType: StructType<{
|
|
267
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
268
|
+
average: OptionType<VariantType<{
|
|
269
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
270
|
+
macro: NullType;
|
|
271
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
272
|
+
micro: NullType;
|
|
273
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
274
|
+
weighted: NullType;
|
|
275
|
+
/** Only for binary classification */
|
|
276
|
+
binary: NullType;
|
|
277
|
+
}>>;
|
|
278
|
+
}>;
|
|
279
|
+
/**
|
|
280
|
+
* Single classification metric result.
|
|
281
|
+
*/
|
|
282
|
+
export declare const ClassificationMetricResultType: StructType<{
|
|
283
|
+
/** Which metric was computed */
|
|
284
|
+
metric: VariantType<{
|
|
285
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
286
|
+
accuracy: NullType;
|
|
287
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
288
|
+
balanced_accuracy: NullType;
|
|
289
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
290
|
+
precision: NullType;
|
|
291
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
292
|
+
recall: NullType;
|
|
293
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
294
|
+
f1: NullType;
|
|
295
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
296
|
+
matthews_corrcoef: NullType;
|
|
297
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
298
|
+
cohen_kappa: NullType;
|
|
299
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
300
|
+
jaccard: NullType;
|
|
301
|
+
}>;
|
|
302
|
+
/** Scalar metric value */
|
|
303
|
+
value: FloatType;
|
|
304
|
+
}>;
|
|
305
|
+
/**
|
|
306
|
+
* Result containing multiple computed classification metrics.
|
|
45
307
|
*/
|
|
46
|
-
export declare const
|
|
47
|
-
/**
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
308
|
+
export declare const ClassificationMetricResultsType: ArrayType<StructType<{
|
|
309
|
+
/** Which metric was computed */
|
|
310
|
+
metric: VariantType<{
|
|
311
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
312
|
+
accuracy: NullType;
|
|
313
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
314
|
+
balanced_accuracy: NullType;
|
|
315
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
316
|
+
precision: NullType;
|
|
317
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
318
|
+
recall: NullType;
|
|
319
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
320
|
+
f1: NullType;
|
|
321
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
322
|
+
matthews_corrcoef: NullType;
|
|
323
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
324
|
+
cohen_kappa: NullType;
|
|
325
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
326
|
+
jaccard: NullType;
|
|
327
|
+
}>;
|
|
328
|
+
/** Scalar metric value */
|
|
329
|
+
value: FloatType;
|
|
330
|
+
}>>;
|
|
331
|
+
/**
|
|
332
|
+
* Configuration for multi-target classification metrics.
|
|
333
|
+
*/
|
|
334
|
+
export declare const MultiClassificationConfigType: StructType<{
|
|
335
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
336
|
+
average: OptionType<VariantType<{
|
|
337
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
338
|
+
macro: NullType;
|
|
339
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
340
|
+
micro: NullType;
|
|
341
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
342
|
+
weighted: NullType;
|
|
343
|
+
/** Only for binary classification */
|
|
344
|
+
binary: NullType;
|
|
345
|
+
}>>;
|
|
346
|
+
/** How to aggregate across targets (default: per_target) */
|
|
347
|
+
aggregation: OptionType<VariantType<{
|
|
348
|
+
/** Return metric for each target separately (default) */
|
|
349
|
+
per_target: NullType;
|
|
350
|
+
/** Average across all targets (uniform weights) */
|
|
351
|
+
uniform_average: NullType;
|
|
352
|
+
}>>;
|
|
57
353
|
}>;
|
|
58
354
|
/**
|
|
59
|
-
*
|
|
355
|
+
* Multi-target classification metric result.
|
|
60
356
|
*/
|
|
61
|
-
export declare const
|
|
62
|
-
/**
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
357
|
+
export declare const MultiClassificationMetricResultType: StructType<{
|
|
358
|
+
/** Which metric was computed */
|
|
359
|
+
metric: VariantType<{
|
|
360
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
361
|
+
accuracy: NullType;
|
|
362
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
363
|
+
balanced_accuracy: NullType;
|
|
364
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
365
|
+
precision: NullType;
|
|
366
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
367
|
+
recall: NullType;
|
|
368
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
369
|
+
f1: NullType;
|
|
370
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
371
|
+
matthews_corrcoef: NullType;
|
|
372
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
373
|
+
cohen_kappa: NullType;
|
|
374
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
375
|
+
jaccard: NullType;
|
|
376
|
+
}>;
|
|
377
|
+
/** Metric value(s) */
|
|
378
|
+
value: VariantType<{
|
|
379
|
+
/** Aggregated scalar value */
|
|
380
|
+
scalar: FloatType;
|
|
381
|
+
/** Per-target values */
|
|
382
|
+
per_target: ArrayType<FloatType>;
|
|
383
|
+
}>;
|
|
70
384
|
}>;
|
|
385
|
+
/**
|
|
386
|
+
* Result containing multiple computed classification metrics (multi-target).
|
|
387
|
+
*/
|
|
388
|
+
export declare const MultiClassificationMetricResultsType: ArrayType<StructType<{
|
|
389
|
+
/** Which metric was computed */
|
|
390
|
+
metric: VariantType<{
|
|
391
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
392
|
+
accuracy: NullType;
|
|
393
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
394
|
+
balanced_accuracy: NullType;
|
|
395
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
396
|
+
precision: NullType;
|
|
397
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
398
|
+
recall: NullType;
|
|
399
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
400
|
+
f1: NullType;
|
|
401
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
402
|
+
matthews_corrcoef: NullType;
|
|
403
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
404
|
+
cohen_kappa: NullType;
|
|
405
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
406
|
+
jaccard: NullType;
|
|
407
|
+
}>;
|
|
408
|
+
/** Metric value(s) */
|
|
409
|
+
value: VariantType<{
|
|
410
|
+
/** Aggregated scalar value */
|
|
411
|
+
scalar: FloatType;
|
|
412
|
+
/** Per-target values */
|
|
413
|
+
per_target: ArrayType<FloatType>;
|
|
414
|
+
}>;
|
|
415
|
+
}>>;
|
|
71
416
|
/**
|
|
72
417
|
* Model blob type for serialized sklearn models.
|
|
73
418
|
*
|
|
@@ -117,6 +462,7 @@ export declare const RegressorChainBaseConfigType: VariantType<{
|
|
|
117
462
|
reg_lambda: OptionType<FloatType>;
|
|
118
463
|
random_state: OptionType<IntegerType>;
|
|
119
464
|
n_jobs: OptionType<IntegerType>;
|
|
465
|
+
sample_weight: OptionType<ArrayType<FloatType>>;
|
|
120
466
|
}>;
|
|
121
467
|
/** LightGBM regressor */
|
|
122
468
|
lightgbm: StructType<{
|
|
@@ -140,19 +486,19 @@ export declare const RegressorChainBaseConfigType: VariantType<{
|
|
|
140
486
|
col_sample: OptionType<FloatType>;
|
|
141
487
|
random_state: OptionType<IntegerType>;
|
|
142
488
|
distribution: OptionType<VariantType<{
|
|
143
|
-
normal:
|
|
144
|
-
lognormal:
|
|
489
|
+
normal: NullType;
|
|
490
|
+
lognormal: NullType;
|
|
145
491
|
}>>;
|
|
146
492
|
}>;
|
|
147
493
|
/** Gaussian Process regressor */
|
|
148
494
|
gp: StructType<{
|
|
149
495
|
kernel: OptionType<VariantType<{
|
|
150
|
-
rbf:
|
|
151
|
-
matern_1_2:
|
|
152
|
-
matern_3_2:
|
|
153
|
-
matern_5_2:
|
|
154
|
-
rational_quadratic:
|
|
155
|
-
dot_product:
|
|
496
|
+
rbf: NullType;
|
|
497
|
+
matern_1_2: NullType;
|
|
498
|
+
matern_3_2: NullType;
|
|
499
|
+
matern_5_2: NullType;
|
|
500
|
+
rational_quadratic: NullType;
|
|
501
|
+
dot_product: NullType;
|
|
156
502
|
}>>;
|
|
157
503
|
alpha: OptionType<FloatType>;
|
|
158
504
|
n_restarts_optimizer: OptionType<IntegerType>;
|
|
@@ -178,6 +524,7 @@ export declare const RegressorChainConfigType: StructType<{
|
|
|
178
524
|
reg_lambda: OptionType<FloatType>;
|
|
179
525
|
random_state: OptionType<IntegerType>;
|
|
180
526
|
n_jobs: OptionType<IntegerType>;
|
|
527
|
+
sample_weight: OptionType<ArrayType<FloatType>>;
|
|
181
528
|
}>;
|
|
182
529
|
/** LightGBM regressor */
|
|
183
530
|
lightgbm: StructType<{
|
|
@@ -201,19 +548,19 @@ export declare const RegressorChainConfigType: StructType<{
|
|
|
201
548
|
col_sample: OptionType<FloatType>;
|
|
202
549
|
random_state: OptionType<IntegerType>;
|
|
203
550
|
distribution: OptionType<VariantType<{
|
|
204
|
-
normal:
|
|
205
|
-
lognormal:
|
|
551
|
+
normal: NullType;
|
|
552
|
+
lognormal: NullType;
|
|
206
553
|
}>>;
|
|
207
554
|
}>;
|
|
208
555
|
/** Gaussian Process regressor */
|
|
209
556
|
gp: StructType<{
|
|
210
557
|
kernel: OptionType<VariantType<{
|
|
211
|
-
rbf:
|
|
212
|
-
matern_1_2:
|
|
213
|
-
matern_3_2:
|
|
214
|
-
matern_5_2:
|
|
215
|
-
rational_quadratic:
|
|
216
|
-
dot_product:
|
|
558
|
+
rbf: NullType;
|
|
559
|
+
matern_1_2: NullType;
|
|
560
|
+
matern_3_2: NullType;
|
|
561
|
+
matern_5_2: NullType;
|
|
562
|
+
rational_quadratic: NullType;
|
|
563
|
+
dot_product: NullType;
|
|
217
564
|
}>>;
|
|
218
565
|
alpha: OptionType<FloatType>;
|
|
219
566
|
n_restarts_optimizer: OptionType<IntegerType>;
|
|
@@ -389,46 +736,6 @@ export declare const sklearn_min_max_scaler_transform: import("@elaraai/east").P
|
|
|
389
736
|
base_estimator_type: StringType;
|
|
390
737
|
}>;
|
|
391
738
|
}>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
|
|
392
|
-
/**
|
|
393
|
-
* Compute regression metrics.
|
|
394
|
-
*
|
|
395
|
-
* @param y_true - True target values
|
|
396
|
-
* @param y_pred - Predicted target values
|
|
397
|
-
* @returns Regression metrics (MSE, RMSE, MAE, R2, MAPE)
|
|
398
|
-
*/
|
|
399
|
-
export declare const sklearn_metrics_regression: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>], StructType<{
|
|
400
|
-
/** Mean Squared Error */
|
|
401
|
-
mse: FloatType;
|
|
402
|
-
/** Root Mean Squared Error */
|
|
403
|
-
rmse: FloatType;
|
|
404
|
-
/** Mean Absolute Error */
|
|
405
|
-
mae: FloatType;
|
|
406
|
-
/** R-squared (coefficient of determination) */
|
|
407
|
-
r2: FloatType;
|
|
408
|
-
/** Mean Absolute Percentage Error */
|
|
409
|
-
mape: FloatType;
|
|
410
|
-
}>>;
|
|
411
|
-
/**
|
|
412
|
-
* Compute classification metrics.
|
|
413
|
-
*
|
|
414
|
-
* @param y_true - True class labels
|
|
415
|
-
* @param y_pred - Predicted class labels
|
|
416
|
-
* @returns Classification metrics (accuracy, precision, recall, F1)
|
|
417
|
-
*/
|
|
418
|
-
export declare const sklearn_metrics_classification: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>], StructType<{
|
|
419
|
-
/** Accuracy score */
|
|
420
|
-
accuracy: FloatType;
|
|
421
|
-
/** Precision (weighted average) */
|
|
422
|
-
precision: FloatType;
|
|
423
|
-
/** Recall (weighted average) */
|
|
424
|
-
recall: FloatType;
|
|
425
|
-
/** F1 score (weighted average) */
|
|
426
|
-
f1: FloatType;
|
|
427
|
-
}>>;
|
|
428
|
-
/**
|
|
429
|
-
* Multi-target output type for RegressorChain.
|
|
430
|
-
*/
|
|
431
|
-
export declare const MultiTargetType: ArrayType<ArrayType<FloatType>>;
|
|
432
739
|
/**
|
|
433
740
|
* Train a RegressorChain for multi-target regression.
|
|
434
741
|
*
|
|
@@ -455,6 +762,7 @@ export declare const sklearn_regressor_chain_train: import("@elaraai/east").Plat
|
|
|
455
762
|
reg_lambda: OptionType<FloatType>;
|
|
456
763
|
random_state: OptionType<IntegerType>;
|
|
457
764
|
n_jobs: OptionType<IntegerType>;
|
|
765
|
+
sample_weight: OptionType<ArrayType<FloatType>>;
|
|
458
766
|
}>;
|
|
459
767
|
/** LightGBM regressor */
|
|
460
768
|
lightgbm: StructType<{
|
|
@@ -478,19 +786,19 @@ export declare const sklearn_regressor_chain_train: import("@elaraai/east").Plat
|
|
|
478
786
|
col_sample: OptionType<FloatType>;
|
|
479
787
|
random_state: OptionType<IntegerType>;
|
|
480
788
|
distribution: OptionType<VariantType<{
|
|
481
|
-
normal:
|
|
482
|
-
lognormal:
|
|
789
|
+
normal: NullType;
|
|
790
|
+
lognormal: NullType;
|
|
483
791
|
}>>;
|
|
484
792
|
}>;
|
|
485
793
|
/** Gaussian Process regressor */
|
|
486
794
|
gp: StructType<{
|
|
487
795
|
kernel: OptionType<VariantType<{
|
|
488
|
-
rbf:
|
|
489
|
-
matern_1_2:
|
|
490
|
-
matern_3_2:
|
|
491
|
-
matern_5_2:
|
|
492
|
-
rational_quadratic:
|
|
493
|
-
dot_product:
|
|
796
|
+
rbf: NullType;
|
|
797
|
+
matern_1_2: NullType;
|
|
798
|
+
matern_3_2: NullType;
|
|
799
|
+
matern_5_2: NullType;
|
|
800
|
+
rational_quadratic: NullType;
|
|
801
|
+
dot_product: NullType;
|
|
494
802
|
}>>;
|
|
495
803
|
alpha: OptionType<FloatType>;
|
|
496
804
|
n_restarts_optimizer: OptionType<IntegerType>;
|
|
@@ -563,6 +871,281 @@ export declare const sklearn_regressor_chain_predict: import("@elaraai/east").Pl
|
|
|
563
871
|
base_estimator_type: StringType;
|
|
564
872
|
}>;
|
|
565
873
|
}>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
|
|
874
|
+
/**
|
|
875
|
+
* Split arrays into train, validation, and test subsets.
|
|
876
|
+
*
|
|
877
|
+
* @param X - Feature matrix
|
|
878
|
+
* @param Y - Target matrix (multi-target)
|
|
879
|
+
* @param config - Split configuration with val_size and test_size
|
|
880
|
+
* @returns Split result with X_train, X_val, X_test, Y_train, Y_val, Y_test
|
|
881
|
+
*/
|
|
882
|
+
export declare const sklearn_train_val_test_split: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
|
|
883
|
+
/** Proportion of data for validation (default 0.15) */
|
|
884
|
+
val_size: OptionType<FloatType>;
|
|
885
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
886
|
+
test_size: OptionType<FloatType>;
|
|
887
|
+
/** Random seed for reproducibility */
|
|
888
|
+
random_state: OptionType<IntegerType>;
|
|
889
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
890
|
+
shuffle: OptionType<BooleanType>;
|
|
891
|
+
}>], StructType<{
|
|
892
|
+
/** Training features */
|
|
893
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
894
|
+
/** Validation features */
|
|
895
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
896
|
+
/** Test/holdout features */
|
|
897
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
898
|
+
/** Training targets (matrix) */
|
|
899
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
900
|
+
/** Validation targets (matrix) */
|
|
901
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
902
|
+
/** Test/holdout targets (matrix) */
|
|
903
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
904
|
+
}>>;
|
|
905
|
+
/**
|
|
906
|
+
* Compute regression metrics for single-target predictions.
|
|
907
|
+
*
|
|
908
|
+
* @param y_true - True target values (1D vector)
|
|
909
|
+
* @param y_pred - Predicted target values (1D vector)
|
|
910
|
+
* @param metrics - Array of metrics to compute
|
|
911
|
+
* @returns Array of metric results with scalar values
|
|
912
|
+
*/
|
|
913
|
+
export declare const sklearn_compute_metrics: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>, ArrayType<VariantType<{
|
|
914
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
915
|
+
mse: NullType;
|
|
916
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
917
|
+
rmse: NullType;
|
|
918
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
919
|
+
mae: NullType;
|
|
920
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
921
|
+
r2: NullType;
|
|
922
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
923
|
+
mape: NullType;
|
|
924
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
925
|
+
explained_variance: NullType;
|
|
926
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
927
|
+
max_error: NullType;
|
|
928
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
929
|
+
median_ae: NullType;
|
|
930
|
+
}>>], ArrayType<StructType<{
|
|
931
|
+
/** Which metric was computed */
|
|
932
|
+
metric: VariantType<{
|
|
933
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
934
|
+
mse: NullType;
|
|
935
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
936
|
+
rmse: NullType;
|
|
937
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
938
|
+
mae: NullType;
|
|
939
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
940
|
+
r2: NullType;
|
|
941
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
942
|
+
mape: NullType;
|
|
943
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
944
|
+
explained_variance: NullType;
|
|
945
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
946
|
+
max_error: NullType;
|
|
947
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
948
|
+
median_ae: NullType;
|
|
949
|
+
}>;
|
|
950
|
+
/** Scalar metric value */
|
|
951
|
+
value: FloatType;
|
|
952
|
+
}>>>;
|
|
953
|
+
/**
|
|
954
|
+
* Compute regression metrics for multi-target predictions.
|
|
955
|
+
*
|
|
956
|
+
* @param Y_true - True target matrix [n_samples, n_targets]
|
|
957
|
+
* @param Y_pred - Predicted target matrix [n_samples, n_targets]
|
|
958
|
+
* @param metrics - Array of metrics to compute
|
|
959
|
+
* @param config - Aggregation configuration
|
|
960
|
+
* @returns Array of metric results with per-target or aggregated values
|
|
961
|
+
*/
|
|
962
|
+
export declare const sklearn_compute_metrics_multi: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
|
|
963
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
964
|
+
mse: NullType;
|
|
965
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
966
|
+
rmse: NullType;
|
|
967
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
968
|
+
mae: NullType;
|
|
969
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
970
|
+
r2: NullType;
|
|
971
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
972
|
+
mape: NullType;
|
|
973
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
974
|
+
explained_variance: NullType;
|
|
975
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
976
|
+
max_error: NullType;
|
|
977
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
978
|
+
median_ae: NullType;
|
|
979
|
+
}>>, StructType<{
|
|
980
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
981
|
+
aggregation: OptionType<VariantType<{
|
|
982
|
+
/** Return metric for each target separately (default) */
|
|
983
|
+
per_target: NullType;
|
|
984
|
+
/** Average across all targets (uniform weights) */
|
|
985
|
+
uniform_average: NullType;
|
|
986
|
+
}>>;
|
|
987
|
+
}>], ArrayType<StructType<{
|
|
988
|
+
/** Which metric was computed */
|
|
989
|
+
metric: VariantType<{
|
|
990
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
991
|
+
mse: NullType;
|
|
992
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
993
|
+
rmse: NullType;
|
|
994
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
995
|
+
mae: NullType;
|
|
996
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
997
|
+
r2: NullType;
|
|
998
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
999
|
+
mape: NullType;
|
|
1000
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1001
|
+
explained_variance: NullType;
|
|
1002
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1003
|
+
max_error: NullType;
|
|
1004
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1005
|
+
median_ae: NullType;
|
|
1006
|
+
}>;
|
|
1007
|
+
/** Metric value(s) */
|
|
1008
|
+
value: VariantType<{
|
|
1009
|
+
/** Aggregated scalar value */
|
|
1010
|
+
scalar: FloatType;
|
|
1011
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
1012
|
+
per_target: ArrayType<FloatType>;
|
|
1013
|
+
}>;
|
|
1014
|
+
}>>>;
|
|
1015
|
+
/**
|
|
1016
|
+
* Compute classification metrics for single-target predictions.
|
|
1017
|
+
*
|
|
1018
|
+
* @param y_true - True class labels (1D integer array)
|
|
1019
|
+
* @param y_pred - Predicted class labels (1D integer array)
|
|
1020
|
+
* @param metrics - Array of metrics to compute
|
|
1021
|
+
* @param config - Configuration (averaging strategy)
|
|
1022
|
+
* @returns Array of metric results with scalar values
|
|
1023
|
+
*/
|
|
1024
|
+
export declare const sklearn_compute_classification_metrics: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>, ArrayType<VariantType<{
|
|
1025
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1026
|
+
accuracy: NullType;
|
|
1027
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1028
|
+
balanced_accuracy: NullType;
|
|
1029
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1030
|
+
precision: NullType;
|
|
1031
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1032
|
+
recall: NullType;
|
|
1033
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1034
|
+
f1: NullType;
|
|
1035
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1036
|
+
matthews_corrcoef: NullType;
|
|
1037
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1038
|
+
cohen_kappa: NullType;
|
|
1039
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1040
|
+
jaccard: NullType;
|
|
1041
|
+
}>>, StructType<{
|
|
1042
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1043
|
+
average: OptionType<VariantType<{
|
|
1044
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1045
|
+
macro: NullType;
|
|
1046
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1047
|
+
micro: NullType;
|
|
1048
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1049
|
+
weighted: NullType;
|
|
1050
|
+
/** Only for binary classification */
|
|
1051
|
+
binary: NullType;
|
|
1052
|
+
}>>;
|
|
1053
|
+
}>], ArrayType<StructType<{
|
|
1054
|
+
/** Which metric was computed */
|
|
1055
|
+
metric: VariantType<{
|
|
1056
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1057
|
+
accuracy: NullType;
|
|
1058
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1059
|
+
balanced_accuracy: NullType;
|
|
1060
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1061
|
+
precision: NullType;
|
|
1062
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1063
|
+
recall: NullType;
|
|
1064
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1065
|
+
f1: NullType;
|
|
1066
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1067
|
+
matthews_corrcoef: NullType;
|
|
1068
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1069
|
+
cohen_kappa: NullType;
|
|
1070
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1071
|
+
jaccard: NullType;
|
|
1072
|
+
}>;
|
|
1073
|
+
/** Scalar metric value */
|
|
1074
|
+
value: FloatType;
|
|
1075
|
+
}>>>;
|
|
1076
|
+
/**
|
|
1077
|
+
* Compute classification metrics for multi-target predictions.
|
|
1078
|
+
*
|
|
1079
|
+
* @param Y_true - True class labels matrix [n_samples, n_targets]
|
|
1080
|
+
* @param Y_pred - Predicted class labels matrix [n_samples, n_targets]
|
|
1081
|
+
* @param metrics - Array of metrics to compute
|
|
1082
|
+
* @param config - Configuration (averaging, aggregation)
|
|
1083
|
+
* @returns Array of metric results with per-target or aggregated values
|
|
1084
|
+
*/
|
|
1085
|
+
export declare const sklearn_compute_classification_metrics_multi: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
|
|
1086
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1087
|
+
accuracy: NullType;
|
|
1088
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1089
|
+
balanced_accuracy: NullType;
|
|
1090
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1091
|
+
precision: NullType;
|
|
1092
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1093
|
+
recall: NullType;
|
|
1094
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1095
|
+
f1: NullType;
|
|
1096
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1097
|
+
matthews_corrcoef: NullType;
|
|
1098
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1099
|
+
cohen_kappa: NullType;
|
|
1100
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1101
|
+
jaccard: NullType;
|
|
1102
|
+
}>>, StructType<{
|
|
1103
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1104
|
+
average: OptionType<VariantType<{
|
|
1105
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1106
|
+
macro: NullType;
|
|
1107
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1108
|
+
micro: NullType;
|
|
1109
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1110
|
+
weighted: NullType;
|
|
1111
|
+
/** Only for binary classification */
|
|
1112
|
+
binary: NullType;
|
|
1113
|
+
}>>;
|
|
1114
|
+
/** How to aggregate across targets (default: per_target) */
|
|
1115
|
+
aggregation: OptionType<VariantType<{
|
|
1116
|
+
/** Return metric for each target separately (default) */
|
|
1117
|
+
per_target: NullType;
|
|
1118
|
+
/** Average across all targets (uniform weights) */
|
|
1119
|
+
uniform_average: NullType;
|
|
1120
|
+
}>>;
|
|
1121
|
+
}>], ArrayType<StructType<{
|
|
1122
|
+
/** Which metric was computed */
|
|
1123
|
+
metric: VariantType<{
|
|
1124
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1125
|
+
accuracy: NullType;
|
|
1126
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1127
|
+
balanced_accuracy: NullType;
|
|
1128
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1129
|
+
precision: NullType;
|
|
1130
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1131
|
+
recall: NullType;
|
|
1132
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1133
|
+
f1: NullType;
|
|
1134
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1135
|
+
matthews_corrcoef: NullType;
|
|
1136
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1137
|
+
cohen_kappa: NullType;
|
|
1138
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1139
|
+
jaccard: NullType;
|
|
1140
|
+
}>;
|
|
1141
|
+
/** Metric value(s) */
|
|
1142
|
+
value: VariantType<{
|
|
1143
|
+
/** Aggregated scalar value */
|
|
1144
|
+
scalar: FloatType;
|
|
1145
|
+
/** Per-target values */
|
|
1146
|
+
per_target: ArrayType<FloatType>;
|
|
1147
|
+
}>;
|
|
1148
|
+
}>>>;
|
|
566
1149
|
/**
|
|
567
1150
|
* Type definitions for sklearn functions.
|
|
568
1151
|
*/
|
|
@@ -593,29 +1176,31 @@ export declare const SklearnTypes: {
|
|
|
593
1176
|
/** Test labels */
|
|
594
1177
|
y_test: ArrayType<FloatType>;
|
|
595
1178
|
}>;
|
|
596
|
-
/**
|
|
597
|
-
readonly
|
|
598
|
-
/**
|
|
599
|
-
|
|
600
|
-
/**
|
|
601
|
-
|
|
602
|
-
/**
|
|
603
|
-
|
|
604
|
-
/**
|
|
605
|
-
|
|
606
|
-
/** Mean Absolute Percentage Error */
|
|
607
|
-
mape: FloatType;
|
|
1179
|
+
/** 3-way split configuration type */
|
|
1180
|
+
readonly ThreeWaySplitConfigType: StructType<{
|
|
1181
|
+
/** Proportion of data for validation (default 0.15) */
|
|
1182
|
+
val_size: OptionType<FloatType>;
|
|
1183
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
1184
|
+
test_size: OptionType<FloatType>;
|
|
1185
|
+
/** Random seed for reproducibility */
|
|
1186
|
+
random_state: OptionType<IntegerType>;
|
|
1187
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
1188
|
+
shuffle: OptionType<BooleanType>;
|
|
608
1189
|
}>;
|
|
609
|
-
/**
|
|
610
|
-
readonly
|
|
611
|
-
/**
|
|
612
|
-
|
|
613
|
-
/**
|
|
614
|
-
|
|
615
|
-
/**
|
|
616
|
-
|
|
617
|
-
/**
|
|
618
|
-
|
|
1190
|
+
/** 3-way split result type */
|
|
1191
|
+
readonly ThreeWaySplitResultType: StructType<{
|
|
1192
|
+
/** Training features */
|
|
1193
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
1194
|
+
/** Validation features */
|
|
1195
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
1196
|
+
/** Test/holdout features */
|
|
1197
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
1198
|
+
/** Training targets (matrix) */
|
|
1199
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
1200
|
+
/** Validation targets (matrix) */
|
|
1201
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
1202
|
+
/** Test/holdout targets (matrix) */
|
|
1203
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
619
1204
|
}>;
|
|
620
1205
|
/** Model blob type for sklearn models */
|
|
621
1206
|
readonly ModelBlobType: VariantType<{
|
|
@@ -645,8 +1230,6 @@ export declare const SklearnTypes: {
|
|
|
645
1230
|
base_estimator_type: StringType;
|
|
646
1231
|
}>;
|
|
647
1232
|
}>;
|
|
648
|
-
/** Multi-target output type */
|
|
649
|
-
readonly MultiTargetType: ArrayType<ArrayType<FloatType>>;
|
|
650
1233
|
/** RegressorChain base estimator config type */
|
|
651
1234
|
readonly RegressorChainBaseConfigType: VariantType<{
|
|
652
1235
|
/** XGBoost regressor */
|
|
@@ -661,6 +1244,7 @@ export declare const SklearnTypes: {
|
|
|
661
1244
|
reg_lambda: OptionType<FloatType>;
|
|
662
1245
|
random_state: OptionType<IntegerType>;
|
|
663
1246
|
n_jobs: OptionType<IntegerType>;
|
|
1247
|
+
sample_weight: OptionType<ArrayType<FloatType>>;
|
|
664
1248
|
}>;
|
|
665
1249
|
/** LightGBM regressor */
|
|
666
1250
|
lightgbm: StructType<{
|
|
@@ -684,19 +1268,19 @@ export declare const SklearnTypes: {
|
|
|
684
1268
|
col_sample: OptionType<FloatType>;
|
|
685
1269
|
random_state: OptionType<IntegerType>;
|
|
686
1270
|
distribution: OptionType<VariantType<{
|
|
687
|
-
normal:
|
|
688
|
-
lognormal:
|
|
1271
|
+
normal: NullType;
|
|
1272
|
+
lognormal: NullType;
|
|
689
1273
|
}>>;
|
|
690
1274
|
}>;
|
|
691
1275
|
/** Gaussian Process regressor */
|
|
692
1276
|
gp: StructType<{
|
|
693
1277
|
kernel: OptionType<VariantType<{
|
|
694
|
-
rbf:
|
|
695
|
-
matern_1_2:
|
|
696
|
-
matern_3_2:
|
|
697
|
-
matern_5_2:
|
|
698
|
-
rational_quadratic:
|
|
699
|
-
dot_product:
|
|
1278
|
+
rbf: NullType;
|
|
1279
|
+
matern_1_2: NullType;
|
|
1280
|
+
matern_3_2: NullType;
|
|
1281
|
+
matern_5_2: NullType;
|
|
1282
|
+
rational_quadratic: NullType;
|
|
1283
|
+
dot_product: NullType;
|
|
700
1284
|
}>>;
|
|
701
1285
|
alpha: OptionType<FloatType>;
|
|
702
1286
|
n_restarts_optimizer: OptionType<IntegerType>;
|
|
@@ -720,6 +1304,7 @@ export declare const SklearnTypes: {
|
|
|
720
1304
|
reg_lambda: OptionType<FloatType>;
|
|
721
1305
|
random_state: OptionType<IntegerType>;
|
|
722
1306
|
n_jobs: OptionType<IntegerType>;
|
|
1307
|
+
sample_weight: OptionType<ArrayType<FloatType>>;
|
|
723
1308
|
}>;
|
|
724
1309
|
/** LightGBM regressor */
|
|
725
1310
|
lightgbm: StructType<{
|
|
@@ -743,19 +1328,19 @@ export declare const SklearnTypes: {
|
|
|
743
1328
|
col_sample: OptionType<FloatType>;
|
|
744
1329
|
random_state: OptionType<IntegerType>;
|
|
745
1330
|
distribution: OptionType<VariantType<{
|
|
746
|
-
normal:
|
|
747
|
-
lognormal:
|
|
1331
|
+
normal: NullType;
|
|
1332
|
+
lognormal: NullType;
|
|
748
1333
|
}>>;
|
|
749
1334
|
}>;
|
|
750
1335
|
/** Gaussian Process regressor */
|
|
751
1336
|
gp: StructType<{
|
|
752
1337
|
kernel: OptionType<VariantType<{
|
|
753
|
-
rbf:
|
|
754
|
-
matern_1_2:
|
|
755
|
-
matern_3_2:
|
|
756
|
-
matern_5_2:
|
|
757
|
-
rational_quadratic:
|
|
758
|
-
dot_product:
|
|
1338
|
+
rbf: NullType;
|
|
1339
|
+
matern_1_2: NullType;
|
|
1340
|
+
matern_3_2: NullType;
|
|
1341
|
+
matern_5_2: NullType;
|
|
1342
|
+
rational_quadratic: NullType;
|
|
1343
|
+
dot_product: NullType;
|
|
759
1344
|
}>>;
|
|
760
1345
|
alpha: OptionType<FloatType>;
|
|
761
1346
|
n_restarts_optimizer: OptionType<IntegerType>;
|
|
@@ -768,6 +1353,319 @@ export declare const SklearnTypes: {
|
|
|
768
1353
|
/** Random seed for reproducibility */
|
|
769
1354
|
random_state: OptionType<IntegerType>;
|
|
770
1355
|
}>;
|
|
1356
|
+
/** Regression metric variant */
|
|
1357
|
+
readonly RegressionMetricType: VariantType<{
|
|
1358
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1359
|
+
mse: NullType;
|
|
1360
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1361
|
+
rmse: NullType;
|
|
1362
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1363
|
+
mae: NullType;
|
|
1364
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1365
|
+
r2: NullType;
|
|
1366
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1367
|
+
mape: NullType;
|
|
1368
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1369
|
+
explained_variance: NullType;
|
|
1370
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1371
|
+
max_error: NullType;
|
|
1372
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1373
|
+
median_ae: NullType;
|
|
1374
|
+
}>;
|
|
1375
|
+
/** Single metric result */
|
|
1376
|
+
readonly MetricResultType: StructType<{
|
|
1377
|
+
/** Which metric was computed */
|
|
1378
|
+
metric: VariantType<{
|
|
1379
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1380
|
+
mse: NullType;
|
|
1381
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1382
|
+
rmse: NullType;
|
|
1383
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1384
|
+
mae: NullType;
|
|
1385
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1386
|
+
r2: NullType;
|
|
1387
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1388
|
+
mape: NullType;
|
|
1389
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1390
|
+
explained_variance: NullType;
|
|
1391
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1392
|
+
max_error: NullType;
|
|
1393
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1394
|
+
median_ae: NullType;
|
|
1395
|
+
}>;
|
|
1396
|
+
/** Scalar metric value */
|
|
1397
|
+
value: FloatType;
|
|
1398
|
+
}>;
|
|
1399
|
+
/** Multiple metrics result */
|
|
1400
|
+
readonly MetricsResultType: ArrayType<StructType<{
|
|
1401
|
+
/** Which metric was computed */
|
|
1402
|
+
metric: VariantType<{
|
|
1403
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1404
|
+
mse: NullType;
|
|
1405
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1406
|
+
rmse: NullType;
|
|
1407
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1408
|
+
mae: NullType;
|
|
1409
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1410
|
+
r2: NullType;
|
|
1411
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1412
|
+
mape: NullType;
|
|
1413
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1414
|
+
explained_variance: NullType;
|
|
1415
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1416
|
+
max_error: NullType;
|
|
1417
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1418
|
+
median_ae: NullType;
|
|
1419
|
+
}>;
|
|
1420
|
+
/** Scalar metric value */
|
|
1421
|
+
value: FloatType;
|
|
1422
|
+
}>>;
|
|
1423
|
+
/** Metric aggregation type */
|
|
1424
|
+
readonly MetricAggregationType: VariantType<{
|
|
1425
|
+
/** Return metric for each target separately (default) */
|
|
1426
|
+
per_target: NullType;
|
|
1427
|
+
/** Average across all targets (uniform weights) */
|
|
1428
|
+
uniform_average: NullType;
|
|
1429
|
+
}>;
|
|
1430
|
+
/** Multi-target metrics config */
|
|
1431
|
+
readonly MultiMetricsConfigType: StructType<{
|
|
1432
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
1433
|
+
aggregation: OptionType<VariantType<{
|
|
1434
|
+
/** Return metric for each target separately (default) */
|
|
1435
|
+
per_target: NullType;
|
|
1436
|
+
/** Average across all targets (uniform weights) */
|
|
1437
|
+
uniform_average: NullType;
|
|
1438
|
+
}>>;
|
|
1439
|
+
}>;
|
|
1440
|
+
/** Multi-target metric result */
|
|
1441
|
+
readonly MultiMetricResultType: StructType<{
|
|
1442
|
+
/** Which metric was computed */
|
|
1443
|
+
metric: VariantType<{
|
|
1444
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1445
|
+
mse: NullType;
|
|
1446
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1447
|
+
rmse: NullType;
|
|
1448
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1449
|
+
mae: NullType;
|
|
1450
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1451
|
+
r2: NullType;
|
|
1452
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1453
|
+
mape: NullType;
|
|
1454
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1455
|
+
explained_variance: NullType;
|
|
1456
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1457
|
+
max_error: NullType;
|
|
1458
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1459
|
+
median_ae: NullType;
|
|
1460
|
+
}>;
|
|
1461
|
+
/** Metric value(s) */
|
|
1462
|
+
value: VariantType<{
|
|
1463
|
+
/** Aggregated scalar value */
|
|
1464
|
+
scalar: FloatType;
|
|
1465
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
1466
|
+
per_target: ArrayType<FloatType>;
|
|
1467
|
+
}>;
|
|
1468
|
+
}>;
|
|
1469
|
+
/** Multi-target metrics result */
|
|
1470
|
+
readonly MultiMetricsResultType: ArrayType<StructType<{
|
|
1471
|
+
/** Which metric was computed */
|
|
1472
|
+
metric: VariantType<{
|
|
1473
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1474
|
+
mse: NullType;
|
|
1475
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1476
|
+
rmse: NullType;
|
|
1477
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1478
|
+
mae: NullType;
|
|
1479
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1480
|
+
r2: NullType;
|
|
1481
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1482
|
+
mape: NullType;
|
|
1483
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1484
|
+
explained_variance: NullType;
|
|
1485
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1486
|
+
max_error: NullType;
|
|
1487
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1488
|
+
median_ae: NullType;
|
|
1489
|
+
}>;
|
|
1490
|
+
/** Metric value(s) */
|
|
1491
|
+
value: VariantType<{
|
|
1492
|
+
/** Aggregated scalar value */
|
|
1493
|
+
scalar: FloatType;
|
|
1494
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
1495
|
+
per_target: ArrayType<FloatType>;
|
|
1496
|
+
}>;
|
|
1497
|
+
}>>;
|
|
1498
|
+
/** Classification metric variant */
|
|
1499
|
+
readonly ClassificationMetricType: VariantType<{
|
|
1500
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1501
|
+
accuracy: NullType;
|
|
1502
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1503
|
+
balanced_accuracy: NullType;
|
|
1504
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1505
|
+
precision: NullType;
|
|
1506
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1507
|
+
recall: NullType;
|
|
1508
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1509
|
+
f1: NullType;
|
|
1510
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1511
|
+
matthews_corrcoef: NullType;
|
|
1512
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1513
|
+
cohen_kappa: NullType;
|
|
1514
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1515
|
+
jaccard: NullType;
|
|
1516
|
+
}>;
|
|
1517
|
+
/** Classification averaging type */
|
|
1518
|
+
readonly ClassificationAverageType: VariantType<{
|
|
1519
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1520
|
+
macro: NullType;
|
|
1521
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1522
|
+
micro: NullType;
|
|
1523
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1524
|
+
weighted: NullType;
|
|
1525
|
+
/** Only for binary classification */
|
|
1526
|
+
binary: NullType;
|
|
1527
|
+
}>;
|
|
1528
|
+
/** Classification metrics config */
|
|
1529
|
+
readonly ClassificationMetricsConfigType: StructType<{
|
|
1530
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1531
|
+
average: OptionType<VariantType<{
|
|
1532
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1533
|
+
macro: NullType;
|
|
1534
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1535
|
+
micro: NullType;
|
|
1536
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1537
|
+
weighted: NullType;
|
|
1538
|
+
/** Only for binary classification */
|
|
1539
|
+
binary: NullType;
|
|
1540
|
+
}>>;
|
|
1541
|
+
}>;
|
|
1542
|
+
/** Classification metric result */
|
|
1543
|
+
readonly ClassificationMetricResultType: StructType<{
|
|
1544
|
+
/** Which metric was computed */
|
|
1545
|
+
metric: VariantType<{
|
|
1546
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1547
|
+
accuracy: NullType;
|
|
1548
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1549
|
+
balanced_accuracy: NullType;
|
|
1550
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1551
|
+
precision: NullType;
|
|
1552
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1553
|
+
recall: NullType;
|
|
1554
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1555
|
+
f1: NullType;
|
|
1556
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1557
|
+
matthews_corrcoef: NullType;
|
|
1558
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1559
|
+
cohen_kappa: NullType;
|
|
1560
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1561
|
+
jaccard: NullType;
|
|
1562
|
+
}>;
|
|
1563
|
+
/** Scalar metric value */
|
|
1564
|
+
value: FloatType;
|
|
1565
|
+
}>;
|
|
1566
|
+
/** Classification metrics result */
|
|
1567
|
+
readonly ClassificationMetricResultsType: ArrayType<StructType<{
|
|
1568
|
+
/** Which metric was computed */
|
|
1569
|
+
metric: VariantType<{
|
|
1570
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1571
|
+
accuracy: NullType;
|
|
1572
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1573
|
+
balanced_accuracy: NullType;
|
|
1574
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1575
|
+
precision: NullType;
|
|
1576
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1577
|
+
recall: NullType;
|
|
1578
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1579
|
+
f1: NullType;
|
|
1580
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1581
|
+
matthews_corrcoef: NullType;
|
|
1582
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1583
|
+
cohen_kappa: NullType;
|
|
1584
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1585
|
+
jaccard: NullType;
|
|
1586
|
+
}>;
|
|
1587
|
+
/** Scalar metric value */
|
|
1588
|
+
value: FloatType;
|
|
1589
|
+
}>>;
|
|
1590
|
+
/** Multi-target classification config */
|
|
1591
|
+
readonly MultiClassificationConfigType: StructType<{
|
|
1592
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1593
|
+
average: OptionType<VariantType<{
|
|
1594
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1595
|
+
macro: NullType;
|
|
1596
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1597
|
+
micro: NullType;
|
|
1598
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1599
|
+
weighted: NullType;
|
|
1600
|
+
/** Only for binary classification */
|
|
1601
|
+
binary: NullType;
|
|
1602
|
+
}>>;
|
|
1603
|
+
/** How to aggregate across targets (default: per_target) */
|
|
1604
|
+
aggregation: OptionType<VariantType<{
|
|
1605
|
+
/** Return metric for each target separately (default) */
|
|
1606
|
+
per_target: NullType;
|
|
1607
|
+
/** Average across all targets (uniform weights) */
|
|
1608
|
+
uniform_average: NullType;
|
|
1609
|
+
}>>;
|
|
1610
|
+
}>;
|
|
1611
|
+
/** Multi-target classification metric result */
|
|
1612
|
+
readonly MultiClassificationMetricResultType: StructType<{
|
|
1613
|
+
/** Which metric was computed */
|
|
1614
|
+
metric: VariantType<{
|
|
1615
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1616
|
+
accuracy: NullType;
|
|
1617
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1618
|
+
balanced_accuracy: NullType;
|
|
1619
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1620
|
+
precision: NullType;
|
|
1621
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1622
|
+
recall: NullType;
|
|
1623
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1624
|
+
f1: NullType;
|
|
1625
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1626
|
+
matthews_corrcoef: NullType;
|
|
1627
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1628
|
+
cohen_kappa: NullType;
|
|
1629
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1630
|
+
jaccard: NullType;
|
|
1631
|
+
}>;
|
|
1632
|
+
/** Metric value(s) */
|
|
1633
|
+
value: VariantType<{
|
|
1634
|
+
/** Aggregated scalar value */
|
|
1635
|
+
scalar: FloatType;
|
|
1636
|
+
/** Per-target values */
|
|
1637
|
+
per_target: ArrayType<FloatType>;
|
|
1638
|
+
}>;
|
|
1639
|
+
}>;
|
|
1640
|
+
/** Multi-target classification metrics result */
|
|
1641
|
+
readonly MultiClassificationMetricResultsType: ArrayType<StructType<{
|
|
1642
|
+
/** Which metric was computed */
|
|
1643
|
+
metric: VariantType<{
|
|
1644
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1645
|
+
accuracy: NullType;
|
|
1646
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1647
|
+
balanced_accuracy: NullType;
|
|
1648
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1649
|
+
precision: NullType;
|
|
1650
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1651
|
+
recall: NullType;
|
|
1652
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1653
|
+
f1: NullType;
|
|
1654
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1655
|
+
matthews_corrcoef: NullType;
|
|
1656
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1657
|
+
cohen_kappa: NullType;
|
|
1658
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1659
|
+
jaccard: NullType;
|
|
1660
|
+
}>;
|
|
1661
|
+
/** Metric value(s) */
|
|
1662
|
+
value: VariantType<{
|
|
1663
|
+
/** Aggregated scalar value */
|
|
1664
|
+
scalar: FloatType;
|
|
1665
|
+
/** Per-target values */
|
|
1666
|
+
per_target: ArrayType<FloatType>;
|
|
1667
|
+
}>;
|
|
1668
|
+
}>>;
|
|
771
1669
|
};
|
|
772
1670
|
/**
|
|
773
1671
|
* Scikit-learn machine learning utilities.
|
|
@@ -810,6 +1708,30 @@ export declare const Sklearn: {
|
|
|
810
1708
|
/** Test labels */
|
|
811
1709
|
y_test: ArrayType<FloatType>;
|
|
812
1710
|
}>>;
|
|
1711
|
+
/** Split arrays into train, validation, and test subsets */
|
|
1712
|
+
readonly trainValTestSplit: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
|
|
1713
|
+
/** Proportion of data for validation (default 0.15) */
|
|
1714
|
+
val_size: OptionType<FloatType>;
|
|
1715
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
1716
|
+
test_size: OptionType<FloatType>;
|
|
1717
|
+
/** Random seed for reproducibility */
|
|
1718
|
+
random_state: OptionType<IntegerType>;
|
|
1719
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
1720
|
+
shuffle: OptionType<BooleanType>;
|
|
1721
|
+
}>], StructType<{
|
|
1722
|
+
/** Training features */
|
|
1723
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
1724
|
+
/** Validation features */
|
|
1725
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
1726
|
+
/** Test/holdout features */
|
|
1727
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
1728
|
+
/** Training targets (matrix) */
|
|
1729
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
1730
|
+
/** Validation targets (matrix) */
|
|
1731
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
1732
|
+
/** Test/holdout targets (matrix) */
|
|
1733
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
1734
|
+
}>>;
|
|
813
1735
|
/** Fit a StandardScaler to data */
|
|
814
1736
|
readonly standardScalerFit: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>], VariantType<{
|
|
815
1737
|
/** StandardScaler model */
|
|
@@ -922,30 +1844,219 @@ export declare const Sklearn: {
|
|
|
922
1844
|
base_estimator_type: StringType;
|
|
923
1845
|
}>;
|
|
924
1846
|
}>, ArrayType<ArrayType<FloatType>>], ArrayType<ArrayType<FloatType>>>;
|
|
925
|
-
/** Compute regression metrics */
|
|
926
|
-
readonly
|
|
927
|
-
/** Mean Squared Error */
|
|
928
|
-
mse:
|
|
929
|
-
/** Root Mean Squared Error */
|
|
930
|
-
rmse:
|
|
931
|
-
/** Mean Absolute Error */
|
|
932
|
-
mae:
|
|
933
|
-
/** R
|
|
934
|
-
r2:
|
|
935
|
-
/** Mean Absolute Percentage Error */
|
|
936
|
-
mape:
|
|
937
|
-
|
|
938
|
-
|
|
939
|
-
|
|
940
|
-
|
|
941
|
-
|
|
942
|
-
|
|
943
|
-
|
|
944
|
-
/**
|
|
945
|
-
|
|
946
|
-
|
|
947
|
-
|
|
948
|
-
|
|
1847
|
+
/** Compute regression metrics (single-target) */
|
|
1848
|
+
readonly computeMetrics: import("@elaraai/east").PlatformDefinition<[ArrayType<FloatType>, ArrayType<FloatType>, ArrayType<VariantType<{
|
|
1849
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1850
|
+
mse: NullType;
|
|
1851
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1852
|
+
rmse: NullType;
|
|
1853
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1854
|
+
mae: NullType;
|
|
1855
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1856
|
+
r2: NullType;
|
|
1857
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1858
|
+
mape: NullType;
|
|
1859
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1860
|
+
explained_variance: NullType;
|
|
1861
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1862
|
+
max_error: NullType;
|
|
1863
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1864
|
+
median_ae: NullType;
|
|
1865
|
+
}>>], ArrayType<StructType<{
|
|
1866
|
+
/** Which metric was computed */
|
|
1867
|
+
metric: VariantType<{
|
|
1868
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1869
|
+
mse: NullType;
|
|
1870
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1871
|
+
rmse: NullType;
|
|
1872
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1873
|
+
mae: NullType;
|
|
1874
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1875
|
+
r2: NullType;
|
|
1876
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1877
|
+
mape: NullType;
|
|
1878
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1879
|
+
explained_variance: NullType;
|
|
1880
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1881
|
+
max_error: NullType;
|
|
1882
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1883
|
+
median_ae: NullType;
|
|
1884
|
+
}>;
|
|
1885
|
+
/** Scalar metric value */
|
|
1886
|
+
value: FloatType;
|
|
1887
|
+
}>>>;
|
|
1888
|
+
/** Compute regression metrics (multi-target) */
|
|
1889
|
+
readonly computeMetricsMulti: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
|
|
1890
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1891
|
+
mse: NullType;
|
|
1892
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1893
|
+
rmse: NullType;
|
|
1894
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1895
|
+
mae: NullType;
|
|
1896
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1897
|
+
r2: NullType;
|
|
1898
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1899
|
+
mape: NullType;
|
|
1900
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1901
|
+
explained_variance: NullType;
|
|
1902
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1903
|
+
max_error: NullType;
|
|
1904
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1905
|
+
median_ae: NullType;
|
|
1906
|
+
}>>, StructType<{
|
|
1907
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
1908
|
+
aggregation: OptionType<VariantType<{
|
|
1909
|
+
/** Return metric for each target separately (default) */
|
|
1910
|
+
per_target: NullType;
|
|
1911
|
+
/** Average across all targets (uniform weights) */
|
|
1912
|
+
uniform_average: NullType;
|
|
1913
|
+
}>>;
|
|
1914
|
+
}>], ArrayType<StructType<{
|
|
1915
|
+
/** Which metric was computed */
|
|
1916
|
+
metric: VariantType<{
|
|
1917
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
1918
|
+
mse: NullType;
|
|
1919
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
1920
|
+
rmse: NullType;
|
|
1921
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
1922
|
+
mae: NullType;
|
|
1923
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
1924
|
+
r2: NullType;
|
|
1925
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
1926
|
+
mape: NullType;
|
|
1927
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
1928
|
+
explained_variance: NullType;
|
|
1929
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
1930
|
+
max_error: NullType;
|
|
1931
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
1932
|
+
median_ae: NullType;
|
|
1933
|
+
}>;
|
|
1934
|
+
/** Metric value(s) */
|
|
1935
|
+
value: VariantType<{
|
|
1936
|
+
/** Aggregated scalar value */
|
|
1937
|
+
scalar: FloatType;
|
|
1938
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
1939
|
+
per_target: ArrayType<FloatType>;
|
|
1940
|
+
}>;
|
|
1941
|
+
}>>>;
|
|
1942
|
+
/** Compute classification metrics (single-target) */
|
|
1943
|
+
readonly computeClassificationMetrics: import("@elaraai/east").PlatformDefinition<[ArrayType<IntegerType>, ArrayType<IntegerType>, ArrayType<VariantType<{
|
|
1944
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1945
|
+
accuracy: NullType;
|
|
1946
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1947
|
+
balanced_accuracy: NullType;
|
|
1948
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1949
|
+
precision: NullType;
|
|
1950
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1951
|
+
recall: NullType;
|
|
1952
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1953
|
+
f1: NullType;
|
|
1954
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1955
|
+
matthews_corrcoef: NullType;
|
|
1956
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1957
|
+
cohen_kappa: NullType;
|
|
1958
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1959
|
+
jaccard: NullType;
|
|
1960
|
+
}>>, StructType<{
|
|
1961
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
1962
|
+
average: OptionType<VariantType<{
|
|
1963
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
1964
|
+
macro: NullType;
|
|
1965
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
1966
|
+
micro: NullType;
|
|
1967
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
1968
|
+
weighted: NullType;
|
|
1969
|
+
/** Only for binary classification */
|
|
1970
|
+
binary: NullType;
|
|
1971
|
+
}>>;
|
|
1972
|
+
}>], ArrayType<StructType<{
|
|
1973
|
+
/** Which metric was computed */
|
|
1974
|
+
metric: VariantType<{
|
|
1975
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1976
|
+
accuracy: NullType;
|
|
1977
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
1978
|
+
balanced_accuracy: NullType;
|
|
1979
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
1980
|
+
precision: NullType;
|
|
1981
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
1982
|
+
recall: NullType;
|
|
1983
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
1984
|
+
f1: NullType;
|
|
1985
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
1986
|
+
matthews_corrcoef: NullType;
|
|
1987
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
1988
|
+
cohen_kappa: NullType;
|
|
1989
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
1990
|
+
jaccard: NullType;
|
|
1991
|
+
}>;
|
|
1992
|
+
/** Scalar metric value */
|
|
1993
|
+
value: FloatType;
|
|
1994
|
+
}>>>;
|
|
1995
|
+
/** Compute classification metrics (multi-target) */
|
|
1996
|
+
readonly computeClassificationMetricsMulti: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, ArrayType<VariantType<{
|
|
1997
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
1998
|
+
accuracy: NullType;
|
|
1999
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2000
|
+
balanced_accuracy: NullType;
|
|
2001
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2002
|
+
precision: NullType;
|
|
2003
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2004
|
+
recall: NullType;
|
|
2005
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2006
|
+
f1: NullType;
|
|
2007
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2008
|
+
matthews_corrcoef: NullType;
|
|
2009
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2010
|
+
cohen_kappa: NullType;
|
|
2011
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2012
|
+
jaccard: NullType;
|
|
2013
|
+
}>>, StructType<{
|
|
2014
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
2015
|
+
average: OptionType<VariantType<{
|
|
2016
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
2017
|
+
macro: NullType;
|
|
2018
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
2019
|
+
micro: NullType;
|
|
2020
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
2021
|
+
weighted: NullType;
|
|
2022
|
+
/** Only for binary classification */
|
|
2023
|
+
binary: NullType;
|
|
2024
|
+
}>>;
|
|
2025
|
+
/** How to aggregate across targets (default: per_target) */
|
|
2026
|
+
aggregation: OptionType<VariantType<{
|
|
2027
|
+
/** Return metric for each target separately (default) */
|
|
2028
|
+
per_target: NullType;
|
|
2029
|
+
/** Average across all targets (uniform weights) */
|
|
2030
|
+
uniform_average: NullType;
|
|
2031
|
+
}>>;
|
|
2032
|
+
}>], ArrayType<StructType<{
|
|
2033
|
+
/** Which metric was computed */
|
|
2034
|
+
metric: VariantType<{
|
|
2035
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2036
|
+
accuracy: NullType;
|
|
2037
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2038
|
+
balanced_accuracy: NullType;
|
|
2039
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2040
|
+
precision: NullType;
|
|
2041
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2042
|
+
recall: NullType;
|
|
2043
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2044
|
+
f1: NullType;
|
|
2045
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2046
|
+
matthews_corrcoef: NullType;
|
|
2047
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2048
|
+
cohen_kappa: NullType;
|
|
2049
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2050
|
+
jaccard: NullType;
|
|
2051
|
+
}>;
|
|
2052
|
+
/** Metric value(s) */
|
|
2053
|
+
value: VariantType<{
|
|
2054
|
+
/** Aggregated scalar value */
|
|
2055
|
+
scalar: FloatType;
|
|
2056
|
+
/** Per-target values */
|
|
2057
|
+
per_target: ArrayType<FloatType>;
|
|
2058
|
+
}>;
|
|
2059
|
+
}>>>;
|
|
949
2060
|
/** Train a RegressorChain for multi-target regression */
|
|
950
2061
|
readonly regressorChainTrain: import("@elaraai/east").PlatformDefinition<[ArrayType<ArrayType<FloatType>>, ArrayType<ArrayType<FloatType>>, StructType<{
|
|
951
2062
|
/** Base estimator with its configuration */
|
|
@@ -962,6 +2073,7 @@ export declare const Sklearn: {
|
|
|
962
2073
|
reg_lambda: OptionType<FloatType>;
|
|
963
2074
|
random_state: OptionType<IntegerType>;
|
|
964
2075
|
n_jobs: OptionType<IntegerType>;
|
|
2076
|
+
sample_weight: OptionType<ArrayType<FloatType>>;
|
|
965
2077
|
}>;
|
|
966
2078
|
/** LightGBM regressor */
|
|
967
2079
|
lightgbm: StructType<{
|
|
@@ -985,19 +2097,19 @@ export declare const Sklearn: {
|
|
|
985
2097
|
col_sample: OptionType<FloatType>;
|
|
986
2098
|
random_state: OptionType<IntegerType>;
|
|
987
2099
|
distribution: OptionType<VariantType<{
|
|
988
|
-
normal:
|
|
989
|
-
lognormal:
|
|
2100
|
+
normal: NullType;
|
|
2101
|
+
lognormal: NullType;
|
|
990
2102
|
}>>;
|
|
991
2103
|
}>;
|
|
992
2104
|
/** Gaussian Process regressor */
|
|
993
2105
|
gp: StructType<{
|
|
994
2106
|
kernel: OptionType<VariantType<{
|
|
995
|
-
rbf:
|
|
996
|
-
matern_1_2:
|
|
997
|
-
matern_3_2:
|
|
998
|
-
matern_5_2:
|
|
999
|
-
rational_quadratic:
|
|
1000
|
-
dot_product:
|
|
2107
|
+
rbf: NullType;
|
|
2108
|
+
matern_1_2: NullType;
|
|
2109
|
+
matern_3_2: NullType;
|
|
2110
|
+
matern_5_2: NullType;
|
|
2111
|
+
rational_quadratic: NullType;
|
|
2112
|
+
dot_product: NullType;
|
|
1001
2113
|
}>>;
|
|
1002
2114
|
alpha: OptionType<FloatType>;
|
|
1003
2115
|
n_restarts_optimizer: OptionType<IntegerType>;
|
|
@@ -1092,29 +2204,31 @@ export declare const Sklearn: {
|
|
|
1092
2204
|
/** Test labels */
|
|
1093
2205
|
y_test: ArrayType<FloatType>;
|
|
1094
2206
|
}>;
|
|
1095
|
-
/**
|
|
1096
|
-
readonly
|
|
1097
|
-
/**
|
|
1098
|
-
|
|
1099
|
-
/**
|
|
1100
|
-
|
|
1101
|
-
/**
|
|
1102
|
-
|
|
1103
|
-
/**
|
|
1104
|
-
|
|
1105
|
-
|
|
1106
|
-
|
|
1107
|
-
|
|
1108
|
-
|
|
1109
|
-
|
|
1110
|
-
/**
|
|
1111
|
-
|
|
1112
|
-
/**
|
|
1113
|
-
|
|
1114
|
-
/**
|
|
1115
|
-
|
|
1116
|
-
/**
|
|
1117
|
-
|
|
2207
|
+
/** 3-way split configuration type */
|
|
2208
|
+
readonly ThreeWaySplitConfigType: StructType<{
|
|
2209
|
+
/** Proportion of data for validation (default 0.15) */
|
|
2210
|
+
val_size: OptionType<FloatType>;
|
|
2211
|
+
/** Proportion of data for test/holdout (default 0.15) */
|
|
2212
|
+
test_size: OptionType<FloatType>;
|
|
2213
|
+
/** Random seed for reproducibility */
|
|
2214
|
+
random_state: OptionType<IntegerType>;
|
|
2215
|
+
/** Whether to shuffle data before splitting (default true) */
|
|
2216
|
+
shuffle: OptionType<BooleanType>;
|
|
2217
|
+
}>;
|
|
2218
|
+
/** 3-way split result type */
|
|
2219
|
+
readonly ThreeWaySplitResultType: StructType<{
|
|
2220
|
+
/** Training features */
|
|
2221
|
+
X_train: ArrayType<ArrayType<FloatType>>;
|
|
2222
|
+
/** Validation features */
|
|
2223
|
+
X_val: ArrayType<ArrayType<FloatType>>;
|
|
2224
|
+
/** Test/holdout features */
|
|
2225
|
+
X_test: ArrayType<ArrayType<FloatType>>;
|
|
2226
|
+
/** Training targets (matrix) */
|
|
2227
|
+
Y_train: ArrayType<ArrayType<FloatType>>;
|
|
2228
|
+
/** Validation targets (matrix) */
|
|
2229
|
+
Y_val: ArrayType<ArrayType<FloatType>>;
|
|
2230
|
+
/** Test/holdout targets (matrix) */
|
|
2231
|
+
Y_test: ArrayType<ArrayType<FloatType>>;
|
|
1118
2232
|
}>;
|
|
1119
2233
|
/** Model blob type for sklearn models */
|
|
1120
2234
|
readonly ModelBlobType: VariantType<{
|
|
@@ -1144,8 +2258,6 @@ export declare const Sklearn: {
|
|
|
1144
2258
|
base_estimator_type: StringType;
|
|
1145
2259
|
}>;
|
|
1146
2260
|
}>;
|
|
1147
|
-
/** Multi-target output type */
|
|
1148
|
-
readonly MultiTargetType: ArrayType<ArrayType<FloatType>>;
|
|
1149
2261
|
/** RegressorChain base estimator config type */
|
|
1150
2262
|
readonly RegressorChainBaseConfigType: VariantType<{
|
|
1151
2263
|
/** XGBoost regressor */
|
|
@@ -1160,6 +2272,7 @@ export declare const Sklearn: {
|
|
|
1160
2272
|
reg_lambda: OptionType<FloatType>;
|
|
1161
2273
|
random_state: OptionType<IntegerType>;
|
|
1162
2274
|
n_jobs: OptionType<IntegerType>;
|
|
2275
|
+
sample_weight: OptionType<ArrayType<FloatType>>;
|
|
1163
2276
|
}>;
|
|
1164
2277
|
/** LightGBM regressor */
|
|
1165
2278
|
lightgbm: StructType<{
|
|
@@ -1183,19 +2296,19 @@ export declare const Sklearn: {
|
|
|
1183
2296
|
col_sample: OptionType<FloatType>;
|
|
1184
2297
|
random_state: OptionType<IntegerType>;
|
|
1185
2298
|
distribution: OptionType<VariantType<{
|
|
1186
|
-
normal:
|
|
1187
|
-
lognormal:
|
|
2299
|
+
normal: NullType;
|
|
2300
|
+
lognormal: NullType;
|
|
1188
2301
|
}>>;
|
|
1189
2302
|
}>;
|
|
1190
2303
|
/** Gaussian Process regressor */
|
|
1191
2304
|
gp: StructType<{
|
|
1192
2305
|
kernel: OptionType<VariantType<{
|
|
1193
|
-
rbf:
|
|
1194
|
-
matern_1_2:
|
|
1195
|
-
matern_3_2:
|
|
1196
|
-
matern_5_2:
|
|
1197
|
-
rational_quadratic:
|
|
1198
|
-
dot_product:
|
|
2306
|
+
rbf: NullType;
|
|
2307
|
+
matern_1_2: NullType;
|
|
2308
|
+
matern_3_2: NullType;
|
|
2309
|
+
matern_5_2: NullType;
|
|
2310
|
+
rational_quadratic: NullType;
|
|
2311
|
+
dot_product: NullType;
|
|
1199
2312
|
}>>;
|
|
1200
2313
|
alpha: OptionType<FloatType>;
|
|
1201
2314
|
n_restarts_optimizer: OptionType<IntegerType>;
|
|
@@ -1219,6 +2332,7 @@ export declare const Sklearn: {
|
|
|
1219
2332
|
reg_lambda: OptionType<FloatType>;
|
|
1220
2333
|
random_state: OptionType<IntegerType>;
|
|
1221
2334
|
n_jobs: OptionType<IntegerType>;
|
|
2335
|
+
sample_weight: OptionType<ArrayType<FloatType>>;
|
|
1222
2336
|
}>;
|
|
1223
2337
|
/** LightGBM regressor */
|
|
1224
2338
|
lightgbm: StructType<{
|
|
@@ -1242,19 +2356,19 @@ export declare const Sklearn: {
|
|
|
1242
2356
|
col_sample: OptionType<FloatType>;
|
|
1243
2357
|
random_state: OptionType<IntegerType>;
|
|
1244
2358
|
distribution: OptionType<VariantType<{
|
|
1245
|
-
normal:
|
|
1246
|
-
lognormal:
|
|
2359
|
+
normal: NullType;
|
|
2360
|
+
lognormal: NullType;
|
|
1247
2361
|
}>>;
|
|
1248
2362
|
}>;
|
|
1249
2363
|
/** Gaussian Process regressor */
|
|
1250
2364
|
gp: StructType<{
|
|
1251
2365
|
kernel: OptionType<VariantType<{
|
|
1252
|
-
rbf:
|
|
1253
|
-
matern_1_2:
|
|
1254
|
-
matern_3_2:
|
|
1255
|
-
matern_5_2:
|
|
1256
|
-
rational_quadratic:
|
|
1257
|
-
dot_product:
|
|
2366
|
+
rbf: NullType;
|
|
2367
|
+
matern_1_2: NullType;
|
|
2368
|
+
matern_3_2: NullType;
|
|
2369
|
+
matern_5_2: NullType;
|
|
2370
|
+
rational_quadratic: NullType;
|
|
2371
|
+
dot_product: NullType;
|
|
1258
2372
|
}>>;
|
|
1259
2373
|
alpha: OptionType<FloatType>;
|
|
1260
2374
|
n_restarts_optimizer: OptionType<IntegerType>;
|
|
@@ -1267,6 +2381,319 @@ export declare const Sklearn: {
|
|
|
1267
2381
|
/** Random seed for reproducibility */
|
|
1268
2382
|
random_state: OptionType<IntegerType>;
|
|
1269
2383
|
}>;
|
|
2384
|
+
/** Regression metric variant */
|
|
2385
|
+
readonly RegressionMetricType: VariantType<{
|
|
2386
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2387
|
+
mse: NullType;
|
|
2388
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2389
|
+
rmse: NullType;
|
|
2390
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2391
|
+
mae: NullType;
|
|
2392
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2393
|
+
r2: NullType;
|
|
2394
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2395
|
+
mape: NullType;
|
|
2396
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2397
|
+
explained_variance: NullType;
|
|
2398
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2399
|
+
max_error: NullType;
|
|
2400
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2401
|
+
median_ae: NullType;
|
|
2402
|
+
}>;
|
|
2403
|
+
/** Single metric result */
|
|
2404
|
+
readonly MetricResultType: StructType<{
|
|
2405
|
+
/** Which metric was computed */
|
|
2406
|
+
metric: VariantType<{
|
|
2407
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2408
|
+
mse: NullType;
|
|
2409
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2410
|
+
rmse: NullType;
|
|
2411
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2412
|
+
mae: NullType;
|
|
2413
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2414
|
+
r2: NullType;
|
|
2415
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2416
|
+
mape: NullType;
|
|
2417
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2418
|
+
explained_variance: NullType;
|
|
2419
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2420
|
+
max_error: NullType;
|
|
2421
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2422
|
+
median_ae: NullType;
|
|
2423
|
+
}>;
|
|
2424
|
+
/** Scalar metric value */
|
|
2425
|
+
value: FloatType;
|
|
2426
|
+
}>;
|
|
2427
|
+
/** Multiple metrics result */
|
|
2428
|
+
readonly MetricsResultType: ArrayType<StructType<{
|
|
2429
|
+
/** Which metric was computed */
|
|
2430
|
+
metric: VariantType<{
|
|
2431
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2432
|
+
mse: NullType;
|
|
2433
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2434
|
+
rmse: NullType;
|
|
2435
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2436
|
+
mae: NullType;
|
|
2437
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2438
|
+
r2: NullType;
|
|
2439
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2440
|
+
mape: NullType;
|
|
2441
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2442
|
+
explained_variance: NullType;
|
|
2443
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2444
|
+
max_error: NullType;
|
|
2445
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2446
|
+
median_ae: NullType;
|
|
2447
|
+
}>;
|
|
2448
|
+
/** Scalar metric value */
|
|
2449
|
+
value: FloatType;
|
|
2450
|
+
}>>;
|
|
2451
|
+
/** Metric aggregation type */
|
|
2452
|
+
readonly MetricAggregationType: VariantType<{
|
|
2453
|
+
/** Return metric for each target separately (default) */
|
|
2454
|
+
per_target: NullType;
|
|
2455
|
+
/** Average across all targets (uniform weights) */
|
|
2456
|
+
uniform_average: NullType;
|
|
2457
|
+
}>;
|
|
2458
|
+
/** Multi-target metrics config */
|
|
2459
|
+
readonly MultiMetricsConfigType: StructType<{
|
|
2460
|
+
/** How to aggregate metrics across targets (default: per_target) */
|
|
2461
|
+
aggregation: OptionType<VariantType<{
|
|
2462
|
+
/** Return metric for each target separately (default) */
|
|
2463
|
+
per_target: NullType;
|
|
2464
|
+
/** Average across all targets (uniform weights) */
|
|
2465
|
+
uniform_average: NullType;
|
|
2466
|
+
}>>;
|
|
2467
|
+
}>;
|
|
2468
|
+
/** Multi-target metric result */
|
|
2469
|
+
readonly MultiMetricResultType: StructType<{
|
|
2470
|
+
/** Which metric was computed */
|
|
2471
|
+
metric: VariantType<{
|
|
2472
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2473
|
+
mse: NullType;
|
|
2474
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2475
|
+
rmse: NullType;
|
|
2476
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2477
|
+
mae: NullType;
|
|
2478
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2479
|
+
r2: NullType;
|
|
2480
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2481
|
+
mape: NullType;
|
|
2482
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2483
|
+
explained_variance: NullType;
|
|
2484
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2485
|
+
max_error: NullType;
|
|
2486
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2487
|
+
median_ae: NullType;
|
|
2488
|
+
}>;
|
|
2489
|
+
/** Metric value(s) */
|
|
2490
|
+
value: VariantType<{
|
|
2491
|
+
/** Aggregated scalar value */
|
|
2492
|
+
scalar: FloatType;
|
|
2493
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
2494
|
+
per_target: ArrayType<FloatType>;
|
|
2495
|
+
}>;
|
|
2496
|
+
}>;
|
|
2497
|
+
/** Multi-target metrics result */
|
|
2498
|
+
readonly MultiMetricsResultType: ArrayType<StructType<{
|
|
2499
|
+
/** Which metric was computed */
|
|
2500
|
+
metric: VariantType<{
|
|
2501
|
+
/** Mean Squared Error - sklearn.metrics.mean_squared_error */
|
|
2502
|
+
mse: NullType;
|
|
2503
|
+
/** Root Mean Squared Error - sqrt(MSE) */
|
|
2504
|
+
rmse: NullType;
|
|
2505
|
+
/** Mean Absolute Error - sklearn.metrics.mean_absolute_error */
|
|
2506
|
+
mae: NullType;
|
|
2507
|
+
/** R² (coefficient of determination) - sklearn.metrics.r2_score */
|
|
2508
|
+
r2: NullType;
|
|
2509
|
+
/** Mean Absolute Percentage Error - sklearn.metrics.mean_absolute_percentage_error */
|
|
2510
|
+
mape: NullType;
|
|
2511
|
+
/** Explained Variance Score - sklearn.metrics.explained_variance_score */
|
|
2512
|
+
explained_variance: NullType;
|
|
2513
|
+
/** Max Error - sklearn.metrics.max_error */
|
|
2514
|
+
max_error: NullType;
|
|
2515
|
+
/** Median Absolute Error - sklearn.metrics.median_absolute_error */
|
|
2516
|
+
median_ae: NullType;
|
|
2517
|
+
}>;
|
|
2518
|
+
/** Metric value(s) */
|
|
2519
|
+
value: VariantType<{
|
|
2520
|
+
/** Aggregated scalar value */
|
|
2521
|
+
scalar: FloatType;
|
|
2522
|
+
/** Per-target values [target_0, target_1, ...] */
|
|
2523
|
+
per_target: ArrayType<FloatType>;
|
|
2524
|
+
}>;
|
|
2525
|
+
}>>;
|
|
2526
|
+
/** Classification metric variant */
|
|
2527
|
+
readonly ClassificationMetricType: VariantType<{
|
|
2528
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2529
|
+
accuracy: NullType;
|
|
2530
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2531
|
+
balanced_accuracy: NullType;
|
|
2532
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2533
|
+
precision: NullType;
|
|
2534
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2535
|
+
recall: NullType;
|
|
2536
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2537
|
+
f1: NullType;
|
|
2538
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2539
|
+
matthews_corrcoef: NullType;
|
|
2540
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2541
|
+
cohen_kappa: NullType;
|
|
2542
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2543
|
+
jaccard: NullType;
|
|
2544
|
+
}>;
|
|
2545
|
+
/** Classification averaging type */
|
|
2546
|
+
readonly ClassificationAverageType: VariantType<{
|
|
2547
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
2548
|
+
macro: NullType;
|
|
2549
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
2550
|
+
micro: NullType;
|
|
2551
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
2552
|
+
weighted: NullType;
|
|
2553
|
+
/** Only for binary classification */
|
|
2554
|
+
binary: NullType;
|
|
2555
|
+
}>;
|
|
2556
|
+
/** Classification metrics config */
|
|
2557
|
+
readonly ClassificationMetricsConfigType: StructType<{
|
|
2558
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
2559
|
+
average: OptionType<VariantType<{
|
|
2560
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
2561
|
+
macro: NullType;
|
|
2562
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
2563
|
+
micro: NullType;
|
|
2564
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
2565
|
+
weighted: NullType;
|
|
2566
|
+
/** Only for binary classification */
|
|
2567
|
+
binary: NullType;
|
|
2568
|
+
}>>;
|
|
2569
|
+
}>;
|
|
2570
|
+
/** Classification metric result */
|
|
2571
|
+
readonly ClassificationMetricResultType: StructType<{
|
|
2572
|
+
/** Which metric was computed */
|
|
2573
|
+
metric: VariantType<{
|
|
2574
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2575
|
+
accuracy: NullType;
|
|
2576
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2577
|
+
balanced_accuracy: NullType;
|
|
2578
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2579
|
+
precision: NullType;
|
|
2580
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2581
|
+
recall: NullType;
|
|
2582
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2583
|
+
f1: NullType;
|
|
2584
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2585
|
+
matthews_corrcoef: NullType;
|
|
2586
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2587
|
+
cohen_kappa: NullType;
|
|
2588
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2589
|
+
jaccard: NullType;
|
|
2590
|
+
}>;
|
|
2591
|
+
/** Scalar metric value */
|
|
2592
|
+
value: FloatType;
|
|
2593
|
+
}>;
|
|
2594
|
+
/** Classification metrics result */
|
|
2595
|
+
readonly ClassificationMetricResultsType: ArrayType<StructType<{
|
|
2596
|
+
/** Which metric was computed */
|
|
2597
|
+
metric: VariantType<{
|
|
2598
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2599
|
+
accuracy: NullType;
|
|
2600
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2601
|
+
balanced_accuracy: NullType;
|
|
2602
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2603
|
+
precision: NullType;
|
|
2604
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2605
|
+
recall: NullType;
|
|
2606
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2607
|
+
f1: NullType;
|
|
2608
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2609
|
+
matthews_corrcoef: NullType;
|
|
2610
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2611
|
+
cohen_kappa: NullType;
|
|
2612
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2613
|
+
jaccard: NullType;
|
|
2614
|
+
}>;
|
|
2615
|
+
/** Scalar metric value */
|
|
2616
|
+
value: FloatType;
|
|
2617
|
+
}>>;
|
|
2618
|
+
/** Multi-target classification config */
|
|
2619
|
+
readonly MultiClassificationConfigType: StructType<{
|
|
2620
|
+
/** Averaging strategy for multi-class (default: macro) */
|
|
2621
|
+
average: OptionType<VariantType<{
|
|
2622
|
+
/** Calculate metrics for each label, return unweighted mean */
|
|
2623
|
+
macro: NullType;
|
|
2624
|
+
/** Calculate metrics globally by counting total TP, FP, FN */
|
|
2625
|
+
micro: NullType;
|
|
2626
|
+
/** Calculate metrics for each label, return weighted mean by support */
|
|
2627
|
+
weighted: NullType;
|
|
2628
|
+
/** Only for binary classification */
|
|
2629
|
+
binary: NullType;
|
|
2630
|
+
}>>;
|
|
2631
|
+
/** How to aggregate across targets (default: per_target) */
|
|
2632
|
+
aggregation: OptionType<VariantType<{
|
|
2633
|
+
/** Return metric for each target separately (default) */
|
|
2634
|
+
per_target: NullType;
|
|
2635
|
+
/** Average across all targets (uniform weights) */
|
|
2636
|
+
uniform_average: NullType;
|
|
2637
|
+
}>>;
|
|
2638
|
+
}>;
|
|
2639
|
+
/** Multi-target classification metric result */
|
|
2640
|
+
readonly MultiClassificationMetricResultType: StructType<{
|
|
2641
|
+
/** Which metric was computed */
|
|
2642
|
+
metric: VariantType<{
|
|
2643
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2644
|
+
accuracy: NullType;
|
|
2645
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2646
|
+
balanced_accuracy: NullType;
|
|
2647
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2648
|
+
precision: NullType;
|
|
2649
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2650
|
+
recall: NullType;
|
|
2651
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2652
|
+
f1: NullType;
|
|
2653
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2654
|
+
matthews_corrcoef: NullType;
|
|
2655
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2656
|
+
cohen_kappa: NullType;
|
|
2657
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2658
|
+
jaccard: NullType;
|
|
2659
|
+
}>;
|
|
2660
|
+
/** Metric value(s) */
|
|
2661
|
+
value: VariantType<{
|
|
2662
|
+
/** Aggregated scalar value */
|
|
2663
|
+
scalar: FloatType;
|
|
2664
|
+
/** Per-target values */
|
|
2665
|
+
per_target: ArrayType<FloatType>;
|
|
2666
|
+
}>;
|
|
2667
|
+
}>;
|
|
2668
|
+
/** Multi-target classification metrics result */
|
|
2669
|
+
readonly MultiClassificationMetricResultsType: ArrayType<StructType<{
|
|
2670
|
+
/** Which metric was computed */
|
|
2671
|
+
metric: VariantType<{
|
|
2672
|
+
/** Accuracy - sklearn.metrics.accuracy_score */
|
|
2673
|
+
accuracy: NullType;
|
|
2674
|
+
/** Balanced Accuracy - sklearn.metrics.balanced_accuracy_score */
|
|
2675
|
+
balanced_accuracy: NullType;
|
|
2676
|
+
/** Precision - sklearn.metrics.precision_score */
|
|
2677
|
+
precision: NullType;
|
|
2678
|
+
/** Recall - sklearn.metrics.recall_score */
|
|
2679
|
+
recall: NullType;
|
|
2680
|
+
/** F1 Score - sklearn.metrics.f1_score */
|
|
2681
|
+
f1: NullType;
|
|
2682
|
+
/** Matthews Correlation Coefficient - sklearn.metrics.matthews_corrcoef */
|
|
2683
|
+
matthews_corrcoef: NullType;
|
|
2684
|
+
/** Cohen's Kappa - sklearn.metrics.cohen_kappa_score */
|
|
2685
|
+
cohen_kappa: NullType;
|
|
2686
|
+
/** Jaccard Score - sklearn.metrics.jaccard_score */
|
|
2687
|
+
jaccard: NullType;
|
|
2688
|
+
}>;
|
|
2689
|
+
/** Metric value(s) */
|
|
2690
|
+
value: VariantType<{
|
|
2691
|
+
/** Aggregated scalar value */
|
|
2692
|
+
scalar: FloatType;
|
|
2693
|
+
/** Per-target values */
|
|
2694
|
+
per_target: ArrayType<FloatType>;
|
|
2695
|
+
}>;
|
|
2696
|
+
}>>;
|
|
1270
2697
|
};
|
|
1271
2698
|
};
|
|
1272
2699
|
//# sourceMappingURL=sklearn.d.ts.map
|