@aws-sdk/client-sagemaker 3.806.0 → 3.808.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (229) hide show
  1. package/README.md +1 -16
  2. package/dist-cjs/index.js +26 -26
  3. package/dist-es/waiters/waitForEndpointDeleted.js +2 -2
  4. package/dist-es/waiters/waitForEndpointInService.js +2 -2
  5. package/dist-es/waiters/waitForImageCreated.js +2 -2
  6. package/dist-es/waiters/waitForImageDeleted.js +2 -2
  7. package/dist-es/waiters/waitForImageUpdated.js +2 -2
  8. package/dist-es/waiters/waitForImageVersionCreated.js +2 -2
  9. package/dist-es/waiters/waitForImageVersionDeleted.js +2 -2
  10. package/dist-es/waiters/waitForNotebookInstanceDeleted.js +2 -2
  11. package/dist-es/waiters/waitForNotebookInstanceInService.js +2 -2
  12. package/dist-es/waiters/waitForNotebookInstanceStopped.js +2 -2
  13. package/dist-es/waiters/waitForProcessingJobCompletedOrStopped.js +2 -2
  14. package/dist-es/waiters/waitForTrainingJobCompletedOrStopped.js +2 -2
  15. package/dist-es/waiters/waitForTransformJobCompletedOrStopped.js +2 -2
  16. package/dist-types/SageMaker.d.ts +1 -16
  17. package/dist-types/SageMakerClient.d.ts +1 -16
  18. package/dist-types/commands/AddAssociationCommand.d.ts +2 -7
  19. package/dist-types/commands/AddTagsCommand.d.ts +1 -26
  20. package/dist-types/commands/AssociateTrialComponentCommand.d.ts +2 -4
  21. package/dist-types/commands/BatchDeleteClusterNodesCommand.d.ts +1 -17
  22. package/dist-types/commands/CreateActionCommand.d.ts +2 -7
  23. package/dist-types/commands/CreateAppCommand.d.ts +2 -6
  24. package/dist-types/commands/CreateAppImageConfigCommand.d.ts +1 -3
  25. package/dist-types/commands/CreateArtifactCommand.d.ts +2 -7
  26. package/dist-types/commands/CreateAutoMLJobCommand.d.ts +2 -26
  27. package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +2 -33
  28. package/dist-types/commands/CreateClusterCommand.d.ts +2 -6
  29. package/dist-types/commands/CreateClusterSchedulerConfigCommand.d.ts +3 -7
  30. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +1 -7
  31. package/dist-types/commands/CreateCompilationJobCommand.d.ts +2 -33
  32. package/dist-types/commands/CreateComputeQuotaCommand.d.ts +3 -7
  33. package/dist-types/commands/CreateContextCommand.d.ts +2 -7
  34. package/dist-types/commands/CreateDataQualityJobDefinitionCommand.d.ts +2 -5
  35. package/dist-types/commands/CreateDeviceFleetCommand.d.ts +1 -2
  36. package/dist-types/commands/CreateDomainCommand.d.ts +2 -46
  37. package/dist-types/commands/CreateEdgeDeploymentPlanCommand.d.ts +2 -4
  38. package/dist-types/commands/CreateEdgeDeploymentStageCommand.d.ts +1 -2
  39. package/dist-types/commands/CreateEdgePackagingJobCommand.d.ts +1 -2
  40. package/dist-types/commands/CreateEndpointCommand.d.ts +2 -77
  41. package/dist-types/commands/CreateEndpointConfigCommand.d.ts +2 -33
  42. package/dist-types/commands/CreateExperimentCommand.d.ts +2 -22
  43. package/dist-types/commands/CreateFeatureGroupCommand.d.ts +2 -20
  44. package/dist-types/commands/CreateFlowDefinitionCommand.d.ts +1 -2
  45. package/dist-types/commands/CreateHubCommand.d.ts +1 -2
  46. package/dist-types/commands/CreateHubContentReferenceCommand.d.ts +1 -2
  47. package/dist-types/commands/CreateHumanTaskUiCommand.d.ts +1 -2
  48. package/dist-types/commands/CreateHyperParameterTuningJobCommand.d.ts +2 -18
  49. package/dist-types/commands/CreateImageCommand.d.ts +2 -5
  50. package/dist-types/commands/CreateImageVersionCommand.d.ts +2 -4
  51. package/dist-types/commands/CreateInferenceComponentCommand.d.ts +2 -10
  52. package/dist-types/commands/CreateInferenceExperimentCommand.d.ts +2 -17
  53. package/dist-types/commands/CreateInferenceRecommendationsJobCommand.d.ts +2 -4
  54. package/dist-types/commands/CreateLabelingJobCommand.d.ts +2 -40
  55. package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +2 -5
  56. package/dist-types/commands/CreateModelBiasJobDefinitionCommand.d.ts +1 -2
  57. package/dist-types/commands/CreateModelCardCommand.d.ts +3 -6
  58. package/dist-types/commands/CreateModelCardExportJobCommand.d.ts +2 -4
  59. package/dist-types/commands/CreateModelCommand.d.ts +2 -19
  60. package/dist-types/commands/CreateModelExplainabilityJobDefinitionCommand.d.ts +1 -2
  61. package/dist-types/commands/CreateModelPackageCommand.d.ts +3 -24
  62. package/dist-types/commands/CreateModelPackageGroupCommand.d.ts +1 -2
  63. package/dist-types/commands/CreateModelQualityJobDefinitionCommand.d.ts +2 -5
  64. package/dist-types/commands/CreateMonitoringScheduleCommand.d.ts +2 -4
  65. package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +2 -38
  66. package/dist-types/commands/CreateNotebookInstanceLifecycleConfigCommand.d.ts +2 -16
  67. package/dist-types/commands/CreateOptimizationJobCommand.d.ts +2 -8
  68. package/dist-types/commands/CreatePartnerAppCommand.d.ts +2 -4
  69. package/dist-types/commands/CreatePipelineCommand.d.ts +2 -4
  70. package/dist-types/commands/CreatePresignedDomainUrlCommand.d.ts +1 -26
  71. package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +1 -2
  72. package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +1 -18
  73. package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -2
  74. package/dist-types/commands/CreateProjectCommand.d.ts +2 -4
  75. package/dist-types/commands/CreateSpaceCommand.d.ts +1 -2
  76. package/dist-types/commands/CreateTrainingJobCommand.d.ts +2 -88
  77. package/dist-types/commands/CreateTrainingPlanCommand.d.ts +2 -63
  78. package/dist-types/commands/CreateTransformJobCommand.d.ts +2 -37
  79. package/dist-types/commands/CreateTrialCommand.d.ts +2 -13
  80. package/dist-types/commands/CreateTrialComponentCommand.d.ts +2 -12
  81. package/dist-types/commands/CreateUserProfileCommand.d.ts +2 -9
  82. package/dist-types/commands/CreateWorkforceCommand.d.ts +1 -18
  83. package/dist-types/commands/CreateWorkteamCommand.d.ts +2 -6
  84. package/dist-types/commands/DeleteAlgorithmCommand.d.ts +1 -2
  85. package/dist-types/commands/DeleteArtifactCommand.d.ts +1 -2
  86. package/dist-types/commands/DeleteClusterCommand.d.ts +1 -2
  87. package/dist-types/commands/DeleteCompilationJobCommand.d.ts +1 -8
  88. package/dist-types/commands/DeleteDomainCommand.d.ts +1 -4
  89. package/dist-types/commands/DeleteEdgeDeploymentPlanCommand.d.ts +1 -2
  90. package/dist-types/commands/DeleteEdgeDeploymentStageCommand.d.ts +1 -2
  91. package/dist-types/commands/DeleteEndpointCommand.d.ts +1 -11
  92. package/dist-types/commands/DeleteEndpointConfigCommand.d.ts +1 -9
  93. package/dist-types/commands/DeleteExperimentCommand.d.ts +1 -3
  94. package/dist-types/commands/DeleteFeatureGroupCommand.d.ts +1 -8
  95. package/dist-types/commands/DeleteHumanTaskUiCommand.d.ts +1 -5
  96. package/dist-types/commands/DeleteHyperParameterTuningJobCommand.d.ts +1 -4
  97. package/dist-types/commands/DeleteImageCommand.d.ts +1 -2
  98. package/dist-types/commands/DeleteImageVersionCommand.d.ts +1 -2
  99. package/dist-types/commands/DeleteInferenceExperimentCommand.d.ts +2 -9
  100. package/dist-types/commands/DeleteModelCardCommand.d.ts +1 -2
  101. package/dist-types/commands/DeleteModelCommand.d.ts +1 -4
  102. package/dist-types/commands/DeleteModelPackageCommand.d.ts +2 -6
  103. package/dist-types/commands/DeleteModelPackageGroupCommand.d.ts +1 -2
  104. package/dist-types/commands/DeleteMonitoringScheduleCommand.d.ts +1 -2
  105. package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +1 -6
  106. package/dist-types/commands/DeletePartnerAppCommand.d.ts +1 -2
  107. package/dist-types/commands/DeletePipelineCommand.d.ts +2 -6
  108. package/dist-types/commands/DeleteProjectCommand.d.ts +1 -2
  109. package/dist-types/commands/DeleteStudioLifecycleConfigCommand.d.ts +1 -4
  110. package/dist-types/commands/DeleteTagsCommand.d.ts +1 -12
  111. package/dist-types/commands/DeleteTrialCommand.d.ts +1 -3
  112. package/dist-types/commands/DeleteTrialComponentCommand.d.ts +1 -3
  113. package/dist-types/commands/DeleteUserProfileCommand.d.ts +1 -2
  114. package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -12
  115. package/dist-types/commands/DeleteWorkteamCommand.d.ts +1 -2
  116. package/dist-types/commands/DescribeAutoMLJobCommand.d.ts +1 -5
  117. package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +1 -2
  118. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -2
  119. package/dist-types/commands/DescribeClusterSchedulerConfigCommand.d.ts +1 -3
  120. package/dist-types/commands/DescribeCompilationJobCommand.d.ts +1 -3
  121. package/dist-types/commands/DescribeEndpointConfigCommand.d.ts +1 -2
  122. package/dist-types/commands/DescribeFeatureGroupCommand.d.ts +1 -3
  123. package/dist-types/commands/DescribeHyperParameterTuningJobCommand.d.ts +1 -3
  124. package/dist-types/commands/DescribeInferenceRecommendationsJobCommand.d.ts +1 -2
  125. package/dist-types/commands/DescribeLineageGroupCommand.d.ts +1 -3
  126. package/dist-types/commands/DescribeModelCommand.d.ts +1 -2
  127. package/dist-types/commands/DescribeModelPackageCommand.d.ts +1 -8
  128. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -3
  129. package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +1 -2
  130. package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -7
  131. package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -2
  132. package/dist-types/commands/DescribeWorkforceCommand.d.ts +1 -6
  133. package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -3
  134. package/dist-types/commands/DisableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
  135. package/dist-types/commands/DisassociateTrialComponentCommand.d.ts +1 -6
  136. package/dist-types/commands/EnableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
  137. package/dist-types/commands/GetModelPackageGroupPolicyCommand.d.ts +1 -4
  138. package/dist-types/commands/GetSagemakerServicecatalogPortfolioStatusCommand.d.ts +1 -2
  139. package/dist-types/commands/GetScalingConfigurationRecommendationCommand.d.ts +1 -2
  140. package/dist-types/commands/GetSearchSuggestionsCommand.d.ts +1 -4
  141. package/dist-types/commands/ImportHubContentCommand.d.ts +1 -2
  142. package/dist-types/commands/ListAppImageConfigsCommand.d.ts +1 -3
  143. package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -2
  144. package/dist-types/commands/ListCompilationJobsCommand.d.ts +1 -3
  145. package/dist-types/commands/ListExperimentsCommand.d.ts +1 -3
  146. package/dist-types/commands/ListHyperParameterTuningJobsCommand.d.ts +1 -3
  147. package/dist-types/commands/ListImageVersionsCommand.d.ts +1 -2
  148. package/dist-types/commands/ListImagesCommand.d.ts +1 -2
  149. package/dist-types/commands/ListInferenceRecommendationsJobStepsCommand.d.ts +1 -2
  150. package/dist-types/commands/ListLineageGroupsCommand.d.ts +1 -3
  151. package/dist-types/commands/ListModelMetadataCommand.d.ts +1 -2
  152. package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -2
  153. package/dist-types/commands/ListResourceCatalogsCommand.d.ts +1 -2
  154. package/dist-types/commands/ListStageDevicesCommand.d.ts +1 -2
  155. package/dist-types/commands/ListStudioLifecycleConfigsCommand.d.ts +1 -2
  156. package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +1 -3
  157. package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -22
  158. package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -2
  159. package/dist-types/commands/ListTrialComponentsCommand.d.ts +1 -20
  160. package/dist-types/commands/ListTrialsCommand.d.ts +1 -5
  161. package/dist-types/commands/ListWorkforcesCommand.d.ts +1 -2
  162. package/dist-types/commands/ListWorkteamsCommand.d.ts +1 -3
  163. package/dist-types/commands/PutModelPackageGroupPolicyCommand.d.ts +2 -6
  164. package/dist-types/commands/QueryLineageCommand.d.ts +1 -3
  165. package/dist-types/commands/RegisterDevicesCommand.d.ts +1 -2
  166. package/dist-types/commands/RetryPipelineExecutionCommand.d.ts +2 -4
  167. package/dist-types/commands/SearchCommand.d.ts +1 -10
  168. package/dist-types/commands/SearchTrainingPlanOfferingsCommand.d.ts +2 -17
  169. package/dist-types/commands/SendPipelineExecutionStepFailureCommand.d.ts +3 -7
  170. package/dist-types/commands/SendPipelineExecutionStepSuccessCommand.d.ts +3 -7
  171. package/dist-types/commands/StartInferenceExperimentCommand.d.ts +1 -2
  172. package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +1 -2
  173. package/dist-types/commands/StartMonitoringScheduleCommand.d.ts +1 -5
  174. package/dist-types/commands/StartNotebookInstanceCommand.d.ts +2 -6
  175. package/dist-types/commands/StartPipelineExecutionCommand.d.ts +2 -4
  176. package/dist-types/commands/StopCompilationJobCommand.d.ts +1 -7
  177. package/dist-types/commands/StopHyperParameterTuningJobCommand.d.ts +1 -7
  178. package/dist-types/commands/StopInferenceExperimentCommand.d.ts +1 -2
  179. package/dist-types/commands/StopLabelingJobCommand.d.ts +1 -2
  180. package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +1 -2
  181. package/dist-types/commands/StopNotebookInstanceCommand.d.ts +1 -8
  182. package/dist-types/commands/StopPipelineExecutionCommand.d.ts +2 -25
  183. package/dist-types/commands/StopTrainingJobCommand.d.ts +1 -7
  184. package/dist-types/commands/StopTransformJobCommand.d.ts +1 -6
  185. package/dist-types/commands/UpdateActionCommand.d.ts +1 -2
  186. package/dist-types/commands/UpdateArtifactCommand.d.ts +1 -2
  187. package/dist-types/commands/UpdateClusterCommand.d.ts +2 -4
  188. package/dist-types/commands/UpdateClusterSchedulerConfigCommand.d.ts +2 -4
  189. package/dist-types/commands/UpdateClusterSoftwareCommand.d.ts +2 -9
  190. package/dist-types/commands/UpdateCodeRepositoryCommand.d.ts +1 -2
  191. package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +2 -4
  192. package/dist-types/commands/UpdateContextCommand.d.ts +1 -2
  193. package/dist-types/commands/UpdateDomainCommand.d.ts +1 -2
  194. package/dist-types/commands/UpdateEndpointCommand.d.ts +2 -22
  195. package/dist-types/commands/UpdateEndpointWeightsAndCapacitiesCommand.d.ts +2 -7
  196. package/dist-types/commands/UpdateExperimentCommand.d.ts +2 -4
  197. package/dist-types/commands/UpdateFeatureGroupCommand.d.ts +2 -17
  198. package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -36
  199. package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -14
  200. package/dist-types/commands/UpdateImageCommand.d.ts +1 -2
  201. package/dist-types/commands/UpdateInferenceComponentCommand.d.ts +1 -2
  202. package/dist-types/commands/UpdateInferenceComponentRuntimeConfigCommand.d.ts +1 -2
  203. package/dist-types/commands/UpdateInferenceExperimentCommand.d.ts +2 -7
  204. package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +2 -4
  205. package/dist-types/commands/UpdateModelCardCommand.d.ts +3 -8
  206. package/dist-types/commands/UpdateModelPackageCommand.d.ts +1 -2
  207. package/dist-types/commands/UpdateMonitoringAlertCommand.d.ts +1 -2
  208. package/dist-types/commands/UpdateMonitoringScheduleCommand.d.ts +1 -2
  209. package/dist-types/commands/UpdateNotebookInstanceCommand.d.ts +2 -5
  210. package/dist-types/commands/UpdateNotebookInstanceLifecycleConfigCommand.d.ts +1 -2
  211. package/dist-types/commands/UpdatePartnerAppCommand.d.ts +2 -3
  212. package/dist-types/commands/UpdatePipelineCommand.d.ts +1 -2
  213. package/dist-types/commands/UpdatePipelineExecutionCommand.d.ts +1 -2
  214. package/dist-types/commands/UpdateProjectCommand.d.ts +2 -10
  215. package/dist-types/commands/UpdateSpaceCommand.d.ts +2 -6
  216. package/dist-types/commands/UpdateTrainingJobCommand.d.ts +2 -4
  217. package/dist-types/commands/UpdateTrialCommand.d.ts +1 -2
  218. package/dist-types/commands/UpdateTrialComponentCommand.d.ts +1 -2
  219. package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -2
  220. package/dist-types/commands/UpdateWorkforceCommand.d.ts +2 -28
  221. package/dist-types/commands/UpdateWorkteamCommand.d.ts +1 -2
  222. package/dist-types/index.d.ts +1 -16
  223. package/dist-types/models/models_0.d.ts +370 -4018
  224. package/dist-types/models/models_1.d.ts +532 -5722
  225. package/dist-types/models/models_2.d.ts +328 -1436
  226. package/dist-types/models/models_3.d.ts +364 -2021
  227. package/dist-types/models/models_4.d.ts +462 -1693
  228. package/dist-types/models/models_5.d.ts +90 -441
  229. package/package.json +15 -15
@@ -27,9 +27,7 @@ declare const CreateModelQualityJobDefinitionCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a definition for a job that monitors model quality and drift. For information
31
- * about model monitor, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html">Amazon SageMaker AI Model
32
- * Monitor</a>.</p>
30
+ * <p>Creates a definition for a job that monitors model quality and drift. For information about model monitor, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html">Amazon SageMaker AI Model Monitor</a>.</p>
33
31
  * @example
34
32
  * Use a bare-bones client and the command you need to make an API call.
35
33
  * ```javascript
@@ -160,8 +158,7 @@ declare const CreateModelQualityJobDefinitionCommand_base: {
160
158
  * <p>Resource being accessed is in use.</p>
161
159
  *
162
160
  * @throws {@link ResourceLimitExceeded} (client fault)
163
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
164
- * training jobs created. </p>
161
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
165
162
  *
166
163
  * @throws {@link SageMakerServiceException}
167
164
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,8 +27,7 @@ declare const CreateMonitoringScheduleCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a schedule that regularly starts Amazon SageMaker AI Processing Jobs to
31
- * monitor the data captured for an Amazon SageMaker AI Endpoint.</p>
30
+ * <p>Creates a schedule that regularly starts Amazon SageMaker AI Processing Jobs to monitor the data captured for an Amazon SageMaker AI Endpoint.</p>
32
31
  * @example
33
32
  * Use a bare-bones client and the command you need to make an API call.
34
33
  * ```javascript
@@ -171,8 +170,7 @@ declare const CreateMonitoringScheduleCommand_base: {
171
170
  * <p>Resource being accessed is in use.</p>
172
171
  *
173
172
  * @throws {@link ResourceLimitExceeded} (client fault)
174
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
175
- * training jobs created. </p>
173
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
176
174
  *
177
175
  * @throws {@link SageMakerServiceException}
178
176
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,42 +27,7 @@ declare const CreateNotebookInstanceCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates an SageMaker AI notebook instance. A notebook instance is a machine
31
- * learning (ML) compute instance running on a Jupyter notebook. </p>
32
- * <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute
33
- * instance that you want to run. SageMaker AI launches the instance, installs common
34
- * libraries that you can use to explore datasets for model training, and attaches an ML
35
- * storage volume to the notebook instance. </p>
36
- * <p>SageMaker AI also provides a set of example notebooks. Each notebook
37
- * demonstrates how to use SageMaker AI with a specific algorithm or with a machine
38
- * learning framework. </p>
39
- * <p>After receiving the request, SageMaker AI does the following:</p>
40
- * <ol>
41
- * <li>
42
- * <p>Creates a network interface in the SageMaker AI VPC.</p>
43
- * </li>
44
- * <li>
45
- * <p>(Option) If you specified <code>SubnetId</code>, SageMaker AI creates
46
- * a network interface in your own VPC, which is inferred from the subnet ID that
47
- * you provide in the input. When creating this network interface, SageMaker AI attaches the security group that you specified in the request to the network
48
- * interface that it creates in your VPC.</p>
49
- * </li>
50
- * <li>
51
- * <p>Launches an EC2 instance of the type specified in the request in the
52
- * SageMaker AI VPC. If you specified <code>SubnetId</code> of your VPC,
53
- * SageMaker AI specifies both network interfaces when launching this
54
- * instance. This enables inbound traffic from your own VPC to the notebook
55
- * instance, assuming that the security groups allow it.</p>
56
- * </li>
57
- * </ol>
58
- * <p>After creating the notebook instance, SageMaker AI returns its Amazon Resource
59
- * Name (ARN). You can't change the name of a notebook instance after you create
60
- * it.</p>
61
- * <p>After SageMaker AI creates the notebook instance, you can connect to the
62
- * Jupyter server and work in Jupyter notebooks. For example, you can write code to explore
63
- * a dataset that you can use for model training, train a model, host models by creating
64
- * SageMaker AI endpoints, and validate hosted models. </p>
65
- * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
30
+ * <p>Creates an SageMaker AI notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook. </p> <p>In a <code>CreateNotebookInstance</code> request, specify the type of ML compute instance that you want to run. SageMaker AI launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance. </p> <p>SageMaker AI also provides a set of example notebooks. Each notebook demonstrates how to use SageMaker AI with a specific algorithm or with a machine learning framework. </p> <p>After receiving the request, SageMaker AI does the following:</p> <ol> <li> <p>Creates a network interface in the SageMaker AI VPC.</p> </li> <li> <p>(Option) If you specified <code>SubnetId</code>, SageMaker AI creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, SageMaker AI attaches the security group that you specified in the request to the network interface that it creates in your VPC.</p> </li> <li> <p>Launches an EC2 instance of the type specified in the request in the SageMaker AI VPC. If you specified <code>SubnetId</code> of your VPC, SageMaker AI specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.</p> </li> </ol> <p>After creating the notebook instance, SageMaker AI returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.</p> <p>After SageMaker AI creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating SageMaker AI endpoints, and validate hosted models. </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
66
31
  * @example
67
32
  * Use a bare-bones client and the command you need to make an API call.
68
33
  * ```javascript
@@ -115,8 +80,7 @@ declare const CreateNotebookInstanceCommand_base: {
115
80
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
116
81
  *
117
82
  * @throws {@link ResourceLimitExceeded} (client fault)
118
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
119
- * training jobs created. </p>
83
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
120
84
  *
121
85
  * @throws {@link SageMakerServiceException}
122
86
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,20 +27,7 @@ declare const CreateNotebookInstanceLifecycleConfigCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a lifecycle configuration that you can associate with a notebook instance. A
31
- * <i>lifecycle configuration</i> is a collection of shell scripts that
32
- * run when you create or start a notebook instance.</p>
33
- * <p>Each lifecycle configuration script has a limit of 16384 characters.</p>
34
- * <p>The value of the <code>$PATH</code> environment variable that is available to both
35
- * scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p>
36
- * <p>View Amazon CloudWatch Logs for notebook instance lifecycle configurations in log
37
- * group <code>/aws/sagemaker/NotebookInstances</code> in log stream
38
- * <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p>
39
- * <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs
40
- * for longer than 5 minutes, it fails and the notebook instance is not created or
41
- * started.</p>
42
- * <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step
43
- * 2.1: (Optional) Customize a Notebook Instance</a>.</p>
30
+ * <p>Creates a lifecycle configuration that you can associate with a notebook instance. A <i>lifecycle configuration</i> is a collection of shell scripts that run when you create or start a notebook instance.</p> <p>Each lifecycle configuration script has a limit of 16384 characters.</p> <p>The value of the <code>$PATH</code> environment variable that is available to both scripts is <code>/sbin:bin:/usr/sbin:/usr/bin</code>.</p> <p>View Amazon CloudWatch Logs for notebook instance lifecycle configurations in log group <code>/aws/sagemaker/NotebookInstances</code> in log stream <code>[notebook-instance-name]/[LifecycleConfigHook]</code>.</p> <p>Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.</p> <p>For information about notebook instance lifestyle configurations, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/notebook-lifecycle-config.html">Step 2.1: (Optional) Customize a Notebook Instance</a>.</p>
44
31
  * @example
45
32
  * Use a bare-bones client and the command you need to make an API call.
46
33
  * ```javascript
@@ -81,8 +68,7 @@ declare const CreateNotebookInstanceLifecycleConfigCommand_base: {
81
68
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
82
69
  *
83
70
  * @throws {@link ResourceLimitExceeded} (client fault)
84
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
85
- * training jobs created. </p>
71
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
86
72
  *
87
73
  * @throws {@link SageMakerServiceException}
88
74
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,12 +27,7 @@ declare const CreateOptimizationJobCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a job that optimizes a model for inference performance. To create the job, you
31
- * provide the location of a source model, and you provide the settings for the optimization
32
- * techniques that you want the job to apply. When the job completes successfully, SageMaker
33
- * uploads the new optimized model to the output destination that you specify.</p>
34
- * <p>For more information about how to use this action, and about the supported optimization
35
- * techniques, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-optimize.html">Optimize model inference with Amazon SageMaker</a>.</p>
30
+ * <p>Creates a job that optimizes a model for inference performance. To create the job, you provide the location of a source model, and you provide the settings for the optimization techniques that you want the job to apply. When the job completes successfully, SageMaker uploads the new optimized model to the output destination that you specify.</p> <p>For more information about how to use this action, and about the supported optimization techniques, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-optimize.html">Optimize model inference with Amazon SageMaker</a>.</p>
36
31
  * @example
37
32
  * Use a bare-bones client and the command you need to make an API call.
38
33
  * ```javascript
@@ -118,8 +113,7 @@ declare const CreateOptimizationJobCommand_base: {
118
113
  * <p>Resource being accessed is in use.</p>
119
114
  *
120
115
  * @throws {@link ResourceLimitExceeded} (client fault)
121
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
122
- * training jobs created. </p>
116
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
123
117
  *
124
118
  * @throws {@link SageMakerServiceException}
125
119
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -76,12 +76,10 @@ declare const CreatePartnerAppCommand_base: {
76
76
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
77
77
  *
78
78
  * @throws {@link ConflictException} (client fault)
79
- * <p>There was a conflict when you attempted to modify a SageMaker entity such as an
80
- * <code>Experiment</code> or <code>Artifact</code>.</p>
79
+ * <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
81
80
  *
82
81
  * @throws {@link ResourceLimitExceeded} (client fault)
83
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
84
- * training jobs created. </p>
82
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
85
83
  *
86
84
  * @throws {@link SageMakerServiceException}
87
85
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -71,12 +71,10 @@ declare const CreatePipelineCommand_base: {
71
71
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
72
72
  *
73
73
  * @throws {@link ConflictException} (client fault)
74
- * <p>There was a conflict when you attempted to modify a SageMaker entity such as an
75
- * <code>Experiment</code> or <code>Artifact</code>.</p>
74
+ * <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
76
75
  *
77
76
  * @throws {@link ResourceLimitExceeded} (client fault)
78
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
79
- * training jobs created. </p>
77
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
80
78
  *
81
79
  * @throws {@link ResourceNotFound} (client fault)
82
80
  * <p>Resource being access is not found.</p>
@@ -27,32 +27,7 @@ declare const CreatePresignedDomainUrlCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the
31
- * user will be automatically signed in to the domain, and granted access to all of the Apps and
32
- * files associated with the Domain's Amazon Elastic File System volume. This operation can only be
33
- * called when the authentication mode equals IAM. </p>
34
- * <p>The IAM role or user passed to this API defines the permissions to access
35
- * the app. Once the presigned URL is created, no additional permission is required to access
36
- * this URL. IAM authorization policies for this API are also enforced for every
37
- * HTTP request and WebSocket frame that attempts to connect to the app.</p>
38
- * <p>You can restrict access to this API and to the URL that it returns to a list of IP
39
- * addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more
40
- * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-interface-endpoint.html">Connect to Amazon SageMaker AI
41
- * Studio Through an Interface VPC Endpoint</a> .</p>
42
- * <note>
43
- * <ul>
44
- * <li>
45
- * <p>The URL that you get from a call to <code>CreatePresignedDomainUrl</code> has a
46
- * default timeout of 5 minutes. You can configure this value using
47
- * <code>ExpiresInSeconds</code>. If you try to use the URL after the timeout limit
48
- * expires, you are directed to the Amazon Web Services console sign-in page.</p>
49
- * </li>
50
- * <li>
51
- * <p>The JupyterLab session default expiration time is 12 hours. You can configure this
52
- * value using SessionExpirationDurationInSeconds.</p>
53
- * </li>
54
- * </ul>
55
- * </note>
30
+ * <p>Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to the domain, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System volume. This operation can only be called when the authentication mode equals IAM. </p> <p>The IAM role or user passed to this API defines the permissions to access the app. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the app.</p> <p>You can restrict access to this API and to the URL that it returns to a list of IP addresses, Amazon VPCs or Amazon VPC Endpoints that you specify. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-interface-endpoint.html">Connect to Amazon SageMaker AI Studio Through an Interface VPC Endpoint</a> .</p> <note> <ul> <li> <p>The URL that you get from a call to <code>CreatePresignedDomainUrl</code> has a default timeout of 5 minutes. You can configure this value using <code>ExpiresInSeconds</code>. If you try to use the URL after the timeout limit expires, you are directed to the Amazon Web Services console sign-in page.</p> </li> <li> <p>The JupyterLab session default expiration time is 12 hours. You can configure this value using SessionExpirationDurationInSeconds.</p> </li> </ul> </note>
56
31
  * @example
57
32
  * Use a bare-bones client and the command you need to make an API call.
58
33
  * ```javascript
@@ -27,8 +27,7 @@ declare const CreatePresignedMlflowTrackingServerUrlCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Returns a presigned URL that you can use to connect to the MLflow UI attached to your
31
- * tracking server. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-launch-ui.html">Launch the MLflow UI using a presigned URL</a>.</p>
30
+ * <p>Returns a presigned URL that you can use to connect to the MLflow UI attached to your tracking server. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-launch-ui.html">Launch the MLflow UI using a presigned URL</a>.</p>
32
31
  * @example
33
32
  * Use a bare-bones client and the command you need to make an API call.
34
33
  * ```javascript
@@ -27,24 +27,7 @@ declare const CreatePresignedNotebookInstanceUrlCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Returns a URL that you can use to connect to the Jupyter server from a notebook
31
- * instance. In the SageMaker AI console, when you choose <code>Open</code> next to a
32
- * notebook instance, SageMaker AI opens a new tab showing the Jupyter server home
33
- * page from the notebook instance. The console uses this API to get the URL and show the
34
- * page.</p>
35
- * <p> The IAM role or user used to call this API defines the permissions to
36
- * access the notebook instance. Once the presigned URL is created, no additional
37
- * permission is required to access this URL. IAM authorization policies for
38
- * this API are also enforced for every HTTP request and WebSocket frame that attempts to
39
- * connect to the notebook instance.</p>
40
- * <p>You can restrict access to this API and to the URL that it returns to a list of IP
41
- * addresses that you specify. Use the <code>NotIpAddress</code> condition operator and the
42
- * <code>aws:SourceIP</code> condition context key to specify the list of IP addresses
43
- * that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#nbi-ip-filter">Limit Access to a Notebook Instance by IP Address</a>.</p>
44
- * <note>
45
- * <p>The URL that you get from a call to <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html">CreatePresignedNotebookInstanceUrl</a> is valid only for 5 minutes. If you
46
- * try to use the URL after the 5-minute limit expires, you are directed to the Amazon Web Services console sign-in page.</p>
47
- * </note>
30
+ * <p>Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the SageMaker AI console, when you choose <code>Open</code> next to a notebook instance, SageMaker AI opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.</p> <p> The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.</p> <p>You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the <code>NotIpAddress</code> condition operator and the <code>aws:SourceIP</code> condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/security_iam_id-based-policy-examples.html#nbi-ip-filter">Limit Access to a Notebook Instance by IP Address</a>.</p> <note> <p>The URL that you get from a call to <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreatePresignedNotebookInstanceUrl.html">CreatePresignedNotebookInstanceUrl</a> is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the Amazon Web Services console sign-in page.</p> </note>
48
31
  * @example
49
32
  * Use a bare-bones client and the command you need to make an API call.
50
33
  * ```javascript
@@ -160,8 +160,7 @@ declare const CreateProcessingJobCommand_base: {
160
160
  * <p>Resource being accessed is in use.</p>
161
161
  *
162
162
  * @throws {@link ResourceLimitExceeded} (client fault)
163
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
164
- * training jobs created. </p>
163
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
165
164
  *
166
165
  * @throws {@link ResourceNotFound} (client fault)
167
166
  * <p>Resource being access is not found.</p>
@@ -27,8 +27,7 @@ declare const CreateProjectCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a machine learning (ML) project that can contain one or more templates that set
31
- * up an ML pipeline from training to deploying an approved model.</p>
30
+ * <p>Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.</p>
32
31
  * @example
33
32
  * Use a bare-bones client and the command you need to make an API call.
34
33
  * ```javascript
@@ -72,8 +71,7 @@ declare const CreateProjectCommand_base: {
72
71
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
73
72
  *
74
73
  * @throws {@link ResourceLimitExceeded} (client fault)
75
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
76
- * training jobs created. </p>
74
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
77
75
  *
78
76
  * @throws {@link SageMakerServiceException}
79
77
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -157,8 +157,7 @@ declare const CreateSpaceCommand_base: {
157
157
  * <p>Resource being accessed is in use.</p>
158
158
  *
159
159
  * @throws {@link ResourceLimitExceeded} (client fault)
160
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
161
- * training jobs created. </p>
160
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
162
161
  *
163
162
  * @throws {@link SageMakerServiceException}
164
163
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,92 +27,7 @@ declare const CreateTrainingJobCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Starts a model training job. After training completes, SageMaker saves the resulting
31
- * model artifacts to an Amazon S3 location that you specify. </p>
32
- * <p>If you choose to host your model using SageMaker hosting services, you can use the
33
- * resulting model artifacts as part of the model. You can also use the artifacts in a
34
- * machine learning service other than SageMaker, provided that you know how to use them for
35
- * inference.
36
- * </p>
37
- * <p>In the request body, you provide the following: </p>
38
- * <ul>
39
- * <li>
40
- * <p>
41
- * <code>AlgorithmSpecification</code> - Identifies the training algorithm to
42
- * use.
43
- * </p>
44
- * </li>
45
- * <li>
46
- * <p>
47
- * <code>HyperParameters</code> - Specify these algorithm-specific parameters to
48
- * enable the estimation of model parameters during training. Hyperparameters can
49
- * be tuned to optimize this learning process. For a list of hyperparameters for
50
- * each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p>
51
- * <important>
52
- * <p>Do not include any security-sensitive information including account access IDs, secrets,
53
- * or tokens in any hyperparameter fields. As part of the shared responsibility
54
- * model, you are responsible for any potential exposure, unauthorized access, or compromise of
55
- * your sensitive data if caused by security-sensitive information included in the
56
- * request hyperparameter variable or plain text fields.</p>
57
- * </important>
58
- * </li>
59
- * <li>
60
- * <p>
61
- * <code>InputDataConfig</code> - Describes the input required by the training
62
- * job and the Amazon S3, EFS, or FSx location where it is stored.</p>
63
- * </li>
64
- * <li>
65
- * <p>
66
- * <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want
67
- * SageMaker to save the results of model training. </p>
68
- * </li>
69
- * <li>
70
- * <p>
71
- * <code>ResourceConfig</code> - Identifies the resources, ML compute
72
- * instances, and ML storage volumes to deploy for model training. In distributed
73
- * training, you specify more than one instance. </p>
74
- * </li>
75
- * <li>
76
- * <p>
77
- * <code>EnableManagedSpotTraining</code> - Optimize the cost of training machine
78
- * learning models by up to 80% by using Amazon EC2 Spot instances. For more
79
- * information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot
80
- * Training</a>. </p>
81
- * </li>
82
- * <li>
83
- * <p>
84
- * <code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on
85
- * your behalf during model training.
86
- *
87
- * You must grant this role the necessary permissions so that SageMaker can successfully
88
- * complete model training. </p>
89
- * </li>
90
- * <li>
91
- * <p>
92
- * <code>StoppingCondition</code> - To help cap training costs, use
93
- * <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use
94
- * <code>MaxWaitTimeInSeconds</code> to specify how long a managed spot
95
- * training job has to complete. </p>
96
- * </li>
97
- * <li>
98
- * <p>
99
- * <code>Environment</code> - The environment variables to set in the Docker
100
- * container.</p>
101
- * <important>
102
- * <p>Do not include any security-sensitive information including account access IDs, secrets,
103
- * or tokens in any environment fields. As part of the shared responsibility model, you are
104
- * responsible for any potential exposure, unauthorized access, or compromise of your sensitive
105
- * data if caused by security-sensitive information included in the request environment variable
106
- * or plain text fields.</p>
107
- * </important>
108
- * </li>
109
- * <li>
110
- * <p>
111
- * <code>RetryStrategy</code> - The number of times to retry the job when the job
112
- * fails due to an <code>InternalServerError</code>.</p>
113
- * </li>
114
- * </ul>
115
- * <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
30
+ * <p>Starts a model training job. After training completes, SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify. </p> <p>If you choose to host your model using SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than SageMaker, provided that you know how to use them for inference. </p> <p>In the request body, you provide the following: </p> <ul> <li> <p> <code>AlgorithmSpecification</code> - Identifies the training algorithm to use. </p> </li> <li> <p> <code>HyperParameters</code> - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">Algorithms</a>. </p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request hyperparameter variable or plain text fields.</p> </important> </li> <li> <p> <code>InputDataConfig</code> - Describes the input required by the training job and the Amazon S3, EFS, or FSx location where it is stored.</p> </li> <li> <p> <code>OutputDataConfig</code> - Identifies the Amazon S3 bucket where you want SageMaker to save the results of model training. </p> </li> <li> <p> <code>ResourceConfig</code> - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance. </p> </li> <li> <p> <code>EnableManagedSpotTraining</code> - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-managed-spot-training.html">Managed Spot Training</a>. </p> </li> <li> <p> <code>RoleArn</code> - The Amazon Resource Name (ARN) that SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that SageMaker can successfully complete model training. </p> </li> <li> <p> <code>StoppingCondition</code> - To help cap training costs, use <code>MaxRuntimeInSeconds</code> to set a time limit for training. Use <code>MaxWaitTimeInSeconds</code> to specify how long a managed spot training job has to complete. </p> </li> <li> <p> <code>Environment</code> - The environment variables to set in the Docker container.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any environment fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by security-sensitive information included in the request environment variable or plain text fields.</p> </important> </li> <li> <p> <code>RetryStrategy</code> - The number of times to retry the job when the job fails due to an <code>InternalServerError</code>.</p> </li> </ul> <p> For more information about SageMaker, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works.html">How It Works</a>. </p>
116
31
  * @example
117
32
  * Use a bare-bones client and the command you need to make an API call.
118
33
  * ```javascript
@@ -325,8 +240,7 @@ declare const CreateTrainingJobCommand_base: {
325
240
  * <p>Resource being accessed is in use.</p>
326
241
  *
327
242
  * @throws {@link ResourceLimitExceeded} (client fault)
328
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
329
- * training jobs created. </p>
243
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
330
244
  *
331
245
  * @throws {@link ResourceNotFound} (client fault)
332
246
  * <p>Resource being access is not found.</p>
@@ -27,67 +27,7 @@ declare const CreateTrainingPlanCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a new training plan in SageMaker to reserve compute capacity.</p>
31
- * <p>Amazon SageMaker Training Plan is a capability within SageMaker that allows customers to reserve and manage GPU
32
- * capacity for large-scale AI model training. It provides a way to secure predictable access
33
- * to computational resources within specific timelines and budgets, without the need to
34
- * manage underlying infrastructure. </p>
35
- * <p>
36
- * <b>How it works</b>
37
- * </p>
38
- * <p>Plans can be created for specific resources such as SageMaker Training Jobs or SageMaker HyperPod
39
- * clusters, automatically provisioning resources, setting up infrastructure, executing
40
- * workloads, and handling infrastructure failures.</p>
41
- * <p>
42
- * <b>Plan creation workflow</b>
43
- * </p>
44
- * <ul>
45
- * <li>
46
- * <p>Users search for available plan offerings based on their requirements (e.g.,
47
- * instance type, count, start time, duration) using the <code>
48
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchTrainingPlanOfferings.html">SearchTrainingPlanOfferings</a>
49
- * </code> API operation.</p>
50
- * </li>
51
- * <li>
52
- * <p>They create a plan that best matches their needs using the ID of the plan offering
53
- * they want to use. </p>
54
- * </li>
55
- * <li>
56
- * <p>After successful upfront payment, the plan's status becomes
57
- * <code>Scheduled</code>. </p>
58
- * </li>
59
- * <li>
60
- * <p>The plan can be used to:</p>
61
- * <ul>
62
- * <li>
63
- * <p>Queue training jobs.</p>
64
- * </li>
65
- * <li>
66
- * <p>Allocate to an instance group of a SageMaker HyperPod cluster. </p>
67
- * </li>
68
- * </ul>
69
- * </li>
70
- * <li>
71
- * <p>When the plan start date arrives, it becomes <code>Active</code>. Based on
72
- * available reserved capacity:</p>
73
- * <ul>
74
- * <li>
75
- * <p>Training jobs are launched.</p>
76
- * </li>
77
- * <li>
78
- * <p>Instance groups are provisioned.</p>
79
- * </li>
80
- * </ul>
81
- * </li>
82
- * </ul>
83
- * <p>
84
- * <b>Plan composition</b>
85
- * </p>
86
- * <p>A plan can consist of one or more Reserved Capacities, each defined by a specific
87
- * instance type, quantity, Availability Zone, duration, and start and end times. For more
88
- * information about Reserved Capacity, see <code>
89
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ReservedCapacitySummary.html">ReservedCapacitySummary</a>
90
- * </code>.</p>
30
+ * <p>Creates a new training plan in SageMaker to reserve compute capacity.</p> <p>Amazon SageMaker Training Plan is a capability within SageMaker that allows customers to reserve and manage GPU capacity for large-scale AI model training. It provides a way to secure predictable access to computational resources within specific timelines and budgets, without the need to manage underlying infrastructure. </p> <p> <b>How it works</b> </p> <p>Plans can be created for specific resources such as SageMaker Training Jobs or SageMaker HyperPod clusters, automatically provisioning resources, setting up infrastructure, executing workloads, and handling infrastructure failures.</p> <p> <b>Plan creation workflow</b> </p> <ul> <li> <p>Users search for available plan offerings based on their requirements (e.g., instance type, count, start time, duration) using the <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_SearchTrainingPlanOfferings.html">SearchTrainingPlanOfferings</a> </code> API operation.</p> </li> <li> <p>They create a plan that best matches their needs using the ID of the plan offering they want to use. </p> </li> <li> <p>After successful upfront payment, the plan's status becomes <code>Scheduled</code>. </p> </li> <li> <p>The plan can be used to:</p> <ul> <li> <p>Queue training jobs.</p> </li> <li> <p>Allocate to an instance group of a SageMaker HyperPod cluster. </p> </li> </ul> </li> <li> <p>When the plan start date arrives, it becomes <code>Active</code>. Based on available reserved capacity:</p> <ul> <li> <p>Training jobs are launched.</p> </li> <li> <p>Instance groups are provisioned.</p> </li> </ul> </li> </ul> <p> <b>Plan composition</b> </p> <p>A plan can consist of one or more Reserved Capacities, each defined by a specific instance type, quantity, Availability Zone, duration, and start and end times. For more information about Reserved Capacity, see <code> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ReservedCapacitySummary.html">ReservedCapacitySummary</a> </code>.</p>
91
31
  * @example
92
32
  * Use a bare-bones client and the command you need to make an API call.
93
33
  * ```javascript
@@ -122,8 +62,7 @@ declare const CreateTrainingPlanCommand_base: {
122
62
  * <p>Resource being accessed is in use.</p>
123
63
  *
124
64
  * @throws {@link ResourceLimitExceeded} (client fault)
125
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
126
- * training jobs created. </p>
65
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
127
66
  *
128
67
  * @throws {@link ResourceNotFound} (client fault)
129
68
  * <p>Resource being access is not found.</p>
@@ -27,41 +27,7 @@ declare const CreateTransformJobCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Starts a transform job. A transform job uses a trained model to get inferences on a
31
- * dataset and saves these results to an Amazon S3 location that you specify.</p>
32
- * <p>To perform batch transformations, you create a transform job and use the data that you
33
- * have readily available.</p>
34
- * <p>In the request body, you provide the following:</p>
35
- * <ul>
36
- * <li>
37
- * <p>
38
- * <code>TransformJobName</code> - Identifies the transform job. The name must be
39
- * unique within an Amazon Web Services Region in an Amazon Web Services account.</p>
40
- * </li>
41
- * <li>
42
- * <p>
43
- * <code>ModelName</code> - Identifies the model to use. <code>ModelName</code>
44
- * must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services
45
- * account. For information on creating a model, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html">CreateModel</a>.</p>
46
- * </li>
47
- * <li>
48
- * <p>
49
- * <code>TransformInput</code> - Describes the dataset to be transformed and the
50
- * Amazon S3 location where it is stored.</p>
51
- * </li>
52
- * <li>
53
- * <p>
54
- * <code>TransformOutput</code> - Identifies the Amazon S3 location where you want
55
- * Amazon SageMaker to save the results from the transform job.</p>
56
- * </li>
57
- * <li>
58
- * <p>
59
- * <code>TransformResources</code> - Identifies the ML compute instances and AMI
60
- * image versions for the transform job.</p>
61
- * </li>
62
- * </ul>
63
- * <p>For more information about how batch transformation works, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">Batch
64
- * Transform</a>.</p>
30
+ * <p>Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.</p> <p>To perform batch transformations, you create a transform job and use the data that you have readily available.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p> <code>TransformJobName</code> - Identifies the transform job. The name must be unique within an Amazon Web Services Region in an Amazon Web Services account.</p> </li> <li> <p> <code>ModelName</code> - Identifies the model to use. <code>ModelName</code> must be the name of an existing Amazon SageMaker model in the same Amazon Web Services Region and Amazon Web Services account. For information on creating a model, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html">CreateModel</a>.</p> </li> <li> <p> <code>TransformInput</code> - Describes the dataset to be transformed and the Amazon S3 location where it is stored.</p> </li> <li> <p> <code>TransformOutput</code> - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.</p> </li> <li> <p> <code>TransformResources</code> - Identifies the ML compute instances and AMI image versions for the transform job.</p> </li> </ul> <p>For more information about how batch transformation works, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html">Batch Transform</a>.</p>
65
31
  * @example
66
32
  * Use a bare-bones client and the command you need to make an API call.
67
33
  * ```javascript
@@ -145,8 +111,7 @@ declare const CreateTransformJobCommand_base: {
145
111
  * <p>Resource being accessed is in use.</p>
146
112
  *
147
113
  * @throws {@link ResourceLimitExceeded} (client fault)
148
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
149
- * training jobs created. </p>
114
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
150
115
  *
151
116
  * @throws {@link ResourceNotFound} (client fault)
152
117
  * <p>Resource being access is not found.</p>
@@ -27,17 +27,7 @@ declare const CreateTrialCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates an SageMaker <i>trial</i>. A trial is a set of steps called
31
- * <i>trial components</i> that produce a machine learning model. A trial is part
32
- * of a single SageMaker <i>experiment</i>.</p>
33
- * <p>When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial
34
- * components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you
35
- * must use the logging APIs provided by the SDK.</p>
36
- * <p>You can add tags to a trial and then use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html">Search</a> API to search for
37
- * the tags.</p>
38
- * <p>To get a list of all your trials, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrials.html">ListTrials</a> API. To view a
39
- * trial's properties, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrial.html">DescribeTrial</a> API. To create a trial component,
40
- * call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html">CreateTrialComponent</a> API.</p>
30
+ * <p>Creates an SageMaker <i>trial</i>. A trial is a set of steps called <i>trial components</i> that produce a machine learning model. A trial is part of a single SageMaker <i>experiment</i>.</p> <p>When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.</p> <p>You can add tags to a trial and then use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html">Search</a> API to search for the tags.</p> <p>To get a list of all your trials, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrials.html">ListTrials</a> API. To view a trial's properties, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeTrial.html">DescribeTrial</a> API. To create a trial component, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrialComponent.html">CreateTrialComponent</a> API.</p>
41
31
  * @example
42
32
  * Use a bare-bones client and the command you need to make an API call.
43
33
  * ```javascript
@@ -76,8 +66,7 @@ declare const CreateTrialCommand_base: {
76
66
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
77
67
  *
78
68
  * @throws {@link ResourceLimitExceeded} (client fault)
79
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
80
- * training jobs created. </p>
69
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
81
70
  *
82
71
  * @throws {@link ResourceNotFound} (client fault)
83
72
  * <p>Resource being access is not found.</p>