@aws-sdk/client-sagemaker 3.806.0 → 3.808.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -16
- package/dist-cjs/index.js +26 -26
- package/dist-es/waiters/waitForEndpointDeleted.js +2 -2
- package/dist-es/waiters/waitForEndpointInService.js +2 -2
- package/dist-es/waiters/waitForImageCreated.js +2 -2
- package/dist-es/waiters/waitForImageDeleted.js +2 -2
- package/dist-es/waiters/waitForImageUpdated.js +2 -2
- package/dist-es/waiters/waitForImageVersionCreated.js +2 -2
- package/dist-es/waiters/waitForImageVersionDeleted.js +2 -2
- package/dist-es/waiters/waitForNotebookInstanceDeleted.js +2 -2
- package/dist-es/waiters/waitForNotebookInstanceInService.js +2 -2
- package/dist-es/waiters/waitForNotebookInstanceStopped.js +2 -2
- package/dist-es/waiters/waitForProcessingJobCompletedOrStopped.js +2 -2
- package/dist-es/waiters/waitForTrainingJobCompletedOrStopped.js +2 -2
- package/dist-es/waiters/waitForTransformJobCompletedOrStopped.js +2 -2
- package/dist-types/SageMaker.d.ts +1 -16
- package/dist-types/SageMakerClient.d.ts +1 -16
- package/dist-types/commands/AddAssociationCommand.d.ts +2 -7
- package/dist-types/commands/AddTagsCommand.d.ts +1 -26
- package/dist-types/commands/AssociateTrialComponentCommand.d.ts +2 -4
- package/dist-types/commands/BatchDeleteClusterNodesCommand.d.ts +1 -17
- package/dist-types/commands/CreateActionCommand.d.ts +2 -7
- package/dist-types/commands/CreateAppCommand.d.ts +2 -6
- package/dist-types/commands/CreateAppImageConfigCommand.d.ts +1 -3
- package/dist-types/commands/CreateArtifactCommand.d.ts +2 -7
- package/dist-types/commands/CreateAutoMLJobCommand.d.ts +2 -26
- package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +2 -33
- package/dist-types/commands/CreateClusterCommand.d.ts +2 -6
- package/dist-types/commands/CreateClusterSchedulerConfigCommand.d.ts +3 -7
- package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +1 -7
- package/dist-types/commands/CreateCompilationJobCommand.d.ts +2 -33
- package/dist-types/commands/CreateComputeQuotaCommand.d.ts +3 -7
- package/dist-types/commands/CreateContextCommand.d.ts +2 -7
- package/dist-types/commands/CreateDataQualityJobDefinitionCommand.d.ts +2 -5
- package/dist-types/commands/CreateDeviceFleetCommand.d.ts +1 -2
- package/dist-types/commands/CreateDomainCommand.d.ts +2 -46
- package/dist-types/commands/CreateEdgeDeploymentPlanCommand.d.ts +2 -4
- package/dist-types/commands/CreateEdgeDeploymentStageCommand.d.ts +1 -2
- package/dist-types/commands/CreateEdgePackagingJobCommand.d.ts +1 -2
- package/dist-types/commands/CreateEndpointCommand.d.ts +2 -77
- package/dist-types/commands/CreateEndpointConfigCommand.d.ts +2 -33
- package/dist-types/commands/CreateExperimentCommand.d.ts +2 -22
- package/dist-types/commands/CreateFeatureGroupCommand.d.ts +2 -20
- package/dist-types/commands/CreateFlowDefinitionCommand.d.ts +1 -2
- package/dist-types/commands/CreateHubCommand.d.ts +1 -2
- package/dist-types/commands/CreateHubContentReferenceCommand.d.ts +1 -2
- package/dist-types/commands/CreateHumanTaskUiCommand.d.ts +1 -2
- package/dist-types/commands/CreateHyperParameterTuningJobCommand.d.ts +2 -18
- package/dist-types/commands/CreateImageCommand.d.ts +2 -5
- package/dist-types/commands/CreateImageVersionCommand.d.ts +2 -4
- package/dist-types/commands/CreateInferenceComponentCommand.d.ts +2 -10
- package/dist-types/commands/CreateInferenceExperimentCommand.d.ts +2 -17
- package/dist-types/commands/CreateInferenceRecommendationsJobCommand.d.ts +2 -4
- package/dist-types/commands/CreateLabelingJobCommand.d.ts +2 -40
- package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +2 -5
- package/dist-types/commands/CreateModelBiasJobDefinitionCommand.d.ts +1 -2
- package/dist-types/commands/CreateModelCardCommand.d.ts +3 -6
- package/dist-types/commands/CreateModelCardExportJobCommand.d.ts +2 -4
- package/dist-types/commands/CreateModelCommand.d.ts +2 -19
- package/dist-types/commands/CreateModelExplainabilityJobDefinitionCommand.d.ts +1 -2
- package/dist-types/commands/CreateModelPackageCommand.d.ts +3 -24
- package/dist-types/commands/CreateModelPackageGroupCommand.d.ts +1 -2
- package/dist-types/commands/CreateModelQualityJobDefinitionCommand.d.ts +2 -5
- package/dist-types/commands/CreateMonitoringScheduleCommand.d.ts +2 -4
- package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +2 -38
- package/dist-types/commands/CreateNotebookInstanceLifecycleConfigCommand.d.ts +2 -16
- package/dist-types/commands/CreateOptimizationJobCommand.d.ts +2 -8
- package/dist-types/commands/CreatePartnerAppCommand.d.ts +2 -4
- package/dist-types/commands/CreatePipelineCommand.d.ts +2 -4
- package/dist-types/commands/CreatePresignedDomainUrlCommand.d.ts +1 -26
- package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +1 -2
- package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +1 -18
- package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -2
- package/dist-types/commands/CreateProjectCommand.d.ts +2 -4
- package/dist-types/commands/CreateSpaceCommand.d.ts +1 -2
- package/dist-types/commands/CreateTrainingJobCommand.d.ts +2 -88
- package/dist-types/commands/CreateTrainingPlanCommand.d.ts +2 -63
- package/dist-types/commands/CreateTransformJobCommand.d.ts +2 -37
- package/dist-types/commands/CreateTrialCommand.d.ts +2 -13
- package/dist-types/commands/CreateTrialComponentCommand.d.ts +2 -12
- package/dist-types/commands/CreateUserProfileCommand.d.ts +2 -9
- package/dist-types/commands/CreateWorkforceCommand.d.ts +1 -18
- package/dist-types/commands/CreateWorkteamCommand.d.ts +2 -6
- package/dist-types/commands/DeleteAlgorithmCommand.d.ts +1 -2
- package/dist-types/commands/DeleteArtifactCommand.d.ts +1 -2
- package/dist-types/commands/DeleteClusterCommand.d.ts +1 -2
- package/dist-types/commands/DeleteCompilationJobCommand.d.ts +1 -8
- package/dist-types/commands/DeleteDomainCommand.d.ts +1 -4
- package/dist-types/commands/DeleteEdgeDeploymentPlanCommand.d.ts +1 -2
- package/dist-types/commands/DeleteEdgeDeploymentStageCommand.d.ts +1 -2
- package/dist-types/commands/DeleteEndpointCommand.d.ts +1 -11
- package/dist-types/commands/DeleteEndpointConfigCommand.d.ts +1 -9
- package/dist-types/commands/DeleteExperimentCommand.d.ts +1 -3
- package/dist-types/commands/DeleteFeatureGroupCommand.d.ts +1 -8
- package/dist-types/commands/DeleteHumanTaskUiCommand.d.ts +1 -5
- package/dist-types/commands/DeleteHyperParameterTuningJobCommand.d.ts +1 -4
- package/dist-types/commands/DeleteImageCommand.d.ts +1 -2
- package/dist-types/commands/DeleteImageVersionCommand.d.ts +1 -2
- package/dist-types/commands/DeleteInferenceExperimentCommand.d.ts +2 -9
- package/dist-types/commands/DeleteModelCardCommand.d.ts +1 -2
- package/dist-types/commands/DeleteModelCommand.d.ts +1 -4
- package/dist-types/commands/DeleteModelPackageCommand.d.ts +2 -6
- package/dist-types/commands/DeleteModelPackageGroupCommand.d.ts +1 -2
- package/dist-types/commands/DeleteMonitoringScheduleCommand.d.ts +1 -2
- package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +1 -6
- package/dist-types/commands/DeletePartnerAppCommand.d.ts +1 -2
- package/dist-types/commands/DeletePipelineCommand.d.ts +2 -6
- package/dist-types/commands/DeleteProjectCommand.d.ts +1 -2
- package/dist-types/commands/DeleteStudioLifecycleConfigCommand.d.ts +1 -4
- package/dist-types/commands/DeleteTagsCommand.d.ts +1 -12
- package/dist-types/commands/DeleteTrialCommand.d.ts +1 -3
- package/dist-types/commands/DeleteTrialComponentCommand.d.ts +1 -3
- package/dist-types/commands/DeleteUserProfileCommand.d.ts +1 -2
- package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -12
- package/dist-types/commands/DeleteWorkteamCommand.d.ts +1 -2
- package/dist-types/commands/DescribeAutoMLJobCommand.d.ts +1 -5
- package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +1 -2
- package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -2
- package/dist-types/commands/DescribeClusterSchedulerConfigCommand.d.ts +1 -3
- package/dist-types/commands/DescribeCompilationJobCommand.d.ts +1 -3
- package/dist-types/commands/DescribeEndpointConfigCommand.d.ts +1 -2
- package/dist-types/commands/DescribeFeatureGroupCommand.d.ts +1 -3
- package/dist-types/commands/DescribeHyperParameterTuningJobCommand.d.ts +1 -3
- package/dist-types/commands/DescribeInferenceRecommendationsJobCommand.d.ts +1 -2
- package/dist-types/commands/DescribeLineageGroupCommand.d.ts +1 -3
- package/dist-types/commands/DescribeModelCommand.d.ts +1 -2
- package/dist-types/commands/DescribeModelPackageCommand.d.ts +1 -8
- package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -3
- package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +1 -2
- package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -7
- package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -2
- package/dist-types/commands/DescribeWorkforceCommand.d.ts +1 -6
- package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -3
- package/dist-types/commands/DisableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
- package/dist-types/commands/DisassociateTrialComponentCommand.d.ts +1 -6
- package/dist-types/commands/EnableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
- package/dist-types/commands/GetModelPackageGroupPolicyCommand.d.ts +1 -4
- package/dist-types/commands/GetSagemakerServicecatalogPortfolioStatusCommand.d.ts +1 -2
- package/dist-types/commands/GetScalingConfigurationRecommendationCommand.d.ts +1 -2
- package/dist-types/commands/GetSearchSuggestionsCommand.d.ts +1 -4
- package/dist-types/commands/ImportHubContentCommand.d.ts +1 -2
- package/dist-types/commands/ListAppImageConfigsCommand.d.ts +1 -3
- package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -2
- package/dist-types/commands/ListCompilationJobsCommand.d.ts +1 -3
- package/dist-types/commands/ListExperimentsCommand.d.ts +1 -3
- package/dist-types/commands/ListHyperParameterTuningJobsCommand.d.ts +1 -3
- package/dist-types/commands/ListImageVersionsCommand.d.ts +1 -2
- package/dist-types/commands/ListImagesCommand.d.ts +1 -2
- package/dist-types/commands/ListInferenceRecommendationsJobStepsCommand.d.ts +1 -2
- package/dist-types/commands/ListLineageGroupsCommand.d.ts +1 -3
- package/dist-types/commands/ListModelMetadataCommand.d.ts +1 -2
- package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -2
- package/dist-types/commands/ListResourceCatalogsCommand.d.ts +1 -2
- package/dist-types/commands/ListStageDevicesCommand.d.ts +1 -2
- package/dist-types/commands/ListStudioLifecycleConfigsCommand.d.ts +1 -2
- package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +1 -3
- package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -22
- package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -2
- package/dist-types/commands/ListTrialComponentsCommand.d.ts +1 -20
- package/dist-types/commands/ListTrialsCommand.d.ts +1 -5
- package/dist-types/commands/ListWorkforcesCommand.d.ts +1 -2
- package/dist-types/commands/ListWorkteamsCommand.d.ts +1 -3
- package/dist-types/commands/PutModelPackageGroupPolicyCommand.d.ts +2 -6
- package/dist-types/commands/QueryLineageCommand.d.ts +1 -3
- package/dist-types/commands/RegisterDevicesCommand.d.ts +1 -2
- package/dist-types/commands/RetryPipelineExecutionCommand.d.ts +2 -4
- package/dist-types/commands/SearchCommand.d.ts +1 -10
- package/dist-types/commands/SearchTrainingPlanOfferingsCommand.d.ts +2 -17
- package/dist-types/commands/SendPipelineExecutionStepFailureCommand.d.ts +3 -7
- package/dist-types/commands/SendPipelineExecutionStepSuccessCommand.d.ts +3 -7
- package/dist-types/commands/StartInferenceExperimentCommand.d.ts +1 -2
- package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +1 -2
- package/dist-types/commands/StartMonitoringScheduleCommand.d.ts +1 -5
- package/dist-types/commands/StartNotebookInstanceCommand.d.ts +2 -6
- package/dist-types/commands/StartPipelineExecutionCommand.d.ts +2 -4
- package/dist-types/commands/StopCompilationJobCommand.d.ts +1 -7
- package/dist-types/commands/StopHyperParameterTuningJobCommand.d.ts +1 -7
- package/dist-types/commands/StopInferenceExperimentCommand.d.ts +1 -2
- package/dist-types/commands/StopLabelingJobCommand.d.ts +1 -2
- package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +1 -2
- package/dist-types/commands/StopNotebookInstanceCommand.d.ts +1 -8
- package/dist-types/commands/StopPipelineExecutionCommand.d.ts +2 -25
- package/dist-types/commands/StopTrainingJobCommand.d.ts +1 -7
- package/dist-types/commands/StopTransformJobCommand.d.ts +1 -6
- package/dist-types/commands/UpdateActionCommand.d.ts +1 -2
- package/dist-types/commands/UpdateArtifactCommand.d.ts +1 -2
- package/dist-types/commands/UpdateClusterCommand.d.ts +2 -4
- package/dist-types/commands/UpdateClusterSchedulerConfigCommand.d.ts +2 -4
- package/dist-types/commands/UpdateClusterSoftwareCommand.d.ts +2 -9
- package/dist-types/commands/UpdateCodeRepositoryCommand.d.ts +1 -2
- package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +2 -4
- package/dist-types/commands/UpdateContextCommand.d.ts +1 -2
- package/dist-types/commands/UpdateDomainCommand.d.ts +1 -2
- package/dist-types/commands/UpdateEndpointCommand.d.ts +2 -22
- package/dist-types/commands/UpdateEndpointWeightsAndCapacitiesCommand.d.ts +2 -7
- package/dist-types/commands/UpdateExperimentCommand.d.ts +2 -4
- package/dist-types/commands/UpdateFeatureGroupCommand.d.ts +2 -17
- package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -36
- package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -14
- package/dist-types/commands/UpdateImageCommand.d.ts +1 -2
- package/dist-types/commands/UpdateInferenceComponentCommand.d.ts +1 -2
- package/dist-types/commands/UpdateInferenceComponentRuntimeConfigCommand.d.ts +1 -2
- package/dist-types/commands/UpdateInferenceExperimentCommand.d.ts +2 -7
- package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +2 -4
- package/dist-types/commands/UpdateModelCardCommand.d.ts +3 -8
- package/dist-types/commands/UpdateModelPackageCommand.d.ts +1 -2
- package/dist-types/commands/UpdateMonitoringAlertCommand.d.ts +1 -2
- package/dist-types/commands/UpdateMonitoringScheduleCommand.d.ts +1 -2
- package/dist-types/commands/UpdateNotebookInstanceCommand.d.ts +2 -5
- package/dist-types/commands/UpdateNotebookInstanceLifecycleConfigCommand.d.ts +1 -2
- package/dist-types/commands/UpdatePartnerAppCommand.d.ts +2 -3
- package/dist-types/commands/UpdatePipelineCommand.d.ts +1 -2
- package/dist-types/commands/UpdatePipelineExecutionCommand.d.ts +1 -2
- package/dist-types/commands/UpdateProjectCommand.d.ts +2 -10
- package/dist-types/commands/UpdateSpaceCommand.d.ts +2 -6
- package/dist-types/commands/UpdateTrainingJobCommand.d.ts +2 -4
- package/dist-types/commands/UpdateTrialCommand.d.ts +1 -2
- package/dist-types/commands/UpdateTrialComponentCommand.d.ts +1 -2
- package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -2
- package/dist-types/commands/UpdateWorkforceCommand.d.ts +2 -28
- package/dist-types/commands/UpdateWorkteamCommand.d.ts +1 -2
- package/dist-types/index.d.ts +1 -16
- package/dist-types/models/models_0.d.ts +370 -4018
- package/dist-types/models/models_1.d.ts +532 -5722
- package/dist-types/models/models_2.d.ts +328 -1436
- package/dist-types/models/models_3.d.ts +364 -2021
- package/dist-types/models/models_4.d.ts +462 -1693
- package/dist-types/models/models_5.d.ts +90 -441
- package/package.json +15 -15
|
@@ -27,37 +27,7 @@ declare const CreateEndpointConfigCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In
|
|
31
|
-
* the configuration, you identify one or more models, created using the
|
|
32
|
-
* <code>CreateModel</code> API, to deploy and the resources that you want SageMaker to
|
|
33
|
-
* provision. Then you call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a>
|
|
34
|
-
* API.</p>
|
|
35
|
-
* <note>
|
|
36
|
-
* <p> Use this API if you want to use SageMaker hosting services to deploy models into
|
|
37
|
-
* production. </p>
|
|
38
|
-
* </note>
|
|
39
|
-
* <p>In the request, you define a <code>ProductionVariant</code>, for each model that you
|
|
40
|
-
* want to deploy. Each <code>ProductionVariant</code> parameter also describes the
|
|
41
|
-
* resources that you want SageMaker to provision. This includes the number and type of ML
|
|
42
|
-
* compute instances to deploy. </p>
|
|
43
|
-
* <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to
|
|
44
|
-
* specify how much traffic you want to allocate to each model. For example, suppose that
|
|
45
|
-
* you want to host two models, A and B, and you assign traffic weight 2 for model A and 1
|
|
46
|
-
* for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to
|
|
47
|
-
* model B. </p>
|
|
48
|
-
* <note>
|
|
49
|
-
* <p>When you call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a>, a load call is made to DynamoDB to verify that your
|
|
50
|
-
* endpoint configuration exists. When you read data from a DynamoDB table supporting
|
|
51
|
-
* <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html">
|
|
52
|
-
* <code>Eventually Consistent Reads</code>
|
|
53
|
-
* </a>, the response might not
|
|
54
|
-
* reflect the results of a recently completed write operation. The response might
|
|
55
|
-
* include some stale data. If the dependent entities are not yet in DynamoDB, this
|
|
56
|
-
* causes a validation error. If you repeat your read request after a short time, the
|
|
57
|
-
* response should return the latest data. So retry logic is recommended to handle
|
|
58
|
-
* these possible issues. We also recommend that customers call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html">DescribeEndpointConfig</a> before calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> to minimize the potential impact of a DynamoDB
|
|
59
|
-
* eventually consistent read.</p>
|
|
60
|
-
* </note>
|
|
30
|
+
* <p>Creates an endpoint configuration that SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the <code>CreateModel</code> API, to deploy and the resources that you want SageMaker to provision. Then you call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> API.</p> <note> <p> Use this API if you want to use SageMaker hosting services to deploy models into production. </p> </note> <p>In the request, you define a <code>ProductionVariant</code>, for each model that you want to deploy. Each <code>ProductionVariant</code> parameter also describes the resources that you want SageMaker to provision. This includes the number and type of ML compute instances to deploy. </p> <p>If you are hosting multiple models, you also assign a <code>VariantWeight</code> to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B. </p> <note> <p>When you call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a>, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html"> <code>Eventually Consistent Reads</code> </a>, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html">DescribeEndpointConfig</a> before calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p> </note>
|
|
61
31
|
* @example
|
|
62
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
63
33
|
* ```javascript
|
|
@@ -237,8 +207,7 @@ declare const CreateEndpointConfigCommand_base: {
|
|
|
237
207
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
238
208
|
*
|
|
239
209
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
240
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
241
|
-
* training jobs created. </p>
|
|
210
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
242
211
|
*
|
|
243
212
|
* @throws {@link SageMakerServiceException}
|
|
244
213
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,26 +27,7 @@ declare const CreateExperimentCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a SageMaker <i>experiment</i>. An experiment is a collection of
|
|
31
|
-
* <i>trials</i> that are observed, compared and evaluated as a group. A trial is
|
|
32
|
-
* a set of steps, called <i>trial components</i>, that produce a machine learning
|
|
33
|
-
* model.</p>
|
|
34
|
-
* <note>
|
|
35
|
-
* <p>In the Studio UI, trials are referred to as <i>run groups</i> and trial
|
|
36
|
-
* components are referred to as <i>runs</i>.</p>
|
|
37
|
-
* </note>
|
|
38
|
-
* <p>The goal of an experiment is to determine the components that produce the best model.
|
|
39
|
-
* Multiple trials are performed, each one isolating and measuring the impact of a change to one
|
|
40
|
-
* or more inputs, while keeping the remaining inputs constant.</p>
|
|
41
|
-
* <p>When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial
|
|
42
|
-
* components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you
|
|
43
|
-
* must use the logging APIs provided by the SDK.</p>
|
|
44
|
-
* <p>You can add tags to experiments, trials, trial components and then use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html">Search</a> API to search for the tags.</p>
|
|
45
|
-
* <p>To add a description to an experiment, specify the optional <code>Description</code>
|
|
46
|
-
* parameter. To add a description later, or to change the description, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateExperiment.html">UpdateExperiment</a> API.</p>
|
|
47
|
-
* <p>To get a list of all your experiments, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListExperiments.html">ListExperiments</a> API. To
|
|
48
|
-
* view an experiment's properties, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeExperiment.html">DescribeExperiment</a> API. To get a
|
|
49
|
-
* list of all the trials associated with an experiment, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrials.html">ListTrials</a> API. To create a trial call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrial.html">CreateTrial</a> API.</p>
|
|
30
|
+
* <p>Creates a SageMaker <i>experiment</i>. An experiment is a collection of <i>trials</i> that are observed, compared and evaluated as a group. A trial is a set of steps, called <i>trial components</i>, that produce a machine learning model.</p> <note> <p>In the Studio UI, trials are referred to as <i>run groups</i> and trial components are referred to as <i>runs</i>.</p> </note> <p>The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.</p> <p>When you use SageMaker Studio or the SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the Amazon Web Services SDK for Python (Boto), you must use the logging APIs provided by the SDK.</p> <p>You can add tags to experiments, trials, trial components and then use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Search.html">Search</a> API to search for the tags.</p> <p>To add a description to an experiment, specify the optional <code>Description</code> parameter. To add a description later, or to change the description, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_UpdateExperiment.html">UpdateExperiment</a> API.</p> <p>To get a list of all your experiments, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListExperiments.html">ListExperiments</a> API. To view an experiment's properties, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeExperiment.html">DescribeExperiment</a> API. To get a list of all the trials associated with an experiment, call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListTrials.html">ListTrials</a> API. To create a trial call the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateTrial.html">CreateTrial</a> API.</p>
|
|
50
31
|
* @example
|
|
51
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
52
33
|
* ```javascript
|
|
@@ -79,8 +60,7 @@ declare const CreateExperimentCommand_base: {
|
|
|
79
60
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
80
61
|
*
|
|
81
62
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
82
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
83
|
-
* training jobs created. </p>
|
|
63
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
84
64
|
*
|
|
85
65
|
* @throws {@link SageMakerServiceException}
|
|
86
66
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,24 +27,7 @@ declare const CreateFeatureGroupCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Create a new <code>FeatureGroup</code>. A <code>FeatureGroup</code> is a group of
|
|
31
|
-
* <code>Features</code> defined in the <code>FeatureStore</code> to describe a
|
|
32
|
-
* <code>Record</code>. </p>
|
|
33
|
-
* <p>The <code>FeatureGroup</code> defines the schema and features contained in the
|
|
34
|
-
* <code>FeatureGroup</code>. A <code>FeatureGroup</code> definition is composed of a list
|
|
35
|
-
* of <code>Features</code>, a <code>RecordIdentifierFeatureName</code>, an
|
|
36
|
-
* <code>EventTimeFeatureName</code> and configurations for its <code>OnlineStore</code>
|
|
37
|
-
* and <code>OfflineStore</code>. Check <a href="https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html">Amazon Web Services service
|
|
38
|
-
* quotas</a> to see the <code>FeatureGroup</code>s quota for your Amazon Web Services
|
|
39
|
-
* account.</p>
|
|
40
|
-
* <p>Note that it can take approximately 10-15 minutes to provision an
|
|
41
|
-
* <code>OnlineStore</code>
|
|
42
|
-
* <code>FeatureGroup</code> with the <code>InMemory</code>
|
|
43
|
-
* <code>StorageType</code>.</p>
|
|
44
|
-
* <important>
|
|
45
|
-
* <p>You must include at least one of <code>OnlineStoreConfig</code> and
|
|
46
|
-
* <code>OfflineStoreConfig</code> to create a <code>FeatureGroup</code>.</p>
|
|
47
|
-
* </important>
|
|
30
|
+
* <p>Create a new <code>FeatureGroup</code>. A <code>FeatureGroup</code> is a group of <code>Features</code> defined in the <code>FeatureStore</code> to describe a <code>Record</code>. </p> <p>The <code>FeatureGroup</code> defines the schema and features contained in the <code>FeatureGroup</code>. A <code>FeatureGroup</code> definition is composed of a list of <code>Features</code>, a <code>RecordIdentifierFeatureName</code>, an <code>EventTimeFeatureName</code> and configurations for its <code>OnlineStore</code> and <code>OfflineStore</code>. Check <a href="https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html">Amazon Web Services service quotas</a> to see the <code>FeatureGroup</code>s quota for your Amazon Web Services account.</p> <p>Note that it can take approximately 10-15 minutes to provision an <code>OnlineStore</code> <code>FeatureGroup</code> with the <code>InMemory</code> <code>StorageType</code>.</p> <important> <p>You must include at least one of <code>OnlineStoreConfig</code> and <code>OfflineStoreConfig</code> to create a <code>FeatureGroup</code>.</p> </important>
|
|
48
31
|
* @example
|
|
49
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
50
33
|
* ```javascript
|
|
@@ -124,8 +107,7 @@ declare const CreateFeatureGroupCommand_base: {
|
|
|
124
107
|
* <p>Resource being accessed is in use.</p>
|
|
125
108
|
*
|
|
126
109
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
127
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
128
|
-
* training jobs created. </p>
|
|
110
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
129
111
|
*
|
|
130
112
|
* @throws {@link SageMakerServiceException}
|
|
131
113
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -93,8 +93,7 @@ declare const CreateFlowDefinitionCommand_base: {
|
|
|
93
93
|
* <p>Resource being accessed is in use.</p>
|
|
94
94
|
*
|
|
95
95
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
96
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
97
|
-
* training jobs created. </p>
|
|
96
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
98
97
|
*
|
|
99
98
|
* @throws {@link SageMakerServiceException}
|
|
100
99
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -69,8 +69,7 @@ declare const CreateHubCommand_base: {
|
|
|
69
69
|
* <p>Resource being accessed is in use.</p>
|
|
70
70
|
*
|
|
71
71
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
72
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
73
|
-
* training jobs created. </p>
|
|
72
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
74
73
|
*
|
|
75
74
|
* @throws {@link SageMakerServiceException}
|
|
76
75
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -65,8 +65,7 @@ declare const CreateHubContentReferenceCommand_base: {
|
|
|
65
65
|
* <p>Resource being accessed is in use.</p>
|
|
66
66
|
*
|
|
67
67
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
68
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
69
|
-
* training jobs created. </p>
|
|
68
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
70
69
|
*
|
|
71
70
|
* @throws {@link ResourceNotFound} (client fault)
|
|
72
71
|
* <p>Resource being access is not found.</p>
|
|
@@ -64,8 +64,7 @@ declare const CreateHumanTaskUiCommand_base: {
|
|
|
64
64
|
* <p>Resource being accessed is in use.</p>
|
|
65
65
|
*
|
|
66
66
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
67
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
68
|
-
* training jobs created. </p>
|
|
67
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
69
68
|
*
|
|
70
69
|
* @throws {@link SageMakerServiceException}
|
|
71
70
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,22 +27,7 @@ declare const CreateHyperParameterTuningJobCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version
|
|
31
|
-
* of a model by running many training jobs on your dataset using the algorithm you choose
|
|
32
|
-
* and values for hyperparameters within ranges that you specify. It then chooses the
|
|
33
|
-
* hyperparameter values that result in a model that performs the best, as measured by an
|
|
34
|
-
* objective metric that you choose.</p>
|
|
35
|
-
* <p>A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and
|
|
36
|
-
* trial components for each training job that it runs. You can view these entities in
|
|
37
|
-
* Amazon SageMaker Studio. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html#experiments-view">View
|
|
38
|
-
* Experiments, Trials, and Trial Components</a>.</p>
|
|
39
|
-
* <important>
|
|
40
|
-
* <p>Do not include any security-sensitive information including account access IDs, secrets,
|
|
41
|
-
* or tokens in any hyperparameter fields. As part of the shared responsibility model,
|
|
42
|
-
* you are responsible for any potential exposure, unauthorized access, or
|
|
43
|
-
* compromise of your sensitive data if caused by any security-sensitive information included
|
|
44
|
-
* in the request hyperparameter variable or plain text fields..</p>
|
|
45
|
-
* </important>
|
|
30
|
+
* <p>Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.</p> <p>A hyperparameter tuning job automatically creates Amazon SageMaker experiments, trials, and trial components for each training job that it runs. You can view these entities in Amazon SageMaker Studio. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/experiments-view-compare.html#experiments-view">View Experiments, Trials, and Trial Components</a>.</p> <important> <p>Do not include any security-sensitive information including account access IDs, secrets, or tokens in any hyperparameter fields. As part of the shared responsibility model, you are responsible for any potential exposure, unauthorized access, or compromise of your sensitive data if caused by any security-sensitive information included in the request hyperparameter variable or plain text fields..</p> </important>
|
|
46
31
|
* @example
|
|
47
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
48
33
|
* ```javascript
|
|
@@ -452,8 +437,7 @@ declare const CreateHyperParameterTuningJobCommand_base: {
|
|
|
452
437
|
* <p>Resource being accessed is in use.</p>
|
|
453
438
|
*
|
|
454
439
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
455
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
456
|
-
* training jobs created. </p>
|
|
440
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
457
441
|
*
|
|
458
442
|
* @throws {@link SageMakerServiceException}
|
|
459
443
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,9 +27,7 @@ declare const CreateImageCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a custom SageMaker AI image. A SageMaker AI image is a set of image versions. Each image
|
|
31
|
-
* version represents a container image stored in Amazon ECR. For more information, see
|
|
32
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html">Bring your own SageMaker AI image</a>.</p>
|
|
30
|
+
* <p>Creates a custom SageMaker AI image. A SageMaker AI image is a set of image versions. Each image version represents a container image stored in Amazon ECR. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-byoi.html">Bring your own SageMaker AI image</a>.</p>
|
|
33
31
|
* @example
|
|
34
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
35
33
|
* ```javascript
|
|
@@ -66,8 +64,7 @@ declare const CreateImageCommand_base: {
|
|
|
66
64
|
* <p>Resource being accessed is in use.</p>
|
|
67
65
|
*
|
|
68
66
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
69
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
70
|
-
* training jobs created. </p>
|
|
67
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
71
68
|
*
|
|
72
69
|
* @throws {@link SageMakerServiceException}
|
|
73
70
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,8 +27,7 @@ declare const CreateImageVersionCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a version of the SageMaker AI image specified by <code>ImageName</code>. The version
|
|
31
|
-
* represents the Amazon ECR container image specified by <code>BaseImage</code>.</p>
|
|
30
|
+
* <p>Creates a version of the SageMaker AI image specified by <code>ImageName</code>. The version represents the Amazon ECR container image specified by <code>BaseImage</code>.</p>
|
|
32
31
|
* @example
|
|
33
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
34
33
|
* ```javascript
|
|
@@ -68,8 +67,7 @@ declare const CreateImageVersionCommand_base: {
|
|
|
68
67
|
* <p>Resource being accessed is in use.</p>
|
|
69
68
|
*
|
|
70
69
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
71
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
72
|
-
* training jobs created. </p>
|
|
70
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
73
71
|
*
|
|
74
72
|
* @throws {@link ResourceNotFound} (client fault)
|
|
75
73
|
* <p>Resource being access is not found.</p>
|
|
@@ -27,14 +27,7 @@ declare const CreateInferenceComponentCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an inference component, which is a SageMaker AI hosting object that you can
|
|
31
|
-
* use to deploy a model to an endpoint. In the inference component settings, you specify the
|
|
32
|
-
* model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You
|
|
33
|
-
* can optimize resource utilization by tailoring how the required CPU cores, accelerators,
|
|
34
|
-
* and memory are allocated. You can deploy multiple inference components to an endpoint,
|
|
35
|
-
* where each inference component contains one model and the resource utilization needs for
|
|
36
|
-
* that individual model. After you deploy an inference component, you can directly invoke the
|
|
37
|
-
* associated model when you use the InvokeEndpoint API action.</p>
|
|
30
|
+
* <p>Creates an inference component, which is a SageMaker AI hosting object that you can use to deploy a model to an endpoint. In the inference component settings, you specify the model, the endpoint, and how the model utilizes the resources that the endpoint hosts. You can optimize resource utilization by tailoring how the required CPU cores, accelerators, and memory are allocated. You can deploy multiple inference components to an endpoint, where each inference component contains one model and the resource utilization needs for that individual model. After you deploy an inference component, you can directly invoke the associated model when you use the InvokeEndpoint API action.</p>
|
|
38
31
|
* @example
|
|
39
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
40
33
|
* ```javascript
|
|
@@ -91,8 +84,7 @@ declare const CreateInferenceComponentCommand_base: {
|
|
|
91
84
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
92
85
|
*
|
|
93
86
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
94
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
95
|
-
* training jobs created. </p>
|
|
87
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
96
88
|
*
|
|
97
89
|
* @throws {@link SageMakerServiceException}
|
|
98
90
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,21 +27,7 @@ declare const CreateInferenceExperimentCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>
|
|
31
|
-
* Creates an inference experiment using the configurations specified in the request.
|
|
32
|
-
* </p>
|
|
33
|
-
* <p>
|
|
34
|
-
* Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For
|
|
35
|
-
* more information about inference experiments, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>.
|
|
36
|
-
* </p>
|
|
37
|
-
* <p>
|
|
38
|
-
* Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based
|
|
39
|
-
* on your specified configuration.
|
|
40
|
-
* </p>
|
|
41
|
-
* <p>
|
|
42
|
-
* While the experiment is in progress or after it has concluded, you can view metrics that compare your model
|
|
43
|
-
* variants. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests-view-monitor-edit.html">View, monitor, and edit shadow tests</a>.
|
|
44
|
-
* </p>
|
|
30
|
+
* <p> Creates an inference experiment using the configurations specified in the request. </p> <p> Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests.html">Shadow tests</a>. </p> <p> Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint's model variants based on your specified configuration. </p> <p> While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/shadow-tests-view-monitor-edit.html">View, monitor, and edit shadow tests</a>. </p>
|
|
45
31
|
* @example
|
|
46
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
47
33
|
* ```javascript
|
|
@@ -118,8 +104,7 @@ declare const CreateInferenceExperimentCommand_base: {
|
|
|
118
104
|
* <p>Resource being accessed is in use.</p>
|
|
119
105
|
*
|
|
120
106
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
121
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
122
|
-
* training jobs created. </p>
|
|
107
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
123
108
|
*
|
|
124
109
|
* @throws {@link SageMakerServiceException}
|
|
125
110
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,8 +27,7 @@ declare const CreateInferenceRecommendationsJobCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Starts a recommendation job. You can create either an instance
|
|
31
|
-
* recommendation or load test job.</p>
|
|
30
|
+
* <p>Starts a recommendation job. You can create either an instance recommendation or load test job.</p>
|
|
32
31
|
* @example
|
|
33
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
34
33
|
* ```javascript
|
|
@@ -161,8 +160,7 @@ declare const CreateInferenceRecommendationsJobCommand_base: {
|
|
|
161
160
|
* <p>Resource being accessed is in use.</p>
|
|
162
161
|
*
|
|
163
162
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
164
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
165
|
-
* training jobs created. </p>
|
|
163
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
166
164
|
*
|
|
167
165
|
* @throws {@link SageMakerServiceException}
|
|
168
166
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,44 +27,7 @@ declare const CreateLabelingJobCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a job that uses workers to label the data objects in your input dataset. You
|
|
31
|
-
* can use the labeled data to train machine learning models. </p>
|
|
32
|
-
* <p>You can select your workforce from one of three providers:</p>
|
|
33
|
-
* <ul>
|
|
34
|
-
* <li>
|
|
35
|
-
* <p>A private workforce that you create. It can include employees, contractors,
|
|
36
|
-
* and outside experts. Use a private workforce when want the data to stay within
|
|
37
|
-
* your organization or when a specific set of skills is required.</p>
|
|
38
|
-
* </li>
|
|
39
|
-
* <li>
|
|
40
|
-
* <p>One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide
|
|
41
|
-
* expertise in specific areas. </p>
|
|
42
|
-
* </li>
|
|
43
|
-
* <li>
|
|
44
|
-
* <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it
|
|
45
|
-
* should only be used for public data or data that has been stripped of any
|
|
46
|
-
* personally identifiable information.</p>
|
|
47
|
-
* </li>
|
|
48
|
-
* </ul>
|
|
49
|
-
* <p>You can also use <i>automated data labeling</i> to reduce the number of
|
|
50
|
-
* data objects that need to be labeled by a human. Automated data labeling uses
|
|
51
|
-
* <i>active learning</i> to determine if a data object can be labeled by
|
|
52
|
-
* machine or if it needs to be sent to a human worker. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using
|
|
53
|
-
* Automated Data Labeling</a>.</p>
|
|
54
|
-
* <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a
|
|
55
|
-
* <i>manifest file</i> that describes the location of each object. For
|
|
56
|
-
* more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p>
|
|
57
|
-
* <p>The output can be used as the manifest file for another labeling job or as training
|
|
58
|
-
* data for your machine learning models.</p>
|
|
59
|
-
* <p>You can use this operation to create a static labeling job or a streaming labeling
|
|
60
|
-
* job. A static labeling job stops if all data objects in the input manifest file
|
|
61
|
-
* identified in <code>ManifestS3Uri</code> have been labeled. A streaming labeling job
|
|
62
|
-
* runs perpetually until it is manually stopped, or remains idle for 10 days. You can send
|
|
63
|
-
* new data objects to an active (<code>InProgress</code>) streaming labeling job in real
|
|
64
|
-
* time. To learn how to create a static labeling job, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-api.html">Create a Labeling Job
|
|
65
|
-
* (API) </a> in the Amazon SageMaker Developer Guide. To learn how to create a streaming
|
|
66
|
-
* labeling job, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-create-job.html">Create a Streaming Labeling
|
|
67
|
-
* Job</a>.</p>
|
|
30
|
+
* <p>Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models. </p> <p>You can select your workforce from one of three providers:</p> <ul> <li> <p>A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.</p> </li> <li> <p>One or more vendors that you select from the Amazon Web Services Marketplace. Vendors provide expertise in specific areas. </p> </li> <li> <p>The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.</p> </li> </ul> <p>You can also use <i>automated data labeling</i> to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses <i>active learning</i> to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html">Using Automated Data Labeling</a>.</p> <p>The data objects to be labeled are contained in an Amazon S3 bucket. You create a <i>manifest file</i> that describes the location of each object. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data.html">Using Input and Output Data</a>.</p> <p>The output can be used as the manifest file for another labeling job or as training data for your machine learning models.</p> <p>You can use this operation to create a static labeling job or a streaming labeling job. A static labeling job stops if all data objects in the input manifest file identified in <code>ManifestS3Uri</code> have been labeled. A streaming labeling job runs perpetually until it is manually stopped, or remains idle for 10 days. You can send new data objects to an active (<code>InProgress</code>) streaming labeling job in real time. To learn how to create a static labeling job, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-create-labeling-job-api.html">Create a Labeling Job (API) </a> in the Amazon SageMaker Developer Guide. To learn how to create a streaming labeling job, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sms-streaming-create-job.html">Create a Streaming Labeling Job</a>.</p>
|
|
68
31
|
* @example
|
|
69
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
70
33
|
* ```javascript
|
|
@@ -167,8 +130,7 @@ declare const CreateLabelingJobCommand_base: {
|
|
|
167
130
|
* <p>Resource being accessed is in use.</p>
|
|
168
131
|
*
|
|
169
132
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
170
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
171
|
-
* training jobs created. </p>
|
|
133
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
172
134
|
*
|
|
173
135
|
* @throws {@link SageMakerServiceException}
|
|
174
136
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,9 +27,7 @@ declare const CreateMlflowTrackingServerCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact
|
|
31
|
-
* store. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server.html">Create an MLflow Tracking
|
|
32
|
-
* Server</a>.</p>
|
|
30
|
+
* <p>Creates an MLflow Tracking Server using a general purpose Amazon S3 bucket as the artifact store. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/mlflow-create-tracking-server.html">Create an MLflow Tracking Server</a>.</p>
|
|
33
31
|
* @example
|
|
34
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
35
33
|
* ```javascript
|
|
@@ -66,8 +64,7 @@ declare const CreateMlflowTrackingServerCommand_base: {
|
|
|
66
64
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
67
65
|
*
|
|
68
66
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
69
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
70
|
-
* training jobs created. </p>
|
|
67
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
71
68
|
*
|
|
72
69
|
* @throws {@link SageMakerServiceException}
|
|
73
70
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -150,8 +150,7 @@ declare const CreateModelBiasJobDefinitionCommand_base: {
|
|
|
150
150
|
* <p>Resource being accessed is in use.</p>
|
|
151
151
|
*
|
|
152
152
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
153
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
154
|
-
* training jobs created. </p>
|
|
153
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
155
154
|
*
|
|
156
155
|
* @throws {@link SageMakerServiceException}
|
|
157
156
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,8 +27,7 @@ declare const CreateModelCardCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an Amazon SageMaker Model Card.</p>
|
|
31
|
-
* <p>For information about how to use model cards, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html">Amazon SageMaker Model Card</a>.</p>
|
|
30
|
+
* <p>Creates an Amazon SageMaker Model Card.</p> <p>For information about how to use model cards, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-cards.html">Amazon SageMaker Model Card</a>.</p>
|
|
32
31
|
* @example
|
|
33
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
34
33
|
* ```javascript
|
|
@@ -64,12 +63,10 @@ declare const CreateModelCardCommand_base: {
|
|
|
64
63
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
65
64
|
*
|
|
66
65
|
* @throws {@link ConflictException} (client fault)
|
|
67
|
-
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an
|
|
68
|
-
* <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
66
|
+
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
69
67
|
*
|
|
70
68
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
71
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
72
|
-
* training jobs created. </p>
|
|
69
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
73
70
|
*
|
|
74
71
|
* @throws {@link SageMakerServiceException}
|
|
75
72
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -57,12 +57,10 @@ declare const CreateModelCardExportJobCommand_base: {
|
|
|
57
57
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
58
58
|
*
|
|
59
59
|
* @throws {@link ConflictException} (client fault)
|
|
60
|
-
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an
|
|
61
|
-
* <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
60
|
+
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
62
61
|
*
|
|
63
62
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
64
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
65
|
-
* training jobs created. </p>
|
|
63
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
66
64
|
*
|
|
67
65
|
* @throws {@link ResourceNotFound} (client fault)
|
|
68
66
|
* <p>Resource being access is not found.</p>
|
|
@@ -27,23 +27,7 @@ declare const CreateModelCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a model in SageMaker. In the request, you name the model and describe a primary
|
|
31
|
-
* container. For the primary container, you specify the Docker image that
|
|
32
|
-
* contains inference code, artifacts (from prior training), and a custom environment map
|
|
33
|
-
* that the inference code uses when you deploy the model for predictions.</p>
|
|
34
|
-
* <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch
|
|
35
|
-
* transform job.</p>
|
|
36
|
-
* <p>To host your model, you create an endpoint configuration with the
|
|
37
|
-
* <code>CreateEndpointConfig</code> API, and then create an endpoint with the
|
|
38
|
-
* <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you
|
|
39
|
-
* defined for the model in the hosting environment. </p>
|
|
40
|
-
* <p>To run a batch transform using your model, you start a job with the
|
|
41
|
-
* <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get
|
|
42
|
-
* inferences which are then saved to a specified S3 location.</p>
|
|
43
|
-
* <p>In the request, you also provide an IAM role that SageMaker can assume to access model
|
|
44
|
-
* artifacts and docker image for deployment on ML compute hosting instances or for batch
|
|
45
|
-
* transform jobs. In addition, you also use the IAM role to manage permissions the
|
|
46
|
-
* inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.</p>
|
|
30
|
+
* <p>Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.</p> <p>Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job.</p> <p>To host your model, you create an endpoint configuration with the <code>CreateEndpointConfig</code> API, and then create an endpoint with the <code>CreateEndpoint</code> API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment. </p> <p>To run a batch transform using your model, you start a job with the <code>CreateTransformJob</code> API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.</p> <p>In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other Amazon Web Services resources, you grant necessary permissions via this role.</p>
|
|
47
31
|
* @example
|
|
48
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
49
33
|
* ```javascript
|
|
@@ -186,8 +170,7 @@ declare const CreateModelCommand_base: {
|
|
|
186
170
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
187
171
|
*
|
|
188
172
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
189
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
190
|
-
* training jobs created. </p>
|
|
173
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
191
174
|
*
|
|
192
175
|
* @throws {@link SageMakerServiceException}
|
|
193
176
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -147,8 +147,7 @@ declare const CreateModelExplainabilityJobDefinitionCommand_base: {
|
|
|
147
147
|
* <p>Resource being accessed is in use.</p>
|
|
148
148
|
*
|
|
149
149
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
150
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
151
|
-
* training jobs created. </p>
|
|
150
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
152
151
|
*
|
|
153
152
|
* @throws {@link SageMakerServiceException}
|
|
154
153
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,26 +27,7 @@ declare const CreateModelPackageCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers
|
|
31
|
-
* can subscribe to model packages listed on Amazon Web Services Marketplace to create
|
|
32
|
-
* models in SageMaker.</p>
|
|
33
|
-
* <p>To create a model package by specifying a Docker container that contains your
|
|
34
|
-
* inference code and the Amazon S3 location of your model artifacts, provide values for
|
|
35
|
-
* <code>InferenceSpecification</code>. To create a model from an algorithm resource
|
|
36
|
-
* that you created or subscribed to in Amazon Web Services Marketplace, provide a value for
|
|
37
|
-
* <code>SourceAlgorithmSpecification</code>.</p>
|
|
38
|
-
* <note>
|
|
39
|
-
* <p>There are two types of model packages:</p>
|
|
40
|
-
* <ul>
|
|
41
|
-
* <li>
|
|
42
|
-
* <p>Versioned - a model that is part of a model group in the model
|
|
43
|
-
* registry.</p>
|
|
44
|
-
* </li>
|
|
45
|
-
* <li>
|
|
46
|
-
* <p>Unversioned - a model package that is not part of a model group.</p>
|
|
47
|
-
* </li>
|
|
48
|
-
* </ul>
|
|
49
|
-
* </note>
|
|
30
|
+
* <p>Creates a model package that you can use to create SageMaker models or list on Amazon Web Services Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on Amazon Web Services Marketplace to create models in SageMaker.</p> <p>To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for <code>InferenceSpecification</code>. To create a model from an algorithm resource that you created or subscribed to in Amazon Web Services Marketplace, provide a value for <code>SourceAlgorithmSpecification</code>.</p> <note> <p>There are two types of model packages:</p> <ul> <li> <p>Versioned - a model that is part of a model group in the model registry.</p> </li> <li> <p>Unversioned - a model package that is not part of a model group.</p> </li> </ul> </note>
|
|
50
31
|
* @example
|
|
51
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
52
33
|
* ```javascript
|
|
@@ -351,12 +332,10 @@ declare const CreateModelPackageCommand_base: {
|
|
|
351
332
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
352
333
|
*
|
|
353
334
|
* @throws {@link ConflictException} (client fault)
|
|
354
|
-
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an
|
|
355
|
-
* <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
335
|
+
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
356
336
|
*
|
|
357
337
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
358
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
359
|
-
* training jobs created. </p>
|
|
338
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
360
339
|
*
|
|
361
340
|
* @throws {@link SageMakerServiceException}
|
|
362
341
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -59,8 +59,7 @@ declare const CreateModelPackageGroupCommand_base: {
|
|
|
59
59
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
60
60
|
*
|
|
61
61
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
62
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
63
|
-
* training jobs created. </p>
|
|
62
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
64
63
|
*
|
|
65
64
|
* @throws {@link SageMakerServiceException}
|
|
66
65
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|