@aws-sdk/client-sagemaker 3.806.0 → 3.808.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (229) hide show
  1. package/README.md +1 -16
  2. package/dist-cjs/index.js +26 -26
  3. package/dist-es/waiters/waitForEndpointDeleted.js +2 -2
  4. package/dist-es/waiters/waitForEndpointInService.js +2 -2
  5. package/dist-es/waiters/waitForImageCreated.js +2 -2
  6. package/dist-es/waiters/waitForImageDeleted.js +2 -2
  7. package/dist-es/waiters/waitForImageUpdated.js +2 -2
  8. package/dist-es/waiters/waitForImageVersionCreated.js +2 -2
  9. package/dist-es/waiters/waitForImageVersionDeleted.js +2 -2
  10. package/dist-es/waiters/waitForNotebookInstanceDeleted.js +2 -2
  11. package/dist-es/waiters/waitForNotebookInstanceInService.js +2 -2
  12. package/dist-es/waiters/waitForNotebookInstanceStopped.js +2 -2
  13. package/dist-es/waiters/waitForProcessingJobCompletedOrStopped.js +2 -2
  14. package/dist-es/waiters/waitForTrainingJobCompletedOrStopped.js +2 -2
  15. package/dist-es/waiters/waitForTransformJobCompletedOrStopped.js +2 -2
  16. package/dist-types/SageMaker.d.ts +1 -16
  17. package/dist-types/SageMakerClient.d.ts +1 -16
  18. package/dist-types/commands/AddAssociationCommand.d.ts +2 -7
  19. package/dist-types/commands/AddTagsCommand.d.ts +1 -26
  20. package/dist-types/commands/AssociateTrialComponentCommand.d.ts +2 -4
  21. package/dist-types/commands/BatchDeleteClusterNodesCommand.d.ts +1 -17
  22. package/dist-types/commands/CreateActionCommand.d.ts +2 -7
  23. package/dist-types/commands/CreateAppCommand.d.ts +2 -6
  24. package/dist-types/commands/CreateAppImageConfigCommand.d.ts +1 -3
  25. package/dist-types/commands/CreateArtifactCommand.d.ts +2 -7
  26. package/dist-types/commands/CreateAutoMLJobCommand.d.ts +2 -26
  27. package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +2 -33
  28. package/dist-types/commands/CreateClusterCommand.d.ts +2 -6
  29. package/dist-types/commands/CreateClusterSchedulerConfigCommand.d.ts +3 -7
  30. package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +1 -7
  31. package/dist-types/commands/CreateCompilationJobCommand.d.ts +2 -33
  32. package/dist-types/commands/CreateComputeQuotaCommand.d.ts +3 -7
  33. package/dist-types/commands/CreateContextCommand.d.ts +2 -7
  34. package/dist-types/commands/CreateDataQualityJobDefinitionCommand.d.ts +2 -5
  35. package/dist-types/commands/CreateDeviceFleetCommand.d.ts +1 -2
  36. package/dist-types/commands/CreateDomainCommand.d.ts +2 -46
  37. package/dist-types/commands/CreateEdgeDeploymentPlanCommand.d.ts +2 -4
  38. package/dist-types/commands/CreateEdgeDeploymentStageCommand.d.ts +1 -2
  39. package/dist-types/commands/CreateEdgePackagingJobCommand.d.ts +1 -2
  40. package/dist-types/commands/CreateEndpointCommand.d.ts +2 -77
  41. package/dist-types/commands/CreateEndpointConfigCommand.d.ts +2 -33
  42. package/dist-types/commands/CreateExperimentCommand.d.ts +2 -22
  43. package/dist-types/commands/CreateFeatureGroupCommand.d.ts +2 -20
  44. package/dist-types/commands/CreateFlowDefinitionCommand.d.ts +1 -2
  45. package/dist-types/commands/CreateHubCommand.d.ts +1 -2
  46. package/dist-types/commands/CreateHubContentReferenceCommand.d.ts +1 -2
  47. package/dist-types/commands/CreateHumanTaskUiCommand.d.ts +1 -2
  48. package/dist-types/commands/CreateHyperParameterTuningJobCommand.d.ts +2 -18
  49. package/dist-types/commands/CreateImageCommand.d.ts +2 -5
  50. package/dist-types/commands/CreateImageVersionCommand.d.ts +2 -4
  51. package/dist-types/commands/CreateInferenceComponentCommand.d.ts +2 -10
  52. package/dist-types/commands/CreateInferenceExperimentCommand.d.ts +2 -17
  53. package/dist-types/commands/CreateInferenceRecommendationsJobCommand.d.ts +2 -4
  54. package/dist-types/commands/CreateLabelingJobCommand.d.ts +2 -40
  55. package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +2 -5
  56. package/dist-types/commands/CreateModelBiasJobDefinitionCommand.d.ts +1 -2
  57. package/dist-types/commands/CreateModelCardCommand.d.ts +3 -6
  58. package/dist-types/commands/CreateModelCardExportJobCommand.d.ts +2 -4
  59. package/dist-types/commands/CreateModelCommand.d.ts +2 -19
  60. package/dist-types/commands/CreateModelExplainabilityJobDefinitionCommand.d.ts +1 -2
  61. package/dist-types/commands/CreateModelPackageCommand.d.ts +3 -24
  62. package/dist-types/commands/CreateModelPackageGroupCommand.d.ts +1 -2
  63. package/dist-types/commands/CreateModelQualityJobDefinitionCommand.d.ts +2 -5
  64. package/dist-types/commands/CreateMonitoringScheduleCommand.d.ts +2 -4
  65. package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +2 -38
  66. package/dist-types/commands/CreateNotebookInstanceLifecycleConfigCommand.d.ts +2 -16
  67. package/dist-types/commands/CreateOptimizationJobCommand.d.ts +2 -8
  68. package/dist-types/commands/CreatePartnerAppCommand.d.ts +2 -4
  69. package/dist-types/commands/CreatePipelineCommand.d.ts +2 -4
  70. package/dist-types/commands/CreatePresignedDomainUrlCommand.d.ts +1 -26
  71. package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +1 -2
  72. package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +1 -18
  73. package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -2
  74. package/dist-types/commands/CreateProjectCommand.d.ts +2 -4
  75. package/dist-types/commands/CreateSpaceCommand.d.ts +1 -2
  76. package/dist-types/commands/CreateTrainingJobCommand.d.ts +2 -88
  77. package/dist-types/commands/CreateTrainingPlanCommand.d.ts +2 -63
  78. package/dist-types/commands/CreateTransformJobCommand.d.ts +2 -37
  79. package/dist-types/commands/CreateTrialCommand.d.ts +2 -13
  80. package/dist-types/commands/CreateTrialComponentCommand.d.ts +2 -12
  81. package/dist-types/commands/CreateUserProfileCommand.d.ts +2 -9
  82. package/dist-types/commands/CreateWorkforceCommand.d.ts +1 -18
  83. package/dist-types/commands/CreateWorkteamCommand.d.ts +2 -6
  84. package/dist-types/commands/DeleteAlgorithmCommand.d.ts +1 -2
  85. package/dist-types/commands/DeleteArtifactCommand.d.ts +1 -2
  86. package/dist-types/commands/DeleteClusterCommand.d.ts +1 -2
  87. package/dist-types/commands/DeleteCompilationJobCommand.d.ts +1 -8
  88. package/dist-types/commands/DeleteDomainCommand.d.ts +1 -4
  89. package/dist-types/commands/DeleteEdgeDeploymentPlanCommand.d.ts +1 -2
  90. package/dist-types/commands/DeleteEdgeDeploymentStageCommand.d.ts +1 -2
  91. package/dist-types/commands/DeleteEndpointCommand.d.ts +1 -11
  92. package/dist-types/commands/DeleteEndpointConfigCommand.d.ts +1 -9
  93. package/dist-types/commands/DeleteExperimentCommand.d.ts +1 -3
  94. package/dist-types/commands/DeleteFeatureGroupCommand.d.ts +1 -8
  95. package/dist-types/commands/DeleteHumanTaskUiCommand.d.ts +1 -5
  96. package/dist-types/commands/DeleteHyperParameterTuningJobCommand.d.ts +1 -4
  97. package/dist-types/commands/DeleteImageCommand.d.ts +1 -2
  98. package/dist-types/commands/DeleteImageVersionCommand.d.ts +1 -2
  99. package/dist-types/commands/DeleteInferenceExperimentCommand.d.ts +2 -9
  100. package/dist-types/commands/DeleteModelCardCommand.d.ts +1 -2
  101. package/dist-types/commands/DeleteModelCommand.d.ts +1 -4
  102. package/dist-types/commands/DeleteModelPackageCommand.d.ts +2 -6
  103. package/dist-types/commands/DeleteModelPackageGroupCommand.d.ts +1 -2
  104. package/dist-types/commands/DeleteMonitoringScheduleCommand.d.ts +1 -2
  105. package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +1 -6
  106. package/dist-types/commands/DeletePartnerAppCommand.d.ts +1 -2
  107. package/dist-types/commands/DeletePipelineCommand.d.ts +2 -6
  108. package/dist-types/commands/DeleteProjectCommand.d.ts +1 -2
  109. package/dist-types/commands/DeleteStudioLifecycleConfigCommand.d.ts +1 -4
  110. package/dist-types/commands/DeleteTagsCommand.d.ts +1 -12
  111. package/dist-types/commands/DeleteTrialCommand.d.ts +1 -3
  112. package/dist-types/commands/DeleteTrialComponentCommand.d.ts +1 -3
  113. package/dist-types/commands/DeleteUserProfileCommand.d.ts +1 -2
  114. package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -12
  115. package/dist-types/commands/DeleteWorkteamCommand.d.ts +1 -2
  116. package/dist-types/commands/DescribeAutoMLJobCommand.d.ts +1 -5
  117. package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +1 -2
  118. package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -2
  119. package/dist-types/commands/DescribeClusterSchedulerConfigCommand.d.ts +1 -3
  120. package/dist-types/commands/DescribeCompilationJobCommand.d.ts +1 -3
  121. package/dist-types/commands/DescribeEndpointConfigCommand.d.ts +1 -2
  122. package/dist-types/commands/DescribeFeatureGroupCommand.d.ts +1 -3
  123. package/dist-types/commands/DescribeHyperParameterTuningJobCommand.d.ts +1 -3
  124. package/dist-types/commands/DescribeInferenceRecommendationsJobCommand.d.ts +1 -2
  125. package/dist-types/commands/DescribeLineageGroupCommand.d.ts +1 -3
  126. package/dist-types/commands/DescribeModelCommand.d.ts +1 -2
  127. package/dist-types/commands/DescribeModelPackageCommand.d.ts +1 -8
  128. package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -3
  129. package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +1 -2
  130. package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -7
  131. package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -2
  132. package/dist-types/commands/DescribeWorkforceCommand.d.ts +1 -6
  133. package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -3
  134. package/dist-types/commands/DisableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
  135. package/dist-types/commands/DisassociateTrialComponentCommand.d.ts +1 -6
  136. package/dist-types/commands/EnableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
  137. package/dist-types/commands/GetModelPackageGroupPolicyCommand.d.ts +1 -4
  138. package/dist-types/commands/GetSagemakerServicecatalogPortfolioStatusCommand.d.ts +1 -2
  139. package/dist-types/commands/GetScalingConfigurationRecommendationCommand.d.ts +1 -2
  140. package/dist-types/commands/GetSearchSuggestionsCommand.d.ts +1 -4
  141. package/dist-types/commands/ImportHubContentCommand.d.ts +1 -2
  142. package/dist-types/commands/ListAppImageConfigsCommand.d.ts +1 -3
  143. package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -2
  144. package/dist-types/commands/ListCompilationJobsCommand.d.ts +1 -3
  145. package/dist-types/commands/ListExperimentsCommand.d.ts +1 -3
  146. package/dist-types/commands/ListHyperParameterTuningJobsCommand.d.ts +1 -3
  147. package/dist-types/commands/ListImageVersionsCommand.d.ts +1 -2
  148. package/dist-types/commands/ListImagesCommand.d.ts +1 -2
  149. package/dist-types/commands/ListInferenceRecommendationsJobStepsCommand.d.ts +1 -2
  150. package/dist-types/commands/ListLineageGroupsCommand.d.ts +1 -3
  151. package/dist-types/commands/ListModelMetadataCommand.d.ts +1 -2
  152. package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -2
  153. package/dist-types/commands/ListResourceCatalogsCommand.d.ts +1 -2
  154. package/dist-types/commands/ListStageDevicesCommand.d.ts +1 -2
  155. package/dist-types/commands/ListStudioLifecycleConfigsCommand.d.ts +1 -2
  156. package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +1 -3
  157. package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -22
  158. package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -2
  159. package/dist-types/commands/ListTrialComponentsCommand.d.ts +1 -20
  160. package/dist-types/commands/ListTrialsCommand.d.ts +1 -5
  161. package/dist-types/commands/ListWorkforcesCommand.d.ts +1 -2
  162. package/dist-types/commands/ListWorkteamsCommand.d.ts +1 -3
  163. package/dist-types/commands/PutModelPackageGroupPolicyCommand.d.ts +2 -6
  164. package/dist-types/commands/QueryLineageCommand.d.ts +1 -3
  165. package/dist-types/commands/RegisterDevicesCommand.d.ts +1 -2
  166. package/dist-types/commands/RetryPipelineExecutionCommand.d.ts +2 -4
  167. package/dist-types/commands/SearchCommand.d.ts +1 -10
  168. package/dist-types/commands/SearchTrainingPlanOfferingsCommand.d.ts +2 -17
  169. package/dist-types/commands/SendPipelineExecutionStepFailureCommand.d.ts +3 -7
  170. package/dist-types/commands/SendPipelineExecutionStepSuccessCommand.d.ts +3 -7
  171. package/dist-types/commands/StartInferenceExperimentCommand.d.ts +1 -2
  172. package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +1 -2
  173. package/dist-types/commands/StartMonitoringScheduleCommand.d.ts +1 -5
  174. package/dist-types/commands/StartNotebookInstanceCommand.d.ts +2 -6
  175. package/dist-types/commands/StartPipelineExecutionCommand.d.ts +2 -4
  176. package/dist-types/commands/StopCompilationJobCommand.d.ts +1 -7
  177. package/dist-types/commands/StopHyperParameterTuningJobCommand.d.ts +1 -7
  178. package/dist-types/commands/StopInferenceExperimentCommand.d.ts +1 -2
  179. package/dist-types/commands/StopLabelingJobCommand.d.ts +1 -2
  180. package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +1 -2
  181. package/dist-types/commands/StopNotebookInstanceCommand.d.ts +1 -8
  182. package/dist-types/commands/StopPipelineExecutionCommand.d.ts +2 -25
  183. package/dist-types/commands/StopTrainingJobCommand.d.ts +1 -7
  184. package/dist-types/commands/StopTransformJobCommand.d.ts +1 -6
  185. package/dist-types/commands/UpdateActionCommand.d.ts +1 -2
  186. package/dist-types/commands/UpdateArtifactCommand.d.ts +1 -2
  187. package/dist-types/commands/UpdateClusterCommand.d.ts +2 -4
  188. package/dist-types/commands/UpdateClusterSchedulerConfigCommand.d.ts +2 -4
  189. package/dist-types/commands/UpdateClusterSoftwareCommand.d.ts +2 -9
  190. package/dist-types/commands/UpdateCodeRepositoryCommand.d.ts +1 -2
  191. package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +2 -4
  192. package/dist-types/commands/UpdateContextCommand.d.ts +1 -2
  193. package/dist-types/commands/UpdateDomainCommand.d.ts +1 -2
  194. package/dist-types/commands/UpdateEndpointCommand.d.ts +2 -22
  195. package/dist-types/commands/UpdateEndpointWeightsAndCapacitiesCommand.d.ts +2 -7
  196. package/dist-types/commands/UpdateExperimentCommand.d.ts +2 -4
  197. package/dist-types/commands/UpdateFeatureGroupCommand.d.ts +2 -17
  198. package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -36
  199. package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -14
  200. package/dist-types/commands/UpdateImageCommand.d.ts +1 -2
  201. package/dist-types/commands/UpdateInferenceComponentCommand.d.ts +1 -2
  202. package/dist-types/commands/UpdateInferenceComponentRuntimeConfigCommand.d.ts +1 -2
  203. package/dist-types/commands/UpdateInferenceExperimentCommand.d.ts +2 -7
  204. package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +2 -4
  205. package/dist-types/commands/UpdateModelCardCommand.d.ts +3 -8
  206. package/dist-types/commands/UpdateModelPackageCommand.d.ts +1 -2
  207. package/dist-types/commands/UpdateMonitoringAlertCommand.d.ts +1 -2
  208. package/dist-types/commands/UpdateMonitoringScheduleCommand.d.ts +1 -2
  209. package/dist-types/commands/UpdateNotebookInstanceCommand.d.ts +2 -5
  210. package/dist-types/commands/UpdateNotebookInstanceLifecycleConfigCommand.d.ts +1 -2
  211. package/dist-types/commands/UpdatePartnerAppCommand.d.ts +2 -3
  212. package/dist-types/commands/UpdatePipelineCommand.d.ts +1 -2
  213. package/dist-types/commands/UpdatePipelineExecutionCommand.d.ts +1 -2
  214. package/dist-types/commands/UpdateProjectCommand.d.ts +2 -10
  215. package/dist-types/commands/UpdateSpaceCommand.d.ts +2 -6
  216. package/dist-types/commands/UpdateTrainingJobCommand.d.ts +2 -4
  217. package/dist-types/commands/UpdateTrialCommand.d.ts +1 -2
  218. package/dist-types/commands/UpdateTrialComponentCommand.d.ts +1 -2
  219. package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -2
  220. package/dist-types/commands/UpdateWorkforceCommand.d.ts +2 -28
  221. package/dist-types/commands/UpdateWorkteamCommand.d.ts +1 -2
  222. package/dist-types/index.d.ts +1 -16
  223. package/dist-types/models/models_0.d.ts +370 -4018
  224. package/dist-types/models/models_1.d.ts +532 -5722
  225. package/dist-types/models/models_2.d.ts +328 -1436
  226. package/dist-types/models/models_3.d.ts +364 -2021
  227. package/dist-types/models/models_4.d.ts +462 -1693
  228. package/dist-types/models/models_5.d.ts +90 -441
  229. package/package.json +15 -15
@@ -27,9 +27,7 @@ declare const CreateAppImageConfigCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a configuration for running a SageMaker AI image as a KernelGateway app. The
31
- * configuration specifies the Amazon Elastic File System storage volume on the image, and a list of the
32
- * kernels in the image.</p>
30
+ * <p>Creates a configuration for running a SageMaker AI image as a KernelGateway app. The configuration specifies the Amazon Elastic File System storage volume on the image, and a list of the kernels in the image.</p>
33
31
  * @example
34
32
  * Use a bare-bones client and the command you need to make an API call.
35
33
  * ```javascript
@@ -27,11 +27,7 @@ declare const CreateArtifactCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates an <i>artifact</i>. An artifact is a lineage tracking entity that
31
- * represents a URI addressable object or data. Some examples are the S3 URI of a dataset and
32
- * the ECR registry path of an image. For more information, see
33
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html">Amazon SageMaker
34
- * ML Lineage Tracking</a>.</p>
30
+ * <p>Creates an <i>artifact</i>. An artifact is a lineage tracking entity that represents a URI addressable object or data. Some examples are the S3 URI of a dataset and the ECR registry path of an image. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html">Amazon SageMaker ML Lineage Tracking</a>.</p>
35
31
  * @example
36
32
  * Use a bare-bones client and the command you need to make an API call.
37
33
  * ```javascript
@@ -81,8 +77,7 @@ declare const CreateArtifactCommand_base: {
81
77
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
82
78
  *
83
79
  * @throws {@link ResourceLimitExceeded} (client fault)
84
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
85
- * training jobs created. </p>
80
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
86
81
  *
87
82
  * @throws {@link SageMakerServiceException}
88
83
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,30 +27,7 @@ declare const CreateAutoMLJobCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.</p>
31
- * <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine
32
- * learning models with minimal effort and machine learning expertise. When initiating an
33
- * AutoML job, you provide your data and optionally specify parameters tailored to your use
34
- * case. SageMaker AI then automates the entire model development lifecycle, including data
35
- * preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify
36
- * and accelerate the model building process by automating various tasks and exploring
37
- * different combinations of machine learning algorithms, data preprocessing techniques, and
38
- * hyperparameter values. The output of an AutoML job comprises one or more trained models
39
- * ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate
40
- * model leaderboard, allowing you to select the best-performing model for deployment.</p>
41
- * <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a>
42
- * in the SageMaker AI developer guide.</p>
43
- * <note>
44
- * <p>We recommend using the new versions <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>, which offer backward compatibility.</p>
45
- * <p>
46
- * <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of
47
- * its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting,
48
- * non-tabular problem types such as image or text classification, and text generation
49
- * (LLMs fine-tuning).</p>
50
- * <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to
51
- * <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p>
52
- * </note>
53
- * <p>You can find the best-performing model after you run an AutoML job by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> (recommended) or <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a>.</p>
30
+ * <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.</p> <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.</p> <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a> in the SageMaker AI developer guide.</p> <note> <p>We recommend using the new versions <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>, which offer backward compatibility.</p> <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p> <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p> </note> <p>You can find the best-performing model after you run an AutoML job by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> (recommended) or <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a>.</p>
54
31
  * @example
55
32
  * Use a bare-bones client and the command you need to make an API call.
56
33
  * ```javascript
@@ -146,8 +123,7 @@ declare const CreateAutoMLJobCommand_base: {
146
123
  * <p>Resource being accessed is in use.</p>
147
124
  *
148
125
  * @throws {@link ResourceLimitExceeded} (client fault)
149
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
150
- * training jobs created. </p>
126
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
151
127
  *
152
128
  * @throws {@link SageMakerServiceException}
153
129
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,37 +27,7 @@ declare const CreateAutoMLJobV2Command_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p>
31
- * <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine
32
- * learning models with minimal effort and machine learning expertise. When initiating an
33
- * AutoML job, you provide your data and optionally specify parameters tailored to your use
34
- * case. SageMaker AI then automates the entire model development lifecycle, including data
35
- * preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify
36
- * and accelerate the model building process by automating various tasks and exploring
37
- * different combinations of machine learning algorithms, data preprocessing techniques, and
38
- * hyperparameter values. The output of an AutoML job comprises one or more trained models
39
- * ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate
40
- * model leaderboard, allowing you to select the best-performing model for deployment.</p>
41
- * <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a>
42
- * in the SageMaker AI developer guide.</p>
43
- * <p>AutoML jobs V2 support various problem types such as regression, binary, and multiclass
44
- * classification with tabular data, text and image classification, time-series forecasting,
45
- * and fine-tuning of large language models (LLMs) for text generation.</p>
46
- * <note>
47
- * <p>
48
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> are new versions of <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html">CreateAutoMLJob</a>
49
- * and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a> which offer backward compatibility.</p>
50
- * <p>
51
- * <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of
52
- * its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting,
53
- * non-tabular problem types such as image or text classification, and text generation
54
- * (LLMs fine-tuning).</p>
55
- * <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to
56
- * <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p>
57
- * </note>
58
- * <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see
59
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html">AutoMLProblemTypeConfig</a>.</p>
60
- * <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>.</p>
30
+ * <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p> <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.</p> <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a> in the SageMaker AI developer guide.</p> <p>AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation.</p> <note> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> are new versions of <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html">CreateAutoMLJob</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a> which offer backward compatibility.</p> <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p> <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p> </note> <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html">AutoMLProblemTypeConfig</a>.</p> <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>.</p>
61
31
  * @example
62
32
  * Use a bare-bones client and the command you need to make an API call.
63
33
  * ```javascript
@@ -235,8 +205,7 @@ declare const CreateAutoMLJobV2Command_base: {
235
205
  * <p>Resource being accessed is in use.</p>
236
206
  *
237
207
  * @throws {@link ResourceLimitExceeded} (client fault)
238
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
239
- * training jobs created. </p>
208
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
240
209
  *
241
210
  * @throws {@link SageMakerServiceException}
242
211
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,10 +27,7 @@ declare const CreateClusterCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing
31
- * persistent clusters for developing large machine learning models, such as large language
32
- * models (LLMs) and diffusion models. To learn more, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-hyperpod.html">Amazon SageMaker HyperPod</a> in the
33
- * <i>Amazon SageMaker Developer Guide</i>.</p>
30
+ * <p>Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-hyperpod.html">Amazon SageMaker HyperPod</a> in the <i>Amazon SageMaker Developer Guide</i>.</p>
34
31
  * @example
35
32
  * Use a bare-bones client and the command you need to make an API call.
36
33
  * ```javascript
@@ -131,8 +128,7 @@ declare const CreateClusterCommand_base: {
131
128
  * <p>Resource being accessed is in use.</p>
132
129
  *
133
130
  * @throws {@link ResourceLimitExceeded} (client fault)
134
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
135
- * training jobs created. </p>
131
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
136
132
  *
137
133
  * @throws {@link SageMakerServiceException}
138
134
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,9 +27,7 @@ declare const CreateClusterSchedulerConfigCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Create cluster policy configuration. This policy is used for task prioritization and
31
- * fair-share allocation of idle compute. This helps prioritize critical workloads and distributes
32
- * idle compute across entities.</p>
30
+ * <p>Create cluster policy configuration. This policy is used for task prioritization and fair-share allocation of idle compute. This helps prioritize critical workloads and distributes idle compute across entities.</p>
33
31
  * @example
34
32
  * Use a bare-bones client and the command you need to make an API call.
35
33
  * ```javascript
@@ -72,12 +70,10 @@ declare const CreateClusterSchedulerConfigCommand_base: {
72
70
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
73
71
  *
74
72
  * @throws {@link ConflictException} (client fault)
75
- * <p>There was a conflict when you attempted to modify a SageMaker entity such as an
76
- * <code>Experiment</code> or <code>Artifact</code>.</p>
73
+ * <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
77
74
  *
78
75
  * @throws {@link ResourceLimitExceeded} (client fault)
79
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
80
- * training jobs created. </p>
76
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
81
77
  *
82
78
  * @throws {@link SageMakerServiceException}
83
79
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,13 +27,7 @@ declare const CreateCodeRepositoryCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a Git repository as a resource in your SageMaker AI account. You can
31
- * associate the repository with notebook instances so that you can use Git source control
32
- * for the notebooks you create. The Git repository is a resource in your SageMaker AI
33
- * account, so it can be associated with more than one notebook instance, and it persists
34
- * independently from the lifecycle of any notebook instances it is associated with.</p>
35
- * <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a>
36
- * or in any other Git repository.</p>
30
+ * <p>Creates a Git repository as a resource in your SageMaker AI account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your SageMaker AI account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.</p> <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a> or in any other Git repository.</p>
37
31
  * @example
38
32
  * Use a bare-bones client and the command you need to make an API call.
39
33
  * ```javascript
@@ -27,37 +27,7 @@ declare const CreateCompilationJobCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker AI saves the
31
- * resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p>
32
- * <p>If
33
- * you choose to host your model using Amazon SageMaker AI hosting services, you can use the resulting
34
- * model artifacts as part of the model. You can also use the artifacts with
35
- * Amazon Web Services IoT Greengrass. In that case, deploy them as an ML
36
- * resource.</p>
37
- * <p>In the request body, you provide the following:</p>
38
- * <ul>
39
- * <li>
40
- * <p>A name for the compilation job</p>
41
- * </li>
42
- * <li>
43
- * <p> Information about the input model artifacts </p>
44
- * </li>
45
- * <li>
46
- * <p>The output location for the compiled model and the device (target) that the
47
- * model runs on </p>
48
- * </li>
49
- * <li>
50
- * <p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker AI assumes to perform
51
- * the model compilation job. </p>
52
- * </li>
53
- * </ul>
54
- * <p>You can also provide a <code>Tag</code> to track the model compilation job's resource
55
- * use and costs. The response body contains the
56
- * <code>CompilationJobArn</code>
57
- * for the compiled job.</p>
58
- * <p>To stop a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopCompilationJob.html">StopCompilationJob</a>. To get information about a particular model compilation
59
- * job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html">DescribeCompilationJob</a>. To get information about multiple model compilation
60
- * jobs, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCompilationJobs.html">ListCompilationJobs</a>.</p>
30
+ * <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker AI saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p> <p>If you choose to host your model using Amazon SageMaker AI hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with Amazon Web Services IoT Greengrass. In that case, deploy them as an ML resource.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p>A name for the compilation job</p> </li> <li> <p> Information about the input model artifacts </p> </li> <li> <p>The output location for the compiled model and the device (target) that the model runs on </p> </li> <li> <p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker AI assumes to perform the model compilation job. </p> </li> </ul> <p>You can also provide a <code>Tag</code> to track the model compilation job's resource use and costs. The response body contains the <code>CompilationJobArn</code> for the compiled job.</p> <p>To stop a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopCompilationJob.html">StopCompilationJob</a>. To get information about a particular model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html">DescribeCompilationJob</a>. To get information about multiple model compilation jobs, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCompilationJobs.html">ListCompilationJobs</a>.</p>
61
31
  * @example
62
32
  * Use a bare-bones client and the command you need to make an API call.
63
33
  * ```javascript
@@ -123,8 +93,7 @@ declare const CreateCompilationJobCommand_base: {
123
93
  * <p>Resource being accessed is in use.</p>
124
94
  *
125
95
  * @throws {@link ResourceLimitExceeded} (client fault)
126
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
127
- * training jobs created. </p>
96
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
128
97
  *
129
98
  * @throws {@link SageMakerServiceException}
130
99
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,9 +27,7 @@ declare const CreateComputeQuotaCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Create compute allocation definition. This defines how compute is allocated, shared, and
31
- * borrowed for specified entities. Specifically, how to lend and borrow idle compute and
32
- * assign a fair-share weight to the specified entities.</p>
30
+ * <p>Create compute allocation definition. This defines how compute is allocated, shared, and borrowed for specified entities. Specifically, how to lend and borrow idle compute and assign a fair-share weight to the specified entities.</p>
33
31
  * @example
34
32
  * Use a bare-bones client and the command you need to make an API call.
35
33
  * ```javascript
@@ -81,12 +79,10 @@ declare const CreateComputeQuotaCommand_base: {
81
79
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
82
80
  *
83
81
  * @throws {@link ConflictException} (client fault)
84
- * <p>There was a conflict when you attempted to modify a SageMaker entity such as an
85
- * <code>Experiment</code> or <code>Artifact</code>.</p>
82
+ * <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
86
83
  *
87
84
  * @throws {@link ResourceLimitExceeded} (client fault)
88
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
89
- * training jobs created. </p>
85
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
90
86
  *
91
87
  * @throws {@link SageMakerServiceException}
92
88
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,11 +27,7 @@ declare const CreateContextCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a <i>context</i>. A context is a lineage tracking entity that
31
- * represents a logical grouping of other tracking or experiment entities. Some examples are
32
- * an endpoint and a model package. For more information, see
33
- * <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html">Amazon SageMaker
34
- * ML Lineage Tracking</a>.</p>
30
+ * <p>Creates a <i>context</i>. A context is a lineage tracking entity that represents a logical grouping of other tracking or experiment entities. Some examples are an endpoint and a model package. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html">Amazon SageMaker ML Lineage Tracking</a>.</p>
35
31
  * @example
36
32
  * Use a bare-bones client and the command you need to make an API call.
37
33
  * ```javascript
@@ -72,8 +68,7 @@ declare const CreateContextCommand_base: {
72
68
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
73
69
  *
74
70
  * @throws {@link ResourceLimitExceeded} (client fault)
75
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
76
- * training jobs created. </p>
71
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
77
72
  *
78
73
  * @throws {@link SageMakerServiceException}
79
74
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,9 +27,7 @@ declare const CreateDataQualityJobDefinitionCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a definition for a job that monitors data quality and drift. For information
31
- * about model monitor, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html">Amazon SageMaker AI Model
32
- * Monitor</a>.</p>
30
+ * <p>Creates a definition for a job that monitors data quality and drift. For information about model monitor, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html">Amazon SageMaker AI Model Monitor</a>.</p>
33
31
  * @example
34
32
  * Use a bare-bones client and the command you need to make an API call.
35
33
  * ```javascript
@@ -159,8 +157,7 @@ declare const CreateDataQualityJobDefinitionCommand_base: {
159
157
  * <p>Resource being accessed is in use.</p>
160
158
  *
161
159
  * @throws {@link ResourceLimitExceeded} (client fault)
162
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
163
- * training jobs created. </p>
160
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
164
161
  *
165
162
  * @throws {@link SageMakerServiceException}
166
163
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -68,8 +68,7 @@ declare const CreateDeviceFleetCommand_base: {
68
68
  * <p>Resource being accessed is in use.</p>
69
69
  *
70
70
  * @throws {@link ResourceLimitExceeded} (client fault)
71
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
72
- * training jobs created. </p>
71
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
73
72
  *
74
73
  * @throws {@link SageMakerServiceException}
75
74
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,50 +27,7 @@ declare const CreateDomainCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates a <code>Domain</code>. A domain consists of an associated Amazon Elastic File System
31
- * volume, a list of authorized users, and a variety of security, application, policy, and
32
- * Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files
33
- * and other artifacts with each other.</p>
34
- * <p>
35
- * <b>EFS storage</b>
36
- * </p>
37
- * <p>When a domain is created, an EFS volume is created for use by all of the users within the
38
- * domain. Each user receives a private home directory within the EFS volume for notebooks, Git
39
- * repositories, and data files.</p>
40
- * <p>SageMaker AI uses the Amazon Web Services Key Management Service (Amazon Web Services
41
- * KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key
42
- * by default. For more control, you can specify a customer managed key. For more information,
43
- * see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/encryption-at-rest.html">Protect Data
44
- * at Rest Using Encryption</a>.</p>
45
- * <p>
46
- * <b>VPC configuration</b>
47
- * </p>
48
- * <p>All traffic between the domain and the Amazon EFS volume is through the specified
49
- * VPC and subnets. For other traffic, you can specify the <code>AppNetworkAccessType</code>
50
- * parameter. <code>AppNetworkAccessType</code> corresponds to the network access type that you
51
- * choose when you onboard to the domain. The following options are available:</p>
52
- * <ul>
53
- * <li>
54
- * <p>
55
- * <code>PublicInternetOnly</code> - Non-EFS traffic goes through a VPC managed by
56
- * Amazon SageMaker AI, which allows internet access. This is the default value.</p>
57
- * </li>
58
- * <li>
59
- * <p>
60
- * <code>VpcOnly</code> - All traffic is through the specified VPC and subnets. Internet
61
- * access is disabled by default. To allow internet access, you must specify a NAT
62
- * gateway.</p>
63
- * <p>When internet access is disabled, you won't be able to run a Amazon SageMaker AI
64
- * Studio notebook or to train or host models unless your VPC has an interface endpoint to
65
- * the SageMaker AI API and runtime or a NAT gateway and your security groups allow
66
- * outbound connections.</p>
67
- * </li>
68
- * </ul>
69
- * <important>
70
- * <p>NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules
71
- * in order to launch a Amazon SageMaker AI Studio app successfully.</p>
72
- * </important>
73
- * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html">Connect Amazon SageMaker AI Studio Notebooks to Resources in a VPC</a>.</p>
30
+ * <p>Creates a <code>Domain</code>. A domain consists of an associated Amazon Elastic File System volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other.</p> <p> <b>EFS storage</b> </p> <p>When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.</p> <p>SageMaker AI uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/encryption-at-rest.html">Protect Data at Rest Using Encryption</a>.</p> <p> <b>VPC configuration</b> </p> <p>All traffic between the domain and the Amazon EFS volume is through the specified VPC and subnets. For other traffic, you can specify the <code>AppNetworkAccessType</code> parameter. <code>AppNetworkAccessType</code> corresponds to the network access type that you choose when you onboard to the domain. The following options are available:</p> <ul> <li> <p> <code>PublicInternetOnly</code> - Non-EFS traffic goes through a VPC managed by Amazon SageMaker AI, which allows internet access. This is the default value.</p> </li> <li> <p> <code>VpcOnly</code> - All traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway.</p> <p>When internet access is disabled, you won't be able to run a Amazon SageMaker AI Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker AI API and runtime or a NAT gateway and your security groups allow outbound connections.</p> </li> </ul> <important> <p>NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a Amazon SageMaker AI Studio app successfully.</p> </important> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html">Connect Amazon SageMaker AI Studio Notebooks to Resources in a VPC</a>.</p>
74
31
  * @example
75
32
  * Use a bare-bones client and the command you need to make an API call.
76
33
  * ```javascript
@@ -441,8 +398,7 @@ declare const CreateDomainCommand_base: {
441
398
  * <p>Resource being accessed is in use.</p>
442
399
  *
443
400
  * @throws {@link ResourceLimitExceeded} (client fault)
444
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
445
- * training jobs created. </p>
401
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
446
402
  *
447
403
  * @throws {@link SageMakerServiceException}
448
404
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,8 +27,7 @@ declare const CreateEdgeDeploymentPlanCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates an edge deployment plan, consisting of multiple stages. Each stage may have a
31
- * different deployment configuration and devices.</p>
30
+ * <p>Creates an edge deployment plan, consisting of multiple stages. Each stage may have a different deployment configuration and devices.</p>
32
31
  * @example
33
32
  * Use a bare-bones client and the command you need to make an API call.
34
33
  * ```javascript
@@ -82,8 +81,7 @@ declare const CreateEdgeDeploymentPlanCommand_base: {
82
81
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
83
82
  *
84
83
  * @throws {@link ResourceLimitExceeded} (client fault)
85
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
86
- * training jobs created. </p>
84
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
87
85
  *
88
86
  * @throws {@link SageMakerServiceException}
89
87
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -66,8 +66,7 @@ declare const CreateEdgeDeploymentStageCommand_base: {
66
66
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
67
67
  *
68
68
  * @throws {@link ResourceLimitExceeded} (client fault)
69
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
70
- * training jobs created. </p>
69
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
71
70
  *
72
71
  * @throws {@link SageMakerServiceException}
73
72
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -67,8 +67,7 @@ declare const CreateEdgePackagingJobCommand_base: {
67
67
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
68
68
  *
69
69
  * @throws {@link ResourceLimitExceeded} (client fault)
70
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
71
- * training jobs created. </p>
70
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
72
71
  *
73
72
  * @throws {@link SageMakerServiceException}
74
73
  * <p>Base exception class for all service exceptions from SageMaker service.</p>
@@ -27,81 +27,7 @@ declare const CreateEndpointCommand_base: {
27
27
  getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
28
28
  };
29
29
  /**
30
- * <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
31
- * uses the endpoint to provision resources and deploy models. You create the endpoint
32
- * configuration with the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API. </p>
33
- * <p> Use this API to deploy models using SageMaker hosting services. </p>
34
- * <note>
35
- * <p> You must not delete an <code>EndpointConfig</code> that is in use by an endpoint
36
- * that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code>
37
- * operations are being performed on the endpoint. To update an endpoint, you must
38
- * create a new <code>EndpointConfig</code>.</p>
39
- * </note>
40
- * <p>The endpoint name must be unique within an Amazon Web Services Region in your
41
- * Amazon Web Services account. </p>
42
- * <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
43
- * compute instances), and deploys the model(s) on them. </p>
44
- * <note>
45
- * <p>When you call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a>, a load call is made to DynamoDB to verify that your
46
- * endpoint configuration exists. When you read data from a DynamoDB table supporting
47
- * <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html">
48
- * <code>Eventually Consistent Reads</code>
49
- * </a>, the response might not
50
- * reflect the results of a recently completed write operation. The response might
51
- * include some stale data. If the dependent entities are not yet in DynamoDB, this
52
- * causes a validation error. If you repeat your read request after a short time, the
53
- * response should return the latest data. So retry logic is recommended to handle
54
- * these possible issues. We also recommend that customers call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html">DescribeEndpointConfig</a> before calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> to minimize the potential impact of a DynamoDB
55
- * eventually consistent read.</p>
56
- * </note>
57
- * <p>When SageMaker receives the request, it sets the endpoint status to
58
- * <code>Creating</code>. After it creates the endpoint, it sets the status to
59
- * <code>InService</code>. SageMaker can then process incoming requests for inferences. To
60
- * check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html">DescribeEndpoint</a> API.</p>
61
- * <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
62
- * SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the
63
- * S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services
64
- * account by default. If you previously deactivated Amazon Web Services STS for a region,
65
- * you need to reactivate Amazon Web Services STS for that region. For more information, see
66
- * <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and
67
- * Deactivating Amazon Web Services STS in an Amazon Web Services Region</a> in the
68
- * <i>Amazon Web Services Identity and Access Management User
69
- * Guide</i>.</p>
70
- * <note>
71
- * <p> To add the IAM role policies for using this API operation, go to the <a href="https://console.aws.amazon.com/iam/">IAM console</a>, and choose
72
- * Roles in the left navigation pane. Search the IAM role that you want to grant
73
- * access to use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API operations, add the following policies to the
74
- * role. </p>
75
- * <ul>
76
- * <li>
77
- * <p>Option 1: For a full SageMaker access, search and attach the
78
- * <code>AmazonSageMakerFullAccess</code> policy.</p>
79
- * </li>
80
- * <li>
81
- * <p>Option 2: For granting a limited access to an IAM role, paste the
82
- * following Action elements manually into the JSON file of the IAM role: </p>
83
- * <p>
84
- * <code>"Action": ["sagemaker:CreateEndpoint",
85
- * "sagemaker:CreateEndpointConfig"]</code>
86
- * </p>
87
- * <p>
88
- * <code>"Resource": [</code>
89
- * </p>
90
- * <p>
91
- * <code>"arn:aws:sagemaker:region:account-id:endpoint/endpointName"</code>
92
- * </p>
93
- * <p>
94
- * <code>"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"</code>
95
- * </p>
96
- * <p>
97
- * <code>]</code>
98
- * </p>
99
- * <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html">SageMaker API
100
- * Permissions: Actions, Permissions, and Resources
101
- * Reference</a>.</p>
102
- * </li>
103
- * </ul>
104
- * </note>
30
+ * <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API. </p> <p> Use this API to deploy models using SageMaker hosting services. </p> <note> <p> You must not delete an <code>EndpointConfig</code> that is in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note> <p>The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account. </p> <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. </p> <note> <p>When you call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a>, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html"> <code>Eventually Consistent Reads</code> </a>, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html">DescribeEndpointConfig</a> before calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p> </note> <p>When SageMaker receives the request, it sets the endpoint status to <code>Creating</code>. After it creates the endpoint, it sets the status to <code>InService</code>. SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html">DescribeEndpoint</a> API.</p> <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region</a> in the <i>Amazon Web Services Identity and Access Management User Guide</i>.</p> <note> <p> To add the IAM role policies for using this API operation, go to the <a href="https://console.aws.amazon.com/iam/">IAM console</a>, and choose Roles in the left navigation pane. Search the IAM role that you want to grant access to use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API operations, add the following policies to the role. </p> <ul> <li> <p>Option 1: For a full SageMaker access, search and attach the <code>AmazonSageMakerFullAccess</code> policy.</p> </li> <li> <p>Option 2: For granting a limited access to an IAM role, paste the following Action elements manually into the JSON file of the IAM role: </p> <p> <code>"Action": ["sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig"]</code> </p> <p> <code>"Resource": [</code> </p> <p> <code>"arn:aws:sagemaker:region:account-id:endpoint/endpointName"</code> </p> <p> <code>"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"</code> </p> <p> <code>]</code> </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html">SageMaker API Permissions: Actions, Permissions, and Resources Reference</a>.</p> </li> </ul> </note>
105
31
  * @example
106
32
  * Use a bare-bones client and the command you need to make an API call.
107
33
  * ```javascript
@@ -170,8 +96,7 @@ declare const CreateEndpointCommand_base: {
170
96
  * @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
171
97
  *
172
98
  * @throws {@link ResourceLimitExceeded} (client fault)
173
- * <p> You have exceeded an SageMaker resource limit. For example, you might have too many
174
- * training jobs created. </p>
99
+ * <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
175
100
  *
176
101
  * @throws {@link SageMakerServiceException}
177
102
  * <p>Base exception class for all service exceptions from SageMaker service.</p>