@aws-sdk/client-sagemaker 3.806.0 → 3.808.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -16
- package/dist-cjs/index.js +26 -26
- package/dist-es/waiters/waitForEndpointDeleted.js +2 -2
- package/dist-es/waiters/waitForEndpointInService.js +2 -2
- package/dist-es/waiters/waitForImageCreated.js +2 -2
- package/dist-es/waiters/waitForImageDeleted.js +2 -2
- package/dist-es/waiters/waitForImageUpdated.js +2 -2
- package/dist-es/waiters/waitForImageVersionCreated.js +2 -2
- package/dist-es/waiters/waitForImageVersionDeleted.js +2 -2
- package/dist-es/waiters/waitForNotebookInstanceDeleted.js +2 -2
- package/dist-es/waiters/waitForNotebookInstanceInService.js +2 -2
- package/dist-es/waiters/waitForNotebookInstanceStopped.js +2 -2
- package/dist-es/waiters/waitForProcessingJobCompletedOrStopped.js +2 -2
- package/dist-es/waiters/waitForTrainingJobCompletedOrStopped.js +2 -2
- package/dist-es/waiters/waitForTransformJobCompletedOrStopped.js +2 -2
- package/dist-types/SageMaker.d.ts +1 -16
- package/dist-types/SageMakerClient.d.ts +1 -16
- package/dist-types/commands/AddAssociationCommand.d.ts +2 -7
- package/dist-types/commands/AddTagsCommand.d.ts +1 -26
- package/dist-types/commands/AssociateTrialComponentCommand.d.ts +2 -4
- package/dist-types/commands/BatchDeleteClusterNodesCommand.d.ts +1 -17
- package/dist-types/commands/CreateActionCommand.d.ts +2 -7
- package/dist-types/commands/CreateAppCommand.d.ts +2 -6
- package/dist-types/commands/CreateAppImageConfigCommand.d.ts +1 -3
- package/dist-types/commands/CreateArtifactCommand.d.ts +2 -7
- package/dist-types/commands/CreateAutoMLJobCommand.d.ts +2 -26
- package/dist-types/commands/CreateAutoMLJobV2Command.d.ts +2 -33
- package/dist-types/commands/CreateClusterCommand.d.ts +2 -6
- package/dist-types/commands/CreateClusterSchedulerConfigCommand.d.ts +3 -7
- package/dist-types/commands/CreateCodeRepositoryCommand.d.ts +1 -7
- package/dist-types/commands/CreateCompilationJobCommand.d.ts +2 -33
- package/dist-types/commands/CreateComputeQuotaCommand.d.ts +3 -7
- package/dist-types/commands/CreateContextCommand.d.ts +2 -7
- package/dist-types/commands/CreateDataQualityJobDefinitionCommand.d.ts +2 -5
- package/dist-types/commands/CreateDeviceFleetCommand.d.ts +1 -2
- package/dist-types/commands/CreateDomainCommand.d.ts +2 -46
- package/dist-types/commands/CreateEdgeDeploymentPlanCommand.d.ts +2 -4
- package/dist-types/commands/CreateEdgeDeploymentStageCommand.d.ts +1 -2
- package/dist-types/commands/CreateEdgePackagingJobCommand.d.ts +1 -2
- package/dist-types/commands/CreateEndpointCommand.d.ts +2 -77
- package/dist-types/commands/CreateEndpointConfigCommand.d.ts +2 -33
- package/dist-types/commands/CreateExperimentCommand.d.ts +2 -22
- package/dist-types/commands/CreateFeatureGroupCommand.d.ts +2 -20
- package/dist-types/commands/CreateFlowDefinitionCommand.d.ts +1 -2
- package/dist-types/commands/CreateHubCommand.d.ts +1 -2
- package/dist-types/commands/CreateHubContentReferenceCommand.d.ts +1 -2
- package/dist-types/commands/CreateHumanTaskUiCommand.d.ts +1 -2
- package/dist-types/commands/CreateHyperParameterTuningJobCommand.d.ts +2 -18
- package/dist-types/commands/CreateImageCommand.d.ts +2 -5
- package/dist-types/commands/CreateImageVersionCommand.d.ts +2 -4
- package/dist-types/commands/CreateInferenceComponentCommand.d.ts +2 -10
- package/dist-types/commands/CreateInferenceExperimentCommand.d.ts +2 -17
- package/dist-types/commands/CreateInferenceRecommendationsJobCommand.d.ts +2 -4
- package/dist-types/commands/CreateLabelingJobCommand.d.ts +2 -40
- package/dist-types/commands/CreateMlflowTrackingServerCommand.d.ts +2 -5
- package/dist-types/commands/CreateModelBiasJobDefinitionCommand.d.ts +1 -2
- package/dist-types/commands/CreateModelCardCommand.d.ts +3 -6
- package/dist-types/commands/CreateModelCardExportJobCommand.d.ts +2 -4
- package/dist-types/commands/CreateModelCommand.d.ts +2 -19
- package/dist-types/commands/CreateModelExplainabilityJobDefinitionCommand.d.ts +1 -2
- package/dist-types/commands/CreateModelPackageCommand.d.ts +3 -24
- package/dist-types/commands/CreateModelPackageGroupCommand.d.ts +1 -2
- package/dist-types/commands/CreateModelQualityJobDefinitionCommand.d.ts +2 -5
- package/dist-types/commands/CreateMonitoringScheduleCommand.d.ts +2 -4
- package/dist-types/commands/CreateNotebookInstanceCommand.d.ts +2 -38
- package/dist-types/commands/CreateNotebookInstanceLifecycleConfigCommand.d.ts +2 -16
- package/dist-types/commands/CreateOptimizationJobCommand.d.ts +2 -8
- package/dist-types/commands/CreatePartnerAppCommand.d.ts +2 -4
- package/dist-types/commands/CreatePipelineCommand.d.ts +2 -4
- package/dist-types/commands/CreatePresignedDomainUrlCommand.d.ts +1 -26
- package/dist-types/commands/CreatePresignedMlflowTrackingServerUrlCommand.d.ts +1 -2
- package/dist-types/commands/CreatePresignedNotebookInstanceUrlCommand.d.ts +1 -18
- package/dist-types/commands/CreateProcessingJobCommand.d.ts +1 -2
- package/dist-types/commands/CreateProjectCommand.d.ts +2 -4
- package/dist-types/commands/CreateSpaceCommand.d.ts +1 -2
- package/dist-types/commands/CreateTrainingJobCommand.d.ts +2 -88
- package/dist-types/commands/CreateTrainingPlanCommand.d.ts +2 -63
- package/dist-types/commands/CreateTransformJobCommand.d.ts +2 -37
- package/dist-types/commands/CreateTrialCommand.d.ts +2 -13
- package/dist-types/commands/CreateTrialComponentCommand.d.ts +2 -12
- package/dist-types/commands/CreateUserProfileCommand.d.ts +2 -9
- package/dist-types/commands/CreateWorkforceCommand.d.ts +1 -18
- package/dist-types/commands/CreateWorkteamCommand.d.ts +2 -6
- package/dist-types/commands/DeleteAlgorithmCommand.d.ts +1 -2
- package/dist-types/commands/DeleteArtifactCommand.d.ts +1 -2
- package/dist-types/commands/DeleteClusterCommand.d.ts +1 -2
- package/dist-types/commands/DeleteCompilationJobCommand.d.ts +1 -8
- package/dist-types/commands/DeleteDomainCommand.d.ts +1 -4
- package/dist-types/commands/DeleteEdgeDeploymentPlanCommand.d.ts +1 -2
- package/dist-types/commands/DeleteEdgeDeploymentStageCommand.d.ts +1 -2
- package/dist-types/commands/DeleteEndpointCommand.d.ts +1 -11
- package/dist-types/commands/DeleteEndpointConfigCommand.d.ts +1 -9
- package/dist-types/commands/DeleteExperimentCommand.d.ts +1 -3
- package/dist-types/commands/DeleteFeatureGroupCommand.d.ts +1 -8
- package/dist-types/commands/DeleteHumanTaskUiCommand.d.ts +1 -5
- package/dist-types/commands/DeleteHyperParameterTuningJobCommand.d.ts +1 -4
- package/dist-types/commands/DeleteImageCommand.d.ts +1 -2
- package/dist-types/commands/DeleteImageVersionCommand.d.ts +1 -2
- package/dist-types/commands/DeleteInferenceExperimentCommand.d.ts +2 -9
- package/dist-types/commands/DeleteModelCardCommand.d.ts +1 -2
- package/dist-types/commands/DeleteModelCommand.d.ts +1 -4
- package/dist-types/commands/DeleteModelPackageCommand.d.ts +2 -6
- package/dist-types/commands/DeleteModelPackageGroupCommand.d.ts +1 -2
- package/dist-types/commands/DeleteMonitoringScheduleCommand.d.ts +1 -2
- package/dist-types/commands/DeleteNotebookInstanceCommand.d.ts +1 -6
- package/dist-types/commands/DeletePartnerAppCommand.d.ts +1 -2
- package/dist-types/commands/DeletePipelineCommand.d.ts +2 -6
- package/dist-types/commands/DeleteProjectCommand.d.ts +1 -2
- package/dist-types/commands/DeleteStudioLifecycleConfigCommand.d.ts +1 -4
- package/dist-types/commands/DeleteTagsCommand.d.ts +1 -12
- package/dist-types/commands/DeleteTrialCommand.d.ts +1 -3
- package/dist-types/commands/DeleteTrialComponentCommand.d.ts +1 -3
- package/dist-types/commands/DeleteUserProfileCommand.d.ts +1 -2
- package/dist-types/commands/DeleteWorkforceCommand.d.ts +1 -12
- package/dist-types/commands/DeleteWorkteamCommand.d.ts +1 -2
- package/dist-types/commands/DescribeAutoMLJobCommand.d.ts +1 -5
- package/dist-types/commands/DescribeAutoMLJobV2Command.d.ts +1 -2
- package/dist-types/commands/DescribeClusterNodeCommand.d.ts +1 -2
- package/dist-types/commands/DescribeClusterSchedulerConfigCommand.d.ts +1 -3
- package/dist-types/commands/DescribeCompilationJobCommand.d.ts +1 -3
- package/dist-types/commands/DescribeEndpointConfigCommand.d.ts +1 -2
- package/dist-types/commands/DescribeFeatureGroupCommand.d.ts +1 -3
- package/dist-types/commands/DescribeHyperParameterTuningJobCommand.d.ts +1 -3
- package/dist-types/commands/DescribeInferenceRecommendationsJobCommand.d.ts +1 -2
- package/dist-types/commands/DescribeLineageGroupCommand.d.ts +1 -3
- package/dist-types/commands/DescribeModelCommand.d.ts +1 -2
- package/dist-types/commands/DescribeModelPackageCommand.d.ts +1 -8
- package/dist-types/commands/DescribeNotebookInstanceLifecycleConfigCommand.d.ts +1 -3
- package/dist-types/commands/DescribeSubscribedWorkteamCommand.d.ts +1 -2
- package/dist-types/commands/DescribeTrainingJobCommand.d.ts +1 -7
- package/dist-types/commands/DescribeUserProfileCommand.d.ts +1 -2
- package/dist-types/commands/DescribeWorkforceCommand.d.ts +1 -6
- package/dist-types/commands/DescribeWorkteamCommand.d.ts +1 -3
- package/dist-types/commands/DisableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
- package/dist-types/commands/DisassociateTrialComponentCommand.d.ts +1 -6
- package/dist-types/commands/EnableSagemakerServicecatalogPortfolioCommand.d.ts +1 -2
- package/dist-types/commands/GetModelPackageGroupPolicyCommand.d.ts +1 -4
- package/dist-types/commands/GetSagemakerServicecatalogPortfolioStatusCommand.d.ts +1 -2
- package/dist-types/commands/GetScalingConfigurationRecommendationCommand.d.ts +1 -2
- package/dist-types/commands/GetSearchSuggestionsCommand.d.ts +1 -4
- package/dist-types/commands/ImportHubContentCommand.d.ts +1 -2
- package/dist-types/commands/ListAppImageConfigsCommand.d.ts +1 -3
- package/dist-types/commands/ListClusterNodesCommand.d.ts +1 -2
- package/dist-types/commands/ListCompilationJobsCommand.d.ts +1 -3
- package/dist-types/commands/ListExperimentsCommand.d.ts +1 -3
- package/dist-types/commands/ListHyperParameterTuningJobsCommand.d.ts +1 -3
- package/dist-types/commands/ListImageVersionsCommand.d.ts +1 -2
- package/dist-types/commands/ListImagesCommand.d.ts +1 -2
- package/dist-types/commands/ListInferenceRecommendationsJobStepsCommand.d.ts +1 -2
- package/dist-types/commands/ListLineageGroupsCommand.d.ts +1 -3
- package/dist-types/commands/ListModelMetadataCommand.d.ts +1 -2
- package/dist-types/commands/ListNotebookInstancesCommand.d.ts +1 -2
- package/dist-types/commands/ListResourceCatalogsCommand.d.ts +1 -2
- package/dist-types/commands/ListStageDevicesCommand.d.ts +1 -2
- package/dist-types/commands/ListStudioLifecycleConfigsCommand.d.ts +1 -2
- package/dist-types/commands/ListSubscribedWorkteamsCommand.d.ts +1 -3
- package/dist-types/commands/ListTrainingJobsCommand.d.ts +1 -22
- package/dist-types/commands/ListTrainingJobsForHyperParameterTuningJobCommand.d.ts +1 -2
- package/dist-types/commands/ListTrialComponentsCommand.d.ts +1 -20
- package/dist-types/commands/ListTrialsCommand.d.ts +1 -5
- package/dist-types/commands/ListWorkforcesCommand.d.ts +1 -2
- package/dist-types/commands/ListWorkteamsCommand.d.ts +1 -3
- package/dist-types/commands/PutModelPackageGroupPolicyCommand.d.ts +2 -6
- package/dist-types/commands/QueryLineageCommand.d.ts +1 -3
- package/dist-types/commands/RegisterDevicesCommand.d.ts +1 -2
- package/dist-types/commands/RetryPipelineExecutionCommand.d.ts +2 -4
- package/dist-types/commands/SearchCommand.d.ts +1 -10
- package/dist-types/commands/SearchTrainingPlanOfferingsCommand.d.ts +2 -17
- package/dist-types/commands/SendPipelineExecutionStepFailureCommand.d.ts +3 -7
- package/dist-types/commands/SendPipelineExecutionStepSuccessCommand.d.ts +3 -7
- package/dist-types/commands/StartInferenceExperimentCommand.d.ts +1 -2
- package/dist-types/commands/StartMlflowTrackingServerCommand.d.ts +1 -2
- package/dist-types/commands/StartMonitoringScheduleCommand.d.ts +1 -5
- package/dist-types/commands/StartNotebookInstanceCommand.d.ts +2 -6
- package/dist-types/commands/StartPipelineExecutionCommand.d.ts +2 -4
- package/dist-types/commands/StopCompilationJobCommand.d.ts +1 -7
- package/dist-types/commands/StopHyperParameterTuningJobCommand.d.ts +1 -7
- package/dist-types/commands/StopInferenceExperimentCommand.d.ts +1 -2
- package/dist-types/commands/StopLabelingJobCommand.d.ts +1 -2
- package/dist-types/commands/StopMlflowTrackingServerCommand.d.ts +1 -2
- package/dist-types/commands/StopNotebookInstanceCommand.d.ts +1 -8
- package/dist-types/commands/StopPipelineExecutionCommand.d.ts +2 -25
- package/dist-types/commands/StopTrainingJobCommand.d.ts +1 -7
- package/dist-types/commands/StopTransformJobCommand.d.ts +1 -6
- package/dist-types/commands/UpdateActionCommand.d.ts +1 -2
- package/dist-types/commands/UpdateArtifactCommand.d.ts +1 -2
- package/dist-types/commands/UpdateClusterCommand.d.ts +2 -4
- package/dist-types/commands/UpdateClusterSchedulerConfigCommand.d.ts +2 -4
- package/dist-types/commands/UpdateClusterSoftwareCommand.d.ts +2 -9
- package/dist-types/commands/UpdateCodeRepositoryCommand.d.ts +1 -2
- package/dist-types/commands/UpdateComputeQuotaCommand.d.ts +2 -4
- package/dist-types/commands/UpdateContextCommand.d.ts +1 -2
- package/dist-types/commands/UpdateDomainCommand.d.ts +1 -2
- package/dist-types/commands/UpdateEndpointCommand.d.ts +2 -22
- package/dist-types/commands/UpdateEndpointWeightsAndCapacitiesCommand.d.ts +2 -7
- package/dist-types/commands/UpdateExperimentCommand.d.ts +2 -4
- package/dist-types/commands/UpdateFeatureGroupCommand.d.ts +2 -17
- package/dist-types/commands/UpdateHubContentCommand.d.ts +1 -36
- package/dist-types/commands/UpdateHubContentReferenceCommand.d.ts +1 -14
- package/dist-types/commands/UpdateImageCommand.d.ts +1 -2
- package/dist-types/commands/UpdateInferenceComponentCommand.d.ts +1 -2
- package/dist-types/commands/UpdateInferenceComponentRuntimeConfigCommand.d.ts +1 -2
- package/dist-types/commands/UpdateInferenceExperimentCommand.d.ts +2 -7
- package/dist-types/commands/UpdateMlflowTrackingServerCommand.d.ts +2 -4
- package/dist-types/commands/UpdateModelCardCommand.d.ts +3 -8
- package/dist-types/commands/UpdateModelPackageCommand.d.ts +1 -2
- package/dist-types/commands/UpdateMonitoringAlertCommand.d.ts +1 -2
- package/dist-types/commands/UpdateMonitoringScheduleCommand.d.ts +1 -2
- package/dist-types/commands/UpdateNotebookInstanceCommand.d.ts +2 -5
- package/dist-types/commands/UpdateNotebookInstanceLifecycleConfigCommand.d.ts +1 -2
- package/dist-types/commands/UpdatePartnerAppCommand.d.ts +2 -3
- package/dist-types/commands/UpdatePipelineCommand.d.ts +1 -2
- package/dist-types/commands/UpdatePipelineExecutionCommand.d.ts +1 -2
- package/dist-types/commands/UpdateProjectCommand.d.ts +2 -10
- package/dist-types/commands/UpdateSpaceCommand.d.ts +2 -6
- package/dist-types/commands/UpdateTrainingJobCommand.d.ts +2 -4
- package/dist-types/commands/UpdateTrialCommand.d.ts +1 -2
- package/dist-types/commands/UpdateTrialComponentCommand.d.ts +1 -2
- package/dist-types/commands/UpdateUserProfileCommand.d.ts +1 -2
- package/dist-types/commands/UpdateWorkforceCommand.d.ts +2 -28
- package/dist-types/commands/UpdateWorkteamCommand.d.ts +1 -2
- package/dist-types/index.d.ts +1 -16
- package/dist-types/models/models_0.d.ts +370 -4018
- package/dist-types/models/models_1.d.ts +532 -5722
- package/dist-types/models/models_2.d.ts +328 -1436
- package/dist-types/models/models_3.d.ts +364 -2021
- package/dist-types/models/models_4.d.ts +462 -1693
- package/dist-types/models/models_5.d.ts +90 -441
- package/package.json +15 -15
|
@@ -27,9 +27,7 @@ declare const CreateAppImageConfigCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a configuration for running a SageMaker AI image as a KernelGateway app. The
|
|
31
|
-
* configuration specifies the Amazon Elastic File System storage volume on the image, and a list of the
|
|
32
|
-
* kernels in the image.</p>
|
|
30
|
+
* <p>Creates a configuration for running a SageMaker AI image as a KernelGateway app. The configuration specifies the Amazon Elastic File System storage volume on the image, and a list of the kernels in the image.</p>
|
|
33
31
|
* @example
|
|
34
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
35
33
|
* ```javascript
|
|
@@ -27,11 +27,7 @@ declare const CreateArtifactCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an <i>artifact</i>. An artifact is a lineage tracking entity that
|
|
31
|
-
* represents a URI addressable object or data. Some examples are the S3 URI of a dataset and
|
|
32
|
-
* the ECR registry path of an image. For more information, see
|
|
33
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html">Amazon SageMaker
|
|
34
|
-
* ML Lineage Tracking</a>.</p>
|
|
30
|
+
* <p>Creates an <i>artifact</i>. An artifact is a lineage tracking entity that represents a URI addressable object or data. Some examples are the S3 URI of a dataset and the ECR registry path of an image. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html">Amazon SageMaker ML Lineage Tracking</a>.</p>
|
|
35
31
|
* @example
|
|
36
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
37
33
|
* ```javascript
|
|
@@ -81,8 +77,7 @@ declare const CreateArtifactCommand_base: {
|
|
|
81
77
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
82
78
|
*
|
|
83
79
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
84
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
85
|
-
* training jobs created. </p>
|
|
80
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
86
81
|
*
|
|
87
82
|
* @throws {@link SageMakerServiceException}
|
|
88
83
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,30 +27,7 @@ declare const CreateAutoMLJobCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.</p>
|
|
31
|
-
* <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine
|
|
32
|
-
* learning models with minimal effort and machine learning expertise. When initiating an
|
|
33
|
-
* AutoML job, you provide your data and optionally specify parameters tailored to your use
|
|
34
|
-
* case. SageMaker AI then automates the entire model development lifecycle, including data
|
|
35
|
-
* preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify
|
|
36
|
-
* and accelerate the model building process by automating various tasks and exploring
|
|
37
|
-
* different combinations of machine learning algorithms, data preprocessing techniques, and
|
|
38
|
-
* hyperparameter values. The output of an AutoML job comprises one or more trained models
|
|
39
|
-
* ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate
|
|
40
|
-
* model leaderboard, allowing you to select the best-performing model for deployment.</p>
|
|
41
|
-
* <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a>
|
|
42
|
-
* in the SageMaker AI developer guide.</p>
|
|
43
|
-
* <note>
|
|
44
|
-
* <p>We recommend using the new versions <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>, which offer backward compatibility.</p>
|
|
45
|
-
* <p>
|
|
46
|
-
* <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of
|
|
47
|
-
* its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting,
|
|
48
|
-
* non-tabular problem types such as image or text classification, and text generation
|
|
49
|
-
* (LLMs fine-tuning).</p>
|
|
50
|
-
* <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to
|
|
51
|
-
* <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p>
|
|
52
|
-
* </note>
|
|
53
|
-
* <p>You can find the best-performing model after you run an AutoML job by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> (recommended) or <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a>.</p>
|
|
30
|
+
* <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job.</p> <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.</p> <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a> in the SageMaker AI developer guide.</p> <note> <p>We recommend using the new versions <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>, which offer backward compatibility.</p> <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p> <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p> </note> <p>You can find the best-performing model after you run an AutoML job by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> (recommended) or <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a>.</p>
|
|
54
31
|
* @example
|
|
55
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
56
33
|
* ```javascript
|
|
@@ -146,8 +123,7 @@ declare const CreateAutoMLJobCommand_base: {
|
|
|
146
123
|
* <p>Resource being accessed is in use.</p>
|
|
147
124
|
*
|
|
148
125
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
149
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
150
|
-
* training jobs created. </p>
|
|
126
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
151
127
|
*
|
|
152
128
|
* @throws {@link SageMakerServiceException}
|
|
153
129
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,37 +27,7 @@ declare const CreateAutoMLJobV2Command_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p>
|
|
31
|
-
* <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine
|
|
32
|
-
* learning models with minimal effort and machine learning expertise. When initiating an
|
|
33
|
-
* AutoML job, you provide your data and optionally specify parameters tailored to your use
|
|
34
|
-
* case. SageMaker AI then automates the entire model development lifecycle, including data
|
|
35
|
-
* preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify
|
|
36
|
-
* and accelerate the model building process by automating various tasks and exploring
|
|
37
|
-
* different combinations of machine learning algorithms, data preprocessing techniques, and
|
|
38
|
-
* hyperparameter values. The output of an AutoML job comprises one or more trained models
|
|
39
|
-
* ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate
|
|
40
|
-
* model leaderboard, allowing you to select the best-performing model for deployment.</p>
|
|
41
|
-
* <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a>
|
|
42
|
-
* in the SageMaker AI developer guide.</p>
|
|
43
|
-
* <p>AutoML jobs V2 support various problem types such as regression, binary, and multiclass
|
|
44
|
-
* classification with tabular data, text and image classification, time-series forecasting,
|
|
45
|
-
* and fine-tuning of large language models (LLMs) for text generation.</p>
|
|
46
|
-
* <note>
|
|
47
|
-
* <p>
|
|
48
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> are new versions of <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html">CreateAutoMLJob</a>
|
|
49
|
-
* and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a> which offer backward compatibility.</p>
|
|
50
|
-
* <p>
|
|
51
|
-
* <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of
|
|
52
|
-
* its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting,
|
|
53
|
-
* non-tabular problem types such as image or text classification, and text generation
|
|
54
|
-
* (LLMs fine-tuning).</p>
|
|
55
|
-
* <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to
|
|
56
|
-
* <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p>
|
|
57
|
-
* </note>
|
|
58
|
-
* <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see
|
|
59
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html">AutoMLProblemTypeConfig</a>.</p>
|
|
60
|
-
* <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>.</p>
|
|
30
|
+
* <p>Creates an Autopilot job also referred to as Autopilot experiment or AutoML job V2.</p> <p>An AutoML job in SageMaker AI is a fully automated process that allows you to build machine learning models with minimal effort and machine learning expertise. When initiating an AutoML job, you provide your data and optionally specify parameters tailored to your use case. SageMaker AI then automates the entire model development lifecycle, including data preprocessing, model training, tuning, and evaluation. AutoML jobs are designed to simplify and accelerate the model building process by automating various tasks and exploring different combinations of machine learning algorithms, data preprocessing techniques, and hyperparameter values. The output of an AutoML job comprises one or more trained models ready for deployment and inference. Additionally, SageMaker AI AutoML jobs generate a candidate model leaderboard, allowing you to select the best-performing model for deployment.</p> <p>For more information about AutoML jobs, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html">https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html</a> in the SageMaker AI developer guide.</p> <p>AutoML jobs V2 support various problem types such as regression, binary, and multiclass classification with tabular data, text and image classification, time-series forecasting, and fine-tuning of large language models (LLMs) for text generation.</p> <note> <p> <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJobV2.html">CreateAutoMLJobV2</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a> are new versions of <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateAutoMLJob.html">CreateAutoMLJob</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJob.html">DescribeAutoMLJob</a> which offer backward compatibility.</p> <p> <code>CreateAutoMLJobV2</code> can manage tabular problem types identical to those of its previous version <code>CreateAutoMLJob</code>, as well as time-series forecasting, non-tabular problem types such as image or text classification, and text generation (LLMs fine-tuning).</p> <p>Find guidelines about how to migrate a <code>CreateAutoMLJob</code> to <code>CreateAutoMLJobV2</code> in <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development-create-experiment.html#autopilot-create-experiment-api-migrate-v1-v2">Migrate a CreateAutoMLJob to CreateAutoMLJobV2</a>.</p> </note> <p>For the list of available problem types supported by <code>CreateAutoMLJobV2</code>, see <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLProblemTypeConfig.html">AutoMLProblemTypeConfig</a>.</p> <p>You can find the best-performing model after you run an AutoML job V2 by calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeAutoMLJobV2.html">DescribeAutoMLJobV2</a>.</p>
|
|
61
31
|
* @example
|
|
62
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
63
33
|
* ```javascript
|
|
@@ -235,8 +205,7 @@ declare const CreateAutoMLJobV2Command_base: {
|
|
|
235
205
|
* <p>Resource being accessed is in use.</p>
|
|
236
206
|
*
|
|
237
207
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
238
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
239
|
-
* training jobs created. </p>
|
|
208
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
240
209
|
*
|
|
241
210
|
* @throws {@link SageMakerServiceException}
|
|
242
211
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,10 +27,7 @@ declare const CreateClusterCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing
|
|
31
|
-
* persistent clusters for developing large machine learning models, such as large language
|
|
32
|
-
* models (LLMs) and diffusion models. To learn more, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-hyperpod.html">Amazon SageMaker HyperPod</a> in the
|
|
33
|
-
* <i>Amazon SageMaker Developer Guide</i>.</p>
|
|
30
|
+
* <p>Creates a SageMaker HyperPod cluster. SageMaker HyperPod is a capability of SageMaker for creating and managing persistent clusters for developing large machine learning models, such as large language models (LLMs) and diffusion models. To learn more, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-hyperpod.html">Amazon SageMaker HyperPod</a> in the <i>Amazon SageMaker Developer Guide</i>.</p>
|
|
34
31
|
* @example
|
|
35
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
36
33
|
* ```javascript
|
|
@@ -131,8 +128,7 @@ declare const CreateClusterCommand_base: {
|
|
|
131
128
|
* <p>Resource being accessed is in use.</p>
|
|
132
129
|
*
|
|
133
130
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
134
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
135
|
-
* training jobs created. </p>
|
|
131
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
136
132
|
*
|
|
137
133
|
* @throws {@link SageMakerServiceException}
|
|
138
134
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,9 +27,7 @@ declare const CreateClusterSchedulerConfigCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Create cluster policy configuration. This policy is used for task prioritization and
|
|
31
|
-
* fair-share allocation of idle compute. This helps prioritize critical workloads and distributes
|
|
32
|
-
* idle compute across entities.</p>
|
|
30
|
+
* <p>Create cluster policy configuration. This policy is used for task prioritization and fair-share allocation of idle compute. This helps prioritize critical workloads and distributes idle compute across entities.</p>
|
|
33
31
|
* @example
|
|
34
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
35
33
|
* ```javascript
|
|
@@ -72,12 +70,10 @@ declare const CreateClusterSchedulerConfigCommand_base: {
|
|
|
72
70
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
73
71
|
*
|
|
74
72
|
* @throws {@link ConflictException} (client fault)
|
|
75
|
-
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an
|
|
76
|
-
* <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
73
|
+
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
77
74
|
*
|
|
78
75
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
79
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
80
|
-
* training jobs created. </p>
|
|
76
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
81
77
|
*
|
|
82
78
|
* @throws {@link SageMakerServiceException}
|
|
83
79
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,13 +27,7 @@ declare const CreateCodeRepositoryCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a Git repository as a resource in your SageMaker AI account. You can
|
|
31
|
-
* associate the repository with notebook instances so that you can use Git source control
|
|
32
|
-
* for the notebooks you create. The Git repository is a resource in your SageMaker AI
|
|
33
|
-
* account, so it can be associated with more than one notebook instance, and it persists
|
|
34
|
-
* independently from the lifecycle of any notebook instances it is associated with.</p>
|
|
35
|
-
* <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a>
|
|
36
|
-
* or in any other Git repository.</p>
|
|
30
|
+
* <p>Creates a Git repository as a resource in your SageMaker AI account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your SageMaker AI account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.</p> <p>The repository can be hosted either in <a href="https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html">Amazon Web Services CodeCommit</a> or in any other Git repository.</p>
|
|
37
31
|
* @example
|
|
38
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
39
33
|
* ```javascript
|
|
@@ -27,37 +27,7 @@ declare const CreateCompilationJobCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker AI saves the
|
|
31
|
-
* resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p>
|
|
32
|
-
* <p>If
|
|
33
|
-
* you choose to host your model using Amazon SageMaker AI hosting services, you can use the resulting
|
|
34
|
-
* model artifacts as part of the model. You can also use the artifacts with
|
|
35
|
-
* Amazon Web Services IoT Greengrass. In that case, deploy them as an ML
|
|
36
|
-
* resource.</p>
|
|
37
|
-
* <p>In the request body, you provide the following:</p>
|
|
38
|
-
* <ul>
|
|
39
|
-
* <li>
|
|
40
|
-
* <p>A name for the compilation job</p>
|
|
41
|
-
* </li>
|
|
42
|
-
* <li>
|
|
43
|
-
* <p> Information about the input model artifacts </p>
|
|
44
|
-
* </li>
|
|
45
|
-
* <li>
|
|
46
|
-
* <p>The output location for the compiled model and the device (target) that the
|
|
47
|
-
* model runs on </p>
|
|
48
|
-
* </li>
|
|
49
|
-
* <li>
|
|
50
|
-
* <p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker AI assumes to perform
|
|
51
|
-
* the model compilation job. </p>
|
|
52
|
-
* </li>
|
|
53
|
-
* </ul>
|
|
54
|
-
* <p>You can also provide a <code>Tag</code> to track the model compilation job's resource
|
|
55
|
-
* use and costs. The response body contains the
|
|
56
|
-
* <code>CompilationJobArn</code>
|
|
57
|
-
* for the compiled job.</p>
|
|
58
|
-
* <p>To stop a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopCompilationJob.html">StopCompilationJob</a>. To get information about a particular model compilation
|
|
59
|
-
* job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html">DescribeCompilationJob</a>. To get information about multiple model compilation
|
|
60
|
-
* jobs, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCompilationJobs.html">ListCompilationJobs</a>.</p>
|
|
30
|
+
* <p>Starts a model compilation job. After the model has been compiled, Amazon SageMaker AI saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify. </p> <p>If you choose to host your model using Amazon SageMaker AI hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with Amazon Web Services IoT Greengrass. In that case, deploy them as an ML resource.</p> <p>In the request body, you provide the following:</p> <ul> <li> <p>A name for the compilation job</p> </li> <li> <p> Information about the input model artifacts </p> </li> <li> <p>The output location for the compiled model and the device (target) that the model runs on </p> </li> <li> <p>The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker AI assumes to perform the model compilation job. </p> </li> </ul> <p>You can also provide a <code>Tag</code> to track the model compilation job's resource use and costs. The response body contains the <code>CompilationJobArn</code> for the compiled job.</p> <p>To stop a model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_StopCompilationJob.html">StopCompilationJob</a>. To get information about a particular model compilation job, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeCompilationJob.html">DescribeCompilationJob</a>. To get information about multiple model compilation jobs, use <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_ListCompilationJobs.html">ListCompilationJobs</a>.</p>
|
|
61
31
|
* @example
|
|
62
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
63
33
|
* ```javascript
|
|
@@ -123,8 +93,7 @@ declare const CreateCompilationJobCommand_base: {
|
|
|
123
93
|
* <p>Resource being accessed is in use.</p>
|
|
124
94
|
*
|
|
125
95
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
126
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
127
|
-
* training jobs created. </p>
|
|
96
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
128
97
|
*
|
|
129
98
|
* @throws {@link SageMakerServiceException}
|
|
130
99
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,9 +27,7 @@ declare const CreateComputeQuotaCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Create compute allocation definition. This defines how compute is allocated, shared, and
|
|
31
|
-
* borrowed for specified entities. Specifically, how to lend and borrow idle compute and
|
|
32
|
-
* assign a fair-share weight to the specified entities.</p>
|
|
30
|
+
* <p>Create compute allocation definition. This defines how compute is allocated, shared, and borrowed for specified entities. Specifically, how to lend and borrow idle compute and assign a fair-share weight to the specified entities.</p>
|
|
33
31
|
* @example
|
|
34
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
35
33
|
* ```javascript
|
|
@@ -81,12 +79,10 @@ declare const CreateComputeQuotaCommand_base: {
|
|
|
81
79
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
82
80
|
*
|
|
83
81
|
* @throws {@link ConflictException} (client fault)
|
|
84
|
-
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an
|
|
85
|
-
* <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
82
|
+
* <p>There was a conflict when you attempted to modify a SageMaker entity such as an <code>Experiment</code> or <code>Artifact</code>.</p>
|
|
86
83
|
*
|
|
87
84
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
88
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
89
|
-
* training jobs created. </p>
|
|
85
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
90
86
|
*
|
|
91
87
|
* @throws {@link SageMakerServiceException}
|
|
92
88
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,11 +27,7 @@ declare const CreateContextCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a <i>context</i>. A context is a lineage tracking entity that
|
|
31
|
-
* represents a logical grouping of other tracking or experiment entities. Some examples are
|
|
32
|
-
* an endpoint and a model package. For more information, see
|
|
33
|
-
* <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html">Amazon SageMaker
|
|
34
|
-
* ML Lineage Tracking</a>.</p>
|
|
30
|
+
* <p>Creates a <i>context</i>. A context is a lineage tracking entity that represents a logical grouping of other tracking or experiment entities. Some examples are an endpoint and a model package. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/lineage-tracking.html">Amazon SageMaker ML Lineage Tracking</a>.</p>
|
|
35
31
|
* @example
|
|
36
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
37
33
|
* ```javascript
|
|
@@ -72,8 +68,7 @@ declare const CreateContextCommand_base: {
|
|
|
72
68
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
73
69
|
*
|
|
74
70
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
75
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
76
|
-
* training jobs created. </p>
|
|
71
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
77
72
|
*
|
|
78
73
|
* @throws {@link SageMakerServiceException}
|
|
79
74
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,9 +27,7 @@ declare const CreateDataQualityJobDefinitionCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a definition for a job that monitors data quality and drift. For information
|
|
31
|
-
* about model monitor, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html">Amazon SageMaker AI Model
|
|
32
|
-
* Monitor</a>.</p>
|
|
30
|
+
* <p>Creates a definition for a job that monitors data quality and drift. For information about model monitor, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html">Amazon SageMaker AI Model Monitor</a>.</p>
|
|
33
31
|
* @example
|
|
34
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
35
33
|
* ```javascript
|
|
@@ -159,8 +157,7 @@ declare const CreateDataQualityJobDefinitionCommand_base: {
|
|
|
159
157
|
* <p>Resource being accessed is in use.</p>
|
|
160
158
|
*
|
|
161
159
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
162
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
163
|
-
* training jobs created. </p>
|
|
160
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
164
161
|
*
|
|
165
162
|
* @throws {@link SageMakerServiceException}
|
|
166
163
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -68,8 +68,7 @@ declare const CreateDeviceFleetCommand_base: {
|
|
|
68
68
|
* <p>Resource being accessed is in use.</p>
|
|
69
69
|
*
|
|
70
70
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
71
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
72
|
-
* training jobs created. </p>
|
|
71
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
73
72
|
*
|
|
74
73
|
* @throws {@link SageMakerServiceException}
|
|
75
74
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,50 +27,7 @@ declare const CreateDomainCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates a <code>Domain</code>. A domain consists of an associated Amazon Elastic File System
|
|
31
|
-
* volume, a list of authorized users, and a variety of security, application, policy, and
|
|
32
|
-
* Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files
|
|
33
|
-
* and other artifacts with each other.</p>
|
|
34
|
-
* <p>
|
|
35
|
-
* <b>EFS storage</b>
|
|
36
|
-
* </p>
|
|
37
|
-
* <p>When a domain is created, an EFS volume is created for use by all of the users within the
|
|
38
|
-
* domain. Each user receives a private home directory within the EFS volume for notebooks, Git
|
|
39
|
-
* repositories, and data files.</p>
|
|
40
|
-
* <p>SageMaker AI uses the Amazon Web Services Key Management Service (Amazon Web Services
|
|
41
|
-
* KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key
|
|
42
|
-
* by default. For more control, you can specify a customer managed key. For more information,
|
|
43
|
-
* see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/encryption-at-rest.html">Protect Data
|
|
44
|
-
* at Rest Using Encryption</a>.</p>
|
|
45
|
-
* <p>
|
|
46
|
-
* <b>VPC configuration</b>
|
|
47
|
-
* </p>
|
|
48
|
-
* <p>All traffic between the domain and the Amazon EFS volume is through the specified
|
|
49
|
-
* VPC and subnets. For other traffic, you can specify the <code>AppNetworkAccessType</code>
|
|
50
|
-
* parameter. <code>AppNetworkAccessType</code> corresponds to the network access type that you
|
|
51
|
-
* choose when you onboard to the domain. The following options are available:</p>
|
|
52
|
-
* <ul>
|
|
53
|
-
* <li>
|
|
54
|
-
* <p>
|
|
55
|
-
* <code>PublicInternetOnly</code> - Non-EFS traffic goes through a VPC managed by
|
|
56
|
-
* Amazon SageMaker AI, which allows internet access. This is the default value.</p>
|
|
57
|
-
* </li>
|
|
58
|
-
* <li>
|
|
59
|
-
* <p>
|
|
60
|
-
* <code>VpcOnly</code> - All traffic is through the specified VPC and subnets. Internet
|
|
61
|
-
* access is disabled by default. To allow internet access, you must specify a NAT
|
|
62
|
-
* gateway.</p>
|
|
63
|
-
* <p>When internet access is disabled, you won't be able to run a Amazon SageMaker AI
|
|
64
|
-
* Studio notebook or to train or host models unless your VPC has an interface endpoint to
|
|
65
|
-
* the SageMaker AI API and runtime or a NAT gateway and your security groups allow
|
|
66
|
-
* outbound connections.</p>
|
|
67
|
-
* </li>
|
|
68
|
-
* </ul>
|
|
69
|
-
* <important>
|
|
70
|
-
* <p>NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules
|
|
71
|
-
* in order to launch a Amazon SageMaker AI Studio app successfully.</p>
|
|
72
|
-
* </important>
|
|
73
|
-
* <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html">Connect Amazon SageMaker AI Studio Notebooks to Resources in a VPC</a>.</p>
|
|
30
|
+
* <p>Creates a <code>Domain</code>. A domain consists of an associated Amazon Elastic File System volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. Users within a domain can share notebook files and other artifacts with each other.</p> <p> <b>EFS storage</b> </p> <p>When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.</p> <p>SageMaker AI uses the Amazon Web Services Key Management Service (Amazon Web Services KMS) to encrypt the EFS volume attached to the domain with an Amazon Web Services managed key by default. For more control, you can specify a customer managed key. For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/encryption-at-rest.html">Protect Data at Rest Using Encryption</a>.</p> <p> <b>VPC configuration</b> </p> <p>All traffic between the domain and the Amazon EFS volume is through the specified VPC and subnets. For other traffic, you can specify the <code>AppNetworkAccessType</code> parameter. <code>AppNetworkAccessType</code> corresponds to the network access type that you choose when you onboard to the domain. The following options are available:</p> <ul> <li> <p> <code>PublicInternetOnly</code> - Non-EFS traffic goes through a VPC managed by Amazon SageMaker AI, which allows internet access. This is the default value.</p> </li> <li> <p> <code>VpcOnly</code> - All traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway.</p> <p>When internet access is disabled, you won't be able to run a Amazon SageMaker AI Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker AI API and runtime or a NAT gateway and your security groups allow outbound connections.</p> </li> </ul> <important> <p>NFS traffic over TCP on port 2049 needs to be allowed in both inbound and outbound rules in order to launch a Amazon SageMaker AI Studio app successfully.</p> </important> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html">Connect Amazon SageMaker AI Studio Notebooks to Resources in a VPC</a>.</p>
|
|
74
31
|
* @example
|
|
75
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
76
33
|
* ```javascript
|
|
@@ -441,8 +398,7 @@ declare const CreateDomainCommand_base: {
|
|
|
441
398
|
* <p>Resource being accessed is in use.</p>
|
|
442
399
|
*
|
|
443
400
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
444
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
445
|
-
* training jobs created. </p>
|
|
401
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
446
402
|
*
|
|
447
403
|
* @throws {@link SageMakerServiceException}
|
|
448
404
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,8 +27,7 @@ declare const CreateEdgeDeploymentPlanCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an edge deployment plan, consisting of multiple stages. Each stage may have a
|
|
31
|
-
* different deployment configuration and devices.</p>
|
|
30
|
+
* <p>Creates an edge deployment plan, consisting of multiple stages. Each stage may have a different deployment configuration and devices.</p>
|
|
32
31
|
* @example
|
|
33
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
34
33
|
* ```javascript
|
|
@@ -82,8 +81,7 @@ declare const CreateEdgeDeploymentPlanCommand_base: {
|
|
|
82
81
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
83
82
|
*
|
|
84
83
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
85
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
86
|
-
* training jobs created. </p>
|
|
84
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
87
85
|
*
|
|
88
86
|
* @throws {@link SageMakerServiceException}
|
|
89
87
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -66,8 +66,7 @@ declare const CreateEdgeDeploymentStageCommand_base: {
|
|
|
66
66
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
67
67
|
*
|
|
68
68
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
69
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
70
|
-
* training jobs created. </p>
|
|
69
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
71
70
|
*
|
|
72
71
|
* @throws {@link SageMakerServiceException}
|
|
73
72
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -67,8 +67,7 @@ declare const CreateEdgePackagingJobCommand_base: {
|
|
|
67
67
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
68
68
|
*
|
|
69
69
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
70
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
71
|
-
* training jobs created. </p>
|
|
70
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
72
71
|
*
|
|
73
72
|
* @throws {@link SageMakerServiceException}
|
|
74
73
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|
|
@@ -27,81 +27,7 @@ declare const CreateEndpointCommand_base: {
|
|
|
27
27
|
getEndpointParameterInstructions(): import("@smithy/middleware-endpoint").EndpointParameterInstructions;
|
|
28
28
|
};
|
|
29
29
|
/**
|
|
30
|
-
* <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker
|
|
31
|
-
* uses the endpoint to provision resources and deploy models. You create the endpoint
|
|
32
|
-
* configuration with the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API. </p>
|
|
33
|
-
* <p> Use this API to deploy models using SageMaker hosting services. </p>
|
|
34
|
-
* <note>
|
|
35
|
-
* <p> You must not delete an <code>EndpointConfig</code> that is in use by an endpoint
|
|
36
|
-
* that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code>
|
|
37
|
-
* operations are being performed on the endpoint. To update an endpoint, you must
|
|
38
|
-
* create a new <code>EndpointConfig</code>.</p>
|
|
39
|
-
* </note>
|
|
40
|
-
* <p>The endpoint name must be unique within an Amazon Web Services Region in your
|
|
41
|
-
* Amazon Web Services account. </p>
|
|
42
|
-
* <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML
|
|
43
|
-
* compute instances), and deploys the model(s) on them. </p>
|
|
44
|
-
* <note>
|
|
45
|
-
* <p>When you call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a>, a load call is made to DynamoDB to verify that your
|
|
46
|
-
* endpoint configuration exists. When you read data from a DynamoDB table supporting
|
|
47
|
-
* <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html">
|
|
48
|
-
* <code>Eventually Consistent Reads</code>
|
|
49
|
-
* </a>, the response might not
|
|
50
|
-
* reflect the results of a recently completed write operation. The response might
|
|
51
|
-
* include some stale data. If the dependent entities are not yet in DynamoDB, this
|
|
52
|
-
* causes a validation error. If you repeat your read request after a short time, the
|
|
53
|
-
* response should return the latest data. So retry logic is recommended to handle
|
|
54
|
-
* these possible issues. We also recommend that customers call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html">DescribeEndpointConfig</a> before calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> to minimize the potential impact of a DynamoDB
|
|
55
|
-
* eventually consistent read.</p>
|
|
56
|
-
* </note>
|
|
57
|
-
* <p>When SageMaker receives the request, it sets the endpoint status to
|
|
58
|
-
* <code>Creating</code>. After it creates the endpoint, it sets the status to
|
|
59
|
-
* <code>InService</code>. SageMaker can then process incoming requests for inferences. To
|
|
60
|
-
* check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html">DescribeEndpoint</a> API.</p>
|
|
61
|
-
* <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location,
|
|
62
|
-
* SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the
|
|
63
|
-
* S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services
|
|
64
|
-
* account by default. If you previously deactivated Amazon Web Services STS for a region,
|
|
65
|
-
* you need to reactivate Amazon Web Services STS for that region. For more information, see
|
|
66
|
-
* <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and
|
|
67
|
-
* Deactivating Amazon Web Services STS in an Amazon Web Services Region</a> in the
|
|
68
|
-
* <i>Amazon Web Services Identity and Access Management User
|
|
69
|
-
* Guide</i>.</p>
|
|
70
|
-
* <note>
|
|
71
|
-
* <p> To add the IAM role policies for using this API operation, go to the <a href="https://console.aws.amazon.com/iam/">IAM console</a>, and choose
|
|
72
|
-
* Roles in the left navigation pane. Search the IAM role that you want to grant
|
|
73
|
-
* access to use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API operations, add the following policies to the
|
|
74
|
-
* role. </p>
|
|
75
|
-
* <ul>
|
|
76
|
-
* <li>
|
|
77
|
-
* <p>Option 1: For a full SageMaker access, search and attach the
|
|
78
|
-
* <code>AmazonSageMakerFullAccess</code> policy.</p>
|
|
79
|
-
* </li>
|
|
80
|
-
* <li>
|
|
81
|
-
* <p>Option 2: For granting a limited access to an IAM role, paste the
|
|
82
|
-
* following Action elements manually into the JSON file of the IAM role: </p>
|
|
83
|
-
* <p>
|
|
84
|
-
* <code>"Action": ["sagemaker:CreateEndpoint",
|
|
85
|
-
* "sagemaker:CreateEndpointConfig"]</code>
|
|
86
|
-
* </p>
|
|
87
|
-
* <p>
|
|
88
|
-
* <code>"Resource": [</code>
|
|
89
|
-
* </p>
|
|
90
|
-
* <p>
|
|
91
|
-
* <code>"arn:aws:sagemaker:region:account-id:endpoint/endpointName"</code>
|
|
92
|
-
* </p>
|
|
93
|
-
* <p>
|
|
94
|
-
* <code>"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"</code>
|
|
95
|
-
* </p>
|
|
96
|
-
* <p>
|
|
97
|
-
* <code>]</code>
|
|
98
|
-
* </p>
|
|
99
|
-
* <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html">SageMaker API
|
|
100
|
-
* Permissions: Actions, Permissions, and Resources
|
|
101
|
-
* Reference</a>.</p>
|
|
102
|
-
* </li>
|
|
103
|
-
* </ul>
|
|
104
|
-
* </note>
|
|
30
|
+
* <p>Creates an endpoint using the endpoint configuration specified in the request. SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API. </p> <p> Use this API to deploy models using SageMaker hosting services. </p> <note> <p> You must not delete an <code>EndpointConfig</code> that is in use by an endpoint that is live or while the <code>UpdateEndpoint</code> or <code>CreateEndpoint</code> operations are being performed on the endpoint. To update an endpoint, you must create a new <code>EndpointConfig</code>.</p> </note> <p>The endpoint name must be unique within an Amazon Web Services Region in your Amazon Web Services account. </p> <p>When it receives the request, SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them. </p> <note> <p>When you call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a>, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html"> <code>Eventually Consistent Reads</code> </a>, the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpointConfig.html">DescribeEndpointConfig</a> before calling <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> to minimize the potential impact of a DynamoDB eventually consistent read.</p> </note> <p>When SageMaker receives the request, it sets the endpoint status to <code>Creating</code>. After it creates the endpoint, it sets the status to <code>InService</code>. SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_DescribeEndpoint.html">DescribeEndpoint</a> API.</p> <p>If any of the models hosted at this endpoint get model data from an Amazon S3 location, SageMaker uses Amazon Web Services Security Token Service to download model artifacts from the S3 path you provided. Amazon Web Services STS is activated in your Amazon Web Services account by default. If you previously deactivated Amazon Web Services STS for a region, you need to reactivate Amazon Web Services STS for that region. For more information, see <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html">Activating and Deactivating Amazon Web Services STS in an Amazon Web Services Region</a> in the <i>Amazon Web Services Identity and Access Management User Guide</i>.</p> <note> <p> To add the IAM role policies for using this API operation, go to the <a href="https://console.aws.amazon.com/iam/">IAM console</a>, and choose Roles in the left navigation pane. Search the IAM role that you want to grant access to use the <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpoint.html">CreateEndpoint</a> and <a href="https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateEndpointConfig.html">CreateEndpointConfig</a> API operations, add the following policies to the role. </p> <ul> <li> <p>Option 1: For a full SageMaker access, search and attach the <code>AmazonSageMakerFullAccess</code> policy.</p> </li> <li> <p>Option 2: For granting a limited access to an IAM role, paste the following Action elements manually into the JSON file of the IAM role: </p> <p> <code>"Action": ["sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig"]</code> </p> <p> <code>"Resource": [</code> </p> <p> <code>"arn:aws:sagemaker:region:account-id:endpoint/endpointName"</code> </p> <p> <code>"arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"</code> </p> <p> <code>]</code> </p> <p>For more information, see <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/api-permissions-reference.html">SageMaker API Permissions: Actions, Permissions, and Resources Reference</a>.</p> </li> </ul> </note>
|
|
105
31
|
* @example
|
|
106
32
|
* Use a bare-bones client and the command you need to make an API call.
|
|
107
33
|
* ```javascript
|
|
@@ -170,8 +96,7 @@ declare const CreateEndpointCommand_base: {
|
|
|
170
96
|
* @see {@link SageMakerClientResolvedConfig | config} for SageMakerClient's `config` shape.
|
|
171
97
|
*
|
|
172
98
|
* @throws {@link ResourceLimitExceeded} (client fault)
|
|
173
|
-
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many
|
|
174
|
-
* training jobs created. </p>
|
|
99
|
+
* <p> You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created. </p>
|
|
175
100
|
*
|
|
176
101
|
* @throws {@link SageMakerServiceException}
|
|
177
102
|
* <p>Base exception class for all service exceptions from SageMaker service.</p>
|