whispercpp 1.3.2 → 1.3.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (244) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +6 -3
  3. data/README.md +71 -14
  4. data/Rakefile +20 -7
  5. data/ext/.gitignore +4 -6
  6. data/ext/dependencies.rb +36 -24
  7. data/ext/extconf.rb +1 -1
  8. data/ext/options.rb +48 -184
  9. data/ext/ruby_whisper.c +18 -0
  10. data/ext/ruby_whisper_context.c +43 -12
  11. data/ext/ruby_whisper_model.c +1 -1
  12. data/ext/ruby_whisper_params.c +4 -2
  13. data/ext/ruby_whisper_segment.c +81 -4
  14. data/ext/ruby_whisper_transcribe.cpp +13 -7
  15. data/ext/ruby_whisper_vad_params.c +1 -1
  16. data/ext/sources/CMakeLists.txt +5 -1
  17. data/ext/sources/bindings/javascript/package.json +1 -1
  18. data/ext/sources/examples/addon.node/__test__/whisper.spec.js +120 -24
  19. data/ext/sources/examples/addon.node/addon.cpp +150 -31
  20. data/ext/sources/examples/addon.node/index.js +3 -0
  21. data/ext/sources/examples/addon.node/vad-example.js +132 -0
  22. data/ext/sources/examples/bench/bench.cpp +3 -2
  23. data/ext/sources/examples/cli/cli.cpp +3 -2
  24. data/ext/sources/examples/command/command.cpp +32 -8
  25. data/ext/sources/examples/common-whisper.cpp +14 -7
  26. data/ext/sources/examples/lsp/lsp.cpp +2 -0
  27. data/ext/sources/examples/quantize/quantize.cpp +3 -0
  28. data/ext/sources/examples/server/CMakeLists.txt +3 -0
  29. data/ext/sources/examples/server/server.cpp +169 -22
  30. data/ext/sources/examples/stream/stream.cpp +6 -0
  31. data/ext/sources/examples/talk-llama/CMakeLists.txt +4 -1
  32. data/ext/sources/examples/talk-llama/llama-arch.cpp +171 -3
  33. data/ext/sources/examples/talk-llama/llama-arch.h +28 -1
  34. data/ext/sources/examples/talk-llama/llama-batch.cpp +741 -272
  35. data/ext/sources/examples/talk-llama/llama-batch.h +112 -54
  36. data/ext/sources/examples/talk-llama/llama-chat.cpp +30 -8
  37. data/ext/sources/examples/talk-llama/llama-chat.h +1 -0
  38. data/ext/sources/examples/talk-llama/llama-context.cpp +520 -351
  39. data/ext/sources/examples/talk-llama/llama-context.h +38 -17
  40. data/ext/sources/examples/talk-llama/llama-cparams.cpp +1 -1
  41. data/ext/sources/examples/talk-llama/llama-cparams.h +1 -1
  42. data/ext/sources/examples/talk-llama/llama-graph.cpp +447 -372
  43. data/ext/sources/examples/talk-llama/llama-graph.h +128 -58
  44. data/ext/sources/examples/talk-llama/llama-hparams.cpp +10 -2
  45. data/ext/sources/examples/talk-llama/llama-hparams.h +19 -2
  46. data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.cpp +279 -0
  47. data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.h +128 -0
  48. data/ext/sources/examples/talk-llama/llama-kv-cache-unified.cpp +1841 -0
  49. data/ext/sources/examples/talk-llama/llama-kv-cache-unified.h +303 -0
  50. data/ext/sources/examples/talk-llama/llama-kv-cache.h +14 -472
  51. data/ext/sources/examples/talk-llama/llama-kv-cells.h +86 -26
  52. data/ext/sources/examples/talk-llama/llama-memory-hybrid.cpp +246 -0
  53. data/ext/sources/examples/talk-llama/llama-memory-hybrid.h +138 -0
  54. data/ext/sources/examples/talk-llama/llama-memory-recurrent.cpp +1125 -0
  55. data/ext/sources/examples/talk-llama/llama-memory-recurrent.h +183 -0
  56. data/ext/sources/examples/talk-llama/llama-memory.cpp +58 -0
  57. data/ext/sources/examples/talk-llama/llama-memory.h +88 -4
  58. data/ext/sources/examples/talk-llama/llama-mmap.cpp +1 -1
  59. data/ext/sources/examples/talk-llama/llama-model-loader.cpp +42 -17
  60. data/ext/sources/examples/talk-llama/llama-model-saver.cpp +1 -0
  61. data/ext/sources/examples/talk-llama/llama-model.cpp +1863 -563
  62. data/ext/sources/examples/talk-llama/llama-model.h +27 -0
  63. data/ext/sources/examples/talk-llama/llama-quant.cpp +89 -6
  64. data/ext/sources/examples/talk-llama/llama-vocab.cpp +65 -28
  65. data/ext/sources/examples/talk-llama/llama-vocab.h +1 -0
  66. data/ext/sources/examples/talk-llama/llama.cpp +11 -7
  67. data/ext/sources/examples/talk-llama/llama.h +147 -40
  68. data/ext/sources/examples/talk-llama/talk-llama.cpp +2 -0
  69. data/ext/sources/examples/talk-llama/unicode.cpp +5 -0
  70. data/ext/sources/examples/vad-speech-segments/speech.cpp +6 -0
  71. data/ext/sources/examples/wchess/wchess.cmd/wchess.cmd.cpp +2 -0
  72. data/ext/sources/ggml/CMakeLists.txt +48 -3
  73. data/ext/sources/ggml/cmake/common.cmake +24 -0
  74. data/ext/sources/ggml/include/ggml-backend.h +1 -1
  75. data/ext/sources/ggml/include/ggml-cpu.h +2 -0
  76. data/ext/sources/ggml/include/ggml.h +144 -5
  77. data/ext/sources/ggml/src/CMakeLists.txt +82 -24
  78. data/ext/sources/ggml/src/ggml-backend-reg.cpp +5 -0
  79. data/ext/sources/ggml/src/ggml-backend.cpp +46 -23
  80. data/ext/sources/ggml/src/ggml-blas/CMakeLists.txt +3 -3
  81. data/ext/sources/ggml/src/ggml-cann/CMakeLists.txt +1 -0
  82. data/ext/sources/ggml/src/ggml-cann/common.h +6 -1
  83. data/ext/sources/ggml/src/ggml-cann/ggml-cann.cpp +33 -9
  84. data/ext/sources/ggml/src/ggml-common.h +4 -0
  85. data/ext/sources/ggml/src/ggml-cpu/CMakeLists.txt +133 -40
  86. data/ext/sources/ggml/src/ggml-cpu/amx/amx.cpp +1 -1
  87. data/ext/sources/ggml/src/ggml-cpu/amx/mmq.cpp +11 -10
  88. data/ext/sources/ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp +94 -0
  89. data/ext/sources/ggml/src/ggml-cpu/arch/arm/quants.c +4114 -0
  90. data/ext/sources/ggml/src/ggml-cpu/arch/arm/repack.cpp +2163 -0
  91. data/ext/sources/ggml/src/ggml-cpu/arch/loongarch/quants.c +2639 -0
  92. data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp +82 -0
  93. data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/quants.c +2732 -0
  94. data/ext/sources/ggml/src/ggml-cpu/arch/riscv/quants.c +2069 -0
  95. data/ext/sources/ggml/src/ggml-cpu/arch/riscv/repack.cpp +397 -0
  96. data/ext/sources/ggml/src/ggml-cpu/arch/s390/quants.c +1300 -0
  97. data/ext/sources/ggml/src/ggml-cpu/arch/wasm/quants.c +1481 -0
  98. data/ext/sources/ggml/src/ggml-cpu/arch/x86/quants.c +4311 -0
  99. data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-aarch64.cpp → arch/x86/repack.cpp} +79 -3225
  100. data/ext/sources/ggml/src/ggml-cpu/arch-fallback.h +184 -0
  101. data/ext/sources/ggml/src/ggml-cpu/common.h +4 -3
  102. data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-impl.h +16 -7
  103. data/ext/sources/ggml/src/ggml-cpu/ggml-cpu.c +146 -105
  104. data/ext/sources/ggml/src/ggml-cpu/ggml-cpu.cpp +12 -8
  105. data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-hbm.cpp → hbm.cpp} +1 -1
  106. data/ext/sources/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +1 -1
  107. data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.cpp +58 -8
  108. data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.h +5 -0
  109. data/ext/sources/ggml/src/ggml-cpu/ops.cpp +1057 -174
  110. data/ext/sources/ggml/src/ggml-cpu/ops.h +8 -0
  111. data/ext/sources/ggml/src/ggml-cpu/quants.c +1158 -0
  112. data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-quants.h → quants.h} +26 -0
  113. data/ext/sources/ggml/src/ggml-cpu/repack.cpp +1571 -0
  114. data/ext/sources/ggml/src/ggml-cpu/repack.h +98 -0
  115. data/ext/sources/ggml/src/ggml-cpu/simd-mappings.h +330 -38
  116. data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-traits.cpp → traits.cpp} +1 -1
  117. data/ext/sources/ggml/src/ggml-cpu/vec.cpp +111 -18
  118. data/ext/sources/ggml/src/ggml-cpu/vec.h +303 -94
  119. data/ext/sources/ggml/src/ggml-cuda/common.cuh +60 -37
  120. data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cu +161 -0
  121. data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cuh +5 -0
  122. data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cu +91 -0
  123. data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cuh +4 -0
  124. data/ext/sources/ggml/src/ggml-cuda/convert.cu +22 -0
  125. data/ext/sources/ggml/src/ggml-cuda/convert.cuh +5 -0
  126. data/ext/sources/ggml/src/ggml-cuda/fattn-common.cuh +2 -2
  127. data/ext/sources/ggml/src/ggml-cuda/fattn-mma-f16.cuh +5 -2
  128. data/ext/sources/ggml/src/ggml-cuda/fattn-wmma-f16.cu +4 -0
  129. data/ext/sources/ggml/src/ggml-cuda/ggml-cuda.cu +265 -123
  130. data/ext/sources/ggml/src/ggml-cuda/mean.cu +19 -0
  131. data/ext/sources/ggml/src/ggml-cuda/mean.cuh +3 -0
  132. data/ext/sources/ggml/src/ggml-cuda/mmv.cu +257 -87
  133. data/ext/sources/ggml/src/ggml-cuda/mmv.cuh +2 -3
  134. data/ext/sources/ggml/src/ggml-cuda/ssm-scan.cu +6 -4
  135. data/ext/sources/ggml/src/ggml-cuda/sumrows.cu +5 -18
  136. data/ext/sources/ggml/src/ggml-cuda/sumrows.cuh +0 -1
  137. data/ext/sources/ggml/src/ggml-cuda/unary.cu +89 -0
  138. data/ext/sources/ggml/src/ggml-cuda/unary.cuh +7 -0
  139. data/ext/sources/ggml/src/ggml-hip/CMakeLists.txt +4 -0
  140. data/ext/sources/ggml/src/ggml-impl.h +127 -183
  141. data/ext/sources/ggml/src/ggml-metal/CMakeLists.txt +11 -10
  142. data/ext/sources/ggml/src/ggml-metal/ggml-metal-impl.h +27 -0
  143. data/ext/sources/ggml/src/ggml-metal/ggml-metal.m +331 -49
  144. data/ext/sources/ggml/src/ggml-metal/ggml-metal.metal +564 -282
  145. data/ext/sources/ggml/src/ggml-musa/mudnn.cuh +2 -2
  146. data/ext/sources/ggml/src/ggml-opencl/CMakeLists.txt +14 -0
  147. data/ext/sources/ggml/src/ggml-opencl/ggml-opencl.cpp +1859 -489
  148. data/ext/sources/ggml/src/ggml-opencl/kernels/argsort.cl +86 -0
  149. data/ext/sources/ggml/src/ggml-opencl/kernels/concat.cl +109 -0
  150. data/ext/sources/ggml/src/ggml-opencl/kernels/div.cl +72 -0
  151. data/ext/sources/ggml/src/ggml-opencl/kernels/glu.cl +201 -0
  152. data/ext/sources/ggml/src/ggml-opencl/kernels/group_norm.cl +72 -0
  153. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_id_q4_0_f32_8x_flat.cl +283 -0
  154. data/ext/sources/ggml/src/ggml-opencl/kernels/pad.cl +30 -0
  155. data/ext/sources/ggml/src/ggml-opencl/kernels/repeat.cl +39 -0
  156. data/ext/sources/ggml/src/ggml-opencl/kernels/sigmoid.cl +29 -0
  157. data/ext/sources/ggml/src/ggml-opencl/kernels/sub.cl +72 -0
  158. data/ext/sources/ggml/src/ggml-opencl/kernels/sum_rows.cl +39 -0
  159. data/ext/sources/ggml/src/ggml-opencl/kernels/tanh.cl +63 -0
  160. data/ext/sources/ggml/src/ggml-opencl/kernels/tsembd.cl +48 -0
  161. data/ext/sources/ggml/src/ggml-opencl/kernels/upscale.cl +121 -0
  162. data/ext/sources/ggml/src/ggml-quants.c +6 -8
  163. data/ext/sources/ggml/src/ggml-rpc/ggml-rpc.cpp +18 -15
  164. data/ext/sources/ggml/src/ggml-sycl/CMakeLists.txt +3 -3
  165. data/ext/sources/ggml/src/ggml-sycl/binbcast.cpp +5 -6
  166. data/ext/sources/ggml/src/ggml-sycl/common.hpp +20 -48
  167. data/ext/sources/ggml/src/ggml-sycl/concat.cpp +28 -41
  168. data/ext/sources/ggml/src/ggml-sycl/conv.cpp +4 -10
  169. data/ext/sources/ggml/src/ggml-sycl/convert.cpp +117 -165
  170. data/ext/sources/ggml/src/ggml-sycl/cpy.cpp +192 -53
  171. data/ext/sources/ggml/src/ggml-sycl/dequantize.hpp +32 -0
  172. data/ext/sources/ggml/src/ggml-sycl/dmmv.cpp +49 -67
  173. data/ext/sources/ggml/src/ggml-sycl/dpct/helper.hpp +31 -1
  174. data/ext/sources/ggml/src/ggml-sycl/element_wise.cpp +648 -1039
  175. data/ext/sources/ggml/src/ggml-sycl/element_wise.hpp +18 -9
  176. data/ext/sources/ggml/src/ggml-sycl/gemm.hpp +3 -0
  177. data/ext/sources/ggml/src/ggml-sycl/getrows.cpp +8 -105
  178. data/ext/sources/ggml/src/ggml-sycl/ggml-sycl.cpp +238 -100
  179. data/ext/sources/ggml/src/ggml-sycl/gla.cpp +2 -2
  180. data/ext/sources/ggml/src/ggml-sycl/im2col.cpp +1 -1
  181. data/ext/sources/ggml/src/ggml-sycl/mmq.cpp +60 -80
  182. data/ext/sources/ggml/src/ggml-sycl/mmvq.cpp +158 -203
  183. data/ext/sources/ggml/src/ggml-sycl/norm.cpp +55 -74
  184. data/ext/sources/ggml/src/ggml-sycl/quants.hpp +38 -10
  185. data/ext/sources/ggml/src/ggml-sycl/rope.cpp +138 -27
  186. data/ext/sources/ggml/src/ggml-sycl/softmax.cpp +3 -3
  187. data/ext/sources/ggml/src/ggml-sycl/sycl_hw.cpp +3 -1
  188. data/ext/sources/ggml/src/ggml-sycl/sycl_hw.hpp +3 -0
  189. data/ext/sources/ggml/src/ggml-sycl/tsembd.cpp +3 -8
  190. data/ext/sources/ggml/src/ggml-sycl/vecdotq.hpp +108 -16
  191. data/ext/sources/ggml/src/ggml-sycl/wkv.cpp +12 -16
  192. data/ext/sources/ggml/src/ggml-vulkan/CMakeLists.txt +36 -32
  193. data/ext/sources/ggml/src/ggml-vulkan/ggml-vulkan.cpp +726 -282
  194. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt +4 -12
  195. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp +98 -0
  196. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/geglu.comp +13 -0
  197. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_head.comp +15 -0
  198. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_main.comp +29 -0
  199. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/reglu.comp +9 -0
  200. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp +12 -3
  201. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/swiglu.comp +9 -0
  202. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +10 -1
  203. data/ext/sources/ggml/src/ggml.c +328 -48
  204. data/ext/sources/ggml/src/ggml.cpp +26 -0
  205. data/ext/sources/ggml/src/gguf.cpp +24 -3
  206. data/ext/sources/include/whisper.h +2 -0
  207. data/ext/sources/src/CMakeLists.txt +2 -0
  208. data/ext/sources/src/coreml/whisper-compat.h +10 -0
  209. data/ext/sources/src/coreml/whisper-compat.m +35 -0
  210. data/ext/sources/src/coreml/whisper-decoder-impl.m +1 -0
  211. data/ext/sources/src/coreml/whisper-encoder-impl.m +1 -0
  212. data/ext/sources/src/whisper.cpp +218 -169
  213. data/extsources.rb +15 -9
  214. data/lib/whisper/context.rb +15 -0
  215. data/lib/whisper/model/uri.rb +56 -1
  216. data/lib/whisper/segment.rb +58 -0
  217. data/sig/whisper.rbs +68 -38
  218. data/{tests → test}/helper.rb +1 -12
  219. data/{tests → test}/test_model.rb +9 -0
  220. data/test/test_package.rb +51 -0
  221. data/test/test_segment.rb +146 -0
  222. data/{tests → test}/test_whisper.rb +70 -0
  223. data/whispercpp.gemspec +2 -3
  224. metadata +91 -43
  225. data/ext/sources/.dockerignore +0 -3
  226. data/ext/sources/.github/workflows/bindings-ruby.yml +0 -21
  227. data/ext/sources/ci/run.sh +0 -336
  228. data/ext/sources/close-issue.yml +0 -28
  229. data/ext/sources/examples/talk-llama/llama-kv-cache.cpp +0 -2739
  230. data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +0 -8
  231. data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-quants.c +0 -13747
  232. data/tests/test_package.rb +0 -46
  233. data/tests/test_segment.rb +0 -74
  234. /data/ext/sources/ggml/src/ggml-cpu/{cpu-feats-x86.cpp → arch/x86/cpu-feats.cpp} +0 -0
  235. /data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-hbm.h → hbm.h} +0 -0
  236. /data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-traits.h → traits.h} +0 -0
  237. /data/{tests → test}/jfk_reader/.gitignore +0 -0
  238. /data/{tests → test}/jfk_reader/extconf.rb +0 -0
  239. /data/{tests → test}/jfk_reader/jfk_reader.c +0 -0
  240. /data/{tests → test}/test_callback.rb +0 -0
  241. /data/{tests → test}/test_error.rb +0 -0
  242. /data/{tests → test}/test_params.rb +0 -0
  243. /data/{tests → test}/test_vad.rb +0 -0
  244. /data/{tests → test}/test_vad_params.rb +0 -0
@@ -1,12 +1,19 @@
1
1
  #include "common.hpp"
2
+ #include "ggml-sycl/presets.hpp"
2
3
  #include "ggml.h"
3
4
  #include "element_wise.hpp"
4
5
 
6
+ #define SYCL_GLOBAL_ID_LOOP(K, ITEM) \
7
+ for (auto i = ITEM.get_global_id(0); i < (size_t)K; i += ITEM.get_global_range(0))
8
+
9
+ #define SYCL_LOCAL_ID_CALC(ITEM, IDX) \
10
+ (ITEM.get_local_range(IDX) * ITEM.get_group(IDX) + ITEM.get_local_id(IDX))
11
+
12
+
5
13
  static void acc_f32(const float * x, const float * y, float * dst, const int ne,
6
14
  const int ne10, const int ne11, const int ne12,
7
- const int nb1, const int nb2, int offset, const sycl::nd_item<3> &item_ct1) {
8
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
9
- item_ct1.get_local_id(2);
15
+ const int nb1, const int nb2, int offset, const sycl::nd_item<1> &item_ct1) {
16
+ const int i = SYCL_LOCAL_ID_CALC(item_ct1, 0);
10
17
  if (i >= ne) {
11
18
  return;
12
19
  }
@@ -21,239 +28,280 @@ static void acc_f32(const float * x, const float * y, float * dst, const int ne,
21
28
  }
22
29
  }
23
30
 
31
+ /* Unary OP funcs */
24
32
  template<typename T>
25
- static void sgn(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
26
- for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
27
- dst[i] = x[i] > static_cast<T>(0.f) ? static_cast<T>(1.f) : ((x[i] < static_cast<T>(0.f) ? static_cast<T>(-1.f) : static_cast<T>(0.f)));
28
- }
33
+ static __dpct_inline__ T op_sgn(T x) {
34
+ return x > static_cast<T>(0.f) ? static_cast<T>(1.f) : ((x < static_cast<T>(0.f) ? static_cast<T>(-1.f) : static_cast<T>(0.f)));
29
35
  }
30
36
 
31
37
  template<typename T>
32
- static void abs_op(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
33
- for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
34
- dst[i] = sycl::fabs(x[i]);
35
- }
38
+ static __dpct_inline__ T op_abs(T x) {
39
+ return sycl::fabs(x);
36
40
  }
37
41
 
38
42
  template<typename T>
39
- static void elu_op(const T * x, T * dst, const int k, const sycl::nd_item<3> &item_ct1) {
40
- for(auto i = item_ct1.get_global_id(2); i < (const size_t)k; i += item_ct1.get_global_range(2)) {
41
- dst[i] = (x[i] > static_cast<T>(0.f)) ? x[i] : sycl::expm1(x[i]);
42
- }
43
+ static __dpct_inline__ T op_elu(T x) {
44
+ return (x > static_cast<T>(0.f)) ? x : sycl::expm1(x);
43
45
  }
44
46
 
45
47
  template<typename T>
46
- static void gelu(const T * x, T * dst, const int k,
47
- const sycl::nd_item<3> &item_ct1) {
48
+ static __dpct_inline__ T op_gelu(T x) {
48
49
  const T GELU_COEF_A = static_cast<T>(0.044715f);
49
50
  const T SQRT_2_OVER_PI = static_cast<T>(0.79788456080286535587989211986876f);
50
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
51
- item_ct1.get_local_id(2);
51
+ return static_cast<T>(0.5f) * x *
52
+ (static_cast<T>(1.0f) +
53
+ sycl::tanh(SQRT_2_OVER_PI * x * (static_cast<T>(1.0f) + GELU_COEF_A * x * x)));
54
+ }
52
55
 
53
- if (i >= k) {
54
- return;
55
- }
56
+ template<typename T>
57
+ static __dpct_inline__ T op_silu(T x) {
58
+ return x / (static_cast<T>(1.0f) + sycl::native::exp(-x));
59
+ }
56
60
 
57
- float xi = x[i];
58
- dst[i] = static_cast<T>(0.5f) * xi *
59
- (static_cast<T>(1.0f) +
60
- sycl::tanh(SQRT_2_OVER_PI * xi * (static_cast<T>(1.0f) + GELU_COEF_A * xi * xi)));
61
+ template<typename T>
62
+ static __dpct_inline__ T op_gelu_quick(T x) {
63
+ const T GELU_QUICK_COEF_LOCAL = static_cast<T>(-1.702f);
64
+ return x * (static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(GELU_QUICK_COEF_LOCAL * x)));
61
65
  }
62
66
 
63
67
  template<typename T>
64
- static void silu(const T * x, T * dst, const int k,
65
- const sycl::nd_item<3> &item_ct1) {
66
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
67
- item_ct1.get_local_id(2);
68
+ static __dpct_inline__ T op_gelu_erf(T x) {
69
+ const T SQRT_2_INV = static_cast<T>(0.70710678118654752440084436210484f);
70
+ return static_cast<T>(0.5f) * x * (static_cast<T>(1.0f) + sycl::erf(x * SQRT_2_INV));
71
+ }
68
72
 
69
- if (i >= k) {
70
- return;
71
- }
72
- dst[i] = x[i] / (static_cast<T>(1.0f) + sycl::native::exp(-x[i]));
73
+ template<typename T>
74
+ static __dpct_inline__ T op_tanh(T x) {
75
+ return sycl::tanh(x);
73
76
  }
74
77
 
75
78
  template<typename T>
76
- static void gelu_quick(const T *x, T *dst, int k,
77
- const sycl::nd_item<3> &item_ct1) {
78
- const float GELU_QUICK_COEF = -1.702f;
79
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
80
- item_ct1.get_local_id(2);
81
- if (i >= k) {
82
- return;
83
- }
84
- dst[i] = x[i] * (static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(GELU_QUICK_COEF * x[i])));
79
+ static __dpct_inline__ T op_relu(T x) {
80
+ return sycl::fmax(x, static_cast<T>(0));
85
81
  }
86
82
 
87
83
  template<typename T>
88
- static void tanh(const T *x, T *dst, int k,
89
- const sycl::nd_item<3> &item_ct1) {
90
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
91
- item_ct1.get_local_id(2);
92
- if (i >= k) {
93
- return;
94
- }
95
- dst[i] = sycl::tanh((x[i]));
84
+ static __dpct_inline__ T op_sigmoid(T x) {
85
+ return static_cast<T>(1.0f) / (static_cast<T>(1.0f) + sycl::native::exp(-x));
96
86
  }
97
87
 
98
88
  template<typename T>
99
- static void relu(const T * x, T * dst, const int k,
100
- const sycl::nd_item<3> &item_ct1) {
101
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
102
- item_ct1.get_local_id(2);
89
+ static __dpct_inline__ T op_sqrt(T x) {
90
+ return sycl::sqrt(x);
91
+ }
103
92
 
104
- if (i >= k) {
105
- return;
106
- }
107
- dst[i] = sycl::fmax((x[i]), static_cast<T>(0));
93
+ template<typename T>
94
+ static __dpct_inline__ T op_sin(T x) {
95
+ return sycl::sin(x);
108
96
  }
109
97
 
110
98
  template<typename T>
111
- static void sigmoid(const T * x, T * dst, const int k,
112
- const sycl::nd_item<3> &item_ct1) {
113
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
114
- item_ct1.get_local_id(2);
99
+ static __dpct_inline__ T op_cos(T x) {
100
+ return sycl::cos(x);
101
+ }
115
102
 
116
- if (i >= k) {
117
- return;
103
+ template<typename T>
104
+ static __dpct_inline__ T op_hardsigmoid(T x) {
105
+ return sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
106
+ }
107
+
108
+ template<typename T>
109
+ static __dpct_inline__ T op_hardswish(T x) {
110
+ return x * sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
111
+ }
112
+
113
+ template<typename T>
114
+ static __dpct_inline__ T op_exp(T x) {
115
+ return sycl::exp(x);
116
+ }
117
+
118
+ template<typename T>
119
+ static __dpct_inline__ T op_log(T x) {
120
+ if (x <= static_cast<T>(0)) {
121
+ return neg_infinity<T>();
118
122
  }
119
- dst[i] = 1.0f / (static_cast<T>(1.0f) + sycl::native::exp(-x[i]));
123
+ return sycl::log(x);
120
124
  }
121
125
 
122
126
  template<typename T>
123
- static void sqrt(const T * x, T * dst, const int k,
124
- const sycl::nd_item<3> &item_ct1) {
125
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
126
- item_ct1.get_local_id(2);
127
+ static __dpct_inline__ T op_neg(T x) {
128
+ return -x;
129
+ }
127
130
 
128
- if (i >= k) {
129
- return;
131
+ template<typename T>
132
+ static __dpct_inline__ T op_step(T x) {
133
+ return (x > static_cast<T>(0.0f)) ? static_cast<T>(1.0f) : static_cast<T>(0.0f);
134
+ }
135
+
136
+ template<typename T>
137
+ static __dpct_inline__ T op_leaky_relu(T x, float negative_slope) {
138
+ T neg_slope_T = static_cast<T>(negative_slope);
139
+ return sycl::fmax(x, static_cast<T>(0)) +
140
+ sycl::fmin(x, static_cast<T>(0.0f)) * neg_slope_T;
141
+ }
142
+
143
+ template<typename T>
144
+ static __dpct_inline__ T op_sqr(T x) {
145
+ return x * x;
146
+ }
147
+
148
+ template<typename T>
149
+ static __dpct_inline__ T op_clamp(T x, float min_val, float max_val) {
150
+ return x < static_cast<T>(min_val) ? static_cast<T>(min_val) : (x > static_cast<T>(max_val) ? static_cast<T>(max_val) : x);
151
+ }
152
+
153
+ template<typename T>
154
+ static void unary_op_sgn_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
155
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
156
+ dst[i] = op_sgn(x[i]);
130
157
  }
131
- dst[i] = sycl::sqrt(x[i]);
132
158
  }
133
159
 
134
160
  template<typename T>
135
- static void sin(const T * x, T * dst, const int k,
136
- const sycl::nd_item<3> &item_ct1) {
137
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
138
- item_ct1.get_local_id(2);
161
+ static void unary_op_abs_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
162
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
163
+ dst[i] = op_abs(x[i]);
164
+ }
165
+ }
139
166
 
140
- if (i >= k) {
141
- return;
167
+ template<typename T>
168
+ static void unary_op_elu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
169
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
170
+ dst[i] = op_elu(x[i]);
142
171
  }
143
- dst[i] = sycl::sin(x[i]);
144
172
  }
145
173
 
146
174
  template<typename T>
147
- static void cos(const T * x, T * dst, const int k,
148
- const sycl::nd_item<3> &item_ct1) {
149
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
150
- item_ct1.get_local_id(2);
175
+ static void unary_op_gelu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
176
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
177
+ dst[i] = op_gelu(x[i]);
178
+ }
179
+ }
151
180
 
152
- if (i >= k) {
153
- return;
181
+ template<typename T>
182
+ static void unary_op_silu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
183
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
184
+ dst[i] = op_silu(x[i]);
154
185
  }
155
- dst[i] = sycl::cos(x[i]);
156
186
  }
157
187
 
158
188
  template<typename T>
159
- static void hardsigmoid(const T * x, T * dst, const int k,
160
- const sycl::nd_item<3> &item_ct1) {
161
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
162
- item_ct1.get_local_id(2);
189
+ static void unary_op_gelu_quick_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
190
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
191
+ dst[i] = op_gelu_quick(x[i]);
192
+ }
193
+ }
163
194
 
164
- if (i >= k) {
165
- return;
195
+ template<typename T>
196
+ static void unary_op_gelu_erf_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
197
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
198
+ dst[i] = op_gelu_erf(x[i]);
199
+ }
200
+ }
201
+
202
+ template<typename T>
203
+ static void unary_op_tanh_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
204
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
205
+ dst[i] = op_tanh(x[i]);
166
206
  }
167
- dst[i] = sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x[i] + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
168
207
  }
169
208
 
170
209
  template<typename T>
171
- static void hardswish(const T * x, T * dst, const int k,
172
- const sycl::nd_item<3> &item_ct1) {
173
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
174
- item_ct1.get_local_id(2);
210
+ static void unary_op_relu_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
211
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
212
+ dst[i] = op_relu(x[i]);
213
+ }
214
+ }
175
215
 
176
- if (i >= k) {
177
- return;
216
+ template<typename T>
217
+ static void unary_op_sigmoid_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
218
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
219
+ dst[i] = op_sigmoid(x[i]);
178
220
  }
179
- dst[i] = x[i] * sycl::fmin(static_cast<T>(1.0f), sycl::fmax(static_cast<T>(0.0f), (x[i] + static_cast<T>(3.0f)) / static_cast<T>(6.0f)));
180
221
  }
181
222
 
182
223
  template<typename T>
183
- static void exp(const T * x, T * dst, const int k,
184
- const sycl::nd_item<3> &item_ct1) {
185
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
186
- item_ct1.get_local_id(2);
224
+ static void unary_op_sqrt_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
225
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
226
+ dst[i] = op_sqrt(x[i]);
227
+ }
228
+ }
187
229
 
188
- if (i >= k) {
189
- return;
230
+ template<typename T>
231
+ static void unary_op_sin_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
232
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
233
+ dst[i] = op_sin(x[i]);
190
234
  }
191
- dst[i] = sycl::exp(x[i]);
192
235
  }
193
236
 
194
237
  template<typename T>
195
- static void log(const T * x, T * dst, const int k,
196
- const sycl::nd_item<3> &item_ct1) {
197
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
198
- item_ct1.get_local_id(2);
238
+ static void unary_op_cos_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
239
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
240
+ dst[i] = op_cos(x[i]);
241
+ }
242
+ }
199
243
 
200
- if (i >= k) {
201
- return;
244
+ template<typename T>
245
+ static void unary_op_hardsigmoid_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
246
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
247
+ dst[i] = op_hardsigmoid(x[i]);
202
248
  }
203
- T xi = x[i];
204
- if (xi <= 0) {
205
- dst[i] = neg_infinity<T>();
206
- } else {
207
- dst[i] = sycl::log(xi);
249
+ }
250
+
251
+ template<typename T>
252
+ static void unary_op_hardswish_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
253
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
254
+ dst[i] = op_hardswish(x[i]);
208
255
  }
209
256
  }
210
257
 
211
258
  template<typename T>
212
- static void neg(const T * x, T * dst, const int k,
213
- const sycl::nd_item<3> &item_ct1) {
214
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
215
- item_ct1.get_local_id(2);
259
+ static void unary_op_exp_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
260
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
261
+ dst[i] = op_exp(x[i]);
262
+ }
263
+ }
216
264
 
217
- if (i >= k) {
218
- return;
265
+ template<typename T>
266
+ static void unary_op_log_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
267
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
268
+ dst[i] = op_log(x[i]);
219
269
  }
220
- dst[i] = -x[i];
221
270
  }
222
271
 
223
272
  template<typename T>
224
- static void step(const T * x, T * dst, const int k,
225
- const sycl::nd_item<3> &item_ct1) {
226
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
227
- item_ct1.get_local_id(2);
273
+ static void unary_op_neg_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
274
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
275
+ dst[i] = op_neg(x[i]);
276
+ }
277
+ }
228
278
 
229
- if (i >= k) {
230
- return;
279
+ template<typename T>
280
+ static void unary_op_step_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
281
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
282
+ dst[i] = op_step(x[i]);
231
283
  }
232
- dst[i] = x[i] > static_cast<T>(0.0f);
233
284
  }
234
285
 
235
286
  template<typename T>
236
- static void leaky_relu(const T *x, T *dst, const int k, const float negative_slope,
237
- const sycl::nd_item<3> &item_ct1) {
238
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
239
- item_ct1.get_local_id(2);
240
- if (i >= k) {
241
- return;
287
+ static void unary_op_leaky_relu_kernel(const T * x, T * dst, const int k, float negative_slope, const sycl::nd_item<1> &item_ct1) {
288
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
289
+ dst[i] = op_leaky_relu(x[i], negative_slope);
242
290
  }
243
- dst[i] = sycl::fmax((x[i]), static_cast<T>(0)) +
244
- sycl::fmin((x[i]), static_cast<T>(0.0f)) * negative_slope;
245
291
  }
246
292
 
247
293
  template<typename T>
248
- static void sqr(const T * x, T * dst, const int k,
249
- const sycl::nd_item<3> &item_ct1) {
250
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
251
- item_ct1.get_local_id(2);
294
+ static void unary_op_sqr_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1) {
295
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
296
+ dst[i] = op_sqr(x[i]);
297
+ }
298
+ }
252
299
 
253
- if (i >= k) {
254
- return;
300
+ template<typename T>
301
+ static void unary_op_clamp_kernel(const T * x, T * dst, const int k, const sycl::nd_item<1> &item_ct1, float min_val, float max_val) {
302
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
303
+ dst[i] = op_clamp(x[i], min_val, max_val);
255
304
  }
256
- dst[i] = x[i] * x[i];
257
305
  }
258
306
 
259
307
  template<typename T>
@@ -272,10 +320,10 @@ static void upscale(const T *x, T *dst, const int nb00, const int nb01,
272
320
  int i12 = (index / (ne10 * ne11)) % ne12;
273
321
  int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
274
322
 
275
- int i00 = i10 / sf0;
276
- int i01 = i11 / sf1;
277
- int i02 = i12 / sf2;
278
- int i03 = i13 / sf3;
323
+ int i00 = static_cast<int>(i10 / sf0);
324
+ int i01 = static_cast<int>(i11 / sf1);
325
+ int i02 = static_cast<int>(i12 / sf2);
326
+ int i03 = static_cast<int>(i13 / sf3);
279
327
 
280
328
  dst[index] = *(const T *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
281
329
  }
@@ -283,8 +331,7 @@ static void upscale(const T *x, T *dst, const int nb00, const int nb01,
283
331
  template <typename T>
284
332
  static void pad(const T *x, T *dst, const int ne0, const int ne00, const int ne01, const int ne02,
285
333
  const sycl::nd_item<3> &item_ct1) {
286
- int nidx = item_ct1.get_local_id(2) +
287
- item_ct1.get_group(2) * item_ct1.get_local_range(2);
334
+ int nidx = SYCL_LOCAL_ID_CALC(item_ct1, 2);
288
335
  if (nidx >= ne0) {
289
336
  return;
290
337
  }
@@ -301,285 +348,54 @@ static void pad(const T *x, T *dst, const int ne0, const int ne00, const int ne
301
348
  }
302
349
  }
303
350
 
304
-
305
351
  template<typename T>
306
352
  static void clamp(const T * x, T * dst, const float min, const float max, const int k,
307
- const sycl::nd_item<3> &item_ct1) {
308
- const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
309
- item_ct1.get_local_id(2);
310
-
311
- if (i >= k) {
312
- return;
353
+ const sycl::nd_item<1> &item_ct1) {
354
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
355
+ dst[i] = x[i] < static_cast<T>(min) ? static_cast<T>(min) : (x[i] > static_cast<T>(max) ? static_cast<T>(max) : x[i]);
313
356
  }
314
-
315
- dst[i] = x[i] < static_cast<T>(min) ? static_cast<T>(min) : (x[i] > static_cast<T>(max) ? static_cast<T>(max) : x[i]);
316
- }
317
-
318
- static void acc_f32_sycl(const float *x, const float *y, float *dst,
319
- const int n_elements, const int ne10, const int ne11,
320
- const int ne12, const int nb1, const int nb2,
321
- const int offset, queue_ptr stream) {
322
- int num_blocks = (n_elements + SYCL_ACC_BLOCK_SIZE - 1) / SYCL_ACC_BLOCK_SIZE;
323
- stream->parallel_for(
324
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
325
- sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE),
326
- sycl::range<3>(1, 1, SYCL_ACC_BLOCK_SIZE)),
327
- [=](sycl::nd_item<3> item_ct1) {
328
- acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
329
- item_ct1);
330
- });
331
- }
332
-
333
- template<typename T>
334
- static void gelu_sycl(const T *x, T *dst, const int k,
335
- queue_ptr stream) {
336
- const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
337
- stream->parallel_for(
338
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
339
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
340
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
341
- [=](sycl::nd_item<3> item_ct1) {
342
- gelu(x, dst, k, item_ct1);
343
- });
344
- }
345
-
346
- template<typename T>
347
- static void silu_sycl(const T *x, T *dst, const int k,
348
- queue_ptr stream) {
349
- const int num_blocks = (k + SYCL_SILU_BLOCK_SIZE - 1) / SYCL_SILU_BLOCK_SIZE;
350
- stream->parallel_for(
351
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
352
- sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE),
353
- sycl::range<3>(1, 1, SYCL_SILU_BLOCK_SIZE)),
354
- [=](sycl::nd_item<3> item_ct1) {
355
- silu(x, dst, k, item_ct1);
356
- });
357
- }
358
-
359
- template<typename T>
360
- static void sgn_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
361
- // hard code for now
362
- const int num_blocks = ceil_div(k, 256);
363
- stream->parallel_for(
364
- sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range(1, 1, 256)), sycl::range(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
365
- sgn(x, dst, k, item_ct1);
366
- });
367
- }
368
-
369
- template<typename T>
370
- static void abs_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
371
- // hard code for now
372
- const int num_blocks = ceil_div(k, 256);
373
- stream->parallel_for(
374
- sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, 256)), sycl::range<3>(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
375
- abs_op(x, dst, k, item_ct1);
376
- });
377
- }
378
-
379
-
380
- template<typename T>
381
- static void elu_sycl(const T * x, T * dst, const int k, queue_ptr stream) {
382
- // hard code for now
383
- const int num_blocks = ceil_div(k, 256);
384
- stream->parallel_for(
385
- sycl::nd_range<3>((sycl::range<3>(1, 1, num_blocks) * sycl::range<3>(1, 1, 256)), sycl::range<3>(1, 1, 256)), [=](sycl::nd_item<3> item_ct1) {
386
- elu_op(x, dst, k, item_ct1);
387
- });
388
- }
389
-
390
- template<typename T>
391
- static void gelu_quick_sycl(const T *x, T *dst, const int k,
392
- queue_ptr stream) {
393
- const int num_blocks = (k + SYCL_GELU_BLOCK_SIZE - 1) / SYCL_GELU_BLOCK_SIZE;
394
- stream->parallel_for(
395
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
396
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE),
397
- sycl::range<3>(1, 1, SYCL_GELU_BLOCK_SIZE)),
398
- [=](sycl::nd_item<3> item_ct1) {
399
- gelu_quick(x, dst, k, item_ct1);
400
- });
401
- }
402
-
403
- template<typename T>
404
- static void tanh_sycl(const T *x, T *dst, const int k,
405
- queue_ptr stream) {
406
- const int num_blocks = (k + SYCL_TANH_BLOCK_SIZE - 1) / SYCL_TANH_BLOCK_SIZE;
407
- stream->parallel_for(
408
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
409
- sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE),
410
- sycl::range<3>(1, 1, SYCL_TANH_BLOCK_SIZE)),
411
- [=](sycl::nd_item<3> item_ct1) {
412
- tanh(x, dst, k, item_ct1);
413
- });
414
- }
415
-
416
- template<typename T>
417
- static void relu_sycl(const T *x, T *dst, const int k,
418
- queue_ptr stream) {
419
- const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
420
- stream->parallel_for(
421
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
422
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
423
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
424
- [=](sycl::nd_item<3> item_ct1) {
425
- relu(x, dst, k, item_ct1);
426
- });
427
- }
428
-
429
- template<typename T>
430
- static void hardsigmoid_sycl(const T *x, T *dst, const int k,
431
- queue_ptr stream) {
432
- const int num_blocks = (k + SYCL_HARDSIGMOID_BLOCK_SIZE - 1) / SYCL_HARDSIGMOID_BLOCK_SIZE;
433
- stream->parallel_for(
434
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
435
- sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE),
436
- sycl::range<3>(1, 1, SYCL_HARDSIGMOID_BLOCK_SIZE)),
437
- [=](sycl::nd_item<3> item_ct1) {
438
- hardsigmoid(x, dst, k, item_ct1);
439
- });
440
- }
441
-
442
- template<typename T>
443
- static void hardswish_sycl(const T *x, T *dst, const int k,
444
- queue_ptr stream) {
445
- const int num_blocks = (k + SYCL_HARDSWISH_BLOCK_SIZE - 1) / SYCL_HARDSWISH_BLOCK_SIZE;
446
- stream->parallel_for(
447
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
448
- sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE),
449
- sycl::range<3>(1, 1, SYCL_HARDSWISH_BLOCK_SIZE)),
450
- [=](sycl::nd_item<3> item_ct1) {
451
- hardswish(x, dst, k, item_ct1);
452
- });
453
- }
454
-
455
- template<typename T>
456
- static void exp_sycl(const T *x, T *dst, const int k,
457
- queue_ptr stream) {
458
- const int num_blocks = (k + SYCL_EXP_BLOCK_SIZE - 1) / SYCL_EXP_BLOCK_SIZE;
459
- stream->parallel_for(
460
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
461
- sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE),
462
- sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE)),
463
- [=](sycl::nd_item<3> item_ct1) {
464
- exp(x, dst, k, item_ct1);
465
- });
466
- }
467
-
468
- template<typename T>
469
- static void log_sycl(const T *x, T *dst, const int k,
470
- queue_ptr stream) {
471
- const int num_blocks = (k + SYCL_EXP_BLOCK_SIZE - 1) / SYCL_EXP_BLOCK_SIZE;
472
- stream->parallel_for(
473
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
474
- sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE),
475
- sycl::range<3>(1, 1, SYCL_EXP_BLOCK_SIZE)),
476
- [=](sycl::nd_item<3> item_ct1) {
477
- log(x, dst, k, item_ct1);
478
- });
479
- }
480
-
481
- template<typename T>
482
- static void neg_sycl(const T *x, T *dst, const int k,
483
- queue_ptr stream) {
484
- const int num_blocks = (k + SYCL_NEG_BLOCK_SIZE - 1) / SYCL_NEG_BLOCK_SIZE;
485
- stream->parallel_for(
486
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
487
- sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE),
488
- sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE)),
489
- [=](sycl::nd_item<3> item_ct1) {
490
- neg(x, dst, k, item_ct1);
491
- });
492
- }
493
-
494
- template<typename T>
495
- static void step_sycl(const T *x, T *dst, const int k,
496
- queue_ptr stream) {
497
- const int num_blocks = (k + SYCL_NEG_BLOCK_SIZE - 1) / SYCL_NEG_BLOCK_SIZE;
498
- stream->parallel_for(
499
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
500
- sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE),
501
- sycl::range<3>(1, 1, SYCL_NEG_BLOCK_SIZE)),
502
- [=](sycl::nd_item<3> item_ct1) {
503
- step(x, dst, k, item_ct1);
504
- });
505
- }
506
-
507
- template<typename T>
508
- static void sigmoid_sycl(const T *x, T *dst, const int k,
509
- queue_ptr stream) {
510
- const int num_blocks = (k + SYCL_SIGMOID_BLOCK_SIZE - 1) / SYCL_SIGMOID_BLOCK_SIZE;
511
- stream->parallel_for(
512
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
513
- sycl::range<3>(1, 1, SYCL_SIGMOID_BLOCK_SIZE),
514
- sycl::range<3>(1, 1, SYCL_SIGMOID_BLOCK_SIZE)),
515
- [=](sycl::nd_item<3> item_ct1) {
516
- sigmoid(x, dst, k, item_ct1);
517
- });
518
- }
519
-
520
- template<typename T>
521
- static void sqrt_sycl(const T *x, T *dst, const int k,
522
- queue_ptr stream) {
523
- const int num_blocks = (k + SYCL_SQRT_BLOCK_SIZE - 1) / SYCL_SQRT_BLOCK_SIZE;
524
- stream->parallel_for(
525
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
526
- sycl::range<3>(1, 1, SYCL_SQRT_BLOCK_SIZE),
527
- sycl::range<3>(1, 1, SYCL_SQRT_BLOCK_SIZE)),
528
- [=](sycl::nd_item<3> item_ct1) {
529
- sqrt(x, dst, k, item_ct1);
530
- });
531
357
  }
532
358
 
533
359
  template<typename T>
534
- static void sin_sycl(const T *x, T *dst, const int k,
535
- queue_ptr stream) {
536
- const int num_blocks = (k + SYCL_SIN_BLOCK_SIZE - 1) / SYCL_SIN_BLOCK_SIZE;
537
- stream->parallel_for(
538
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
539
- sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE),
540
- sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE)),
541
- [=](sycl::nd_item<3> item_ct1) {
542
- sin(x, dst, k, item_ct1);
543
- });
360
+ static void gated_op_fused_geglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
361
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
362
+ const int64_t j0 = (i / n) * o0 + (i % n);
363
+ const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
364
+ dst[i] = op_gelu(x[j0]) * g[j1];
365
+ }
544
366
  }
545
367
 
546
368
  template<typename T>
547
- static void cos_sycl(const T *x, T *dst, const int k,
548
- queue_ptr stream) {
549
- const int num_blocks = (k + SYCL_SIN_BLOCK_SIZE - 1) / SYCL_SIN_BLOCK_SIZE;
550
- stream->parallel_for(
551
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
552
- sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE),
553
- sycl::range<3>(1, 1, SYCL_SIN_BLOCK_SIZE)),
554
- [=](sycl::nd_item<3> item_ct1) {
555
- cos(x, dst, k, item_ct1);
556
- });
369
+ static void gated_op_fused_reglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
370
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
371
+ const int64_t j0 = (i / n) * o0 + (i % n);
372
+ const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
373
+ dst[i] = op_relu(x[j0]) * g[j1];
374
+ }
557
375
  }
558
376
 
559
377
  template<typename T>
560
- static void leaky_relu_sycl(const T *x, T *dst, const int k,
561
- const float negative_slope,
562
- queue_ptr stream) {
563
- const int num_blocks = (k + SYCL_RELU_BLOCK_SIZE - 1) / SYCL_RELU_BLOCK_SIZE;
564
- stream->parallel_for(
565
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
566
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE),
567
- sycl::range<3>(1, 1, SYCL_RELU_BLOCK_SIZE)),
568
- [=](sycl::nd_item<3> item_ct1) {
569
- leaky_relu(x, dst, k, negative_slope, item_ct1);
570
- });
378
+ static void gated_op_fused_swiglu(const T * x, const T * g, T * dst, const uint64_t k, const uint64_t n, const uint64_t o0, const uint64_t o1, const sycl::nd_item<1> &item_ct1) {
379
+ SYCL_GLOBAL_ID_LOOP(k, item_ct1) {
380
+ const int64_t j0 = (i / n) * o0 + (i % n);
381
+ const int64_t j1 = o0 == o1 ? j0 : (i / n) * o1 + (i % n);
382
+ dst[i] = op_silu(x[j0]) * g[j1];
383
+ }
571
384
  }
572
385
 
573
- template<typename T>
574
- static void sqr_sycl(const T *x, T *dst, const int k,
575
- queue_ptr stream) {
576
- const int num_blocks = (k + SYCL_SQR_BLOCK_SIZE - 1) / SYCL_SQR_BLOCK_SIZE;
577
- stream->parallel_for(
578
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
579
- sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE),
580
- sycl::range<3>(1, 1, SYCL_SQR_BLOCK_SIZE)),
581
- [=](sycl::nd_item<3> item_ct1) {
582
- sqr(x, dst, k, item_ct1);
386
+ namespace ggml_sycl_detail {
387
+ static void acc_f32_sycl(const float *x, const float *y, float *dst,
388
+ const int n_elements, const int ne10, const int ne11,
389
+ const int ne12, const int nb1, const int nb2,
390
+ const int offset, queue_ptr stream) {
391
+ int num_blocks = ceil_div(n_elements, SYCL_ACC_BLOCK_SIZE);
392
+ sycl_parallel_for(stream,
393
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) *
394
+ sycl::range<1>(SYCL_ACC_BLOCK_SIZE),
395
+ sycl::range<1>(SYCL_ACC_BLOCK_SIZE)),
396
+ [=](sycl::nd_item<1> item_ct1) {
397
+ acc_f32(x, y, dst, n_elements, ne10, ne11, ne12, nb1, nb2, offset,
398
+ item_ct1);
583
399
  });
584
400
  }
585
401
 
@@ -589,11 +405,10 @@ static void upscale_sycl(const T *x, T *dst, const int nb00, const int nb01,
589
405
  const int ne12, const int ne13, const float sf0, const float sf1,
590
406
  const float sf2, const float sf3, queue_ptr stream) {
591
407
  int dst_size = ne10 * ne11 * ne12 * ne13;
592
- int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
408
+ int num_blocks = ceil_div(dst_size, SYCL_UPSCALE_BLOCK_SIZE);
593
409
  sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
594
- stream->parallel_for(
595
- sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
596
- [=](sycl::nd_item<1> item_ct1) {
410
+ sycl_parallel_for<1>(
411
+ stream, sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
597
412
  upscale(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
598
413
  });
599
414
  }
@@ -602,35 +417,19 @@ template<typename T>
602
417
  static void pad_sycl(const T *x, T *dst, const int ne00,
603
418
  const int ne01, const int ne02, const int ne0,
604
419
  const int ne1, const int ne2, queue_ptr stream) {
605
- int num_blocks = (ne0 + SYCL_PAD_BLOCK_SIZE - 1) / SYCL_PAD_BLOCK_SIZE;
420
+ int num_blocks = ceil_div(ne0, SYCL_PAD_BLOCK_SIZE);
606
421
  sycl::range<3> gridDim(ne2, ne1, num_blocks);
607
- stream->parallel_for(
608
- sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
609
- sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
610
- [=](sycl::nd_item<3> item_ct1) {
611
- pad(x, dst, ne0, ne00, ne01, ne02, item_ct1);
612
- });
613
- }
614
-
615
- template<typename T>
616
- static void clamp_sycl(const T *x, T *dst, const float min,
617
- const float max, const int k,
618
- queue_ptr stream) {
619
- const int num_blocks = (k + SYCL_CLAMP_BLOCK_SIZE - 1) / SYCL_CLAMP_BLOCK_SIZE;
620
- stream->parallel_for(
621
- sycl::nd_range<3>(sycl::range<3>(1, 1, num_blocks) *
622
- sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE),
623
- sycl::range<3>(1, 1, SYCL_CLAMP_BLOCK_SIZE)),
624
- [=](sycl::nd_item<3> item_ct1) {
625
- clamp(x, dst, min, max, k, item_ct1);
626
- });
422
+ sycl_parallel_for(stream,
423
+ sycl::nd_range<3>(gridDim * sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE),
424
+ sycl::range<3>(1, 1, SYCL_PAD_BLOCK_SIZE)),
425
+ [=](sycl::nd_item<3> item_ct1) { pad(x, dst, ne0, ne00, ne01, ne02, item_ct1); });
627
426
  }
628
427
 
629
- inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
428
+ template<typename KernelInvoker, typename... Args>
429
+ static inline void dispatch_ggml_sycl_op_unary(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
630
430
  #if defined (GGML_SYCL_F16)
631
431
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
632
432
  GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
633
-
634
433
  #else
635
434
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
636
435
  GGML_ASSERT(dst->type == GGML_TYPE_F32);
@@ -643,14 +442,14 @@ inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst)
643
442
  case GGML_TYPE_F16:
644
443
  {
645
444
  auto data_pts = cast_data<sycl::half>(dst);
646
- sgn_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
445
+ kernel_invoker(data_pts.src, data_pts.dst, (int)ggml_nelements(dst->src[0]), main_stream, std::forward<Args>(args)...);
647
446
  break;
648
447
  }
649
448
  #endif
650
449
  case GGML_TYPE_F32:
651
450
  {
652
451
  auto data_pts = cast_data<float>(dst);
653
- sgn_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
452
+ kernel_invoker(data_pts.src, data_pts.dst, (int)ggml_nelements(dst->src[0]), main_stream, std::forward<Args>(args)...);
654
453
  break;
655
454
  }
656
455
  default:
@@ -658,11 +457,11 @@ inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst)
658
457
  }
659
458
  }
660
459
 
661
- inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
460
+ template<typename KernelInvoker, typename... Args>
461
+ static inline void dispatch_ggml_sycl_op_fused_glu(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
662
462
  #if defined (GGML_SYCL_F16)
663
463
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
664
464
  GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
665
-
666
465
  #else
667
466
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
668
467
  GGML_ASSERT(dst->type == GGML_TYPE_F32);
@@ -670,19 +469,66 @@ inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst)
670
469
  GGML_ASSERT(dst->src[0]->type == dst->type);
671
470
  dpct::queue_ptr main_stream = ctx.stream();
672
471
  SYCL_CHECK(ggml_sycl_set_device(ctx.device));
472
+ const ggml_tensor * src0 = dst->src[0];
473
+ const ggml_tensor * src1 = dst->src[1];
474
+ const int64_t nc = src1 ? src0->ne[0] : src0->ne[0] / 2;;
475
+ GGML_ASSERT(dst->ne[0] == nc);
476
+ GGML_ASSERT(ggml_is_contiguous_1(dst->src[0]));
477
+ GGML_ASSERT(ggml_is_contiguous(dst));
478
+ const int32_t swapped = ((const int32_t *) dst->op_params)[1];
479
+ void * src0_d = src0->data;
480
+ void * src1_d = src1 ? src1->data : src0->data;
481
+ const int64_t src0_o = src0->nb[1];
482
+ const int64_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
483
+ void * dst_d = dst->data;
484
+ if (src1) {
485
+ GGML_ASSERT(ggml_is_contiguous_1(src1));
486
+ GGML_ASSERT(src1->nb[0] == ggml_element_size(src1));
487
+ GGML_ASSERT(src1->ne[0] == nc);
488
+ GGML_ASSERT(src0->type == src1->type);
489
+ }
673
490
  switch (dst->type) {
674
491
  #if defined (GGML_SYCL_F16)
675
492
  case GGML_TYPE_F16:
676
493
  {
677
- auto data_pts = cast_data<sycl::half>(dst);
678
- abs_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
494
+ sycl::half * src0_p = (sycl::half *) src0_d;
495
+ sycl::half * src1_p = (sycl::half *) src1_d;
496
+
497
+ if (!src1) {
498
+ src0_p += swapped ? nc : 0;
499
+ src1_p += swapped ? 0 : nc;
500
+ }
501
+ kernel_invoker(src0_p,
502
+ src1_p,
503
+ (sycl::half *) dst_d,
504
+ ggml_nelements(dst),
505
+ nc,
506
+ src0_o / sizeof(sycl::half),
507
+ src1_o / sizeof(sycl::half),
508
+ main_stream,
509
+ std::forward<Args>(args)...);
679
510
  break;
680
511
  }
681
512
  #endif
682
513
  case GGML_TYPE_F32:
683
514
  {
684
- auto data_pts = cast_data<float>(dst);
685
- abs_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
515
+ float * src0_p = (float *) src0_d;
516
+ float * src1_p = (float *) src1_d;
517
+
518
+ if (!src1) {
519
+ src0_p += swapped ? nc : 0;
520
+ src1_p += swapped ? 0 : nc;
521
+ }
522
+
523
+ kernel_invoker(src0_p,
524
+ src1_p,
525
+ (float *) dst_d,
526
+ ggml_nelements(dst),
527
+ nc,
528
+ src0_o / sizeof(float),
529
+ src1_o / sizeof(float),
530
+ main_stream,
531
+ std::forward<Args>(args)...);
686
532
  break;
687
533
  }
688
534
  default:
@@ -690,32 +536,41 @@ inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst)
690
536
  }
691
537
  }
692
538
 
693
-
694
- inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
539
+ template<typename KernelInvoker, typename... Args>
540
+ static inline void dispatch_ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
695
541
  #if defined (GGML_SYCL_F16)
696
542
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
697
543
  GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
698
-
699
544
  #else
700
545
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
701
546
  GGML_ASSERT(dst->type == GGML_TYPE_F32);
702
547
  #endif
703
548
  GGML_ASSERT(dst->src[0]->type == dst->type);
549
+
704
550
  dpct::queue_ptr main_stream = ctx.stream();
705
551
  SYCL_CHECK(ggml_sycl_set_device(ctx.device));
552
+
553
+ const float sf0 = (float) dst->ne[0] / dst->src[0]->ne[0];
554
+ const float sf1 = (float) dst->ne[1] / dst->src[0]->ne[1];
555
+ const float sf2 = (float) dst->ne[2] / dst->src[0]->ne[2];
556
+ const float sf3 = (float) dst->ne[3] / dst->src[0]->ne[3];
706
557
  switch (dst->type) {
707
558
  #if defined (GGML_SYCL_F16)
708
559
  case GGML_TYPE_F16:
709
560
  {
710
561
  auto data_pts = cast_data<sycl::half>(dst);
711
- elu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
562
+ kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->nb[0], (int)dst->src[0]->nb[1], (int)dst->src[0]->nb[2],
563
+ (int)dst->src[0]->nb[3], (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], sf0, sf1, sf2, sf3,
564
+ main_stream, std::forward<Args>(args)...);
712
565
  break;
713
566
  }
714
567
  #endif
715
568
  case GGML_TYPE_F32:
716
569
  {
717
570
  auto data_pts = cast_data<float>(dst);
718
- elu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
571
+ kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->nb[0], (int)dst->src[0]->nb[1], (int)dst->src[0]->nb[2],
572
+ (int)dst->src[0]->nb[3], (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], sf0, sf1, sf2, sf3,
573
+ main_stream, std::forward<Args>(args)...);
719
574
  break;
720
575
  }
721
576
  default:
@@ -723,7 +578,8 @@ inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst)
723
578
  }
724
579
  }
725
580
 
726
- inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
581
+ template<typename KernelInvoker, typename... Args>
582
+ static inline void dispatch_ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst, KernelInvoker kernel_invoker, Args&&... args) {
727
583
  #if defined (GGML_SYCL_F16)
728
584
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
729
585
  GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
@@ -732,6 +588,7 @@ inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst
732
588
  GGML_ASSERT(dst->type == GGML_TYPE_F32);
733
589
  #endif
734
590
  GGML_ASSERT(dst->src[0]->type == dst->type);
591
+ GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
735
592
  dpct::queue_ptr main_stream = ctx.stream();
736
593
  SYCL_CHECK(ggml_sycl_set_device(ctx.device));
737
594
  switch (dst->type) {
@@ -739,14 +596,16 @@ inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst
739
596
  case GGML_TYPE_F16:
740
597
  {
741
598
  auto data_pts = cast_data<sycl::half>(dst);
742
- silu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
599
+ kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
600
+ (int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
743
601
  break;
744
602
  }
745
603
  #endif
746
604
  case GGML_TYPE_F32:
747
605
  {
748
606
  auto data_pts = cast_data<float>(dst);
749
- silu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
607
+ kernel_invoker(data_pts.src, data_pts.dst, (int)dst->src[0]->ne[0], (int)dst->src[0]->ne[1], (int)dst->src[0]->ne[2], (int)dst->ne[0],
608
+ (int)dst->ne[1], (int)dst->ne[2], main_stream, std::forward<Args>(args)...);
750
609
  break;
751
610
  }
752
611
  default:
@@ -754,623 +613,320 @@ inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst
754
613
  }
755
614
  }
756
615
 
757
- inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
758
- #if defined (GGML_SYCL_F16)
759
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
760
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
761
- #else
762
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
763
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
764
- #endif
765
- GGML_ASSERT(dst->src[0]->type == dst->type);
766
- dpct::queue_ptr main_stream = ctx.stream();
767
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
768
- switch (dst->type) {
769
- #if defined (GGML_SYCL_F16)
770
- case GGML_TYPE_F16:
771
- {
772
- auto data_pts = cast_data<sycl::half>(dst);
773
- gelu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
774
- break;
775
- }
776
- #endif
777
- case GGML_TYPE_F32:
778
- {
779
- auto data_pts = cast_data<float>(dst);
780
- gelu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
781
- break;
782
- }
783
- default:
784
- GGML_ABORT("GGML tensor type not supported!\n");
785
- }
616
+ } // namespace ggml_sycl_detail
617
+
618
+
619
+
620
+ static inline void ggml_sycl_op_sgn(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
621
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
622
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
623
+ const int num_blocks = ceil_div(k_elements, 256);
624
+ sycl_parallel_for(stream,
625
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
626
+ sycl::range<1>(256)),
627
+ [=](sycl::nd_item<1> item_ct1) {
628
+ unary_op_sgn_kernel(src, dst_ptr, k_elements, item_ct1);
629
+ });
630
+ });
786
631
  }
787
632
 
788
- inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
789
- #if defined (GGML_SYCL_F16)
790
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
791
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
792
- #else
793
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
794
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
795
- #endif
796
- GGML_ASSERT(dst->src[0]->type == dst->type);
797
- dpct::queue_ptr main_stream = ctx.stream();
798
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
799
- switch (dst->type) {
800
- #if defined (GGML_SYCL_F16)
801
- case GGML_TYPE_F16:
802
- {
803
- auto data_pts = cast_data<sycl::half>(dst);
804
- gelu_quick_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
805
- break;
806
- }
807
- #endif
808
- case GGML_TYPE_F32:
809
- {
810
- auto data_pts = cast_data<float>(dst);
811
- gelu_quick_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
812
- break;
813
- }
814
- default:
815
- GGML_ABORT("GGML tensor type not supported!\n");
816
- }
633
+ static inline void ggml_sycl_op_abs(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
634
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
635
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
636
+ const int num_blocks = ceil_div(k_elements, 256);
637
+ sycl_parallel_for(stream,
638
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
639
+ sycl::range<1>(256)),
640
+ [=](sycl::nd_item<1> item_ct1) {
641
+ unary_op_abs_kernel(src, dst_ptr, k_elements, item_ct1);
642
+ });
643
+ });
817
644
  }
818
645
 
819
- inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
820
- #if defined (GGML_SYCL_F16)
821
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
822
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
823
- #else
824
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
825
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
826
- #endif
827
- GGML_ASSERT(dst->src[0]->type == dst->type);
828
- dpct::queue_ptr main_stream = ctx.stream();
829
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
830
- switch (dst->type) {
831
- #if defined (GGML_SYCL_F16)
832
- case GGML_TYPE_F16:
833
- {
834
- auto data_pts = cast_data<sycl::half>(dst);
835
- tanh_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
836
- break;
837
- }
838
- #endif
839
- case GGML_TYPE_F32:
840
- {
841
- auto data_pts = cast_data<float>(dst);
842
- tanh_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
843
- break;
844
- }
845
- default:
846
- GGML_ABORT("GGML tensor type not supported!\n");
847
- }
646
+ static inline void ggml_sycl_op_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
647
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
648
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
649
+ const int num_blocks = ceil_div(k_elements, 256);
650
+ sycl_parallel_for(stream,
651
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(256),
652
+ sycl::range<1>(256)),
653
+ [=](sycl::nd_item<1> item_ct1) {
654
+ unary_op_elu_kernel(src, dst_ptr, k_elements, item_ct1);
655
+ });
656
+ });
848
657
  }
849
658
 
850
- inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
851
- #if defined (GGML_SYCL_F16)
852
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
853
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
854
- #else
855
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
856
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
857
- #endif
858
- GGML_ASSERT(dst->src[0]->type == dst->type);
859
- dpct::queue_ptr main_stream = ctx.stream();
860
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
861
-
862
- switch (dst->type) {
863
- #if defined (GGML_SYCL_F16)
864
- case GGML_TYPE_F16:
865
- {
866
- auto data_pts = cast_data<sycl::half>(dst);
867
- relu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
868
- break;
869
- }
870
- #endif
871
- case GGML_TYPE_F32:
872
- {
873
- auto data_pts = cast_data<float>(dst);
874
- relu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
875
- break;
876
- }
877
- default:
878
- GGML_ABORT("GGML tensor type not supported!\n");
879
- }
659
+ static inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
660
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
661
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
662
+ const int num_blocks = ceil_div(k_elements, SYCL_SILU_BLOCK_SIZE);
663
+ sycl_parallel_for(stream,
664
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SILU_BLOCK_SIZE),
665
+ sycl::range<1>(SYCL_SILU_BLOCK_SIZE)),
666
+ [=](sycl::nd_item<1> item_ct1) {
667
+ unary_op_silu_kernel(src, dst_ptr, k_elements, item_ct1);
668
+ });
669
+ });
880
670
  }
881
671
 
882
- inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
883
- #if defined (GGML_SYCL_F16)
884
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
885
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
886
- #else
887
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
888
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
889
- #endif
890
- GGML_ASSERT(dst->src[0]->type == dst->type);
891
-
892
- dpct::queue_ptr main_stream = ctx.stream();
893
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
894
-
895
- switch (dst->type) {
896
- #if defined (GGML_SYCL_F16)
897
- case GGML_TYPE_F16:
898
- {
899
- auto data_pts = cast_data<sycl::half>(dst);
900
- hardsigmoid_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
901
- break;
902
- }
903
- #endif
904
- case GGML_TYPE_F32:
905
- {
906
- auto data_pts = cast_data<float>(dst);
907
- hardsigmoid_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
908
- break;
909
- }
910
- default:
911
- GGML_ABORT("GGML tensor type not supported!\n");
912
- }
672
+ static inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
673
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
674
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
675
+ const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
676
+ sycl_parallel_for(stream,
677
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
678
+ sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
679
+ [=](sycl::nd_item<1> item_ct1) {
680
+ unary_op_gelu_kernel(src, dst_ptr, k_elements, item_ct1);
681
+ });
682
+ });
913
683
  }
914
684
 
915
- inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
916
- #if defined (GGML_SYCL_F16)
917
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
918
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
919
- #else
920
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
921
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
922
- #endif
923
- GGML_ASSERT(dst->src[0]->type == dst->type);
924
- dpct::queue_ptr main_stream = ctx.stream();
925
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
926
- switch (dst->type) {
927
- #if defined (GGML_SYCL_F16)
928
- case GGML_TYPE_F16:
929
- {
930
- auto data_pts = cast_data<sycl::half>(dst);
931
- hardswish_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
932
- break;
933
- }
934
- #endif
935
- case GGML_TYPE_F32:
936
- {
937
- auto data_pts = cast_data<float>(dst);
938
- hardswish_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
939
- break;
940
- }
941
- default:
942
- GGML_ABORT("GGML tensor type not supported!\n");
943
- }
685
+ static inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
686
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
687
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
688
+ const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
689
+ sycl_parallel_for(stream,
690
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
691
+ sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
692
+ [=](sycl::nd_item<1> item_ct1) {
693
+ unary_op_gelu_quick_kernel(src, dst_ptr, k_elements, item_ct1);
694
+ });
695
+ });
944
696
  }
945
697
 
946
- inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
947
- #if defined (GGML_SYCL_F16)
948
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
949
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
950
- #else
951
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
952
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
953
- #endif
954
- GGML_ASSERT(dst->src[0]->type == dst->type);
955
- dpct::queue_ptr main_stream = ctx.stream();
956
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
957
- switch (dst->type) {
958
- #if defined (GGML_SYCL_F16)
959
- case GGML_TYPE_F16:
960
- {
961
- auto data_pts = cast_data<sycl::half>(dst);
962
- exp_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
963
- break;
964
- }
965
- #endif
966
- case GGML_TYPE_F32:
967
- {
968
- auto data_pts = cast_data<float>(dst);
969
- exp_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
970
- break;
971
- }
972
- default:
973
- GGML_ABORT("GGML tensor type not supported!\n");
974
- }
698
+ static inline void ggml_sycl_op_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
699
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
700
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
701
+ const int num_blocks = ceil_div(k_elements, SYCL_GELU_BLOCK_SIZE);
702
+ sycl_parallel_for(stream,
703
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_GELU_BLOCK_SIZE),
704
+ sycl::range<1>(SYCL_GELU_BLOCK_SIZE)),
705
+ [=](sycl::nd_item<1> item_ct1) {
706
+ unary_op_gelu_erf_kernel(src, dst_ptr, k_elements, item_ct1);
707
+ });
708
+ });
975
709
  }
976
710
 
977
- inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
978
- #if defined (GGML_SYCL_F16)
979
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
980
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
981
- #else
982
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
983
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
984
- #endif
985
- GGML_ASSERT(dst->src[0]->type == dst->type);
986
- dpct::queue_ptr main_stream = ctx.stream();
987
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
988
- switch (dst->type) {
989
- #if defined (GGML_SYCL_F16)
990
- case GGML_TYPE_F16:
991
- {
992
- auto data_pts = cast_data<sycl::half>(dst);
993
- log_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
994
- break;
995
- }
996
- #endif
997
- case GGML_TYPE_F32:
998
- {
999
- auto data_pts = cast_data<float>(dst);
1000
- log_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1001
- break;
1002
- }
1003
- default:
1004
- GGML_ABORT("GGML tensor type not supported!\n");
1005
- }
711
+ static inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
712
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
713
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
714
+ const int num_blocks = ceil_div(k_elements, SYCL_TANH_BLOCK_SIZE);
715
+ sycl_parallel_for(stream,
716
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_TANH_BLOCK_SIZE),
717
+ sycl::range<1>(SYCL_TANH_BLOCK_SIZE)),
718
+ [=](sycl::nd_item<1> item_ct1) {
719
+ unary_op_tanh_kernel(src, dst_ptr, k_elements, item_ct1);
720
+ });
721
+ });
1006
722
  }
1007
723
 
1008
- inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1009
- #if defined (GGML_SYCL_F16)
1010
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1011
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1012
- #else
1013
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1014
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1015
- #endif
1016
- GGML_ASSERT(dst->src[0]->type == dst->type);
1017
- dpct::queue_ptr main_stream = ctx.stream();
1018
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1019
- switch (dst->type) {
1020
- #if defined (GGML_SYCL_F16)
1021
- case GGML_TYPE_F16:
1022
- {
1023
- auto data_pts = cast_data<sycl::half>(dst);
1024
- sigmoid_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1025
- break;
1026
- }
1027
- #endif
1028
- case GGML_TYPE_F32:
1029
- {
1030
- auto data_pts = cast_data<float>(dst);
1031
- sigmoid_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1032
- break;
1033
- }
1034
- default:
1035
- GGML_ABORT("GGML tensor type not supported!\n");
1036
- }
724
+ static inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
725
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
726
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
727
+ const int num_blocks = ceil_div(k_elements, SYCL_RELU_BLOCK_SIZE);
728
+ sycl_parallel_for(stream,
729
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_RELU_BLOCK_SIZE),
730
+ sycl::range<1>(SYCL_RELU_BLOCK_SIZE)),
731
+ [=](sycl::nd_item<1> item_ct1) {
732
+ unary_op_relu_kernel(src, dst_ptr, k_elements, item_ct1);
733
+ });
734
+ });
1037
735
  }
1038
736
 
1039
- inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1040
- #if defined (GGML_SYCL_F16)
1041
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1042
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1043
- #else
1044
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1045
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1046
- #endif
1047
- GGML_ASSERT(dst->src[0]->type == dst->type);
1048
-
1049
- dpct::queue_ptr main_stream = ctx.stream();
1050
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1051
- switch (dst->type) {
1052
- #if defined (GGML_SYCL_F16)
1053
- case GGML_TYPE_F16:
1054
- {
1055
- auto data_pts = cast_data<sycl::half>(dst);
1056
- sqrt_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1057
- break;
1058
- }
1059
- #endif
1060
- case GGML_TYPE_F32:
1061
- {
1062
- auto data_pts = cast_data<float>(dst);
1063
- sqrt_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1064
- break;
1065
- }
1066
- default:
1067
- GGML_ABORT("GGML tensor type not supported!\n");
1068
- }
737
+ static inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
738
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
739
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
740
+ const int num_blocks = ceil_div(k_elements, SYCL_HARDSIGMOID_BLOCK_SIZE);
741
+ sycl_parallel_for(stream,
742
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_HARDSIGMOID_BLOCK_SIZE),
743
+ sycl::range<1>(SYCL_HARDSIGMOID_BLOCK_SIZE)),
744
+ [=](sycl::nd_item<1> item_ct1) {
745
+ unary_op_hardsigmoid_kernel(src, dst_ptr, k_elements, item_ct1);
746
+ });
747
+ });
1069
748
  }
1070
749
 
1071
- inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1072
- #if defined (GGML_SYCL_F16)
1073
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1074
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1075
- #else
1076
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1077
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1078
- #endif
1079
- GGML_ASSERT(dst->src[0]->type == dst->type);
1080
- dpct::queue_ptr main_stream = ctx.stream();
1081
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1082
- switch (dst->type) {
1083
- #if defined (GGML_SYCL_F16)
1084
- case GGML_TYPE_F16:
1085
- {
1086
- auto data_pts = cast_data<sycl::half>(dst);
1087
- sin_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1088
- break;
1089
- }
1090
- #endif
1091
- case GGML_TYPE_F32:
1092
- {
1093
- auto data_pts = cast_data<float>(dst);
1094
- sin_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1095
- break;
1096
- }
1097
- default:
1098
- GGML_ABORT("GGML tensor type not supported!\n");
1099
- }
750
+ static inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
751
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
752
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
753
+ const int num_blocks = ceil_div(k_elements, SYCL_HARDSWISH_BLOCK_SIZE);
754
+ sycl_parallel_for(stream,
755
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_HARDSWISH_BLOCK_SIZE),
756
+ sycl::range<1>(SYCL_HARDSWISH_BLOCK_SIZE)),
757
+ [=](sycl::nd_item<1> item_ct1) {
758
+ unary_op_hardswish_kernel(src, dst_ptr, k_elements, item_ct1);
759
+ });
760
+ });
1100
761
  }
1101
762
 
1102
- inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1103
- #if defined (GGML_SYCL_F16)
1104
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1105
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1106
- #else
1107
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1108
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1109
- #endif
1110
- GGML_ASSERT(dst->src[0]->type == dst->type);
1111
- dpct::queue_ptr main_stream = ctx.stream();
1112
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1113
- switch (dst->type) {
1114
- #if defined (GGML_SYCL_F16)
1115
- case GGML_TYPE_F16:
1116
- {
1117
- auto data_pts = cast_data<sycl::half>(dst);
1118
- cos_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1119
- break;
1120
- }
1121
- #endif
1122
- case GGML_TYPE_F32:
1123
- {
1124
- auto data_pts = cast_data<float>(dst);
1125
- cos_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1126
- break;
1127
- }
1128
- default:
1129
- GGML_ABORT("GGML tensor type not supported!\n");
1130
- }
763
+ static inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
764
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
765
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
766
+ const int num_blocks = ceil_div(k_elements, SYCL_EXP_BLOCK_SIZE);
767
+ sycl_parallel_for(stream,
768
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_EXP_BLOCK_SIZE),
769
+ sycl::range<1>(SYCL_EXP_BLOCK_SIZE)),
770
+ [=](sycl::nd_item<1> item_ct1) {
771
+ unary_op_exp_kernel(src, dst_ptr, k_elements, item_ct1);
772
+ });
773
+ });
1131
774
  }
1132
775
 
1133
- inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1134
- #if defined (GGML_SYCL_F16)
1135
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1136
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1137
- #else
1138
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1139
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1140
- #endif
1141
- GGML_ASSERT(dst->src[0]->type == dst->type);
1142
- dpct::queue_ptr main_stream = ctx.stream();
1143
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1144
- switch (dst->type) {
1145
- #if defined (GGML_SYCL_F16)
1146
- case GGML_TYPE_F16:
1147
- {
1148
- auto data_pts = cast_data<sycl::half>(dst);
1149
- step_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1150
- break;
1151
- }
1152
- #endif
1153
- case GGML_TYPE_F32:
1154
- {
1155
- auto data_pts = cast_data<float>(dst);
1156
- step_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1157
- break;
1158
- }
1159
- default:
1160
- GGML_ABORT("GGML tensor type not supported!\n");
1161
- }
776
+ static inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
777
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
778
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
779
+ const int num_blocks = ceil_div(k_elements, SYCL_EXP_BLOCK_SIZE); // Using EXP block size
780
+ sycl_parallel_for(stream,
781
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_EXP_BLOCK_SIZE),
782
+ sycl::range<1>(SYCL_EXP_BLOCK_SIZE)),
783
+ [=](sycl::nd_item<1> item_ct1) {
784
+ unary_op_log_kernel(src, dst_ptr, k_elements, item_ct1);
785
+ });
786
+ });
1162
787
  }
1163
788
 
1164
- inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1165
- #if defined (GGML_SYCL_F16)
1166
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1167
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1168
- #else
1169
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1170
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1171
- #endif
1172
- GGML_ASSERT(dst->src[0]->type == dst->type);
1173
- dpct::queue_ptr main_stream = ctx.stream();
1174
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1175
- switch (dst->type) {
1176
- #if defined (GGML_SYCL_F16)
1177
- case GGML_TYPE_F16:
1178
- {
1179
- auto data_pts = cast_data<sycl::half>(dst);
1180
- neg_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1181
- break;
1182
- }
1183
- #endif
1184
- case GGML_TYPE_F32:
1185
- {
1186
- auto data_pts = cast_data<float>(dst);
1187
- neg_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1188
- break;
1189
- }
1190
- default:
1191
- GGML_ABORT("GGML tensor type not supported!\n");
1192
- }
789
+ static inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
790
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
791
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
792
+ const int num_blocks = ceil_div(k_elements, SYCL_NEG_BLOCK_SIZE);
793
+ sycl_parallel_for(stream,
794
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_NEG_BLOCK_SIZE),
795
+ sycl::range<1>(SYCL_NEG_BLOCK_SIZE)),
796
+ [=](sycl::nd_item<1> item_ct1) {
797
+ unary_op_neg_kernel(src, dst_ptr, k_elements, item_ct1);
798
+ });
799
+ });
1193
800
  }
1194
801
 
1195
- inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1196
- #if defined (GGML_SYCL_F16)
1197
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1198
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1199
- #else
1200
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1201
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1202
- #endif
1203
-
1204
- GGML_ASSERT(dst->src[0]->type == dst->type);
1205
- float negative_slope;
1206
- memcpy(&negative_slope, dst->op_params, sizeof(float));
1207
- dpct::queue_ptr main_stream = ctx.stream();
1208
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1209
- switch (dst->type) {
1210
- #if defined (GGML_SYCL_F16)
1211
- case GGML_TYPE_F16:
1212
- {
1213
- auto data_pts = cast_data<sycl::half>(dst);
1214
- leaky_relu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), negative_slope, main_stream);
1215
- break;
1216
- }
1217
- #endif
1218
- case GGML_TYPE_F32:
1219
- {
1220
- auto data_pts = cast_data<float>(dst);
1221
- leaky_relu_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), negative_slope, main_stream);
1222
- break;
1223
- }
1224
- default:
1225
- GGML_ABORT("GGML tensor type not supported!\n");
1226
- }
802
+ static inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
803
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
804
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
805
+ const int num_blocks = ceil_div(k_elements, SYCL_NEG_BLOCK_SIZE); // Using NEG block size
806
+ sycl_parallel_for(stream,
807
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_NEG_BLOCK_SIZE),
808
+ sycl::range<1>(SYCL_NEG_BLOCK_SIZE)),
809
+ [=](sycl::nd_item<1> item_ct1) {
810
+ unary_op_step_kernel(src, dst_ptr, k_elements, item_ct1);
811
+ });
812
+ });
1227
813
  }
1228
814
 
1229
- inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1230
- #if defined (GGML_SYCL_F16)
1231
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1232
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1233
- #else
1234
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1235
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1236
- #endif
1237
- GGML_ASSERT(dst->src[0]->type == dst->type);
1238
- dpct::queue_ptr main_stream = ctx.stream();
1239
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1240
- switch (dst->type) {
1241
- #if defined (GGML_SYCL_F16)
1242
- case GGML_TYPE_F16:
1243
- {
1244
- auto data_pts = cast_data<sycl::half>(dst);
1245
- sqr_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1246
- break;
1247
- }
1248
- #endif
1249
- case GGML_TYPE_F32:
1250
- {
1251
- auto data_pts = cast_data<float>(dst);
1252
- sqr_sycl(data_pts.src, data_pts.dst, ggml_nelements(dst->src[0]), main_stream);
1253
- break;
1254
- }
1255
- default:
1256
- GGML_ABORT("GGML tensor type not supported!\n");
1257
- }
815
+ static inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
816
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
817
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
818
+ const int num_blocks = ceil_div(k_elements, SYCL_SIGMOID_BLOCK_SIZE);
819
+ sycl_parallel_for(stream,
820
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIGMOID_BLOCK_SIZE),
821
+ sycl::range<1>(SYCL_SIGMOID_BLOCK_SIZE)),
822
+ [=](sycl::nd_item<1> item_ct1) {
823
+ unary_op_sigmoid_kernel(src, dst_ptr, k_elements, item_ct1);
824
+ });
825
+ });
1258
826
  }
1259
827
 
1260
- inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1261
- #if defined (GGML_SYCL_F16)
1262
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1263
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1264
- #else
1265
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1266
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1267
- #endif
1268
- GGML_ASSERT(dst->src[0]->type == dst->type);
1269
-
1270
- dpct::queue_ptr main_stream = ctx.stream();
1271
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1272
-
1273
- const float sf0 = (float) dst->ne[0] / dst->src[0]->ne[0];
1274
- const float sf1 = (float) dst->ne[1] / dst->src[0]->ne[1];
1275
- const float sf2 = (float) dst->ne[2] / dst->src[0]->ne[2];
1276
- const float sf3 = (float) dst->ne[3] / dst->src[0]->ne[3];
1277
- switch (dst->type) {
1278
- #if defined (GGML_SYCL_F16)
1279
- case GGML_TYPE_F16:
1280
- {
1281
- auto data_pts = cast_data<sycl::half>(dst);
1282
- upscale_sycl(data_pts.src, data_pts.dst, dst->src[0]->nb[0], dst->src[0]->nb[1], dst->src[0]->nb[2],
1283
- dst->src[0]->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
1284
- main_stream);
1285
- break;
1286
- }
1287
- #endif
1288
- case GGML_TYPE_F32:
1289
- {
1290
- auto data_pts = cast_data<float>(dst);
1291
- upscale_sycl(data_pts.src, data_pts.dst, dst->src[0]->nb[0], dst->src[0]->nb[1], dst->src[0]->nb[2],
1292
- dst->src[0]->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
1293
- main_stream);
1294
- break;
1295
- }
1296
- default:
1297
- GGML_ABORT("GGML tensor type not supported!\n");
1298
- }
828
+ static inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
829
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
830
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
831
+ const int num_blocks = ceil_div(k_elements, SYCL_SQRT_BLOCK_SIZE);
832
+ sycl_parallel_for(stream,
833
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SQRT_BLOCK_SIZE),
834
+ sycl::range<1>(SYCL_SQRT_BLOCK_SIZE)),
835
+ [=](sycl::nd_item<1> item_ct1) {
836
+ unary_op_sqrt_kernel(src, dst_ptr, k_elements, item_ct1);
837
+ });
838
+ });
1299
839
  }
1300
840
 
1301
- inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1302
- #if defined (GGML_SYCL_F16)
1303
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1304
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1305
- #else
1306
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1307
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1308
- #endif
1309
- GGML_ASSERT(dst->src[0]->type == dst->type);
1310
- GGML_ASSERT(dst->src[0]->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
1311
- dpct::queue_ptr main_stream = ctx.stream();
1312
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1313
- switch (dst->type) {
1314
- #if defined (GGML_SYCL_F16)
1315
- case GGML_TYPE_F16:
1316
- {
1317
- auto data_pts = cast_data<sycl::half>(dst);
1318
- pad_sycl(data_pts.src, data_pts.dst, dst->src[0]->ne[0], dst->src[0]->ne[1], dst->src[0]->ne[2], dst->ne[0],
1319
- dst->ne[1], dst->ne[2], main_stream);
1320
- break;
1321
- }
1322
- #endif
1323
- case GGML_TYPE_F32:
1324
- {
1325
- auto data_pts = cast_data<float>(dst);
1326
- pad_sycl(data_pts.src, data_pts.dst, dst->src[0]->ne[0], dst->src[0]->ne[1], dst->src[0]->ne[2], dst->ne[0],
1327
- dst->ne[1], dst->ne[2], main_stream);
1328
- break;
1329
- }
1330
- default:
1331
- GGML_ABORT("GGML tensor type not supported!\n");
1332
- }
841
+ static inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
842
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
843
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
844
+ const int num_blocks = ceil_div(k_elements, SYCL_SIN_BLOCK_SIZE);
845
+ sycl_parallel_for(stream,
846
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIN_BLOCK_SIZE),
847
+ sycl::range<1>(SYCL_SIN_BLOCK_SIZE)),
848
+ [=](sycl::nd_item<1> item_ct1) {
849
+ unary_op_sin_kernel(src, dst_ptr, k_elements, item_ct1);
850
+ });
851
+ });
1333
852
  }
1334
853
 
1335
- inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1336
- #if defined(GGML_SYCL_F16)
1337
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
1338
- GGML_ASSERT(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
1339
- #else
854
+ static inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
855
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
856
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
857
+ const int num_blocks = ceil_div(k_elements, SYCL_SIN_BLOCK_SIZE); // Using SIN block size
858
+ sycl_parallel_for(stream,
859
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SIN_BLOCK_SIZE),
860
+ sycl::range<1>(SYCL_SIN_BLOCK_SIZE)),
861
+ [=](sycl::nd_item<1> item_ct1) {
862
+ unary_op_cos_kernel(src, dst_ptr, k_elements, item_ct1);
863
+ });
864
+ });
865
+ }
1340
866
 
1341
- GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1342
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
1343
- #endif
1344
- GGML_ASSERT(dst->src[0]->type == dst->type);
1345
- dpct::queue_ptr main_stream = ctx.stream();
1346
- SYCL_CHECK(ggml_sycl_set_device(ctx.device));
1347
- float min;
1348
- float max;
1349
- memcpy(&min, dst->op_params, sizeof(float));
1350
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
867
+ static inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
868
+ float negative_slope;
869
+ memcpy(&negative_slope, dst->op_params, sizeof(float));
870
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
871
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream, float slope) {
872
+ const int num_blocks = ceil_div(k_elements, SYCL_RELU_BLOCK_SIZE);
873
+ sycl_parallel_for(stream,
874
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_RELU_BLOCK_SIZE),
875
+ sycl::range<1>(SYCL_RELU_BLOCK_SIZE)),
876
+ [=](sycl::nd_item<1> item_ct1) {
877
+ unary_op_leaky_relu_kernel(src, dst_ptr, k_elements, slope, item_ct1);
878
+ });
879
+ }, negative_slope);
880
+ }
881
+
882
+ static inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
883
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
884
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream) {
885
+ const int num_blocks = ceil_div(k_elements, SYCL_SQR_BLOCK_SIZE);
886
+ sycl_parallel_for(stream,
887
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_SQR_BLOCK_SIZE),
888
+ sycl::range<1>(SYCL_SQR_BLOCK_SIZE)),
889
+ [=](sycl::nd_item<1> item_ct1) {
890
+ unary_op_sqr_kernel(src, dst_ptr, k_elements, item_ct1);
891
+ });
892
+ });
893
+ }
1351
894
 
1352
- switch (dst->type) {
1353
- #if defined(GGML_SYCL_F16)
1354
- case GGML_TYPE_F16:
1355
- {
1356
- auto data_pts = cast_data<sycl::half>(dst);
1357
- clamp_sycl(data_pts.src, data_pts.dst, min, max, ggml_nelements(dst->src[0]), main_stream);
1358
- break;
1359
- }
1360
- #endif
1361
- case GGML_TYPE_F32:
1362
- {
1363
- auto data_pts = cast_data<float>(dst);
1364
- clamp_sycl(data_pts.src, data_pts.dst, min, max, ggml_nelements(dst->src[0]), main_stream);
1365
- break;
1366
- }
1367
- default:
1368
- GGML_ABORT("GGML tensor type not supported!\n");
1369
- }
895
+ static inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
896
+ ggml_sycl_detail::dispatch_ggml_sycl_op_upscale(ctx, dst,
897
+ [](const auto* src, auto* dst_ptr, int nb00, int nb01, int nb02, int nb03,
898
+ int ne10, int ne11, int ne12, int ne13, float sf0, float sf1, float sf2, float sf3,
899
+ queue_ptr stream) {
900
+ ggml_sycl_detail::upscale_sycl(src, dst_ptr, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, stream);
901
+ });
1370
902
  }
1371
903
 
1372
- inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
904
+ static inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
905
+ ggml_sycl_detail::dispatch_ggml_sycl_op_pad(ctx, dst,
906
+ [](const auto* src, auto* dst_ptr, int ne00, int ne01, int ne02, int ne0, int ne1, int ne2,
907
+ queue_ptr stream) {
908
+ ggml_sycl_detail::pad_sycl(src, dst_ptr, ne00, ne01, ne02, ne0, ne1, ne2, stream);
909
+ });
910
+ }
1373
911
 
912
+ static inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
913
+ float min_val;
914
+ float max_val;
915
+ memcpy(&min_val, dst->op_params, sizeof(float));
916
+ memcpy(&max_val, (float *) dst->op_params + 1, sizeof(float));
917
+ ggml_sycl_detail::dispatch_ggml_sycl_op_unary(ctx, dst,
918
+ [](const auto* src, auto* dst_ptr, int k_elements, queue_ptr stream, float min_arg, float max_arg) {
919
+ const int num_blocks = ceil_div(k_elements, SYCL_CLAMP_BLOCK_SIZE);
920
+ sycl_parallel_for(stream,
921
+ sycl::nd_range<1>(sycl::range<1>(num_blocks) * sycl::range<1>(SYCL_CLAMP_BLOCK_SIZE),
922
+ sycl::range<1>(SYCL_CLAMP_BLOCK_SIZE)),
923
+ [=](sycl::nd_item<1> item_ct1) {
924
+ clamp(src, dst_ptr, min_arg, max_arg, k_elements, item_ct1);
925
+ });
926
+ }, min_val, max_val);
927
+ }
928
+
929
+ static inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
1374
930
  GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32);
1375
931
  GGML_ASSERT(dst->src[1]->type == GGML_TYPE_F32);
1376
932
  GGML_ASSERT( dst->type == GGML_TYPE_F32);
@@ -1386,7 +942,40 @@ inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, ggml_tensor *dst)
1386
942
  // int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
1387
943
  int offset = dst->op_params[3] / 4; // offset in bytes
1388
944
 
1389
- acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), dst->src[1]->ne[0], dst->src[1]->ne[1], dst->src[1]->ne[2], nb1, nb2, offset, main_stream);
945
+ ggml_sycl_detail::acc_f32_sycl(src0_dd, src1_dd, dst_dd, (int)ggml_nelements(dst), (int)dst->src[1]->ne[0], (int)dst->src[1]->ne[1], (int)dst->src[1]->ne[2], nb1, nb2, offset, main_stream);
946
+ }
947
+
948
+ static inline void ggml_sycl_op_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
949
+ ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
950
+ [](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
951
+ const uint32_t num_blocks = ceil_div(k, SYCL_GELU_BLOCK_SIZE);
952
+ sycl_parallel_for(main_stream,
953
+ sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), sycl::range<1>(SYCL_GELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
954
+ gated_op_fused_geglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
955
+ });
956
+ });
957
+ }
958
+
959
+ static inline void ggml_sycl_op_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
960
+ ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
961
+ [](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
962
+ const uint32_t num_blocks = ceil_div((uint32_t)k, SYCL_RELU_BLOCK_SIZE); // Using RELU block size for reglu
963
+ sycl_parallel_for(main_stream,
964
+ sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_RELU_BLOCK_SIZE)), sycl::range<1>(SYCL_RELU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
965
+ gated_op_fused_reglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
966
+ });
967
+ });
968
+ }
969
+
970
+ static inline void ggml_sycl_op_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
971
+ ggml_sycl_detail::dispatch_ggml_sycl_op_fused_glu(ctx, dst,
972
+ [](const auto* x_ptr, const auto* g_ptr, auto* dst_ptr, uint64_t k, uint64_t n, uint64_t o0, uint64_t o1, queue_ptr main_stream) {
973
+ const uint32_t num_blocks = ceil_div((uint32_t)k, SYCL_SILU_BLOCK_SIZE); // Using SILU block size for swiglu
974
+ sycl_parallel_for(main_stream,
975
+ sycl::nd_range<1>((num_blocks * sycl::range<1>(SYCL_SILU_BLOCK_SIZE)), sycl::range<1>(SYCL_SILU_BLOCK_SIZE)), [=](sycl::nd_item<1> item_ct1) {
976
+ gated_op_fused_swiglu(x_ptr, g_ptr, dst_ptr, k, n, o0, o1, item_ct1);
977
+ });
978
+ });
1390
979
  }
1391
980
 
1392
981
 
@@ -1425,6 +1014,11 @@ void ggml_sycl_gelu_quick(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1425
1014
  ggml_sycl_op_gelu_quick(ctx, dst);
1426
1015
  }
1427
1016
 
1017
+ void ggml_sycl_gelu_erf(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1018
+ scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
1019
+ ggml_sycl_op_gelu_erf(ctx, dst);
1020
+ }
1021
+
1428
1022
  void ggml_sycl_tanh(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1429
1023
  scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
1430
1024
  ggml_sycl_op_tanh(ctx, dst);
@@ -1509,3 +1103,18 @@ void ggml_sycl_elu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1509
1103
  scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
1510
1104
  ggml_sycl_op_elu(ctx, dst);
1511
1105
  }
1106
+
1107
+ void ggml_sycl_geglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1108
+ scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
1109
+ ggml_sycl_op_geglu(ctx, dst);
1110
+ }
1111
+
1112
+ void ggml_sycl_reglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1113
+ scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
1114
+ ggml_sycl_op_reglu(ctx, dst);
1115
+ }
1116
+
1117
+ void ggml_sycl_swiglu(ggml_backend_sycl_context & ctx, ggml_tensor * dst) {
1118
+ scope_op_debug_print scope_dbg_print(__func__, dst, /*num_src=*/1);
1119
+ ggml_sycl_op_swiglu(ctx, dst);
1120
+ }