whispercpp 1.3.2 → 1.3.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +6 -3
- data/README.md +71 -14
- data/Rakefile +20 -7
- data/ext/.gitignore +4 -6
- data/ext/dependencies.rb +36 -24
- data/ext/extconf.rb +1 -1
- data/ext/options.rb +48 -184
- data/ext/ruby_whisper.c +18 -0
- data/ext/ruby_whisper_context.c +43 -12
- data/ext/ruby_whisper_model.c +1 -1
- data/ext/ruby_whisper_params.c +4 -2
- data/ext/ruby_whisper_segment.c +81 -4
- data/ext/ruby_whisper_transcribe.cpp +13 -7
- data/ext/ruby_whisper_vad_params.c +1 -1
- data/ext/sources/CMakeLists.txt +5 -1
- data/ext/sources/bindings/javascript/package.json +1 -1
- data/ext/sources/examples/addon.node/__test__/whisper.spec.js +120 -24
- data/ext/sources/examples/addon.node/addon.cpp +150 -31
- data/ext/sources/examples/addon.node/index.js +3 -0
- data/ext/sources/examples/addon.node/vad-example.js +132 -0
- data/ext/sources/examples/bench/bench.cpp +3 -2
- data/ext/sources/examples/cli/cli.cpp +3 -2
- data/ext/sources/examples/command/command.cpp +32 -8
- data/ext/sources/examples/common-whisper.cpp +14 -7
- data/ext/sources/examples/lsp/lsp.cpp +2 -0
- data/ext/sources/examples/quantize/quantize.cpp +3 -0
- data/ext/sources/examples/server/CMakeLists.txt +3 -0
- data/ext/sources/examples/server/server.cpp +169 -22
- data/ext/sources/examples/stream/stream.cpp +6 -0
- data/ext/sources/examples/talk-llama/CMakeLists.txt +4 -1
- data/ext/sources/examples/talk-llama/llama-arch.cpp +171 -3
- data/ext/sources/examples/talk-llama/llama-arch.h +28 -1
- data/ext/sources/examples/talk-llama/llama-batch.cpp +741 -272
- data/ext/sources/examples/talk-llama/llama-batch.h +112 -54
- data/ext/sources/examples/talk-llama/llama-chat.cpp +30 -8
- data/ext/sources/examples/talk-llama/llama-chat.h +1 -0
- data/ext/sources/examples/talk-llama/llama-context.cpp +520 -351
- data/ext/sources/examples/talk-llama/llama-context.h +38 -17
- data/ext/sources/examples/talk-llama/llama-cparams.cpp +1 -1
- data/ext/sources/examples/talk-llama/llama-cparams.h +1 -1
- data/ext/sources/examples/talk-llama/llama-graph.cpp +447 -372
- data/ext/sources/examples/talk-llama/llama-graph.h +128 -58
- data/ext/sources/examples/talk-llama/llama-hparams.cpp +10 -2
- data/ext/sources/examples/talk-llama/llama-hparams.h +19 -2
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.cpp +279 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.h +128 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified.cpp +1841 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified.h +303 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache.h +14 -472
- data/ext/sources/examples/talk-llama/llama-kv-cells.h +86 -26
- data/ext/sources/examples/talk-llama/llama-memory-hybrid.cpp +246 -0
- data/ext/sources/examples/talk-llama/llama-memory-hybrid.h +138 -0
- data/ext/sources/examples/talk-llama/llama-memory-recurrent.cpp +1125 -0
- data/ext/sources/examples/talk-llama/llama-memory-recurrent.h +183 -0
- data/ext/sources/examples/talk-llama/llama-memory.cpp +58 -0
- data/ext/sources/examples/talk-llama/llama-memory.h +88 -4
- data/ext/sources/examples/talk-llama/llama-mmap.cpp +1 -1
- data/ext/sources/examples/talk-llama/llama-model-loader.cpp +42 -17
- data/ext/sources/examples/talk-llama/llama-model-saver.cpp +1 -0
- data/ext/sources/examples/talk-llama/llama-model.cpp +1863 -563
- data/ext/sources/examples/talk-llama/llama-model.h +27 -0
- data/ext/sources/examples/talk-llama/llama-quant.cpp +89 -6
- data/ext/sources/examples/talk-llama/llama-vocab.cpp +65 -28
- data/ext/sources/examples/talk-llama/llama-vocab.h +1 -0
- data/ext/sources/examples/talk-llama/llama.cpp +11 -7
- data/ext/sources/examples/talk-llama/llama.h +147 -40
- data/ext/sources/examples/talk-llama/talk-llama.cpp +2 -0
- data/ext/sources/examples/talk-llama/unicode.cpp +5 -0
- data/ext/sources/examples/vad-speech-segments/speech.cpp +6 -0
- data/ext/sources/examples/wchess/wchess.cmd/wchess.cmd.cpp +2 -0
- data/ext/sources/ggml/CMakeLists.txt +48 -3
- data/ext/sources/ggml/cmake/common.cmake +24 -0
- data/ext/sources/ggml/include/ggml-backend.h +1 -1
- data/ext/sources/ggml/include/ggml-cpu.h +2 -0
- data/ext/sources/ggml/include/ggml.h +144 -5
- data/ext/sources/ggml/src/CMakeLists.txt +82 -24
- data/ext/sources/ggml/src/ggml-backend-reg.cpp +5 -0
- data/ext/sources/ggml/src/ggml-backend.cpp +46 -23
- data/ext/sources/ggml/src/ggml-blas/CMakeLists.txt +3 -3
- data/ext/sources/ggml/src/ggml-cann/CMakeLists.txt +1 -0
- data/ext/sources/ggml/src/ggml-cann/common.h +6 -1
- data/ext/sources/ggml/src/ggml-cann/ggml-cann.cpp +33 -9
- data/ext/sources/ggml/src/ggml-common.h +4 -0
- data/ext/sources/ggml/src/ggml-cpu/CMakeLists.txt +133 -40
- data/ext/sources/ggml/src/ggml-cpu/amx/amx.cpp +1 -1
- data/ext/sources/ggml/src/ggml-cpu/amx/mmq.cpp +11 -10
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp +94 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/quants.c +4114 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/repack.cpp +2163 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/loongarch/quants.c +2639 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp +82 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/quants.c +2732 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/riscv/quants.c +2069 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/riscv/repack.cpp +397 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/s390/quants.c +1300 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/wasm/quants.c +1481 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/x86/quants.c +4311 -0
- data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-aarch64.cpp → arch/x86/repack.cpp} +79 -3225
- data/ext/sources/ggml/src/ggml-cpu/arch-fallback.h +184 -0
- data/ext/sources/ggml/src/ggml-cpu/common.h +4 -3
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-impl.h +16 -7
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu.c +146 -105
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu.cpp +12 -8
- data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-hbm.cpp → hbm.cpp} +1 -1
- data/ext/sources/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +1 -1
- data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.cpp +58 -8
- data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.h +5 -0
- data/ext/sources/ggml/src/ggml-cpu/ops.cpp +1057 -174
- data/ext/sources/ggml/src/ggml-cpu/ops.h +8 -0
- data/ext/sources/ggml/src/ggml-cpu/quants.c +1158 -0
- data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-quants.h → quants.h} +26 -0
- data/ext/sources/ggml/src/ggml-cpu/repack.cpp +1571 -0
- data/ext/sources/ggml/src/ggml-cpu/repack.h +98 -0
- data/ext/sources/ggml/src/ggml-cpu/simd-mappings.h +330 -38
- data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-traits.cpp → traits.cpp} +1 -1
- data/ext/sources/ggml/src/ggml-cpu/vec.cpp +111 -18
- data/ext/sources/ggml/src/ggml-cpu/vec.h +303 -94
- data/ext/sources/ggml/src/ggml-cuda/common.cuh +60 -37
- data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cu +161 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cu +91 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cuh +4 -0
- data/ext/sources/ggml/src/ggml-cuda/convert.cu +22 -0
- data/ext/sources/ggml/src/ggml-cuda/convert.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-common.cuh +2 -2
- data/ext/sources/ggml/src/ggml-cuda/fattn-mma-f16.cuh +5 -2
- data/ext/sources/ggml/src/ggml-cuda/fattn-wmma-f16.cu +4 -0
- data/ext/sources/ggml/src/ggml-cuda/ggml-cuda.cu +265 -123
- data/ext/sources/ggml/src/ggml-cuda/mean.cu +19 -0
- data/ext/sources/ggml/src/ggml-cuda/mean.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/mmv.cu +257 -87
- data/ext/sources/ggml/src/ggml-cuda/mmv.cuh +2 -3
- data/ext/sources/ggml/src/ggml-cuda/ssm-scan.cu +6 -4
- data/ext/sources/ggml/src/ggml-cuda/sumrows.cu +5 -18
- data/ext/sources/ggml/src/ggml-cuda/sumrows.cuh +0 -1
- data/ext/sources/ggml/src/ggml-cuda/unary.cu +89 -0
- data/ext/sources/ggml/src/ggml-cuda/unary.cuh +7 -0
- data/ext/sources/ggml/src/ggml-hip/CMakeLists.txt +4 -0
- data/ext/sources/ggml/src/ggml-impl.h +127 -183
- data/ext/sources/ggml/src/ggml-metal/CMakeLists.txt +11 -10
- data/ext/sources/ggml/src/ggml-metal/ggml-metal-impl.h +27 -0
- data/ext/sources/ggml/src/ggml-metal/ggml-metal.m +331 -49
- data/ext/sources/ggml/src/ggml-metal/ggml-metal.metal +564 -282
- data/ext/sources/ggml/src/ggml-musa/mudnn.cuh +2 -2
- data/ext/sources/ggml/src/ggml-opencl/CMakeLists.txt +14 -0
- data/ext/sources/ggml/src/ggml-opencl/ggml-opencl.cpp +1859 -489
- data/ext/sources/ggml/src/ggml-opencl/kernels/argsort.cl +86 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/concat.cl +109 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/div.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/glu.cl +201 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/group_norm.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_id_q4_0_f32_8x_flat.cl +283 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/pad.cl +30 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/repeat.cl +39 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sigmoid.cl +29 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sub.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sum_rows.cl +39 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/tanh.cl +63 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/tsembd.cl +48 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/upscale.cl +121 -0
- data/ext/sources/ggml/src/ggml-quants.c +6 -8
- data/ext/sources/ggml/src/ggml-rpc/ggml-rpc.cpp +18 -15
- data/ext/sources/ggml/src/ggml-sycl/CMakeLists.txt +3 -3
- data/ext/sources/ggml/src/ggml-sycl/binbcast.cpp +5 -6
- data/ext/sources/ggml/src/ggml-sycl/common.hpp +20 -48
- data/ext/sources/ggml/src/ggml-sycl/concat.cpp +28 -41
- data/ext/sources/ggml/src/ggml-sycl/conv.cpp +4 -10
- data/ext/sources/ggml/src/ggml-sycl/convert.cpp +117 -165
- data/ext/sources/ggml/src/ggml-sycl/cpy.cpp +192 -53
- data/ext/sources/ggml/src/ggml-sycl/dequantize.hpp +32 -0
- data/ext/sources/ggml/src/ggml-sycl/dmmv.cpp +49 -67
- data/ext/sources/ggml/src/ggml-sycl/dpct/helper.hpp +31 -1
- data/ext/sources/ggml/src/ggml-sycl/element_wise.cpp +648 -1039
- data/ext/sources/ggml/src/ggml-sycl/element_wise.hpp +18 -9
- data/ext/sources/ggml/src/ggml-sycl/gemm.hpp +3 -0
- data/ext/sources/ggml/src/ggml-sycl/getrows.cpp +8 -105
- data/ext/sources/ggml/src/ggml-sycl/ggml-sycl.cpp +238 -100
- data/ext/sources/ggml/src/ggml-sycl/gla.cpp +2 -2
- data/ext/sources/ggml/src/ggml-sycl/im2col.cpp +1 -1
- data/ext/sources/ggml/src/ggml-sycl/mmq.cpp +60 -80
- data/ext/sources/ggml/src/ggml-sycl/mmvq.cpp +158 -203
- data/ext/sources/ggml/src/ggml-sycl/norm.cpp +55 -74
- data/ext/sources/ggml/src/ggml-sycl/quants.hpp +38 -10
- data/ext/sources/ggml/src/ggml-sycl/rope.cpp +138 -27
- data/ext/sources/ggml/src/ggml-sycl/softmax.cpp +3 -3
- data/ext/sources/ggml/src/ggml-sycl/sycl_hw.cpp +3 -1
- data/ext/sources/ggml/src/ggml-sycl/sycl_hw.hpp +3 -0
- data/ext/sources/ggml/src/ggml-sycl/tsembd.cpp +3 -8
- data/ext/sources/ggml/src/ggml-sycl/vecdotq.hpp +108 -16
- data/ext/sources/ggml/src/ggml-sycl/wkv.cpp +12 -16
- data/ext/sources/ggml/src/ggml-vulkan/CMakeLists.txt +36 -32
- data/ext/sources/ggml/src/ggml-vulkan/ggml-vulkan.cpp +726 -282
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt +4 -12
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp +98 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/geglu.comp +13 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_head.comp +15 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_main.comp +29 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/reglu.comp +9 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp +12 -3
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/swiglu.comp +9 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +10 -1
- data/ext/sources/ggml/src/ggml.c +328 -48
- data/ext/sources/ggml/src/ggml.cpp +26 -0
- data/ext/sources/ggml/src/gguf.cpp +24 -3
- data/ext/sources/include/whisper.h +2 -0
- data/ext/sources/src/CMakeLists.txt +2 -0
- data/ext/sources/src/coreml/whisper-compat.h +10 -0
- data/ext/sources/src/coreml/whisper-compat.m +35 -0
- data/ext/sources/src/coreml/whisper-decoder-impl.m +1 -0
- data/ext/sources/src/coreml/whisper-encoder-impl.m +1 -0
- data/ext/sources/src/whisper.cpp +218 -169
- data/extsources.rb +15 -9
- data/lib/whisper/context.rb +15 -0
- data/lib/whisper/model/uri.rb +56 -1
- data/lib/whisper/segment.rb +58 -0
- data/sig/whisper.rbs +68 -38
- data/{tests → test}/helper.rb +1 -12
- data/{tests → test}/test_model.rb +9 -0
- data/test/test_package.rb +51 -0
- data/test/test_segment.rb +146 -0
- data/{tests → test}/test_whisper.rb +70 -0
- data/whispercpp.gemspec +2 -3
- metadata +91 -43
- data/ext/sources/.dockerignore +0 -3
- data/ext/sources/.github/workflows/bindings-ruby.yml +0 -21
- data/ext/sources/ci/run.sh +0 -336
- data/ext/sources/close-issue.yml +0 -28
- data/ext/sources/examples/talk-llama/llama-kv-cache.cpp +0 -2739
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +0 -8
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-quants.c +0 -13747
- data/tests/test_package.rb +0 -46
- data/tests/test_segment.rb +0 -74
- /data/ext/sources/ggml/src/ggml-cpu/{cpu-feats-x86.cpp → arch/x86/cpu-feats.cpp} +0 -0
- /data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-hbm.h → hbm.h} +0 -0
- /data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-traits.h → traits.h} +0 -0
- /data/{tests → test}/jfk_reader/.gitignore +0 -0
- /data/{tests → test}/jfk_reader/extconf.rb +0 -0
- /data/{tests → test}/jfk_reader/jfk_reader.c +0 -0
- /data/{tests → test}/test_callback.rb +0 -0
- /data/{tests → test}/test_error.rb +0 -0
- /data/{tests → test}/test_params.rb +0 -0
- /data/{tests → test}/test_vad.rb +0 -0
- /data/{tests → test}/test_vad_params.rb +0 -0
@@ -39,6 +39,7 @@ enum llm_type {
|
|
39
39
|
LLM_TYPE_475M,
|
40
40
|
LLM_TYPE_770M,
|
41
41
|
LLM_TYPE_780M,
|
42
|
+
LLM_TYPE_0_3B,
|
42
43
|
LLM_TYPE_0_5B,
|
43
44
|
LLM_TYPE_0_6B,
|
44
45
|
LLM_TYPE_1B,
|
@@ -73,6 +74,7 @@ enum llm_type {
|
|
73
74
|
LLM_TYPE_40B,
|
74
75
|
LLM_TYPE_65B,
|
75
76
|
LLM_TYPE_70B,
|
77
|
+
LLM_TYPE_142B,
|
76
78
|
LLM_TYPE_236B,
|
77
79
|
LLM_TYPE_290B,
|
78
80
|
LLM_TYPE_314B,
|
@@ -94,6 +96,8 @@ enum llm_type {
|
|
94
96
|
LLM_TYPE_17B_128E, // llama4 Maverick
|
95
97
|
LLM_TYPE_30B_A3B,
|
96
98
|
LLM_TYPE_235B_A22B,
|
99
|
+
LLM_TYPE_E2B,
|
100
|
+
LLM_TYPE_E4B,
|
97
101
|
};
|
98
102
|
|
99
103
|
std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type);
|
@@ -315,6 +319,19 @@ struct llama_layer {
|
|
315
319
|
struct ggml_tensor * ffn_up_scale = nullptr;
|
316
320
|
struct ggml_tensor * ffn_down_scale = nullptr;
|
317
321
|
|
322
|
+
// altup & laurel
|
323
|
+
struct ggml_tensor * per_layer_inp_gate = nullptr;
|
324
|
+
struct ggml_tensor * per_layer_proj = nullptr;
|
325
|
+
struct ggml_tensor * per_layer_post_norm = nullptr;
|
326
|
+
struct ggml_tensor * altup_correct_coef = nullptr;
|
327
|
+
struct ggml_tensor * altup_correct_scale = nullptr;
|
328
|
+
struct ggml_tensor * altup_predict_coef = nullptr;
|
329
|
+
struct ggml_tensor * altup_router = nullptr;
|
330
|
+
struct ggml_tensor * altup_router_norm = nullptr;
|
331
|
+
struct ggml_tensor * laurel_l = nullptr;
|
332
|
+
struct ggml_tensor * laurel_r = nullptr;
|
333
|
+
struct ggml_tensor * laurel_post_norm = nullptr;
|
334
|
+
|
318
335
|
struct llama_layer_posnet posnet;
|
319
336
|
|
320
337
|
struct llama_layer_convnext convnext;
|
@@ -329,6 +346,9 @@ struct llama_model {
|
|
329
346
|
llama_hparams hparams = {};
|
330
347
|
llama_vocab vocab;
|
331
348
|
|
349
|
+
// for classifier models
|
350
|
+
std::vector<std::string> classifier_labels;
|
351
|
+
|
332
352
|
struct ggml_tensor * tok_embd = nullptr;
|
333
353
|
struct ggml_tensor * type_embd = nullptr;
|
334
354
|
struct ggml_tensor * pos_embd = nullptr;
|
@@ -350,6 +370,13 @@ struct llama_model {
|
|
350
370
|
struct ggml_tensor * conv1d = nullptr;
|
351
371
|
struct ggml_tensor * conv1d_b = nullptr;
|
352
372
|
|
373
|
+
// gemma3n altup
|
374
|
+
struct ggml_tensor * tok_embd_per_layer = nullptr;
|
375
|
+
struct ggml_tensor * altup_proj = nullptr;
|
376
|
+
struct ggml_tensor * altup_unembd_proj = nullptr;
|
377
|
+
struct ggml_tensor * per_layer_model_proj = nullptr;
|
378
|
+
struct ggml_tensor * per_layer_proj_norm = nullptr;
|
379
|
+
|
353
380
|
std::vector<llama_layer> layers;
|
354
381
|
|
355
382
|
llama_model_params params;
|
@@ -1,5 +1,4 @@
|
|
1
1
|
#include "llama-quant.h"
|
2
|
-
|
3
2
|
#include "llama-impl.h"
|
4
3
|
#include "llama-model.h"
|
5
4
|
#include "llama-model-loader.h"
|
@@ -27,6 +26,56 @@ static void zeros(std::ofstream & file, size_t n) {
|
|
27
26
|
}
|
28
27
|
}
|
29
28
|
|
29
|
+
static std::string remap_layer(const std::string & orig_name, const std::vector<int> & prune, std::map<int, std::string> & mapped, int & next_id) {
|
30
|
+
if (prune.empty()) {
|
31
|
+
return orig_name;
|
32
|
+
}
|
33
|
+
|
34
|
+
static const std::regex pattern(R"(blk\.(\d+)\.)");
|
35
|
+
if (std::smatch match; std::regex_search(orig_name, match, pattern)) {
|
36
|
+
const int blk = std::stoi(match[1]);
|
37
|
+
std::string new_name = orig_name;
|
38
|
+
|
39
|
+
if (mapped.count(blk)) {
|
40
|
+
// Already mapped, do nothing
|
41
|
+
} else if (std::find(prune.begin(), prune.end(), blk) != prune.end()) {
|
42
|
+
mapped[blk] = "";
|
43
|
+
} else if (blk < prune.front()) {
|
44
|
+
mapped[blk] = std::to_string(blk);
|
45
|
+
next_id = blk + 1;
|
46
|
+
} else {
|
47
|
+
mapped[blk] = std::to_string(next_id);
|
48
|
+
++next_id;
|
49
|
+
}
|
50
|
+
|
51
|
+
return mapped[blk].empty() ? mapped[blk] : new_name.replace(match.position(1), match.length(1), mapped[blk]);
|
52
|
+
}
|
53
|
+
|
54
|
+
return orig_name;
|
55
|
+
}
|
56
|
+
|
57
|
+
static std::string remap_imatrix (const std::string & orig_name, const std::map<int, std::string> & mapped) {
|
58
|
+
if (mapped.empty()) {
|
59
|
+
return orig_name;
|
60
|
+
}
|
61
|
+
|
62
|
+
static const std::regex pattern(R"(blk\.(\d+)\.)");
|
63
|
+
if (std::smatch match; std::regex_search(orig_name, match, pattern)) {
|
64
|
+
const std::string blk(match[1]);
|
65
|
+
std::string new_name = orig_name;
|
66
|
+
|
67
|
+
for (const auto & p : mapped) {
|
68
|
+
if (p.second == blk) {
|
69
|
+
LLAMA_LOG_DEBUG("(blk.%d imatrix) ", p.first);
|
70
|
+
return new_name.replace(match.position(1), match.length(1), std::to_string(p.first));
|
71
|
+
}
|
72
|
+
}
|
73
|
+
GGML_ABORT("\n%s: imatrix mapping error for %s\n", __func__, orig_name.c_str());
|
74
|
+
}
|
75
|
+
|
76
|
+
return orig_name;
|
77
|
+
}
|
78
|
+
|
30
79
|
struct quantize_state_impl {
|
31
80
|
const llama_model & model;
|
32
81
|
const llama_model_quantize_params * params;
|
@@ -174,7 +223,7 @@ static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_t
|
|
174
223
|
new_type = GGML_TYPE_Q6_K;
|
175
224
|
}
|
176
225
|
}
|
177
|
-
} else if (name == "token_embd.weight") {
|
226
|
+
} else if (name == "token_embd.weight" || name == "per_layer_token_embd.weight") {
|
178
227
|
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
|
179
228
|
new_type = qs.params->token_embedding_type;
|
180
229
|
} else {
|
@@ -568,6 +617,11 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
568
617
|
const size_t align = GGUF_DEFAULT_ALIGNMENT;
|
569
618
|
gguf_context_ptr ctx_out { gguf_init_empty() };
|
570
619
|
|
620
|
+
std::vector<int> prune_list = {};
|
621
|
+
if (params->prune_layers) {
|
622
|
+
prune_list = *static_cast<const std::vector<int> *>(params->prune_layers);
|
623
|
+
}
|
624
|
+
|
571
625
|
// copy the KV pairs from the input file
|
572
626
|
gguf_set_kv (ctx_out.get(), ml.meta.get());
|
573
627
|
gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV
|
@@ -585,7 +639,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
585
639
|
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
|
586
640
|
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64);
|
587
641
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
|
588
|
-
|
642
|
+
// Setting type to UINT32. See https://github.com/ggml-org/llama.cpp/pull/14182 for context
|
643
|
+
gguf_set_val_u32(ctx_out.get(), o.key, (uint32_t)abs(o.val_i64));
|
589
644
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
|
590
645
|
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool);
|
591
646
|
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
|
@@ -596,12 +651,32 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
596
651
|
}
|
597
652
|
}
|
598
653
|
|
654
|
+
std::map<int, std::string> mapped;
|
655
|
+
int blk_id = 0;
|
656
|
+
int pruned_attention_w = 0;
|
657
|
+
|
599
658
|
// make a list of weights
|
600
659
|
std::vector<const llama_model_loader::llama_tensor_weight *> tensors;
|
601
660
|
tensors.reserve(ml.weights_map.size());
|
602
661
|
for (const auto & it : ml.weights_map) {
|
662
|
+
const std::string remapped_name(remap_layer(it.first, prune_list, mapped, blk_id));
|
663
|
+
if (remapped_name.empty()) {
|
664
|
+
if (it.first.find("attn_v.weight") != std::string::npos ||
|
665
|
+
it.first.find("attn_qkv.weight") != std::string::npos ||
|
666
|
+
it.first.find("attn_kv_b.weight") != std::string::npos) {
|
667
|
+
pruned_attention_w++;
|
668
|
+
}
|
669
|
+
LLAMA_LOG_DEBUG("%s: pruning tensor %s\n", __func__, it.first.c_str());
|
670
|
+
continue;
|
671
|
+
} else if (remapped_name != it.first) {
|
672
|
+
ggml_set_name(it.second.tensor, remapped_name.c_str());
|
673
|
+
LLAMA_LOG_DEBUG("%s: tensor %s remapped to %s\n", __func__, it.first.c_str(), ggml_get_name(it.second.tensor));
|
674
|
+
}
|
603
675
|
tensors.push_back(&it.second);
|
604
676
|
}
|
677
|
+
if (!prune_list.empty()) {
|
678
|
+
gguf_set_val_u32(ctx_out.get(), ml.llm_kv(LLM_KV_BLOCK_COUNT).c_str(), blk_id);
|
679
|
+
}
|
605
680
|
|
606
681
|
// keep_split requires that the weights are sorted by split index
|
607
682
|
if (params->keep_split) {
|
@@ -639,7 +714,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
639
714
|
if (llama_model_has_encoder(&model)) {
|
640
715
|
n_attn_layer *= 3;
|
641
716
|
}
|
642
|
-
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
717
|
+
GGML_ASSERT((qs.n_attention_wv == n_attn_layer - pruned_attention_w) && "n_attention_wv is unexpected");
|
643
718
|
}
|
644
719
|
|
645
720
|
size_t total_size_org = 0;
|
@@ -680,7 +755,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
680
755
|
for (size_t i = 0; i < ctx_outs.size(); ++i) {
|
681
756
|
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
|
682
757
|
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
|
683
|
-
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(),
|
758
|
+
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), (int32_t)tensors.size());
|
684
759
|
}
|
685
760
|
}
|
686
761
|
|
@@ -755,6 +830,13 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
755
830
|
// NOTE: can't use LLM_TN here because the layer number is not known
|
756
831
|
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
|
757
832
|
|
833
|
+
// these are very small (e.g. 4x4)
|
834
|
+
quantize &= name.find("altup") == std::string::npos;
|
835
|
+
quantize &= name.find("laurel") == std::string::npos;
|
836
|
+
|
837
|
+
// these are not too big so keep them as it is
|
838
|
+
quantize &= name.find("per_layer_model_proj") == std::string::npos;
|
839
|
+
|
758
840
|
// do not quantize positional embeddings and token types (BERT)
|
759
841
|
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
|
760
842
|
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
|
@@ -831,7 +913,7 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
|
831
913
|
|
832
914
|
const float * imatrix = nullptr;
|
833
915
|
if (imatrix_data) {
|
834
|
-
auto it = imatrix_data->find(tensor->name);
|
916
|
+
auto it = imatrix_data->find(remap_imatrix(tensor->name, mapped));
|
835
917
|
if (it == imatrix_data->end()) {
|
836
918
|
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
|
837
919
|
} else {
|
@@ -946,6 +1028,7 @@ llama_model_quantize_params llama_model_quantize_default_params() {
|
|
946
1028
|
/*.imatrix =*/ nullptr,
|
947
1029
|
/*.kv_overrides =*/ nullptr,
|
948
1030
|
/*.tensor_type =*/ nullptr,
|
1031
|
+
/*.prune_layers =*/ nullptr
|
949
1032
|
};
|
950
1033
|
|
951
1034
|
return result;
|
@@ -9,16 +9,16 @@
|
|
9
9
|
|
10
10
|
#include <algorithm>
|
11
11
|
#include <cassert>
|
12
|
+
#include <cctype>
|
12
13
|
#include <cfloat>
|
13
|
-
#include <climits>
|
14
14
|
#include <cstdarg>
|
15
15
|
#include <cstring>
|
16
16
|
#include <forward_list>
|
17
|
+
#include <limits>
|
17
18
|
#include <map>
|
18
19
|
#include <queue>
|
19
20
|
#include <set>
|
20
21
|
#include <unordered_map>
|
21
|
-
#include <cctype>
|
22
22
|
|
23
23
|
//
|
24
24
|
// helpers
|
@@ -1269,6 +1269,7 @@ struct llama_vocab::impl {
|
|
1269
1269
|
bool add_space_prefix = false;
|
1270
1270
|
bool add_bos = false;
|
1271
1271
|
bool add_eos = false;
|
1272
|
+
bool add_sep = false;
|
1272
1273
|
bool ignore_merges = false;
|
1273
1274
|
bool clean_spaces = false; // clean_up_tokenization_spaces
|
1274
1275
|
bool remove_extra_whitespaces = false;
|
@@ -1421,6 +1422,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
1421
1422
|
special_sep_id = 102;
|
1422
1423
|
special_pad_id = 0;
|
1423
1424
|
special_mask_id = 103;
|
1425
|
+
|
1426
|
+
add_sep = true;
|
1424
1427
|
} else if (tokenizer_model == "gpt2") {
|
1425
1428
|
type = LLAMA_VOCAB_TYPE_BPE;
|
1426
1429
|
|
@@ -1550,12 +1553,15 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
1550
1553
|
tokenizer_pre == "jina-es" ||
|
1551
1554
|
tokenizer_pre == "jina-de" ||
|
1552
1555
|
tokenizer_pre == "gigachat" ||
|
1553
|
-
tokenizer_pre == "jina-v1-en" ||
|
1554
1556
|
tokenizer_pre == "jina-v2-es" ||
|
1555
|
-
tokenizer_pre == "jina-v2-de"
|
1557
|
+
tokenizer_pre == "jina-v2-de") {
|
1558
|
+
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
|
1559
|
+
} else if (
|
1560
|
+
tokenizer_pre == "jina-v1-en" ||
|
1556
1561
|
tokenizer_pre == "jina-v2-code" ||
|
1557
1562
|
tokenizer_pre == "roberta-bpe") {
|
1558
1563
|
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2;
|
1564
|
+
add_sep = true;
|
1559
1565
|
} else if (
|
1560
1566
|
tokenizer_pre == "refact") {
|
1561
1567
|
pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT;
|
@@ -1665,6 +1671,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
1665
1671
|
clean_spaces = true;
|
1666
1672
|
add_bos = true;
|
1667
1673
|
add_eos = false;
|
1674
|
+
add_sep = true;
|
1668
1675
|
} else if (type == LLAMA_VOCAB_TYPE_UGM) {
|
1669
1676
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
|
1670
1677
|
add_bos = false;
|
@@ -1801,7 +1808,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
1801
1808
|
}
|
1802
1809
|
}
|
1803
1810
|
|
1804
|
-
// Handle add_bos and
|
1811
|
+
// Handle add_bos, add_eos and add_sep
|
1805
1812
|
{
|
1806
1813
|
bool temp = true;
|
1807
1814
|
|
@@ -1811,6 +1818,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
1811
1818
|
if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
|
1812
1819
|
add_eos = temp;
|
1813
1820
|
}
|
1821
|
+
if (ml.get_key(LLM_KV_TOKENIZER_ADD_SEP, temp, false)) {
|
1822
|
+
add_sep = temp;
|
1823
|
+
}
|
1814
1824
|
}
|
1815
1825
|
|
1816
1826
|
// auto-detect special tokens by text
|
@@ -1987,6 +1997,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
1987
1997
|
|| t.first == "<|eom_id|>"
|
1988
1998
|
|| t.first == "<EOT>"
|
1989
1999
|
|| t.first == "_<EOT>"
|
2000
|
+
|| t.first == "<|end_of_text|>"
|
1990
2001
|
) {
|
1991
2002
|
special_eog_ids.insert(t.second);
|
1992
2003
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
|
@@ -2059,9 +2070,9 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
2059
2070
|
//NOTE: Per token attributes are missing from the GGUF file.
|
2060
2071
|
//TODO: Extract attributes from GGUF file.
|
2061
2072
|
{
|
2062
|
-
auto _contains_any = [] (const std::string & str, const std::vector<std::
|
2073
|
+
auto _contains_any = [] (const std::string & str, const std::vector<std::string_view> & substrs) -> bool {
|
2063
2074
|
for (const auto & substr : substrs) {
|
2064
|
-
if (str.find(substr)
|
2075
|
+
if (str.find(substr) != std::string::npos) {
|
2065
2076
|
return true;
|
2066
2077
|
}
|
2067
2078
|
}
|
@@ -2080,9 +2091,11 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
2080
2091
|
|
2081
2092
|
std::string model_name;
|
2082
2093
|
std::string tokenizer_pre;
|
2094
|
+
std::string general_arch;
|
2083
2095
|
|
2084
2096
|
ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
|
2085
2097
|
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
|
2098
|
+
ml.get_key(LLM_KV_GENERAL_ARCHITECTURE, general_arch, false);
|
2086
2099
|
|
2087
2100
|
// model name to lowercase
|
2088
2101
|
std::transform(model_name.begin(), model_name.end(), model_name.begin(),
|
@@ -2091,9 +2104,16 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|
|
2091
2104
|
}
|
2092
2105
|
);
|
2093
2106
|
|
2094
|
-
// set attributes by model/tokenizer name
|
2095
|
-
if (
|
2096
|
-
|
2107
|
+
// set attributes by model/tokenizer/architecture name
|
2108
|
+
if (false
|
2109
|
+
|| _contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})
|
2110
|
+
|| _contains_any(general_arch, {"nomic-bert-moe"})
|
2111
|
+
) {
|
2112
|
+
if (token_to_id.count("<mask>") == 0) {
|
2113
|
+
LLAMA_LOG_WARN("%s: Mask token is missing in vocab, please reconvert model!\n", __func__);
|
2114
|
+
} else {
|
2115
|
+
_set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
|
2116
|
+
}
|
2097
2117
|
} else if (_contains_any(model_name, {"phi-3", "phi3"})) {
|
2098
2118
|
for (auto id : cache_special_tokens) {
|
2099
2119
|
_set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
|
@@ -2563,6 +2583,10 @@ int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t
|
|
2563
2583
|
// copy piece chars to output text buffer
|
2564
2584
|
// skip up to 'lstrip' leading spaces before copying
|
2565
2585
|
auto _try_copy = [=] (const char * token, size_t size) -> int32_t {
|
2586
|
+
if (size >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
|
2587
|
+
GGML_ABORT("invalid token size: %zu exceeds int32_t limit", size);
|
2588
|
+
}
|
2589
|
+
|
2566
2590
|
for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) {
|
2567
2591
|
token++;
|
2568
2592
|
size--;
|
@@ -2759,26 +2783,26 @@ void llama_vocab::impl::print_info() const {
|
|
2759
2783
|
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size());
|
2760
2784
|
|
2761
2785
|
// special tokens
|
2762
|
-
if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token
|
2763
|
-
if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token
|
2764
|
-
if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token
|
2765
|
-
if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token
|
2766
|
-
if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token
|
2767
|
-
if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token
|
2768
|
-
if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token
|
2769
|
-
if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token
|
2770
|
-
|
2771
|
-
if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token
|
2772
|
-
|
2773
|
-
if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token
|
2774
|
-
if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token
|
2775
|
-
if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token
|
2776
|
-
if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token
|
2777
|
-
if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token
|
2778
|
-
if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token
|
2786
|
+
if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token.at(special_bos_id).text.c_str() ); }
|
2787
|
+
if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token.at(special_eos_id).text.c_str() ); }
|
2788
|
+
if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token.at(special_eot_id).text.c_str() ); }
|
2789
|
+
if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token.at(special_eom_id).text.c_str() ); }
|
2790
|
+
if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token.at(special_unk_id).text.c_str() ); }
|
2791
|
+
if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token.at(special_sep_id).text.c_str() ); }
|
2792
|
+
if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token.at(special_pad_id).text.c_str() ); }
|
2793
|
+
if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token.at(special_mask_id).text.c_str() ); }
|
2794
|
+
|
2795
|
+
if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token.at(linefeed_id).text.c_str() ); }
|
2796
|
+
|
2797
|
+
if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token.at(special_fim_pre_id).text.c_str() ); }
|
2798
|
+
if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token.at(special_fim_suf_id).text.c_str() ); }
|
2799
|
+
if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token.at(special_fim_mid_id).text.c_str() ); }
|
2800
|
+
if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token.at(special_fim_pad_id).text.c_str() ); }
|
2801
|
+
if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token.at(special_fim_rep_id).text.c_str() ); }
|
2802
|
+
if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token.at(special_fim_sep_id).text.c_str() ); }
|
2779
2803
|
|
2780
2804
|
for (const auto & id : special_eog_ids) {
|
2781
|
-
LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token
|
2805
|
+
LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token.at(id).text.c_str() );
|
2782
2806
|
}
|
2783
2807
|
|
2784
2808
|
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len);
|
@@ -2986,6 +3010,10 @@ bool llama_vocab::get_add_eos() const {
|
|
2986
3010
|
return pimpl->add_eos;
|
2987
3011
|
}
|
2988
3012
|
|
3013
|
+
bool llama_vocab::get_add_sep() const {
|
3014
|
+
return pimpl->add_sep;
|
3015
|
+
}
|
3016
|
+
|
2989
3017
|
bool llama_vocab::get_ignore_merges() const {
|
2990
3018
|
return pimpl->ignore_merges;
|
2991
3019
|
}
|
@@ -3046,6 +3074,11 @@ int32_t llama_vocab::tokenize(
|
|
3046
3074
|
bool add_special,
|
3047
3075
|
bool parse_special) const {
|
3048
3076
|
auto res = tokenize(std::string(text, text_len), add_special, parse_special);
|
3077
|
+
if (res.size() >= static_cast<size_t>(std::numeric_limits<int32_t>::max())) {
|
3078
|
+
LLAMA_LOG_ERROR("%s: tokenization result size %zu exceeds int32_t limit\n", __func__, res.size());
|
3079
|
+
return std::numeric_limits<int32_t>::min();
|
3080
|
+
}
|
3081
|
+
|
3049
3082
|
if (n_tokens_max < (int) res.size()) {
|
3050
3083
|
// LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
|
3051
3084
|
return -((int) res.size());
|
@@ -3177,6 +3210,10 @@ bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) {
|
|
3177
3210
|
return vocab->get_add_eos();
|
3178
3211
|
}
|
3179
3212
|
|
3213
|
+
bool llama_vocab_get_add_sep(const struct llama_vocab * vocab) {
|
3214
|
+
return vocab->get_add_sep();
|
3215
|
+
}
|
3216
|
+
|
3180
3217
|
llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) {
|
3181
3218
|
return vocab->token_fim_pre();
|
3182
3219
|
}
|
@@ -74,6 +74,7 @@ struct llama_vocab {
|
|
74
74
|
bool get_add_space_prefix () const;
|
75
75
|
bool get_add_bos () const;
|
76
76
|
bool get_add_eos () const;
|
77
|
+
bool get_add_sep () const;
|
77
78
|
bool get_ignore_merges () const;
|
78
79
|
bool get_clean_spaces () const;
|
79
80
|
bool get_remove_extra_whitespaces () const;
|
@@ -198,14 +198,18 @@ static struct llama_model * llama_model_load_from_file_impl(
|
|
198
198
|
|
199
199
|
// if using single GPU mode, remove all except the main GPU
|
200
200
|
if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
|
201
|
-
if (params.main_gpu < 0
|
202
|
-
|
203
|
-
|
204
|
-
|
201
|
+
if (params.main_gpu < 0) {
|
202
|
+
model->devices.clear();
|
203
|
+
} else {
|
204
|
+
if (params.main_gpu >= (int)model->devices.size()) {
|
205
|
+
LLAMA_LOG_ERROR("%s: invalid value for main_gpu: %d (available devices: %zu)\n", __func__, params.main_gpu, model->devices.size());
|
206
|
+
llama_model_free(model);
|
207
|
+
return nullptr;
|
208
|
+
}
|
209
|
+
ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
|
210
|
+
model->devices.clear();
|
211
|
+
model->devices.push_back(main_gpu);
|
205
212
|
}
|
206
|
-
ggml_backend_dev_t main_gpu = model->devices[params.main_gpu];
|
207
|
-
model->devices.clear();
|
208
|
-
model->devices.push_back(main_gpu);
|
209
213
|
}
|
210
214
|
|
211
215
|
for (auto * dev : model->devices) {
|