whispercpp 1.3.2 → 1.3.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +6 -3
- data/README.md +71 -14
- data/Rakefile +20 -7
- data/ext/.gitignore +4 -6
- data/ext/dependencies.rb +36 -24
- data/ext/extconf.rb +1 -1
- data/ext/options.rb +48 -184
- data/ext/ruby_whisper.c +18 -0
- data/ext/ruby_whisper_context.c +43 -12
- data/ext/ruby_whisper_model.c +1 -1
- data/ext/ruby_whisper_params.c +4 -2
- data/ext/ruby_whisper_segment.c +81 -4
- data/ext/ruby_whisper_transcribe.cpp +13 -7
- data/ext/ruby_whisper_vad_params.c +1 -1
- data/ext/sources/CMakeLists.txt +5 -1
- data/ext/sources/bindings/javascript/package.json +1 -1
- data/ext/sources/examples/addon.node/__test__/whisper.spec.js +120 -24
- data/ext/sources/examples/addon.node/addon.cpp +150 -31
- data/ext/sources/examples/addon.node/index.js +3 -0
- data/ext/sources/examples/addon.node/vad-example.js +132 -0
- data/ext/sources/examples/bench/bench.cpp +3 -2
- data/ext/sources/examples/cli/cli.cpp +3 -2
- data/ext/sources/examples/command/command.cpp +32 -8
- data/ext/sources/examples/common-whisper.cpp +14 -7
- data/ext/sources/examples/lsp/lsp.cpp +2 -0
- data/ext/sources/examples/quantize/quantize.cpp +3 -0
- data/ext/sources/examples/server/CMakeLists.txt +3 -0
- data/ext/sources/examples/server/server.cpp +169 -22
- data/ext/sources/examples/stream/stream.cpp +6 -0
- data/ext/sources/examples/talk-llama/CMakeLists.txt +4 -1
- data/ext/sources/examples/talk-llama/llama-arch.cpp +171 -3
- data/ext/sources/examples/talk-llama/llama-arch.h +28 -1
- data/ext/sources/examples/talk-llama/llama-batch.cpp +741 -272
- data/ext/sources/examples/talk-llama/llama-batch.h +112 -54
- data/ext/sources/examples/talk-llama/llama-chat.cpp +30 -8
- data/ext/sources/examples/talk-llama/llama-chat.h +1 -0
- data/ext/sources/examples/talk-llama/llama-context.cpp +520 -351
- data/ext/sources/examples/talk-llama/llama-context.h +38 -17
- data/ext/sources/examples/talk-llama/llama-cparams.cpp +1 -1
- data/ext/sources/examples/talk-llama/llama-cparams.h +1 -1
- data/ext/sources/examples/talk-llama/llama-graph.cpp +447 -372
- data/ext/sources/examples/talk-llama/llama-graph.h +128 -58
- data/ext/sources/examples/talk-llama/llama-hparams.cpp +10 -2
- data/ext/sources/examples/talk-llama/llama-hparams.h +19 -2
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.cpp +279 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.h +128 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified.cpp +1841 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified.h +303 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache.h +14 -472
- data/ext/sources/examples/talk-llama/llama-kv-cells.h +86 -26
- data/ext/sources/examples/talk-llama/llama-memory-hybrid.cpp +246 -0
- data/ext/sources/examples/talk-llama/llama-memory-hybrid.h +138 -0
- data/ext/sources/examples/talk-llama/llama-memory-recurrent.cpp +1125 -0
- data/ext/sources/examples/talk-llama/llama-memory-recurrent.h +183 -0
- data/ext/sources/examples/talk-llama/llama-memory.cpp +58 -0
- data/ext/sources/examples/talk-llama/llama-memory.h +88 -4
- data/ext/sources/examples/talk-llama/llama-mmap.cpp +1 -1
- data/ext/sources/examples/talk-llama/llama-model-loader.cpp +42 -17
- data/ext/sources/examples/talk-llama/llama-model-saver.cpp +1 -0
- data/ext/sources/examples/talk-llama/llama-model.cpp +1863 -563
- data/ext/sources/examples/talk-llama/llama-model.h +27 -0
- data/ext/sources/examples/talk-llama/llama-quant.cpp +89 -6
- data/ext/sources/examples/talk-llama/llama-vocab.cpp +65 -28
- data/ext/sources/examples/talk-llama/llama-vocab.h +1 -0
- data/ext/sources/examples/talk-llama/llama.cpp +11 -7
- data/ext/sources/examples/talk-llama/llama.h +147 -40
- data/ext/sources/examples/talk-llama/talk-llama.cpp +2 -0
- data/ext/sources/examples/talk-llama/unicode.cpp +5 -0
- data/ext/sources/examples/vad-speech-segments/speech.cpp +6 -0
- data/ext/sources/examples/wchess/wchess.cmd/wchess.cmd.cpp +2 -0
- data/ext/sources/ggml/CMakeLists.txt +48 -3
- data/ext/sources/ggml/cmake/common.cmake +24 -0
- data/ext/sources/ggml/include/ggml-backend.h +1 -1
- data/ext/sources/ggml/include/ggml-cpu.h +2 -0
- data/ext/sources/ggml/include/ggml.h +144 -5
- data/ext/sources/ggml/src/CMakeLists.txt +82 -24
- data/ext/sources/ggml/src/ggml-backend-reg.cpp +5 -0
- data/ext/sources/ggml/src/ggml-backend.cpp +46 -23
- data/ext/sources/ggml/src/ggml-blas/CMakeLists.txt +3 -3
- data/ext/sources/ggml/src/ggml-cann/CMakeLists.txt +1 -0
- data/ext/sources/ggml/src/ggml-cann/common.h +6 -1
- data/ext/sources/ggml/src/ggml-cann/ggml-cann.cpp +33 -9
- data/ext/sources/ggml/src/ggml-common.h +4 -0
- data/ext/sources/ggml/src/ggml-cpu/CMakeLists.txt +133 -40
- data/ext/sources/ggml/src/ggml-cpu/amx/amx.cpp +1 -1
- data/ext/sources/ggml/src/ggml-cpu/amx/mmq.cpp +11 -10
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp +94 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/quants.c +4114 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/repack.cpp +2163 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/loongarch/quants.c +2639 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp +82 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/quants.c +2732 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/riscv/quants.c +2069 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/riscv/repack.cpp +397 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/s390/quants.c +1300 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/wasm/quants.c +1481 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/x86/quants.c +4311 -0
- data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-aarch64.cpp → arch/x86/repack.cpp} +79 -3225
- data/ext/sources/ggml/src/ggml-cpu/arch-fallback.h +184 -0
- data/ext/sources/ggml/src/ggml-cpu/common.h +4 -3
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-impl.h +16 -7
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu.c +146 -105
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu.cpp +12 -8
- data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-hbm.cpp → hbm.cpp} +1 -1
- data/ext/sources/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +1 -1
- data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.cpp +58 -8
- data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.h +5 -0
- data/ext/sources/ggml/src/ggml-cpu/ops.cpp +1057 -174
- data/ext/sources/ggml/src/ggml-cpu/ops.h +8 -0
- data/ext/sources/ggml/src/ggml-cpu/quants.c +1158 -0
- data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-quants.h → quants.h} +26 -0
- data/ext/sources/ggml/src/ggml-cpu/repack.cpp +1571 -0
- data/ext/sources/ggml/src/ggml-cpu/repack.h +98 -0
- data/ext/sources/ggml/src/ggml-cpu/simd-mappings.h +330 -38
- data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-traits.cpp → traits.cpp} +1 -1
- data/ext/sources/ggml/src/ggml-cpu/vec.cpp +111 -18
- data/ext/sources/ggml/src/ggml-cpu/vec.h +303 -94
- data/ext/sources/ggml/src/ggml-cuda/common.cuh +60 -37
- data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cu +161 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cu +91 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cuh +4 -0
- data/ext/sources/ggml/src/ggml-cuda/convert.cu +22 -0
- data/ext/sources/ggml/src/ggml-cuda/convert.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-common.cuh +2 -2
- data/ext/sources/ggml/src/ggml-cuda/fattn-mma-f16.cuh +5 -2
- data/ext/sources/ggml/src/ggml-cuda/fattn-wmma-f16.cu +4 -0
- data/ext/sources/ggml/src/ggml-cuda/ggml-cuda.cu +265 -123
- data/ext/sources/ggml/src/ggml-cuda/mean.cu +19 -0
- data/ext/sources/ggml/src/ggml-cuda/mean.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/mmv.cu +257 -87
- data/ext/sources/ggml/src/ggml-cuda/mmv.cuh +2 -3
- data/ext/sources/ggml/src/ggml-cuda/ssm-scan.cu +6 -4
- data/ext/sources/ggml/src/ggml-cuda/sumrows.cu +5 -18
- data/ext/sources/ggml/src/ggml-cuda/sumrows.cuh +0 -1
- data/ext/sources/ggml/src/ggml-cuda/unary.cu +89 -0
- data/ext/sources/ggml/src/ggml-cuda/unary.cuh +7 -0
- data/ext/sources/ggml/src/ggml-hip/CMakeLists.txt +4 -0
- data/ext/sources/ggml/src/ggml-impl.h +127 -183
- data/ext/sources/ggml/src/ggml-metal/CMakeLists.txt +11 -10
- data/ext/sources/ggml/src/ggml-metal/ggml-metal-impl.h +27 -0
- data/ext/sources/ggml/src/ggml-metal/ggml-metal.m +331 -49
- data/ext/sources/ggml/src/ggml-metal/ggml-metal.metal +564 -282
- data/ext/sources/ggml/src/ggml-musa/mudnn.cuh +2 -2
- data/ext/sources/ggml/src/ggml-opencl/CMakeLists.txt +14 -0
- data/ext/sources/ggml/src/ggml-opencl/ggml-opencl.cpp +1859 -489
- data/ext/sources/ggml/src/ggml-opencl/kernels/argsort.cl +86 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/concat.cl +109 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/div.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/glu.cl +201 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/group_norm.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_id_q4_0_f32_8x_flat.cl +283 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/pad.cl +30 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/repeat.cl +39 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sigmoid.cl +29 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sub.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sum_rows.cl +39 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/tanh.cl +63 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/tsembd.cl +48 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/upscale.cl +121 -0
- data/ext/sources/ggml/src/ggml-quants.c +6 -8
- data/ext/sources/ggml/src/ggml-rpc/ggml-rpc.cpp +18 -15
- data/ext/sources/ggml/src/ggml-sycl/CMakeLists.txt +3 -3
- data/ext/sources/ggml/src/ggml-sycl/binbcast.cpp +5 -6
- data/ext/sources/ggml/src/ggml-sycl/common.hpp +20 -48
- data/ext/sources/ggml/src/ggml-sycl/concat.cpp +28 -41
- data/ext/sources/ggml/src/ggml-sycl/conv.cpp +4 -10
- data/ext/sources/ggml/src/ggml-sycl/convert.cpp +117 -165
- data/ext/sources/ggml/src/ggml-sycl/cpy.cpp +192 -53
- data/ext/sources/ggml/src/ggml-sycl/dequantize.hpp +32 -0
- data/ext/sources/ggml/src/ggml-sycl/dmmv.cpp +49 -67
- data/ext/sources/ggml/src/ggml-sycl/dpct/helper.hpp +31 -1
- data/ext/sources/ggml/src/ggml-sycl/element_wise.cpp +648 -1039
- data/ext/sources/ggml/src/ggml-sycl/element_wise.hpp +18 -9
- data/ext/sources/ggml/src/ggml-sycl/gemm.hpp +3 -0
- data/ext/sources/ggml/src/ggml-sycl/getrows.cpp +8 -105
- data/ext/sources/ggml/src/ggml-sycl/ggml-sycl.cpp +238 -100
- data/ext/sources/ggml/src/ggml-sycl/gla.cpp +2 -2
- data/ext/sources/ggml/src/ggml-sycl/im2col.cpp +1 -1
- data/ext/sources/ggml/src/ggml-sycl/mmq.cpp +60 -80
- data/ext/sources/ggml/src/ggml-sycl/mmvq.cpp +158 -203
- data/ext/sources/ggml/src/ggml-sycl/norm.cpp +55 -74
- data/ext/sources/ggml/src/ggml-sycl/quants.hpp +38 -10
- data/ext/sources/ggml/src/ggml-sycl/rope.cpp +138 -27
- data/ext/sources/ggml/src/ggml-sycl/softmax.cpp +3 -3
- data/ext/sources/ggml/src/ggml-sycl/sycl_hw.cpp +3 -1
- data/ext/sources/ggml/src/ggml-sycl/sycl_hw.hpp +3 -0
- data/ext/sources/ggml/src/ggml-sycl/tsembd.cpp +3 -8
- data/ext/sources/ggml/src/ggml-sycl/vecdotq.hpp +108 -16
- data/ext/sources/ggml/src/ggml-sycl/wkv.cpp +12 -16
- data/ext/sources/ggml/src/ggml-vulkan/CMakeLists.txt +36 -32
- data/ext/sources/ggml/src/ggml-vulkan/ggml-vulkan.cpp +726 -282
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt +4 -12
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp +98 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/geglu.comp +13 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_head.comp +15 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_main.comp +29 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/reglu.comp +9 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp +12 -3
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/swiglu.comp +9 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +10 -1
- data/ext/sources/ggml/src/ggml.c +328 -48
- data/ext/sources/ggml/src/ggml.cpp +26 -0
- data/ext/sources/ggml/src/gguf.cpp +24 -3
- data/ext/sources/include/whisper.h +2 -0
- data/ext/sources/src/CMakeLists.txt +2 -0
- data/ext/sources/src/coreml/whisper-compat.h +10 -0
- data/ext/sources/src/coreml/whisper-compat.m +35 -0
- data/ext/sources/src/coreml/whisper-decoder-impl.m +1 -0
- data/ext/sources/src/coreml/whisper-encoder-impl.m +1 -0
- data/ext/sources/src/whisper.cpp +218 -169
- data/extsources.rb +15 -9
- data/lib/whisper/context.rb +15 -0
- data/lib/whisper/model/uri.rb +56 -1
- data/lib/whisper/segment.rb +58 -0
- data/sig/whisper.rbs +68 -38
- data/{tests → test}/helper.rb +1 -12
- data/{tests → test}/test_model.rb +9 -0
- data/test/test_package.rb +51 -0
- data/test/test_segment.rb +146 -0
- data/{tests → test}/test_whisper.rb +70 -0
- data/whispercpp.gemspec +2 -3
- metadata +91 -43
- data/ext/sources/.dockerignore +0 -3
- data/ext/sources/.github/workflows/bindings-ruby.yml +0 -21
- data/ext/sources/ci/run.sh +0 -336
- data/ext/sources/close-issue.yml +0 -28
- data/ext/sources/examples/talk-llama/llama-kv-cache.cpp +0 -2739
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +0 -8
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu-quants.c +0 -13747
- data/tests/test_package.rb +0 -46
- data/tests/test_segment.rb +0 -74
- /data/ext/sources/ggml/src/ggml-cpu/{cpu-feats-x86.cpp → arch/x86/cpu-feats.cpp} +0 -0
- /data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-hbm.h → hbm.h} +0 -0
- /data/ext/sources/ggml/src/ggml-cpu/{ggml-cpu-traits.h → traits.h} +0 -0
- /data/{tests → test}/jfk_reader/.gitignore +0 -0
- /data/{tests → test}/jfk_reader/extconf.rb +0 -0
- /data/{tests → test}/jfk_reader/jfk_reader.c +0 -0
- /data/{tests → test}/test_callback.rb +0 -0
- /data/{tests → test}/test_error.rb +0 -0
- /data/{tests → test}/test_params.rb +0 -0
- /data/{tests → test}/test_vad.rb +0 -0
- /data/{tests → test}/test_vad_params.rb +0 -0
@@ -17,10 +17,12 @@ struct ggml_tensor;
|
|
17
17
|
struct llama_ubatch;
|
18
18
|
struct llama_cparams;
|
19
19
|
|
20
|
-
|
21
|
-
|
22
|
-
class
|
23
|
-
class
|
20
|
+
struct llama_memory_context_i;
|
21
|
+
|
22
|
+
class llama_kv_cache_unified_context;
|
23
|
+
class llama_kv_cache_unified_iswa_context;
|
24
|
+
class llama_memory_recurrent_context;
|
25
|
+
class llama_memory_hybrid_context;
|
24
26
|
|
25
27
|
// certain models (typically multi-modal) can produce different types of graphs
|
26
28
|
enum llm_graph_type {
|
@@ -35,6 +37,8 @@ enum llm_ffn_op_type {
|
|
35
37
|
LLM_FFN_RELU,
|
36
38
|
LLM_FFN_RELU_SQR,
|
37
39
|
LLM_FFN_SWIGLU,
|
40
|
+
LLM_FFN_GEGLU,
|
41
|
+
LLM_FFN_REGLU,
|
38
42
|
};
|
39
43
|
|
40
44
|
enum llm_ffn_gate_type {
|
@@ -92,14 +96,14 @@ public:
|
|
92
96
|
|
93
97
|
class llm_graph_input_pos : public llm_graph_input_i {
|
94
98
|
public:
|
95
|
-
llm_graph_input_pos(
|
99
|
+
llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
|
96
100
|
virtual ~llm_graph_input_pos() = default;
|
97
101
|
|
98
102
|
void set_input(const llama_ubatch * ubatch) override;
|
99
103
|
|
100
104
|
ggml_tensor * pos = nullptr; // I32 [n_batch]
|
101
105
|
|
102
|
-
const
|
106
|
+
const uint32_t n_pos_per_embd = 1;
|
103
107
|
};
|
104
108
|
|
105
109
|
// temperature tuning, used by llama4
|
@@ -133,7 +137,7 @@ class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
|
|
133
137
|
public:
|
134
138
|
llm_graph_input_pos_bucket_kv(
|
135
139
|
const llama_hparams & hparams,
|
136
|
-
const
|
140
|
+
const llama_kv_cache_unified_context * mctx) : hparams(hparams), mctx(mctx) {}
|
137
141
|
virtual ~llm_graph_input_pos_bucket_kv() = default;
|
138
142
|
|
139
143
|
void set_input(const llama_ubatch * ubatch) override;
|
@@ -141,7 +145,8 @@ public:
|
|
141
145
|
ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
|
142
146
|
|
143
147
|
const llama_hparams & hparams;
|
144
|
-
|
148
|
+
|
149
|
+
const llama_kv_cache_unified_context * mctx;
|
145
150
|
};
|
146
151
|
|
147
152
|
class llm_graph_input_out_ids : public llm_graph_input_i {
|
@@ -186,28 +191,16 @@ public:
|
|
186
191
|
const llama_cparams & cparams;
|
187
192
|
};
|
188
193
|
|
189
|
-
class
|
194
|
+
class llm_graph_input_rs : public llm_graph_input_i {
|
190
195
|
public:
|
191
|
-
|
192
|
-
virtual ~
|
196
|
+
llm_graph_input_rs(const llama_memory_recurrent_context * mctx) : mctx(mctx) {}
|
197
|
+
virtual ~llm_graph_input_rs() = default;
|
193
198
|
|
194
199
|
void set_input(const llama_ubatch * ubatch) override;
|
195
200
|
|
196
201
|
ggml_tensor * s_copy; // I32 [kv_size]
|
197
202
|
|
198
|
-
const
|
199
|
-
};
|
200
|
-
|
201
|
-
class llm_graph_input_s_mask : public llm_graph_input_i {
|
202
|
-
public:
|
203
|
-
llm_graph_input_s_mask(const llama_kv_cache_recurrent * kv_self) : kv_self(kv_self) {}
|
204
|
-
virtual ~llm_graph_input_s_mask() = default;
|
205
|
-
|
206
|
-
void set_input(const llama_ubatch * ubatch) override;
|
207
|
-
|
208
|
-
ggml_tensor * s_mask; // F32 [1, n_kv]
|
209
|
-
|
210
|
-
const llama_kv_cache_recurrent * kv_self;
|
203
|
+
const llama_memory_recurrent_context * mctx;
|
211
204
|
};
|
212
205
|
|
213
206
|
class llm_graph_input_cross_embd : public llm_graph_input_i {
|
@@ -247,10 +240,10 @@ public:
|
|
247
240
|
llm_graph_input_attn_kv_unified(
|
248
241
|
const llama_hparams & hparams,
|
249
242
|
const llama_cparams & cparams,
|
250
|
-
const
|
243
|
+
const llama_kv_cache_unified_context * mctx) :
|
251
244
|
hparams(hparams),
|
252
245
|
cparams(cparams),
|
253
|
-
|
246
|
+
mctx(mctx) {
|
254
247
|
}
|
255
248
|
~llm_graph_input_attn_kv_unified() = default;
|
256
249
|
|
@@ -264,7 +257,7 @@ public:
|
|
264
257
|
const llama_hparams & hparams;
|
265
258
|
const llama_cparams & cparams;
|
266
259
|
|
267
|
-
const
|
260
|
+
const llama_kv_cache_unified_context * mctx;
|
268
261
|
};
|
269
262
|
|
270
263
|
class llm_graph_input_attn_kv_unified_iswa : public llm_graph_input_i {
|
@@ -272,10 +265,10 @@ public:
|
|
272
265
|
llm_graph_input_attn_kv_unified_iswa(
|
273
266
|
const llama_hparams & hparams,
|
274
267
|
const llama_cparams & cparams,
|
275
|
-
const
|
268
|
+
const llama_kv_cache_unified_iswa_context * mctx) :
|
276
269
|
hparams(hparams),
|
277
270
|
cparams(cparams),
|
278
|
-
|
271
|
+
mctx(mctx) {
|
279
272
|
}
|
280
273
|
~llm_graph_input_attn_kv_unified_iswa() = default;
|
281
274
|
|
@@ -292,7 +285,7 @@ public:
|
|
292
285
|
const llama_hparams & hparams;
|
293
286
|
const llama_cparams & cparams;
|
294
287
|
|
295
|
-
const
|
288
|
+
const llama_kv_cache_unified_iswa_context * mctx;
|
296
289
|
};
|
297
290
|
|
298
291
|
class llm_graph_input_attn_cross : public llm_graph_input_i {
|
@@ -310,6 +303,44 @@ public:
|
|
310
303
|
const llama_cross * cross = nullptr;
|
311
304
|
};
|
312
305
|
|
306
|
+
class llm_graph_input_mem_hybrid : public llm_graph_input_i {
|
307
|
+
public:
|
308
|
+
llm_graph_input_mem_hybrid(
|
309
|
+
const llama_hparams & hparams,
|
310
|
+
const llama_cparams & cparams,
|
311
|
+
const llama_memory_hybrid_context * mctx) :
|
312
|
+
hparams(hparams),
|
313
|
+
cparams(cparams),
|
314
|
+
mctx(mctx) {
|
315
|
+
}
|
316
|
+
virtual ~llm_graph_input_mem_hybrid() = default;
|
317
|
+
|
318
|
+
void set_input(const llama_ubatch * ubatch) override;
|
319
|
+
|
320
|
+
ggml_tensor * s_copy; // I32 [kv_size]
|
321
|
+
|
322
|
+
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
|
323
|
+
|
324
|
+
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch]
|
325
|
+
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch]
|
326
|
+
|
327
|
+
const llama_hparams & hparams;
|
328
|
+
const llama_cparams & cparams;
|
329
|
+
|
330
|
+
const llama_memory_hybrid_context * mctx;
|
331
|
+
};
|
332
|
+
|
333
|
+
// TODO: remove this when ggml_scale_add is implemented
|
334
|
+
class llm_graph_input_one : public llm_graph_input_i {
|
335
|
+
public:
|
336
|
+
llm_graph_input_one() {}
|
337
|
+
virtual ~llm_graph_input_one() = default;
|
338
|
+
|
339
|
+
void set_input(const llama_ubatch *) override;
|
340
|
+
|
341
|
+
ggml_tensor * one = nullptr; // F32
|
342
|
+
};
|
343
|
+
|
313
344
|
//
|
314
345
|
// llm_graph_result
|
315
346
|
//
|
@@ -383,12 +414,12 @@ struct llm_graph_params {
|
|
383
414
|
ggml_backend_sched_t sched;
|
384
415
|
ggml_backend_t backend_cpu;
|
385
416
|
|
386
|
-
const llama_adapter_cvec
|
387
|
-
const llama_adapter_loras
|
388
|
-
const
|
389
|
-
const llama_cross
|
417
|
+
const llama_adapter_cvec * cvec;
|
418
|
+
const llama_adapter_loras * loras;
|
419
|
+
const llama_memory_context_i * mctx;
|
420
|
+
const llama_cross * cross;
|
390
421
|
|
391
|
-
|
422
|
+
uint32_t n_outputs;
|
392
423
|
|
393
424
|
const llm_graph_cb & cb;
|
394
425
|
};
|
@@ -422,8 +453,8 @@ struct llm_graph_context {
|
|
422
453
|
const float norm_eps;
|
423
454
|
const float norm_rms_eps;
|
424
455
|
|
425
|
-
const
|
426
|
-
const
|
456
|
+
const int64_t n_tokens;
|
457
|
+
const int64_t n_outputs;
|
427
458
|
const int32_t n_ctx_orig; // yarn
|
428
459
|
|
429
460
|
const enum llama_pooling_type pooling_type;
|
@@ -435,18 +466,17 @@ struct llm_graph_context {
|
|
435
466
|
|
436
467
|
ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
|
437
468
|
|
438
|
-
const llama_adapter_cvec
|
439
|
-
const llama_adapter_loras
|
440
|
-
const
|
441
|
-
const llama_cross
|
469
|
+
const llama_adapter_cvec * cvec;
|
470
|
+
const llama_adapter_loras * loras;
|
471
|
+
const llama_memory_context_i * mctx;
|
472
|
+
const llama_cross * cross;
|
442
473
|
|
443
474
|
const llm_graph_cb & cb_func;
|
444
475
|
|
445
476
|
std::unique_ptr<llm_graph_result> res;
|
446
477
|
|
447
478
|
llm_graph_context(const llm_graph_params & params);
|
448
|
-
|
449
|
-
int64_t n_pos_per_embd() const;
|
479
|
+
virtual ~llm_graph_context() = default;
|
450
480
|
|
451
481
|
void cb(ggml_tensor * cur, const char * name, int il) const;
|
452
482
|
|
@@ -518,14 +548,14 @@ struct llm_graph_context {
|
|
518
548
|
ggml_tensor * build_inp_out_ids() const;
|
519
549
|
ggml_tensor * build_inp_mean() const;
|
520
550
|
ggml_tensor * build_inp_cls() const;
|
521
|
-
ggml_tensor * build_inp_s_copy() const;
|
522
|
-
ggml_tensor * build_inp_s_mask() const;
|
523
551
|
|
524
552
|
ggml_tensor * build_inp_cross_embd() const;
|
525
553
|
ggml_tensor * build_inp_pos_bucket_enc() const;
|
526
554
|
ggml_tensor * build_inp_pos_bucket_dec() const;
|
527
555
|
ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;
|
528
556
|
|
557
|
+
llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;
|
558
|
+
|
529
559
|
//
|
530
560
|
// attention
|
531
561
|
//
|
@@ -572,14 +602,15 @@ struct llm_graph_context {
|
|
572
602
|
|
573
603
|
llm_graph_input_attn_kv_unified_iswa * build_attn_inp_kv_unified_iswa() const;
|
574
604
|
|
605
|
+
// note: if k_cur or v_cur are not provided, they will not be stored in the memory
|
575
606
|
ggml_tensor * build_attn(
|
576
607
|
llm_graph_input_attn_kv_unified_iswa * inp,
|
577
608
|
ggml_cgraph * gf,
|
578
609
|
ggml_tensor * wo,
|
579
610
|
ggml_tensor * wo_b,
|
580
611
|
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
|
581
|
-
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
|
582
|
-
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
|
612
|
+
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] optional
|
613
|
+
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] optional
|
583
614
|
ggml_tensor * kq_b,
|
584
615
|
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
585
616
|
float kq_scale,
|
@@ -600,23 +631,62 @@ struct llm_graph_context {
|
|
600
631
|
float kq_scale,
|
601
632
|
int il) const;
|
602
633
|
|
634
|
+
ggml_tensor * build_attn(
|
635
|
+
llm_graph_input_mem_hybrid * inp,
|
636
|
+
ggml_cgraph * gf,
|
637
|
+
ggml_tensor * wo,
|
638
|
+
ggml_tensor * wo_b,
|
639
|
+
ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
|
640
|
+
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
|
641
|
+
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
|
642
|
+
ggml_tensor * kq_b,
|
643
|
+
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
|
644
|
+
float kq_scale,
|
645
|
+
int il) const;
|
603
646
|
//
|
604
647
|
// recurrent
|
605
648
|
//
|
606
649
|
|
607
|
-
|
608
|
-
|
609
|
-
|
610
|
-
|
611
|
-
|
612
|
-
|
613
|
-
|
650
|
+
// TODO: avoid notion of "kv"
|
651
|
+
// TODO: move this implementation to llama_memory_recurrent.
|
652
|
+
// this is analogous to llama_kv_cache_unified::cpy_k / cpy_v
|
653
|
+
// when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
|
654
|
+
// implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in
|
655
|
+
// `llama_memory_recurrent`
|
656
|
+
ggml_tensor * build_rs(
|
657
|
+
ggml_cgraph * gf,
|
658
|
+
ggml_tensor * s,
|
659
|
+
ggml_tensor * state_copy,
|
660
|
+
int32_t state_size,
|
661
|
+
int32_t n_seqs,
|
662
|
+
uint32_t n_kv,
|
663
|
+
uint32_t kv_head,
|
664
|
+
uint32_t kv_size,
|
665
|
+
int32_t rs_zero,
|
666
|
+
bool avoid_copies = false) const;
|
667
|
+
|
668
|
+
llm_graph_input_rs * build_rs_inp() const;
|
669
|
+
|
670
|
+
ggml_tensor * build_rs(
|
671
|
+
llm_graph_input_rs * inp,
|
672
|
+
ggml_cgraph * gf,
|
673
|
+
ggml_tensor * s,
|
674
|
+
int32_t state_size,
|
675
|
+
int32_t n_seqs,
|
676
|
+
bool avoid_copies = false) const;
|
677
|
+
|
678
|
+
ggml_tensor * build_rs(
|
679
|
+
llm_graph_input_mem_hybrid * inp,
|
680
|
+
ggml_cgraph * gf,
|
681
|
+
ggml_tensor * s,
|
682
|
+
int32_t state_size,
|
683
|
+
int32_t n_seqs,
|
684
|
+
bool avoid_copies = false) const;
|
614
685
|
|
615
686
|
ggml_tensor * build_rwkv_token_shift_load(
|
616
|
-
|
617
|
-
|
618
|
-
|
619
|
-
const llama_ubatch & ubatch,
|
687
|
+
llm_graph_input_rs * inp,
|
688
|
+
ggml_cgraph * gf,
|
689
|
+
const llama_ubatch & ubatch,
|
620
690
|
int il) const;
|
621
691
|
|
622
692
|
ggml_tensor * build_rwkv_token_shift_store(
|
@@ -65,7 +65,7 @@ uint32_t llama_hparams::n_embd_v_gqa(uint32_t il) const {
|
|
65
65
|
return n_embd_head_v * n_head_kv;
|
66
66
|
}
|
67
67
|
|
68
|
-
uint32_t llama_hparams::
|
68
|
+
uint32_t llama_hparams::n_embd_r() const {
|
69
69
|
if (wkv_head_size != 0) {
|
70
70
|
// for RWKV models
|
71
71
|
return token_shift_count * n_embd;
|
@@ -76,7 +76,7 @@ uint32_t llama_hparams::n_embd_k_s() const {
|
|
76
76
|
return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
|
77
77
|
}
|
78
78
|
|
79
|
-
uint32_t llama_hparams::
|
79
|
+
uint32_t llama_hparams::n_embd_s() const {
|
80
80
|
if (wkv_head_size != 0) {
|
81
81
|
// corresponds to RWKV's wkv_states size
|
82
82
|
return n_embd * wkv_head_size;
|
@@ -86,6 +86,14 @@ uint32_t llama_hparams::n_embd_v_s() const {
|
|
86
86
|
return ssm_d_state * ssm_d_inner;
|
87
87
|
}
|
88
88
|
|
89
|
+
bool llama_hparams::is_recurrent(uint32_t il) const {
|
90
|
+
return recurrent_layer_arr[il];
|
91
|
+
}
|
92
|
+
|
93
|
+
uint32_t llama_hparams::n_pos_per_embd() const {
|
94
|
+
return rope_type == LLAMA_ROPE_TYPE_MROPE ? 4 : 1;
|
95
|
+
}
|
96
|
+
|
89
97
|
bool llama_hparams::is_swa(uint32_t il) const {
|
90
98
|
if (il < n_layer) {
|
91
99
|
return swa_layers[il];
|
@@ -115,6 +115,9 @@ struct llama_hparams {
|
|
115
115
|
uint32_t ssm_d_state = 0;
|
116
116
|
uint32_t ssm_dt_rank = 0;
|
117
117
|
|
118
|
+
// for hybrid state space models
|
119
|
+
std::array<bool, LLAMA_MAX_LAYERS> recurrent_layer_arr;
|
120
|
+
|
118
121
|
bool ssm_dt_b_c_rms = false;
|
119
122
|
|
120
123
|
float f_clamp_kqv = 0.0f;
|
@@ -131,12 +134,21 @@ struct llama_hparams {
|
|
131
134
|
bool attn_soft_cap = false;
|
132
135
|
bool use_kq_norm = true;
|
133
136
|
|
137
|
+
// for Classifiers
|
138
|
+
uint32_t n_cls_out = 1;
|
139
|
+
|
134
140
|
// llama4
|
135
141
|
uint32_t n_moe_layer_step = 0;
|
136
142
|
uint32_t n_no_rope_layer_step = 4;
|
137
143
|
uint32_t n_attn_temp_floor_scale = 8192;
|
138
144
|
float f_attn_temp_scale = 0.1;
|
139
145
|
|
146
|
+
// gemma3n altup
|
147
|
+
uint32_t n_altup = 4; // altup_num_inputs
|
148
|
+
uint32_t i_altup_act = 0; // altup_active_idx
|
149
|
+
uint32_t laurel_rank = 64;
|
150
|
+
uint32_t n_embd_altup = 256;
|
151
|
+
|
140
152
|
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
|
141
153
|
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
|
142
154
|
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;
|
@@ -178,10 +190,15 @@ struct llama_hparams {
|
|
178
190
|
|
179
191
|
// dimension of the rolling state embeddings
|
180
192
|
// corresponds to Mamba's conv_states size or RWKV's token_shift states size
|
181
|
-
uint32_t
|
193
|
+
uint32_t n_embd_r() const;
|
182
194
|
|
183
195
|
// dimension of the recurrent state embeddings
|
184
|
-
uint32_t
|
196
|
+
uint32_t n_embd_s() const;
|
197
|
+
|
198
|
+
// whether or not the given layer is recurrent (for hybrid models)
|
199
|
+
bool is_recurrent(uint32_t il) const;
|
200
|
+
|
201
|
+
uint32_t n_pos_per_embd() const;
|
185
202
|
|
186
203
|
bool is_swa(uint32_t il) const;
|
187
204
|
};
|
@@ -0,0 +1,279 @@
|
|
1
|
+
#include "llama-kv-cache-unified-iswa.h"
|
2
|
+
|
3
|
+
#include "llama-impl.h"
|
4
|
+
#include "llama-batch.h"
|
5
|
+
#include "llama-model.h"
|
6
|
+
|
7
|
+
#include <algorithm>
|
8
|
+
#include <cassert>
|
9
|
+
|
10
|
+
//
|
11
|
+
// llama_kv_cache_unified_iswa
|
12
|
+
//
|
13
|
+
|
14
|
+
llama_kv_cache_unified_iswa::llama_kv_cache_unified_iswa(
|
15
|
+
const llama_model & model,
|
16
|
+
ggml_type type_k,
|
17
|
+
ggml_type type_v,
|
18
|
+
bool v_trans,
|
19
|
+
bool offload,
|
20
|
+
bool swa_full,
|
21
|
+
uint32_t kv_size,
|
22
|
+
uint32_t n_seq_max,
|
23
|
+
uint32_t n_ubatch,
|
24
|
+
uint32_t n_pad) : hparams(model.hparams) {
|
25
|
+
llama_kv_cache_unified::layer_filter_cb filter_base = [&](int32_t il) { return !model.hparams.is_swa(il); };
|
26
|
+
llama_kv_cache_unified::layer_filter_cb filter_swa = [&](int32_t il) { return model.hparams.is_swa(il); };
|
27
|
+
|
28
|
+
const uint32_t size_base = kv_size;
|
29
|
+
|
30
|
+
uint32_t size_swa = std::min(size_base, GGML_PAD(hparams.n_swa*n_seq_max + n_ubatch, n_pad));
|
31
|
+
|
32
|
+
// when using full-size SWA cache, we set the SWA cache size to be equal to the base cache size
|
33
|
+
if (swa_full) {
|
34
|
+
LLAMA_LOG_WARN("%s: using full-size SWA cache (ref: %s)\n",
|
35
|
+
__func__, "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
|
36
|
+
|
37
|
+
size_swa = size_base;
|
38
|
+
}
|
39
|
+
|
40
|
+
LLAMA_LOG_INFO("%s: creating non-SWA KV cache, size = %u cells\n", __func__, size_base);
|
41
|
+
|
42
|
+
kv_base = std::make_unique<llama_kv_cache_unified>(
|
43
|
+
model, std::move(filter_base), type_k, type_v,
|
44
|
+
v_trans, offload, size_base, n_seq_max, n_pad,
|
45
|
+
0, LLAMA_SWA_TYPE_NONE);
|
46
|
+
|
47
|
+
LLAMA_LOG_INFO("%s: creating SWA KV cache, size = %u cells\n", __func__, size_swa);
|
48
|
+
|
49
|
+
kv_swa = std::make_unique<llama_kv_cache_unified>(
|
50
|
+
model, std::move(filter_swa), type_k, type_v,
|
51
|
+
v_trans, offload, size_swa, n_seq_max, n_pad,
|
52
|
+
hparams.n_swa, hparams.swa_type);
|
53
|
+
}
|
54
|
+
|
55
|
+
void llama_kv_cache_unified_iswa::clear(bool data) {
|
56
|
+
kv_base->clear(data);
|
57
|
+
kv_swa ->clear(data);
|
58
|
+
}
|
59
|
+
|
60
|
+
bool llama_kv_cache_unified_iswa::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
|
61
|
+
bool res = true;
|
62
|
+
|
63
|
+
res = res & kv_base->seq_rm(seq_id, p0, p1);
|
64
|
+
res = res & kv_swa ->seq_rm(seq_id, p0, p1);
|
65
|
+
|
66
|
+
return res;
|
67
|
+
}
|
68
|
+
|
69
|
+
void llama_kv_cache_unified_iswa::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
|
70
|
+
kv_base->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
71
|
+
kv_swa ->seq_cp(seq_id_src, seq_id_dst, p0, p1);
|
72
|
+
}
|
73
|
+
|
74
|
+
void llama_kv_cache_unified_iswa::seq_keep(llama_seq_id seq_id) {
|
75
|
+
kv_base->seq_keep(seq_id);
|
76
|
+
kv_swa ->seq_keep(seq_id);
|
77
|
+
}
|
78
|
+
|
79
|
+
void llama_kv_cache_unified_iswa::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
|
80
|
+
kv_base->seq_add(seq_id, p0, p1, shift);
|
81
|
+
kv_swa ->seq_add(seq_id, p0, p1, shift);
|
82
|
+
}
|
83
|
+
|
84
|
+
void llama_kv_cache_unified_iswa::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
|
85
|
+
kv_base->seq_div(seq_id, p0, p1, d);
|
86
|
+
kv_swa ->seq_div(seq_id, p0, p1, d);
|
87
|
+
}
|
88
|
+
|
89
|
+
llama_pos llama_kv_cache_unified_iswa::seq_pos_min(llama_seq_id seq_id) const {
|
90
|
+
// the base cache is a superset of the SWA cache, so we can just check the SWA cache
|
91
|
+
return kv_swa->seq_pos_min(seq_id);
|
92
|
+
}
|
93
|
+
|
94
|
+
llama_pos llama_kv_cache_unified_iswa::seq_pos_max(llama_seq_id seq_id) const {
|
95
|
+
return kv_swa->seq_pos_max(seq_id);
|
96
|
+
}
|
97
|
+
|
98
|
+
llama_memory_context_ptr llama_kv_cache_unified_iswa::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
|
99
|
+
GGML_UNUSED(embd_all);
|
100
|
+
|
101
|
+
// first try simple split
|
102
|
+
do {
|
103
|
+
balloc.split_reset();
|
104
|
+
|
105
|
+
std::vector<llama_ubatch> ubatches;
|
106
|
+
while (true) {
|
107
|
+
auto ubatch = balloc.split_simple(n_ubatch);
|
108
|
+
|
109
|
+
if (ubatch.n_tokens == 0) {
|
110
|
+
break;
|
111
|
+
}
|
112
|
+
|
113
|
+
ubatches.push_back(std::move(ubatch)); // NOLINT
|
114
|
+
}
|
115
|
+
|
116
|
+
auto heads_base = kv_base->prepare(ubatches);
|
117
|
+
if (heads_base.empty()) {
|
118
|
+
break;
|
119
|
+
}
|
120
|
+
|
121
|
+
auto heads_swa = kv_swa->prepare(ubatches);
|
122
|
+
if (heads_swa.empty()) {
|
123
|
+
break;
|
124
|
+
}
|
125
|
+
|
126
|
+
assert(heads_base.size() == heads_swa.size());
|
127
|
+
|
128
|
+
return std::make_unique<llama_kv_cache_unified_iswa_context>(
|
129
|
+
this, std::move(heads_base), std::move(heads_swa), std::move(ubatches));
|
130
|
+
} while (false);
|
131
|
+
|
132
|
+
// if it fails, try equal split
|
133
|
+
do {
|
134
|
+
balloc.split_reset();
|
135
|
+
|
136
|
+
std::vector<llama_ubatch> ubatches;
|
137
|
+
while (true) {
|
138
|
+
auto ubatch = balloc.split_equal(n_ubatch);
|
139
|
+
|
140
|
+
if (ubatch.n_tokens == 0) {
|
141
|
+
break;
|
142
|
+
}
|
143
|
+
|
144
|
+
ubatches.push_back(std::move(ubatch)); // NOLINT
|
145
|
+
}
|
146
|
+
|
147
|
+
auto heads_base = kv_base->prepare(ubatches);
|
148
|
+
if (heads_base.empty()) {
|
149
|
+
break;
|
150
|
+
}
|
151
|
+
|
152
|
+
auto heads_swa = kv_swa->prepare(ubatches);
|
153
|
+
if (heads_swa.empty()) {
|
154
|
+
break;
|
155
|
+
}
|
156
|
+
|
157
|
+
assert(heads_base.size() == heads_swa.size());
|
158
|
+
|
159
|
+
return std::make_unique<llama_kv_cache_unified_iswa_context>(
|
160
|
+
this, std::move(heads_base), std::move(heads_swa), std::move(ubatches));
|
161
|
+
} while (false);
|
162
|
+
|
163
|
+
// TODO: if we fail again, we should attempt different splitting strategies
|
164
|
+
// but to do that properly, we first have to refactor the batches to be more flexible
|
165
|
+
|
166
|
+
return std::make_unique<llama_kv_cache_unified_iswa_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
|
167
|
+
}
|
168
|
+
|
169
|
+
llama_memory_context_ptr llama_kv_cache_unified_iswa::init_full() {
|
170
|
+
return std::make_unique<llama_kv_cache_unified_iswa_context>(this);
|
171
|
+
}
|
172
|
+
|
173
|
+
llama_memory_context_ptr llama_kv_cache_unified_iswa::init_update(llama_context * lctx, bool optimize) {
|
174
|
+
return std::make_unique<llama_kv_cache_unified_iswa_context>(this, lctx, optimize);
|
175
|
+
}
|
176
|
+
|
177
|
+
bool llama_kv_cache_unified_iswa::get_can_shift() const {
|
178
|
+
return kv_base->get_size() == kv_swa->get_size();
|
179
|
+
}
|
180
|
+
|
181
|
+
void llama_kv_cache_unified_iswa::state_write(llama_io_write_i & io, llama_seq_id seq_id) const {
|
182
|
+
kv_base->state_write(io, seq_id);
|
183
|
+
kv_swa ->state_write(io, seq_id);
|
184
|
+
}
|
185
|
+
|
186
|
+
void llama_kv_cache_unified_iswa::state_read(llama_io_read_i & io, llama_seq_id seq_id) {
|
187
|
+
kv_base->state_read(io, seq_id);
|
188
|
+
kv_swa ->state_read(io, seq_id);
|
189
|
+
}
|
190
|
+
|
191
|
+
llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_base() const {
|
192
|
+
return kv_base.get();
|
193
|
+
}
|
194
|
+
|
195
|
+
llama_kv_cache_unified * llama_kv_cache_unified_iswa::get_swa() const {
|
196
|
+
return kv_swa.get();
|
197
|
+
}
|
198
|
+
|
199
|
+
//
|
200
|
+
// llama_kv_cache_unified_iswa_context
|
201
|
+
//
|
202
|
+
|
203
|
+
llama_kv_cache_unified_iswa_context::llama_kv_cache_unified_iswa_context(llama_memory_status status) : status(status) {}
|
204
|
+
|
205
|
+
llama_kv_cache_unified_iswa_context::llama_kv_cache_unified_iswa_context(
|
206
|
+
llama_kv_cache_unified_iswa * kv) :
|
207
|
+
ctx_base(kv->get_base()->init_full()),
|
208
|
+
ctx_swa (kv->get_swa ()->init_full()),
|
209
|
+
status(llama_memory_status_combine(ctx_base->get_status(), ctx_swa->get_status())) {
|
210
|
+
}
|
211
|
+
|
212
|
+
llama_kv_cache_unified_iswa_context::llama_kv_cache_unified_iswa_context(
|
213
|
+
llama_kv_cache_unified_iswa * kv,
|
214
|
+
llama_context * lctx,
|
215
|
+
bool optimize) :
|
216
|
+
ctx_base(kv->get_base()->init_update(lctx, optimize)),
|
217
|
+
ctx_swa (kv->get_swa ()->init_update(lctx, optimize)),
|
218
|
+
status(llama_memory_status_combine(ctx_base->get_status(), ctx_swa->get_status())) {
|
219
|
+
}
|
220
|
+
|
221
|
+
llama_kv_cache_unified_iswa_context::llama_kv_cache_unified_iswa_context(
|
222
|
+
llama_kv_cache_unified_iswa * kv,
|
223
|
+
std::vector<uint32_t> heads_base,
|
224
|
+
std::vector<uint32_t> heads_swa,
|
225
|
+
std::vector<llama_ubatch> ubatches) :
|
226
|
+
ubatches(std::move(ubatches)),
|
227
|
+
// note: here we copy the ubatches. not sure if this is ideal
|
228
|
+
ctx_base(new llama_kv_cache_unified_context(kv->get_base(), std::move(heads_base), this->ubatches)),
|
229
|
+
ctx_swa (new llama_kv_cache_unified_context(kv->get_swa (), std::move(heads_swa), this->ubatches)),
|
230
|
+
status(llama_memory_status_combine(ctx_base->get_status(), ctx_swa->get_status())) {
|
231
|
+
}
|
232
|
+
|
233
|
+
llama_kv_cache_unified_iswa_context:: ~llama_kv_cache_unified_iswa_context() = default;
|
234
|
+
|
235
|
+
bool llama_kv_cache_unified_iswa_context::next() {
|
236
|
+
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
237
|
+
|
238
|
+
ctx_base->next();
|
239
|
+
ctx_swa ->next();
|
240
|
+
|
241
|
+
if (++i_next >= ubatches.size()) {
|
242
|
+
return false;
|
243
|
+
}
|
244
|
+
|
245
|
+
return true;
|
246
|
+
}
|
247
|
+
|
248
|
+
bool llama_kv_cache_unified_iswa_context::apply() {
|
249
|
+
assert(!llama_memory_status_is_fail(status));
|
250
|
+
|
251
|
+
bool res = true;
|
252
|
+
|
253
|
+
res = res & ctx_base->apply();
|
254
|
+
res = res & ctx_swa ->apply();
|
255
|
+
|
256
|
+
return res;
|
257
|
+
}
|
258
|
+
|
259
|
+
llama_memory_status llama_kv_cache_unified_iswa_context::get_status() const {
|
260
|
+
return status;
|
261
|
+
}
|
262
|
+
|
263
|
+
const llama_ubatch & llama_kv_cache_unified_iswa_context::get_ubatch() const {
|
264
|
+
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
265
|
+
|
266
|
+
return ubatches[i_next];
|
267
|
+
}
|
268
|
+
|
269
|
+
const llama_kv_cache_unified_context * llama_kv_cache_unified_iswa_context::get_base() const {
|
270
|
+
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
271
|
+
|
272
|
+
return static_cast<const llama_kv_cache_unified_context *>(ctx_base.get());
|
273
|
+
}
|
274
|
+
|
275
|
+
const llama_kv_cache_unified_context * llama_kv_cache_unified_iswa_context::get_swa() const {
|
276
|
+
assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
|
277
|
+
|
278
|
+
return static_cast<const llama_kv_cache_unified_context *>(ctx_swa.get());
|
279
|
+
}
|