whispercpp 1.3.1 → 1.3.3

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (857) hide show
  1. checksums.yaml +4 -4
  2. data/.gitignore +7 -3
  3. data/README.md +161 -43
  4. data/Rakefile +45 -13
  5. data/ext/.gitignore +4 -8
  6. data/ext/dependencies.rb +73 -0
  7. data/ext/extconf.rb +21 -198
  8. data/ext/options.rb +85 -0
  9. data/ext/ruby_whisper.c +177 -0
  10. data/ext/ruby_whisper.h +17 -2
  11. data/ext/ruby_whisper_context.c +672 -0
  12. data/ext/ruby_whisper_error.c +52 -0
  13. data/ext/ruby_whisper_model.c +232 -0
  14. data/ext/ruby_whisper_params.c +1303 -0
  15. data/ext/ruby_whisper_segment.c +220 -0
  16. data/ext/ruby_whisper_transcribe.cpp +93 -0
  17. data/ext/ruby_whisper_vad_params.c +288 -0
  18. data/ext/sources/CMakeGraphVizOptions.cmake +8 -0
  19. data/ext/sources/CMakeLists.txt +255 -0
  20. data/ext/sources/bindings/javascript/CMakeLists.txt +41 -0
  21. data/ext/sources/bindings/javascript/emscripten.cpp +93 -0
  22. data/ext/sources/bindings/javascript/libwhisper.worker.js +1 -0
  23. data/ext/sources/bindings/javascript/package-tmpl.json +26 -0
  24. data/ext/sources/bindings/javascript/package.json +26 -0
  25. data/ext/sources/bindings/javascript/whisper.js +19 -0
  26. data/ext/sources/build-xcframework.sh +547 -0
  27. data/ext/sources/cmake/DefaultTargetOptions.cmake +16 -0
  28. data/ext/sources/cmake/FindFFmpeg.cmake +163 -0
  29. data/ext/sources/cmake/build-info.cmake +60 -0
  30. data/ext/sources/cmake/git-vars.cmake +22 -0
  31. data/ext/sources/cmake/whisper-config.cmake.in +65 -0
  32. data/ext/sources/cmake/whisper.pc.in +10 -0
  33. data/ext/sources/examples/CMakeLists.txt +124 -0
  34. data/ext/sources/examples/addon.node/CMakeLists.txt +31 -0
  35. data/ext/sources/examples/addon.node/__test__/whisper.spec.js +133 -0
  36. data/ext/sources/examples/addon.node/addon.cpp +557 -0
  37. data/ext/sources/examples/addon.node/index.js +57 -0
  38. data/ext/sources/examples/addon.node/package.json +16 -0
  39. data/ext/sources/examples/addon.node/vad-example.js +132 -0
  40. data/ext/sources/examples/bench/CMakeLists.txt +8 -0
  41. data/ext/sources/examples/bench/bench.cpp +176 -0
  42. data/ext/sources/examples/bench.wasm/CMakeLists.txt +49 -0
  43. data/ext/sources/examples/bench.wasm/emscripten.cpp +87 -0
  44. data/ext/sources/examples/bench.wasm/index-tmpl.html +284 -0
  45. data/ext/sources/examples/cli/CMakeLists.txt +8 -0
  46. data/ext/sources/examples/cli/cli.cpp +1295 -0
  47. data/ext/sources/examples/coi-serviceworker.js +146 -0
  48. data/ext/sources/examples/command/CMakeLists.txt +10 -0
  49. data/ext/sources/examples/command/command.cpp +800 -0
  50. data/ext/sources/examples/command/commands.txt +9 -0
  51. data/ext/sources/examples/command.wasm/CMakeLists.txt +50 -0
  52. data/ext/sources/examples/command.wasm/emscripten.cpp +327 -0
  53. data/ext/sources/examples/command.wasm/index-tmpl.html +414 -0
  54. data/ext/sources/examples/common-ggml.cpp +238 -0
  55. data/ext/sources/examples/common-ggml.h +18 -0
  56. data/ext/sources/examples/common-sdl.cpp +227 -0
  57. data/ext/sources/examples/common-sdl.h +49 -0
  58. data/ext/sources/examples/common-whisper.cpp +175 -0
  59. data/ext/sources/examples/common-whisper.h +24 -0
  60. data/ext/sources/examples/common.cpp +675 -0
  61. data/ext/sources/examples/common.h +322 -0
  62. data/ext/sources/examples/deprecation-warning/CMakeLists.txt +6 -0
  63. data/ext/sources/examples/deprecation-warning/deprecation-warning.cpp +38 -0
  64. data/ext/sources/examples/ffmpeg-transcode.cpp +368 -0
  65. data/ext/sources/examples/generate-karaoke.sh +57 -0
  66. data/ext/sources/examples/grammar-parser.cpp +423 -0
  67. data/ext/sources/examples/grammar-parser.h +29 -0
  68. data/ext/sources/examples/helpers.js +191 -0
  69. data/ext/sources/examples/json.hpp +24596 -0
  70. data/ext/sources/examples/livestream.sh +112 -0
  71. data/ext/sources/examples/lsp/CMakeLists.txt +9 -0
  72. data/ext/sources/examples/lsp/lsp.cpp +469 -0
  73. data/ext/sources/examples/lsp/whisper.vim +362 -0
  74. data/ext/sources/examples/miniaudio.h +93468 -0
  75. data/ext/sources/examples/python/test_whisper_processor.py +7 -0
  76. data/ext/sources/examples/python/whisper_processor.py +54 -0
  77. data/ext/sources/examples/quantize/CMakeLists.txt +6 -0
  78. data/ext/sources/examples/quantize/quantize.cpp +226 -0
  79. data/ext/sources/examples/server/CMakeLists.txt +15 -0
  80. data/ext/sources/examples/server/bench.js +29 -0
  81. data/ext/sources/examples/server/httplib.h +10497 -0
  82. data/ext/sources/examples/server/server.cpp +1238 -0
  83. data/ext/sources/examples/server.py +115 -0
  84. data/ext/sources/examples/stb_vorbis.c +5584 -0
  85. data/ext/sources/examples/stream/CMakeLists.txt +10 -0
  86. data/ext/sources/examples/stream/stream.cpp +435 -0
  87. data/ext/sources/examples/stream.wasm/CMakeLists.txt +49 -0
  88. data/ext/sources/examples/stream.wasm/emscripten.cpp +216 -0
  89. data/ext/sources/examples/stream.wasm/index-tmpl.html +414 -0
  90. data/ext/sources/examples/sycl/CMakeLists.txt +9 -0
  91. data/ext/sources/examples/sycl/build.sh +22 -0
  92. data/ext/sources/examples/sycl/ls-sycl-device.cpp +11 -0
  93. data/ext/sources/examples/sycl/run-whisper.sh +17 -0
  94. data/ext/sources/examples/talk-llama/CMakeLists.txt +43 -0
  95. data/ext/sources/examples/talk-llama/eleven-labs.py +80 -0
  96. data/ext/sources/examples/talk-llama/llama-adapter.cpp +388 -0
  97. data/ext/sources/examples/talk-llama/llama-adapter.h +76 -0
  98. data/ext/sources/examples/talk-llama/llama-arch.cpp +1914 -0
  99. data/ext/sources/examples/talk-llama/llama-arch.h +464 -0
  100. data/ext/sources/examples/talk-llama/llama-batch.cpp +843 -0
  101. data/ext/sources/examples/talk-llama/llama-batch.h +147 -0
  102. data/ext/sources/examples/talk-llama/llama-chat.cpp +685 -0
  103. data/ext/sources/examples/talk-llama/llama-chat.h +59 -0
  104. data/ext/sources/examples/talk-llama/llama-context.cpp +2845 -0
  105. data/ext/sources/examples/talk-llama/llama-context.h +297 -0
  106. data/ext/sources/examples/talk-llama/llama-cparams.cpp +5 -0
  107. data/ext/sources/examples/talk-llama/llama-cparams.h +41 -0
  108. data/ext/sources/examples/talk-llama/llama-grammar.cpp +1229 -0
  109. data/ext/sources/examples/talk-llama/llama-grammar.h +173 -0
  110. data/ext/sources/examples/talk-llama/llama-graph.cpp +1693 -0
  111. data/ext/sources/examples/talk-llama/llama-graph.h +710 -0
  112. data/ext/sources/examples/talk-llama/llama-hparams.cpp +103 -0
  113. data/ext/sources/examples/talk-llama/llama-hparams.h +207 -0
  114. data/ext/sources/examples/talk-llama/llama-impl.cpp +167 -0
  115. data/ext/sources/examples/talk-llama/llama-impl.h +61 -0
  116. data/ext/sources/examples/talk-llama/llama-io.cpp +15 -0
  117. data/ext/sources/examples/talk-llama/llama-io.h +35 -0
  118. data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.cpp +279 -0
  119. data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.h +128 -0
  120. data/ext/sources/examples/talk-llama/llama-kv-cache-unified.cpp +1841 -0
  121. data/ext/sources/examples/talk-llama/llama-kv-cache-unified.h +303 -0
  122. data/ext/sources/examples/talk-llama/llama-kv-cache.h +44 -0
  123. data/ext/sources/examples/talk-llama/llama-kv-cells.h +439 -0
  124. data/ext/sources/examples/talk-llama/llama-memory-hybrid.cpp +246 -0
  125. data/ext/sources/examples/talk-llama/llama-memory-hybrid.h +138 -0
  126. data/ext/sources/examples/talk-llama/llama-memory-recurrent.cpp +1125 -0
  127. data/ext/sources/examples/talk-llama/llama-memory-recurrent.h +183 -0
  128. data/ext/sources/examples/talk-llama/llama-memory.cpp +59 -0
  129. data/ext/sources/examples/talk-llama/llama-memory.h +116 -0
  130. data/ext/sources/examples/talk-llama/llama-mmap.cpp +600 -0
  131. data/ext/sources/examples/talk-llama/llama-mmap.h +68 -0
  132. data/ext/sources/examples/talk-llama/llama-model-loader.cpp +1163 -0
  133. data/ext/sources/examples/talk-llama/llama-model-loader.h +169 -0
  134. data/ext/sources/examples/talk-llama/llama-model-saver.cpp +282 -0
  135. data/ext/sources/examples/talk-llama/llama-model-saver.h +37 -0
  136. data/ext/sources/examples/talk-llama/llama-model.cpp +15114 -0
  137. data/ext/sources/examples/talk-llama/llama-model.h +452 -0
  138. data/ext/sources/examples/talk-llama/llama-quant.cpp +1049 -0
  139. data/ext/sources/examples/talk-llama/llama-quant.h +1 -0
  140. data/ext/sources/examples/talk-llama/llama-sampling.cpp +2575 -0
  141. data/ext/sources/examples/talk-llama/llama-sampling.h +32 -0
  142. data/ext/sources/examples/talk-llama/llama-vocab.cpp +3377 -0
  143. data/ext/sources/examples/talk-llama/llama-vocab.h +132 -0
  144. data/ext/sources/examples/talk-llama/llama.cpp +358 -0
  145. data/ext/sources/examples/talk-llama/llama.h +1484 -0
  146. data/ext/sources/examples/talk-llama/prompts/talk-alpaca.txt +23 -0
  147. data/ext/sources/examples/talk-llama/speak +40 -0
  148. data/ext/sources/examples/talk-llama/speak.bat +1 -0
  149. data/ext/sources/examples/talk-llama/speak.ps1 +14 -0
  150. data/ext/sources/examples/talk-llama/talk-llama.cpp +810 -0
  151. data/ext/sources/examples/talk-llama/unicode-data.cpp +7034 -0
  152. data/ext/sources/examples/talk-llama/unicode-data.h +20 -0
  153. data/ext/sources/examples/talk-llama/unicode.cpp +854 -0
  154. data/ext/sources/examples/talk-llama/unicode.h +66 -0
  155. data/ext/sources/examples/vad-speech-segments/CMakeLists.txt +8 -0
  156. data/ext/sources/examples/vad-speech-segments/speech.cpp +149 -0
  157. data/ext/sources/examples/wchess/CMakeLists.txt +10 -0
  158. data/ext/sources/examples/wchess/libwchess/CMakeLists.txt +19 -0
  159. data/ext/sources/examples/wchess/libwchess/Chessboard.cpp +803 -0
  160. data/ext/sources/examples/wchess/libwchess/Chessboard.h +33 -0
  161. data/ext/sources/examples/wchess/libwchess/WChess.cpp +193 -0
  162. data/ext/sources/examples/wchess/libwchess/WChess.h +63 -0
  163. data/ext/sources/examples/wchess/libwchess/test-chessboard.cpp +117 -0
  164. data/ext/sources/examples/wchess/wchess.cmd/CMakeLists.txt +8 -0
  165. data/ext/sources/examples/wchess/wchess.cmd/wchess.cmd.cpp +251 -0
  166. data/ext/sources/examples/whisper.wasm/CMakeLists.txt +50 -0
  167. data/ext/sources/examples/whisper.wasm/emscripten.cpp +118 -0
  168. data/ext/sources/examples/whisper.wasm/index-tmpl.html +658 -0
  169. data/ext/sources/ggml/CMakeLists.txt +435 -0
  170. data/ext/sources/ggml/cmake/BuildTypes.cmake +54 -0
  171. data/ext/sources/ggml/cmake/GitVars.cmake +22 -0
  172. data/ext/sources/ggml/cmake/common.cmake +50 -0
  173. data/ext/sources/ggml/cmake/ggml-config.cmake.in +152 -0
  174. data/ext/{ggml → sources/ggml}/include/ggml-alloc.h +1 -1
  175. data/ext/{ggml → sources/ggml}/include/ggml-backend.h +10 -8
  176. data/ext/{ggml → sources/ggml}/include/ggml-cpp.h +2 -1
  177. data/ext/{ggml → sources/ggml}/include/ggml-cpu.h +11 -1
  178. data/ext/{ggml → sources/ggml}/include/ggml-metal.h +1 -1
  179. data/ext/{ggml → sources/ggml}/include/ggml-opt.h +49 -28
  180. data/ext/{ggml → sources/ggml}/include/ggml-rpc.h +6 -1
  181. data/ext/{ggml → sources/ggml}/include/ggml-vulkan.h +0 -2
  182. data/ext/{ggml → sources/ggml}/include/ggml.h +325 -269
  183. data/ext/sources/ggml/include/gguf.h +202 -0
  184. data/ext/sources/ggml/src/CMakeLists.txt +404 -0
  185. data/ext/{ggml → sources/ggml}/src/ggml-alloc.c +34 -29
  186. data/ext/sources/ggml/src/ggml-amx/CMakeLists.txt +107 -0
  187. data/ext/{ggml → sources/ggml}/src/ggml-backend-impl.h +1 -2
  188. data/ext/{ggml → sources/ggml}/src/ggml-backend-reg.cpp +92 -53
  189. data/ext/{ggml → sources/ggml}/src/ggml-backend.cpp +69 -34
  190. data/ext/sources/ggml/src/ggml-blas/CMakeLists.txt +87 -0
  191. data/ext/sources/ggml/src/ggml-cann/CMakeLists.txt +75 -0
  192. data/ext/sources/ggml/src/ggml-cann/Doxyfile +2579 -0
  193. data/ext/{ggml → sources/ggml}/src/ggml-cann/acl_tensor.cpp +10 -4
  194. data/ext/{ggml → sources/ggml}/src/ggml-cann/acl_tensor.h +5 -5
  195. data/ext/{ggml → sources/ggml}/src/ggml-cann/aclnn_ops.cpp +1272 -1506
  196. data/ext/sources/ggml/src/ggml-cann/aclnn_ops.h +1125 -0
  197. data/ext/{ggml → sources/ggml}/src/ggml-cann/common.h +140 -1
  198. data/ext/{ggml → sources/ggml}/src/ggml-cann/ggml-cann.cpp +588 -146
  199. data/ext/sources/ggml/src/ggml-cann/kernels/CMakeLists.txt +30 -0
  200. data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/dup.cpp +3 -5
  201. data/ext/{ggml → sources/ggml}/src/ggml-common.h +16 -8
  202. data/ext/sources/ggml/src/ggml-cpu/CMakeLists.txt +597 -0
  203. data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/amx.cpp +3 -2
  204. data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/mmq.cpp +11 -10
  205. data/ext/sources/ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp +94 -0
  206. data/ext/sources/ggml/src/ggml-cpu/arch/arm/quants.c +4114 -0
  207. data/ext/sources/ggml/src/ggml-cpu/arch/arm/repack.cpp +2163 -0
  208. data/ext/sources/ggml/src/ggml-cpu/arch/loongarch/quants.c +2639 -0
  209. data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp +82 -0
  210. data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/quants.c +2732 -0
  211. data/ext/sources/ggml/src/ggml-cpu/arch/riscv/quants.c +2069 -0
  212. data/ext/sources/ggml/src/ggml-cpu/arch/riscv/repack.cpp +397 -0
  213. data/ext/sources/ggml/src/ggml-cpu/arch/s390/quants.c +1300 -0
  214. data/ext/sources/ggml/src/ggml-cpu/arch/wasm/quants.c +1481 -0
  215. data/ext/{ggml/src/ggml-cpu/cpu-feats-x86.cpp → sources/ggml/src/ggml-cpu/arch/x86/cpu-feats.cpp} +5 -1
  216. data/ext/sources/ggml/src/ggml-cpu/arch/x86/quants.c +4311 -0
  217. data/ext/sources/ggml/src/ggml-cpu/arch/x86/repack.cpp +3285 -0
  218. data/ext/sources/ggml/src/ggml-cpu/arch-fallback.h +184 -0
  219. data/ext/sources/ggml/src/ggml-cpu/binary-ops.cpp +158 -0
  220. data/ext/sources/ggml/src/ggml-cpu/binary-ops.h +16 -0
  221. data/ext/sources/ggml/src/ggml-cpu/cmake/FindSIMD.cmake +100 -0
  222. data/ext/sources/ggml/src/ggml-cpu/common.h +73 -0
  223. data/ext/{ggml → sources/ggml}/src/ggml-cpu/ggml-cpu-impl.h +172 -41
  224. data/ext/sources/ggml/src/ggml-cpu/ggml-cpu.c +3551 -0
  225. data/ext/{ggml → sources/ggml}/src/ggml-cpu/ggml-cpu.cpp +78 -25
  226. data/ext/{ggml/src/ggml-cpu/ggml-cpu-hbm.cpp → sources/ggml/src/ggml-cpu/hbm.cpp} +1 -1
  227. data/ext/sources/ggml/src/ggml-cpu/kleidiai/kernels.cpp +337 -0
  228. data/ext/sources/ggml/src/ggml-cpu/kleidiai/kernels.h +95 -0
  229. data/ext/sources/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +482 -0
  230. data/ext/sources/ggml/src/ggml-cpu/kleidiai/kleidiai.h +17 -0
  231. data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.cpp +3594 -0
  232. data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.h +19 -0
  233. data/ext/sources/ggml/src/ggml-cpu/ops.cpp +9786 -0
  234. data/ext/sources/ggml/src/ggml-cpu/ops.h +118 -0
  235. data/ext/sources/ggml/src/ggml-cpu/quants.c +1158 -0
  236. data/ext/{ggml/src/ggml-cpu/ggml-cpu-quants.h → sources/ggml/src/ggml-cpu/quants.h} +26 -0
  237. data/ext/sources/ggml/src/ggml-cpu/repack.cpp +1571 -0
  238. data/ext/sources/ggml/src/ggml-cpu/repack.h +98 -0
  239. data/ext/sources/ggml/src/ggml-cpu/simd-mappings.h +1184 -0
  240. data/ext/{ggml/src/ggml-cpu/ggml-cpu-traits.cpp → sources/ggml/src/ggml-cpu/traits.cpp} +1 -1
  241. data/ext/sources/ggml/src/ggml-cpu/unary-ops.cpp +186 -0
  242. data/ext/sources/ggml/src/ggml-cpu/unary-ops.h +28 -0
  243. data/ext/sources/ggml/src/ggml-cpu/vec.cpp +345 -0
  244. data/ext/sources/ggml/src/ggml-cpu/vec.h +1027 -0
  245. data/ext/sources/ggml/src/ggml-cuda/CMakeLists.txt +184 -0
  246. data/ext/sources/ggml/src/ggml-cuda/acc.cu +61 -0
  247. data/ext/sources/ggml/src/ggml-cuda/acc.cuh +5 -0
  248. data/ext/sources/ggml/src/ggml-cuda/arange.cu +34 -0
  249. data/ext/sources/ggml/src/ggml-cuda/arange.cuh +5 -0
  250. data/ext/sources/ggml/src/ggml-cuda/argmax.cu +91 -0
  251. data/ext/sources/ggml/src/ggml-cuda/argmax.cuh +3 -0
  252. data/ext/sources/ggml/src/ggml-cuda/argsort.cu +104 -0
  253. data/ext/sources/ggml/src/ggml-cuda/argsort.cuh +3 -0
  254. data/ext/sources/ggml/src/ggml-cuda/binbcast.cu +363 -0
  255. data/ext/sources/ggml/src/ggml-cuda/binbcast.cuh +9 -0
  256. data/ext/sources/ggml/src/ggml-cuda/clamp.cu +45 -0
  257. data/ext/sources/ggml/src/ggml-cuda/clamp.cuh +5 -0
  258. data/ext/sources/ggml/src/ggml-cuda/common.cuh +851 -0
  259. data/ext/sources/ggml/src/ggml-cuda/concat.cu +221 -0
  260. data/ext/sources/ggml/src/ggml-cuda/concat.cuh +5 -0
  261. data/ext/sources/ggml/src/ggml-cuda/conv-transpose-1d.cu +89 -0
  262. data/ext/sources/ggml/src/ggml-cuda/conv-transpose-1d.cuh +5 -0
  263. data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cu +161 -0
  264. data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cuh +5 -0
  265. data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cu +91 -0
  266. data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cuh +4 -0
  267. data/ext/sources/ggml/src/ggml-cuda/convert.cu +752 -0
  268. data/ext/sources/ggml/src/ggml-cuda/convert.cuh +31 -0
  269. data/ext/sources/ggml/src/ggml-cuda/count-equal.cu +64 -0
  270. data/ext/sources/ggml/src/ggml-cuda/count-equal.cuh +5 -0
  271. data/ext/sources/ggml/src/ggml-cuda/cp-async.cuh +57 -0
  272. data/ext/sources/ggml/src/ggml-cuda/cpy.cu +705 -0
  273. data/ext/sources/ggml/src/ggml-cuda/cpy.cuh +11 -0
  274. data/ext/sources/ggml/src/ggml-cuda/cross-entropy-loss.cu +189 -0
  275. data/ext/sources/ggml/src/ggml-cuda/cross-entropy-loss.cuh +7 -0
  276. data/ext/sources/ggml/src/ggml-cuda/dequantize.cuh +103 -0
  277. data/ext/sources/ggml/src/ggml-cuda/diagmask.cu +40 -0
  278. data/ext/sources/ggml/src/ggml-cuda/diagmask.cuh +5 -0
  279. data/ext/sources/ggml/src/ggml-cuda/fattn-common.cuh +881 -0
  280. data/ext/sources/ggml/src/ggml-cuda/fattn-mma-f16.cuh +1474 -0
  281. data/ext/sources/ggml/src/ggml-cuda/fattn-tile-f16.cu +357 -0
  282. data/ext/sources/ggml/src/ggml-cuda/fattn-tile-f16.cuh +3 -0
  283. data/ext/sources/ggml/src/ggml-cuda/fattn-tile-f32.cu +365 -0
  284. data/ext/sources/ggml/src/ggml-cuda/fattn-tile-f32.cuh +3 -0
  285. data/ext/sources/ggml/src/ggml-cuda/fattn-vec-f16.cuh +482 -0
  286. data/ext/sources/ggml/src/ggml-cuda/fattn-vec-f32.cuh +472 -0
  287. data/ext/sources/ggml/src/ggml-cuda/fattn-wmma-f16.cu +638 -0
  288. data/ext/sources/ggml/src/ggml-cuda/fattn-wmma-f16.cuh +3 -0
  289. data/ext/sources/ggml/src/ggml-cuda/fattn.cu +346 -0
  290. data/ext/sources/ggml/src/ggml-cuda/fattn.cuh +3 -0
  291. data/ext/sources/ggml/src/ggml-cuda/getrows.cu +275 -0
  292. data/ext/sources/ggml/src/ggml-cuda/getrows.cuh +15 -0
  293. data/ext/sources/ggml/src/ggml-cuda/ggml-cuda.cu +3647 -0
  294. data/ext/sources/ggml/src/ggml-cuda/gla.cu +93 -0
  295. data/ext/sources/ggml/src/ggml-cuda/gla.cuh +3 -0
  296. data/ext/sources/ggml/src/ggml-cuda/im2col.cu +103 -0
  297. data/ext/sources/ggml/src/ggml-cuda/im2col.cuh +5 -0
  298. data/ext/sources/ggml/src/ggml-cuda/mean.cu +19 -0
  299. data/ext/sources/ggml/src/ggml-cuda/mean.cuh +3 -0
  300. data/ext/sources/ggml/src/ggml-cuda/mma.cuh +396 -0
  301. data/ext/sources/ggml/src/ggml-cuda/mmq.cu +324 -0
  302. data/ext/sources/ggml/src/ggml-cuda/mmq.cuh +3217 -0
  303. data/ext/sources/ggml/src/ggml-cuda/mmv.cu +506 -0
  304. data/ext/sources/ggml/src/ggml-cuda/mmv.cuh +11 -0
  305. data/ext/sources/ggml/src/ggml-cuda/mmvq.cu +595 -0
  306. data/ext/sources/ggml/src/ggml-cuda/mmvq.cuh +12 -0
  307. data/ext/sources/ggml/src/ggml-cuda/norm.cu +458 -0
  308. data/ext/sources/ggml/src/ggml-cuda/norm.cuh +11 -0
  309. data/ext/sources/ggml/src/ggml-cuda/opt-step-adamw.cu +78 -0
  310. data/ext/sources/ggml/src/ggml-cuda/opt-step-adamw.cuh +5 -0
  311. data/ext/sources/ggml/src/ggml-cuda/out-prod.cu +68 -0
  312. data/ext/sources/ggml/src/ggml-cuda/out-prod.cuh +3 -0
  313. data/ext/sources/ggml/src/ggml-cuda/pad.cu +49 -0
  314. data/ext/sources/ggml/src/ggml-cuda/pad.cuh +5 -0
  315. data/ext/sources/ggml/src/ggml-cuda/pool2d.cu +94 -0
  316. data/ext/sources/ggml/src/ggml-cuda/pool2d.cuh +5 -0
  317. data/ext/sources/ggml/src/ggml-cuda/quantize.cu +190 -0
  318. data/ext/sources/ggml/src/ggml-cuda/quantize.cuh +27 -0
  319. data/ext/sources/ggml/src/ggml-cuda/rope.cu +456 -0
  320. data/ext/sources/ggml/src/ggml-cuda/rope.cuh +7 -0
  321. data/ext/sources/ggml/src/ggml-cuda/scale.cu +31 -0
  322. data/ext/sources/ggml/src/ggml-cuda/scale.cuh +5 -0
  323. data/ext/sources/ggml/src/ggml-cuda/softmax.cu +283 -0
  324. data/ext/sources/ggml/src/ggml-cuda/softmax.cuh +7 -0
  325. data/ext/sources/ggml/src/ggml-cuda/ssm-conv.cu +148 -0
  326. data/ext/sources/ggml/src/ggml-cuda/ssm-conv.cuh +3 -0
  327. data/ext/sources/ggml/src/ggml-cuda/ssm-scan.cu +155 -0
  328. data/ext/sources/ggml/src/ggml-cuda/ssm-scan.cuh +3 -0
  329. data/ext/sources/ggml/src/ggml-cuda/sum.cu +45 -0
  330. data/ext/sources/ggml/src/ggml-cuda/sum.cuh +5 -0
  331. data/ext/sources/ggml/src/ggml-cuda/sumrows.cu +26 -0
  332. data/ext/sources/ggml/src/ggml-cuda/sumrows.cuh +4 -0
  333. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_16.cu +5 -0
  334. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_8.cu +10 -0
  335. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_1.cu +10 -0
  336. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_2.cu +10 -0
  337. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu +10 -0
  338. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_16.cu +5 -0
  339. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu +10 -0
  340. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_8.cu +10 -0
  341. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_1.cu +10 -0
  342. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_2.cu +10 -0
  343. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_16.cu +5 -0
  344. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_2.cu +10 -0
  345. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu +10 -0
  346. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_8.cu +10 -0
  347. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_64-ncols2_1.cu +10 -0
  348. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_1.cu +10 -0
  349. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_2.cu +10 -0
  350. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu +10 -0
  351. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_8.cu +10 -0
  352. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +5 -0
  353. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +5 -0
  354. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +5 -0
  355. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +5 -0
  356. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +5 -0
  357. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +5 -0
  358. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +5 -0
  359. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +5 -0
  360. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +5 -0
  361. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +5 -0
  362. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +5 -0
  363. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +5 -0
  364. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +5 -0
  365. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +5 -0
  366. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +5 -0
  367. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +5 -0
  368. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +5 -0
  369. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +5 -0
  370. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +5 -0
  371. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +5 -0
  372. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +5 -0
  373. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +5 -0
  374. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +5 -0
  375. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +5 -0
  376. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +5 -0
  377. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +5 -0
  378. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +5 -0
  379. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +5 -0
  380. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +5 -0
  381. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +5 -0
  382. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +5 -0
  383. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +5 -0
  384. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +5 -0
  385. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +5 -0
  386. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +5 -0
  387. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +5 -0
  388. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +5 -0
  389. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +5 -0
  390. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +5 -0
  391. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +5 -0
  392. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +5 -0
  393. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +5 -0
  394. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +5 -0
  395. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +5 -0
  396. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +5 -0
  397. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +5 -0
  398. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +5 -0
  399. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +5 -0
  400. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +5 -0
  401. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +5 -0
  402. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +5 -0
  403. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +5 -0
  404. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +5 -0
  405. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +5 -0
  406. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +5 -0
  407. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +5 -0
  408. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +5 -0
  409. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +5 -0
  410. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +5 -0
  411. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +5 -0
  412. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +5 -0
  413. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +5 -0
  414. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +5 -0
  415. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +5 -0
  416. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +5 -0
  417. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +5 -0
  418. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +5 -0
  419. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +5 -0
  420. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +5 -0
  421. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +5 -0
  422. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +5 -0
  423. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +5 -0
  424. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +5 -0
  425. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +5 -0
  426. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +5 -0
  427. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +5 -0
  428. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +5 -0
  429. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +5 -0
  430. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +5 -0
  431. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +5 -0
  432. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +5 -0
  433. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +5 -0
  434. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +5 -0
  435. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +5 -0
  436. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +5 -0
  437. data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +5 -0
  438. data/ext/sources/ggml/src/ggml-cuda/template-instances/generate_cu_files.py +78 -0
  439. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq1_s.cu +5 -0
  440. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq2_s.cu +5 -0
  441. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq2_xs.cu +5 -0
  442. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq2_xxs.cu +5 -0
  443. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq3_s.cu +5 -0
  444. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq3_xxs.cu +5 -0
  445. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq4_nl.cu +5 -0
  446. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq4_xs.cu +5 -0
  447. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q2_k.cu +5 -0
  448. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q3_k.cu +5 -0
  449. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q4_0.cu +5 -0
  450. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q4_1.cu +5 -0
  451. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q4_k.cu +5 -0
  452. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q5_0.cu +5 -0
  453. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q5_1.cu +5 -0
  454. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q5_k.cu +5 -0
  455. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q6_k.cu +5 -0
  456. data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q8_0.cu +5 -0
  457. data/ext/sources/ggml/src/ggml-cuda/tsembd.cu +47 -0
  458. data/ext/sources/ggml/src/ggml-cuda/tsembd.cuh +5 -0
  459. data/ext/sources/ggml/src/ggml-cuda/unary.cu +378 -0
  460. data/ext/sources/ggml/src/ggml-cuda/unary.cuh +66 -0
  461. data/ext/sources/ggml/src/ggml-cuda/upscale.cu +51 -0
  462. data/ext/sources/ggml/src/ggml-cuda/upscale.cuh +5 -0
  463. data/ext/sources/ggml/src/ggml-cuda/vecdotq.cuh +1135 -0
  464. data/ext/{ggml → sources/ggml}/src/ggml-cuda/vendors/cuda.h +1 -0
  465. data/ext/{ggml → sources/ggml}/src/ggml-cuda/vendors/hip.h +57 -0
  466. data/ext/{ggml → sources/ggml}/src/ggml-cuda/vendors/musa.h +7 -1
  467. data/ext/sources/ggml/src/ggml-cuda/wkv.cu +199 -0
  468. data/ext/sources/ggml/src/ggml-cuda/wkv.cuh +7 -0
  469. data/ext/sources/ggml/src/ggml-hip/CMakeLists.txt +135 -0
  470. data/ext/{ggml → sources/ggml}/src/ggml-impl.h +147 -158
  471. data/ext/sources/ggml/src/ggml-kompute/CMakeLists.txt +166 -0
  472. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/common.comp +112 -0
  473. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_add.comp +58 -0
  474. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_addrow.comp +25 -0
  475. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f16.comp +52 -0
  476. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f32.comp +52 -0
  477. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f16.comp +52 -0
  478. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f32.comp +52 -0
  479. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_diagmask.comp +30 -0
  480. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_gelu.comp +22 -0
  481. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows.comp +17 -0
  482. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_f16.comp +31 -0
  483. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_f32.comp +31 -0
  484. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_0.comp +38 -0
  485. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_1.comp +39 -0
  486. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_q6_k.comp +44 -0
  487. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul.comp +52 -0
  488. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_f16.comp +69 -0
  489. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_mat_f32.comp +51 -0
  490. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_0.comp +33 -0
  491. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_1.comp +35 -0
  492. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_k.comp +140 -0
  493. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q6_k.comp +106 -0
  494. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q8_0.comp +73 -0
  495. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n.comp +52 -0
  496. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n_pre.comp +28 -0
  497. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_norm.comp +84 -0
  498. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_relu.comp +21 -0
  499. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rmsnorm.comp +53 -0
  500. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f16.comp +52 -0
  501. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f32.comp +52 -0
  502. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rope_norm_f16.comp +52 -0
  503. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rope_norm_f32.comp +52 -0
  504. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_scale.comp +19 -0
  505. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_scale_8.comp +23 -0
  506. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_silu.comp +22 -0
  507. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_softmax.comp +72 -0
  508. data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/rope_common.comp +71 -0
  509. data/ext/sources/ggml/src/ggml-metal/CMakeLists.txt +121 -0
  510. data/ext/sources/ggml/src/ggml-metal/ggml-metal-impl.h +649 -0
  511. data/ext/{ggml → sources/ggml}/src/ggml-metal/ggml-metal.m +2504 -1108
  512. data/ext/{ggml → sources/ggml}/src/ggml-metal/ggml-metal.metal +2102 -1463
  513. data/ext/sources/ggml/src/ggml-musa/CMakeLists.txt +113 -0
  514. data/ext/sources/ggml/src/ggml-musa/mudnn.cu +112 -0
  515. data/ext/sources/ggml/src/ggml-musa/mudnn.cuh +12 -0
  516. data/ext/sources/ggml/src/ggml-opencl/CMakeLists.txt +110 -0
  517. data/ext/sources/ggml/src/ggml-opencl/ggml-opencl.cpp +6494 -0
  518. data/ext/sources/ggml/src/ggml-opencl/kernels/add.cl +83 -0
  519. data/ext/sources/ggml/src/ggml-opencl/kernels/argsort.cl +86 -0
  520. data/ext/sources/ggml/src/ggml-opencl/kernels/clamp.cl +20 -0
  521. data/ext/sources/ggml/src/ggml-opencl/kernels/concat.cl +109 -0
  522. data/ext/sources/ggml/src/ggml-opencl/kernels/cpy.cl +184 -0
  523. data/ext/sources/ggml/src/ggml-opencl/kernels/cvt.cl +118 -0
  524. data/ext/sources/ggml/src/ggml-opencl/kernels/diag_mask_inf.cl +58 -0
  525. data/ext/sources/ggml/src/ggml-opencl/kernels/div.cl +72 -0
  526. data/ext/sources/ggml/src/ggml-opencl/kernels/embed_kernel.py +26 -0
  527. data/ext/sources/ggml/src/ggml-opencl/kernels/gelu.cl +62 -0
  528. data/ext/sources/ggml/src/ggml-opencl/kernels/gemv_noshuffle.cl +268 -0
  529. data/ext/sources/ggml/src/ggml-opencl/kernels/gemv_noshuffle_general.cl +274 -0
  530. data/ext/sources/ggml/src/ggml-opencl/kernels/get_rows.cl +163 -0
  531. data/ext/sources/ggml/src/ggml-opencl/kernels/glu.cl +201 -0
  532. data/ext/sources/ggml/src/ggml-opencl/kernels/group_norm.cl +72 -0
  533. data/ext/sources/ggml/src/ggml-opencl/kernels/im2col_f16.cl +57 -0
  534. data/ext/sources/ggml/src/ggml-opencl/kernels/im2col_f32.cl +57 -0
  535. data/ext/sources/ggml/src/ggml-opencl/kernels/mul.cl +79 -0
  536. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mat_Ab_Bi_8x4.cl +139 -0
  537. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f16_f16.cl +118 -0
  538. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f16_f32.cl +118 -0
  539. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f16_f32_1row.cl +94 -0
  540. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f16_f32_l4.cl +84 -0
  541. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f32_f32.cl +118 -0
  542. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_id_q4_0_f32_8x_flat.cl +283 -0
  543. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32.cl +192 -0
  544. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_1d_16x_flat.cl +307 -0
  545. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_1d_8x_flat.cl +265 -0
  546. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_8x_flat.cl +272 -0
  547. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_v.cl +254 -0
  548. data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q6_k.cl +190 -0
  549. data/ext/sources/ggml/src/ggml-opencl/kernels/norm.cl +81 -0
  550. data/ext/sources/ggml/src/ggml-opencl/kernels/pad.cl +30 -0
  551. data/ext/sources/ggml/src/ggml-opencl/kernels/relu.cl +16 -0
  552. data/ext/sources/ggml/src/ggml-opencl/kernels/repeat.cl +39 -0
  553. data/ext/sources/ggml/src/ggml-opencl/kernels/rms_norm.cl +96 -0
  554. data/ext/sources/ggml/src/ggml-opencl/kernels/rope.cl +721 -0
  555. data/ext/sources/ggml/src/ggml-opencl/kernels/scale.cl +16 -0
  556. data/ext/sources/ggml/src/ggml-opencl/kernels/sigmoid.cl +29 -0
  557. data/ext/sources/ggml/src/ggml-opencl/kernels/silu.cl +30 -0
  558. data/ext/sources/ggml/src/ggml-opencl/kernels/softmax_4_f16.cl +87 -0
  559. data/ext/sources/ggml/src/ggml-opencl/kernels/softmax_4_f32.cl +87 -0
  560. data/ext/sources/ggml/src/ggml-opencl/kernels/softmax_f16.cl +86 -0
  561. data/ext/sources/ggml/src/ggml-opencl/kernels/softmax_f32.cl +86 -0
  562. data/ext/sources/ggml/src/ggml-opencl/kernels/sub.cl +72 -0
  563. data/ext/sources/ggml/src/ggml-opencl/kernels/sum_rows.cl +39 -0
  564. data/ext/sources/ggml/src/ggml-opencl/kernels/tanh.cl +63 -0
  565. data/ext/sources/ggml/src/ggml-opencl/kernels/transpose.cl +84 -0
  566. data/ext/sources/ggml/src/ggml-opencl/kernels/tsembd.cl +48 -0
  567. data/ext/sources/ggml/src/ggml-opencl/kernels/upscale.cl +121 -0
  568. data/ext/{ggml → sources/ggml}/src/ggml-opt.cpp +373 -190
  569. data/ext/{ggml → sources/ggml}/src/ggml-quants.c +120 -128
  570. data/ext/sources/ggml/src/ggml-rpc/CMakeLists.txt +9 -0
  571. data/ext/{ggml → sources/ggml}/src/ggml-rpc/ggml-rpc.cpp +494 -84
  572. data/ext/sources/ggml/src/ggml-sycl/CMakeLists.txt +189 -0
  573. data/ext/sources/ggml/src/ggml-sycl/backend.hpp +37 -0
  574. data/ext/sources/ggml/src/ggml-sycl/binbcast.cpp +344 -0
  575. data/ext/sources/ggml/src/ggml-sycl/binbcast.hpp +39 -0
  576. data/ext/{ggml → sources/ggml}/src/ggml-sycl/common.cpp +20 -32
  577. data/ext/sources/ggml/src/ggml-sycl/common.hpp +561 -0
  578. data/ext/{ggml → sources/ggml}/src/ggml-sycl/concat.cpp +56 -70
  579. data/ext/sources/ggml/src/ggml-sycl/concat.hpp +20 -0
  580. data/ext/{ggml → sources/ggml}/src/ggml-sycl/conv.cpp +8 -12
  581. data/ext/sources/ggml/src/ggml-sycl/conv.hpp +20 -0
  582. data/ext/sources/ggml/src/ggml-sycl/convert.cpp +575 -0
  583. data/ext/sources/ggml/src/ggml-sycl/convert.hpp +34 -0
  584. data/ext/sources/ggml/src/ggml-sycl/cpy.cpp +839 -0
  585. data/ext/sources/ggml/src/ggml-sycl/cpy.hpp +11 -0
  586. data/ext/sources/ggml/src/ggml-sycl/dequantize.hpp +823 -0
  587. data/ext/{ggml → sources/ggml}/src/ggml-sycl/dmmv.cpp +188 -67
  588. data/ext/sources/ggml/src/ggml-sycl/dmmv.hpp +27 -0
  589. data/ext/sources/ggml/src/ggml-sycl/dpct/helper.hpp +2987 -0
  590. data/ext/sources/ggml/src/ggml-sycl/element_wise.cpp +1120 -0
  591. data/ext/sources/ggml/src/ggml-sycl/element_wise.hpp +84 -0
  592. data/ext/sources/ggml/src/ggml-sycl/gemm.hpp +102 -0
  593. data/ext/sources/ggml/src/ggml-sycl/getrows.cpp +212 -0
  594. data/ext/sources/ggml/src/ggml-sycl/getrows.hpp +20 -0
  595. data/ext/{ggml → sources/ggml}/src/ggml-sycl/ggml-sycl.cpp +1197 -1295
  596. data/ext/sources/ggml/src/ggml-sycl/gla.cpp +106 -0
  597. data/ext/sources/ggml/src/ggml-sycl/gla.hpp +8 -0
  598. data/ext/sources/ggml/src/ggml-sycl/im2col.cpp +136 -0
  599. data/ext/sources/ggml/src/ggml-sycl/im2col.hpp +21 -0
  600. data/ext/{ggml → sources/ggml}/src/ggml-sycl/mmq.cpp +60 -81
  601. data/ext/sources/ggml/src/ggml-sycl/mmq.hpp +33 -0
  602. data/ext/sources/ggml/src/ggml-sycl/mmvq.cpp +1065 -0
  603. data/ext/sources/ggml/src/ggml-sycl/mmvq.hpp +27 -0
  604. data/ext/sources/ggml/src/ggml-sycl/norm.cpp +482 -0
  605. data/ext/sources/ggml/src/ggml-sycl/norm.hpp +26 -0
  606. data/ext/{ggml → sources/ggml}/src/ggml-sycl/outprod.cpp +8 -17
  607. data/ext/sources/ggml/src/ggml-sycl/outprod.hpp +10 -0
  608. data/ext/sources/ggml/src/ggml-sycl/presets.hpp +74 -0
  609. data/ext/sources/ggml/src/ggml-sycl/quants.hpp +111 -0
  610. data/ext/sources/ggml/src/ggml-sycl/rope.cpp +472 -0
  611. data/ext/sources/ggml/src/ggml-sycl/rope.hpp +20 -0
  612. data/ext/{ggml → sources/ggml}/src/ggml-sycl/softmax.cpp +38 -28
  613. data/ext/sources/ggml/src/ggml-sycl/softmax.hpp +20 -0
  614. data/ext/sources/ggml/src/ggml-sycl/sycl_hw.cpp +15 -0
  615. data/ext/sources/ggml/src/ggml-sycl/sycl_hw.hpp +26 -0
  616. data/ext/{ggml → sources/ggml}/src/ggml-sycl/tsembd.cpp +6 -11
  617. data/ext/sources/ggml/src/ggml-sycl/tsembd.hpp +20 -0
  618. data/ext/sources/ggml/src/ggml-sycl/vecdotq.hpp +1307 -0
  619. data/ext/sources/ggml/src/ggml-sycl/wkv.cpp +289 -0
  620. data/ext/sources/ggml/src/ggml-sycl/wkv.hpp +10 -0
  621. data/ext/sources/ggml/src/ggml-vulkan/CMakeLists.txt +200 -0
  622. data/ext/sources/ggml/src/ggml-vulkan/cmake/host-toolchain.cmake.in +15 -0
  623. data/ext/{ggml → sources/ggml}/src/ggml-vulkan/ggml-vulkan.cpp +3822 -1335
  624. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt +31 -0
  625. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/acc.comp +29 -0
  626. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/add.comp +29 -0
  627. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/argmax.comp +51 -0
  628. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/argsort.comp +69 -0
  629. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/clamp.comp +17 -0
  630. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/concat.comp +41 -0
  631. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/contig_copy.comp +49 -0
  632. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/conv2d_dw.comp +105 -0
  633. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp +98 -0
  634. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/copy.comp +23 -0
  635. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/copy_from_quant.comp +51 -0
  636. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/copy_to_quant.comp +242 -0
  637. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/cos.comp +17 -0
  638. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/count_equal.comp +31 -0
  639. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_f32.comp +20 -0
  640. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs.comp +462 -0
  641. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs_cm2.comp +699 -0
  642. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_head.comp +13 -0
  643. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq1_m.comp +42 -0
  644. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq1_s.comp +35 -0
  645. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq2_s.comp +44 -0
  646. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq2_xs.comp +43 -0
  647. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq2_xxs.comp +48 -0
  648. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq3_s.comp +39 -0
  649. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq3_xxs.comp +49 -0
  650. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq4_nl.comp +32 -0
  651. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq4_xs.comp +34 -0
  652. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q2_k.comp +34 -0
  653. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q3_k.comp +42 -0
  654. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q4_0.comp +30 -0
  655. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q4_1.comp +32 -0
  656. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q4_k.comp +68 -0
  657. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q5_0.comp +34 -0
  658. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q5_1.comp +35 -0
  659. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q5_k.comp +70 -0
  660. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q6_k.comp +33 -0
  661. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q8_0.comp +31 -0
  662. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/diag_mask_inf.comp +34 -0
  663. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/div.comp +27 -0
  664. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp +337 -0
  665. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.comp +162 -0
  666. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp +360 -0
  667. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp +267 -0
  668. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp +59 -0
  669. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/geglu.comp +13 -0
  670. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/gelu.comp +25 -0
  671. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/gelu_quick.comp +23 -0
  672. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/generic_binary_head.comp +64 -0
  673. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/generic_head.comp +9 -0
  674. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/generic_unary_head.comp +76 -0
  675. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp +33 -0
  676. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp +41 -0
  677. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_head.comp +15 -0
  678. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_main.comp +29 -0
  679. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/group_norm.comp +66 -0
  680. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp +100 -0
  681. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/l2_norm.comp +41 -0
  682. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/leaky_relu.comp +22 -0
  683. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul.comp +27 -0
  684. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_split_k_reduce.comp +48 -0
  685. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp +169 -0
  686. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp +118 -0
  687. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq1_m.comp +82 -0
  688. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq1_s.comp +79 -0
  689. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq2_s.comp +90 -0
  690. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq2_xs.comp +87 -0
  691. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq2_xxs.comp +87 -0
  692. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq3_s.comp +90 -0
  693. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq3_xxs.comp +88 -0
  694. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_nc.comp +118 -0
  695. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_p021.comp +154 -0
  696. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp +130 -0
  697. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp +132 -0
  698. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp +136 -0
  699. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp +167 -0
  700. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp +130 -0
  701. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp +868 -0
  702. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp +441 -0
  703. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp +442 -0
  704. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp +99 -0
  705. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/norm.comp +44 -0
  706. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/opt_step_adamw.comp +42 -0
  707. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/pad.comp +28 -0
  708. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/pool2d.comp +74 -0
  709. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp +77 -0
  710. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/reglu.comp +9 -0
  711. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/relu.comp +21 -0
  712. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/repeat.comp +26 -0
  713. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/repeat_back.comp +37 -0
  714. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp +61 -0
  715. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm_back.comp +55 -0
  716. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_head.comp +58 -0
  717. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp +60 -0
  718. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp +43 -0
  719. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp +43 -0
  720. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp +47 -0
  721. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/scale.comp +24 -0
  722. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/sigmoid.comp +20 -0
  723. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/silu.comp +22 -0
  724. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/silu_back.comp +26 -0
  725. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/sin.comp +17 -0
  726. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/soft_max.comp +173 -0
  727. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/soft_max_back.comp +50 -0
  728. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/square.comp +17 -0
  729. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/sub.comp +29 -0
  730. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/sum_rows.comp +37 -0
  731. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/swiglu.comp +9 -0
  732. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/tanh.comp +20 -0
  733. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/test_bfloat16_support.comp +7 -0
  734. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/test_coopmat2_support.comp +7 -0
  735. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/test_coopmat_support.comp +7 -0
  736. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/test_integer_dot_support.comp +7 -0
  737. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/timestep_embedding.comp +41 -0
  738. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/types.comp +1373 -0
  739. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/upscale.comp +36 -0
  740. data/ext/{ggml → sources/ggml}/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +203 -36
  741. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/wkv6.comp +87 -0
  742. data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/wkv7.comp +91 -0
  743. data/ext/{ggml → sources/ggml}/src/ggml.c +918 -1782
  744. data/ext/sources/ggml/src/ggml.cpp +26 -0
  745. data/ext/sources/ggml/src/gguf.cpp +1351 -0
  746. data/ext/{include → sources/include}/whisper.h +70 -2
  747. data/ext/sources/src/CMakeLists.txt +145 -0
  748. data/ext/sources/src/coreml/whisper-compat.h +10 -0
  749. data/ext/sources/src/coreml/whisper-compat.m +35 -0
  750. data/ext/{src → sources/src}/coreml/whisper-decoder-impl.h +27 -15
  751. data/ext/{src → sources/src}/coreml/whisper-decoder-impl.m +36 -10
  752. data/ext/{src → sources/src}/coreml/whisper-encoder-impl.h +21 -9
  753. data/ext/{src → sources/src}/coreml/whisper-encoder-impl.m +29 -3
  754. data/ext/sources/src/coreml/whisper-encoder.mm +73 -0
  755. data/ext/sources/src/whisper-arch.h +197 -0
  756. data/ext/{src → sources/src}/whisper.cpp +1966 -386
  757. data/ext/sources/tests/CMakeLists.txt +105 -0
  758. data/ext/sources/tests/earnings21/eval.mk +58 -0
  759. data/ext/sources/tests/earnings21/eval.py +68 -0
  760. data/ext/sources/tests/earnings21/normalizers/__init__.py +2 -0
  761. data/ext/sources/tests/earnings21/normalizers/basic.py +80 -0
  762. data/ext/sources/tests/earnings21/normalizers/english.json +1741 -0
  763. data/ext/sources/tests/earnings21/normalizers/english.py +550 -0
  764. data/ext/sources/tests/earnings21/requirements.txt +6 -0
  765. data/ext/sources/tests/en-0-ref.txt +1 -0
  766. data/ext/sources/tests/en-1-ref.txt +1 -0
  767. data/ext/sources/tests/en-2-ref.txt +1 -0
  768. data/ext/sources/tests/es-0-ref.txt +1 -0
  769. data/ext/sources/tests/librispeech/eval.mk +39 -0
  770. data/ext/sources/tests/librispeech/eval.py +47 -0
  771. data/ext/sources/tests/librispeech/normalizers/__init__.py +2 -0
  772. data/ext/sources/tests/librispeech/normalizers/basic.py +80 -0
  773. data/ext/sources/tests/librispeech/normalizers/english.json +1741 -0
  774. data/ext/sources/tests/librispeech/normalizers/english.py +550 -0
  775. data/ext/sources/tests/librispeech/requirements.txt +6 -0
  776. data/ext/sources/tests/run-tests.sh +130 -0
  777. data/ext/sources/tests/test-c.c +3 -0
  778. data/ext/sources/tests/test-vad-full.cpp +54 -0
  779. data/ext/sources/tests/test-vad.cpp +83 -0
  780. data/ext/sources/tests/test-whisper.js +58 -0
  781. data/extsources.rb +39 -5
  782. data/lib/whisper/context.rb +15 -0
  783. data/lib/whisper/model/uri.rb +202 -126
  784. data/lib/whisper/segment.rb +58 -0
  785. data/sig/whisper.rbs +510 -0
  786. data/test/helper.rb +24 -0
  787. data/{tests → test}/test_callback.rb +45 -3
  788. data/{tests → test}/test_error.rb +2 -2
  789. data/{tests → test}/test_model.rb +47 -0
  790. data/test/test_package.rb +51 -0
  791. data/test/test_params.rb +297 -0
  792. data/test/test_segment.rb +146 -0
  793. data/test/test_vad.rb +19 -0
  794. data/test/test_vad_params.rb +103 -0
  795. data/{tests → test}/test_whisper.rb +106 -36
  796. data/whispercpp.gemspec +5 -5
  797. metadata +837 -134
  798. data/ext/cpu.mk +0 -9
  799. data/ext/examples/dr_wav.h +0 -8815
  800. data/ext/ggml/src/ggml-cann/aclnn_ops.h +0 -592
  801. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +0 -4262
  802. data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +0 -8
  803. data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +0 -10835
  804. data/ext/ggml/src/ggml-cpu/ggml-cpu.c +0 -14123
  805. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +0 -1884
  806. data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +0 -14
  807. data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +0 -288
  808. data/ext/ggml/src/ggml-sycl/convert.cpp +0 -547
  809. data/ext/ggml/src/ggml-sycl/element_wise.cpp +0 -1030
  810. data/ext/ggml/src/ggml-sycl/im2col.cpp +0 -126
  811. data/ext/ggml/src/ggml-sycl/mmvq.cpp +0 -1015
  812. data/ext/ggml/src/ggml-sycl/norm.cpp +0 -378
  813. data/ext/ggml/src/ggml-sycl/rope.cpp +0 -276
  814. data/ext/ggml/src/ggml-sycl/wkv6.cpp +0 -141
  815. data/ext/metal-embed.mk +0 -17
  816. data/ext/metal.mk +0 -6
  817. data/ext/ruby_whisper.cpp +0 -1909
  818. data/ext/scripts/get-flags.mk +0 -38
  819. data/lib/whisper.rb +0 -2
  820. data/tests/helper.rb +0 -7
  821. data/tests/test_package.rb +0 -31
  822. data/tests/test_params.rb +0 -160
  823. data/tests/test_segment.rb +0 -83
  824. /data/ext/{ggml → sources/ggml}/include/ggml-blas.h +0 -0
  825. /data/ext/{ggml → sources/ggml}/include/ggml-cann.h +0 -0
  826. /data/ext/{ggml → sources/ggml}/include/ggml-cuda.h +0 -0
  827. /data/ext/{ggml → sources/ggml}/include/ggml-kompute.h +0 -0
  828. /data/ext/{ggml → sources/ggml}/include/ggml-opencl.h +0 -0
  829. /data/ext/{ggml → sources/ggml}/include/ggml-sycl.h +0 -0
  830. /data/ext/{ggml → sources/ggml}/src/ggml-amx/common.h +0 -0
  831. /data/ext/{ggml → sources/ggml}/src/ggml-amx/ggml-amx.cpp +0 -0
  832. /data/ext/{ggml → sources/ggml}/src/ggml-amx/mmq.cpp +0 -0
  833. /data/ext/{ggml → sources/ggml}/src/ggml-amx/mmq.h +0 -0
  834. /data/ext/{ggml → sources/ggml}/src/ggml-blas/ggml-blas.cpp +0 -0
  835. /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/ascendc_kernels.h +0 -0
  836. /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/get_row_f16.cpp +0 -0
  837. /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/get_row_f32.cpp +0 -0
  838. /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/get_row_q4_0.cpp +0 -0
  839. /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/get_row_q8_0.cpp +0 -0
  840. /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +0 -0
  841. /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +0 -0
  842. /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +0 -0
  843. /data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/amx.h +0 -0
  844. /data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/common.h +0 -0
  845. /data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/mmq.h +0 -0
  846. /data/ext/{ggml/src/ggml-cpu/ggml-cpu-hbm.h → sources/ggml/src/ggml-cpu/hbm.h} +0 -0
  847. /data/ext/{ggml/src/ggml-cpu/ggml-cpu-traits.h → sources/ggml/src/ggml-cpu/traits.h} +0 -0
  848. /data/ext/{ggml → sources/ggml}/src/ggml-kompute/ggml-kompute.cpp +0 -0
  849. /data/ext/{ggml → sources/ggml}/src/ggml-quants.h +0 -0
  850. /data/ext/{ggml → sources/ggml}/src/ggml-threading.cpp +0 -0
  851. /data/ext/{ggml → sources/ggml}/src/ggml-threading.h +0 -0
  852. /data/ext/{src → sources/src}/coreml/whisper-encoder.h +0 -0
  853. /data/ext/{src → sources/src}/openvino/whisper-openvino-encoder.cpp +0 -0
  854. /data/ext/{src → sources/src}/openvino/whisper-openvino-encoder.h +0 -0
  855. /data/{tests → test}/jfk_reader/.gitignore +0 -0
  856. /data/{tests → test}/jfk_reader/extconf.rb +0 -0
  857. /data/{tests → test}/jfk_reader/jfk_reader.c +0 -0
@@ -0,0 +1,1693 @@
1
+ #include "llama-graph.h"
2
+
3
+ #include "llama-impl.h"
4
+ #include "llama-batch.h"
5
+ #include "llama-cparams.h"
6
+
7
+ #include "llama-kv-cache-unified.h"
8
+ #include "llama-kv-cache-unified-iswa.h"
9
+ #include "llama-memory-hybrid.h"
10
+ #include "llama-memory-recurrent.h"
11
+
12
+ #include <cassert>
13
+ #include <cmath>
14
+ #include <cstring>
15
+
16
+ void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
17
+ if (ubatch->token) {
18
+ const int64_t n_tokens = ubatch->n_tokens;
19
+
20
+ ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
21
+ }
22
+
23
+ if (ubatch->embd) {
24
+ const int64_t n_embd = embd->ne[0];
25
+ const int64_t n_tokens = ubatch->n_tokens;
26
+
27
+ ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
28
+ }
29
+ }
30
+
31
+ void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
32
+ if (ubatch->pos && pos) {
33
+ const int64_t n_tokens = ubatch->n_tokens;
34
+
35
+ if (ubatch->token && n_pos_per_embd == 4) {
36
+ // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
37
+ // the 3 first dims are the same, and 4th dim is all 0
38
+ std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
39
+ // copy the first dimension
40
+ for (int i = 0; i < n_tokens; ++i) {
41
+ pos_data[ i] = ubatch->pos[i];
42
+ pos_data[ n_tokens + i] = ubatch->pos[i];
43
+ pos_data[2 * n_tokens + i] = ubatch->pos[i];
44
+ pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
45
+ }
46
+ ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
47
+ } else {
48
+ ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
49
+ }
50
+ }
51
+ }
52
+
53
+ void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
54
+ if (ubatch->pos && attn_scale) {
55
+ const int64_t n_tokens = ubatch->n_tokens;
56
+
57
+ std::vector<float> attn_scale_data(n_tokens, 0.0f);
58
+ for (int i = 0; i < n_tokens; ++i) {
59
+ const float pos = ubatch->pos[i];
60
+ attn_scale_data[i] = std::log(
61
+ std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
62
+ ) * f_attn_temp_scale + 1.0;
63
+ }
64
+
65
+ ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
66
+ }
67
+ }
68
+
69
+ void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
70
+ if (pos_bucket) {
71
+ const int64_t n_tokens = ubatch->n_tokens;
72
+
73
+ GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
74
+ GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
75
+
76
+ int32_t * data = (int32_t *) pos_bucket->data;
77
+
78
+ for (int h = 0; h < 1; ++h) {
79
+ for (int j = 0; j < n_tokens; ++j) {
80
+ for (int i = 0; i < n_tokens; ++i) {
81
+ data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
82
+ }
83
+ }
84
+ }
85
+ }
86
+ }
87
+
88
+ void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
89
+ if (pos_bucket) {
90
+ mctx->set_input_pos_bucket(pos_bucket, ubatch);
91
+ }
92
+ }
93
+
94
+ void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
95
+ GGML_ASSERT(out_ids);
96
+
97
+ const int64_t n_tokens = ubatch->n_tokens;
98
+
99
+ GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
100
+ int32_t * data = (int32_t *) out_ids->data;
101
+
102
+ if (n_outputs == n_tokens) {
103
+ for (int i = 0; i < n_tokens; ++i) {
104
+ data[i] = i;
105
+ }
106
+
107
+ return;
108
+ }
109
+
110
+ GGML_ASSERT(ubatch->output);
111
+
112
+ int n_outputs = 0;
113
+
114
+ for (int i = 0; i < n_tokens; ++i) {
115
+ if (ubatch->output[i]) {
116
+ data[n_outputs++] = i;
117
+ }
118
+ }
119
+ }
120
+
121
+ void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
122
+ if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
123
+ const int64_t n_tokens = ubatch->n_tokens;
124
+ const int64_t n_seq_tokens = ubatch->n_seq_tokens;
125
+ const int64_t n_seqs_unq = ubatch->n_seqs_unq;
126
+
127
+ GGML_ASSERT(mean);
128
+ GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
129
+
130
+ float * data = (float *) mean->data;
131
+ memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
132
+
133
+ std::vector<uint64_t> sums(n_seqs_unq, 0);
134
+ for (int i = 0; i < n_tokens; i += n_seq_tokens) {
135
+ for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
136
+ const llama_seq_id seq_id = ubatch->seq_id[i][s];
137
+ const int32_t seq_idx = ubatch->seq_idx[seq_id];
138
+
139
+ sums[seq_idx] += ubatch->n_seq_tokens;
140
+ }
141
+ }
142
+
143
+ std::vector<float> div(n_seqs_unq, 0.0f);
144
+ for (int s = 0; s < n_seqs_unq; ++s) {
145
+ const uint64_t sum = sums[s];
146
+ if (sum > 0) {
147
+ div[s] = 1.0f/float(sum);
148
+ }
149
+ }
150
+
151
+ for (int i = 0; i < n_tokens; i += n_seq_tokens) {
152
+ for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
153
+ const llama_seq_id seq_id = ubatch->seq_id[i][s];
154
+ const int32_t seq_idx = ubatch->seq_idx[seq_id];
155
+
156
+ for (int j = 0; j < n_seq_tokens; ++j) {
157
+ data[seq_idx*n_tokens + i + j] = div[seq_idx];
158
+ }
159
+ }
160
+ }
161
+ }
162
+ }
163
+
164
+ void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
165
+ const int64_t n_tokens = ubatch->n_tokens;
166
+ const int64_t n_seq_tokens = ubatch->n_seq_tokens;
167
+ const int64_t n_seqs_unq = ubatch->n_seqs_unq;
168
+
169
+ if (cparams.embeddings && (
170
+ cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
171
+ cparams.pooling_type == LLAMA_POOLING_TYPE_RANK
172
+ )) {
173
+ GGML_ASSERT(cls);
174
+ GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
175
+
176
+ uint32_t * data = (uint32_t *) cls->data;
177
+ memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
178
+
179
+ for (int i = 0; i < n_tokens; i += n_seq_tokens) {
180
+ for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
181
+ const llama_seq_id seq_id = ubatch->seq_id[i][s];
182
+ const int32_t seq_idx = ubatch->seq_idx[seq_id];
183
+
184
+ data[seq_idx] = i;
185
+ }
186
+ }
187
+ }
188
+
189
+ if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
190
+ GGML_ASSERT(cls);
191
+ GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
192
+
193
+ uint32_t * data = (uint32_t *) cls->data;
194
+ memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
195
+
196
+ std::vector<int> last_pos(n_seqs_unq, -1);
197
+ std::vector<int> last_row(n_seqs_unq, -1);
198
+
199
+ for (int i = 0; i < n_tokens; ++i) {
200
+ const llama_pos pos = ubatch->pos[i];
201
+
202
+ for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
203
+ const llama_seq_id seq_id = ubatch->seq_id[i][s];
204
+ const int32_t seq_idx = ubatch->seq_idx[seq_id];
205
+
206
+ if (pos >= last_pos[seq_idx]) {
207
+ last_pos[seq_idx] = pos;
208
+ last_row[seq_idx] = i;
209
+ }
210
+ }
211
+ }
212
+
213
+ for (int s = 0; s < n_seqs_unq; ++s) {
214
+ if (last_row[s] >= 0) {
215
+ data[s] = last_row[s];
216
+ }
217
+ }
218
+ }
219
+ }
220
+
221
+ void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
222
+ GGML_UNUSED(ubatch);
223
+
224
+ const int64_t n_rs = mctx->get_n_rs();
225
+
226
+ if (s_copy) {
227
+ GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
228
+ int32_t * data = (int32_t *) s_copy->data;
229
+
230
+ // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
231
+ for (uint32_t i = 0; i < n_rs; ++i) {
232
+ data[i] = mctx->s_copy(i);
233
+ }
234
+ }
235
+ }
236
+
237
+ void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
238
+ GGML_UNUSED(ubatch);
239
+
240
+ if (cross_embd && !cross->v_embd.empty()) {
241
+ assert(cross_embd->type == GGML_TYPE_F32);
242
+
243
+ ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
244
+ }
245
+ }
246
+
247
+ void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
248
+ const int64_t n_kv = ubatch->n_tokens;
249
+ const int64_t n_tokens = ubatch->n_tokens;
250
+
251
+ GGML_ASSERT(kq_mask);
252
+ GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
253
+
254
+ float * data = (float *) kq_mask->data;
255
+
256
+ for (int h = 0; h < 1; ++h) {
257
+ for (int i1 = 0; i1 < n_tokens; ++i1) {
258
+ const llama_seq_id s1 = ubatch->seq_id[i1][0];
259
+
260
+ for (int i0 = 0; i0 < n_tokens; ++i0) {
261
+ float f = -INFINITY;
262
+
263
+ for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
264
+ const llama_seq_id s0 = ubatch->seq_id[i0][0];
265
+
266
+ // TODO: reimplement this like in llama_kv_cache_unified
267
+ if (s0 == s1 && (!cparams.causal_attn || ubatch->pos[i0] <= ubatch->pos[i1])) {
268
+ if (hparams.use_alibi) {
269
+ f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
270
+ } else {
271
+ f = 0.0f;
272
+ }
273
+ break;
274
+ }
275
+ }
276
+
277
+ data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
278
+ }
279
+ }
280
+ }
281
+ }
282
+
283
+ void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
284
+ if (self_kq_mask) {
285
+ mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
286
+ }
287
+ }
288
+
289
+ void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) {
290
+ if (self_kq_mask) {
291
+ mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
292
+ }
293
+
294
+ if (self_kq_mask_swa) {
295
+ mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
296
+ }
297
+ }
298
+
299
+ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
300
+ GGML_ASSERT(cross_kq_mask);
301
+
302
+ const int64_t n_enc = cross_kq_mask->ne[0];
303
+ const int64_t n_tokens = ubatch->n_tokens;
304
+
305
+ GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
306
+ GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
307
+
308
+ float * data = (float *) cross_kq_mask->data;
309
+
310
+ for (int h = 0; h < 1; ++h) {
311
+ for (int i = 0; i < n_tokens; ++i) {
312
+ for (int j = 0; j < n_enc; ++j) {
313
+ float f = -INFINITY;
314
+
315
+ for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
316
+ const llama_seq_id seq_id = ubatch->seq_id[i][s];
317
+
318
+ if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
319
+ f = 0.0f;
320
+ }
321
+ }
322
+
323
+ data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
324
+ }
325
+ }
326
+
327
+ for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
328
+ for (int j = 0; j < n_enc; ++j) {
329
+ data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
330
+ }
331
+ }
332
+ }
333
+ }
334
+
335
+ void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
336
+ if (self_kq_mask) {
337
+ mctx->get_attn()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
338
+ }
339
+
340
+ const int64_t n_rs = mctx->get_recr()->get_n_rs();
341
+
342
+ if (s_copy) {
343
+ GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
344
+ int32_t * data = (int32_t *) s_copy->data;
345
+
346
+ // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
347
+ for (uint32_t i = 0; i < n_rs; ++i) {
348
+ data[i] = mctx->get_recr()->s_copy(i);
349
+ }
350
+ }
351
+ }
352
+
353
+ void llm_graph_input_one::set_input(const llama_ubatch *) {
354
+ GGML_ASSERT(one && ggml_nelements(one) == 1);
355
+ float f_one = 1.0f;
356
+ ggml_backend_tensor_set(one, &f_one, 0, sizeof(float));
357
+ }
358
+
359
+ //
360
+ // llm_graph_context
361
+ //
362
+
363
+ llm_graph_context::llm_graph_context(const llm_graph_params & params) :
364
+ arch (params.arch),
365
+ hparams (params.hparams),
366
+ cparams (params.cparams),
367
+ ubatch (params.ubatch),
368
+ n_embd (hparams.n_embd),
369
+ n_layer (hparams.n_layer),
370
+ n_rot (hparams.n_rot),
371
+ n_ctx (cparams.n_ctx),
372
+ n_head (hparams.n_head()),
373
+ n_head_kv (hparams.n_head_kv()),
374
+ n_embd_head_k (hparams.n_embd_head_k),
375
+ n_embd_k_gqa (hparams.n_embd_k_gqa()),
376
+ n_embd_head_v (hparams.n_embd_head_v),
377
+ n_embd_v_gqa (hparams.n_embd_v_gqa()),
378
+ n_expert (hparams.n_expert),
379
+ n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
380
+ freq_base (cparams.rope_freq_base),
381
+ freq_scale (cparams.rope_freq_scale),
382
+ ext_factor (cparams.yarn_ext_factor),
383
+ attn_factor (cparams.yarn_attn_factor),
384
+ beta_fast (cparams.yarn_beta_fast),
385
+ beta_slow (cparams.yarn_beta_slow),
386
+ norm_eps (hparams.f_norm_eps),
387
+ norm_rms_eps (hparams.f_norm_rms_eps),
388
+ n_tokens (ubatch.n_tokens),
389
+ n_outputs (params.n_outputs),
390
+ n_ctx_orig (cparams.n_ctx_orig_yarn),
391
+ pooling_type (cparams.pooling_type),
392
+ rope_type (hparams.rope_type),
393
+ ctx0 (params.ctx),
394
+ sched (params.sched),
395
+ backend_cpu (params.backend_cpu),
396
+ cvec (params.cvec),
397
+ loras (params.loras),
398
+ mctx (params.mctx),
399
+ cross (params.cross),
400
+ cb_func (params.cb),
401
+ res (std::make_unique<llm_graph_result>()) {
402
+ }
403
+
404
+ void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
405
+ if (cb_func) {
406
+ cb_func(ubatch, cur, name, il);
407
+ }
408
+ }
409
+
410
+ ggml_tensor * llm_graph_context::build_cvec(
411
+ ggml_tensor * cur,
412
+ int il) const {
413
+ return cvec->apply_to(ctx0, cur, il);
414
+ }
415
+
416
+ ggml_tensor * llm_graph_context::build_lora_mm(
417
+ ggml_tensor * w,
418
+ ggml_tensor * cur) const {
419
+ ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
420
+
421
+ for (const auto & lora : *loras) {
422
+ llama_adapter_lora_weight * lw = lora.first->get_weight(w);
423
+ if (lw == nullptr) {
424
+ continue;
425
+ }
426
+
427
+ const float adapter_scale = lora.second;
428
+ const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
429
+
430
+ ggml_tensor * ab_cur = ggml_mul_mat(
431
+ ctx0, lw->b,
432
+ ggml_mul_mat(ctx0, lw->a, cur)
433
+ );
434
+
435
+ ab_cur = ggml_scale(ctx0, ab_cur, scale);
436
+ res = ggml_add(ctx0, res, ab_cur);
437
+ }
438
+
439
+ return res;
440
+ }
441
+
442
+ ggml_tensor * llm_graph_context::build_lora_mm_id(
443
+ ggml_tensor * w, // ggml_tensor * as
444
+ ggml_tensor * cur, // ggml_tensor * b
445
+ ggml_tensor * ids) const {
446
+ ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
447
+ for (const auto & lora : *loras) {
448
+ llama_adapter_lora_weight * lw = lora.first->get_weight(w);
449
+ if (lw == nullptr) {
450
+ continue;
451
+ }
452
+
453
+ const float alpha = lora.first->alpha;
454
+ const float rank = (float) lw->b->ne[0];
455
+ const float scale = alpha ? lora.second * alpha / rank : lora.second;
456
+
457
+ ggml_tensor * ab_cur = ggml_mul_mat_id(
458
+ ctx0, lw->b,
459
+ ggml_mul_mat_id(ctx0, lw->a, cur, ids),
460
+ ids
461
+ );
462
+
463
+ ab_cur = ggml_scale(ctx0, ab_cur, scale);
464
+ res = ggml_add(ctx0, res, ab_cur);
465
+ }
466
+
467
+ return res;
468
+ }
469
+
470
+ ggml_tensor * llm_graph_context::build_norm(
471
+ ggml_tensor * cur,
472
+ ggml_tensor * mw,
473
+ ggml_tensor * mb,
474
+ llm_norm_type type,
475
+ int il) const {
476
+ switch (type) {
477
+ case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
478
+ case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
479
+ case LLM_NORM_GROUP:
480
+ {
481
+ cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
482
+ cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
483
+ cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
484
+ } break;
485
+ }
486
+
487
+ if (mw || mb) {
488
+ cb(cur, "norm", il);
489
+ }
490
+
491
+ if (mw) {
492
+ cur = ggml_mul(ctx0, cur, mw);
493
+ if (mb) {
494
+ cb(cur, "norm_w", il);
495
+ }
496
+ }
497
+
498
+ if (mb) {
499
+ cur = ggml_add(ctx0, cur, mb);
500
+ }
501
+
502
+ return cur;
503
+ }
504
+
505
+ ggml_tensor * llm_graph_context::build_ffn(
506
+ ggml_tensor * cur,
507
+ ggml_tensor * up,
508
+ ggml_tensor * up_b,
509
+ ggml_tensor * up_s,
510
+ ggml_tensor * gate,
511
+ ggml_tensor * gate_b,
512
+ ggml_tensor * gate_s,
513
+ ggml_tensor * down,
514
+ ggml_tensor * down_b,
515
+ ggml_tensor * down_s,
516
+ ggml_tensor * act_scales,
517
+ llm_ffn_op_type type_op,
518
+ llm_ffn_gate_type type_gate,
519
+ int il) const {
520
+ ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
521
+ cb(tmp, "ffn_up", il);
522
+
523
+ if (up_b) {
524
+ tmp = ggml_add(ctx0, tmp, up_b);
525
+ cb(tmp, "ffn_up_b", il);
526
+ }
527
+
528
+ if (up_s) {
529
+ tmp = ggml_mul(ctx0, tmp, up_s);
530
+ cb(tmp, "ffn_up_s", il);
531
+ }
532
+
533
+ if (gate) {
534
+ switch (type_gate) {
535
+ case LLM_FFN_SEQ:
536
+ {
537
+ cur = build_lora_mm(gate, tmp);
538
+ cb(cur, "ffn_gate", il);
539
+ } break;
540
+ case LLM_FFN_PAR:
541
+ {
542
+ cur = build_lora_mm(gate, cur);
543
+ cb(cur, "ffn_gate", il);
544
+ } break;
545
+ }
546
+
547
+ if (gate_b) {
548
+ cur = ggml_add(ctx0, cur, gate_b);
549
+ cb(cur, "ffn_gate_b", il);
550
+ }
551
+
552
+ if (gate_s) {
553
+ cur = ggml_mul(ctx0, cur, gate_s);
554
+ cb(cur, "ffn_gate_s", il);
555
+ }
556
+
557
+ } else {
558
+ cur = tmp;
559
+ }
560
+
561
+ switch (type_op) {
562
+ case LLM_FFN_SILU:
563
+ if (gate && type_gate == LLM_FFN_PAR) {
564
+ cur = ggml_swiglu_split(ctx0, cur, tmp);
565
+ cb(cur, "ffn_swiglu", il);
566
+ type_gate = LLM_FFN_SEQ;
567
+ } else {
568
+ cur = ggml_silu(ctx0, cur);
569
+ cb(cur, "ffn_silu", il);
570
+ } break;
571
+ case LLM_FFN_GELU:
572
+ if (gate && type_gate == LLM_FFN_PAR) {
573
+ cur = ggml_geglu_split(ctx0, cur, tmp);
574
+ cb(cur, "ffn_geglu", il);
575
+ type_gate = LLM_FFN_SEQ;
576
+ } else {
577
+ cur = ggml_gelu(ctx0, cur);
578
+ cb(cur, "ffn_gelu", il);
579
+ if (act_scales != NULL) {
580
+ cur = ggml_div(ctx0, cur, act_scales);
581
+ cb(cur, "ffn_act", il);
582
+ }
583
+ } break;
584
+ case LLM_FFN_RELU:
585
+ if (gate && type_gate == LLM_FFN_PAR) {
586
+ cur = ggml_reglu_split(ctx0, cur, tmp);
587
+ cb(cur, "ffn_reglu", il);
588
+ type_gate = LLM_FFN_SEQ;
589
+ } else {
590
+ cur = ggml_relu(ctx0, cur);
591
+ cb(cur, "ffn_relu", il);
592
+ } break;
593
+ case LLM_FFN_RELU_SQR:
594
+ {
595
+ cur = ggml_relu(ctx0, cur);
596
+ cb(cur, "ffn_relu", il);
597
+
598
+ cur = ggml_sqr(ctx0, cur);
599
+ cb(cur, "ffn_sqr(relu)", il);
600
+ } break;
601
+ case LLM_FFN_SWIGLU:
602
+ {
603
+ cur = ggml_swiglu(ctx0, cur);
604
+ cb(cur, "ffn_swiglu", il);
605
+ } break;
606
+ case LLM_FFN_GEGLU:
607
+ {
608
+ cur = ggml_geglu(ctx0, cur);
609
+ cb(cur, "ffn_geglu", il);
610
+ } break;
611
+ case LLM_FFN_REGLU:
612
+ {
613
+ cur = ggml_reglu(ctx0, cur);
614
+ cb(cur, "ffn_reglu", il);
615
+ } break;
616
+ }
617
+
618
+ if (gate && type_gate == LLM_FFN_PAR) {
619
+ cur = ggml_mul(ctx0, cur, tmp);
620
+ cb(cur, "ffn_gate_par", il);
621
+ }
622
+
623
+ if (down) {
624
+ cur = build_lora_mm(down, cur);
625
+ if (arch == LLM_ARCH_GLM4) {
626
+ // GLM4 seems to have numerical issues with half-precision accumulators
627
+ ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
628
+ }
629
+ }
630
+
631
+ if (down_b) {
632
+ cb(cur, "ffn_down", il);
633
+ }
634
+
635
+ if (down_b) {
636
+ cur = ggml_add(ctx0, cur, down_b);
637
+ }
638
+
639
+ if (down_s) {
640
+ cur = ggml_mul(ctx0, cur, down_s);
641
+ cb(cur, "ffn_down_s", il);
642
+ }
643
+
644
+ return cur;
645
+ }
646
+
647
+ ggml_tensor * llm_graph_context::build_moe_ffn(
648
+ ggml_tensor * cur,
649
+ ggml_tensor * gate_inp,
650
+ ggml_tensor * up_exps,
651
+ ggml_tensor * gate_exps,
652
+ ggml_tensor * down_exps,
653
+ ggml_tensor * exp_probs_b,
654
+ int64_t n_expert,
655
+ int64_t n_expert_used,
656
+ llm_ffn_op_type type_op,
657
+ bool norm_w,
658
+ bool scale_w,
659
+ float w_scale,
660
+ llama_expert_gating_func_type gating_op,
661
+ int il) const {
662
+ const int64_t n_embd = cur->ne[0];
663
+ const int64_t n_tokens = cur->ne[1];
664
+ const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
665
+
666
+ ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
667
+ cb(logits, "ffn_moe_logits", il);
668
+
669
+ ggml_tensor * probs = nullptr;
670
+ switch (gating_op) {
671
+ case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
672
+ {
673
+ probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
674
+ } break;
675
+ case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
676
+ {
677
+ probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
678
+ } break;
679
+ default:
680
+ GGML_ABORT("fatal error");
681
+ }
682
+ cb(probs, "ffn_moe_probs", il);
683
+
684
+ // add experts selection bias - introduced in DeepSeek V3
685
+ // leave probs unbiased as it's later used to get expert weights
686
+ ggml_tensor * selection_probs = probs;
687
+ if (exp_probs_b != nullptr) {
688
+ selection_probs = ggml_add(ctx0, probs, exp_probs_b);
689
+ cb(selection_probs, "ffn_moe_probs_biased", il);
690
+ }
691
+
692
+ // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
693
+ // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
694
+ if (arch == LLM_ARCH_LLAMA4) {
695
+ selection_probs = logits;
696
+ }
697
+
698
+ // select experts
699
+ ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
700
+ cb(selected_experts->src[0], "ffn_moe_argsort", il);
701
+ cb(selected_experts, "ffn_moe_topk", il);
702
+
703
+ ggml_tensor * weights = ggml_get_rows(ctx0,
704
+ ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
705
+ cb(weights, "ffn_moe_weights", il);
706
+
707
+ if (norm_w) {
708
+ weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
709
+
710
+ ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
711
+ cb(weights_sum, "ffn_moe_weights_sum", il);
712
+
713
+ weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
714
+ cb(weights, "ffn_moe_weights_norm", il);
715
+
716
+ weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
717
+ }
718
+ if (scale_w) {
719
+ weights = ggml_scale(ctx0, weights, w_scale);
720
+ cb(weights, "ffn_moe_weights_scaled", il);
721
+ }
722
+
723
+ cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
724
+
725
+ if (weight_before_ffn) {
726
+ // repeat cur to [n_embd, n_expert_used, n_tokens]
727
+ ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
728
+ cur = ggml_mul(ctx0, repeated, weights);
729
+ cb(cur, "ffn_moe_weighted", il);
730
+ }
731
+
732
+ ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
733
+ cb(up, "ffn_moe_up", il);
734
+
735
+ ggml_tensor * experts = nullptr;
736
+ if (gate_exps) {
737
+ cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
738
+ cb(cur, "ffn_moe_gate", il);
739
+ } else {
740
+ cur = up;
741
+ }
742
+
743
+ switch (type_op) {
744
+ case LLM_FFN_SILU:
745
+ if (gate_exps) {
746
+ cur = ggml_swiglu_split(ctx0, cur, up);
747
+ cb(cur, "ffn_moe_swiglu", il);
748
+ } else {
749
+ cur = ggml_silu(ctx0, cur);
750
+ cb(cur, "ffn_moe_silu", il);
751
+ } break;
752
+ case LLM_FFN_GELU:
753
+ if (gate_exps) {
754
+ cur = ggml_geglu_split(ctx0, cur, up);
755
+ cb(cur, "ffn_moe_geglu", il);
756
+ } else {
757
+ cur = ggml_gelu(ctx0, cur);
758
+ cb(cur, "ffn_moe_gelu", il);
759
+ } break;
760
+ default:
761
+ GGML_ABORT("fatal error");
762
+ }
763
+
764
+ experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
765
+ cb(experts, "ffn_moe_down", il);
766
+
767
+ if (!weight_before_ffn) {
768
+ experts = ggml_mul(ctx0, experts, weights);
769
+ cb(cur, "ffn_moe_weighted", il);
770
+ }
771
+
772
+ // aggregate experts
773
+ ggml_tensor * moe_out = nullptr;
774
+ for (int i = 0; i < n_expert_used; ++i) {
775
+ ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
776
+ experts->nb[2], i*experts->nb[1]);
777
+
778
+ if (i == 0) {
779
+ moe_out = cur_expert;
780
+ } else {
781
+ moe_out = ggml_add(ctx0, moe_out, cur_expert);
782
+ }
783
+ }
784
+
785
+ if (n_expert_used == 1) {
786
+ // avoid returning a non-contiguous tensor
787
+ moe_out = ggml_cont(ctx0, moe_out);
788
+ }
789
+
790
+ cb(moe_out, "ffn_moe_out", il);
791
+
792
+ return moe_out;
793
+ }
794
+
795
+ // input embeddings with optional lora
796
+ ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
797
+ const int64_t n_embd = hparams.n_embd;
798
+
799
+ auto inp = std::make_unique<llm_graph_input_embd>();
800
+
801
+ ggml_tensor * cur = nullptr;
802
+
803
+ if (ubatch.token) {
804
+ inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
805
+ //cb(inp->tokens, "inp_tokens", -1);
806
+ ggml_set_input(inp->tokens);
807
+ res->t_tokens = inp->tokens;
808
+
809
+ cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
810
+
811
+ // apply lora for embedding tokens if needed
812
+ for (const auto & lora : *loras) {
813
+ llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
814
+ if (lw == nullptr) {
815
+ continue;
816
+ }
817
+
818
+ const float adapter_scale = lora.second;
819
+ const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
820
+
821
+ ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
822
+ ctx0, lw->b, // non-transposed lora_b
823
+ ggml_get_rows(ctx0, lw->a, inp->tokens)
824
+ ), scale);
825
+
826
+ cur = ggml_add(ctx0, cur, inpL_delta);
827
+ }
828
+ } else {
829
+ inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
830
+ ggml_set_input(inp->embd);
831
+
832
+ cur = inp->embd;
833
+ }
834
+
835
+ // For Granite architecture
836
+ if (hparams.f_embedding_scale != 0.0f) {
837
+ cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
838
+ }
839
+
840
+ cb(cur, "inp_embd", -1);
841
+
842
+ res->add_input(std::move(inp));
843
+
844
+ return cur;
845
+ }
846
+
847
+ ggml_tensor * llm_graph_context::build_inp_pos() const {
848
+ auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
849
+
850
+ auto & cur = inp->pos;
851
+
852
+ cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
853
+ ggml_set_input(cur);
854
+
855
+ res->add_input(std::move(inp));
856
+
857
+ return cur;
858
+ }
859
+
860
+ ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
861
+ auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
862
+
863
+ auto & cur = inp->attn_scale;
864
+
865
+ // this need to be 1x1xN for broadcasting
866
+ cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
867
+ ggml_set_input(cur);
868
+
869
+ res->add_input(std::move(inp));
870
+
871
+ return cur;
872
+ }
873
+
874
+ ggml_tensor * llm_graph_context::build_inp_out_ids() const {
875
+ // note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
876
+ // but this would make the graph topology depend on the number of output tokens, which can interere with
877
+ // features that require constant topology such as pipline parallelism
878
+ // ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
879
+ //if (n_outputs < n_tokens) {
880
+ // return nullptr;
881
+ //}
882
+
883
+ auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
884
+
885
+ auto & cur = inp->out_ids;
886
+
887
+ cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
888
+ ggml_set_input(cur);
889
+
890
+ res->add_input(std::move(inp));
891
+
892
+ return cur;
893
+ }
894
+
895
+ ggml_tensor * llm_graph_context::build_inp_mean() const {
896
+ auto inp = std::make_unique<llm_graph_input_mean>(cparams);
897
+
898
+ auto & cur = inp->mean;
899
+
900
+ cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
901
+ ggml_set_input(cur);
902
+
903
+ res->add_input(std::move(inp));
904
+
905
+ return cur;
906
+ }
907
+
908
+ ggml_tensor * llm_graph_context::build_inp_cls() const {
909
+ auto inp = std::make_unique<llm_graph_input_cls>(cparams);
910
+
911
+ auto & cur = inp->cls;
912
+
913
+ cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
914
+ ggml_set_input(cur);
915
+
916
+ res->add_input(std::move(inp));
917
+
918
+ return cur;
919
+ }
920
+
921
+ ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
922
+ auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
923
+
924
+ auto & cur = inp->cross_embd;
925
+
926
+ // if we have the output embeddings from the encoder, use them directly
927
+ // TODO: needs more work to be correct, for now just use the tensor shape
928
+ //if (cross->t_embd) {
929
+ // cur = ggml_view_tensor(ctx0, cross->t_embd);
930
+
931
+ // return cur;
932
+ //}
933
+
934
+ const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
935
+ const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
936
+
937
+ cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
938
+ ggml_set_input(cur);
939
+
940
+ res->add_input(std::move(inp));
941
+
942
+ return cur;
943
+ }
944
+
945
+ ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
946
+ auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
947
+
948
+ auto & cur = inp->pos_bucket;
949
+
950
+ cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
951
+ ggml_set_input(cur);
952
+
953
+ res->add_input(std::move(inp));
954
+
955
+ return cur;
956
+ }
957
+
958
+ ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
959
+ const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
960
+
961
+ auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
962
+
963
+ const auto n_kv = mctx_cur->get_n_kv();
964
+
965
+ auto & cur = inp->pos_bucket;
966
+
967
+ cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
968
+ ggml_set_input(cur);
969
+
970
+ res->add_input(std::move(inp));
971
+
972
+ return cur;
973
+ }
974
+
975
+ ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
976
+ ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
977
+ cb(pos_bucket_1d, "pos_bucket_1d", -1);
978
+
979
+ ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
980
+
981
+ pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
982
+ pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
983
+ pos_bias = ggml_cont (ctx0, pos_bias);
984
+
985
+ cb(pos_bias, "pos_bias", -1);
986
+
987
+ return pos_bias;
988
+ }
989
+
990
+ llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
991
+ const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
992
+
993
+ auto inp = std::make_unique<llm_graph_input_mem_hybrid>(hparams, cparams, mctx_cur);
994
+
995
+ {
996
+ GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Hybrid recurrent is not supported with SWA attention layers");
997
+
998
+ const auto n_kv = inp->mctx->get_attn()->get_n_kv();
999
+
1000
+ inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
1001
+ //cb(inp->self_kq_mask, "KQ_mask", -1);
1002
+ ggml_set_input(inp->self_kq_mask);
1003
+
1004
+ inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
1005
+ }
1006
+
1007
+ {
1008
+ const auto n_rs = mctx_cur->get_recr()->get_n_rs();
1009
+
1010
+ inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
1011
+ ggml_set_input(inp->s_copy);
1012
+ }
1013
+
1014
+ return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
1015
+ }
1016
+
1017
+ ggml_tensor * llm_graph_context::build_attn_mha(
1018
+ ggml_cgraph * gf,
1019
+ ggml_tensor * q,
1020
+ ggml_tensor * k,
1021
+ ggml_tensor * v,
1022
+ ggml_tensor * kq_b,
1023
+ ggml_tensor * kq_mask,
1024
+ ggml_tensor * v_mla,
1025
+ float kq_scale) const {
1026
+ const bool v_trans = v->nb[1] > v->nb[2];
1027
+
1028
+ q = ggml_permute(ctx0, q, 0, 2, 1, 3);
1029
+ k = ggml_permute(ctx0, k, 0, 2, 1, 3);
1030
+ v = ggml_permute(ctx0, v, 0, 2, 1, 3);
1031
+
1032
+ const auto n_tokens = q->ne[1];
1033
+ const auto n_head = q->ne[2];
1034
+ const auto n_kv = k->ne[1];
1035
+
1036
+ ggml_tensor * cur;
1037
+
1038
+ // TODO: replace hardcoded padding with ggml-provided padding
1039
+ if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
1040
+ GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
1041
+
1042
+ if (v_trans) {
1043
+ v = ggml_transpose(ctx0, v);
1044
+ }
1045
+
1046
+ // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
1047
+ if (k->type == GGML_TYPE_F32) {
1048
+ k = ggml_cast(ctx0, k, GGML_TYPE_F16);
1049
+ }
1050
+
1051
+ if (v->type == GGML_TYPE_F32) {
1052
+ v = ggml_cast(ctx0, v, GGML_TYPE_F16);
1053
+ }
1054
+
1055
+ cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
1056
+ hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
1057
+
1058
+ ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
1059
+
1060
+ if (v_mla) {
1061
+ #if 0
1062
+ // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
1063
+ // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
1064
+ cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
1065
+ cur = ggml_mul_mat(ctx0, v_mla, cur);
1066
+ #else
1067
+ // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
1068
+ // The permutations are noops and only change how the tensor data is interpreted.
1069
+ cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
1070
+ cur = ggml_mul_mat(ctx0, v_mla, cur);
1071
+ cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
1072
+ cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
1073
+ #endif
1074
+ }
1075
+
1076
+ cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
1077
+ } else {
1078
+ ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
1079
+
1080
+ // note: this op tends to require high floating point range
1081
+ // while for some models F16 is enough, for others it is not, so we default to F32 here
1082
+ ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
1083
+
1084
+ if (arch == LLM_ARCH_GROK) {
1085
+ // need to do the following:
1086
+ // multiply by attn_output_multiplyer of 0.08838834764831845
1087
+ // and then :
1088
+ // kq = 30 * tanh(kq / 30)
1089
+ // before the softmax below
1090
+
1091
+ kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
1092
+ kq = ggml_scale(ctx0, kq, 30);
1093
+ }
1094
+
1095
+ if (hparams.attn_soft_cap) {
1096
+ kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
1097
+ kq = ggml_tanh (ctx0, kq);
1098
+ kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
1099
+ }
1100
+
1101
+ if (kq_b) {
1102
+ kq = ggml_add(ctx0, kq, kq_b);
1103
+ }
1104
+
1105
+ kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
1106
+
1107
+ if (!v_trans) {
1108
+ // note: avoid this branch
1109
+ v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
1110
+ }
1111
+
1112
+ ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
1113
+
1114
+ // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
1115
+ if (v_mla) {
1116
+ kqv = ggml_mul_mat(ctx0, v_mla, kqv);
1117
+ }
1118
+
1119
+ cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
1120
+
1121
+ cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
1122
+
1123
+ if (!cparams.offload_kqv) {
1124
+ // all nodes between the KV store and the attention output are run on the CPU
1125
+ ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
1126
+ }
1127
+ }
1128
+
1129
+ ggml_build_forward_expand(gf, cur);
1130
+
1131
+ return cur;
1132
+ }
1133
+
1134
+ llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
1135
+ auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
1136
+
1137
+ // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
1138
+ inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
1139
+ //cb(inp_kq_mask, "KQ_mask", -1);
1140
+ ggml_set_input(inp->kq_mask);
1141
+
1142
+ inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
1143
+
1144
+ return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
1145
+ }
1146
+
1147
+ ggml_tensor * llm_graph_context::build_attn(
1148
+ llm_graph_input_attn_no_cache * inp,
1149
+ ggml_cgraph * gf,
1150
+ ggml_tensor * wo,
1151
+ ggml_tensor * wo_b,
1152
+ ggml_tensor * q_cur,
1153
+ ggml_tensor * k_cur,
1154
+ ggml_tensor * v_cur,
1155
+ ggml_tensor * kq_b,
1156
+ ggml_tensor * v_mla,
1157
+ float kq_scale,
1158
+ int il) const {
1159
+ GGML_UNUSED(n_tokens);
1160
+
1161
+ // these nodes are added to the graph together so that they are not reordered
1162
+ // by doing so, the number of splits in the graph is reduced
1163
+ ggml_build_forward_expand(gf, q_cur);
1164
+ ggml_build_forward_expand(gf, k_cur);
1165
+ ggml_build_forward_expand(gf, v_cur);
1166
+
1167
+ const auto & kq_mask = inp->get_kq_mask();
1168
+
1169
+ ggml_tensor * q = q_cur;
1170
+ ggml_tensor * k = k_cur;
1171
+ ggml_tensor * v = v_cur;
1172
+
1173
+ ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
1174
+ cb(cur, "kqv_out", il);
1175
+
1176
+ if (wo) {
1177
+ cur = build_lora_mm(wo, cur);
1178
+ }
1179
+
1180
+ if (wo_b) {
1181
+ //cb(cur, "kqv_wo", il);
1182
+ }
1183
+
1184
+ if (wo_b) {
1185
+ cur = ggml_add(ctx0, cur, wo_b);
1186
+ }
1187
+
1188
+ return cur;
1189
+ }
1190
+
1191
+ llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
1192
+ const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
1193
+
1194
+ auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, mctx_cur);
1195
+
1196
+ {
1197
+ GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA");
1198
+
1199
+ const auto n_kv = mctx_cur->get_n_kv();
1200
+
1201
+ inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
1202
+ //cb(inp->self_kq_mask, "KQ_mask", -1);
1203
+ ggml_set_input(inp->self_kq_mask);
1204
+
1205
+ inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
1206
+ }
1207
+
1208
+ return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
1209
+ }
1210
+
1211
+ ggml_tensor * llm_graph_context::build_attn(
1212
+ llm_graph_input_attn_kv_unified * inp,
1213
+ ggml_cgraph * gf,
1214
+ ggml_tensor * wo,
1215
+ ggml_tensor * wo_b,
1216
+ ggml_tensor * q_cur,
1217
+ ggml_tensor * k_cur,
1218
+ ggml_tensor * v_cur,
1219
+ ggml_tensor * kq_b,
1220
+ ggml_tensor * v_mla,
1221
+ float kq_scale,
1222
+ int il) const {
1223
+ // these nodes are added to the graph together so that they are not reordered
1224
+ // by doing so, the number of splits in the graph is reduced
1225
+ ggml_build_forward_expand(gf, q_cur);
1226
+ ggml_build_forward_expand(gf, k_cur);
1227
+ ggml_build_forward_expand(gf, v_cur);
1228
+
1229
+ const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
1230
+
1231
+ // store to KV cache
1232
+ {
1233
+ ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
1234
+ ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
1235
+ }
1236
+
1237
+ const auto & kq_mask = inp->get_kq_mask();
1238
+
1239
+ ggml_tensor * q = q_cur;
1240
+ ggml_tensor * k = mctx_cur->get_k(ctx0, il);
1241
+ ggml_tensor * v = mctx_cur->get_v(ctx0, il);
1242
+
1243
+ ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
1244
+ cb(cur, "kqv_out", il);
1245
+
1246
+ if (wo) {
1247
+ cur = build_lora_mm(wo, cur);
1248
+ if (arch == LLM_ARCH_GLM4) {
1249
+ // GLM4 seems to have numerical issues with half-precision accumulators
1250
+ ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
1251
+ }
1252
+ }
1253
+
1254
+ if (wo_b) {
1255
+ cur = ggml_add(ctx0, cur, wo_b);
1256
+ }
1257
+
1258
+ return cur;
1259
+ }
1260
+
1261
+ ggml_tensor * llm_graph_context::build_attn(
1262
+ llm_graph_input_attn_kv_unified_iswa * inp,
1263
+ ggml_cgraph * gf,
1264
+ ggml_tensor * wo,
1265
+ ggml_tensor * wo_b,
1266
+ ggml_tensor * q_cur,
1267
+ ggml_tensor * k_cur,
1268
+ ggml_tensor * v_cur,
1269
+ ggml_tensor * kq_b,
1270
+ ggml_tensor * v_mla,
1271
+ float kq_scale,
1272
+ int il) const {
1273
+ // these nodes are added to the graph together so that they are not reordered
1274
+ // by doing so, the number of splits in the graph is reduced
1275
+ ggml_build_forward_expand(gf, q_cur);
1276
+
1277
+ if (k_cur) {
1278
+ ggml_build_forward_expand(gf, k_cur);
1279
+ }
1280
+
1281
+ if (v_cur) {
1282
+ ggml_build_forward_expand(gf, v_cur);
1283
+ }
1284
+
1285
+ const auto * mctx_iswa = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
1286
+
1287
+ const bool is_swa = hparams.is_swa(il);
1288
+
1289
+ const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();
1290
+
1291
+ // optionally store to KV cache
1292
+ if (k_cur) {
1293
+ ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
1294
+ }
1295
+
1296
+ if (v_cur) {
1297
+ ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
1298
+ }
1299
+
1300
+ const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
1301
+
1302
+ ggml_tensor * q = q_cur;
1303
+ ggml_tensor * k = mctx_cur->get_k(ctx0, il);
1304
+ ggml_tensor * v = mctx_cur->get_v(ctx0, il);
1305
+
1306
+ ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
1307
+ cb(cur, "kqv_out", il);
1308
+
1309
+ if (wo) {
1310
+ cur = build_lora_mm(wo, cur);
1311
+ }
1312
+
1313
+ if (wo_b) {
1314
+ //cb(cur, "kqv_wo", il);
1315
+ }
1316
+
1317
+ if (wo_b) {
1318
+ cur = ggml_add(ctx0, cur, wo_b);
1319
+ }
1320
+
1321
+ return cur;
1322
+ }
1323
+
1324
+ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
1325
+ auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
1326
+
1327
+ const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
1328
+
1329
+ inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
1330
+ ggml_set_input(inp->cross_kq_mask);
1331
+
1332
+ inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
1333
+
1334
+ return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
1335
+ }
1336
+
1337
+ ggml_tensor * llm_graph_context::build_attn(
1338
+ llm_graph_input_attn_cross * inp,
1339
+ ggml_cgraph * gf,
1340
+ ggml_tensor * wo,
1341
+ ggml_tensor * wo_b,
1342
+ ggml_tensor * q_cur,
1343
+ ggml_tensor * k_cur,
1344
+ ggml_tensor * v_cur,
1345
+ ggml_tensor * kq_b,
1346
+ ggml_tensor * v_mla,
1347
+ float kq_scale,
1348
+ int il) const {
1349
+ // these nodes are added to the graph together so that they are not reordered
1350
+ // by doing so, the number of splits in the graph is reduced
1351
+ ggml_build_forward_expand(gf, q_cur);
1352
+ ggml_build_forward_expand(gf, k_cur);
1353
+ ggml_build_forward_expand(gf, v_cur);
1354
+
1355
+ const auto & kq_mask = inp->get_kq_mask_cross();
1356
+
1357
+ ggml_tensor * q = q_cur;
1358
+ ggml_tensor * k = k_cur;
1359
+ ggml_tensor * v = v_cur;
1360
+
1361
+ ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
1362
+ cb(cur, "kqv_out", il);
1363
+
1364
+ if (wo) {
1365
+ cur = build_lora_mm(wo, cur);
1366
+ }
1367
+
1368
+ if (wo_b) {
1369
+ //cb(cur, "kqv_wo", il);
1370
+ }
1371
+
1372
+ if (wo_b) {
1373
+ cur = ggml_add(ctx0, cur, wo_b);
1374
+ }
1375
+
1376
+ return cur;
1377
+ }
1378
+
1379
+ ggml_tensor * llm_graph_context::build_attn(
1380
+ llm_graph_input_mem_hybrid * inp,
1381
+ ggml_cgraph * gf,
1382
+ ggml_tensor * wo,
1383
+ ggml_tensor * wo_b,
1384
+ ggml_tensor * q_cur,
1385
+ ggml_tensor * k_cur,
1386
+ ggml_tensor * v_cur,
1387
+ ggml_tensor * kq_b,
1388
+ ggml_tensor * v_mla,
1389
+ float kq_scale,
1390
+ int il) const {
1391
+ // these nodes are added to the graph together so that they are not reordered
1392
+ // by doing so, the number of splits in the graph is reduced
1393
+ ggml_build_forward_expand(gf, q_cur);
1394
+ ggml_build_forward_expand(gf, k_cur);
1395
+ ggml_build_forward_expand(gf, v_cur);
1396
+
1397
+ const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_attn();
1398
+
1399
+ // store to KV cache
1400
+ {
1401
+ ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
1402
+ ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
1403
+ }
1404
+
1405
+ const auto & kq_mask = inp->get_kq_mask();
1406
+
1407
+ ggml_tensor * q = q_cur;
1408
+ ggml_tensor * k = mctx_cur->get_k(ctx0, il);
1409
+ ggml_tensor * v = mctx_cur->get_v(ctx0, il);
1410
+
1411
+ ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
1412
+ cb(cur, "kqv_out", il);
1413
+
1414
+ if (wo) {
1415
+ cur = build_lora_mm(wo, cur);
1416
+ if (arch == LLM_ARCH_GLM4) {
1417
+ // GLM4 seems to have numerical issues with half-precision accumulators
1418
+ ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
1419
+ }
1420
+ }
1421
+
1422
+ if (wo_b) {
1423
+ cur = ggml_add(ctx0, cur, wo_b);
1424
+ }
1425
+
1426
+ return cur;
1427
+ }
1428
+
1429
+ llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const {
1430
+ const auto * mctx_cur = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
1431
+
1432
+ auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, mctx_cur);
1433
+
1434
+ {
1435
+ const auto n_kv = mctx_cur->get_base()->get_n_kv();
1436
+
1437
+ inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
1438
+ //cb(inp->self_kq_mask, "KQ_mask", -1);
1439
+ ggml_set_input(inp->self_kq_mask);
1440
+
1441
+ inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
1442
+ }
1443
+
1444
+ {
1445
+ GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA");
1446
+
1447
+ const auto n_kv = mctx_cur->get_swa()->get_n_kv();
1448
+
1449
+ inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
1450
+ //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
1451
+ ggml_set_input(inp->self_kq_mask_swa);
1452
+
1453
+ inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
1454
+ }
1455
+
1456
+ return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp));
1457
+ }
1458
+
1459
+ ggml_tensor * llm_graph_context::build_rs(
1460
+ ggml_cgraph * gf,
1461
+ ggml_tensor * s,
1462
+ ggml_tensor * state_copy,
1463
+ int32_t state_size,
1464
+ int32_t n_seqs,
1465
+ uint32_t n_kv,
1466
+ uint32_t kv_head,
1467
+ uint32_t kv_size,
1468
+ int32_t rs_zero,
1469
+ bool avoid_copies) const {
1470
+
1471
+ ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_size);
1472
+
1473
+ // Clear a single state which will then be copied to the other cleared states.
1474
+ // Note that this is a no-op when the view is zero-sized.
1475
+ ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
1476
+ ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
1477
+
1478
+ ggml_tensor * output_states;
1479
+
1480
+ if (!avoid_copies) {
1481
+ // copy states
1482
+ // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
1483
+ // {state_size, kv_size} -> {state_size, n_seqs}
1484
+ output_states = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_seqs, 0));
1485
+ ggml_build_forward_expand(gf, output_states);
1486
+ } else {
1487
+ // FIXME: make the gathering operation happen before the copy below
1488
+ // (maybe with an optional lambda function passed as a parameter instead of `avoid_copies`?)
1489
+ output_states = states;
1490
+ }
1491
+
1492
+ // copy extra states which won't be changed further (between n_seqs and n_kv)
1493
+ ggml_tensor * states_extra = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_kv - n_seqs, n_seqs*state_copy->nb[0]));
1494
+ ggml_build_forward_expand(gf,
1495
+ ggml_cpy(ctx0,
1496
+ states_extra,
1497
+ ggml_view_1d(ctx0, s, state_size*(n_kv - n_seqs), (kv_head + n_seqs)*state_size*ggml_element_size(s))));
1498
+
1499
+ return output_states;
1500
+ }
1501
+
1502
+ llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
1503
+ const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1504
+
1505
+ auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
1506
+
1507
+ const auto n_rs = mctx_cur->get_n_rs();
1508
+
1509
+ inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
1510
+ ggml_set_input(inp->s_copy);
1511
+
1512
+ return (llm_graph_input_rs *) res->add_input(std::move(inp));
1513
+ }
1514
+
1515
+ ggml_tensor * llm_graph_context::build_rs(
1516
+ llm_graph_input_rs * inp,
1517
+ ggml_cgraph * gf,
1518
+ ggml_tensor * s,
1519
+ int32_t state_size,
1520
+ int32_t n_seqs,
1521
+ bool avoid_copies) const {
1522
+ const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1523
+
1524
+ return build_rs(gf, s, inp->s_copy, state_size, n_seqs, mctx_cur->get_n_rs(), mctx_cur->get_head(), mctx_cur->get_size(), mctx_cur->get_rs_z(), avoid_copies);
1525
+ }
1526
+
1527
+ ggml_tensor * llm_graph_context::build_rs(
1528
+ llm_graph_input_mem_hybrid * inp,
1529
+ ggml_cgraph * gf,
1530
+ ggml_tensor * s,
1531
+ int32_t state_size,
1532
+ int32_t n_seqs,
1533
+ bool avoid_copies) const {
1534
+ const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
1535
+
1536
+ return build_rs(gf, s, inp->s_copy, state_size, n_seqs, mctx_cur->get_n_rs(), mctx_cur->get_head(), mctx_cur->get_size(), mctx_cur->get_rs_z(), avoid_copies);
1537
+ }
1538
+
1539
+ ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
1540
+ llm_graph_input_rs * inp,
1541
+ ggml_cgraph * gf,
1542
+ const llama_ubatch & ubatch,
1543
+ int il) const {
1544
+ const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1545
+
1546
+ const auto token_shift_count = hparams.token_shift_count;
1547
+
1548
+ const int64_t n_seqs = ubatch.n_seqs;
1549
+
1550
+ ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
1551
+
1552
+ ggml_tensor * token_shift = build_rs(
1553
+ inp, gf, token_shift_all,
1554
+ hparams.n_embd_r(), n_seqs);
1555
+
1556
+ token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
1557
+
1558
+ return token_shift;
1559
+ }
1560
+
1561
+ ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
1562
+ ggml_tensor * token_shift,
1563
+ const llama_ubatch & ubatch,
1564
+ int il) const {
1565
+ const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
1566
+
1567
+ const auto token_shift_count = hparams.token_shift_count;
1568
+ const auto n_embd = hparams.n_embd;
1569
+
1570
+ const int64_t n_seqs = ubatch.n_seqs;
1571
+
1572
+ const auto kv_head = mctx_cur->get_head();
1573
+
1574
+ return ggml_cpy(
1575
+ ctx0,
1576
+ ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
1577
+ ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
1578
+ );
1579
+ }
1580
+
1581
+ void llm_graph_context::build_pooling(
1582
+ ggml_cgraph * gf,
1583
+ ggml_tensor * cls,
1584
+ ggml_tensor * cls_b,
1585
+ ggml_tensor * cls_out,
1586
+ ggml_tensor * cls_out_b) const {
1587
+ if (!cparams.embeddings) {
1588
+ return;
1589
+ }
1590
+
1591
+ ggml_tensor * inp = res->t_embd;
1592
+
1593
+ //// find result_norm tensor for input
1594
+ //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
1595
+ // inp = ggml_graph_node(gf, i);
1596
+ // if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
1597
+ // break;
1598
+ // }
1599
+
1600
+ // inp = nullptr;
1601
+ //}
1602
+
1603
+ GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
1604
+
1605
+ ggml_tensor * cur;
1606
+
1607
+ switch (pooling_type) {
1608
+ case LLAMA_POOLING_TYPE_NONE:
1609
+ {
1610
+ cur = inp;
1611
+ } break;
1612
+ case LLAMA_POOLING_TYPE_MEAN:
1613
+ {
1614
+ ggml_tensor * inp_mean = build_inp_mean();
1615
+ cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
1616
+ } break;
1617
+ case LLAMA_POOLING_TYPE_CLS:
1618
+ case LLAMA_POOLING_TYPE_LAST:
1619
+ {
1620
+ ggml_tensor * inp_cls = build_inp_cls();
1621
+ cur = ggml_get_rows(ctx0, inp, inp_cls);
1622
+ } break;
1623
+ case LLAMA_POOLING_TYPE_RANK:
1624
+ {
1625
+ ggml_tensor * inp_cls = build_inp_cls();
1626
+ inp = ggml_get_rows(ctx0, inp, inp_cls);
1627
+
1628
+ if (cls) {
1629
+ // classification head
1630
+ // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
1631
+ cur = ggml_mul_mat(ctx0, cls, inp);
1632
+ if (cls_b) {
1633
+ cur = ggml_add(ctx0, cur, cls_b);
1634
+ }
1635
+ cur = ggml_tanh(ctx0, cur);
1636
+
1637
+ // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
1638
+ // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
1639
+ if (cls_out) {
1640
+ cur = ggml_mul_mat(ctx0, cls_out, cur);
1641
+ if (cls_out_b) {
1642
+ cur = ggml_add(ctx0, cur, cls_out_b);
1643
+ }
1644
+ }
1645
+ } else if (cls_out) {
1646
+ // Single layer classification head (direct projection)
1647
+ // https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
1648
+ cur = ggml_mul_mat(ctx0, cls_out, inp);
1649
+ if (cls_out_b) {
1650
+ cur = ggml_add(ctx0, cur, cls_out_b);
1651
+ }
1652
+ } else {
1653
+ GGML_ABORT("RANK pooling requires either cls+cls_b or cls_out+cls_out_b");
1654
+ }
1655
+ } break;
1656
+ default:
1657
+ {
1658
+ GGML_ABORT("unknown pooling type");
1659
+ }
1660
+ }
1661
+
1662
+ cb(cur, "result_embd_pooled", -1);
1663
+ res->t_embd_pooled = cur;
1664
+
1665
+ ggml_build_forward_expand(gf, cur);
1666
+ }
1667
+
1668
+ int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
1669
+ // TODO move to hparams if a T5 variant appears that uses a different value
1670
+ const int64_t max_distance = 128;
1671
+
1672
+ if (bidirectional) {
1673
+ n_buckets >>= 1;
1674
+ }
1675
+
1676
+ const int64_t max_exact = n_buckets >> 1;
1677
+
1678
+ int32_t relative_position = x - y;
1679
+ int32_t relative_bucket = 0;
1680
+
1681
+ if (bidirectional) {
1682
+ relative_bucket += (relative_position > 0) * n_buckets;
1683
+ relative_position = abs(relative_position);
1684
+ } else {
1685
+ relative_position = -std::min<int32_t>(relative_position, 0);
1686
+ }
1687
+
1688
+ int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
1689
+ relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
1690
+ relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
1691
+
1692
+ return relative_bucket;
1693
+ }