whispercpp 1.3.1 → 1.3.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.gitignore +7 -3
- data/README.md +161 -43
- data/Rakefile +45 -13
- data/ext/.gitignore +4 -8
- data/ext/dependencies.rb +73 -0
- data/ext/extconf.rb +21 -198
- data/ext/options.rb +85 -0
- data/ext/ruby_whisper.c +177 -0
- data/ext/ruby_whisper.h +17 -2
- data/ext/ruby_whisper_context.c +672 -0
- data/ext/ruby_whisper_error.c +52 -0
- data/ext/ruby_whisper_model.c +232 -0
- data/ext/ruby_whisper_params.c +1303 -0
- data/ext/ruby_whisper_segment.c +220 -0
- data/ext/ruby_whisper_transcribe.cpp +93 -0
- data/ext/ruby_whisper_vad_params.c +288 -0
- data/ext/sources/CMakeGraphVizOptions.cmake +8 -0
- data/ext/sources/CMakeLists.txt +255 -0
- data/ext/sources/bindings/javascript/CMakeLists.txt +41 -0
- data/ext/sources/bindings/javascript/emscripten.cpp +93 -0
- data/ext/sources/bindings/javascript/libwhisper.worker.js +1 -0
- data/ext/sources/bindings/javascript/package-tmpl.json +26 -0
- data/ext/sources/bindings/javascript/package.json +26 -0
- data/ext/sources/bindings/javascript/whisper.js +19 -0
- data/ext/sources/build-xcframework.sh +547 -0
- data/ext/sources/cmake/DefaultTargetOptions.cmake +16 -0
- data/ext/sources/cmake/FindFFmpeg.cmake +163 -0
- data/ext/sources/cmake/build-info.cmake +60 -0
- data/ext/sources/cmake/git-vars.cmake +22 -0
- data/ext/sources/cmake/whisper-config.cmake.in +65 -0
- data/ext/sources/cmake/whisper.pc.in +10 -0
- data/ext/sources/examples/CMakeLists.txt +124 -0
- data/ext/sources/examples/addon.node/CMakeLists.txt +31 -0
- data/ext/sources/examples/addon.node/__test__/whisper.spec.js +133 -0
- data/ext/sources/examples/addon.node/addon.cpp +557 -0
- data/ext/sources/examples/addon.node/index.js +57 -0
- data/ext/sources/examples/addon.node/package.json +16 -0
- data/ext/sources/examples/addon.node/vad-example.js +132 -0
- data/ext/sources/examples/bench/CMakeLists.txt +8 -0
- data/ext/sources/examples/bench/bench.cpp +176 -0
- data/ext/sources/examples/bench.wasm/CMakeLists.txt +49 -0
- data/ext/sources/examples/bench.wasm/emscripten.cpp +87 -0
- data/ext/sources/examples/bench.wasm/index-tmpl.html +284 -0
- data/ext/sources/examples/cli/CMakeLists.txt +8 -0
- data/ext/sources/examples/cli/cli.cpp +1295 -0
- data/ext/sources/examples/coi-serviceworker.js +146 -0
- data/ext/sources/examples/command/CMakeLists.txt +10 -0
- data/ext/sources/examples/command/command.cpp +800 -0
- data/ext/sources/examples/command/commands.txt +9 -0
- data/ext/sources/examples/command.wasm/CMakeLists.txt +50 -0
- data/ext/sources/examples/command.wasm/emscripten.cpp +327 -0
- data/ext/sources/examples/command.wasm/index-tmpl.html +414 -0
- data/ext/sources/examples/common-ggml.cpp +238 -0
- data/ext/sources/examples/common-ggml.h +18 -0
- data/ext/sources/examples/common-sdl.cpp +227 -0
- data/ext/sources/examples/common-sdl.h +49 -0
- data/ext/sources/examples/common-whisper.cpp +175 -0
- data/ext/sources/examples/common-whisper.h +24 -0
- data/ext/sources/examples/common.cpp +675 -0
- data/ext/sources/examples/common.h +322 -0
- data/ext/sources/examples/deprecation-warning/CMakeLists.txt +6 -0
- data/ext/sources/examples/deprecation-warning/deprecation-warning.cpp +38 -0
- data/ext/sources/examples/ffmpeg-transcode.cpp +368 -0
- data/ext/sources/examples/generate-karaoke.sh +57 -0
- data/ext/sources/examples/grammar-parser.cpp +423 -0
- data/ext/sources/examples/grammar-parser.h +29 -0
- data/ext/sources/examples/helpers.js +191 -0
- data/ext/sources/examples/json.hpp +24596 -0
- data/ext/sources/examples/livestream.sh +112 -0
- data/ext/sources/examples/lsp/CMakeLists.txt +9 -0
- data/ext/sources/examples/lsp/lsp.cpp +469 -0
- data/ext/sources/examples/lsp/whisper.vim +362 -0
- data/ext/sources/examples/miniaudio.h +93468 -0
- data/ext/sources/examples/python/test_whisper_processor.py +7 -0
- data/ext/sources/examples/python/whisper_processor.py +54 -0
- data/ext/sources/examples/quantize/CMakeLists.txt +6 -0
- data/ext/sources/examples/quantize/quantize.cpp +226 -0
- data/ext/sources/examples/server/CMakeLists.txt +15 -0
- data/ext/sources/examples/server/bench.js +29 -0
- data/ext/sources/examples/server/httplib.h +10497 -0
- data/ext/sources/examples/server/server.cpp +1238 -0
- data/ext/sources/examples/server.py +115 -0
- data/ext/sources/examples/stb_vorbis.c +5584 -0
- data/ext/sources/examples/stream/CMakeLists.txt +10 -0
- data/ext/sources/examples/stream/stream.cpp +435 -0
- data/ext/sources/examples/stream.wasm/CMakeLists.txt +49 -0
- data/ext/sources/examples/stream.wasm/emscripten.cpp +216 -0
- data/ext/sources/examples/stream.wasm/index-tmpl.html +414 -0
- data/ext/sources/examples/sycl/CMakeLists.txt +9 -0
- data/ext/sources/examples/sycl/build.sh +22 -0
- data/ext/sources/examples/sycl/ls-sycl-device.cpp +11 -0
- data/ext/sources/examples/sycl/run-whisper.sh +17 -0
- data/ext/sources/examples/talk-llama/CMakeLists.txt +43 -0
- data/ext/sources/examples/talk-llama/eleven-labs.py +80 -0
- data/ext/sources/examples/talk-llama/llama-adapter.cpp +388 -0
- data/ext/sources/examples/talk-llama/llama-adapter.h +76 -0
- data/ext/sources/examples/talk-llama/llama-arch.cpp +1914 -0
- data/ext/sources/examples/talk-llama/llama-arch.h +464 -0
- data/ext/sources/examples/talk-llama/llama-batch.cpp +843 -0
- data/ext/sources/examples/talk-llama/llama-batch.h +147 -0
- data/ext/sources/examples/talk-llama/llama-chat.cpp +685 -0
- data/ext/sources/examples/talk-llama/llama-chat.h +59 -0
- data/ext/sources/examples/talk-llama/llama-context.cpp +2845 -0
- data/ext/sources/examples/talk-llama/llama-context.h +297 -0
- data/ext/sources/examples/talk-llama/llama-cparams.cpp +5 -0
- data/ext/sources/examples/talk-llama/llama-cparams.h +41 -0
- data/ext/sources/examples/talk-llama/llama-grammar.cpp +1229 -0
- data/ext/sources/examples/talk-llama/llama-grammar.h +173 -0
- data/ext/sources/examples/talk-llama/llama-graph.cpp +1693 -0
- data/ext/sources/examples/talk-llama/llama-graph.h +710 -0
- data/ext/sources/examples/talk-llama/llama-hparams.cpp +103 -0
- data/ext/sources/examples/talk-llama/llama-hparams.h +207 -0
- data/ext/sources/examples/talk-llama/llama-impl.cpp +167 -0
- data/ext/sources/examples/talk-llama/llama-impl.h +61 -0
- data/ext/sources/examples/talk-llama/llama-io.cpp +15 -0
- data/ext/sources/examples/talk-llama/llama-io.h +35 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.cpp +279 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified-iswa.h +128 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified.cpp +1841 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache-unified.h +303 -0
- data/ext/sources/examples/talk-llama/llama-kv-cache.h +44 -0
- data/ext/sources/examples/talk-llama/llama-kv-cells.h +439 -0
- data/ext/sources/examples/talk-llama/llama-memory-hybrid.cpp +246 -0
- data/ext/sources/examples/talk-llama/llama-memory-hybrid.h +138 -0
- data/ext/sources/examples/talk-llama/llama-memory-recurrent.cpp +1125 -0
- data/ext/sources/examples/talk-llama/llama-memory-recurrent.h +183 -0
- data/ext/sources/examples/talk-llama/llama-memory.cpp +59 -0
- data/ext/sources/examples/talk-llama/llama-memory.h +116 -0
- data/ext/sources/examples/talk-llama/llama-mmap.cpp +600 -0
- data/ext/sources/examples/talk-llama/llama-mmap.h +68 -0
- data/ext/sources/examples/talk-llama/llama-model-loader.cpp +1163 -0
- data/ext/sources/examples/talk-llama/llama-model-loader.h +169 -0
- data/ext/sources/examples/talk-llama/llama-model-saver.cpp +282 -0
- data/ext/sources/examples/talk-llama/llama-model-saver.h +37 -0
- data/ext/sources/examples/talk-llama/llama-model.cpp +15114 -0
- data/ext/sources/examples/talk-llama/llama-model.h +452 -0
- data/ext/sources/examples/talk-llama/llama-quant.cpp +1049 -0
- data/ext/sources/examples/talk-llama/llama-quant.h +1 -0
- data/ext/sources/examples/talk-llama/llama-sampling.cpp +2575 -0
- data/ext/sources/examples/talk-llama/llama-sampling.h +32 -0
- data/ext/sources/examples/talk-llama/llama-vocab.cpp +3377 -0
- data/ext/sources/examples/talk-llama/llama-vocab.h +132 -0
- data/ext/sources/examples/talk-llama/llama.cpp +358 -0
- data/ext/sources/examples/talk-llama/llama.h +1484 -0
- data/ext/sources/examples/talk-llama/prompts/talk-alpaca.txt +23 -0
- data/ext/sources/examples/talk-llama/speak +40 -0
- data/ext/sources/examples/talk-llama/speak.bat +1 -0
- data/ext/sources/examples/talk-llama/speak.ps1 +14 -0
- data/ext/sources/examples/talk-llama/talk-llama.cpp +810 -0
- data/ext/sources/examples/talk-llama/unicode-data.cpp +7034 -0
- data/ext/sources/examples/talk-llama/unicode-data.h +20 -0
- data/ext/sources/examples/talk-llama/unicode.cpp +854 -0
- data/ext/sources/examples/talk-llama/unicode.h +66 -0
- data/ext/sources/examples/vad-speech-segments/CMakeLists.txt +8 -0
- data/ext/sources/examples/vad-speech-segments/speech.cpp +149 -0
- data/ext/sources/examples/wchess/CMakeLists.txt +10 -0
- data/ext/sources/examples/wchess/libwchess/CMakeLists.txt +19 -0
- data/ext/sources/examples/wchess/libwchess/Chessboard.cpp +803 -0
- data/ext/sources/examples/wchess/libwchess/Chessboard.h +33 -0
- data/ext/sources/examples/wchess/libwchess/WChess.cpp +193 -0
- data/ext/sources/examples/wchess/libwchess/WChess.h +63 -0
- data/ext/sources/examples/wchess/libwchess/test-chessboard.cpp +117 -0
- data/ext/sources/examples/wchess/wchess.cmd/CMakeLists.txt +8 -0
- data/ext/sources/examples/wchess/wchess.cmd/wchess.cmd.cpp +251 -0
- data/ext/sources/examples/whisper.wasm/CMakeLists.txt +50 -0
- data/ext/sources/examples/whisper.wasm/emscripten.cpp +118 -0
- data/ext/sources/examples/whisper.wasm/index-tmpl.html +658 -0
- data/ext/sources/ggml/CMakeLists.txt +435 -0
- data/ext/sources/ggml/cmake/BuildTypes.cmake +54 -0
- data/ext/sources/ggml/cmake/GitVars.cmake +22 -0
- data/ext/sources/ggml/cmake/common.cmake +50 -0
- data/ext/sources/ggml/cmake/ggml-config.cmake.in +152 -0
- data/ext/{ggml → sources/ggml}/include/ggml-alloc.h +1 -1
- data/ext/{ggml → sources/ggml}/include/ggml-backend.h +10 -8
- data/ext/{ggml → sources/ggml}/include/ggml-cpp.h +2 -1
- data/ext/{ggml → sources/ggml}/include/ggml-cpu.h +11 -1
- data/ext/{ggml → sources/ggml}/include/ggml-metal.h +1 -1
- data/ext/{ggml → sources/ggml}/include/ggml-opt.h +49 -28
- data/ext/{ggml → sources/ggml}/include/ggml-rpc.h +6 -1
- data/ext/{ggml → sources/ggml}/include/ggml-vulkan.h +0 -2
- data/ext/{ggml → sources/ggml}/include/ggml.h +325 -269
- data/ext/sources/ggml/include/gguf.h +202 -0
- data/ext/sources/ggml/src/CMakeLists.txt +404 -0
- data/ext/{ggml → sources/ggml}/src/ggml-alloc.c +34 -29
- data/ext/sources/ggml/src/ggml-amx/CMakeLists.txt +107 -0
- data/ext/{ggml → sources/ggml}/src/ggml-backend-impl.h +1 -2
- data/ext/{ggml → sources/ggml}/src/ggml-backend-reg.cpp +92 -53
- data/ext/{ggml → sources/ggml}/src/ggml-backend.cpp +69 -34
- data/ext/sources/ggml/src/ggml-blas/CMakeLists.txt +87 -0
- data/ext/sources/ggml/src/ggml-cann/CMakeLists.txt +75 -0
- data/ext/sources/ggml/src/ggml-cann/Doxyfile +2579 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cann/acl_tensor.cpp +10 -4
- data/ext/{ggml → sources/ggml}/src/ggml-cann/acl_tensor.h +5 -5
- data/ext/{ggml → sources/ggml}/src/ggml-cann/aclnn_ops.cpp +1272 -1506
- data/ext/sources/ggml/src/ggml-cann/aclnn_ops.h +1125 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cann/common.h +140 -1
- data/ext/{ggml → sources/ggml}/src/ggml-cann/ggml-cann.cpp +588 -146
- data/ext/sources/ggml/src/ggml-cann/kernels/CMakeLists.txt +30 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/dup.cpp +3 -5
- data/ext/{ggml → sources/ggml}/src/ggml-common.h +16 -8
- data/ext/sources/ggml/src/ggml-cpu/CMakeLists.txt +597 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/amx.cpp +3 -2
- data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/mmq.cpp +11 -10
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/cpu-feats.cpp +94 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/quants.c +4114 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/arm/repack.cpp +2163 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/loongarch/quants.c +2639 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/cpu-feats.cpp +82 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/powerpc/quants.c +2732 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/riscv/quants.c +2069 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/riscv/repack.cpp +397 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/s390/quants.c +1300 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/wasm/quants.c +1481 -0
- data/ext/{ggml/src/ggml-cpu/cpu-feats-x86.cpp → sources/ggml/src/ggml-cpu/arch/x86/cpu-feats.cpp} +5 -1
- data/ext/sources/ggml/src/ggml-cpu/arch/x86/quants.c +4311 -0
- data/ext/sources/ggml/src/ggml-cpu/arch/x86/repack.cpp +3285 -0
- data/ext/sources/ggml/src/ggml-cpu/arch-fallback.h +184 -0
- data/ext/sources/ggml/src/ggml-cpu/binary-ops.cpp +158 -0
- data/ext/sources/ggml/src/ggml-cpu/binary-ops.h +16 -0
- data/ext/sources/ggml/src/ggml-cpu/cmake/FindSIMD.cmake +100 -0
- data/ext/sources/ggml/src/ggml-cpu/common.h +73 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cpu/ggml-cpu-impl.h +172 -41
- data/ext/sources/ggml/src/ggml-cpu/ggml-cpu.c +3551 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cpu/ggml-cpu.cpp +78 -25
- data/ext/{ggml/src/ggml-cpu/ggml-cpu-hbm.cpp → sources/ggml/src/ggml-cpu/hbm.cpp} +1 -1
- data/ext/sources/ggml/src/ggml-cpu/kleidiai/kernels.cpp +337 -0
- data/ext/sources/ggml/src/ggml-cpu/kleidiai/kernels.h +95 -0
- data/ext/sources/ggml/src/ggml-cpu/kleidiai/kleidiai.cpp +482 -0
- data/ext/sources/ggml/src/ggml-cpu/kleidiai/kleidiai.h +17 -0
- data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.cpp +3594 -0
- data/ext/sources/ggml/src/ggml-cpu/llamafile/sgemm.h +19 -0
- data/ext/sources/ggml/src/ggml-cpu/ops.cpp +9786 -0
- data/ext/sources/ggml/src/ggml-cpu/ops.h +118 -0
- data/ext/sources/ggml/src/ggml-cpu/quants.c +1158 -0
- data/ext/{ggml/src/ggml-cpu/ggml-cpu-quants.h → sources/ggml/src/ggml-cpu/quants.h} +26 -0
- data/ext/sources/ggml/src/ggml-cpu/repack.cpp +1571 -0
- data/ext/sources/ggml/src/ggml-cpu/repack.h +98 -0
- data/ext/sources/ggml/src/ggml-cpu/simd-mappings.h +1184 -0
- data/ext/{ggml/src/ggml-cpu/ggml-cpu-traits.cpp → sources/ggml/src/ggml-cpu/traits.cpp} +1 -1
- data/ext/sources/ggml/src/ggml-cpu/unary-ops.cpp +186 -0
- data/ext/sources/ggml/src/ggml-cpu/unary-ops.h +28 -0
- data/ext/sources/ggml/src/ggml-cpu/vec.cpp +345 -0
- data/ext/sources/ggml/src/ggml-cpu/vec.h +1027 -0
- data/ext/sources/ggml/src/ggml-cuda/CMakeLists.txt +184 -0
- data/ext/sources/ggml/src/ggml-cuda/acc.cu +61 -0
- data/ext/sources/ggml/src/ggml-cuda/acc.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/arange.cu +34 -0
- data/ext/sources/ggml/src/ggml-cuda/arange.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/argmax.cu +91 -0
- data/ext/sources/ggml/src/ggml-cuda/argmax.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/argsort.cu +104 -0
- data/ext/sources/ggml/src/ggml-cuda/argsort.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/binbcast.cu +363 -0
- data/ext/sources/ggml/src/ggml-cuda/binbcast.cuh +9 -0
- data/ext/sources/ggml/src/ggml-cuda/clamp.cu +45 -0
- data/ext/sources/ggml/src/ggml-cuda/clamp.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/common.cuh +851 -0
- data/ext/sources/ggml/src/ggml-cuda/concat.cu +221 -0
- data/ext/sources/ggml/src/ggml-cuda/concat.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/conv-transpose-1d.cu +89 -0
- data/ext/sources/ggml/src/ggml-cuda/conv-transpose-1d.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cu +161 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-dw.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cu +91 -0
- data/ext/sources/ggml/src/ggml-cuda/conv2d-transpose.cuh +4 -0
- data/ext/sources/ggml/src/ggml-cuda/convert.cu +752 -0
- data/ext/sources/ggml/src/ggml-cuda/convert.cuh +31 -0
- data/ext/sources/ggml/src/ggml-cuda/count-equal.cu +64 -0
- data/ext/sources/ggml/src/ggml-cuda/count-equal.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/cp-async.cuh +57 -0
- data/ext/sources/ggml/src/ggml-cuda/cpy.cu +705 -0
- data/ext/sources/ggml/src/ggml-cuda/cpy.cuh +11 -0
- data/ext/sources/ggml/src/ggml-cuda/cross-entropy-loss.cu +189 -0
- data/ext/sources/ggml/src/ggml-cuda/cross-entropy-loss.cuh +7 -0
- data/ext/sources/ggml/src/ggml-cuda/dequantize.cuh +103 -0
- data/ext/sources/ggml/src/ggml-cuda/diagmask.cu +40 -0
- data/ext/sources/ggml/src/ggml-cuda/diagmask.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-common.cuh +881 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-mma-f16.cuh +1474 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-tile-f16.cu +357 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-tile-f16.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-tile-f32.cu +365 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-tile-f32.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-vec-f16.cuh +482 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-vec-f32.cuh +472 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-wmma-f16.cu +638 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn-wmma-f16.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn.cu +346 -0
- data/ext/sources/ggml/src/ggml-cuda/fattn.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/getrows.cu +275 -0
- data/ext/sources/ggml/src/ggml-cuda/getrows.cuh +15 -0
- data/ext/sources/ggml/src/ggml-cuda/ggml-cuda.cu +3647 -0
- data/ext/sources/ggml/src/ggml-cuda/gla.cu +93 -0
- data/ext/sources/ggml/src/ggml-cuda/gla.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/im2col.cu +103 -0
- data/ext/sources/ggml/src/ggml-cuda/im2col.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/mean.cu +19 -0
- data/ext/sources/ggml/src/ggml-cuda/mean.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/mma.cuh +396 -0
- data/ext/sources/ggml/src/ggml-cuda/mmq.cu +324 -0
- data/ext/sources/ggml/src/ggml-cuda/mmq.cuh +3217 -0
- data/ext/sources/ggml/src/ggml-cuda/mmv.cu +506 -0
- data/ext/sources/ggml/src/ggml-cuda/mmv.cuh +11 -0
- data/ext/sources/ggml/src/ggml-cuda/mmvq.cu +595 -0
- data/ext/sources/ggml/src/ggml-cuda/mmvq.cuh +12 -0
- data/ext/sources/ggml/src/ggml-cuda/norm.cu +458 -0
- data/ext/sources/ggml/src/ggml-cuda/norm.cuh +11 -0
- data/ext/sources/ggml/src/ggml-cuda/opt-step-adamw.cu +78 -0
- data/ext/sources/ggml/src/ggml-cuda/opt-step-adamw.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/out-prod.cu +68 -0
- data/ext/sources/ggml/src/ggml-cuda/out-prod.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/pad.cu +49 -0
- data/ext/sources/ggml/src/ggml-cuda/pad.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/pool2d.cu +94 -0
- data/ext/sources/ggml/src/ggml-cuda/pool2d.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/quantize.cu +190 -0
- data/ext/sources/ggml/src/ggml-cuda/quantize.cuh +27 -0
- data/ext/sources/ggml/src/ggml-cuda/rope.cu +456 -0
- data/ext/sources/ggml/src/ggml-cuda/rope.cuh +7 -0
- data/ext/sources/ggml/src/ggml-cuda/scale.cu +31 -0
- data/ext/sources/ggml/src/ggml-cuda/scale.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/softmax.cu +283 -0
- data/ext/sources/ggml/src/ggml-cuda/softmax.cuh +7 -0
- data/ext/sources/ggml/src/ggml-cuda/ssm-conv.cu +148 -0
- data/ext/sources/ggml/src/ggml-cuda/ssm-conv.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/ssm-scan.cu +155 -0
- data/ext/sources/ggml/src/ggml-cuda/ssm-scan.cuh +3 -0
- data/ext/sources/ggml/src/ggml-cuda/sum.cu +45 -0
- data/ext/sources/ggml/src/ggml-cuda/sum.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/sumrows.cu +26 -0
- data/ext/sources/ggml/src/ggml-cuda/sumrows.cuh +4 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_1-ncols2_8.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_1.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_2.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_16-ncols2_4.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_4.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_2-ncols2_8.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_1.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_32-ncols2_2.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_2.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_4.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_4-ncols2_8.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_64-ncols2_1.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_1.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_2.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_4.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-mma-f16-instance-ncols1_8-ncols2_8.cu +10 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/generate_cu_files.py +78 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq1_s.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq2_s.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq2_xs.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq2_xxs.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq3_s.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq3_xxs.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq4_nl.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-iq4_xs.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q2_k.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q3_k.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q4_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q4_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q4_k.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q5_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q5_1.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q5_k.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q6_k.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/template-instances/mmq-instance-q8_0.cu +5 -0
- data/ext/sources/ggml/src/ggml-cuda/tsembd.cu +47 -0
- data/ext/sources/ggml/src/ggml-cuda/tsembd.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/unary.cu +378 -0
- data/ext/sources/ggml/src/ggml-cuda/unary.cuh +66 -0
- data/ext/sources/ggml/src/ggml-cuda/upscale.cu +51 -0
- data/ext/sources/ggml/src/ggml-cuda/upscale.cuh +5 -0
- data/ext/sources/ggml/src/ggml-cuda/vecdotq.cuh +1135 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cuda/vendors/cuda.h +1 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cuda/vendors/hip.h +57 -0
- data/ext/{ggml → sources/ggml}/src/ggml-cuda/vendors/musa.h +7 -1
- data/ext/sources/ggml/src/ggml-cuda/wkv.cu +199 -0
- data/ext/sources/ggml/src/ggml-cuda/wkv.cuh +7 -0
- data/ext/sources/ggml/src/ggml-hip/CMakeLists.txt +135 -0
- data/ext/{ggml → sources/ggml}/src/ggml-impl.h +147 -158
- data/ext/sources/ggml/src/ggml-kompute/CMakeLists.txt +166 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/common.comp +112 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_add.comp +58 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_addrow.comp +25 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f16.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_cpy_f16_f32.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f16.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_cpy_f32_f32.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_diagmask.comp +30 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_gelu.comp +22 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows.comp +17 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_f16.comp +31 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_f32.comp +31 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_0.comp +38 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_q4_1.comp +39 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_getrows_q6_k.comp +44 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_f16.comp +69 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_mat_f32.comp +51 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_0.comp +33 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_1.comp +35 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q4_k.comp +140 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q6_k.comp +106 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mat_q8_0.comp +73 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_mul_mv_q_n_pre.comp +28 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_norm.comp +84 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_relu.comp +21 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rmsnorm.comp +53 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f16.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rope_neox_f32.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rope_norm_f16.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_rope_norm_f32.comp +52 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_scale.comp +19 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_scale_8.comp +23 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_silu.comp +22 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/op_softmax.comp +72 -0
- data/ext/sources/ggml/src/ggml-kompute/kompute-shaders/rope_common.comp +71 -0
- data/ext/sources/ggml/src/ggml-metal/CMakeLists.txt +121 -0
- data/ext/sources/ggml/src/ggml-metal/ggml-metal-impl.h +649 -0
- data/ext/{ggml → sources/ggml}/src/ggml-metal/ggml-metal.m +2504 -1108
- data/ext/{ggml → sources/ggml}/src/ggml-metal/ggml-metal.metal +2102 -1463
- data/ext/sources/ggml/src/ggml-musa/CMakeLists.txt +113 -0
- data/ext/sources/ggml/src/ggml-musa/mudnn.cu +112 -0
- data/ext/sources/ggml/src/ggml-musa/mudnn.cuh +12 -0
- data/ext/sources/ggml/src/ggml-opencl/CMakeLists.txt +110 -0
- data/ext/sources/ggml/src/ggml-opencl/ggml-opencl.cpp +6494 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/add.cl +83 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/argsort.cl +86 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/clamp.cl +20 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/concat.cl +109 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/cpy.cl +184 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/cvt.cl +118 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/diag_mask_inf.cl +58 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/div.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/embed_kernel.py +26 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/gelu.cl +62 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/gemv_noshuffle.cl +268 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/gemv_noshuffle_general.cl +274 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/get_rows.cl +163 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/glu.cl +201 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/group_norm.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/im2col_f16.cl +57 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/im2col_f32.cl +57 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul.cl +79 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mat_Ab_Bi_8x4.cl +139 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f16_f16.cl +118 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f16_f32.cl +118 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f16_f32_1row.cl +94 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f16_f32_l4.cl +84 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_f32_f32.cl +118 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_id_q4_0_f32_8x_flat.cl +283 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32.cl +192 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_1d_16x_flat.cl +307 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_1d_8x_flat.cl +265 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_8x_flat.cl +272 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q4_0_f32_v.cl +254 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/mul_mv_q6_k.cl +190 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/norm.cl +81 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/pad.cl +30 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/relu.cl +16 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/repeat.cl +39 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/rms_norm.cl +96 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/rope.cl +721 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/scale.cl +16 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sigmoid.cl +29 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/silu.cl +30 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/softmax_4_f16.cl +87 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/softmax_4_f32.cl +87 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/softmax_f16.cl +86 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/softmax_f32.cl +86 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sub.cl +72 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/sum_rows.cl +39 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/tanh.cl +63 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/transpose.cl +84 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/tsembd.cl +48 -0
- data/ext/sources/ggml/src/ggml-opencl/kernels/upscale.cl +121 -0
- data/ext/{ggml → sources/ggml}/src/ggml-opt.cpp +373 -190
- data/ext/{ggml → sources/ggml}/src/ggml-quants.c +120 -128
- data/ext/sources/ggml/src/ggml-rpc/CMakeLists.txt +9 -0
- data/ext/{ggml → sources/ggml}/src/ggml-rpc/ggml-rpc.cpp +494 -84
- data/ext/sources/ggml/src/ggml-sycl/CMakeLists.txt +189 -0
- data/ext/sources/ggml/src/ggml-sycl/backend.hpp +37 -0
- data/ext/sources/ggml/src/ggml-sycl/binbcast.cpp +344 -0
- data/ext/sources/ggml/src/ggml-sycl/binbcast.hpp +39 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/common.cpp +20 -32
- data/ext/sources/ggml/src/ggml-sycl/common.hpp +561 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/concat.cpp +56 -70
- data/ext/sources/ggml/src/ggml-sycl/concat.hpp +20 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/conv.cpp +8 -12
- data/ext/sources/ggml/src/ggml-sycl/conv.hpp +20 -0
- data/ext/sources/ggml/src/ggml-sycl/convert.cpp +575 -0
- data/ext/sources/ggml/src/ggml-sycl/convert.hpp +34 -0
- data/ext/sources/ggml/src/ggml-sycl/cpy.cpp +839 -0
- data/ext/sources/ggml/src/ggml-sycl/cpy.hpp +11 -0
- data/ext/sources/ggml/src/ggml-sycl/dequantize.hpp +823 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/dmmv.cpp +188 -67
- data/ext/sources/ggml/src/ggml-sycl/dmmv.hpp +27 -0
- data/ext/sources/ggml/src/ggml-sycl/dpct/helper.hpp +2987 -0
- data/ext/sources/ggml/src/ggml-sycl/element_wise.cpp +1120 -0
- data/ext/sources/ggml/src/ggml-sycl/element_wise.hpp +84 -0
- data/ext/sources/ggml/src/ggml-sycl/gemm.hpp +102 -0
- data/ext/sources/ggml/src/ggml-sycl/getrows.cpp +212 -0
- data/ext/sources/ggml/src/ggml-sycl/getrows.hpp +20 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/ggml-sycl.cpp +1197 -1295
- data/ext/sources/ggml/src/ggml-sycl/gla.cpp +106 -0
- data/ext/sources/ggml/src/ggml-sycl/gla.hpp +8 -0
- data/ext/sources/ggml/src/ggml-sycl/im2col.cpp +136 -0
- data/ext/sources/ggml/src/ggml-sycl/im2col.hpp +21 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/mmq.cpp +60 -81
- data/ext/sources/ggml/src/ggml-sycl/mmq.hpp +33 -0
- data/ext/sources/ggml/src/ggml-sycl/mmvq.cpp +1065 -0
- data/ext/sources/ggml/src/ggml-sycl/mmvq.hpp +27 -0
- data/ext/sources/ggml/src/ggml-sycl/norm.cpp +482 -0
- data/ext/sources/ggml/src/ggml-sycl/norm.hpp +26 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/outprod.cpp +8 -17
- data/ext/sources/ggml/src/ggml-sycl/outprod.hpp +10 -0
- data/ext/sources/ggml/src/ggml-sycl/presets.hpp +74 -0
- data/ext/sources/ggml/src/ggml-sycl/quants.hpp +111 -0
- data/ext/sources/ggml/src/ggml-sycl/rope.cpp +472 -0
- data/ext/sources/ggml/src/ggml-sycl/rope.hpp +20 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/softmax.cpp +38 -28
- data/ext/sources/ggml/src/ggml-sycl/softmax.hpp +20 -0
- data/ext/sources/ggml/src/ggml-sycl/sycl_hw.cpp +15 -0
- data/ext/sources/ggml/src/ggml-sycl/sycl_hw.hpp +26 -0
- data/ext/{ggml → sources/ggml}/src/ggml-sycl/tsembd.cpp +6 -11
- data/ext/sources/ggml/src/ggml-sycl/tsembd.hpp +20 -0
- data/ext/sources/ggml/src/ggml-sycl/vecdotq.hpp +1307 -0
- data/ext/sources/ggml/src/ggml-sycl/wkv.cpp +289 -0
- data/ext/sources/ggml/src/ggml-sycl/wkv.hpp +10 -0
- data/ext/sources/ggml/src/ggml-vulkan/CMakeLists.txt +200 -0
- data/ext/sources/ggml/src/ggml-vulkan/cmake/host-toolchain.cmake.in +15 -0
- data/ext/{ggml → sources/ggml}/src/ggml-vulkan/ggml-vulkan.cpp +3822 -1335
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/CMakeLists.txt +31 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/acc.comp +29 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/add.comp +29 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/argmax.comp +51 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/argsort.comp +69 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/clamp.comp +17 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/concat.comp +41 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/contig_copy.comp +49 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/conv2d_dw.comp +105 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/conv_transpose_1d.comp +98 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/copy.comp +23 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/copy_from_quant.comp +51 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/copy_to_quant.comp +242 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/cos.comp +17 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/count_equal.comp +31 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_f32.comp +20 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs.comp +462 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_funcs_cm2.comp +699 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_head.comp +13 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq1_m.comp +42 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq1_s.comp +35 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq2_s.comp +44 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq2_xs.comp +43 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq2_xxs.comp +48 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq3_s.comp +39 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq3_xxs.comp +49 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq4_nl.comp +32 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_iq4_xs.comp +34 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q2_k.comp +34 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q3_k.comp +42 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q4_0.comp +30 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q4_1.comp +32 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q4_k.comp +68 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q5_0.comp +34 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q5_1.comp +35 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q5_k.comp +70 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q6_k.comp +33 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/dequant_q8_0.comp +31 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/diag_mask_inf.comp +34 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/div.comp +27 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn.comp +337 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_base.comp +162 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm1.comp +360 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_cm2.comp +267 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/flash_attn_split_k_reduce.comp +59 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/geglu.comp +13 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/gelu.comp +25 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/gelu_quick.comp +23 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/generic_binary_head.comp +64 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/generic_head.comp +9 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/generic_unary_head.comp +76 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/get_rows.comp +33 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/get_rows_quant.comp +41 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_head.comp +15 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/glu_main.comp +29 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/group_norm.comp +66 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/im2col.comp +100 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/l2_norm.comp +41 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/leaky_relu.comp +22 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul.comp +27 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_split_k_reduce.comp +48 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec.comp +169 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_base.comp +118 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq1_m.comp +82 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq1_s.comp +79 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq2_s.comp +90 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq2_xs.comp +87 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq2_xxs.comp +87 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq3_s.comp +90 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_iq3_xxs.comp +88 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_nc.comp +118 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_p021.comp +154 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q2_k.comp +130 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q3_k.comp +132 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q4_k.comp +136 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q5_k.comp +167 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mat_vec_q6_k.comp +130 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm.comp +868 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mm_cm2.comp +441 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq.comp +442 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/mul_mmq_funcs.comp +99 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/norm.comp +44 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/opt_step_adamw.comp +42 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/pad.comp +28 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/pool2d.comp +74 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/quantize_q8_1.comp +77 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/reglu.comp +9 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/relu.comp +21 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/repeat.comp +26 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/repeat_back.comp +37 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm.comp +61 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rms_norm_back.comp +55 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_head.comp +58 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_multi.comp +60 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_neox.comp +43 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_norm.comp +43 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/rope_vision.comp +47 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/scale.comp +24 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/sigmoid.comp +20 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/silu.comp +22 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/silu_back.comp +26 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/sin.comp +17 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/soft_max.comp +173 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/soft_max_back.comp +50 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/square.comp +17 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/sub.comp +29 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/sum_rows.comp +37 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/swiglu.comp +9 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/tanh.comp +20 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/test_bfloat16_support.comp +7 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/test_coopmat2_support.comp +7 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/test_coopmat_support.comp +7 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/test_integer_dot_support.comp +7 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/timestep_embedding.comp +41 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/types.comp +1373 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/upscale.comp +36 -0
- data/ext/{ggml → sources/ggml}/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp +203 -36
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/wkv6.comp +87 -0
- data/ext/sources/ggml/src/ggml-vulkan/vulkan-shaders/wkv7.comp +91 -0
- data/ext/{ggml → sources/ggml}/src/ggml.c +918 -1782
- data/ext/sources/ggml/src/ggml.cpp +26 -0
- data/ext/sources/ggml/src/gguf.cpp +1351 -0
- data/ext/{include → sources/include}/whisper.h +70 -2
- data/ext/sources/src/CMakeLists.txt +145 -0
- data/ext/sources/src/coreml/whisper-compat.h +10 -0
- data/ext/sources/src/coreml/whisper-compat.m +35 -0
- data/ext/{src → sources/src}/coreml/whisper-decoder-impl.h +27 -15
- data/ext/{src → sources/src}/coreml/whisper-decoder-impl.m +36 -10
- data/ext/{src → sources/src}/coreml/whisper-encoder-impl.h +21 -9
- data/ext/{src → sources/src}/coreml/whisper-encoder-impl.m +29 -3
- data/ext/sources/src/coreml/whisper-encoder.mm +73 -0
- data/ext/sources/src/whisper-arch.h +197 -0
- data/ext/{src → sources/src}/whisper.cpp +1966 -386
- data/ext/sources/tests/CMakeLists.txt +105 -0
- data/ext/sources/tests/earnings21/eval.mk +58 -0
- data/ext/sources/tests/earnings21/eval.py +68 -0
- data/ext/sources/tests/earnings21/normalizers/__init__.py +2 -0
- data/ext/sources/tests/earnings21/normalizers/basic.py +80 -0
- data/ext/sources/tests/earnings21/normalizers/english.json +1741 -0
- data/ext/sources/tests/earnings21/normalizers/english.py +550 -0
- data/ext/sources/tests/earnings21/requirements.txt +6 -0
- data/ext/sources/tests/en-0-ref.txt +1 -0
- data/ext/sources/tests/en-1-ref.txt +1 -0
- data/ext/sources/tests/en-2-ref.txt +1 -0
- data/ext/sources/tests/es-0-ref.txt +1 -0
- data/ext/sources/tests/librispeech/eval.mk +39 -0
- data/ext/sources/tests/librispeech/eval.py +47 -0
- data/ext/sources/tests/librispeech/normalizers/__init__.py +2 -0
- data/ext/sources/tests/librispeech/normalizers/basic.py +80 -0
- data/ext/sources/tests/librispeech/normalizers/english.json +1741 -0
- data/ext/sources/tests/librispeech/normalizers/english.py +550 -0
- data/ext/sources/tests/librispeech/requirements.txt +6 -0
- data/ext/sources/tests/run-tests.sh +130 -0
- data/ext/sources/tests/test-c.c +3 -0
- data/ext/sources/tests/test-vad-full.cpp +54 -0
- data/ext/sources/tests/test-vad.cpp +83 -0
- data/ext/sources/tests/test-whisper.js +58 -0
- data/extsources.rb +39 -5
- data/lib/whisper/context.rb +15 -0
- data/lib/whisper/model/uri.rb +202 -126
- data/lib/whisper/segment.rb +58 -0
- data/sig/whisper.rbs +510 -0
- data/test/helper.rb +24 -0
- data/{tests → test}/test_callback.rb +45 -3
- data/{tests → test}/test_error.rb +2 -2
- data/{tests → test}/test_model.rb +47 -0
- data/test/test_package.rb +51 -0
- data/test/test_params.rb +297 -0
- data/test/test_segment.rb +146 -0
- data/test/test_vad.rb +19 -0
- data/test/test_vad_params.rb +103 -0
- data/{tests → test}/test_whisper.rb +106 -36
- data/whispercpp.gemspec +5 -5
- metadata +837 -134
- data/ext/cpu.mk +0 -9
- data/ext/examples/dr_wav.h +0 -8815
- data/ext/ggml/src/ggml-cann/aclnn_ops.h +0 -592
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.cpp +0 -4262
- data/ext/ggml/src/ggml-cpu/ggml-cpu-aarch64.h +0 -8
- data/ext/ggml/src/ggml-cpu/ggml-cpu-quants.c +0 -10835
- data/ext/ggml/src/ggml-cpu/ggml-cpu.c +0 -14123
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.cpp +0 -1884
- data/ext/ggml/src/ggml-cpu/llamafile/sgemm.h +0 -14
- data/ext/ggml/src/ggml-metal/ggml-metal-impl.h +0 -288
- data/ext/ggml/src/ggml-sycl/convert.cpp +0 -547
- data/ext/ggml/src/ggml-sycl/element_wise.cpp +0 -1030
- data/ext/ggml/src/ggml-sycl/im2col.cpp +0 -126
- data/ext/ggml/src/ggml-sycl/mmvq.cpp +0 -1015
- data/ext/ggml/src/ggml-sycl/norm.cpp +0 -378
- data/ext/ggml/src/ggml-sycl/rope.cpp +0 -276
- data/ext/ggml/src/ggml-sycl/wkv6.cpp +0 -141
- data/ext/metal-embed.mk +0 -17
- data/ext/metal.mk +0 -6
- data/ext/ruby_whisper.cpp +0 -1909
- data/ext/scripts/get-flags.mk +0 -38
- data/lib/whisper.rb +0 -2
- data/tests/helper.rb +0 -7
- data/tests/test_package.rb +0 -31
- data/tests/test_params.rb +0 -160
- data/tests/test_segment.rb +0 -83
- /data/ext/{ggml → sources/ggml}/include/ggml-blas.h +0 -0
- /data/ext/{ggml → sources/ggml}/include/ggml-cann.h +0 -0
- /data/ext/{ggml → sources/ggml}/include/ggml-cuda.h +0 -0
- /data/ext/{ggml → sources/ggml}/include/ggml-kompute.h +0 -0
- /data/ext/{ggml → sources/ggml}/include/ggml-opencl.h +0 -0
- /data/ext/{ggml → sources/ggml}/include/ggml-sycl.h +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-amx/common.h +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-amx/ggml-amx.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-amx/mmq.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-amx/mmq.h +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-blas/ggml-blas.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/ascendc_kernels.h +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/get_row_f16.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/get_row_f32.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/get_row_q4_0.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/get_row_q8_0.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/quantize_f16_q8_0.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/quantize_f32_q8_0.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cann/kernels/quantize_float_to_q4_0.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/amx.h +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/common.h +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-cpu/amx/mmq.h +0 -0
- /data/ext/{ggml/src/ggml-cpu/ggml-cpu-hbm.h → sources/ggml/src/ggml-cpu/hbm.h} +0 -0
- /data/ext/{ggml/src/ggml-cpu/ggml-cpu-traits.h → sources/ggml/src/ggml-cpu/traits.h} +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-kompute/ggml-kompute.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-quants.h +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-threading.cpp +0 -0
- /data/ext/{ggml → sources/ggml}/src/ggml-threading.h +0 -0
- /data/ext/{src → sources/src}/coreml/whisper-encoder.h +0 -0
- /data/ext/{src → sources/src}/openvino/whisper-openvino-encoder.cpp +0 -0
- /data/ext/{src → sources/src}/openvino/whisper-openvino-encoder.h +0 -0
- /data/{tests → test}/jfk_reader/.gitignore +0 -0
- /data/{tests → test}/jfk_reader/extconf.rb +0 -0
- /data/{tests → test}/jfk_reader/jfk_reader.c +0 -0
@@ -0,0 +1,1693 @@
|
|
1
|
+
#include "llama-graph.h"
|
2
|
+
|
3
|
+
#include "llama-impl.h"
|
4
|
+
#include "llama-batch.h"
|
5
|
+
#include "llama-cparams.h"
|
6
|
+
|
7
|
+
#include "llama-kv-cache-unified.h"
|
8
|
+
#include "llama-kv-cache-unified-iswa.h"
|
9
|
+
#include "llama-memory-hybrid.h"
|
10
|
+
#include "llama-memory-recurrent.h"
|
11
|
+
|
12
|
+
#include <cassert>
|
13
|
+
#include <cmath>
|
14
|
+
#include <cstring>
|
15
|
+
|
16
|
+
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
|
17
|
+
if (ubatch->token) {
|
18
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
19
|
+
|
20
|
+
ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
|
21
|
+
}
|
22
|
+
|
23
|
+
if (ubatch->embd) {
|
24
|
+
const int64_t n_embd = embd->ne[0];
|
25
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
26
|
+
|
27
|
+
ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
|
28
|
+
}
|
29
|
+
}
|
30
|
+
|
31
|
+
void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
|
32
|
+
if (ubatch->pos && pos) {
|
33
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
34
|
+
|
35
|
+
if (ubatch->token && n_pos_per_embd == 4) {
|
36
|
+
// in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
|
37
|
+
// the 3 first dims are the same, and 4th dim is all 0
|
38
|
+
std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
|
39
|
+
// copy the first dimension
|
40
|
+
for (int i = 0; i < n_tokens; ++i) {
|
41
|
+
pos_data[ i] = ubatch->pos[i];
|
42
|
+
pos_data[ n_tokens + i] = ubatch->pos[i];
|
43
|
+
pos_data[2 * n_tokens + i] = ubatch->pos[i];
|
44
|
+
pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
|
45
|
+
}
|
46
|
+
ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
|
47
|
+
} else {
|
48
|
+
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
|
49
|
+
}
|
50
|
+
}
|
51
|
+
}
|
52
|
+
|
53
|
+
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
|
54
|
+
if (ubatch->pos && attn_scale) {
|
55
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
56
|
+
|
57
|
+
std::vector<float> attn_scale_data(n_tokens, 0.0f);
|
58
|
+
for (int i = 0; i < n_tokens; ++i) {
|
59
|
+
const float pos = ubatch->pos[i];
|
60
|
+
attn_scale_data[i] = std::log(
|
61
|
+
std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
|
62
|
+
) * f_attn_temp_scale + 1.0;
|
63
|
+
}
|
64
|
+
|
65
|
+
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
|
66
|
+
}
|
67
|
+
}
|
68
|
+
|
69
|
+
void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
|
70
|
+
if (pos_bucket) {
|
71
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
72
|
+
|
73
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
|
74
|
+
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
|
75
|
+
|
76
|
+
int32_t * data = (int32_t *) pos_bucket->data;
|
77
|
+
|
78
|
+
for (int h = 0; h < 1; ++h) {
|
79
|
+
for (int j = 0; j < n_tokens; ++j) {
|
80
|
+
for (int i = 0; i < n_tokens; ++i) {
|
81
|
+
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
|
82
|
+
}
|
83
|
+
}
|
84
|
+
}
|
85
|
+
}
|
86
|
+
}
|
87
|
+
|
88
|
+
void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
|
89
|
+
if (pos_bucket) {
|
90
|
+
mctx->set_input_pos_bucket(pos_bucket, ubatch);
|
91
|
+
}
|
92
|
+
}
|
93
|
+
|
94
|
+
void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
|
95
|
+
GGML_ASSERT(out_ids);
|
96
|
+
|
97
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
98
|
+
|
99
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
|
100
|
+
int32_t * data = (int32_t *) out_ids->data;
|
101
|
+
|
102
|
+
if (n_outputs == n_tokens) {
|
103
|
+
for (int i = 0; i < n_tokens; ++i) {
|
104
|
+
data[i] = i;
|
105
|
+
}
|
106
|
+
|
107
|
+
return;
|
108
|
+
}
|
109
|
+
|
110
|
+
GGML_ASSERT(ubatch->output);
|
111
|
+
|
112
|
+
int n_outputs = 0;
|
113
|
+
|
114
|
+
for (int i = 0; i < n_tokens; ++i) {
|
115
|
+
if (ubatch->output[i]) {
|
116
|
+
data[n_outputs++] = i;
|
117
|
+
}
|
118
|
+
}
|
119
|
+
}
|
120
|
+
|
121
|
+
void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
|
122
|
+
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
|
123
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
124
|
+
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
|
125
|
+
const int64_t n_seqs_unq = ubatch->n_seqs_unq;
|
126
|
+
|
127
|
+
GGML_ASSERT(mean);
|
128
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
|
129
|
+
|
130
|
+
float * data = (float *) mean->data;
|
131
|
+
memset(mean->data, 0, n_tokens*n_seqs_unq*ggml_element_size(mean));
|
132
|
+
|
133
|
+
std::vector<uint64_t> sums(n_seqs_unq, 0);
|
134
|
+
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
|
135
|
+
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
|
136
|
+
const llama_seq_id seq_id = ubatch->seq_id[i][s];
|
137
|
+
const int32_t seq_idx = ubatch->seq_idx[seq_id];
|
138
|
+
|
139
|
+
sums[seq_idx] += ubatch->n_seq_tokens;
|
140
|
+
}
|
141
|
+
}
|
142
|
+
|
143
|
+
std::vector<float> div(n_seqs_unq, 0.0f);
|
144
|
+
for (int s = 0; s < n_seqs_unq; ++s) {
|
145
|
+
const uint64_t sum = sums[s];
|
146
|
+
if (sum > 0) {
|
147
|
+
div[s] = 1.0f/float(sum);
|
148
|
+
}
|
149
|
+
}
|
150
|
+
|
151
|
+
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
|
152
|
+
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
|
153
|
+
const llama_seq_id seq_id = ubatch->seq_id[i][s];
|
154
|
+
const int32_t seq_idx = ubatch->seq_idx[seq_id];
|
155
|
+
|
156
|
+
for (int j = 0; j < n_seq_tokens; ++j) {
|
157
|
+
data[seq_idx*n_tokens + i + j] = div[seq_idx];
|
158
|
+
}
|
159
|
+
}
|
160
|
+
}
|
161
|
+
}
|
162
|
+
}
|
163
|
+
|
164
|
+
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
|
165
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
166
|
+
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
|
167
|
+
const int64_t n_seqs_unq = ubatch->n_seqs_unq;
|
168
|
+
|
169
|
+
if (cparams.embeddings && (
|
170
|
+
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
|
171
|
+
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK
|
172
|
+
)) {
|
173
|
+
GGML_ASSERT(cls);
|
174
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
|
175
|
+
|
176
|
+
uint32_t * data = (uint32_t *) cls->data;
|
177
|
+
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
|
178
|
+
|
179
|
+
for (int i = 0; i < n_tokens; i += n_seq_tokens) {
|
180
|
+
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
|
181
|
+
const llama_seq_id seq_id = ubatch->seq_id[i][s];
|
182
|
+
const int32_t seq_idx = ubatch->seq_idx[seq_id];
|
183
|
+
|
184
|
+
data[seq_idx] = i;
|
185
|
+
}
|
186
|
+
}
|
187
|
+
}
|
188
|
+
|
189
|
+
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
|
190
|
+
GGML_ASSERT(cls);
|
191
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
|
192
|
+
|
193
|
+
uint32_t * data = (uint32_t *) cls->data;
|
194
|
+
memset(cls->data, 0, n_seqs_unq*ggml_element_size(cls));
|
195
|
+
|
196
|
+
std::vector<int> last_pos(n_seqs_unq, -1);
|
197
|
+
std::vector<int> last_row(n_seqs_unq, -1);
|
198
|
+
|
199
|
+
for (int i = 0; i < n_tokens; ++i) {
|
200
|
+
const llama_pos pos = ubatch->pos[i];
|
201
|
+
|
202
|
+
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
|
203
|
+
const llama_seq_id seq_id = ubatch->seq_id[i][s];
|
204
|
+
const int32_t seq_idx = ubatch->seq_idx[seq_id];
|
205
|
+
|
206
|
+
if (pos >= last_pos[seq_idx]) {
|
207
|
+
last_pos[seq_idx] = pos;
|
208
|
+
last_row[seq_idx] = i;
|
209
|
+
}
|
210
|
+
}
|
211
|
+
}
|
212
|
+
|
213
|
+
for (int s = 0; s < n_seqs_unq; ++s) {
|
214
|
+
if (last_row[s] >= 0) {
|
215
|
+
data[s] = last_row[s];
|
216
|
+
}
|
217
|
+
}
|
218
|
+
}
|
219
|
+
}
|
220
|
+
|
221
|
+
void llm_graph_input_rs::set_input(const llama_ubatch * ubatch) {
|
222
|
+
GGML_UNUSED(ubatch);
|
223
|
+
|
224
|
+
const int64_t n_rs = mctx->get_n_rs();
|
225
|
+
|
226
|
+
if (s_copy) {
|
227
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
|
228
|
+
int32_t * data = (int32_t *) s_copy->data;
|
229
|
+
|
230
|
+
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
231
|
+
for (uint32_t i = 0; i < n_rs; ++i) {
|
232
|
+
data[i] = mctx->s_copy(i);
|
233
|
+
}
|
234
|
+
}
|
235
|
+
}
|
236
|
+
|
237
|
+
void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
|
238
|
+
GGML_UNUSED(ubatch);
|
239
|
+
|
240
|
+
if (cross_embd && !cross->v_embd.empty()) {
|
241
|
+
assert(cross_embd->type == GGML_TYPE_F32);
|
242
|
+
|
243
|
+
ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
|
244
|
+
}
|
245
|
+
}
|
246
|
+
|
247
|
+
void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
|
248
|
+
const int64_t n_kv = ubatch->n_tokens;
|
249
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
250
|
+
|
251
|
+
GGML_ASSERT(kq_mask);
|
252
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
|
253
|
+
|
254
|
+
float * data = (float *) kq_mask->data;
|
255
|
+
|
256
|
+
for (int h = 0; h < 1; ++h) {
|
257
|
+
for (int i1 = 0; i1 < n_tokens; ++i1) {
|
258
|
+
const llama_seq_id s1 = ubatch->seq_id[i1][0];
|
259
|
+
|
260
|
+
for (int i0 = 0; i0 < n_tokens; ++i0) {
|
261
|
+
float f = -INFINITY;
|
262
|
+
|
263
|
+
for (int s = 0; s < ubatch->n_seq_id[i0]; ++s) {
|
264
|
+
const llama_seq_id s0 = ubatch->seq_id[i0][0];
|
265
|
+
|
266
|
+
// TODO: reimplement this like in llama_kv_cache_unified
|
267
|
+
if (s0 == s1 && (!cparams.causal_attn || ubatch->pos[i0] <= ubatch->pos[i1])) {
|
268
|
+
if (hparams.use_alibi) {
|
269
|
+
f = -std::abs(ubatch->pos[i0] - ubatch->pos[i1]);
|
270
|
+
} else {
|
271
|
+
f = 0.0f;
|
272
|
+
}
|
273
|
+
break;
|
274
|
+
}
|
275
|
+
}
|
276
|
+
|
277
|
+
data[h*(n_kv*n_tokens) + i1*n_kv + i0] = f;
|
278
|
+
}
|
279
|
+
}
|
280
|
+
}
|
281
|
+
}
|
282
|
+
|
283
|
+
void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
|
284
|
+
if (self_kq_mask) {
|
285
|
+
mctx->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
|
286
|
+
}
|
287
|
+
}
|
288
|
+
|
289
|
+
void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) {
|
290
|
+
if (self_kq_mask) {
|
291
|
+
mctx->get_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
|
292
|
+
}
|
293
|
+
|
294
|
+
if (self_kq_mask_swa) {
|
295
|
+
mctx->get_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
|
296
|
+
}
|
297
|
+
}
|
298
|
+
|
299
|
+
void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
|
300
|
+
GGML_ASSERT(cross_kq_mask);
|
301
|
+
|
302
|
+
const int64_t n_enc = cross_kq_mask->ne[0];
|
303
|
+
const int64_t n_tokens = ubatch->n_tokens;
|
304
|
+
|
305
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
|
306
|
+
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
|
307
|
+
|
308
|
+
float * data = (float *) cross_kq_mask->data;
|
309
|
+
|
310
|
+
for (int h = 0; h < 1; ++h) {
|
311
|
+
for (int i = 0; i < n_tokens; ++i) {
|
312
|
+
for (int j = 0; j < n_enc; ++j) {
|
313
|
+
float f = -INFINITY;
|
314
|
+
|
315
|
+
for (int s = 0; s < ubatch->n_seq_id[i]; ++s) {
|
316
|
+
const llama_seq_id seq_id = ubatch->seq_id[i][s];
|
317
|
+
|
318
|
+
if (cross->seq_ids_enc[j].find(seq_id) != cross->seq_ids_enc[j].end()) {
|
319
|
+
f = 0.0f;
|
320
|
+
}
|
321
|
+
}
|
322
|
+
|
323
|
+
data[h*(n_enc*n_tokens) + i*n_enc + j] = f;
|
324
|
+
}
|
325
|
+
}
|
326
|
+
|
327
|
+
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
|
328
|
+
for (int j = 0; j < n_enc; ++j) {
|
329
|
+
data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
|
330
|
+
}
|
331
|
+
}
|
332
|
+
}
|
333
|
+
}
|
334
|
+
|
335
|
+
void llm_graph_input_mem_hybrid::set_input(const llama_ubatch * ubatch) {
|
336
|
+
if (self_kq_mask) {
|
337
|
+
mctx->get_attn()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
|
338
|
+
}
|
339
|
+
|
340
|
+
const int64_t n_rs = mctx->get_recr()->get_n_rs();
|
341
|
+
|
342
|
+
if (s_copy) {
|
343
|
+
GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
|
344
|
+
int32_t * data = (int32_t *) s_copy->data;
|
345
|
+
|
346
|
+
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
|
347
|
+
for (uint32_t i = 0; i < n_rs; ++i) {
|
348
|
+
data[i] = mctx->get_recr()->s_copy(i);
|
349
|
+
}
|
350
|
+
}
|
351
|
+
}
|
352
|
+
|
353
|
+
void llm_graph_input_one::set_input(const llama_ubatch *) {
|
354
|
+
GGML_ASSERT(one && ggml_nelements(one) == 1);
|
355
|
+
float f_one = 1.0f;
|
356
|
+
ggml_backend_tensor_set(one, &f_one, 0, sizeof(float));
|
357
|
+
}
|
358
|
+
|
359
|
+
//
|
360
|
+
// llm_graph_context
|
361
|
+
//
|
362
|
+
|
363
|
+
llm_graph_context::llm_graph_context(const llm_graph_params & params) :
|
364
|
+
arch (params.arch),
|
365
|
+
hparams (params.hparams),
|
366
|
+
cparams (params.cparams),
|
367
|
+
ubatch (params.ubatch),
|
368
|
+
n_embd (hparams.n_embd),
|
369
|
+
n_layer (hparams.n_layer),
|
370
|
+
n_rot (hparams.n_rot),
|
371
|
+
n_ctx (cparams.n_ctx),
|
372
|
+
n_head (hparams.n_head()),
|
373
|
+
n_head_kv (hparams.n_head_kv()),
|
374
|
+
n_embd_head_k (hparams.n_embd_head_k),
|
375
|
+
n_embd_k_gqa (hparams.n_embd_k_gqa()),
|
376
|
+
n_embd_head_v (hparams.n_embd_head_v),
|
377
|
+
n_embd_v_gqa (hparams.n_embd_v_gqa()),
|
378
|
+
n_expert (hparams.n_expert),
|
379
|
+
n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
|
380
|
+
freq_base (cparams.rope_freq_base),
|
381
|
+
freq_scale (cparams.rope_freq_scale),
|
382
|
+
ext_factor (cparams.yarn_ext_factor),
|
383
|
+
attn_factor (cparams.yarn_attn_factor),
|
384
|
+
beta_fast (cparams.yarn_beta_fast),
|
385
|
+
beta_slow (cparams.yarn_beta_slow),
|
386
|
+
norm_eps (hparams.f_norm_eps),
|
387
|
+
norm_rms_eps (hparams.f_norm_rms_eps),
|
388
|
+
n_tokens (ubatch.n_tokens),
|
389
|
+
n_outputs (params.n_outputs),
|
390
|
+
n_ctx_orig (cparams.n_ctx_orig_yarn),
|
391
|
+
pooling_type (cparams.pooling_type),
|
392
|
+
rope_type (hparams.rope_type),
|
393
|
+
ctx0 (params.ctx),
|
394
|
+
sched (params.sched),
|
395
|
+
backend_cpu (params.backend_cpu),
|
396
|
+
cvec (params.cvec),
|
397
|
+
loras (params.loras),
|
398
|
+
mctx (params.mctx),
|
399
|
+
cross (params.cross),
|
400
|
+
cb_func (params.cb),
|
401
|
+
res (std::make_unique<llm_graph_result>()) {
|
402
|
+
}
|
403
|
+
|
404
|
+
void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
|
405
|
+
if (cb_func) {
|
406
|
+
cb_func(ubatch, cur, name, il);
|
407
|
+
}
|
408
|
+
}
|
409
|
+
|
410
|
+
ggml_tensor * llm_graph_context::build_cvec(
|
411
|
+
ggml_tensor * cur,
|
412
|
+
int il) const {
|
413
|
+
return cvec->apply_to(ctx0, cur, il);
|
414
|
+
}
|
415
|
+
|
416
|
+
ggml_tensor * llm_graph_context::build_lora_mm(
|
417
|
+
ggml_tensor * w,
|
418
|
+
ggml_tensor * cur) const {
|
419
|
+
ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
|
420
|
+
|
421
|
+
for (const auto & lora : *loras) {
|
422
|
+
llama_adapter_lora_weight * lw = lora.first->get_weight(w);
|
423
|
+
if (lw == nullptr) {
|
424
|
+
continue;
|
425
|
+
}
|
426
|
+
|
427
|
+
const float adapter_scale = lora.second;
|
428
|
+
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
|
429
|
+
|
430
|
+
ggml_tensor * ab_cur = ggml_mul_mat(
|
431
|
+
ctx0, lw->b,
|
432
|
+
ggml_mul_mat(ctx0, lw->a, cur)
|
433
|
+
);
|
434
|
+
|
435
|
+
ab_cur = ggml_scale(ctx0, ab_cur, scale);
|
436
|
+
res = ggml_add(ctx0, res, ab_cur);
|
437
|
+
}
|
438
|
+
|
439
|
+
return res;
|
440
|
+
}
|
441
|
+
|
442
|
+
ggml_tensor * llm_graph_context::build_lora_mm_id(
|
443
|
+
ggml_tensor * w, // ggml_tensor * as
|
444
|
+
ggml_tensor * cur, // ggml_tensor * b
|
445
|
+
ggml_tensor * ids) const {
|
446
|
+
ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
|
447
|
+
for (const auto & lora : *loras) {
|
448
|
+
llama_adapter_lora_weight * lw = lora.first->get_weight(w);
|
449
|
+
if (lw == nullptr) {
|
450
|
+
continue;
|
451
|
+
}
|
452
|
+
|
453
|
+
const float alpha = lora.first->alpha;
|
454
|
+
const float rank = (float) lw->b->ne[0];
|
455
|
+
const float scale = alpha ? lora.second * alpha / rank : lora.second;
|
456
|
+
|
457
|
+
ggml_tensor * ab_cur = ggml_mul_mat_id(
|
458
|
+
ctx0, lw->b,
|
459
|
+
ggml_mul_mat_id(ctx0, lw->a, cur, ids),
|
460
|
+
ids
|
461
|
+
);
|
462
|
+
|
463
|
+
ab_cur = ggml_scale(ctx0, ab_cur, scale);
|
464
|
+
res = ggml_add(ctx0, res, ab_cur);
|
465
|
+
}
|
466
|
+
|
467
|
+
return res;
|
468
|
+
}
|
469
|
+
|
470
|
+
ggml_tensor * llm_graph_context::build_norm(
|
471
|
+
ggml_tensor * cur,
|
472
|
+
ggml_tensor * mw,
|
473
|
+
ggml_tensor * mb,
|
474
|
+
llm_norm_type type,
|
475
|
+
int il) const {
|
476
|
+
switch (type) {
|
477
|
+
case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
|
478
|
+
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
|
479
|
+
case LLM_NORM_GROUP:
|
480
|
+
{
|
481
|
+
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
|
482
|
+
cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
|
483
|
+
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
|
484
|
+
} break;
|
485
|
+
}
|
486
|
+
|
487
|
+
if (mw || mb) {
|
488
|
+
cb(cur, "norm", il);
|
489
|
+
}
|
490
|
+
|
491
|
+
if (mw) {
|
492
|
+
cur = ggml_mul(ctx0, cur, mw);
|
493
|
+
if (mb) {
|
494
|
+
cb(cur, "norm_w", il);
|
495
|
+
}
|
496
|
+
}
|
497
|
+
|
498
|
+
if (mb) {
|
499
|
+
cur = ggml_add(ctx0, cur, mb);
|
500
|
+
}
|
501
|
+
|
502
|
+
return cur;
|
503
|
+
}
|
504
|
+
|
505
|
+
ggml_tensor * llm_graph_context::build_ffn(
|
506
|
+
ggml_tensor * cur,
|
507
|
+
ggml_tensor * up,
|
508
|
+
ggml_tensor * up_b,
|
509
|
+
ggml_tensor * up_s,
|
510
|
+
ggml_tensor * gate,
|
511
|
+
ggml_tensor * gate_b,
|
512
|
+
ggml_tensor * gate_s,
|
513
|
+
ggml_tensor * down,
|
514
|
+
ggml_tensor * down_b,
|
515
|
+
ggml_tensor * down_s,
|
516
|
+
ggml_tensor * act_scales,
|
517
|
+
llm_ffn_op_type type_op,
|
518
|
+
llm_ffn_gate_type type_gate,
|
519
|
+
int il) const {
|
520
|
+
ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
|
521
|
+
cb(tmp, "ffn_up", il);
|
522
|
+
|
523
|
+
if (up_b) {
|
524
|
+
tmp = ggml_add(ctx0, tmp, up_b);
|
525
|
+
cb(tmp, "ffn_up_b", il);
|
526
|
+
}
|
527
|
+
|
528
|
+
if (up_s) {
|
529
|
+
tmp = ggml_mul(ctx0, tmp, up_s);
|
530
|
+
cb(tmp, "ffn_up_s", il);
|
531
|
+
}
|
532
|
+
|
533
|
+
if (gate) {
|
534
|
+
switch (type_gate) {
|
535
|
+
case LLM_FFN_SEQ:
|
536
|
+
{
|
537
|
+
cur = build_lora_mm(gate, tmp);
|
538
|
+
cb(cur, "ffn_gate", il);
|
539
|
+
} break;
|
540
|
+
case LLM_FFN_PAR:
|
541
|
+
{
|
542
|
+
cur = build_lora_mm(gate, cur);
|
543
|
+
cb(cur, "ffn_gate", il);
|
544
|
+
} break;
|
545
|
+
}
|
546
|
+
|
547
|
+
if (gate_b) {
|
548
|
+
cur = ggml_add(ctx0, cur, gate_b);
|
549
|
+
cb(cur, "ffn_gate_b", il);
|
550
|
+
}
|
551
|
+
|
552
|
+
if (gate_s) {
|
553
|
+
cur = ggml_mul(ctx0, cur, gate_s);
|
554
|
+
cb(cur, "ffn_gate_s", il);
|
555
|
+
}
|
556
|
+
|
557
|
+
} else {
|
558
|
+
cur = tmp;
|
559
|
+
}
|
560
|
+
|
561
|
+
switch (type_op) {
|
562
|
+
case LLM_FFN_SILU:
|
563
|
+
if (gate && type_gate == LLM_FFN_PAR) {
|
564
|
+
cur = ggml_swiglu_split(ctx0, cur, tmp);
|
565
|
+
cb(cur, "ffn_swiglu", il);
|
566
|
+
type_gate = LLM_FFN_SEQ;
|
567
|
+
} else {
|
568
|
+
cur = ggml_silu(ctx0, cur);
|
569
|
+
cb(cur, "ffn_silu", il);
|
570
|
+
} break;
|
571
|
+
case LLM_FFN_GELU:
|
572
|
+
if (gate && type_gate == LLM_FFN_PAR) {
|
573
|
+
cur = ggml_geglu_split(ctx0, cur, tmp);
|
574
|
+
cb(cur, "ffn_geglu", il);
|
575
|
+
type_gate = LLM_FFN_SEQ;
|
576
|
+
} else {
|
577
|
+
cur = ggml_gelu(ctx0, cur);
|
578
|
+
cb(cur, "ffn_gelu", il);
|
579
|
+
if (act_scales != NULL) {
|
580
|
+
cur = ggml_div(ctx0, cur, act_scales);
|
581
|
+
cb(cur, "ffn_act", il);
|
582
|
+
}
|
583
|
+
} break;
|
584
|
+
case LLM_FFN_RELU:
|
585
|
+
if (gate && type_gate == LLM_FFN_PAR) {
|
586
|
+
cur = ggml_reglu_split(ctx0, cur, tmp);
|
587
|
+
cb(cur, "ffn_reglu", il);
|
588
|
+
type_gate = LLM_FFN_SEQ;
|
589
|
+
} else {
|
590
|
+
cur = ggml_relu(ctx0, cur);
|
591
|
+
cb(cur, "ffn_relu", il);
|
592
|
+
} break;
|
593
|
+
case LLM_FFN_RELU_SQR:
|
594
|
+
{
|
595
|
+
cur = ggml_relu(ctx0, cur);
|
596
|
+
cb(cur, "ffn_relu", il);
|
597
|
+
|
598
|
+
cur = ggml_sqr(ctx0, cur);
|
599
|
+
cb(cur, "ffn_sqr(relu)", il);
|
600
|
+
} break;
|
601
|
+
case LLM_FFN_SWIGLU:
|
602
|
+
{
|
603
|
+
cur = ggml_swiglu(ctx0, cur);
|
604
|
+
cb(cur, "ffn_swiglu", il);
|
605
|
+
} break;
|
606
|
+
case LLM_FFN_GEGLU:
|
607
|
+
{
|
608
|
+
cur = ggml_geglu(ctx0, cur);
|
609
|
+
cb(cur, "ffn_geglu", il);
|
610
|
+
} break;
|
611
|
+
case LLM_FFN_REGLU:
|
612
|
+
{
|
613
|
+
cur = ggml_reglu(ctx0, cur);
|
614
|
+
cb(cur, "ffn_reglu", il);
|
615
|
+
} break;
|
616
|
+
}
|
617
|
+
|
618
|
+
if (gate && type_gate == LLM_FFN_PAR) {
|
619
|
+
cur = ggml_mul(ctx0, cur, tmp);
|
620
|
+
cb(cur, "ffn_gate_par", il);
|
621
|
+
}
|
622
|
+
|
623
|
+
if (down) {
|
624
|
+
cur = build_lora_mm(down, cur);
|
625
|
+
if (arch == LLM_ARCH_GLM4) {
|
626
|
+
// GLM4 seems to have numerical issues with half-precision accumulators
|
627
|
+
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
|
628
|
+
}
|
629
|
+
}
|
630
|
+
|
631
|
+
if (down_b) {
|
632
|
+
cb(cur, "ffn_down", il);
|
633
|
+
}
|
634
|
+
|
635
|
+
if (down_b) {
|
636
|
+
cur = ggml_add(ctx0, cur, down_b);
|
637
|
+
}
|
638
|
+
|
639
|
+
if (down_s) {
|
640
|
+
cur = ggml_mul(ctx0, cur, down_s);
|
641
|
+
cb(cur, "ffn_down_s", il);
|
642
|
+
}
|
643
|
+
|
644
|
+
return cur;
|
645
|
+
}
|
646
|
+
|
647
|
+
ggml_tensor * llm_graph_context::build_moe_ffn(
|
648
|
+
ggml_tensor * cur,
|
649
|
+
ggml_tensor * gate_inp,
|
650
|
+
ggml_tensor * up_exps,
|
651
|
+
ggml_tensor * gate_exps,
|
652
|
+
ggml_tensor * down_exps,
|
653
|
+
ggml_tensor * exp_probs_b,
|
654
|
+
int64_t n_expert,
|
655
|
+
int64_t n_expert_used,
|
656
|
+
llm_ffn_op_type type_op,
|
657
|
+
bool norm_w,
|
658
|
+
bool scale_w,
|
659
|
+
float w_scale,
|
660
|
+
llama_expert_gating_func_type gating_op,
|
661
|
+
int il) const {
|
662
|
+
const int64_t n_embd = cur->ne[0];
|
663
|
+
const int64_t n_tokens = cur->ne[1];
|
664
|
+
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
|
665
|
+
|
666
|
+
ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
|
667
|
+
cb(logits, "ffn_moe_logits", il);
|
668
|
+
|
669
|
+
ggml_tensor * probs = nullptr;
|
670
|
+
switch (gating_op) {
|
671
|
+
case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
|
672
|
+
{
|
673
|
+
probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
|
674
|
+
} break;
|
675
|
+
case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
|
676
|
+
{
|
677
|
+
probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
|
678
|
+
} break;
|
679
|
+
default:
|
680
|
+
GGML_ABORT("fatal error");
|
681
|
+
}
|
682
|
+
cb(probs, "ffn_moe_probs", il);
|
683
|
+
|
684
|
+
// add experts selection bias - introduced in DeepSeek V3
|
685
|
+
// leave probs unbiased as it's later used to get expert weights
|
686
|
+
ggml_tensor * selection_probs = probs;
|
687
|
+
if (exp_probs_b != nullptr) {
|
688
|
+
selection_probs = ggml_add(ctx0, probs, exp_probs_b);
|
689
|
+
cb(selection_probs, "ffn_moe_probs_biased", il);
|
690
|
+
}
|
691
|
+
|
692
|
+
// llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
|
693
|
+
// see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
|
694
|
+
if (arch == LLM_ARCH_LLAMA4) {
|
695
|
+
selection_probs = logits;
|
696
|
+
}
|
697
|
+
|
698
|
+
// select experts
|
699
|
+
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
|
700
|
+
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
701
|
+
cb(selected_experts, "ffn_moe_topk", il);
|
702
|
+
|
703
|
+
ggml_tensor * weights = ggml_get_rows(ctx0,
|
704
|
+
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
|
705
|
+
cb(weights, "ffn_moe_weights", il);
|
706
|
+
|
707
|
+
if (norm_w) {
|
708
|
+
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
|
709
|
+
|
710
|
+
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
|
711
|
+
cb(weights_sum, "ffn_moe_weights_sum", il);
|
712
|
+
|
713
|
+
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
|
714
|
+
cb(weights, "ffn_moe_weights_norm", il);
|
715
|
+
|
716
|
+
weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
|
717
|
+
}
|
718
|
+
if (scale_w) {
|
719
|
+
weights = ggml_scale(ctx0, weights, w_scale);
|
720
|
+
cb(weights, "ffn_moe_weights_scaled", il);
|
721
|
+
}
|
722
|
+
|
723
|
+
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
|
724
|
+
|
725
|
+
if (weight_before_ffn) {
|
726
|
+
// repeat cur to [n_embd, n_expert_used, n_tokens]
|
727
|
+
ggml_tensor * repeated = ggml_repeat_4d(ctx0, cur, n_embd, n_expert_used, n_tokens, 1);
|
728
|
+
cur = ggml_mul(ctx0, repeated, weights);
|
729
|
+
cb(cur, "ffn_moe_weighted", il);
|
730
|
+
}
|
731
|
+
|
732
|
+
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
733
|
+
cb(up, "ffn_moe_up", il);
|
734
|
+
|
735
|
+
ggml_tensor * experts = nullptr;
|
736
|
+
if (gate_exps) {
|
737
|
+
cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
|
738
|
+
cb(cur, "ffn_moe_gate", il);
|
739
|
+
} else {
|
740
|
+
cur = up;
|
741
|
+
}
|
742
|
+
|
743
|
+
switch (type_op) {
|
744
|
+
case LLM_FFN_SILU:
|
745
|
+
if (gate_exps) {
|
746
|
+
cur = ggml_swiglu_split(ctx0, cur, up);
|
747
|
+
cb(cur, "ffn_moe_swiglu", il);
|
748
|
+
} else {
|
749
|
+
cur = ggml_silu(ctx0, cur);
|
750
|
+
cb(cur, "ffn_moe_silu", il);
|
751
|
+
} break;
|
752
|
+
case LLM_FFN_GELU:
|
753
|
+
if (gate_exps) {
|
754
|
+
cur = ggml_geglu_split(ctx0, cur, up);
|
755
|
+
cb(cur, "ffn_moe_geglu", il);
|
756
|
+
} else {
|
757
|
+
cur = ggml_gelu(ctx0, cur);
|
758
|
+
cb(cur, "ffn_moe_gelu", il);
|
759
|
+
} break;
|
760
|
+
default:
|
761
|
+
GGML_ABORT("fatal error");
|
762
|
+
}
|
763
|
+
|
764
|
+
experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
|
765
|
+
cb(experts, "ffn_moe_down", il);
|
766
|
+
|
767
|
+
if (!weight_before_ffn) {
|
768
|
+
experts = ggml_mul(ctx0, experts, weights);
|
769
|
+
cb(cur, "ffn_moe_weighted", il);
|
770
|
+
}
|
771
|
+
|
772
|
+
// aggregate experts
|
773
|
+
ggml_tensor * moe_out = nullptr;
|
774
|
+
for (int i = 0; i < n_expert_used; ++i) {
|
775
|
+
ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
|
776
|
+
experts->nb[2], i*experts->nb[1]);
|
777
|
+
|
778
|
+
if (i == 0) {
|
779
|
+
moe_out = cur_expert;
|
780
|
+
} else {
|
781
|
+
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
782
|
+
}
|
783
|
+
}
|
784
|
+
|
785
|
+
if (n_expert_used == 1) {
|
786
|
+
// avoid returning a non-contiguous tensor
|
787
|
+
moe_out = ggml_cont(ctx0, moe_out);
|
788
|
+
}
|
789
|
+
|
790
|
+
cb(moe_out, "ffn_moe_out", il);
|
791
|
+
|
792
|
+
return moe_out;
|
793
|
+
}
|
794
|
+
|
795
|
+
// input embeddings with optional lora
|
796
|
+
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
|
797
|
+
const int64_t n_embd = hparams.n_embd;
|
798
|
+
|
799
|
+
auto inp = std::make_unique<llm_graph_input_embd>();
|
800
|
+
|
801
|
+
ggml_tensor * cur = nullptr;
|
802
|
+
|
803
|
+
if (ubatch.token) {
|
804
|
+
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
|
805
|
+
//cb(inp->tokens, "inp_tokens", -1);
|
806
|
+
ggml_set_input(inp->tokens);
|
807
|
+
res->t_tokens = inp->tokens;
|
808
|
+
|
809
|
+
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
|
810
|
+
|
811
|
+
// apply lora for embedding tokens if needed
|
812
|
+
for (const auto & lora : *loras) {
|
813
|
+
llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
|
814
|
+
if (lw == nullptr) {
|
815
|
+
continue;
|
816
|
+
}
|
817
|
+
|
818
|
+
const float adapter_scale = lora.second;
|
819
|
+
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
|
820
|
+
|
821
|
+
ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
|
822
|
+
ctx0, lw->b, // non-transposed lora_b
|
823
|
+
ggml_get_rows(ctx0, lw->a, inp->tokens)
|
824
|
+
), scale);
|
825
|
+
|
826
|
+
cur = ggml_add(ctx0, cur, inpL_delta);
|
827
|
+
}
|
828
|
+
} else {
|
829
|
+
inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
|
830
|
+
ggml_set_input(inp->embd);
|
831
|
+
|
832
|
+
cur = inp->embd;
|
833
|
+
}
|
834
|
+
|
835
|
+
// For Granite architecture
|
836
|
+
if (hparams.f_embedding_scale != 0.0f) {
|
837
|
+
cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
|
838
|
+
}
|
839
|
+
|
840
|
+
cb(cur, "inp_embd", -1);
|
841
|
+
|
842
|
+
res->add_input(std::move(inp));
|
843
|
+
|
844
|
+
return cur;
|
845
|
+
}
|
846
|
+
|
847
|
+
ggml_tensor * llm_graph_context::build_inp_pos() const {
|
848
|
+
auto inp = std::make_unique<llm_graph_input_pos>(hparams.n_pos_per_embd());
|
849
|
+
|
850
|
+
auto & cur = inp->pos;
|
851
|
+
|
852
|
+
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, (int64_t)n_tokens*hparams.n_pos_per_embd());
|
853
|
+
ggml_set_input(cur);
|
854
|
+
|
855
|
+
res->add_input(std::move(inp));
|
856
|
+
|
857
|
+
return cur;
|
858
|
+
}
|
859
|
+
|
860
|
+
ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
|
861
|
+
auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
|
862
|
+
|
863
|
+
auto & cur = inp->attn_scale;
|
864
|
+
|
865
|
+
// this need to be 1x1xN for broadcasting
|
866
|
+
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
|
867
|
+
ggml_set_input(cur);
|
868
|
+
|
869
|
+
res->add_input(std::move(inp));
|
870
|
+
|
871
|
+
return cur;
|
872
|
+
}
|
873
|
+
|
874
|
+
ggml_tensor * llm_graph_context::build_inp_out_ids() const {
|
875
|
+
// note: when all tokens are output, we could skip this optimization to spare the ggml_get_rows() calls,
|
876
|
+
// but this would make the graph topology depend on the number of output tokens, which can interere with
|
877
|
+
// features that require constant topology such as pipline parallelism
|
878
|
+
// ref: https://github.com/ggml-org/llama.cpp/pull/14275#issuecomment-2987424471
|
879
|
+
//if (n_outputs < n_tokens) {
|
880
|
+
// return nullptr;
|
881
|
+
//}
|
882
|
+
|
883
|
+
auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
|
884
|
+
|
885
|
+
auto & cur = inp->out_ids;
|
886
|
+
|
887
|
+
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
|
888
|
+
ggml_set_input(cur);
|
889
|
+
|
890
|
+
res->add_input(std::move(inp));
|
891
|
+
|
892
|
+
return cur;
|
893
|
+
}
|
894
|
+
|
895
|
+
ggml_tensor * llm_graph_context::build_inp_mean() const {
|
896
|
+
auto inp = std::make_unique<llm_graph_input_mean>(cparams);
|
897
|
+
|
898
|
+
auto & cur = inp->mean;
|
899
|
+
|
900
|
+
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, ubatch.n_seqs_unq);
|
901
|
+
ggml_set_input(cur);
|
902
|
+
|
903
|
+
res->add_input(std::move(inp));
|
904
|
+
|
905
|
+
return cur;
|
906
|
+
}
|
907
|
+
|
908
|
+
ggml_tensor * llm_graph_context::build_inp_cls() const {
|
909
|
+
auto inp = std::make_unique<llm_graph_input_cls>(cparams);
|
910
|
+
|
911
|
+
auto & cur = inp->cls;
|
912
|
+
|
913
|
+
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_seqs_unq);
|
914
|
+
ggml_set_input(cur);
|
915
|
+
|
916
|
+
res->add_input(std::move(inp));
|
917
|
+
|
918
|
+
return cur;
|
919
|
+
}
|
920
|
+
|
921
|
+
ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
|
922
|
+
auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
|
923
|
+
|
924
|
+
auto & cur = inp->cross_embd;
|
925
|
+
|
926
|
+
// if we have the output embeddings from the encoder, use them directly
|
927
|
+
// TODO: needs more work to be correct, for now just use the tensor shape
|
928
|
+
//if (cross->t_embd) {
|
929
|
+
// cur = ggml_view_tensor(ctx0, cross->t_embd);
|
930
|
+
|
931
|
+
// return cur;
|
932
|
+
//}
|
933
|
+
|
934
|
+
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
|
935
|
+
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
|
936
|
+
|
937
|
+
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
|
938
|
+
ggml_set_input(cur);
|
939
|
+
|
940
|
+
res->add_input(std::move(inp));
|
941
|
+
|
942
|
+
return cur;
|
943
|
+
}
|
944
|
+
|
945
|
+
ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
|
946
|
+
auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
|
947
|
+
|
948
|
+
auto & cur = inp->pos_bucket;
|
949
|
+
|
950
|
+
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
|
951
|
+
ggml_set_input(cur);
|
952
|
+
|
953
|
+
res->add_input(std::move(inp));
|
954
|
+
|
955
|
+
return cur;
|
956
|
+
}
|
957
|
+
|
958
|
+
ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
|
959
|
+
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
|
960
|
+
|
961
|
+
auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, mctx_cur);
|
962
|
+
|
963
|
+
const auto n_kv = mctx_cur->get_n_kv();
|
964
|
+
|
965
|
+
auto & cur = inp->pos_bucket;
|
966
|
+
|
967
|
+
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
|
968
|
+
ggml_set_input(cur);
|
969
|
+
|
970
|
+
res->add_input(std::move(inp));
|
971
|
+
|
972
|
+
return cur;
|
973
|
+
}
|
974
|
+
|
975
|
+
ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
|
976
|
+
ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
|
977
|
+
cb(pos_bucket_1d, "pos_bucket_1d", -1);
|
978
|
+
|
979
|
+
ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
|
980
|
+
|
981
|
+
pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
|
982
|
+
pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
|
983
|
+
pos_bias = ggml_cont (ctx0, pos_bias);
|
984
|
+
|
985
|
+
cb(pos_bias, "pos_bias", -1);
|
986
|
+
|
987
|
+
return pos_bias;
|
988
|
+
}
|
989
|
+
|
990
|
+
llm_graph_input_mem_hybrid * llm_graph_context::build_inp_mem_hybrid() const {
|
991
|
+
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx);
|
992
|
+
|
993
|
+
auto inp = std::make_unique<llm_graph_input_mem_hybrid>(hparams, cparams, mctx_cur);
|
994
|
+
|
995
|
+
{
|
996
|
+
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Hybrid recurrent is not supported with SWA attention layers");
|
997
|
+
|
998
|
+
const auto n_kv = inp->mctx->get_attn()->get_n_kv();
|
999
|
+
|
1000
|
+
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
1001
|
+
//cb(inp->self_kq_mask, "KQ_mask", -1);
|
1002
|
+
ggml_set_input(inp->self_kq_mask);
|
1003
|
+
|
1004
|
+
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
|
1005
|
+
}
|
1006
|
+
|
1007
|
+
{
|
1008
|
+
const auto n_rs = mctx_cur->get_recr()->get_n_rs();
|
1009
|
+
|
1010
|
+
inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
|
1011
|
+
ggml_set_input(inp->s_copy);
|
1012
|
+
}
|
1013
|
+
|
1014
|
+
return (llm_graph_input_mem_hybrid *) res->add_input(std::move(inp));
|
1015
|
+
}
|
1016
|
+
|
1017
|
+
ggml_tensor * llm_graph_context::build_attn_mha(
|
1018
|
+
ggml_cgraph * gf,
|
1019
|
+
ggml_tensor * q,
|
1020
|
+
ggml_tensor * k,
|
1021
|
+
ggml_tensor * v,
|
1022
|
+
ggml_tensor * kq_b,
|
1023
|
+
ggml_tensor * kq_mask,
|
1024
|
+
ggml_tensor * v_mla,
|
1025
|
+
float kq_scale) const {
|
1026
|
+
const bool v_trans = v->nb[1] > v->nb[2];
|
1027
|
+
|
1028
|
+
q = ggml_permute(ctx0, q, 0, 2, 1, 3);
|
1029
|
+
k = ggml_permute(ctx0, k, 0, 2, 1, 3);
|
1030
|
+
v = ggml_permute(ctx0, v, 0, 2, 1, 3);
|
1031
|
+
|
1032
|
+
const auto n_tokens = q->ne[1];
|
1033
|
+
const auto n_head = q->ne[2];
|
1034
|
+
const auto n_kv = k->ne[1];
|
1035
|
+
|
1036
|
+
ggml_tensor * cur;
|
1037
|
+
|
1038
|
+
// TODO: replace hardcoded padding with ggml-provided padding
|
1039
|
+
if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
|
1040
|
+
GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
|
1041
|
+
|
1042
|
+
if (v_trans) {
|
1043
|
+
v = ggml_transpose(ctx0, v);
|
1044
|
+
}
|
1045
|
+
|
1046
|
+
// this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
|
1047
|
+
if (k->type == GGML_TYPE_F32) {
|
1048
|
+
k = ggml_cast(ctx0, k, GGML_TYPE_F16);
|
1049
|
+
}
|
1050
|
+
|
1051
|
+
if (v->type == GGML_TYPE_F32) {
|
1052
|
+
v = ggml_cast(ctx0, v, GGML_TYPE_F16);
|
1053
|
+
}
|
1054
|
+
|
1055
|
+
cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
|
1056
|
+
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
|
1057
|
+
|
1058
|
+
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
|
1059
|
+
|
1060
|
+
if (v_mla) {
|
1061
|
+
#if 0
|
1062
|
+
// v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
|
1063
|
+
// However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
|
1064
|
+
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
|
1065
|
+
cur = ggml_mul_mat(ctx0, v_mla, cur);
|
1066
|
+
#else
|
1067
|
+
// It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
|
1068
|
+
// The permutations are noops and only change how the tensor data is interpreted.
|
1069
|
+
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
1070
|
+
cur = ggml_mul_mat(ctx0, v_mla, cur);
|
1071
|
+
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
|
1072
|
+
cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
|
1073
|
+
#endif
|
1074
|
+
}
|
1075
|
+
|
1076
|
+
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
|
1077
|
+
} else {
|
1078
|
+
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
|
1079
|
+
|
1080
|
+
// note: this op tends to require high floating point range
|
1081
|
+
// while for some models F16 is enough, for others it is not, so we default to F32 here
|
1082
|
+
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
|
1083
|
+
|
1084
|
+
if (arch == LLM_ARCH_GROK) {
|
1085
|
+
// need to do the following:
|
1086
|
+
// multiply by attn_output_multiplyer of 0.08838834764831845
|
1087
|
+
// and then :
|
1088
|
+
// kq = 30 * tanh(kq / 30)
|
1089
|
+
// before the softmax below
|
1090
|
+
|
1091
|
+
kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
|
1092
|
+
kq = ggml_scale(ctx0, kq, 30);
|
1093
|
+
}
|
1094
|
+
|
1095
|
+
if (hparams.attn_soft_cap) {
|
1096
|
+
kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
|
1097
|
+
kq = ggml_tanh (ctx0, kq);
|
1098
|
+
kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
|
1099
|
+
}
|
1100
|
+
|
1101
|
+
if (kq_b) {
|
1102
|
+
kq = ggml_add(ctx0, kq, kq_b);
|
1103
|
+
}
|
1104
|
+
|
1105
|
+
kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
|
1106
|
+
|
1107
|
+
if (!v_trans) {
|
1108
|
+
// note: avoid this branch
|
1109
|
+
v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
|
1110
|
+
}
|
1111
|
+
|
1112
|
+
ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
|
1113
|
+
|
1114
|
+
// for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
|
1115
|
+
if (v_mla) {
|
1116
|
+
kqv = ggml_mul_mat(ctx0, v_mla, kqv);
|
1117
|
+
}
|
1118
|
+
|
1119
|
+
cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
1120
|
+
|
1121
|
+
cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
|
1122
|
+
|
1123
|
+
if (!cparams.offload_kqv) {
|
1124
|
+
// all nodes between the KV store and the attention output are run on the CPU
|
1125
|
+
ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
|
1126
|
+
}
|
1127
|
+
}
|
1128
|
+
|
1129
|
+
ggml_build_forward_expand(gf, cur);
|
1130
|
+
|
1131
|
+
return cur;
|
1132
|
+
}
|
1133
|
+
|
1134
|
+
llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
|
1135
|
+
auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
|
1136
|
+
|
1137
|
+
// note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
|
1138
|
+
inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
1139
|
+
//cb(inp_kq_mask, "KQ_mask", -1);
|
1140
|
+
ggml_set_input(inp->kq_mask);
|
1141
|
+
|
1142
|
+
inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
|
1143
|
+
|
1144
|
+
return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
|
1145
|
+
}
|
1146
|
+
|
1147
|
+
ggml_tensor * llm_graph_context::build_attn(
|
1148
|
+
llm_graph_input_attn_no_cache * inp,
|
1149
|
+
ggml_cgraph * gf,
|
1150
|
+
ggml_tensor * wo,
|
1151
|
+
ggml_tensor * wo_b,
|
1152
|
+
ggml_tensor * q_cur,
|
1153
|
+
ggml_tensor * k_cur,
|
1154
|
+
ggml_tensor * v_cur,
|
1155
|
+
ggml_tensor * kq_b,
|
1156
|
+
ggml_tensor * v_mla,
|
1157
|
+
float kq_scale,
|
1158
|
+
int il) const {
|
1159
|
+
GGML_UNUSED(n_tokens);
|
1160
|
+
|
1161
|
+
// these nodes are added to the graph together so that they are not reordered
|
1162
|
+
// by doing so, the number of splits in the graph is reduced
|
1163
|
+
ggml_build_forward_expand(gf, q_cur);
|
1164
|
+
ggml_build_forward_expand(gf, k_cur);
|
1165
|
+
ggml_build_forward_expand(gf, v_cur);
|
1166
|
+
|
1167
|
+
const auto & kq_mask = inp->get_kq_mask();
|
1168
|
+
|
1169
|
+
ggml_tensor * q = q_cur;
|
1170
|
+
ggml_tensor * k = k_cur;
|
1171
|
+
ggml_tensor * v = v_cur;
|
1172
|
+
|
1173
|
+
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
|
1174
|
+
cb(cur, "kqv_out", il);
|
1175
|
+
|
1176
|
+
if (wo) {
|
1177
|
+
cur = build_lora_mm(wo, cur);
|
1178
|
+
}
|
1179
|
+
|
1180
|
+
if (wo_b) {
|
1181
|
+
//cb(cur, "kqv_wo", il);
|
1182
|
+
}
|
1183
|
+
|
1184
|
+
if (wo_b) {
|
1185
|
+
cur = ggml_add(ctx0, cur, wo_b);
|
1186
|
+
}
|
1187
|
+
|
1188
|
+
return cur;
|
1189
|
+
}
|
1190
|
+
|
1191
|
+
llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
|
1192
|
+
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
|
1193
|
+
|
1194
|
+
auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, mctx_cur);
|
1195
|
+
|
1196
|
+
{
|
1197
|
+
GGML_ASSERT(hparams.swa_type == LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified_iswa for SWA");
|
1198
|
+
|
1199
|
+
const auto n_kv = mctx_cur->get_n_kv();
|
1200
|
+
|
1201
|
+
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
1202
|
+
//cb(inp->self_kq_mask, "KQ_mask", -1);
|
1203
|
+
ggml_set_input(inp->self_kq_mask);
|
1204
|
+
|
1205
|
+
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
|
1206
|
+
}
|
1207
|
+
|
1208
|
+
return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
|
1209
|
+
}
|
1210
|
+
|
1211
|
+
ggml_tensor * llm_graph_context::build_attn(
|
1212
|
+
llm_graph_input_attn_kv_unified * inp,
|
1213
|
+
ggml_cgraph * gf,
|
1214
|
+
ggml_tensor * wo,
|
1215
|
+
ggml_tensor * wo_b,
|
1216
|
+
ggml_tensor * q_cur,
|
1217
|
+
ggml_tensor * k_cur,
|
1218
|
+
ggml_tensor * v_cur,
|
1219
|
+
ggml_tensor * kq_b,
|
1220
|
+
ggml_tensor * v_mla,
|
1221
|
+
float kq_scale,
|
1222
|
+
int il) const {
|
1223
|
+
// these nodes are added to the graph together so that they are not reordered
|
1224
|
+
// by doing so, the number of splits in the graph is reduced
|
1225
|
+
ggml_build_forward_expand(gf, q_cur);
|
1226
|
+
ggml_build_forward_expand(gf, k_cur);
|
1227
|
+
ggml_build_forward_expand(gf, v_cur);
|
1228
|
+
|
1229
|
+
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_context *>(mctx);
|
1230
|
+
|
1231
|
+
// store to KV cache
|
1232
|
+
{
|
1233
|
+
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
|
1234
|
+
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
|
1235
|
+
}
|
1236
|
+
|
1237
|
+
const auto & kq_mask = inp->get_kq_mask();
|
1238
|
+
|
1239
|
+
ggml_tensor * q = q_cur;
|
1240
|
+
ggml_tensor * k = mctx_cur->get_k(ctx0, il);
|
1241
|
+
ggml_tensor * v = mctx_cur->get_v(ctx0, il);
|
1242
|
+
|
1243
|
+
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
|
1244
|
+
cb(cur, "kqv_out", il);
|
1245
|
+
|
1246
|
+
if (wo) {
|
1247
|
+
cur = build_lora_mm(wo, cur);
|
1248
|
+
if (arch == LLM_ARCH_GLM4) {
|
1249
|
+
// GLM4 seems to have numerical issues with half-precision accumulators
|
1250
|
+
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
|
1251
|
+
}
|
1252
|
+
}
|
1253
|
+
|
1254
|
+
if (wo_b) {
|
1255
|
+
cur = ggml_add(ctx0, cur, wo_b);
|
1256
|
+
}
|
1257
|
+
|
1258
|
+
return cur;
|
1259
|
+
}
|
1260
|
+
|
1261
|
+
ggml_tensor * llm_graph_context::build_attn(
|
1262
|
+
llm_graph_input_attn_kv_unified_iswa * inp,
|
1263
|
+
ggml_cgraph * gf,
|
1264
|
+
ggml_tensor * wo,
|
1265
|
+
ggml_tensor * wo_b,
|
1266
|
+
ggml_tensor * q_cur,
|
1267
|
+
ggml_tensor * k_cur,
|
1268
|
+
ggml_tensor * v_cur,
|
1269
|
+
ggml_tensor * kq_b,
|
1270
|
+
ggml_tensor * v_mla,
|
1271
|
+
float kq_scale,
|
1272
|
+
int il) const {
|
1273
|
+
// these nodes are added to the graph together so that they are not reordered
|
1274
|
+
// by doing so, the number of splits in the graph is reduced
|
1275
|
+
ggml_build_forward_expand(gf, q_cur);
|
1276
|
+
|
1277
|
+
if (k_cur) {
|
1278
|
+
ggml_build_forward_expand(gf, k_cur);
|
1279
|
+
}
|
1280
|
+
|
1281
|
+
if (v_cur) {
|
1282
|
+
ggml_build_forward_expand(gf, v_cur);
|
1283
|
+
}
|
1284
|
+
|
1285
|
+
const auto * mctx_iswa = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
|
1286
|
+
|
1287
|
+
const bool is_swa = hparams.is_swa(il);
|
1288
|
+
|
1289
|
+
const auto * mctx_cur = is_swa ? mctx_iswa->get_swa() : mctx_iswa->get_base();
|
1290
|
+
|
1291
|
+
// optionally store to KV cache
|
1292
|
+
if (k_cur) {
|
1293
|
+
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
|
1294
|
+
}
|
1295
|
+
|
1296
|
+
if (v_cur) {
|
1297
|
+
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
|
1298
|
+
}
|
1299
|
+
|
1300
|
+
const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
|
1301
|
+
|
1302
|
+
ggml_tensor * q = q_cur;
|
1303
|
+
ggml_tensor * k = mctx_cur->get_k(ctx0, il);
|
1304
|
+
ggml_tensor * v = mctx_cur->get_v(ctx0, il);
|
1305
|
+
|
1306
|
+
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
|
1307
|
+
cb(cur, "kqv_out", il);
|
1308
|
+
|
1309
|
+
if (wo) {
|
1310
|
+
cur = build_lora_mm(wo, cur);
|
1311
|
+
}
|
1312
|
+
|
1313
|
+
if (wo_b) {
|
1314
|
+
//cb(cur, "kqv_wo", il);
|
1315
|
+
}
|
1316
|
+
|
1317
|
+
if (wo_b) {
|
1318
|
+
cur = ggml_add(ctx0, cur, wo_b);
|
1319
|
+
}
|
1320
|
+
|
1321
|
+
return cur;
|
1322
|
+
}
|
1323
|
+
|
1324
|
+
llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
|
1325
|
+
auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
|
1326
|
+
|
1327
|
+
const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
|
1328
|
+
|
1329
|
+
inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
1330
|
+
ggml_set_input(inp->cross_kq_mask);
|
1331
|
+
|
1332
|
+
inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
|
1333
|
+
|
1334
|
+
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
|
1335
|
+
}
|
1336
|
+
|
1337
|
+
ggml_tensor * llm_graph_context::build_attn(
|
1338
|
+
llm_graph_input_attn_cross * inp,
|
1339
|
+
ggml_cgraph * gf,
|
1340
|
+
ggml_tensor * wo,
|
1341
|
+
ggml_tensor * wo_b,
|
1342
|
+
ggml_tensor * q_cur,
|
1343
|
+
ggml_tensor * k_cur,
|
1344
|
+
ggml_tensor * v_cur,
|
1345
|
+
ggml_tensor * kq_b,
|
1346
|
+
ggml_tensor * v_mla,
|
1347
|
+
float kq_scale,
|
1348
|
+
int il) const {
|
1349
|
+
// these nodes are added to the graph together so that they are not reordered
|
1350
|
+
// by doing so, the number of splits in the graph is reduced
|
1351
|
+
ggml_build_forward_expand(gf, q_cur);
|
1352
|
+
ggml_build_forward_expand(gf, k_cur);
|
1353
|
+
ggml_build_forward_expand(gf, v_cur);
|
1354
|
+
|
1355
|
+
const auto & kq_mask = inp->get_kq_mask_cross();
|
1356
|
+
|
1357
|
+
ggml_tensor * q = q_cur;
|
1358
|
+
ggml_tensor * k = k_cur;
|
1359
|
+
ggml_tensor * v = v_cur;
|
1360
|
+
|
1361
|
+
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
|
1362
|
+
cb(cur, "kqv_out", il);
|
1363
|
+
|
1364
|
+
if (wo) {
|
1365
|
+
cur = build_lora_mm(wo, cur);
|
1366
|
+
}
|
1367
|
+
|
1368
|
+
if (wo_b) {
|
1369
|
+
//cb(cur, "kqv_wo", il);
|
1370
|
+
}
|
1371
|
+
|
1372
|
+
if (wo_b) {
|
1373
|
+
cur = ggml_add(ctx0, cur, wo_b);
|
1374
|
+
}
|
1375
|
+
|
1376
|
+
return cur;
|
1377
|
+
}
|
1378
|
+
|
1379
|
+
ggml_tensor * llm_graph_context::build_attn(
|
1380
|
+
llm_graph_input_mem_hybrid * inp,
|
1381
|
+
ggml_cgraph * gf,
|
1382
|
+
ggml_tensor * wo,
|
1383
|
+
ggml_tensor * wo_b,
|
1384
|
+
ggml_tensor * q_cur,
|
1385
|
+
ggml_tensor * k_cur,
|
1386
|
+
ggml_tensor * v_cur,
|
1387
|
+
ggml_tensor * kq_b,
|
1388
|
+
ggml_tensor * v_mla,
|
1389
|
+
float kq_scale,
|
1390
|
+
int il) const {
|
1391
|
+
// these nodes are added to the graph together so that they are not reordered
|
1392
|
+
// by doing so, the number of splits in the graph is reduced
|
1393
|
+
ggml_build_forward_expand(gf, q_cur);
|
1394
|
+
ggml_build_forward_expand(gf, k_cur);
|
1395
|
+
ggml_build_forward_expand(gf, v_cur);
|
1396
|
+
|
1397
|
+
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_attn();
|
1398
|
+
|
1399
|
+
// store to KV cache
|
1400
|
+
{
|
1401
|
+
ggml_build_forward_expand(gf, mctx_cur->cpy_k(ctx0, k_cur, il));
|
1402
|
+
ggml_build_forward_expand(gf, mctx_cur->cpy_v(ctx0, v_cur, il));
|
1403
|
+
}
|
1404
|
+
|
1405
|
+
const auto & kq_mask = inp->get_kq_mask();
|
1406
|
+
|
1407
|
+
ggml_tensor * q = q_cur;
|
1408
|
+
ggml_tensor * k = mctx_cur->get_k(ctx0, il);
|
1409
|
+
ggml_tensor * v = mctx_cur->get_v(ctx0, il);
|
1410
|
+
|
1411
|
+
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
|
1412
|
+
cb(cur, "kqv_out", il);
|
1413
|
+
|
1414
|
+
if (wo) {
|
1415
|
+
cur = build_lora_mm(wo, cur);
|
1416
|
+
if (arch == LLM_ARCH_GLM4) {
|
1417
|
+
// GLM4 seems to have numerical issues with half-precision accumulators
|
1418
|
+
ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
|
1419
|
+
}
|
1420
|
+
}
|
1421
|
+
|
1422
|
+
if (wo_b) {
|
1423
|
+
cur = ggml_add(ctx0, cur, wo_b);
|
1424
|
+
}
|
1425
|
+
|
1426
|
+
return cur;
|
1427
|
+
}
|
1428
|
+
|
1429
|
+
llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const {
|
1430
|
+
const auto * mctx_cur = static_cast<const llama_kv_cache_unified_iswa_context *>(mctx);
|
1431
|
+
|
1432
|
+
auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, mctx_cur);
|
1433
|
+
|
1434
|
+
{
|
1435
|
+
const auto n_kv = mctx_cur->get_base()->get_n_kv();
|
1436
|
+
|
1437
|
+
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
1438
|
+
//cb(inp->self_kq_mask, "KQ_mask", -1);
|
1439
|
+
ggml_set_input(inp->self_kq_mask);
|
1440
|
+
|
1441
|
+
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
|
1442
|
+
}
|
1443
|
+
|
1444
|
+
{
|
1445
|
+
GGML_ASSERT(hparams.swa_type != LLAMA_SWA_TYPE_NONE && "Use llama_kv_cache_unified for non-SWA");
|
1446
|
+
|
1447
|
+
const auto n_kv = mctx_cur->get_swa()->get_n_kv();
|
1448
|
+
|
1449
|
+
inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
|
1450
|
+
//cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
|
1451
|
+
ggml_set_input(inp->self_kq_mask_swa);
|
1452
|
+
|
1453
|
+
inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
|
1454
|
+
}
|
1455
|
+
|
1456
|
+
return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp));
|
1457
|
+
}
|
1458
|
+
|
1459
|
+
ggml_tensor * llm_graph_context::build_rs(
|
1460
|
+
ggml_cgraph * gf,
|
1461
|
+
ggml_tensor * s,
|
1462
|
+
ggml_tensor * state_copy,
|
1463
|
+
int32_t state_size,
|
1464
|
+
int32_t n_seqs,
|
1465
|
+
uint32_t n_kv,
|
1466
|
+
uint32_t kv_head,
|
1467
|
+
uint32_t kv_size,
|
1468
|
+
int32_t rs_zero,
|
1469
|
+
bool avoid_copies) const {
|
1470
|
+
|
1471
|
+
ggml_tensor * states = ggml_reshape_2d(ctx0, s, state_size, kv_size);
|
1472
|
+
|
1473
|
+
// Clear a single state which will then be copied to the other cleared states.
|
1474
|
+
// Note that this is a no-op when the view is zero-sized.
|
1475
|
+
ggml_tensor * state_zero = ggml_view_1d(ctx0, states, state_size*(rs_zero >= 0), rs_zero*states->nb[1]*(rs_zero >= 0));
|
1476
|
+
ggml_build_forward_expand(gf, ggml_scale_inplace(ctx0, state_zero, 0));
|
1477
|
+
|
1478
|
+
ggml_tensor * output_states;
|
1479
|
+
|
1480
|
+
if (!avoid_copies) {
|
1481
|
+
// copy states
|
1482
|
+
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
|
1483
|
+
// {state_size, kv_size} -> {state_size, n_seqs}
|
1484
|
+
output_states = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_seqs, 0));
|
1485
|
+
ggml_build_forward_expand(gf, output_states);
|
1486
|
+
} else {
|
1487
|
+
// FIXME: make the gathering operation happen before the copy below
|
1488
|
+
// (maybe with an optional lambda function passed as a parameter instead of `avoid_copies`?)
|
1489
|
+
output_states = states;
|
1490
|
+
}
|
1491
|
+
|
1492
|
+
// copy extra states which won't be changed further (between n_seqs and n_kv)
|
1493
|
+
ggml_tensor * states_extra = ggml_get_rows(ctx0, states, ggml_view_1d(ctx0, state_copy, n_kv - n_seqs, n_seqs*state_copy->nb[0]));
|
1494
|
+
ggml_build_forward_expand(gf,
|
1495
|
+
ggml_cpy(ctx0,
|
1496
|
+
states_extra,
|
1497
|
+
ggml_view_1d(ctx0, s, state_size*(n_kv - n_seqs), (kv_head + n_seqs)*state_size*ggml_element_size(s))));
|
1498
|
+
|
1499
|
+
return output_states;
|
1500
|
+
}
|
1501
|
+
|
1502
|
+
llm_graph_input_rs * llm_graph_context::build_rs_inp() const {
|
1503
|
+
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
1504
|
+
|
1505
|
+
auto inp = std::make_unique<llm_graph_input_rs>(mctx_cur);
|
1506
|
+
|
1507
|
+
const auto n_rs = mctx_cur->get_n_rs();
|
1508
|
+
|
1509
|
+
inp->s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_rs);
|
1510
|
+
ggml_set_input(inp->s_copy);
|
1511
|
+
|
1512
|
+
return (llm_graph_input_rs *) res->add_input(std::move(inp));
|
1513
|
+
}
|
1514
|
+
|
1515
|
+
ggml_tensor * llm_graph_context::build_rs(
|
1516
|
+
llm_graph_input_rs * inp,
|
1517
|
+
ggml_cgraph * gf,
|
1518
|
+
ggml_tensor * s,
|
1519
|
+
int32_t state_size,
|
1520
|
+
int32_t n_seqs,
|
1521
|
+
bool avoid_copies) const {
|
1522
|
+
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
1523
|
+
|
1524
|
+
return build_rs(gf, s, inp->s_copy, state_size, n_seqs, mctx_cur->get_n_rs(), mctx_cur->get_head(), mctx_cur->get_size(), mctx_cur->get_rs_z(), avoid_copies);
|
1525
|
+
}
|
1526
|
+
|
1527
|
+
ggml_tensor * llm_graph_context::build_rs(
|
1528
|
+
llm_graph_input_mem_hybrid * inp,
|
1529
|
+
ggml_cgraph * gf,
|
1530
|
+
ggml_tensor * s,
|
1531
|
+
int32_t state_size,
|
1532
|
+
int32_t n_seqs,
|
1533
|
+
bool avoid_copies) const {
|
1534
|
+
const auto * mctx_cur = static_cast<const llama_memory_hybrid_context *>(mctx)->get_recr();
|
1535
|
+
|
1536
|
+
return build_rs(gf, s, inp->s_copy, state_size, n_seqs, mctx_cur->get_n_rs(), mctx_cur->get_head(), mctx_cur->get_size(), mctx_cur->get_rs_z(), avoid_copies);
|
1537
|
+
}
|
1538
|
+
|
1539
|
+
ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
|
1540
|
+
llm_graph_input_rs * inp,
|
1541
|
+
ggml_cgraph * gf,
|
1542
|
+
const llama_ubatch & ubatch,
|
1543
|
+
int il) const {
|
1544
|
+
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
1545
|
+
|
1546
|
+
const auto token_shift_count = hparams.token_shift_count;
|
1547
|
+
|
1548
|
+
const int64_t n_seqs = ubatch.n_seqs;
|
1549
|
+
|
1550
|
+
ggml_tensor * token_shift_all = mctx_cur->get_r_l(il);
|
1551
|
+
|
1552
|
+
ggml_tensor * token_shift = build_rs(
|
1553
|
+
inp, gf, token_shift_all,
|
1554
|
+
hparams.n_embd_r(), n_seqs);
|
1555
|
+
|
1556
|
+
token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
|
1557
|
+
|
1558
|
+
return token_shift;
|
1559
|
+
}
|
1560
|
+
|
1561
|
+
ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
|
1562
|
+
ggml_tensor * token_shift,
|
1563
|
+
const llama_ubatch & ubatch,
|
1564
|
+
int il) const {
|
1565
|
+
const auto * mctx_cur = static_cast<const llama_memory_recurrent_context *>(mctx);
|
1566
|
+
|
1567
|
+
const auto token_shift_count = hparams.token_shift_count;
|
1568
|
+
const auto n_embd = hparams.n_embd;
|
1569
|
+
|
1570
|
+
const int64_t n_seqs = ubatch.n_seqs;
|
1571
|
+
|
1572
|
+
const auto kv_head = mctx_cur->get_head();
|
1573
|
+
|
1574
|
+
return ggml_cpy(
|
1575
|
+
ctx0,
|
1576
|
+
ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
|
1577
|
+
ggml_view_1d(ctx0, mctx_cur->get_r_l(il), hparams.n_embd_r()*n_seqs, hparams.n_embd_r()*kv_head*ggml_element_size(mctx_cur->get_r_l(il)))
|
1578
|
+
);
|
1579
|
+
}
|
1580
|
+
|
1581
|
+
void llm_graph_context::build_pooling(
|
1582
|
+
ggml_cgraph * gf,
|
1583
|
+
ggml_tensor * cls,
|
1584
|
+
ggml_tensor * cls_b,
|
1585
|
+
ggml_tensor * cls_out,
|
1586
|
+
ggml_tensor * cls_out_b) const {
|
1587
|
+
if (!cparams.embeddings) {
|
1588
|
+
return;
|
1589
|
+
}
|
1590
|
+
|
1591
|
+
ggml_tensor * inp = res->t_embd;
|
1592
|
+
|
1593
|
+
//// find result_norm tensor for input
|
1594
|
+
//for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
|
1595
|
+
// inp = ggml_graph_node(gf, i);
|
1596
|
+
// if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
|
1597
|
+
// break;
|
1598
|
+
// }
|
1599
|
+
|
1600
|
+
// inp = nullptr;
|
1601
|
+
//}
|
1602
|
+
|
1603
|
+
GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
|
1604
|
+
|
1605
|
+
ggml_tensor * cur;
|
1606
|
+
|
1607
|
+
switch (pooling_type) {
|
1608
|
+
case LLAMA_POOLING_TYPE_NONE:
|
1609
|
+
{
|
1610
|
+
cur = inp;
|
1611
|
+
} break;
|
1612
|
+
case LLAMA_POOLING_TYPE_MEAN:
|
1613
|
+
{
|
1614
|
+
ggml_tensor * inp_mean = build_inp_mean();
|
1615
|
+
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
|
1616
|
+
} break;
|
1617
|
+
case LLAMA_POOLING_TYPE_CLS:
|
1618
|
+
case LLAMA_POOLING_TYPE_LAST:
|
1619
|
+
{
|
1620
|
+
ggml_tensor * inp_cls = build_inp_cls();
|
1621
|
+
cur = ggml_get_rows(ctx0, inp, inp_cls);
|
1622
|
+
} break;
|
1623
|
+
case LLAMA_POOLING_TYPE_RANK:
|
1624
|
+
{
|
1625
|
+
ggml_tensor * inp_cls = build_inp_cls();
|
1626
|
+
inp = ggml_get_rows(ctx0, inp, inp_cls);
|
1627
|
+
|
1628
|
+
if (cls) {
|
1629
|
+
// classification head
|
1630
|
+
// https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
|
1631
|
+
cur = ggml_mul_mat(ctx0, cls, inp);
|
1632
|
+
if (cls_b) {
|
1633
|
+
cur = ggml_add(ctx0, cur, cls_b);
|
1634
|
+
}
|
1635
|
+
cur = ggml_tanh(ctx0, cur);
|
1636
|
+
|
1637
|
+
// some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
|
1638
|
+
// https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
|
1639
|
+
if (cls_out) {
|
1640
|
+
cur = ggml_mul_mat(ctx0, cls_out, cur);
|
1641
|
+
if (cls_out_b) {
|
1642
|
+
cur = ggml_add(ctx0, cur, cls_out_b);
|
1643
|
+
}
|
1644
|
+
}
|
1645
|
+
} else if (cls_out) {
|
1646
|
+
// Single layer classification head (direct projection)
|
1647
|
+
// https://github.com/huggingface/transformers/blob/f4fc42216cd56ab6b68270bf80d811614d8d59e4/src/transformers/models/bert/modeling_bert.py#L1476
|
1648
|
+
cur = ggml_mul_mat(ctx0, cls_out, inp);
|
1649
|
+
if (cls_out_b) {
|
1650
|
+
cur = ggml_add(ctx0, cur, cls_out_b);
|
1651
|
+
}
|
1652
|
+
} else {
|
1653
|
+
GGML_ABORT("RANK pooling requires either cls+cls_b or cls_out+cls_out_b");
|
1654
|
+
}
|
1655
|
+
} break;
|
1656
|
+
default:
|
1657
|
+
{
|
1658
|
+
GGML_ABORT("unknown pooling type");
|
1659
|
+
}
|
1660
|
+
}
|
1661
|
+
|
1662
|
+
cb(cur, "result_embd_pooled", -1);
|
1663
|
+
res->t_embd_pooled = cur;
|
1664
|
+
|
1665
|
+
ggml_build_forward_expand(gf, cur);
|
1666
|
+
}
|
1667
|
+
|
1668
|
+
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
|
1669
|
+
// TODO move to hparams if a T5 variant appears that uses a different value
|
1670
|
+
const int64_t max_distance = 128;
|
1671
|
+
|
1672
|
+
if (bidirectional) {
|
1673
|
+
n_buckets >>= 1;
|
1674
|
+
}
|
1675
|
+
|
1676
|
+
const int64_t max_exact = n_buckets >> 1;
|
1677
|
+
|
1678
|
+
int32_t relative_position = x - y;
|
1679
|
+
int32_t relative_bucket = 0;
|
1680
|
+
|
1681
|
+
if (bidirectional) {
|
1682
|
+
relative_bucket += (relative_position > 0) * n_buckets;
|
1683
|
+
relative_position = abs(relative_position);
|
1684
|
+
} else {
|
1685
|
+
relative_position = -std::min<int32_t>(relative_position, 0);
|
1686
|
+
}
|
1687
|
+
|
1688
|
+
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
|
1689
|
+
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
|
1690
|
+
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
|
1691
|
+
|
1692
|
+
return relative_bucket;
|
1693
|
+
}
|