torch-rb 0.1.8 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -2
- data/README.md +35 -11
- data/ext/torch/ext.cpp +37 -28
- data/ext/torch/extconf.rb +33 -6
- data/ext/torch/nn_functions.cpp +560 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.hpp +2 -0
- data/ext/torch/tensor_functions.cpp +2085 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +3175 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/hub.rb +9 -0
- data/lib/torch/native/generator.rb +6 -3
- data/lib/torch/native/native_functions.yaml +539 -397
- data/lib/torch/native/parser.rb +2 -0
- data/lib/torch/nn/adaptive_avg_pool1d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_pool2d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_pool3d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_poolnd.rb +14 -0
- data/lib/torch/nn/adaptive_max_pool1d.rb +9 -0
- data/lib/torch/nn/adaptive_max_pool2d.rb +9 -0
- data/lib/torch/nn/adaptive_max_pool3d.rb +9 -0
- data/lib/torch/nn/adaptive_max_poolnd.rb +15 -0
- data/lib/torch/nn/functional.rb +40 -2
- data/lib/torch/nn/module.rb +22 -1
- data/lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb +29 -0
- data/lib/torch/optim/lr_scheduler/exponential_lr.rb +22 -0
- data/lib/torch/optim/lr_scheduler/lambda_lr.rb +28 -0
- data/lib/torch/optim/lr_scheduler/multi_step_lr.rb +23 -0
- data/lib/torch/optim/lr_scheduler/multiplicative_lr.rb +32 -0
- data/lib/torch/tensor.rb +8 -0
- data/lib/torch/version.rb +1 -1
- data/lib/torch.rb +21 -0
- metadata +38 -3
@@ -39,6 +39,7 @@
|
|
39
39
|
|
40
40
|
# Computes the gradient of current tensor w.r.t. graph leaves.
|
41
41
|
- func: backward(Tensor self, Tensor? gradient=None, bool keep_graph=False, bool create_graph=False) -> ()
|
42
|
+
manual_kernel_registration: True
|
42
43
|
variants: method
|
43
44
|
|
44
45
|
# DEPRECATED. Sets the tensor data held by this `Variable` to be the same as
|
@@ -49,14 +50,19 @@
|
|
49
50
|
# where Variables *are* Tensors (as opposed to them containing tensors, which
|
50
51
|
# is what the previous interpretation was.)
|
51
52
|
- func: set_data(Tensor(a!) self, Tensor new_data) -> ()
|
52
|
-
use_c10_dispatcher:
|
53
|
+
use_c10_dispatcher: full
|
54
|
+
manual_kernel_registration: True
|
53
55
|
variants: method
|
54
56
|
|
55
57
|
- func: data(Tensor self) -> Tensor
|
58
|
+
use_c10_dispatcher: full
|
59
|
+
manual_kernel_registration: True
|
56
60
|
variants: method
|
57
61
|
|
58
62
|
# True if this `Variable` is a leaf and thus does not have a `grad_fn`.
|
59
63
|
- func: is_leaf(Tensor self) -> bool
|
64
|
+
use_c10_dispatcher: full
|
65
|
+
manual_kernel_registration: True
|
60
66
|
variants: method
|
61
67
|
|
62
68
|
# Returns the output index of this variable from the forward operation that
|
@@ -70,13 +76,24 @@
|
|
70
76
|
# assert y2.output_nr == 2
|
71
77
|
#
|
72
78
|
- func: output_nr(Tensor self) -> int
|
79
|
+
use_c10_dispatcher: full
|
80
|
+
manual_kernel_registration: True
|
73
81
|
variants: method
|
74
82
|
supports_named_tensor: True
|
75
83
|
|
76
84
|
- func: _version(Tensor self) -> int
|
85
|
+
use_c10_dispatcher: full
|
86
|
+
manual_kernel_registration: True
|
77
87
|
variants: method
|
78
88
|
|
79
89
|
- func: requires_grad_(Tensor(a!) self, bool _requires_grad=True) -> Tensor(a!)
|
90
|
+
manual_kernel_registration: True
|
91
|
+
variants: method
|
92
|
+
|
93
|
+
# Enables .grad attribute for non-leaf Tensors.
|
94
|
+
- func: retain_grad(Tensor(a!) self) -> ()
|
95
|
+
use_c10_dispatcher: full
|
96
|
+
manual_kernel_registration: True
|
80
97
|
variants: method
|
81
98
|
|
82
99
|
- func: rename_(Tensor(a!) self, Dimname[]? names) -> Tensor(a!)
|
@@ -123,6 +140,9 @@
|
|
123
140
|
dispatch:
|
124
141
|
CUDA: _cudnn_ctc_loss
|
125
142
|
|
143
|
+
- func: _use_cudnn_rnn_flatten_weight() -> bool
|
144
|
+
use_c10_dispatcher: full
|
145
|
+
|
126
146
|
- func: _cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, int input_size, int mode, int hidden_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
127
147
|
dispatch:
|
128
148
|
CUDA: _cudnn_rnn_flatten_weight
|
@@ -209,48 +229,30 @@
|
|
209
229
|
supports_named_tensor: True
|
210
230
|
|
211
231
|
- func: angle(Tensor self) -> Tensor
|
232
|
+
use_c10_dispatcher: full
|
212
233
|
variants: function, method
|
213
234
|
supports_named_tensor: True
|
214
|
-
named_guard: False
|
215
235
|
|
216
236
|
- func: angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
217
|
-
named_guard: False
|
218
237
|
supports_named_tensor: True
|
219
|
-
dispatch:
|
220
|
-
CPU: _angle_out_cpu
|
221
238
|
|
222
239
|
- func: real(Tensor self) -> Tensor
|
223
|
-
|
224
|
-
|
225
|
-
supports_named_tensor: True
|
226
|
-
|
227
|
-
- func: real.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
228
|
-
named_guard: False
|
240
|
+
use_c10_dispatcher: full
|
241
|
+
variants: function
|
229
242
|
supports_named_tensor: True
|
230
|
-
dispatch:
|
231
|
-
CPU: _real_out_cpu
|
232
243
|
|
233
244
|
- func: imag(Tensor self) -> Tensor
|
234
|
-
|
235
|
-
|
236
|
-
supports_named_tensor: True
|
237
|
-
|
238
|
-
- func: imag.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
239
|
-
named_guard: False
|
245
|
+
use_c10_dispatcher: full
|
246
|
+
variants: function
|
240
247
|
supports_named_tensor: True
|
241
|
-
dispatch:
|
242
|
-
CPU: _imag_out_cpu
|
243
248
|
|
244
249
|
- func: conj(Tensor self) -> Tensor
|
250
|
+
use_c10_dispatcher: full
|
245
251
|
variants: function, method
|
246
|
-
named_guard: False
|
247
252
|
supports_named_tensor: True
|
248
253
|
|
249
254
|
- func: conj.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
250
|
-
named_guard: False
|
251
255
|
supports_named_tensor: True
|
252
|
-
dispatch:
|
253
|
-
CPU: _conj_out_cpu
|
254
256
|
|
255
257
|
- func: acos(Tensor self) -> Tensor
|
256
258
|
use_c10_dispatcher: full
|
@@ -395,12 +397,16 @@
|
|
395
397
|
use_c10_dispatcher: full
|
396
398
|
|
397
399
|
- func: argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
|
398
|
-
use_c10_dispatcher: full
|
399
400
|
variants: function, method
|
401
|
+
dispatch:
|
402
|
+
CPU: argmax
|
403
|
+
CUDA: argmax
|
400
404
|
|
401
405
|
- func: argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
|
402
|
-
use_c10_dispatcher: full
|
403
406
|
variants: function, method
|
407
|
+
dispatch:
|
408
|
+
CPU: argmin
|
409
|
+
CUDA: argmin
|
404
410
|
|
405
411
|
- func: as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a)
|
406
412
|
variants: function, method
|
@@ -473,6 +479,11 @@
|
|
473
479
|
|
474
480
|
- func: batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor
|
475
481
|
|
482
|
+
- func: quantized_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor var, float eps, float output_scale, int output_zero_point) -> Tensor
|
483
|
+
requires_tensor: True
|
484
|
+
dispatch:
|
485
|
+
QuantizedCPU: quantized_batch_norm
|
486
|
+
|
476
487
|
- func: _batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)
|
477
488
|
|
478
489
|
- func: _batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask, Tensor reservedSpace) -> (Tensor, Tensor, Tensor)
|
@@ -508,6 +519,34 @@
|
|
508
519
|
|
509
520
|
- func: bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias) -> Tensor
|
510
521
|
|
522
|
+
- func: binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor
|
523
|
+
python_module: nn
|
524
|
+
variants: function
|
525
|
+
dispatch:
|
526
|
+
CPU: binary_cross_entropy_cpu
|
527
|
+
CUDA: binary_cross_entropy_cuda
|
528
|
+
|
529
|
+
- func: binary_cross_entropy.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
530
|
+
python_module: nn
|
531
|
+
variants: function
|
532
|
+
dispatch:
|
533
|
+
CPU: binary_cross_entropy_out_cpu
|
534
|
+
CUDA: binary_cross_entropy_out_cuda
|
535
|
+
|
536
|
+
- func: binary_cross_entropy_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor
|
537
|
+
python_module: nn
|
538
|
+
variants: function
|
539
|
+
dispatch:
|
540
|
+
CPU: binary_cross_entropy_backward_cpu
|
541
|
+
CUDA: binary_cross_entropy_backward_cuda
|
542
|
+
|
543
|
+
- func: binary_cross_entropy_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)
|
544
|
+
python_module: nn
|
545
|
+
variants: function
|
546
|
+
dispatch:
|
547
|
+
CPU: binary_cross_entropy_backward_out_cpu
|
548
|
+
CUDA: binary_cross_entropy_backward_out_cuda
|
549
|
+
|
511
550
|
- func: binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean) -> Tensor
|
512
551
|
variants: function
|
513
552
|
|
@@ -563,6 +602,34 @@
|
|
563
602
|
CUDA: logical_xor_out
|
564
603
|
supports_named_tensor: True
|
565
604
|
|
605
|
+
- func: logical_and(Tensor self, Tensor other) -> Tensor
|
606
|
+
variants: function, method
|
607
|
+
supports_named_tensor: True
|
608
|
+
|
609
|
+
- func: logical_and_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
610
|
+
variants: method
|
611
|
+
supports_named_tensor: True
|
612
|
+
|
613
|
+
- func: logical_and.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
614
|
+
dispatch:
|
615
|
+
CPU: logical_and_out
|
616
|
+
CUDA: logical_and_out
|
617
|
+
supports_named_tensor: True
|
618
|
+
|
619
|
+
- func: logical_or(Tensor self, Tensor other) -> Tensor
|
620
|
+
variants: function, method
|
621
|
+
supports_named_tensor: True
|
622
|
+
|
623
|
+
- func: logical_or_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
624
|
+
variants: method
|
625
|
+
supports_named_tensor: True
|
626
|
+
|
627
|
+
- func: logical_or.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
628
|
+
dispatch:
|
629
|
+
CPU: logical_or_out
|
630
|
+
CUDA: logical_or_out
|
631
|
+
supports_named_tensor: True
|
632
|
+
|
566
633
|
- func: blackman_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
567
634
|
|
568
635
|
- func: blackman_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -624,6 +691,10 @@
|
|
624
691
|
use_c10_dispatcher: full
|
625
692
|
supports_named_tensor: True
|
626
693
|
variants: function, method
|
694
|
+
dispatch:
|
695
|
+
CPU: clamp
|
696
|
+
CUDA: clamp
|
697
|
+
QuantizedCPU: quantized_clamp
|
627
698
|
|
628
699
|
- func: clamp_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!)
|
629
700
|
supports_named_tensor: True
|
@@ -716,6 +787,7 @@
|
|
716
787
|
- func: conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] output_padding=0, int groups=1, int[3] dilation=1) -> Tensor
|
717
788
|
|
718
789
|
- func: copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)
|
790
|
+
manual_kernel_registration: True
|
719
791
|
variants: method
|
720
792
|
device_guard: False
|
721
793
|
supports_named_tensor: True
|
@@ -783,7 +855,11 @@
|
|
783
855
|
dispatch:
|
784
856
|
CUDA: cudnn_batch_norm_backward
|
785
857
|
|
786
|
-
- func: cudnn_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
858
|
+
- func: cudnn_convolution.deprecated(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
859
|
+
dispatch:
|
860
|
+
CUDA: cudnn_convolution_deprecated
|
861
|
+
|
862
|
+
- func: cudnn_convolution(Tensor self, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
787
863
|
dispatch:
|
788
864
|
CUDA: cudnn_convolution
|
789
865
|
|
@@ -791,34 +867,28 @@
|
|
791
867
|
dispatch:
|
792
868
|
CUDA: cudnn_convolution_backward_input
|
793
869
|
|
794
|
-
- func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[
|
870
|
+
- func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[2] output_mask) -> (Tensor, Tensor)
|
795
871
|
dispatch:
|
796
872
|
CUDA: cudnn_convolution_backward
|
797
873
|
|
798
|
-
- func: cudnn_convolution_backward_bias(Tensor grad_output) -> Tensor
|
799
|
-
use_c10_dispatcher: full
|
800
|
-
dispatch:
|
801
|
-
CUDA: cudnn_convolution_backward_bias
|
802
|
-
|
803
874
|
- func: cudnn_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
804
875
|
dispatch:
|
805
876
|
CUDA: cudnn_convolution_backward_weight
|
806
877
|
|
807
|
-
- func: cudnn_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
878
|
+
- func: cudnn_convolution_transpose.deprecated(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
879
|
+
dispatch:
|
880
|
+
CUDA: cudnn_convolution_transpose_deprecated
|
881
|
+
|
882
|
+
- func: cudnn_convolution_transpose(Tensor self, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
808
883
|
dispatch:
|
809
884
|
CUDA: cudnn_convolution_transpose
|
810
885
|
|
811
886
|
# NB: output_padding not strictly needed here, but it's helpful for the float
|
812
887
|
# backwards
|
813
|
-
- func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[
|
888
|
+
- func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[2] output_mask) -> (Tensor, Tensor)
|
814
889
|
dispatch:
|
815
890
|
CUDA: cudnn_convolution_transpose_backward
|
816
891
|
|
817
|
-
- func: cudnn_convolution_transpose_backward_bias(Tensor grad_output) -> Tensor
|
818
|
-
use_c10_dispatcher: full
|
819
|
-
dispatch:
|
820
|
-
CUDA: cudnn_convolution_backward_bias
|
821
|
-
|
822
892
|
- func: cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
823
893
|
dispatch:
|
824
894
|
CUDA: cudnn_convolution_transpose_backward_input
|
@@ -837,19 +907,45 @@
|
|
837
907
|
dispatch:
|
838
908
|
CUDA: cudnn_grid_sampler_backward
|
839
909
|
|
840
|
-
- func:
|
910
|
+
- func: cummax(Tensor self, int dim) -> (Tensor values, Tensor indices)
|
841
911
|
supports_named_tensor: True
|
842
912
|
variants: function, method
|
843
913
|
|
844
|
-
- func:
|
914
|
+
- func: cummax.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
845
915
|
supports_named_tensor: True
|
846
916
|
|
847
|
-
- func:
|
917
|
+
- func: cummax.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)
|
848
918
|
supports_named_tensor: True
|
849
919
|
variants: function, method
|
850
920
|
|
851
|
-
- func:
|
921
|
+
- func: cummax.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
922
|
+
supports_named_tensor: True
|
923
|
+
|
924
|
+
- func: _cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
|
925
|
+
variants: function
|
926
|
+
dispatch:
|
927
|
+
CPU: cummax_helper_cpu
|
928
|
+
CUDA: cummax_helper_cuda
|
929
|
+
|
930
|
+
- func: cummin(Tensor self, int dim) -> (Tensor values, Tensor indices)
|
852
931
|
supports_named_tensor: True
|
932
|
+
variants: function, method
|
933
|
+
|
934
|
+
- func: cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
935
|
+
supports_named_tensor: True
|
936
|
+
|
937
|
+
- func: cummin.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)
|
938
|
+
supports_named_tensor: True
|
939
|
+
variants: function, method
|
940
|
+
|
941
|
+
- func: cummin.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
942
|
+
supports_named_tensor: True
|
943
|
+
|
944
|
+
- func: _cummin_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
|
945
|
+
variants: function
|
946
|
+
dispatch:
|
947
|
+
CPU: cummin_helper_cpu
|
948
|
+
CUDA: cummin_helper_cuda
|
853
949
|
|
854
950
|
- func: cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
855
951
|
supports_named_tensor: True
|
@@ -865,6 +961,20 @@
|
|
865
961
|
- func: cumprod.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
866
962
|
supports_named_tensor: True
|
867
963
|
|
964
|
+
- func: cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
965
|
+
supports_named_tensor: True
|
966
|
+
variants: function, method
|
967
|
+
|
968
|
+
- func: cumsum.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
969
|
+
supports_named_tensor: True
|
970
|
+
|
971
|
+
- func: cumsum.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
972
|
+
supports_named_tensor: True
|
973
|
+
variants: function, method
|
974
|
+
|
975
|
+
- func: cumsum.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
976
|
+
supports_named_tensor: True
|
977
|
+
|
868
978
|
- func: ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
869
979
|
|
870
980
|
# convenience function that converts to intlists for you
|
@@ -895,6 +1005,11 @@
|
|
895
1005
|
|
896
1006
|
- func: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a)
|
897
1007
|
variants: function, method
|
1008
|
+
supports_named_tensor: True
|
1009
|
+
|
1010
|
+
- func: diagonal.Dimname(Tensor(a) self, *, Dimname outdim, Dimname dim1, Dimname dim2, int offset=0) -> Tensor(a)
|
1011
|
+
variants: function, method
|
1012
|
+
supports_named_tensor: True
|
898
1013
|
|
899
1014
|
- func: fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!)
|
900
1015
|
variants: method
|
@@ -978,9 +1093,9 @@
|
|
978
1093
|
# applying indices = indices.contiguous().
|
979
1094
|
# The backward functions apply a check that these input tensors are contiguous.
|
980
1095
|
|
981
|
-
- func: embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None) -> (Tensor, Tensor, Tensor, Tensor)
|
1096
|
+
- func: embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor)
|
982
1097
|
|
983
|
-
- func: _embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None) -> (Tensor, Tensor, Tensor, Tensor)
|
1098
|
+
- func: _embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor)
|
984
1099
|
dispatch:
|
985
1100
|
CPU: _embedding_bag_cpu
|
986
1101
|
CUDA: _embedding_bag_cuda
|
@@ -1035,22 +1150,15 @@
|
|
1035
1150
|
QuantizedCPU: empty_per_channel_affine_quantized_cpu
|
1036
1151
|
|
1037
1152
|
- func: resize_(Tensor(a!) self, int[] size, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
1153
|
+
manual_kernel_registration: True
|
1038
1154
|
supports_named_tensor: True
|
1039
1155
|
variants: method
|
1040
1156
|
device_guard: False
|
1041
|
-
dispatch:
|
1042
|
-
CPU: resize_cpu_
|
1043
|
-
CUDA: resize_cuda_
|
1044
|
-
QuantizedCPU: quantized_resize_cpu_
|
1045
1157
|
|
1046
1158
|
- func: empty.out(int[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
1047
1159
|
device_guard: False
|
1048
1160
|
|
1049
|
-
- func: empty_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
1050
|
-
device_guard: False
|
1051
|
-
supports_named_tensor: True
|
1052
|
-
|
1053
|
-
- func: empty_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1161
|
+
- func: empty_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1054
1162
|
device_guard: False
|
1055
1163
|
supports_named_tensor: True
|
1056
1164
|
|
@@ -1192,6 +1300,40 @@
|
|
1192
1300
|
CPU: floor_out
|
1193
1301
|
CUDA: floor_out
|
1194
1302
|
|
1303
|
+
- func: floor_divide(Tensor self, Tensor other) -> Tensor
|
1304
|
+
variants: function, method
|
1305
|
+
dispatch:
|
1306
|
+
CPU: floor_divide
|
1307
|
+
CUDA: floor_divide
|
1308
|
+
SparseCPU: floor_divide_sparse
|
1309
|
+
SparseCUDA: floor_divide_sparse
|
1310
|
+
supports_named_tensor: True
|
1311
|
+
|
1312
|
+
- func: floor_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
1313
|
+
variants: method
|
1314
|
+
dispatch:
|
1315
|
+
CPU: floor_divide_
|
1316
|
+
CUDA: floor_divide_
|
1317
|
+
SparseCPU: floor_divide_sparse_
|
1318
|
+
SparseCUDA: floor_divide_sparse_
|
1319
|
+
supports_named_tensor: True
|
1320
|
+
|
1321
|
+
- func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
1322
|
+
dispatch:
|
1323
|
+
CPU: floor_divide_out
|
1324
|
+
CUDA: floor_divide_out
|
1325
|
+
SparseCPU: floor_divide_out_sparse_zerodim
|
1326
|
+
SparseCUDA: floor_divide_out_sparse_zerodim
|
1327
|
+
supports_named_tensor: True
|
1328
|
+
|
1329
|
+
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
|
1330
|
+
variants: function, method
|
1331
|
+
supports_named_tensor: True
|
1332
|
+
|
1333
|
+
- func: floor_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
1334
|
+
variants: method
|
1335
|
+
supports_named_tensor: True
|
1336
|
+
|
1195
1337
|
- func: frac(Tensor self) -> Tensor
|
1196
1338
|
use_c10_dispatcher: full
|
1197
1339
|
supports_named_tensor: True
|
@@ -1211,10 +1353,7 @@
|
|
1211
1353
|
|
1212
1354
|
- func: full.out(int[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!)
|
1213
1355
|
|
1214
|
-
- func: full_like(Tensor self, Scalar fill_value, *, MemoryFormat? memory_format=None) -> Tensor
|
1215
|
-
supports_named_tensor: True
|
1216
|
-
|
1217
|
-
- func: full_like.dtype(Tensor self, Scalar fill_value, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1356
|
+
- func: full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1218
1357
|
supports_named_tensor: True
|
1219
1358
|
|
1220
1359
|
- func: from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -1275,14 +1414,8 @@
|
|
1275
1414
|
- func: ger(Tensor self, Tensor vec2) -> Tensor
|
1276
1415
|
use_c10_dispatcher: full
|
1277
1416
|
variants: function, method
|
1278
|
-
dispatch:
|
1279
|
-
CPU: legacy::cpu::_th_ger
|
1280
|
-
CUDA: legacy::cuda::_th_ger
|
1281
1417
|
|
1282
1418
|
- func: ger.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!)
|
1283
|
-
dispatch:
|
1284
|
-
CPU: legacy::cpu::_th_ger_out
|
1285
|
-
CUDA: legacy::cuda::_th_ger_out
|
1286
1419
|
|
1287
1420
|
- func: group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor
|
1288
1421
|
|
@@ -1324,6 +1457,9 @@
|
|
1324
1457
|
- func: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
|
1325
1458
|
variants: function, method
|
1326
1459
|
# NB: This function is special-cased in tools/autograd/gen_variable_type.py
|
1460
|
+
# NB: The following functions are declared in aten/src/ATen/templates/TensorBody.h and defined in aten/src/ATen/TensorIndexing.cpp:
|
1461
|
+
# - Tensor Tensor::index(ArrayRef<TensorIndex> indices)
|
1462
|
+
# - Tensor Tensor::index(std::initializer_list<TensorIndex> indices)
|
1327
1463
|
|
1328
1464
|
- func: index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
1329
1465
|
variants: method
|
@@ -1340,6 +1476,11 @@
|
|
1340
1476
|
|
1341
1477
|
- func: index_put_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor(a!)
|
1342
1478
|
variants: function, method
|
1479
|
+
# NB: The following functions are declared in aten/src/ATen/templates/TensorBody.h and defined in aten/src/ATen/TensorIndexing.cpp:
|
1480
|
+
# - Tensor & Tensor::index_put_(ArrayRef<TensorIndex> indices, Tensor const & rhs)
|
1481
|
+
# - Tensor & Tensor::index_put_(ArrayRef<TensorIndex> indices, Scalar v)
|
1482
|
+
# - Tensor & Tensor::index_put_(std::initializer_list<TensorIndex> indices, Tensor const & rhs)
|
1483
|
+
# - Tensor & Tensor::index_put_(std::initializer_list<TensorIndex> indices, Scalar v)
|
1343
1484
|
|
1344
1485
|
- func: index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor
|
1345
1486
|
variants: function, method
|
@@ -1372,6 +1513,11 @@
|
|
1372
1513
|
variants: function
|
1373
1514
|
device_guard: False
|
1374
1515
|
supports_named_tensor: True
|
1516
|
+
dispatch:
|
1517
|
+
CPU: isnan
|
1518
|
+
CUDA: isnan
|
1519
|
+
SparseCPU: isnan_sparse
|
1520
|
+
SparseCUDA: isnan_sparse
|
1375
1521
|
|
1376
1522
|
- func: is_distributed(Tensor self) -> bool
|
1377
1523
|
use_c10_dispatcher: full
|
@@ -1638,10 +1784,13 @@
|
|
1638
1784
|
|
1639
1785
|
# Return: (Tensor output, Tensor indices)
|
1640
1786
|
- func: max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
1787
|
+
supports_named_tensor: True
|
1641
1788
|
|
1642
1789
|
- func: max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor
|
1790
|
+
supports_named_tensor: True
|
1643
1791
|
|
1644
1792
|
- func: max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1793
|
+
supports_named_tensor: True
|
1645
1794
|
|
1646
1795
|
- func: mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1647
1796
|
requires_tensor: True
|
@@ -1654,6 +1803,7 @@
|
|
1654
1803
|
QuantizedCPU: quantized_max_pool2d
|
1655
1804
|
|
1656
1805
|
- func: max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor
|
1806
|
+
supports_named_tensor: True
|
1657
1807
|
|
1658
1808
|
# The CPU and GPU dispatch variants are named weirdly here because otherwise there
|
1659
1809
|
# are namespacing issues in C++
|
@@ -1804,7 +1954,7 @@
|
|
1804
1954
|
use_c10_dispatcher: full
|
1805
1955
|
variants: function, method
|
1806
1956
|
dispatch:
|
1807
|
-
CPU:
|
1957
|
+
CPU: mm_cpu
|
1808
1958
|
CUDA: legacy::cuda::_th_mm
|
1809
1959
|
SparseCPU: _sparse_mm
|
1810
1960
|
SparseCUDA: _sparse_mm
|
@@ -1812,7 +1962,7 @@
|
|
1812
1962
|
|
1813
1963
|
- func: mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
1814
1964
|
dispatch:
|
1815
|
-
CPU:
|
1965
|
+
CPU: mm_cpu_out
|
1816
1966
|
CUDA: legacy::cuda::_th_mm_out
|
1817
1967
|
SparseCPU: _sparse_mm_out
|
1818
1968
|
SparseCUDA: _sparse_mm_out
|
@@ -1877,13 +2027,13 @@
|
|
1877
2027
|
use_c10_dispatcher: full
|
1878
2028
|
variants: function, method
|
1879
2029
|
dispatch:
|
1880
|
-
CPU:
|
2030
|
+
CPU: mv_cpu
|
1881
2031
|
CUDA: legacy::cuda::_th_mv
|
1882
2032
|
supports_named_tensor: True
|
1883
2033
|
|
1884
2034
|
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
1885
2035
|
dispatch:
|
1886
|
-
CPU:
|
2036
|
+
CPU: mv_cpu_out
|
1887
2037
|
CUDA: legacy::cuda::_th_mv_out
|
1888
2038
|
supports_named_tensor: True
|
1889
2039
|
|
@@ -1908,12 +2058,21 @@
|
|
1908
2058
|
device_guard: False
|
1909
2059
|
supports_named_tensor: True
|
1910
2060
|
|
2061
|
+
- func: narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)
|
2062
|
+
variants: function, method
|
2063
|
+
device_guard: False
|
2064
|
+
supports_named_tensor: True
|
2065
|
+
|
1911
2066
|
- func: native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)
|
1912
2067
|
dispatch:
|
1913
2068
|
CPU: batch_norm_cpu
|
1914
2069
|
CUDA: batch_norm_cuda
|
1915
2070
|
MkldnnCPU: mkldnn_batch_norm
|
1916
2071
|
|
2072
|
+
- func: native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
2073
|
+
dispatch:
|
2074
|
+
CUDA: batch_norm_cuda_out
|
2075
|
+
|
1917
2076
|
- func: batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)
|
1918
2077
|
dispatch:
|
1919
2078
|
CUDA: batch_norm_stats_cuda
|
@@ -1975,16 +2134,16 @@
|
|
1975
2134
|
|
1976
2135
|
- func: ones.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
1977
2136
|
|
1978
|
-
- func: ones_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
1979
|
-
supports_named_tensor: True
|
1980
|
-
|
1981
|
-
- func: ones_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2137
|
+
- func: ones_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1982
2138
|
supports_named_tensor: True
|
1983
2139
|
|
1984
2140
|
- func: pairwise_distance(Tensor x1, Tensor x2, float p=2, float eps=1e-06, bool keepdim=False) -> Tensor
|
1985
2141
|
use_c10_dispatcher: full
|
1986
2142
|
|
1987
2143
|
- func: cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor
|
2144
|
+
supports_named_tensor: True
|
2145
|
+
|
2146
|
+
- func: _cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor
|
1988
2147
|
use_c10_dispatcher: full
|
1989
2148
|
supports_named_tensor: True
|
1990
2149
|
|
@@ -2053,10 +2212,7 @@
|
|
2053
2212
|
|
2054
2213
|
- func: rand.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2055
2214
|
|
2056
|
-
- func: rand_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2057
|
-
supports_named_tensor: True
|
2058
|
-
|
2059
|
-
- func: rand_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2215
|
+
- func: rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2060
2216
|
supports_named_tensor: True
|
2061
2217
|
|
2062
2218
|
- func: randint(int high, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2075,13 +2231,9 @@
|
|
2075
2231
|
|
2076
2232
|
- func: randint.low_generator_out(int low, int high, int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2077
2233
|
|
2078
|
-
- func: randint_like(Tensor self, int high, *, MemoryFormat? memory_format=None) -> Tensor
|
2079
|
-
|
2080
|
-
- func: randint_like.low(Tensor self, int low, int high, *, MemoryFormat? memory_format=None) -> Tensor
|
2234
|
+
- func: randint_like(Tensor self, int high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2081
2235
|
|
2082
|
-
- func: randint_like.
|
2083
|
-
|
2084
|
-
- func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2236
|
+
- func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2085
2237
|
|
2086
2238
|
- func: randn(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2087
2239
|
|
@@ -2097,10 +2249,7 @@
|
|
2097
2249
|
|
2098
2250
|
- func: randn.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2099
2251
|
|
2100
|
-
- func: randn_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2101
|
-
supports_named_tensor: True
|
2102
|
-
|
2103
|
-
- func: randn_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2252
|
+
- func: randn_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2104
2253
|
supports_named_tensor: True
|
2105
2254
|
|
2106
2255
|
- func: randperm(int n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2131,15 +2280,9 @@
|
|
2131
2280
|
- func: reciprocal_(Tensor(a!) self) -> Tensor(a!)
|
2132
2281
|
supports_named_tensor: True
|
2133
2282
|
variants: function, method
|
2134
|
-
dispatch:
|
2135
|
-
CPU: _reciprocal__cpu
|
2136
|
-
CUDA: _reciprocal__cuda
|
2137
2283
|
|
2138
2284
|
- func: reciprocal.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2139
2285
|
supports_named_tensor: True
|
2140
|
-
dispatch:
|
2141
|
-
CPU: _reciprocal_out_cpu
|
2142
|
-
CUDA: _reciprocal_out_cuda
|
2143
2286
|
|
2144
2287
|
- func: neg(Tensor self) -> Tensor
|
2145
2288
|
use_c10_dispatcher: full
|
@@ -2258,16 +2401,10 @@
|
|
2258
2401
|
- func: hardshrink(Tensor self, Scalar lambd=0.5) -> Tensor
|
2259
2402
|
use_c10_dispatcher: full
|
2260
2403
|
variants: function, method
|
2261
|
-
dispatch:
|
2262
|
-
CPU: hardshrink_cpu
|
2263
|
-
CUDA: hardshrink_cuda
|
2264
2404
|
|
2265
2405
|
- func: hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor
|
2266
2406
|
use_c10_dispatcher: full
|
2267
2407
|
variants: function, method
|
2268
|
-
dispatch:
|
2269
|
-
CPU: hardshrink_backward_cpu
|
2270
|
-
CUDA: hardshrink_backward_cuda
|
2271
2408
|
|
2272
2409
|
- func: rsqrt(Tensor self) -> Tensor
|
2273
2410
|
use_c10_dispatcher: full
|
@@ -2312,6 +2449,7 @@
|
|
2312
2449
|
dispatch:
|
2313
2450
|
CPU: sigmoid
|
2314
2451
|
CUDA: sigmoid
|
2452
|
+
QuantizedCPU: quantized_sigmoid
|
2315
2453
|
MkldnnCPU: mkldnn_sigmoid
|
2316
2454
|
|
2317
2455
|
- func: sigmoid_(Tensor(a!) self) -> Tensor(a!)
|
@@ -2365,6 +2503,7 @@
|
|
2365
2503
|
# be updated.
|
2366
2504
|
- func: detach(Tensor self) -> Tensor
|
2367
2505
|
use_c10_dispatcher: full
|
2506
|
+
manual_kernel_registration: True
|
2368
2507
|
supports_named_tensor: True
|
2369
2508
|
variants: function, method
|
2370
2509
|
|
@@ -2372,6 +2511,7 @@
|
|
2372
2511
|
# only be called on non-view `Variable`s. You can use `is_view()` to check
|
2373
2512
|
# this. If this `Variable` is a view, throws an `std::runtime_error()`.
|
2374
2513
|
- func: detach_(Tensor(a!) self) -> Tensor(a!)
|
2514
|
+
manual_kernel_registration: True
|
2375
2515
|
supports_named_tensor: True
|
2376
2516
|
variants: function, method
|
2377
2517
|
|
@@ -2524,6 +2664,15 @@
|
|
2524
2664
|
- func: sqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2525
2665
|
supports_named_tensor: True
|
2526
2666
|
|
2667
|
+
- func: square(Tensor self) -> Tensor
|
2668
|
+
use_c10_dispatcher: full
|
2669
|
+
supports_named_tensor: True
|
2670
|
+
variants: function, method
|
2671
|
+
|
2672
|
+
- func: square_(Tensor(a!) self) -> Tensor(a!)
|
2673
|
+
supports_named_tensor: True
|
2674
|
+
variants: function, method
|
2675
|
+
|
2527
2676
|
- func: std(Tensor self, bool unbiased=True) -> Tensor
|
2528
2677
|
use_c10_dispatcher: full
|
2529
2678
|
variants: function, method
|
@@ -2605,6 +2754,10 @@
|
|
2605
2754
|
use_c10_dispatcher: full
|
2606
2755
|
supports_named_tensor: True
|
2607
2756
|
variants: function, method
|
2757
|
+
dispatch:
|
2758
|
+
CPU: tanh
|
2759
|
+
CUDA: tanh
|
2760
|
+
QuantizedCPU: quantized_tanh
|
2608
2761
|
|
2609
2762
|
- func: tanh_(Tensor(a!) self) -> Tensor(a!)
|
2610
2763
|
supports_named_tensor: True
|
@@ -2627,17 +2780,29 @@
|
|
2627
2780
|
use_c10_dispatcher: full
|
2628
2781
|
variants: function
|
2629
2782
|
supports_named_tensor: True
|
2783
|
+
dispatch:
|
2784
|
+
CPU: threshold
|
2785
|
+
CUDA: threshold_cuda
|
2630
2786
|
|
2631
2787
|
- func: threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!)
|
2632
2788
|
variants: function
|
2633
2789
|
supports_named_tensor: True
|
2790
|
+
dispatch:
|
2791
|
+
CPU: threshold_
|
2792
|
+
CUDA: threshold__cuda
|
2634
2793
|
|
2635
2794
|
- func: threshold.out(Tensor self, Scalar threshold, Scalar value, *, Tensor(a!) out) -> Tensor(a!)
|
2636
2795
|
supports_named_tensor: True
|
2796
|
+
dispatch:
|
2797
|
+
CPU: threshold_out
|
2798
|
+
CUDA: threshold_out_cuda
|
2637
2799
|
|
2638
2800
|
- func: threshold_backward(Tensor grad_output, Tensor self, Scalar threshold) -> Tensor
|
2639
2801
|
use_c10_dispatcher: full
|
2640
2802
|
variants: function
|
2803
|
+
dispatch:
|
2804
|
+
CPU: threshold_backward
|
2805
|
+
CUDA: threshold_backward_cuda
|
2641
2806
|
|
2642
2807
|
- func: transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)
|
2643
2808
|
variants: function, method
|
@@ -2699,6 +2864,42 @@
|
|
2699
2864
|
- func: triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1.0, float p=2, float eps=1e-06, bool swap=False, int reduction=Mean) -> Tensor
|
2700
2865
|
use_c10_dispatcher: full
|
2701
2866
|
|
2867
|
+
- func: true_divide.Tensor(Tensor self, Tensor other) -> Tensor
|
2868
|
+
use_c10_dispatcher: full
|
2869
|
+
variants: function, method
|
2870
|
+
dispatch:
|
2871
|
+
CPU: true_divide
|
2872
|
+
CUDA: true_divide
|
2873
|
+
SparseCPU: true_divide_sparse
|
2874
|
+
SparseCUDA: true_divide_sparse
|
2875
|
+
supports_named_tensor: True
|
2876
|
+
|
2877
|
+
- func: true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
2878
|
+
variants: method
|
2879
|
+
dispatch:
|
2880
|
+
CPU: true_divide_
|
2881
|
+
CUDA: true_divide_
|
2882
|
+
SparseCPU: true_divide_sparse_
|
2883
|
+
SparseCUDA: true_divide_sparse_
|
2884
|
+
supports_named_tensor: True
|
2885
|
+
|
2886
|
+
- func: true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
2887
|
+
dispatch:
|
2888
|
+
CPU: true_divide_out
|
2889
|
+
CUDA: true_divide_out
|
2890
|
+
SparseCPU: true_divide_out_sparse_zerodim
|
2891
|
+
SparseCUDA: true_divide_out_sparse_zerodim
|
2892
|
+
supports_named_tensor: True
|
2893
|
+
|
2894
|
+
- func: true_divide.Scalar(Tensor self, Scalar other) -> Tensor
|
2895
|
+
use_c10_dispatcher: full
|
2896
|
+
variants: function, method
|
2897
|
+
supports_named_tensor: True
|
2898
|
+
|
2899
|
+
- func: true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
2900
|
+
variants: method
|
2901
|
+
supports_named_tensor: True
|
2902
|
+
|
2702
2903
|
- func: trunc(Tensor self) -> Tensor
|
2703
2904
|
use_c10_dispatcher: full
|
2704
2905
|
supports_named_tensor: True
|
@@ -2815,9 +3016,6 @@
|
|
2815
3016
|
- func: _s_where(Tensor condition, Tensor self, Tensor other) -> Tensor
|
2816
3017
|
use_c10_dispatcher: full
|
2817
3018
|
variants: function
|
2818
|
-
dispatch:
|
2819
|
-
CPU: _s_where_cpu
|
2820
|
-
CUDA: _s_where_cuda
|
2821
3019
|
|
2822
3020
|
- func: norm_except_dim(Tensor v, int pow=2, int dim=0) -> Tensor
|
2823
3021
|
variants: function
|
@@ -2848,10 +3046,7 @@
|
|
2848
3046
|
|
2849
3047
|
- func: zeros.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
2850
3048
|
|
2851
|
-
- func: zeros_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2852
|
-
supports_named_tensor: True
|
2853
|
-
|
2854
|
-
- func: zeros_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
3049
|
+
- func: zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2855
3050
|
supports_named_tensor: True
|
2856
3051
|
|
2857
3052
|
- func: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor
|
@@ -2970,6 +3165,7 @@
|
|
2970
3165
|
supports_named_tensor: True
|
2971
3166
|
|
2972
3167
|
- func: resize_as_(Tensor(a!) self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
3168
|
+
manual_kernel_registration: True
|
2973
3169
|
supports_named_tensor: True
|
2974
3170
|
variants: function, method
|
2975
3171
|
|
@@ -3489,6 +3685,7 @@
|
|
3489
3685
|
CPU: make_per_channel_quantized_tensor_cpu
|
3490
3686
|
|
3491
3687
|
- func: qscheme(Tensor self) -> QScheme
|
3688
|
+
use_c10_dispatcher: full
|
3492
3689
|
variants: method
|
3493
3690
|
dispatch:
|
3494
3691
|
QuantizedCPU: qscheme_quant
|
@@ -3496,28 +3693,19 @@
|
|
3496
3693
|
- func: fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor
|
3497
3694
|
use_c10_dispatcher: full
|
3498
3695
|
variants: function
|
3499
|
-
dispatch:
|
3500
|
-
CPU: fake_quantize_per_tensor_affine_cpu
|
3501
|
-
CUDA: fake_quantize_per_tensor_affine_cuda
|
3502
3696
|
|
3503
3697
|
- func: fake_quantize_per_tensor_affine_backward(Tensor grad, Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor
|
3504
3698
|
use_c10_dispatcher: full
|
3505
3699
|
variants: function
|
3506
|
-
dispatch:
|
3507
|
-
CPU: fake_quantize_per_tensor_affine_backward_cpu
|
3508
|
-
CUDA: fake_quantize_per_tensor_affine_backward_cuda
|
3509
3700
|
|
3510
3701
|
- func: fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor
|
3702
|
+
use_c10_dispatcher: full
|
3511
3703
|
variants: function
|
3512
|
-
dispatch:
|
3513
|
-
CPU: fake_quantize_per_channel_affine_cpu
|
3514
|
-
CUDA: fake_quantize_per_channel_affine_cuda
|
3515
3704
|
|
3516
3705
|
- func: fake_quantize_per_channel_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor
|
3706
|
+
use_c10_dispatcher: full
|
3517
3707
|
variants: function
|
3518
|
-
|
3519
|
-
CPU: fake_quantize_per_channel_affine_backward_cpu
|
3520
|
-
CUDA: fake_quantize_per_channel_affine_backward_cuda
|
3708
|
+
|
3521
3709
|
# to(Device) must not exist because all constructors of Device also works for
|
3522
3710
|
# TensorOptions. Otherwise, an ambiguity error is thrown.
|
3523
3711
|
# See NOTE [ TensorOptions Constructors ].
|
@@ -3677,8 +3865,8 @@
|
|
3677
3865
|
variants: method
|
3678
3866
|
device_guard: False
|
3679
3867
|
dispatch:
|
3680
|
-
CPU:
|
3681
|
-
CUDA:
|
3868
|
+
CPU: set_tensor_
|
3869
|
+
CUDA: set_tensor_
|
3682
3870
|
|
3683
3871
|
- func: set_(Tensor(a!) self) -> Tensor(a!)
|
3684
3872
|
variants: method
|
@@ -3752,7 +3940,7 @@
|
|
3752
3940
|
variants: method
|
3753
3941
|
dispatch:
|
3754
3942
|
CPU: index_add_cpu_
|
3755
|
-
CUDA:
|
3943
|
+
CUDA: index_add_cuda_
|
3756
3944
|
|
3757
3945
|
- func: index_add(Tensor self, int dim, Tensor index, Tensor source) -> Tensor
|
3758
3946
|
use_c10_dispatcher: full
|
@@ -3804,7 +3992,7 @@
|
|
3804
3992
|
- func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
3805
3993
|
variants: method
|
3806
3994
|
dispatch:
|
3807
|
-
CPU:
|
3995
|
+
CPU: scatter_cpu_
|
3808
3996
|
CUDA: legacy::cuda::_th_scatter_
|
3809
3997
|
|
3810
3998
|
- func: scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> Tensor
|
@@ -3814,7 +4002,7 @@
|
|
3814
4002
|
- func: scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
3815
4003
|
variants: method
|
3816
4004
|
dispatch:
|
3817
|
-
CPU:
|
4005
|
+
CPU: scatter_fill_cpu_
|
3818
4006
|
CUDA: legacy::cuda::_th_scatter_
|
3819
4007
|
|
3820
4008
|
- func: scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> Tensor
|
@@ -3830,7 +4018,7 @@
|
|
3830
4018
|
- func: scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
3831
4019
|
variants: method
|
3832
4020
|
dispatch:
|
3833
|
-
CPU:
|
4021
|
+
CPU: scatter_add_cpu_
|
3834
4022
|
CUDA: legacy::cuda::_th_scatter_add_
|
3835
4023
|
|
3836
4024
|
- func: scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> Tensor
|
@@ -3876,57 +4064,81 @@
|
|
3876
4064
|
- func: ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3877
4065
|
variants: method
|
3878
4066
|
|
4067
|
+
- func: bitwise_and.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4068
|
+
variants: function
|
4069
|
+
dispatch:
|
4070
|
+
CPU: bitwise_and_out
|
4071
|
+
CUDA: bitwise_and_out
|
4072
|
+
|
4073
|
+
- func: bitwise_and.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4074
|
+
variants: function
|
4075
|
+
dispatch:
|
4076
|
+
CPU: bitwise_and_out
|
4077
|
+
CUDA: bitwise_and_out
|
4078
|
+
|
4079
|
+
- func: bitwise_and.Scalar(Tensor self, Scalar other) -> Tensor
|
4080
|
+
variants: method, function
|
4081
|
+
|
4082
|
+
- func: bitwise_and.Tensor(Tensor self, Tensor other) -> Tensor
|
4083
|
+
variants: method, function
|
4084
|
+
|
4085
|
+
- func: bitwise_and_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4086
|
+
variants: method
|
4087
|
+
|
4088
|
+
- func: bitwise_and_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4089
|
+
variants: method
|
4090
|
+
|
3879
4091
|
- func: __and__.Scalar(Tensor self, Scalar other) -> Tensor
|
3880
4092
|
use_c10_dispatcher: full
|
3881
4093
|
variants: method, function
|
3882
|
-
dispatch:
|
3883
|
-
CPU: legacy::cpu::_th_and
|
3884
|
-
CUDA: legacy::cuda::_th_and
|
3885
4094
|
|
3886
4095
|
- func: __and__.Tensor(Tensor self, Tensor other) -> Tensor
|
3887
4096
|
use_c10_dispatcher: full
|
3888
4097
|
variants: method, function
|
3889
|
-
dispatch:
|
3890
|
-
CPU: legacy::cpu::_th_and
|
3891
|
-
CUDA: legacy::cuda::_th_and
|
3892
4098
|
|
3893
4099
|
- func: __iand__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
3894
4100
|
variants: method
|
3895
|
-
dispatch:
|
3896
|
-
CPU: legacy::cpu::_th_iand_
|
3897
|
-
CUDA: legacy::cuda::_th_iand_
|
3898
4101
|
|
3899
4102
|
- func: __iand__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3900
4103
|
variants: method
|
4104
|
+
|
4105
|
+
- func: bitwise_or.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4106
|
+
variants: function
|
4107
|
+
dispatch:
|
4108
|
+
CPU: bitwise_or_out
|
4109
|
+
CUDA: bitwise_or_out
|
4110
|
+
|
4111
|
+
- func: bitwise_or.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4112
|
+
variants: function
|
3901
4113
|
dispatch:
|
3902
|
-
CPU:
|
3903
|
-
CUDA:
|
4114
|
+
CPU: bitwise_or_out
|
4115
|
+
CUDA: bitwise_or_out
|
4116
|
+
|
4117
|
+
- func: bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor
|
4118
|
+
variants: method, function
|
4119
|
+
|
4120
|
+
- func: bitwise_or.Tensor(Tensor self, Tensor other) -> Tensor
|
4121
|
+
variants: method, function
|
4122
|
+
|
4123
|
+
- func: bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4124
|
+
variants: method
|
4125
|
+
|
4126
|
+
- func: bitwise_or_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4127
|
+
variants: method
|
3904
4128
|
|
3905
4129
|
- func: __or__.Scalar(Tensor self, Scalar other) -> Tensor
|
3906
4130
|
use_c10_dispatcher: full
|
3907
4131
|
variants: method, function
|
3908
|
-
dispatch:
|
3909
|
-
CPU: legacy::cpu::_th_or
|
3910
|
-
CUDA: legacy::cuda::_th_or
|
3911
4132
|
|
3912
4133
|
- func: __or__.Tensor(Tensor self, Tensor other) -> Tensor
|
3913
4134
|
use_c10_dispatcher: full
|
3914
4135
|
variants: method, function
|
3915
|
-
dispatch:
|
3916
|
-
CPU: legacy::cpu::_th_or
|
3917
|
-
CUDA: legacy::cuda::_th_or
|
3918
4136
|
|
3919
4137
|
- func: __ior__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
3920
4138
|
variants: method
|
3921
|
-
dispatch:
|
3922
|
-
CPU: legacy::cpu::_th_ior_
|
3923
|
-
CUDA: legacy::cuda::_th_ior_
|
3924
4139
|
|
3925
4140
|
- func: __ior__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3926
4141
|
variants: method
|
3927
|
-
dispatch:
|
3928
|
-
CPU: legacy::cpu::_th_ior_
|
3929
|
-
CUDA: legacy::cuda::_th_ior_
|
3930
4142
|
|
3931
4143
|
- func: bitwise_xor.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
3932
4144
|
variants: function
|
@@ -3970,53 +4182,53 @@
|
|
3970
4182
|
use_c10_dispatcher: full
|
3971
4183
|
variants: method, function
|
3972
4184
|
dispatch:
|
3973
|
-
CPU:
|
3974
|
-
CUDA:
|
4185
|
+
CPU: __lshift__
|
4186
|
+
CUDA: __lshift__
|
3975
4187
|
|
3976
4188
|
- func: __lshift__.Tensor(Tensor self, Tensor other) -> Tensor
|
3977
4189
|
use_c10_dispatcher: full
|
3978
4190
|
variants: method, function
|
3979
4191
|
dispatch:
|
3980
|
-
CPU:
|
3981
|
-
CUDA:
|
4192
|
+
CPU: __lshift__
|
4193
|
+
CUDA: __lshift__
|
3982
4194
|
|
3983
4195
|
- func: __ilshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
3984
4196
|
variants: method
|
3985
4197
|
dispatch:
|
3986
|
-
CPU:
|
3987
|
-
CUDA:
|
4198
|
+
CPU: __ilshift__
|
4199
|
+
CUDA: __ilshift__
|
3988
4200
|
|
3989
4201
|
- func: __ilshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3990
4202
|
variants: method
|
3991
4203
|
dispatch:
|
3992
|
-
CPU:
|
3993
|
-
CUDA:
|
4204
|
+
CPU: __ilshift__
|
4205
|
+
CUDA: __ilshift__
|
3994
4206
|
|
3995
4207
|
- func: __rshift__.Scalar(Tensor self, Scalar other) -> Tensor
|
3996
4208
|
use_c10_dispatcher: full
|
3997
4209
|
variants: method, function
|
3998
4210
|
dispatch:
|
3999
|
-
CPU:
|
4000
|
-
CUDA:
|
4211
|
+
CPU: __rshift__
|
4212
|
+
CUDA: __rshift__
|
4001
4213
|
|
4002
4214
|
- func: __rshift__.Tensor(Tensor self, Tensor other) -> Tensor
|
4003
4215
|
use_c10_dispatcher: full
|
4004
4216
|
variants: method, function
|
4005
4217
|
dispatch:
|
4006
|
-
CPU:
|
4007
|
-
CUDA:
|
4218
|
+
CPU: __rshift__
|
4219
|
+
CUDA: __rshift__
|
4008
4220
|
|
4009
4221
|
- func: __irshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4010
4222
|
variants: method
|
4011
4223
|
dispatch:
|
4012
|
-
CPU:
|
4013
|
-
CUDA:
|
4224
|
+
CPU: __irshift__
|
4225
|
+
CUDA: __irshift__
|
4014
4226
|
|
4015
4227
|
- func: __irshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4016
4228
|
variants: method
|
4017
4229
|
dispatch:
|
4018
|
-
CPU:
|
4019
|
-
CUDA:
|
4230
|
+
CPU: __irshift__
|
4231
|
+
CUDA: __irshift__
|
4020
4232
|
|
4021
4233
|
- func: lgamma_(Tensor(a!) self) -> Tensor(a!)
|
4022
4234
|
supports_named_tensor: True
|
@@ -4084,26 +4296,26 @@
|
|
4084
4296
|
- func: fmod_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4085
4297
|
variants: method
|
4086
4298
|
dispatch:
|
4087
|
-
CPU:
|
4299
|
+
CPU: fmod_
|
4088
4300
|
CUDA: legacy::cuda::_th_fmod_
|
4089
4301
|
|
4090
4302
|
- func: fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4091
4303
|
variants: method
|
4092
4304
|
dispatch:
|
4093
|
-
CPU:
|
4305
|
+
CPU: fmod_
|
4094
4306
|
CUDA: legacy::cuda::_th_fmod_
|
4095
4307
|
|
4096
4308
|
- func: remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4097
4309
|
variants: method
|
4098
4310
|
dispatch:
|
4099
|
-
CPU:
|
4100
|
-
CUDA:
|
4311
|
+
CPU: remainder_
|
4312
|
+
CUDA: remainder_
|
4101
4313
|
|
4102
4314
|
- func: remainder_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4103
4315
|
variants: method
|
4104
4316
|
dispatch:
|
4105
|
-
CPU:
|
4106
|
-
CUDA:
|
4317
|
+
CPU: remainder_
|
4318
|
+
CUDA: remainder_
|
4107
4319
|
|
4108
4320
|
- func: addbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
4109
4321
|
variants: method
|
@@ -4127,25 +4339,16 @@
|
|
4127
4339
|
variants: method
|
4128
4340
|
supports_named_tensor: True
|
4129
4341
|
|
4130
|
-
- func: random_.from(Tensor(a!) self, int from, int to, *, Generator? generator=None) -> Tensor(a!)
|
4342
|
+
- func: random_.from(Tensor(a!) self, int from, int? to, *, Generator? generator=None) -> Tensor(a!)
|
4131
4343
|
variants: method
|
4132
|
-
dispatch:
|
4133
|
-
CPU: legacy::cpu::_th_random_
|
4134
|
-
CUDA: clamped_random_cuda_
|
4135
4344
|
supports_named_tensor: True
|
4136
4345
|
|
4137
4346
|
- func: random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!)
|
4138
4347
|
variants: method
|
4139
|
-
dispatch:
|
4140
|
-
CPU: legacy::cpu::_th_random_
|
4141
|
-
CUDA: capped_random_cuda_
|
4142
4348
|
supports_named_tensor: True
|
4143
4349
|
|
4144
4350
|
- func: random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!)
|
4145
4351
|
variants: method
|
4146
|
-
dispatch:
|
4147
|
-
CPU: legacy::cpu::_th_random_
|
4148
|
-
CUDA: random_cuda_
|
4149
4352
|
supports_named_tensor: True
|
4150
4353
|
|
4151
4354
|
- func: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)
|
@@ -4155,39 +4358,20 @@
|
|
4155
4358
|
CUDA: uniform_cuda_
|
4156
4359
|
supports_named_tensor: True
|
4157
4360
|
|
4158
|
-
- func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)
|
4159
|
-
variants: method
|
4160
|
-
dispatch:
|
4161
|
-
CPU: legacy::cpu::_th_normal_
|
4162
|
-
CUDA: normal_cuda_
|
4163
|
-
supports_named_tensor: True
|
4164
|
-
|
4165
4361
|
- func: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!)
|
4166
4362
|
variants: method
|
4167
|
-
dispatch:
|
4168
|
-
CPU: legacy::cpu::_th_cauchy_
|
4169
|
-
CUDA: cauchy_cuda_
|
4170
4363
|
supports_named_tensor: True
|
4171
4364
|
|
4172
4365
|
- func: log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!)
|
4173
4366
|
variants: method
|
4174
|
-
dispatch:
|
4175
|
-
CPU: legacy::cpu::_th_log_normal_
|
4176
|
-
CUDA: log_normal_cuda_
|
4177
4367
|
supports_named_tensor: True
|
4178
4368
|
|
4179
4369
|
- func: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!)
|
4180
4370
|
variants: method
|
4181
|
-
dispatch:
|
4182
|
-
CPU: legacy::cpu::_th_exponential_
|
4183
|
-
CUDA: exponential_cuda_
|
4184
4371
|
supports_named_tensor: True
|
4185
4372
|
|
4186
4373
|
- func: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!)
|
4187
4374
|
variants: method
|
4188
|
-
dispatch:
|
4189
|
-
CPU: legacy::cpu::_th_geometric_
|
4190
|
-
CUDA: geometric_cuda_
|
4191
4375
|
supports_named_tensor: True
|
4192
4376
|
|
4193
4377
|
# wrappers for TH functions
|
@@ -4451,14 +4635,14 @@
|
|
4451
4635
|
|
4452
4636
|
- func: index_select.out(Tensor self, int dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!)
|
4453
4637
|
dispatch:
|
4454
|
-
CPU:
|
4638
|
+
CPU: index_select_out_cpu_
|
4455
4639
|
CUDA: legacy::cuda::_th_index_select_out
|
4456
4640
|
|
4457
4641
|
- func: index_select(Tensor self, int dim, Tensor index) -> Tensor
|
4458
4642
|
use_c10_dispatcher: full
|
4459
4643
|
variants: method, function
|
4460
4644
|
dispatch:
|
4461
|
-
CPU:
|
4645
|
+
CPU: index_select_cpu_
|
4462
4646
|
CUDA: legacy::cuda::_th_index_select
|
4463
4647
|
SparseCPU: index_select_sparse
|
4464
4648
|
SparseCUDA: index_select_sparse
|
@@ -4794,9 +4978,6 @@
|
|
4794
4978
|
- func: dist(Tensor self, Tensor other, Scalar p=2) -> Tensor
|
4795
4979
|
use_c10_dispatcher: full
|
4796
4980
|
variants: method, function
|
4797
|
-
dispatch:
|
4798
|
-
CPU: legacy::cpu::_th_dist
|
4799
|
-
CUDA: legacy::cuda::_th_dist
|
4800
4981
|
|
4801
4982
|
- func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4802
4983
|
supports_named_tensor: True
|
@@ -4844,90 +5025,78 @@
|
|
4844
5025
|
|
4845
5026
|
- func: fmod.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4846
5027
|
dispatch:
|
4847
|
-
CPU:
|
5028
|
+
CPU: fmod_out
|
4848
5029
|
CUDA: legacy::cuda::_th_fmod_out
|
4849
5030
|
|
4850
5031
|
- func: fmod.Scalar(Tensor self, Scalar other) -> Tensor
|
4851
5032
|
use_c10_dispatcher: full
|
4852
5033
|
variants: method, function
|
4853
5034
|
dispatch:
|
4854
|
-
CPU:
|
5035
|
+
CPU: fmod
|
4855
5036
|
CUDA: legacy::cuda::_th_fmod
|
4856
5037
|
|
4857
5038
|
- func: fmod.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4858
5039
|
dispatch:
|
4859
|
-
CPU:
|
5040
|
+
CPU: fmod_out
|
4860
5041
|
CUDA: legacy::cuda::_th_fmod_out
|
4861
5042
|
|
4862
5043
|
- func: fmod.Tensor(Tensor self, Tensor other) -> Tensor
|
4863
5044
|
use_c10_dispatcher: full
|
4864
5045
|
variants: method, function
|
4865
5046
|
dispatch:
|
4866
|
-
CPU:
|
5047
|
+
CPU: fmod
|
4867
5048
|
CUDA: legacy::cuda::_th_fmod
|
4868
5049
|
|
4869
5050
|
- func: remainder.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4870
5051
|
dispatch:
|
4871
|
-
CPU:
|
4872
|
-
CUDA:
|
5052
|
+
CPU: remainder_out
|
5053
|
+
CUDA: remainder_out
|
4873
5054
|
|
4874
5055
|
- func: remainder.Scalar(Tensor self, Scalar other) -> Tensor
|
4875
5056
|
use_c10_dispatcher: full
|
4876
5057
|
variants: method, function
|
4877
5058
|
dispatch:
|
4878
|
-
CPU:
|
4879
|
-
CUDA:
|
5059
|
+
CPU: remainder
|
5060
|
+
CUDA: remainder
|
4880
5061
|
|
4881
5062
|
- func: remainder.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4882
5063
|
dispatch:
|
4883
|
-
CPU:
|
4884
|
-
CUDA:
|
5064
|
+
CPU: remainder_out
|
5065
|
+
CUDA: remainder_out
|
4885
5066
|
|
4886
5067
|
- func: remainder.Tensor(Tensor self, Tensor other) -> Tensor
|
4887
5068
|
use_c10_dispatcher: full
|
4888
5069
|
variants: method, function
|
4889
5070
|
dispatch:
|
4890
|
-
CPU:
|
4891
|
-
CUDA:
|
5071
|
+
CPU: remainder
|
5072
|
+
CUDA: remainder
|
4892
5073
|
|
4893
5074
|
- func: min.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4894
|
-
dispatch:
|
4895
|
-
CPU: legacy::cpu::_th_min_out
|
4896
|
-
CUDA: legacy::cuda::_th_min_out
|
4897
5075
|
|
4898
5076
|
- func: min.other(Tensor self, Tensor other) -> Tensor
|
4899
5077
|
use_c10_dispatcher: full
|
4900
5078
|
variants: method, function
|
4901
|
-
dispatch:
|
4902
|
-
CPU: legacy::cpu::_th_min
|
4903
|
-
CUDA: legacy::cuda::_th_min
|
4904
5079
|
|
4905
5080
|
- func: min(Tensor self) -> Tensor
|
4906
5081
|
use_c10_dispatcher: full
|
4907
5082
|
variants: method, function
|
4908
5083
|
dispatch:
|
4909
|
-
CPU:
|
5084
|
+
CPU: min
|
4910
5085
|
CUDA: legacy::cuda::_th_min
|
4911
5086
|
QuantizedCPU: min_quant
|
4912
5087
|
supports_named_tensor: True
|
4913
5088
|
|
4914
5089
|
- func: max.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4915
|
-
dispatch:
|
4916
|
-
CPU: legacy::cpu::_th_max_out
|
4917
|
-
CUDA: legacy::cuda::_th_max_out
|
4918
5090
|
|
4919
5091
|
- func: max.other(Tensor self, Tensor other) -> Tensor
|
4920
5092
|
use_c10_dispatcher: full
|
4921
5093
|
variants: method, function
|
4922
|
-
dispatch:
|
4923
|
-
CPU: legacy::cpu::_th_max
|
4924
|
-
CUDA: legacy::cuda::_th_max
|
4925
5094
|
|
4926
5095
|
- func: max(Tensor self) -> Tensor
|
4927
5096
|
use_c10_dispatcher: full
|
4928
5097
|
variants: method, function
|
4929
5098
|
dispatch:
|
4930
|
-
CPU:
|
5099
|
+
CPU: max
|
4931
5100
|
CUDA: legacy::cuda::_th_max
|
4932
5101
|
QuantizedCPU: max_quant
|
4933
5102
|
supports_named_tensor: True
|
@@ -4985,6 +5154,11 @@
|
|
4985
5154
|
use_c10_dispatcher: full
|
4986
5155
|
supports_named_tensor: True
|
4987
5156
|
variants: method, function
|
5157
|
+
dispatch:
|
5158
|
+
CPU: any
|
5159
|
+
CUDA: any
|
5160
|
+
SparseCPU: any_sparse
|
5161
|
+
SparseCUDA: any_sparse
|
4988
5162
|
|
4989
5163
|
- func: renorm.out(Tensor self, Scalar p, int dim, Scalar maxnorm, *, Tensor(a!) out) -> Tensor(a!)
|
4990
5164
|
dispatch:
|
@@ -5041,34 +5215,41 @@
|
|
5041
5215
|
CPU: pow
|
5042
5216
|
CUDA: pow
|
5043
5217
|
|
5218
|
+
- func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)
|
5219
|
+
variants: method
|
5220
|
+
dispatch:
|
5221
|
+
CPU: normal_cpu_
|
5222
|
+
CUDA: normal_cuda_
|
5223
|
+
supports_named_tensor: True
|
5224
|
+
|
5044
5225
|
- func: normal.Tensor_float_out(Tensor mean, float std=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5045
5226
|
dispatch:
|
5046
|
-
CPU:
|
5227
|
+
CPU: normal_out_cpu
|
5047
5228
|
CUDA: normal_out_cuda
|
5048
5229
|
|
5049
5230
|
- func: normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor
|
5050
5231
|
dispatch:
|
5051
|
-
CPU:
|
5232
|
+
CPU: normal_cpu
|
5052
5233
|
CUDA: normal_cuda
|
5053
5234
|
|
5054
5235
|
- func: normal.float_Tensor_out(float mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5055
5236
|
dispatch:
|
5056
|
-
CPU:
|
5237
|
+
CPU: normal_out_cpu
|
5057
5238
|
CUDA: normal_out_cuda
|
5058
5239
|
|
5059
5240
|
- func: normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5060
5241
|
dispatch:
|
5061
|
-
CPU:
|
5242
|
+
CPU: normal_cpu
|
5062
5243
|
CUDA: normal_cuda
|
5063
5244
|
|
5064
5245
|
- func: normal.Tensor_Tensor_out(Tensor mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5065
5246
|
dispatch:
|
5066
|
-
CPU:
|
5247
|
+
CPU: normal_out_cpu
|
5067
5248
|
CUDA: normal_out_cuda
|
5068
5249
|
|
5069
5250
|
- func: normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5070
5251
|
dispatch:
|
5071
|
-
CPU:
|
5252
|
+
CPU: normal_cpu
|
5072
5253
|
CUDA: normal_cuda
|
5073
5254
|
|
5074
5255
|
- func: normal.float_float(float mean, float std, int[] size, *, Generator? generator=None, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -5103,23 +5284,23 @@
|
|
5103
5284
|
- func: _cumsum(Tensor self, int dim) -> Tensor
|
5104
5285
|
use_c10_dispatcher: full
|
5105
5286
|
dispatch:
|
5106
|
-
CPU:
|
5287
|
+
CPU: _cumsum_cpu
|
5107
5288
|
CUDA: legacy::cuda::_th_cumsum
|
5108
5289
|
|
5109
5290
|
- func: _cumsum.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
5110
5291
|
dispatch:
|
5111
|
-
CPU:
|
5292
|
+
CPU: _cumsum_out_cpu
|
5112
5293
|
CUDA: legacy::cuda::_th_cumsum_out
|
5113
5294
|
|
5114
5295
|
- func: _cumprod(Tensor self, int dim) -> Tensor
|
5115
5296
|
use_c10_dispatcher: full
|
5116
5297
|
dispatch:
|
5117
|
-
CPU:
|
5298
|
+
CPU: _cumprod_cpu
|
5118
5299
|
CUDA: legacy::cuda::_th_cumprod
|
5119
5300
|
|
5120
5301
|
- func: _cumprod.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
5121
5302
|
dispatch:
|
5122
|
-
CPU:
|
5303
|
+
CPU: _cumprod_out_cpu
|
5123
5304
|
CUDA: legacy::cuda::_th_cumprod_out
|
5124
5305
|
|
5125
5306
|
- func: _var(Tensor self, bool unbiased=True) -> Tensor
|
@@ -5136,15 +5317,27 @@
|
|
5136
5317
|
CUDA: legacy::cuda::_th_std
|
5137
5318
|
supports_named_tensor: True
|
5138
5319
|
|
5320
|
+
- func: _amp_non_finite_check_and_unscale_(Tensor(a!) self, Tensor(b!) found_inf, Tensor inv_scale) -> ()
|
5321
|
+
variants: function
|
5322
|
+
dispatch:
|
5323
|
+
CUDA: _amp_non_finite_check_and_unscale_cuda_
|
5324
|
+
|
5325
|
+
- func: _amp_update_scale(Tensor(a!) growth_tracker, Tensor current_scale, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> Tensor
|
5326
|
+
variants: function
|
5327
|
+
dispatch:
|
5328
|
+
CUDA: _amp_update_scale_cuda
|
5329
|
+
|
5139
5330
|
- func: _cat(Tensor[] tensors, int dim=0) -> Tensor
|
5140
5331
|
dispatch:
|
5141
|
-
CPU:
|
5142
|
-
CUDA:
|
5332
|
+
CPU: _cat_cpu
|
5333
|
+
CUDA: cat_cuda
|
5334
|
+
QuantizedCPU: quantized_cat
|
5143
5335
|
|
5144
5336
|
- func: _cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
5145
5337
|
dispatch:
|
5146
|
-
CPU:
|
5147
|
-
CUDA:
|
5338
|
+
CPU: _cat_out_cpu
|
5339
|
+
CUDA: cat_out_cuda
|
5340
|
+
QuantizedCPU: quantized_cat_out
|
5148
5341
|
|
5149
5342
|
- func: _mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor, Tensor)
|
5150
5343
|
dispatch:
|
@@ -5178,30 +5371,6 @@
|
|
5178
5371
|
|
5179
5372
|
## NN wrappers
|
5180
5373
|
|
5181
|
-
- func: binary_cross_entropy.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5182
|
-
python_module: nn
|
5183
|
-
dispatch:
|
5184
|
-
CPU: legacy::cpu::_thnn_binary_cross_entropy_forward_out
|
5185
|
-
CUDA: legacy::cuda::_thnn_binary_cross_entropy_forward_out
|
5186
|
-
|
5187
|
-
- func: binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor
|
5188
|
-
python_module: nn
|
5189
|
-
dispatch:
|
5190
|
-
CPU: legacy::cpu::_thnn_binary_cross_entropy_forward
|
5191
|
-
CUDA: legacy::cuda::_thnn_binary_cross_entropy_forward
|
5192
|
-
|
5193
|
-
- func: binary_cross_entropy_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5194
|
-
python_module: nn
|
5195
|
-
dispatch:
|
5196
|
-
CPU: legacy::cpu::_thnn_binary_cross_entropy_backward_out
|
5197
|
-
CUDA: legacy::cuda::_thnn_binary_cross_entropy_backward_out
|
5198
|
-
|
5199
|
-
- func: binary_cross_entropy_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor
|
5200
|
-
python_module: nn
|
5201
|
-
dispatch:
|
5202
|
-
CPU: legacy::cpu::_thnn_binary_cross_entropy_backward
|
5203
|
-
CUDA: legacy::cuda::_thnn_binary_cross_entropy_backward
|
5204
|
-
|
5205
5374
|
- func: mse_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5206
5375
|
python_module: nn
|
5207
5376
|
|
@@ -5377,151 +5546,147 @@
|
|
5377
5546
|
|
5378
5547
|
- func: soft_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5379
5548
|
python_module: nn
|
5380
|
-
dispatch:
|
5381
|
-
CPU: legacy::cpu::_thnn_soft_margin_loss_forward_out
|
5382
|
-
CUDA: legacy::cuda::_thnn_soft_margin_loss_forward_out
|
5383
5549
|
|
5384
5550
|
- func: soft_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
5385
5551
|
use_c10_dispatcher: full
|
5386
5552
|
python_module: nn
|
5387
|
-
dispatch:
|
5388
|
-
CPU: legacy::cpu::_thnn_soft_margin_loss_forward
|
5389
|
-
CUDA: legacy::cuda::_thnn_soft_margin_loss_forward
|
5390
5553
|
|
5391
5554
|
- func: soft_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5392
5555
|
python_module: nn
|
5393
|
-
dispatch:
|
5394
|
-
CPU: legacy::cpu::_thnn_soft_margin_loss_backward_out
|
5395
|
-
CUDA: legacy::cuda::_thnn_soft_margin_loss_backward_out
|
5396
5556
|
|
5397
5557
|
- func: soft_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor
|
5398
5558
|
use_c10_dispatcher: full
|
5399
5559
|
python_module: nn
|
5400
|
-
dispatch:
|
5401
|
-
CPU: legacy::cpu::_thnn_soft_margin_loss_backward
|
5402
|
-
CUDA: legacy::cuda::_thnn_soft_margin_loss_backward
|
5403
5560
|
|
5404
5561
|
- func: elu.out(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1, *, Tensor(a!) out) -> Tensor(a!)
|
5405
5562
|
python_module: nn
|
5406
5563
|
dispatch:
|
5407
|
-
CPU:
|
5408
|
-
CUDA:
|
5564
|
+
CPU: elu_out
|
5565
|
+
CUDA: elu_out
|
5566
|
+
QuantizedCPU: quantized_elu_out
|
5409
5567
|
|
5410
5568
|
- func: elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor
|
5411
5569
|
use_c10_dispatcher: full
|
5412
5570
|
python_module: nn
|
5413
5571
|
dispatch:
|
5414
|
-
CPU:
|
5415
|
-
CUDA:
|
5572
|
+
CPU: elu
|
5573
|
+
CUDA: elu
|
5574
|
+
QuantizedCPU: quantized_elu
|
5416
5575
|
|
5417
5576
|
- func: elu_backward.grad_input(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5418
5577
|
python_module: nn
|
5419
5578
|
dispatch:
|
5420
|
-
CPU:
|
5421
|
-
CUDA:
|
5579
|
+
CPU: elu_backward_out
|
5580
|
+
CUDA: elu_backward_out
|
5422
5581
|
|
5423
5582
|
- func: elu_backward(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, Tensor output) -> Tensor
|
5424
5583
|
use_c10_dispatcher: full
|
5425
5584
|
python_module: nn
|
5426
|
-
dispatch:
|
5427
|
-
CPU: legacy::cpu::_thnn_elu_backward
|
5428
|
-
CUDA: legacy::cuda::_thnn_elu_backward
|
5429
5585
|
|
5430
5586
|
- func: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!)
|
5431
5587
|
python_module: nn
|
5432
5588
|
dispatch:
|
5433
|
-
CPU:
|
5434
|
-
CUDA:
|
5589
|
+
CPU: elu_
|
5590
|
+
CUDA: elu_
|
5591
|
+
QuantizedCPU: quantized_elu_
|
5435
5592
|
|
5436
5593
|
- func: glu.out(Tensor self, int dim=-1, *, Tensor(a!) out) -> Tensor(a!)
|
5437
5594
|
python_module: nn
|
5438
5595
|
dispatch:
|
5439
|
-
CPU:
|
5596
|
+
CPU: glu_out
|
5440
5597
|
CUDA: legacy::cuda::_thnn_glu_forward_out
|
5441
5598
|
|
5442
5599
|
- func: glu(Tensor self, int dim=-1) -> Tensor
|
5443
5600
|
use_c10_dispatcher: full
|
5444
5601
|
python_module: nn
|
5445
5602
|
dispatch:
|
5446
|
-
CPU:
|
5603
|
+
CPU: glu
|
5447
5604
|
CUDA: legacy::cuda::_thnn_glu_forward
|
5448
5605
|
|
5449
5606
|
- func: glu_backward.grad_input(Tensor grad_output, Tensor self, int dim, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5450
5607
|
python_module: nn
|
5451
5608
|
dispatch:
|
5452
|
-
CPU:
|
5609
|
+
CPU: glu_backward_out
|
5453
5610
|
CUDA: legacy::cuda::_thnn_glu_backward_out
|
5454
5611
|
|
5455
5612
|
- func: glu_backward(Tensor grad_output, Tensor self, int dim) -> Tensor
|
5456
5613
|
use_c10_dispatcher: full
|
5457
5614
|
python_module: nn
|
5458
5615
|
dispatch:
|
5459
|
-
CPU:
|
5616
|
+
CPU: glu_backward
|
5460
5617
|
CUDA: legacy::cuda::_thnn_glu_backward
|
5461
5618
|
|
5619
|
+
- func: hardsigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
5620
|
+
python_module: nn
|
5621
|
+
|
5622
|
+
- func: hardsigmoid(Tensor self) -> Tensor
|
5623
|
+
use_c10_dispatcher: full
|
5624
|
+
python_module: nn
|
5625
|
+
|
5626
|
+
- func: hardsigmoid_(Tensor(a!) self) -> Tensor(a!)
|
5627
|
+
python_module: nn
|
5628
|
+
|
5629
|
+
- func: hardsigmoid_backward(Tensor grad_output, Tensor self) -> Tensor
|
5630
|
+
use_c10_dispatcher: full
|
5631
|
+
python_module: nn
|
5632
|
+
|
5462
5633
|
- func: hardtanh.out(Tensor self, Scalar min_val=-1, Scalar max_val=1, *, Tensor(a!) out) -> Tensor(a!)
|
5463
5634
|
python_module: nn
|
5464
5635
|
dispatch:
|
5465
|
-
CPU:
|
5466
|
-
CUDA:
|
5636
|
+
CPU: hardtanh_out
|
5637
|
+
CUDA: hardtanh_out
|
5638
|
+
QuantizedCPU: quantized_hardtanh_out
|
5467
5639
|
|
5468
5640
|
- func: hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor
|
5469
5641
|
use_c10_dispatcher: full
|
5470
5642
|
python_module: nn
|
5471
5643
|
dispatch:
|
5472
|
-
CPU:
|
5473
|
-
CUDA:
|
5644
|
+
CPU: hardtanh
|
5645
|
+
CUDA: hardtanh
|
5646
|
+
QuantizedCPU: quantized_hardtanh
|
5474
5647
|
|
5475
5648
|
- func: hardtanh_backward.grad_input(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5476
5649
|
python_module: nn
|
5477
5650
|
dispatch:
|
5478
|
-
CPU:
|
5479
|
-
CUDA:
|
5651
|
+
CPU: hardtanh_backward_out
|
5652
|
+
CUDA: hardtanh_backward_out
|
5480
5653
|
|
5481
5654
|
- func: hardtanh_backward(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val) -> Tensor
|
5482
5655
|
use_c10_dispatcher: full
|
5483
5656
|
python_module: nn
|
5484
|
-
dispatch:
|
5485
|
-
CPU: legacy::cpu::_thnn_hardtanh_backward
|
5486
|
-
CUDA: legacy::cuda::_thnn_hardtanh_backward
|
5487
5657
|
|
5488
5658
|
- func: hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> Tensor(a!)
|
5489
5659
|
python_module: nn
|
5490
5660
|
dispatch:
|
5491
|
-
CPU:
|
5492
|
-
CUDA:
|
5661
|
+
CPU: hardtanh_
|
5662
|
+
CUDA: hardtanh_
|
5663
|
+
QuantizedCPU: quantized_hardtanh_
|
5493
5664
|
|
5494
5665
|
- func: leaky_relu.out(Tensor self, Scalar negative_slope=0.01, *, Tensor(a!) out) -> Tensor(a!)
|
5495
5666
|
python_module: nn
|
5496
5667
|
dispatch:
|
5497
|
-
CPU:
|
5498
|
-
CUDA:
|
5668
|
+
CPU: leaky_relu_out
|
5669
|
+
CUDA: leaky_relu_out
|
5670
|
+
QuantizedCPU: quantized_leaky_relu_out
|
5499
5671
|
|
5500
5672
|
- func: leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor
|
5501
5673
|
use_c10_dispatcher: full
|
5502
5674
|
python_module: nn
|
5503
5675
|
dispatch:
|
5504
|
-
CPU:
|
5505
|
-
CUDA:
|
5506
|
-
|
5507
|
-
- func: leaky_relu_backward.grad_input(Tensor grad_output, Tensor self, Scalar negative_slope, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5508
|
-
python_module: nn
|
5509
|
-
dispatch:
|
5510
|
-
CPU: legacy::cpu::_thnn_leaky_relu_backward_out
|
5511
|
-
CUDA: legacy::cuda::_thnn_leaky_relu_backward_out
|
5676
|
+
CPU: leaky_relu
|
5677
|
+
CUDA: leaky_relu
|
5678
|
+
QuantizedCPU: quantized_leaky_relu
|
5512
5679
|
|
5513
|
-
- func: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope) -> Tensor
|
5680
|
+
- func: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result) -> Tensor
|
5514
5681
|
use_c10_dispatcher: full
|
5515
5682
|
python_module: nn
|
5516
|
-
dispatch:
|
5517
|
-
CPU: legacy::cpu::_thnn_leaky_relu_backward
|
5518
|
-
CUDA: legacy::cuda::_thnn_leaky_relu_backward
|
5519
5683
|
|
5520
5684
|
- func: leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!)
|
5521
5685
|
python_module: nn
|
5522
5686
|
dispatch:
|
5523
|
-
CPU:
|
5524
|
-
CUDA:
|
5687
|
+
CPU: leaky_relu_
|
5688
|
+
CUDA: leaky_relu_
|
5689
|
+
QuantizedCPU: quantized_leaky_relu_
|
5525
5690
|
|
5526
5691
|
- func: log_sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
5527
5692
|
python_module: nn
|
@@ -5533,110 +5698,83 @@
|
|
5533
5698
|
- func: log_sigmoid_forward.output(Tensor self, *, Tensor(a!) output, Tensor(b!) buffer) -> (Tensor(a!), Tensor(b!))
|
5534
5699
|
python_module: nn
|
5535
5700
|
dispatch:
|
5536
|
-
CPU:
|
5701
|
+
CPU: log_sigmoid_forward_out_cpu
|
5537
5702
|
CUDA: legacy::cuda::_thnn_log_sigmoid_forward_out
|
5538
5703
|
|
5539
5704
|
- func: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer)
|
5540
5705
|
python_module: nn
|
5541
5706
|
dispatch:
|
5542
|
-
CPU:
|
5707
|
+
CPU: log_sigmoid_forward_cpu
|
5543
5708
|
CUDA: legacy::cuda::_thnn_log_sigmoid_forward
|
5544
5709
|
|
5545
5710
|
- func: log_sigmoid_backward.grad_input(Tensor grad_output, Tensor self, Tensor buffer, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5546
5711
|
python_module: nn
|
5547
5712
|
dispatch:
|
5548
|
-
CPU:
|
5713
|
+
CPU: log_sigmoid_backward_out_cpu
|
5549
5714
|
CUDA: legacy::cuda::_thnn_log_sigmoid_backward_out
|
5550
5715
|
|
5551
5716
|
- func: log_sigmoid_backward(Tensor grad_output, Tensor self, Tensor buffer) -> Tensor
|
5552
5717
|
use_c10_dispatcher: full
|
5553
5718
|
python_module: nn
|
5554
5719
|
dispatch:
|
5555
|
-
CPU:
|
5720
|
+
CPU: log_sigmoid_backward_cpu
|
5556
5721
|
CUDA: legacy::cuda::_thnn_log_sigmoid_backward
|
5557
5722
|
|
5558
5723
|
- func: rrelu_with_noise.out(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)
|
5559
5724
|
python_module: nn
|
5560
5725
|
dispatch:
|
5561
|
-
CPU:
|
5726
|
+
CPU: rrelu_with_noise_out_cpu
|
5562
5727
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward_out
|
5563
5728
|
|
5564
5729
|
- func: rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor
|
5565
5730
|
python_module: nn
|
5566
5731
|
dispatch:
|
5567
|
-
CPU:
|
5732
|
+
CPU: rrelu_with_noise_cpu
|
5568
5733
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward
|
5569
5734
|
|
5570
|
-
- func: rrelu_with_noise_backward
|
5571
|
-
python_module: nn
|
5572
|
-
dispatch:
|
5573
|
-
CPU: legacy::cpu::_thnn_rrelu_with_noise_backward_out
|
5574
|
-
CUDA: legacy::cuda::_thnn_rrelu_with_noise_backward_out
|
5575
|
-
|
5576
|
-
- func: rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training) -> Tensor
|
5735
|
+
- func: rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, bool self_is_result) -> Tensor
|
5577
5736
|
use_c10_dispatcher: full
|
5578
5737
|
python_module: nn
|
5579
|
-
dispatch:
|
5580
|
-
CPU: legacy::cpu::_thnn_rrelu_with_noise_backward
|
5581
|
-
CUDA: legacy::cuda::_thnn_rrelu_with_noise_backward
|
5582
5738
|
|
5583
5739
|
- func: rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)
|
5584
5740
|
python_module: nn
|
5585
5741
|
dispatch:
|
5586
|
-
CPU:
|
5742
|
+
CPU: rrelu_with_noise_cpu_
|
5587
5743
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward_
|
5588
5744
|
|
5589
5745
|
- func: softplus.out(Tensor self, Scalar beta=1, Scalar threshold=20, *, Tensor(a!) out) -> Tensor(a!)
|
5590
5746
|
python_module: nn
|
5591
|
-
dispatch:
|
5592
|
-
CPU: legacy::cpu::_thnn_softplus_forward_out
|
5593
|
-
CUDA: legacy::cuda::_thnn_softplus_forward_out
|
5594
5747
|
|
5595
5748
|
- func: softplus(Tensor self, Scalar beta=1, Scalar threshold=20) -> Tensor
|
5596
5749
|
use_c10_dispatcher: full
|
5597
5750
|
python_module: nn
|
5598
|
-
dispatch:
|
5599
|
-
CPU: legacy::cpu::_thnn_softplus_forward
|
5600
|
-
CUDA: legacy::cuda::_thnn_softplus_forward
|
5601
5751
|
|
5602
5752
|
- func: softplus_backward.grad_input(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5603
5753
|
python_module: nn
|
5604
5754
|
dispatch:
|
5605
|
-
CPU:
|
5606
|
-
CUDA:
|
5755
|
+
CPU: softplus_backward_out
|
5756
|
+
CUDA: softplus_backward_out
|
5607
5757
|
|
5608
5758
|
- func: softplus_backward(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, Tensor output) -> Tensor
|
5609
5759
|
use_c10_dispatcher: full
|
5610
5760
|
python_module: nn
|
5611
|
-
dispatch:
|
5612
|
-
CPU: legacy::cpu::_thnn_softplus_backward
|
5613
|
-
CUDA: legacy::cuda::_thnn_softplus_backward
|
5614
5761
|
|
5615
5762
|
- func: softshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!)
|
5616
5763
|
python_module: nn
|
5617
|
-
dispatch:
|
5618
|
-
CPU: legacy::cpu::_thnn_softshrink_forward_out
|
5619
|
-
CUDA: legacy::cuda::_thnn_softshrink_forward_out
|
5620
5764
|
|
5621
5765
|
- func: softshrink(Tensor self, Scalar lambd=0.5) -> Tensor
|
5622
5766
|
use_c10_dispatcher: full
|
5623
5767
|
python_module: nn
|
5624
|
-
dispatch:
|
5625
|
-
CPU: legacy::cpu::_thnn_softshrink_forward
|
5626
|
-
CUDA: legacy::cuda::_thnn_softshrink_forward
|
5627
5768
|
|
5628
5769
|
- func: softshrink_backward.grad_input(Tensor grad_output, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5629
5770
|
python_module: nn
|
5630
5771
|
dispatch:
|
5631
|
-
CPU:
|
5632
|
-
CUDA:
|
5772
|
+
CPU: softshrink_backward_out
|
5773
|
+
CUDA: softshrink_backward_out
|
5633
5774
|
|
5634
5775
|
- func: softshrink_backward(Tensor grad_output, Tensor self, Scalar lambd) -> Tensor
|
5635
5776
|
use_c10_dispatcher: full
|
5636
5777
|
python_module: nn
|
5637
|
-
dispatch:
|
5638
|
-
CPU: legacy::cpu::_thnn_softshrink_backward
|
5639
|
-
CUDA: legacy::cuda::_thnn_softshrink_backward
|
5640
5778
|
|
5641
5779
|
- func: adaptive_avg_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
5642
5780
|
python_module: nn
|
@@ -5783,6 +5921,7 @@
|
|
5783
5921
|
dispatch:
|
5784
5922
|
CPU: avg_pool3d_cpu
|
5785
5923
|
CUDA: avg_pool3d_cuda
|
5924
|
+
QuantizedCPU: quantized_avg_pool3d
|
5786
5925
|
|
5787
5926
|
- func: avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5788
5927
|
python_module: nn
|
@@ -5861,6 +6000,7 @@
|
|
5861
6000
|
dispatch:
|
5862
6001
|
CPU: max_pool2d_with_indices_cpu
|
5863
6002
|
CUDA: max_pool2d_with_indices_cuda
|
6003
|
+
supports_named_tensor: True
|
5864
6004
|
|
5865
6005
|
- func: max_pool2d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5866
6006
|
python_module: nn
|
@@ -5887,6 +6027,7 @@
|
|
5887
6027
|
dispatch:
|
5888
6028
|
CPU: max_pool3d_with_indices_cpu
|
5889
6029
|
CUDA: max_pool3d_with_indices_cuda
|
6030
|
+
supports_named_tensor: True
|
5890
6031
|
|
5891
6032
|
- func: max_pool3d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5892
6033
|
python_module: nn
|
@@ -6068,174 +6209,172 @@
|
|
6068
6209
|
CPU: replication_pad3d_backward_cpu
|
6069
6210
|
CUDA: replication_pad3d_backward_cuda
|
6070
6211
|
|
6071
|
-
- func:
|
6072
|
-
variants: function
|
6073
|
-
|
6074
|
-
- func: upsample_linear1d.out(Tensor self, int[1] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6212
|
+
- func: upsample_linear1d.out(Tensor self, int[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!)
|
6075
6213
|
python_module: nn
|
6076
6214
|
dispatch:
|
6077
6215
|
CPU: upsample_linear1d_out_cpu
|
6078
6216
|
CUDA: upsample_linear1d_out_cuda
|
6079
6217
|
|
6080
|
-
- func: upsample_linear1d(Tensor self, int[1] output_size, bool align_corners) -> Tensor
|
6218
|
+
- func: upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> Tensor
|
6081
6219
|
python_module: nn
|
6082
6220
|
dispatch:
|
6083
6221
|
CPU: upsample_linear1d_cpu
|
6084
6222
|
CUDA: upsample_linear1d_cuda
|
6085
6223
|
|
6086
|
-
- func: upsample_linear1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6224
|
+
- func: upsample_linear1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6087
6225
|
python_module: nn
|
6088
6226
|
dispatch:
|
6089
6227
|
CPU: upsample_linear1d_backward_out_cpu
|
6090
6228
|
CUDA: upsample_linear1d_backward_out_cuda
|
6091
6229
|
|
6092
|
-
- func: upsample_linear1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners) -> Tensor
|
6230
|
+
- func: upsample_linear1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, float? scales=None) -> Tensor
|
6093
6231
|
python_module: nn
|
6094
6232
|
dispatch:
|
6095
6233
|
CPU: upsample_linear1d_backward_cpu
|
6096
6234
|
CUDA: upsample_linear1d_backward_cuda
|
6097
6235
|
|
6098
|
-
- func: upsample_bilinear2d.out(Tensor self, int[2] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6236
|
+
- func: upsample_bilinear2d.out(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6099
6237
|
python_module: nn
|
6100
6238
|
dispatch:
|
6101
6239
|
CPU: upsample_bilinear2d_out_cpu
|
6102
6240
|
CUDA: upsample_bilinear2d_out_cuda
|
6103
6241
|
|
6104
|
-
- func: upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners) -> Tensor
|
6242
|
+
- func: upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6105
6243
|
python_module: nn
|
6106
6244
|
dispatch:
|
6107
6245
|
CPU: upsample_bilinear2d_cpu
|
6108
6246
|
CUDA: upsample_bilinear2d_cuda
|
6109
6247
|
QuantizedCPU: quantized_upsample_bilinear2d_cpu
|
6110
6248
|
|
6111
|
-
- func: upsample_bilinear2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6249
|
+
- func: upsample_bilinear2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6112
6250
|
python_module: nn
|
6113
6251
|
dispatch:
|
6114
6252
|
CPU: upsample_bilinear2d_backward_out_cpu
|
6115
6253
|
CUDA: upsample_bilinear2d_backward_out_cuda
|
6116
6254
|
|
6117
|
-
- func: upsample_bilinear2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners) -> Tensor
|
6255
|
+
- func: upsample_bilinear2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6118
6256
|
python_module: nn
|
6119
6257
|
dispatch:
|
6120
6258
|
CPU: upsample_bilinear2d_backward_cpu
|
6121
6259
|
CUDA: upsample_bilinear2d_backward_cuda
|
6122
6260
|
|
6123
|
-
- func: upsample_bicubic2d.out(Tensor self, int[2] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6261
|
+
- func: upsample_bicubic2d.out(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6124
6262
|
python_module: nn
|
6125
6263
|
dispatch:
|
6126
6264
|
CPU: upsample_bicubic2d_out_cpu
|
6127
6265
|
CUDA: upsample_bicubic2d_out_cuda
|
6128
6266
|
|
6129
|
-
- func: upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners) -> Tensor
|
6267
|
+
- func: upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6130
6268
|
python_module: nn
|
6131
6269
|
dispatch:
|
6132
6270
|
CPU: upsample_bicubic2d_cpu
|
6133
6271
|
CUDA: upsample_bicubic2d_cuda
|
6134
6272
|
|
6135
|
-
- func: upsample_bicubic2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6273
|
+
- func: upsample_bicubic2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6136
6274
|
python_module: nn
|
6137
6275
|
dispatch:
|
6138
6276
|
CPU: upsample_bicubic2d_backward_out_cpu
|
6139
6277
|
CUDA: upsample_bicubic2d_backward_out_cuda
|
6140
6278
|
|
6141
|
-
- func: upsample_bicubic2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners) -> Tensor
|
6279
|
+
- func: upsample_bicubic2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6142
6280
|
python_module: nn
|
6143
6281
|
dispatch:
|
6144
6282
|
CPU: upsample_bicubic2d_backward_cpu
|
6145
6283
|
CUDA: upsample_bicubic2d_backward_cuda
|
6146
6284
|
|
6147
|
-
- func: upsample_trilinear3d.out(Tensor self, int[3] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6285
|
+
- func: upsample_trilinear3d.out(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6148
6286
|
python_module: nn
|
6149
6287
|
dispatch:
|
6150
6288
|
CPU: upsample_trilinear3d_out_cpu
|
6151
6289
|
CUDA: upsample_trilinear3d_out_cuda
|
6152
6290
|
|
6153
|
-
- func: upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners) -> Tensor
|
6291
|
+
- func: upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6154
6292
|
python_module: nn
|
6155
6293
|
dispatch:
|
6156
6294
|
CPU: upsample_trilinear3d_cpu
|
6157
6295
|
CUDA: upsample_trilinear3d_cuda
|
6158
6296
|
|
6159
|
-
- func: upsample_trilinear3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6297
|
+
- func: upsample_trilinear3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6160
6298
|
python_module: nn
|
6161
6299
|
dispatch:
|
6162
6300
|
CPU: upsample_trilinear3d_backward_out_cpu
|
6163
6301
|
CUDA: upsample_trilinear3d_backward_out_cuda
|
6164
6302
|
|
6165
|
-
- func: upsample_trilinear3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners) -> Tensor
|
6303
|
+
- func: upsample_trilinear3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6166
6304
|
python_module: nn
|
6167
6305
|
dispatch:
|
6168
6306
|
CPU: upsample_trilinear3d_backward_cpu
|
6169
6307
|
CUDA: upsample_trilinear3d_backward_cuda
|
6170
6308
|
|
6171
|
-
- func: upsample_nearest1d.out(Tensor self, int[1] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
6309
|
+
- func: upsample_nearest1d.out(Tensor self, int[1] output_size, float? scales=None, *, Tensor(a!) out) -> Tensor(a!)
|
6172
6310
|
python_module: nn
|
6173
6311
|
dispatch:
|
6174
6312
|
CPU: upsample_nearest1d_out_cpu
|
6175
6313
|
CUDA: upsample_nearest1d_out_cuda
|
6176
6314
|
|
6177
|
-
- func: upsample_nearest1d(Tensor self, int[1] output_size) -> Tensor
|
6315
|
+
- func: upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> Tensor
|
6178
6316
|
python_module: nn
|
6179
6317
|
dispatch:
|
6180
6318
|
CPU: upsample_nearest1d_cpu
|
6181
6319
|
CUDA: upsample_nearest1d_cuda
|
6182
6320
|
|
6183
|
-
- func: upsample_nearest1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6321
|
+
- func: upsample_nearest1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6184
6322
|
python_module: nn
|
6185
6323
|
dispatch:
|
6186
6324
|
CPU: upsample_nearest1d_backward_out_cpu
|
6187
6325
|
CUDA: upsample_nearest1d_backward_out_cuda
|
6188
6326
|
|
6189
|
-
- func: upsample_nearest1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size) -> Tensor
|
6327
|
+
- func: upsample_nearest1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, float? scales=None) -> Tensor
|
6190
6328
|
python_module: nn
|
6191
6329
|
dispatch:
|
6192
6330
|
CPU: upsample_nearest1d_backward_cpu
|
6193
6331
|
CUDA: upsample_nearest1d_backward_cuda
|
6194
6332
|
|
6195
|
-
- func: upsample_nearest2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
6333
|
+
- func: upsample_nearest2d.out(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6196
6334
|
python_module: nn
|
6197
6335
|
dispatch:
|
6198
6336
|
CPU: upsample_nearest2d_out_cpu
|
6199
6337
|
CUDA: upsample_nearest2d_out_cuda
|
6200
6338
|
|
6201
|
-
- func: upsample_nearest2d(Tensor self, int[2] output_size) -> Tensor
|
6339
|
+
- func: upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor
|
6202
6340
|
python_module: nn
|
6203
6341
|
dispatch:
|
6204
6342
|
CPU: upsample_nearest2d_cpu
|
6205
6343
|
CUDA: upsample_nearest2d_cuda
|
6206
6344
|
QuantizedCPU: quantized_upsample_nearest2d_cpu
|
6207
6345
|
|
6208
|
-
- func: upsample_nearest2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6346
|
+
- func: upsample_nearest2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6209
6347
|
python_module: nn
|
6210
6348
|
dispatch:
|
6211
6349
|
CPU: upsample_nearest2d_backward_out_cpu
|
6212
6350
|
CUDA: upsample_nearest2d_backward_out_cuda
|
6213
6351
|
|
6214
|
-
- func: upsample_nearest2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size) -> Tensor
|
6352
|
+
- func: upsample_nearest2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor
|
6215
6353
|
python_module: nn
|
6216
6354
|
dispatch:
|
6217
6355
|
CPU: upsample_nearest2d_backward_cpu
|
6218
6356
|
CUDA: upsample_nearest2d_backward_cuda
|
6219
6357
|
|
6220
|
-
- func: upsample_nearest3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
6358
|
+
- func: upsample_nearest3d.out(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6221
6359
|
python_module: nn
|
6222
6360
|
dispatch:
|
6223
6361
|
CPU: upsample_nearest3d_out_cpu
|
6224
6362
|
CUDA: upsample_nearest3d_out_cuda
|
6225
6363
|
|
6226
|
-
- func: upsample_nearest3d(Tensor self, int[3] output_size) -> Tensor
|
6364
|
+
- func: upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6227
6365
|
python_module: nn
|
6228
6366
|
dispatch:
|
6229
6367
|
CPU: upsample_nearest3d_cpu
|
6230
6368
|
CUDA: upsample_nearest3d_cuda
|
6369
|
+
QuantizedCPU: quantized_upsample_nearest3d_cpu
|
6231
6370
|
|
6232
|
-
- func: upsample_nearest3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6371
|
+
- func: upsample_nearest3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6233
6372
|
python_module: nn
|
6234
6373
|
dispatch:
|
6235
6374
|
CPU: upsample_nearest3d_backward_out_cpu
|
6236
6375
|
CUDA: upsample_nearest3d_backward_out_cuda
|
6237
6376
|
|
6238
|
-
- func: upsample_nearest3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size) -> Tensor
|
6377
|
+
- func: upsample_nearest3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6239
6378
|
python_module: nn
|
6240
6379
|
dispatch:
|
6241
6380
|
CPU: upsample_nearest3d_backward_cpu
|
@@ -6254,15 +6393,12 @@
|
|
6254
6393
|
- func: tanh_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6255
6394
|
python_module: nn
|
6256
6395
|
dispatch:
|
6257
|
-
CPU:
|
6258
|
-
CUDA:
|
6396
|
+
CPU: tanh_backward_out
|
6397
|
+
CUDA: tanh_backward_out
|
6259
6398
|
|
6260
6399
|
- func: tanh_backward(Tensor grad_output, Tensor output) -> Tensor
|
6261
6400
|
use_c10_dispatcher: full
|
6262
6401
|
python_module: nn
|
6263
|
-
dispatch:
|
6264
|
-
CPU: legacy::cpu::_thnn_tanh_backward
|
6265
|
-
CUDA: legacy::cuda::_thnn_tanh_backward
|
6266
6402
|
|
6267
6403
|
# What's a thnn_conv_ versus a slow_conv_?
|
6268
6404
|
#
|
@@ -6489,3 +6625,9 @@
|
|
6489
6625
|
variants: function
|
6490
6626
|
device_guard: False
|
6491
6627
|
supports_named_tensor: True
|
6628
|
+
|
6629
|
+
- func: isinf(Tensor self) -> Tensor
|
6630
|
+
use_c10_dispatcher: full
|
6631
|
+
variants: function
|
6632
|
+
device_guard: False
|
6633
|
+
supports_named_tensor: True
|