torch-rb 0.1.8 → 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -2
- data/README.md +35 -11
- data/ext/torch/ext.cpp +37 -28
- data/ext/torch/extconf.rb +33 -6
- data/ext/torch/nn_functions.cpp +560 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.hpp +2 -0
- data/ext/torch/tensor_functions.cpp +2085 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +3175 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/hub.rb +9 -0
- data/lib/torch/native/generator.rb +6 -3
- data/lib/torch/native/native_functions.yaml +539 -397
- data/lib/torch/native/parser.rb +2 -0
- data/lib/torch/nn/adaptive_avg_pool1d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_pool2d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_pool3d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_poolnd.rb +14 -0
- data/lib/torch/nn/adaptive_max_pool1d.rb +9 -0
- data/lib/torch/nn/adaptive_max_pool2d.rb +9 -0
- data/lib/torch/nn/adaptive_max_pool3d.rb +9 -0
- data/lib/torch/nn/adaptive_max_poolnd.rb +15 -0
- data/lib/torch/nn/functional.rb +40 -2
- data/lib/torch/nn/module.rb +22 -1
- data/lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb +29 -0
- data/lib/torch/optim/lr_scheduler/exponential_lr.rb +22 -0
- data/lib/torch/optim/lr_scheduler/lambda_lr.rb +28 -0
- data/lib/torch/optim/lr_scheduler/multi_step_lr.rb +23 -0
- data/lib/torch/optim/lr_scheduler/multiplicative_lr.rb +32 -0
- data/lib/torch/tensor.rb +8 -0
- data/lib/torch/version.rb +1 -1
- data/lib/torch.rb +21 -0
- metadata +38 -3
@@ -39,6 +39,7 @@
|
|
39
39
|
|
40
40
|
# Computes the gradient of current tensor w.r.t. graph leaves.
|
41
41
|
- func: backward(Tensor self, Tensor? gradient=None, bool keep_graph=False, bool create_graph=False) -> ()
|
42
|
+
manual_kernel_registration: True
|
42
43
|
variants: method
|
43
44
|
|
44
45
|
# DEPRECATED. Sets the tensor data held by this `Variable` to be the same as
|
@@ -49,14 +50,19 @@
|
|
49
50
|
# where Variables *are* Tensors (as opposed to them containing tensors, which
|
50
51
|
# is what the previous interpretation was.)
|
51
52
|
- func: set_data(Tensor(a!) self, Tensor new_data) -> ()
|
52
|
-
use_c10_dispatcher:
|
53
|
+
use_c10_dispatcher: full
|
54
|
+
manual_kernel_registration: True
|
53
55
|
variants: method
|
54
56
|
|
55
57
|
- func: data(Tensor self) -> Tensor
|
58
|
+
use_c10_dispatcher: full
|
59
|
+
manual_kernel_registration: True
|
56
60
|
variants: method
|
57
61
|
|
58
62
|
# True if this `Variable` is a leaf and thus does not have a `grad_fn`.
|
59
63
|
- func: is_leaf(Tensor self) -> bool
|
64
|
+
use_c10_dispatcher: full
|
65
|
+
manual_kernel_registration: True
|
60
66
|
variants: method
|
61
67
|
|
62
68
|
# Returns the output index of this variable from the forward operation that
|
@@ -70,13 +76,24 @@
|
|
70
76
|
# assert y2.output_nr == 2
|
71
77
|
#
|
72
78
|
- func: output_nr(Tensor self) -> int
|
79
|
+
use_c10_dispatcher: full
|
80
|
+
manual_kernel_registration: True
|
73
81
|
variants: method
|
74
82
|
supports_named_tensor: True
|
75
83
|
|
76
84
|
- func: _version(Tensor self) -> int
|
85
|
+
use_c10_dispatcher: full
|
86
|
+
manual_kernel_registration: True
|
77
87
|
variants: method
|
78
88
|
|
79
89
|
- func: requires_grad_(Tensor(a!) self, bool _requires_grad=True) -> Tensor(a!)
|
90
|
+
manual_kernel_registration: True
|
91
|
+
variants: method
|
92
|
+
|
93
|
+
# Enables .grad attribute for non-leaf Tensors.
|
94
|
+
- func: retain_grad(Tensor(a!) self) -> ()
|
95
|
+
use_c10_dispatcher: full
|
96
|
+
manual_kernel_registration: True
|
80
97
|
variants: method
|
81
98
|
|
82
99
|
- func: rename_(Tensor(a!) self, Dimname[]? names) -> Tensor(a!)
|
@@ -123,6 +140,9 @@
|
|
123
140
|
dispatch:
|
124
141
|
CUDA: _cudnn_ctc_loss
|
125
142
|
|
143
|
+
- func: _use_cudnn_rnn_flatten_weight() -> bool
|
144
|
+
use_c10_dispatcher: full
|
145
|
+
|
126
146
|
- func: _cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, int input_size, int mode, int hidden_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor
|
127
147
|
dispatch:
|
128
148
|
CUDA: _cudnn_rnn_flatten_weight
|
@@ -209,48 +229,30 @@
|
|
209
229
|
supports_named_tensor: True
|
210
230
|
|
211
231
|
- func: angle(Tensor self) -> Tensor
|
232
|
+
use_c10_dispatcher: full
|
212
233
|
variants: function, method
|
213
234
|
supports_named_tensor: True
|
214
|
-
named_guard: False
|
215
235
|
|
216
236
|
- func: angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
217
|
-
named_guard: False
|
218
237
|
supports_named_tensor: True
|
219
|
-
dispatch:
|
220
|
-
CPU: _angle_out_cpu
|
221
238
|
|
222
239
|
- func: real(Tensor self) -> Tensor
|
223
|
-
|
224
|
-
|
225
|
-
supports_named_tensor: True
|
226
|
-
|
227
|
-
- func: real.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
228
|
-
named_guard: False
|
240
|
+
use_c10_dispatcher: full
|
241
|
+
variants: function
|
229
242
|
supports_named_tensor: True
|
230
|
-
dispatch:
|
231
|
-
CPU: _real_out_cpu
|
232
243
|
|
233
244
|
- func: imag(Tensor self) -> Tensor
|
234
|
-
|
235
|
-
|
236
|
-
supports_named_tensor: True
|
237
|
-
|
238
|
-
- func: imag.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
239
|
-
named_guard: False
|
245
|
+
use_c10_dispatcher: full
|
246
|
+
variants: function
|
240
247
|
supports_named_tensor: True
|
241
|
-
dispatch:
|
242
|
-
CPU: _imag_out_cpu
|
243
248
|
|
244
249
|
- func: conj(Tensor self) -> Tensor
|
250
|
+
use_c10_dispatcher: full
|
245
251
|
variants: function, method
|
246
|
-
named_guard: False
|
247
252
|
supports_named_tensor: True
|
248
253
|
|
249
254
|
- func: conj.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
250
|
-
named_guard: False
|
251
255
|
supports_named_tensor: True
|
252
|
-
dispatch:
|
253
|
-
CPU: _conj_out_cpu
|
254
256
|
|
255
257
|
- func: acos(Tensor self) -> Tensor
|
256
258
|
use_c10_dispatcher: full
|
@@ -395,12 +397,16 @@
|
|
395
397
|
use_c10_dispatcher: full
|
396
398
|
|
397
399
|
- func: argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
|
398
|
-
use_c10_dispatcher: full
|
399
400
|
variants: function, method
|
401
|
+
dispatch:
|
402
|
+
CPU: argmax
|
403
|
+
CUDA: argmax
|
400
404
|
|
401
405
|
- func: argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor
|
402
|
-
use_c10_dispatcher: full
|
403
406
|
variants: function, method
|
407
|
+
dispatch:
|
408
|
+
CPU: argmin
|
409
|
+
CUDA: argmin
|
404
410
|
|
405
411
|
- func: as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> Tensor(a)
|
406
412
|
variants: function, method
|
@@ -473,6 +479,11 @@
|
|
473
479
|
|
474
480
|
- func: batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor
|
475
481
|
|
482
|
+
- func: quantized_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor var, float eps, float output_scale, int output_zero_point) -> Tensor
|
483
|
+
requires_tensor: True
|
484
|
+
dispatch:
|
485
|
+
QuantizedCPU: quantized_batch_norm
|
486
|
+
|
476
487
|
- func: _batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)
|
477
488
|
|
478
489
|
- func: _batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask, Tensor reservedSpace) -> (Tensor, Tensor, Tensor)
|
@@ -508,6 +519,34 @@
|
|
508
519
|
|
509
520
|
- func: bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias) -> Tensor
|
510
521
|
|
522
|
+
- func: binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor
|
523
|
+
python_module: nn
|
524
|
+
variants: function
|
525
|
+
dispatch:
|
526
|
+
CPU: binary_cross_entropy_cpu
|
527
|
+
CUDA: binary_cross_entropy_cuda
|
528
|
+
|
529
|
+
- func: binary_cross_entropy.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
530
|
+
python_module: nn
|
531
|
+
variants: function
|
532
|
+
dispatch:
|
533
|
+
CPU: binary_cross_entropy_out_cpu
|
534
|
+
CUDA: binary_cross_entropy_out_cuda
|
535
|
+
|
536
|
+
- func: binary_cross_entropy_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor
|
537
|
+
python_module: nn
|
538
|
+
variants: function
|
539
|
+
dispatch:
|
540
|
+
CPU: binary_cross_entropy_backward_cpu
|
541
|
+
CUDA: binary_cross_entropy_backward_cuda
|
542
|
+
|
543
|
+
- func: binary_cross_entropy_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)
|
544
|
+
python_module: nn
|
545
|
+
variants: function
|
546
|
+
dispatch:
|
547
|
+
CPU: binary_cross_entropy_backward_out_cpu
|
548
|
+
CUDA: binary_cross_entropy_backward_out_cuda
|
549
|
+
|
511
550
|
- func: binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean) -> Tensor
|
512
551
|
variants: function
|
513
552
|
|
@@ -563,6 +602,34 @@
|
|
563
602
|
CUDA: logical_xor_out
|
564
603
|
supports_named_tensor: True
|
565
604
|
|
605
|
+
- func: logical_and(Tensor self, Tensor other) -> Tensor
|
606
|
+
variants: function, method
|
607
|
+
supports_named_tensor: True
|
608
|
+
|
609
|
+
- func: logical_and_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
610
|
+
variants: method
|
611
|
+
supports_named_tensor: True
|
612
|
+
|
613
|
+
- func: logical_and.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
614
|
+
dispatch:
|
615
|
+
CPU: logical_and_out
|
616
|
+
CUDA: logical_and_out
|
617
|
+
supports_named_tensor: True
|
618
|
+
|
619
|
+
- func: logical_or(Tensor self, Tensor other) -> Tensor
|
620
|
+
variants: function, method
|
621
|
+
supports_named_tensor: True
|
622
|
+
|
623
|
+
- func: logical_or_(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
624
|
+
variants: method
|
625
|
+
supports_named_tensor: True
|
626
|
+
|
627
|
+
- func: logical_or.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
628
|
+
dispatch:
|
629
|
+
CPU: logical_or_out
|
630
|
+
CUDA: logical_or_out
|
631
|
+
supports_named_tensor: True
|
632
|
+
|
566
633
|
- func: blackman_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
567
634
|
|
568
635
|
- func: blackman_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -624,6 +691,10 @@
|
|
624
691
|
use_c10_dispatcher: full
|
625
692
|
supports_named_tensor: True
|
626
693
|
variants: function, method
|
694
|
+
dispatch:
|
695
|
+
CPU: clamp
|
696
|
+
CUDA: clamp
|
697
|
+
QuantizedCPU: quantized_clamp
|
627
698
|
|
628
699
|
- func: clamp_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!)
|
629
700
|
supports_named_tensor: True
|
@@ -716,6 +787,7 @@
|
|
716
787
|
- func: conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=1, int[3] padding=0, int[3] output_padding=0, int groups=1, int[3] dilation=1) -> Tensor
|
717
788
|
|
718
789
|
- func: copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)
|
790
|
+
manual_kernel_registration: True
|
719
791
|
variants: method
|
720
792
|
device_guard: False
|
721
793
|
supports_named_tensor: True
|
@@ -783,7 +855,11 @@
|
|
783
855
|
dispatch:
|
784
856
|
CUDA: cudnn_batch_norm_backward
|
785
857
|
|
786
|
-
- func: cudnn_convolution(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
858
|
+
- func: cudnn_convolution.deprecated(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
859
|
+
dispatch:
|
860
|
+
CUDA: cudnn_convolution_deprecated
|
861
|
+
|
862
|
+
- func: cudnn_convolution(Tensor self, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
787
863
|
dispatch:
|
788
864
|
CUDA: cudnn_convolution
|
789
865
|
|
@@ -791,34 +867,28 @@
|
|
791
867
|
dispatch:
|
792
868
|
CUDA: cudnn_convolution_backward_input
|
793
869
|
|
794
|
-
- func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[
|
870
|
+
- func: cudnn_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[2] output_mask) -> (Tensor, Tensor)
|
795
871
|
dispatch:
|
796
872
|
CUDA: cudnn_convolution_backward
|
797
873
|
|
798
|
-
- func: cudnn_convolution_backward_bias(Tensor grad_output) -> Tensor
|
799
|
-
use_c10_dispatcher: full
|
800
|
-
dispatch:
|
801
|
-
CUDA: cudnn_convolution_backward_bias
|
802
|
-
|
803
874
|
- func: cudnn_convolution_backward_weight(int[] weight_size, Tensor grad_output, Tensor self, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
804
875
|
dispatch:
|
805
876
|
CUDA: cudnn_convolution_backward_weight
|
806
877
|
|
807
|
-
- func: cudnn_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
878
|
+
- func: cudnn_convolution_transpose.deprecated(Tensor self, Tensor weight, Tensor? bias, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
879
|
+
dispatch:
|
880
|
+
CUDA: cudnn_convolution_transpose_deprecated
|
881
|
+
|
882
|
+
- func: cudnn_convolution_transpose(Tensor self, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
808
883
|
dispatch:
|
809
884
|
CUDA: cudnn_convolution_transpose
|
810
885
|
|
811
886
|
# NB: output_padding not strictly needed here, but it's helpful for the float
|
812
887
|
# backwards
|
813
|
-
- func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[
|
888
|
+
- func: cudnn_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, int[] padding, int[] output_padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic, bool[2] output_mask) -> (Tensor, Tensor)
|
814
889
|
dispatch:
|
815
890
|
CUDA: cudnn_convolution_transpose_backward
|
816
891
|
|
817
|
-
- func: cudnn_convolution_transpose_backward_bias(Tensor grad_output) -> Tensor
|
818
|
-
use_c10_dispatcher: full
|
819
|
-
dispatch:
|
820
|
-
CUDA: cudnn_convolution_backward_bias
|
821
|
-
|
822
892
|
- func: cudnn_convolution_transpose_backward_input(Tensor grad_output, Tensor weight, int[] padding, int[] stride, int[] dilation, int groups, bool benchmark, bool deterministic) -> Tensor
|
823
893
|
dispatch:
|
824
894
|
CUDA: cudnn_convolution_transpose_backward_input
|
@@ -837,19 +907,45 @@
|
|
837
907
|
dispatch:
|
838
908
|
CUDA: cudnn_grid_sampler_backward
|
839
909
|
|
840
|
-
- func:
|
910
|
+
- func: cummax(Tensor self, int dim) -> (Tensor values, Tensor indices)
|
841
911
|
supports_named_tensor: True
|
842
912
|
variants: function, method
|
843
913
|
|
844
|
-
- func:
|
914
|
+
- func: cummax.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
845
915
|
supports_named_tensor: True
|
846
916
|
|
847
|
-
- func:
|
917
|
+
- func: cummax.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)
|
848
918
|
supports_named_tensor: True
|
849
919
|
variants: function, method
|
850
920
|
|
851
|
-
- func:
|
921
|
+
- func: cummax.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
922
|
+
supports_named_tensor: True
|
923
|
+
|
924
|
+
- func: _cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
|
925
|
+
variants: function
|
926
|
+
dispatch:
|
927
|
+
CPU: cummax_helper_cpu
|
928
|
+
CUDA: cummax_helper_cuda
|
929
|
+
|
930
|
+
- func: cummin(Tensor self, int dim) -> (Tensor values, Tensor indices)
|
852
931
|
supports_named_tensor: True
|
932
|
+
variants: function, method
|
933
|
+
|
934
|
+
- func: cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
935
|
+
supports_named_tensor: True
|
936
|
+
|
937
|
+
- func: cummin.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)
|
938
|
+
supports_named_tensor: True
|
939
|
+
variants: function, method
|
940
|
+
|
941
|
+
- func: cummin.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
|
942
|
+
supports_named_tensor: True
|
943
|
+
|
944
|
+
- func: _cummin_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()
|
945
|
+
variants: function
|
946
|
+
dispatch:
|
947
|
+
CPU: cummin_helper_cpu
|
948
|
+
CUDA: cummin_helper_cuda
|
853
949
|
|
854
950
|
- func: cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
855
951
|
supports_named_tensor: True
|
@@ -865,6 +961,20 @@
|
|
865
961
|
- func: cumprod.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
866
962
|
supports_named_tensor: True
|
867
963
|
|
964
|
+
- func: cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor
|
965
|
+
supports_named_tensor: True
|
966
|
+
variants: function, method
|
967
|
+
|
968
|
+
- func: cumsum.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
969
|
+
supports_named_tensor: True
|
970
|
+
|
971
|
+
- func: cumsum.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor
|
972
|
+
supports_named_tensor: True
|
973
|
+
variants: function, method
|
974
|
+
|
975
|
+
- func: cumsum.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)
|
976
|
+
supports_named_tensor: True
|
977
|
+
|
868
978
|
- func: ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor
|
869
979
|
|
870
980
|
# convenience function that converts to intlists for you
|
@@ -895,6 +1005,11 @@
|
|
895
1005
|
|
896
1006
|
- func: diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a)
|
897
1007
|
variants: function, method
|
1008
|
+
supports_named_tensor: True
|
1009
|
+
|
1010
|
+
- func: diagonal.Dimname(Tensor(a) self, *, Dimname outdim, Dimname dim1, Dimname dim2, int offset=0) -> Tensor(a)
|
1011
|
+
variants: function, method
|
1012
|
+
supports_named_tensor: True
|
898
1013
|
|
899
1014
|
- func: fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!)
|
900
1015
|
variants: method
|
@@ -978,9 +1093,9 @@
|
|
978
1093
|
# applying indices = indices.contiguous().
|
979
1094
|
# The backward functions apply a check that these input tensors are contiguous.
|
980
1095
|
|
981
|
-
- func: embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None) -> (Tensor, Tensor, Tensor, Tensor)
|
1096
|
+
- func: embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor)
|
982
1097
|
|
983
|
-
- func: _embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None) -> (Tensor, Tensor, Tensor, Tensor)
|
1098
|
+
- func: _embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor)
|
984
1099
|
dispatch:
|
985
1100
|
CPU: _embedding_bag_cpu
|
986
1101
|
CUDA: _embedding_bag_cuda
|
@@ -1035,22 +1150,15 @@
|
|
1035
1150
|
QuantizedCPU: empty_per_channel_affine_quantized_cpu
|
1036
1151
|
|
1037
1152
|
- func: resize_(Tensor(a!) self, int[] size, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
1153
|
+
manual_kernel_registration: True
|
1038
1154
|
supports_named_tensor: True
|
1039
1155
|
variants: method
|
1040
1156
|
device_guard: False
|
1041
|
-
dispatch:
|
1042
|
-
CPU: resize_cpu_
|
1043
|
-
CUDA: resize_cuda_
|
1044
|
-
QuantizedCPU: quantized_resize_cpu_
|
1045
1157
|
|
1046
1158
|
- func: empty.out(int[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)
|
1047
1159
|
device_guard: False
|
1048
1160
|
|
1049
|
-
- func: empty_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
1050
|
-
device_guard: False
|
1051
|
-
supports_named_tensor: True
|
1052
|
-
|
1053
|
-
- func: empty_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1161
|
+
- func: empty_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1054
1162
|
device_guard: False
|
1055
1163
|
supports_named_tensor: True
|
1056
1164
|
|
@@ -1192,6 +1300,40 @@
|
|
1192
1300
|
CPU: floor_out
|
1193
1301
|
CUDA: floor_out
|
1194
1302
|
|
1303
|
+
- func: floor_divide(Tensor self, Tensor other) -> Tensor
|
1304
|
+
variants: function, method
|
1305
|
+
dispatch:
|
1306
|
+
CPU: floor_divide
|
1307
|
+
CUDA: floor_divide
|
1308
|
+
SparseCPU: floor_divide_sparse
|
1309
|
+
SparseCUDA: floor_divide_sparse
|
1310
|
+
supports_named_tensor: True
|
1311
|
+
|
1312
|
+
- func: floor_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
1313
|
+
variants: method
|
1314
|
+
dispatch:
|
1315
|
+
CPU: floor_divide_
|
1316
|
+
CUDA: floor_divide_
|
1317
|
+
SparseCPU: floor_divide_sparse_
|
1318
|
+
SparseCUDA: floor_divide_sparse_
|
1319
|
+
supports_named_tensor: True
|
1320
|
+
|
1321
|
+
- func: floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
1322
|
+
dispatch:
|
1323
|
+
CPU: floor_divide_out
|
1324
|
+
CUDA: floor_divide_out
|
1325
|
+
SparseCPU: floor_divide_out_sparse_zerodim
|
1326
|
+
SparseCUDA: floor_divide_out_sparse_zerodim
|
1327
|
+
supports_named_tensor: True
|
1328
|
+
|
1329
|
+
- func: floor_divide.Scalar(Tensor self, Scalar other) -> Tensor
|
1330
|
+
variants: function, method
|
1331
|
+
supports_named_tensor: True
|
1332
|
+
|
1333
|
+
- func: floor_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
1334
|
+
variants: method
|
1335
|
+
supports_named_tensor: True
|
1336
|
+
|
1195
1337
|
- func: frac(Tensor self) -> Tensor
|
1196
1338
|
use_c10_dispatcher: full
|
1197
1339
|
supports_named_tensor: True
|
@@ -1211,10 +1353,7 @@
|
|
1211
1353
|
|
1212
1354
|
- func: full.out(int[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!)
|
1213
1355
|
|
1214
|
-
- func: full_like(Tensor self, Scalar fill_value, *, MemoryFormat? memory_format=None) -> Tensor
|
1215
|
-
supports_named_tensor: True
|
1216
|
-
|
1217
|
-
- func: full_like.dtype(Tensor self, Scalar fill_value, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
1356
|
+
- func: full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1218
1357
|
supports_named_tensor: True
|
1219
1358
|
|
1220
1359
|
- func: from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -1275,14 +1414,8 @@
|
|
1275
1414
|
- func: ger(Tensor self, Tensor vec2) -> Tensor
|
1276
1415
|
use_c10_dispatcher: full
|
1277
1416
|
variants: function, method
|
1278
|
-
dispatch:
|
1279
|
-
CPU: legacy::cpu::_th_ger
|
1280
|
-
CUDA: legacy::cuda::_th_ger
|
1281
1417
|
|
1282
1418
|
- func: ger.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!)
|
1283
|
-
dispatch:
|
1284
|
-
CPU: legacy::cpu::_th_ger_out
|
1285
|
-
CUDA: legacy::cuda::_th_ger_out
|
1286
1419
|
|
1287
1420
|
- func: group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor
|
1288
1421
|
|
@@ -1324,6 +1457,9 @@
|
|
1324
1457
|
- func: index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
|
1325
1458
|
variants: function, method
|
1326
1459
|
# NB: This function is special-cased in tools/autograd/gen_variable_type.py
|
1460
|
+
# NB: The following functions are declared in aten/src/ATen/templates/TensorBody.h and defined in aten/src/ATen/TensorIndexing.cpp:
|
1461
|
+
# - Tensor Tensor::index(ArrayRef<TensorIndex> indices)
|
1462
|
+
# - Tensor Tensor::index(std::initializer_list<TensorIndex> indices)
|
1327
1463
|
|
1328
1464
|
- func: index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)
|
1329
1465
|
variants: method
|
@@ -1340,6 +1476,11 @@
|
|
1340
1476
|
|
1341
1477
|
- func: index_put_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor(a!)
|
1342
1478
|
variants: function, method
|
1479
|
+
# NB: The following functions are declared in aten/src/ATen/templates/TensorBody.h and defined in aten/src/ATen/TensorIndexing.cpp:
|
1480
|
+
# - Tensor & Tensor::index_put_(ArrayRef<TensorIndex> indices, Tensor const & rhs)
|
1481
|
+
# - Tensor & Tensor::index_put_(ArrayRef<TensorIndex> indices, Scalar v)
|
1482
|
+
# - Tensor & Tensor::index_put_(std::initializer_list<TensorIndex> indices, Tensor const & rhs)
|
1483
|
+
# - Tensor & Tensor::index_put_(std::initializer_list<TensorIndex> indices, Scalar v)
|
1343
1484
|
|
1344
1485
|
- func: index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor
|
1345
1486
|
variants: function, method
|
@@ -1372,6 +1513,11 @@
|
|
1372
1513
|
variants: function
|
1373
1514
|
device_guard: False
|
1374
1515
|
supports_named_tensor: True
|
1516
|
+
dispatch:
|
1517
|
+
CPU: isnan
|
1518
|
+
CUDA: isnan
|
1519
|
+
SparseCPU: isnan_sparse
|
1520
|
+
SparseCUDA: isnan_sparse
|
1375
1521
|
|
1376
1522
|
- func: is_distributed(Tensor self) -> bool
|
1377
1523
|
use_c10_dispatcher: full
|
@@ -1638,10 +1784,13 @@
|
|
1638
1784
|
|
1639
1785
|
# Return: (Tensor output, Tensor indices)
|
1640
1786
|
- func: max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)
|
1787
|
+
supports_named_tensor: True
|
1641
1788
|
|
1642
1789
|
- func: max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor
|
1790
|
+
supports_named_tensor: True
|
1643
1791
|
|
1644
1792
|
- func: max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1793
|
+
supports_named_tensor: True
|
1645
1794
|
|
1646
1795
|
- func: mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor
|
1647
1796
|
requires_tensor: True
|
@@ -1654,6 +1803,7 @@
|
|
1654
1803
|
QuantizedCPU: quantized_max_pool2d
|
1655
1804
|
|
1656
1805
|
- func: max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor
|
1806
|
+
supports_named_tensor: True
|
1657
1807
|
|
1658
1808
|
# The CPU and GPU dispatch variants are named weirdly here because otherwise there
|
1659
1809
|
# are namespacing issues in C++
|
@@ -1804,7 +1954,7 @@
|
|
1804
1954
|
use_c10_dispatcher: full
|
1805
1955
|
variants: function, method
|
1806
1956
|
dispatch:
|
1807
|
-
CPU:
|
1957
|
+
CPU: mm_cpu
|
1808
1958
|
CUDA: legacy::cuda::_th_mm
|
1809
1959
|
SparseCPU: _sparse_mm
|
1810
1960
|
SparseCUDA: _sparse_mm
|
@@ -1812,7 +1962,7 @@
|
|
1812
1962
|
|
1813
1963
|
- func: mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)
|
1814
1964
|
dispatch:
|
1815
|
-
CPU:
|
1965
|
+
CPU: mm_cpu_out
|
1816
1966
|
CUDA: legacy::cuda::_th_mm_out
|
1817
1967
|
SparseCPU: _sparse_mm_out
|
1818
1968
|
SparseCUDA: _sparse_mm_out
|
@@ -1877,13 +2027,13 @@
|
|
1877
2027
|
use_c10_dispatcher: full
|
1878
2028
|
variants: function, method
|
1879
2029
|
dispatch:
|
1880
|
-
CPU:
|
2030
|
+
CPU: mv_cpu
|
1881
2031
|
CUDA: legacy::cuda::_th_mv
|
1882
2032
|
supports_named_tensor: True
|
1883
2033
|
|
1884
2034
|
- func: mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)
|
1885
2035
|
dispatch:
|
1886
|
-
CPU:
|
2036
|
+
CPU: mv_cpu_out
|
1887
2037
|
CUDA: legacy::cuda::_th_mv_out
|
1888
2038
|
supports_named_tensor: True
|
1889
2039
|
|
@@ -1908,12 +2058,21 @@
|
|
1908
2058
|
device_guard: False
|
1909
2059
|
supports_named_tensor: True
|
1910
2060
|
|
2061
|
+
- func: narrow.Tensor(Tensor(a) self, int dim, Tensor start, int length) -> Tensor(a)
|
2062
|
+
variants: function, method
|
2063
|
+
device_guard: False
|
2064
|
+
supports_named_tensor: True
|
2065
|
+
|
1911
2066
|
- func: native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)
|
1912
2067
|
dispatch:
|
1913
2068
|
CPU: batch_norm_cpu
|
1914
2069
|
CUDA: batch_norm_cuda
|
1915
2070
|
MkldnnCPU: mkldnn_batch_norm
|
1916
2071
|
|
2072
|
+
- func: native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))
|
2073
|
+
dispatch:
|
2074
|
+
CUDA: batch_norm_cuda_out
|
2075
|
+
|
1917
2076
|
- func: batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)
|
1918
2077
|
dispatch:
|
1919
2078
|
CUDA: batch_norm_stats_cuda
|
@@ -1975,16 +2134,16 @@
|
|
1975
2134
|
|
1976
2135
|
- func: ones.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
1977
2136
|
|
1978
|
-
- func: ones_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
1979
|
-
supports_named_tensor: True
|
1980
|
-
|
1981
|
-
- func: ones_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2137
|
+
- func: ones_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
1982
2138
|
supports_named_tensor: True
|
1983
2139
|
|
1984
2140
|
- func: pairwise_distance(Tensor x1, Tensor x2, float p=2, float eps=1e-06, bool keepdim=False) -> Tensor
|
1985
2141
|
use_c10_dispatcher: full
|
1986
2142
|
|
1987
2143
|
- func: cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor
|
2144
|
+
supports_named_tensor: True
|
2145
|
+
|
2146
|
+
- func: _cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor
|
1988
2147
|
use_c10_dispatcher: full
|
1989
2148
|
supports_named_tensor: True
|
1990
2149
|
|
@@ -2053,10 +2212,7 @@
|
|
2053
2212
|
|
2054
2213
|
- func: rand.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2055
2214
|
|
2056
|
-
- func: rand_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2057
|
-
supports_named_tensor: True
|
2058
|
-
|
2059
|
-
- func: rand_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2215
|
+
- func: rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2060
2216
|
supports_named_tensor: True
|
2061
2217
|
|
2062
2218
|
- func: randint(int high, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2075,13 +2231,9 @@
|
|
2075
2231
|
|
2076
2232
|
- func: randint.low_generator_out(int low, int high, int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2077
2233
|
|
2078
|
-
- func: randint_like(Tensor self, int high, *, MemoryFormat? memory_format=None) -> Tensor
|
2079
|
-
|
2080
|
-
- func: randint_like.low(Tensor self, int low, int high, *, MemoryFormat? memory_format=None) -> Tensor
|
2234
|
+
- func: randint_like(Tensor self, int high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2081
2235
|
|
2082
|
-
- func: randint_like.
|
2083
|
-
|
2084
|
-
- func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2236
|
+
- func: randint_like.low_dtype(Tensor self, int low, int high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2085
2237
|
|
2086
2238
|
- func: randn(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
2087
2239
|
|
@@ -2097,10 +2249,7 @@
|
|
2097
2249
|
|
2098
2250
|
- func: randn.generator_out(int[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)
|
2099
2251
|
|
2100
|
-
- func: randn_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2101
|
-
supports_named_tensor: True
|
2102
|
-
|
2103
|
-
- func: randn_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
2252
|
+
- func: randn_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2104
2253
|
supports_named_tensor: True
|
2105
2254
|
|
2106
2255
|
- func: randperm(int n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -2131,15 +2280,9 @@
|
|
2131
2280
|
- func: reciprocal_(Tensor(a!) self) -> Tensor(a!)
|
2132
2281
|
supports_named_tensor: True
|
2133
2282
|
variants: function, method
|
2134
|
-
dispatch:
|
2135
|
-
CPU: _reciprocal__cpu
|
2136
|
-
CUDA: _reciprocal__cuda
|
2137
2283
|
|
2138
2284
|
- func: reciprocal.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2139
2285
|
supports_named_tensor: True
|
2140
|
-
dispatch:
|
2141
|
-
CPU: _reciprocal_out_cpu
|
2142
|
-
CUDA: _reciprocal_out_cuda
|
2143
2286
|
|
2144
2287
|
- func: neg(Tensor self) -> Tensor
|
2145
2288
|
use_c10_dispatcher: full
|
@@ -2258,16 +2401,10 @@
|
|
2258
2401
|
- func: hardshrink(Tensor self, Scalar lambd=0.5) -> Tensor
|
2259
2402
|
use_c10_dispatcher: full
|
2260
2403
|
variants: function, method
|
2261
|
-
dispatch:
|
2262
|
-
CPU: hardshrink_cpu
|
2263
|
-
CUDA: hardshrink_cuda
|
2264
2404
|
|
2265
2405
|
- func: hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor
|
2266
2406
|
use_c10_dispatcher: full
|
2267
2407
|
variants: function, method
|
2268
|
-
dispatch:
|
2269
|
-
CPU: hardshrink_backward_cpu
|
2270
|
-
CUDA: hardshrink_backward_cuda
|
2271
2408
|
|
2272
2409
|
- func: rsqrt(Tensor self) -> Tensor
|
2273
2410
|
use_c10_dispatcher: full
|
@@ -2312,6 +2449,7 @@
|
|
2312
2449
|
dispatch:
|
2313
2450
|
CPU: sigmoid
|
2314
2451
|
CUDA: sigmoid
|
2452
|
+
QuantizedCPU: quantized_sigmoid
|
2315
2453
|
MkldnnCPU: mkldnn_sigmoid
|
2316
2454
|
|
2317
2455
|
- func: sigmoid_(Tensor(a!) self) -> Tensor(a!)
|
@@ -2365,6 +2503,7 @@
|
|
2365
2503
|
# be updated.
|
2366
2504
|
- func: detach(Tensor self) -> Tensor
|
2367
2505
|
use_c10_dispatcher: full
|
2506
|
+
manual_kernel_registration: True
|
2368
2507
|
supports_named_tensor: True
|
2369
2508
|
variants: function, method
|
2370
2509
|
|
@@ -2372,6 +2511,7 @@
|
|
2372
2511
|
# only be called on non-view `Variable`s. You can use `is_view()` to check
|
2373
2512
|
# this. If this `Variable` is a view, throws an `std::runtime_error()`.
|
2374
2513
|
- func: detach_(Tensor(a!) self) -> Tensor(a!)
|
2514
|
+
manual_kernel_registration: True
|
2375
2515
|
supports_named_tensor: True
|
2376
2516
|
variants: function, method
|
2377
2517
|
|
@@ -2524,6 +2664,15 @@
|
|
2524
2664
|
- func: sqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
2525
2665
|
supports_named_tensor: True
|
2526
2666
|
|
2667
|
+
- func: square(Tensor self) -> Tensor
|
2668
|
+
use_c10_dispatcher: full
|
2669
|
+
supports_named_tensor: True
|
2670
|
+
variants: function, method
|
2671
|
+
|
2672
|
+
- func: square_(Tensor(a!) self) -> Tensor(a!)
|
2673
|
+
supports_named_tensor: True
|
2674
|
+
variants: function, method
|
2675
|
+
|
2527
2676
|
- func: std(Tensor self, bool unbiased=True) -> Tensor
|
2528
2677
|
use_c10_dispatcher: full
|
2529
2678
|
variants: function, method
|
@@ -2605,6 +2754,10 @@
|
|
2605
2754
|
use_c10_dispatcher: full
|
2606
2755
|
supports_named_tensor: True
|
2607
2756
|
variants: function, method
|
2757
|
+
dispatch:
|
2758
|
+
CPU: tanh
|
2759
|
+
CUDA: tanh
|
2760
|
+
QuantizedCPU: quantized_tanh
|
2608
2761
|
|
2609
2762
|
- func: tanh_(Tensor(a!) self) -> Tensor(a!)
|
2610
2763
|
supports_named_tensor: True
|
@@ -2627,17 +2780,29 @@
|
|
2627
2780
|
use_c10_dispatcher: full
|
2628
2781
|
variants: function
|
2629
2782
|
supports_named_tensor: True
|
2783
|
+
dispatch:
|
2784
|
+
CPU: threshold
|
2785
|
+
CUDA: threshold_cuda
|
2630
2786
|
|
2631
2787
|
- func: threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!)
|
2632
2788
|
variants: function
|
2633
2789
|
supports_named_tensor: True
|
2790
|
+
dispatch:
|
2791
|
+
CPU: threshold_
|
2792
|
+
CUDA: threshold__cuda
|
2634
2793
|
|
2635
2794
|
- func: threshold.out(Tensor self, Scalar threshold, Scalar value, *, Tensor(a!) out) -> Tensor(a!)
|
2636
2795
|
supports_named_tensor: True
|
2796
|
+
dispatch:
|
2797
|
+
CPU: threshold_out
|
2798
|
+
CUDA: threshold_out_cuda
|
2637
2799
|
|
2638
2800
|
- func: threshold_backward(Tensor grad_output, Tensor self, Scalar threshold) -> Tensor
|
2639
2801
|
use_c10_dispatcher: full
|
2640
2802
|
variants: function
|
2803
|
+
dispatch:
|
2804
|
+
CPU: threshold_backward
|
2805
|
+
CUDA: threshold_backward_cuda
|
2641
2806
|
|
2642
2807
|
- func: transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)
|
2643
2808
|
variants: function, method
|
@@ -2699,6 +2864,42 @@
|
|
2699
2864
|
- func: triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1.0, float p=2, float eps=1e-06, bool swap=False, int reduction=Mean) -> Tensor
|
2700
2865
|
use_c10_dispatcher: full
|
2701
2866
|
|
2867
|
+
- func: true_divide.Tensor(Tensor self, Tensor other) -> Tensor
|
2868
|
+
use_c10_dispatcher: full
|
2869
|
+
variants: function, method
|
2870
|
+
dispatch:
|
2871
|
+
CPU: true_divide
|
2872
|
+
CUDA: true_divide
|
2873
|
+
SparseCPU: true_divide_sparse
|
2874
|
+
SparseCUDA: true_divide_sparse
|
2875
|
+
supports_named_tensor: True
|
2876
|
+
|
2877
|
+
- func: true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
2878
|
+
variants: method
|
2879
|
+
dispatch:
|
2880
|
+
CPU: true_divide_
|
2881
|
+
CUDA: true_divide_
|
2882
|
+
SparseCPU: true_divide_sparse_
|
2883
|
+
SparseCUDA: true_divide_sparse_
|
2884
|
+
supports_named_tensor: True
|
2885
|
+
|
2886
|
+
- func: true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
2887
|
+
dispatch:
|
2888
|
+
CPU: true_divide_out
|
2889
|
+
CUDA: true_divide_out
|
2890
|
+
SparseCPU: true_divide_out_sparse_zerodim
|
2891
|
+
SparseCUDA: true_divide_out_sparse_zerodim
|
2892
|
+
supports_named_tensor: True
|
2893
|
+
|
2894
|
+
- func: true_divide.Scalar(Tensor self, Scalar other) -> Tensor
|
2895
|
+
use_c10_dispatcher: full
|
2896
|
+
variants: function, method
|
2897
|
+
supports_named_tensor: True
|
2898
|
+
|
2899
|
+
- func: true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
2900
|
+
variants: method
|
2901
|
+
supports_named_tensor: True
|
2902
|
+
|
2702
2903
|
- func: trunc(Tensor self) -> Tensor
|
2703
2904
|
use_c10_dispatcher: full
|
2704
2905
|
supports_named_tensor: True
|
@@ -2815,9 +3016,6 @@
|
|
2815
3016
|
- func: _s_where(Tensor condition, Tensor self, Tensor other) -> Tensor
|
2816
3017
|
use_c10_dispatcher: full
|
2817
3018
|
variants: function
|
2818
|
-
dispatch:
|
2819
|
-
CPU: _s_where_cpu
|
2820
|
-
CUDA: _s_where_cuda
|
2821
3019
|
|
2822
3020
|
- func: norm_except_dim(Tensor v, int pow=2, int dim=0) -> Tensor
|
2823
3021
|
variants: function
|
@@ -2848,10 +3046,7 @@
|
|
2848
3046
|
|
2849
3047
|
- func: zeros.out(int[] size, *, Tensor(a!) out) -> Tensor(a!)
|
2850
3048
|
|
2851
|
-
- func: zeros_like(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor
|
2852
|
-
supports_named_tensor: True
|
2853
|
-
|
2854
|
-
- func: zeros_like.dtype(Tensor self, *, ScalarType dtype, Layout layout, Device device, bool pin_memory=False, MemoryFormat? memory_format=None) -> Tensor
|
3049
|
+
- func: zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor
|
2855
3050
|
supports_named_tensor: True
|
2856
3051
|
|
2857
3052
|
- func: _standard_gamma_grad(Tensor self, Tensor output) -> Tensor
|
@@ -2970,6 +3165,7 @@
|
|
2970
3165
|
supports_named_tensor: True
|
2971
3166
|
|
2972
3167
|
- func: resize_as_(Tensor(a!) self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor(a!)
|
3168
|
+
manual_kernel_registration: True
|
2973
3169
|
supports_named_tensor: True
|
2974
3170
|
variants: function, method
|
2975
3171
|
|
@@ -3489,6 +3685,7 @@
|
|
3489
3685
|
CPU: make_per_channel_quantized_tensor_cpu
|
3490
3686
|
|
3491
3687
|
- func: qscheme(Tensor self) -> QScheme
|
3688
|
+
use_c10_dispatcher: full
|
3492
3689
|
variants: method
|
3493
3690
|
dispatch:
|
3494
3691
|
QuantizedCPU: qscheme_quant
|
@@ -3496,28 +3693,19 @@
|
|
3496
3693
|
- func: fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor
|
3497
3694
|
use_c10_dispatcher: full
|
3498
3695
|
variants: function
|
3499
|
-
dispatch:
|
3500
|
-
CPU: fake_quantize_per_tensor_affine_cpu
|
3501
|
-
CUDA: fake_quantize_per_tensor_affine_cuda
|
3502
3696
|
|
3503
3697
|
- func: fake_quantize_per_tensor_affine_backward(Tensor grad, Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor
|
3504
3698
|
use_c10_dispatcher: full
|
3505
3699
|
variants: function
|
3506
|
-
dispatch:
|
3507
|
-
CPU: fake_quantize_per_tensor_affine_backward_cpu
|
3508
|
-
CUDA: fake_quantize_per_tensor_affine_backward_cuda
|
3509
3700
|
|
3510
3701
|
- func: fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor
|
3702
|
+
use_c10_dispatcher: full
|
3511
3703
|
variants: function
|
3512
|
-
dispatch:
|
3513
|
-
CPU: fake_quantize_per_channel_affine_cpu
|
3514
|
-
CUDA: fake_quantize_per_channel_affine_cuda
|
3515
3704
|
|
3516
3705
|
- func: fake_quantize_per_channel_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor
|
3706
|
+
use_c10_dispatcher: full
|
3517
3707
|
variants: function
|
3518
|
-
|
3519
|
-
CPU: fake_quantize_per_channel_affine_backward_cpu
|
3520
|
-
CUDA: fake_quantize_per_channel_affine_backward_cuda
|
3708
|
+
|
3521
3709
|
# to(Device) must not exist because all constructors of Device also works for
|
3522
3710
|
# TensorOptions. Otherwise, an ambiguity error is thrown.
|
3523
3711
|
# See NOTE [ TensorOptions Constructors ].
|
@@ -3677,8 +3865,8 @@
|
|
3677
3865
|
variants: method
|
3678
3866
|
device_guard: False
|
3679
3867
|
dispatch:
|
3680
|
-
CPU:
|
3681
|
-
CUDA:
|
3868
|
+
CPU: set_tensor_
|
3869
|
+
CUDA: set_tensor_
|
3682
3870
|
|
3683
3871
|
- func: set_(Tensor(a!) self) -> Tensor(a!)
|
3684
3872
|
variants: method
|
@@ -3752,7 +3940,7 @@
|
|
3752
3940
|
variants: method
|
3753
3941
|
dispatch:
|
3754
3942
|
CPU: index_add_cpu_
|
3755
|
-
CUDA:
|
3943
|
+
CUDA: index_add_cuda_
|
3756
3944
|
|
3757
3945
|
- func: index_add(Tensor self, int dim, Tensor index, Tensor source) -> Tensor
|
3758
3946
|
use_c10_dispatcher: full
|
@@ -3804,7 +3992,7 @@
|
|
3804
3992
|
- func: scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
3805
3993
|
variants: method
|
3806
3994
|
dispatch:
|
3807
|
-
CPU:
|
3995
|
+
CPU: scatter_cpu_
|
3808
3996
|
CUDA: legacy::cuda::_th_scatter_
|
3809
3997
|
|
3810
3998
|
- func: scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> Tensor
|
@@ -3814,7 +4002,7 @@
|
|
3814
4002
|
- func: scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)
|
3815
4003
|
variants: method
|
3816
4004
|
dispatch:
|
3817
|
-
CPU:
|
4005
|
+
CPU: scatter_fill_cpu_
|
3818
4006
|
CUDA: legacy::cuda::_th_scatter_
|
3819
4007
|
|
3820
4008
|
- func: scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> Tensor
|
@@ -3830,7 +4018,7 @@
|
|
3830
4018
|
- func: scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)
|
3831
4019
|
variants: method
|
3832
4020
|
dispatch:
|
3833
|
-
CPU:
|
4021
|
+
CPU: scatter_add_cpu_
|
3834
4022
|
CUDA: legacy::cuda::_th_scatter_add_
|
3835
4023
|
|
3836
4024
|
- func: scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> Tensor
|
@@ -3876,57 +4064,81 @@
|
|
3876
4064
|
- func: ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3877
4065
|
variants: method
|
3878
4066
|
|
4067
|
+
- func: bitwise_and.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4068
|
+
variants: function
|
4069
|
+
dispatch:
|
4070
|
+
CPU: bitwise_and_out
|
4071
|
+
CUDA: bitwise_and_out
|
4072
|
+
|
4073
|
+
- func: bitwise_and.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4074
|
+
variants: function
|
4075
|
+
dispatch:
|
4076
|
+
CPU: bitwise_and_out
|
4077
|
+
CUDA: bitwise_and_out
|
4078
|
+
|
4079
|
+
- func: bitwise_and.Scalar(Tensor self, Scalar other) -> Tensor
|
4080
|
+
variants: method, function
|
4081
|
+
|
4082
|
+
- func: bitwise_and.Tensor(Tensor self, Tensor other) -> Tensor
|
4083
|
+
variants: method, function
|
4084
|
+
|
4085
|
+
- func: bitwise_and_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4086
|
+
variants: method
|
4087
|
+
|
4088
|
+
- func: bitwise_and_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4089
|
+
variants: method
|
4090
|
+
|
3879
4091
|
- func: __and__.Scalar(Tensor self, Scalar other) -> Tensor
|
3880
4092
|
use_c10_dispatcher: full
|
3881
4093
|
variants: method, function
|
3882
|
-
dispatch:
|
3883
|
-
CPU: legacy::cpu::_th_and
|
3884
|
-
CUDA: legacy::cuda::_th_and
|
3885
4094
|
|
3886
4095
|
- func: __and__.Tensor(Tensor self, Tensor other) -> Tensor
|
3887
4096
|
use_c10_dispatcher: full
|
3888
4097
|
variants: method, function
|
3889
|
-
dispatch:
|
3890
|
-
CPU: legacy::cpu::_th_and
|
3891
|
-
CUDA: legacy::cuda::_th_and
|
3892
4098
|
|
3893
4099
|
- func: __iand__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
3894
4100
|
variants: method
|
3895
|
-
dispatch:
|
3896
|
-
CPU: legacy::cpu::_th_iand_
|
3897
|
-
CUDA: legacy::cuda::_th_iand_
|
3898
4101
|
|
3899
4102
|
- func: __iand__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3900
4103
|
variants: method
|
4104
|
+
|
4105
|
+
- func: bitwise_or.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4106
|
+
variants: function
|
4107
|
+
dispatch:
|
4108
|
+
CPU: bitwise_or_out
|
4109
|
+
CUDA: bitwise_or_out
|
4110
|
+
|
4111
|
+
- func: bitwise_or.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4112
|
+
variants: function
|
3901
4113
|
dispatch:
|
3902
|
-
CPU:
|
3903
|
-
CUDA:
|
4114
|
+
CPU: bitwise_or_out
|
4115
|
+
CUDA: bitwise_or_out
|
4116
|
+
|
4117
|
+
- func: bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor
|
4118
|
+
variants: method, function
|
4119
|
+
|
4120
|
+
- func: bitwise_or.Tensor(Tensor self, Tensor other) -> Tensor
|
4121
|
+
variants: method, function
|
4122
|
+
|
4123
|
+
- func: bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4124
|
+
variants: method
|
4125
|
+
|
4126
|
+
- func: bitwise_or_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4127
|
+
variants: method
|
3904
4128
|
|
3905
4129
|
- func: __or__.Scalar(Tensor self, Scalar other) -> Tensor
|
3906
4130
|
use_c10_dispatcher: full
|
3907
4131
|
variants: method, function
|
3908
|
-
dispatch:
|
3909
|
-
CPU: legacy::cpu::_th_or
|
3910
|
-
CUDA: legacy::cuda::_th_or
|
3911
4132
|
|
3912
4133
|
- func: __or__.Tensor(Tensor self, Tensor other) -> Tensor
|
3913
4134
|
use_c10_dispatcher: full
|
3914
4135
|
variants: method, function
|
3915
|
-
dispatch:
|
3916
|
-
CPU: legacy::cpu::_th_or
|
3917
|
-
CUDA: legacy::cuda::_th_or
|
3918
4136
|
|
3919
4137
|
- func: __ior__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
3920
4138
|
variants: method
|
3921
|
-
dispatch:
|
3922
|
-
CPU: legacy::cpu::_th_ior_
|
3923
|
-
CUDA: legacy::cuda::_th_ior_
|
3924
4139
|
|
3925
4140
|
- func: __ior__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3926
4141
|
variants: method
|
3927
|
-
dispatch:
|
3928
|
-
CPU: legacy::cpu::_th_ior_
|
3929
|
-
CUDA: legacy::cuda::_th_ior_
|
3930
4142
|
|
3931
4143
|
- func: bitwise_xor.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
3932
4144
|
variants: function
|
@@ -3970,53 +4182,53 @@
|
|
3970
4182
|
use_c10_dispatcher: full
|
3971
4183
|
variants: method, function
|
3972
4184
|
dispatch:
|
3973
|
-
CPU:
|
3974
|
-
CUDA:
|
4185
|
+
CPU: __lshift__
|
4186
|
+
CUDA: __lshift__
|
3975
4187
|
|
3976
4188
|
- func: __lshift__.Tensor(Tensor self, Tensor other) -> Tensor
|
3977
4189
|
use_c10_dispatcher: full
|
3978
4190
|
variants: method, function
|
3979
4191
|
dispatch:
|
3980
|
-
CPU:
|
3981
|
-
CUDA:
|
4192
|
+
CPU: __lshift__
|
4193
|
+
CUDA: __lshift__
|
3982
4194
|
|
3983
4195
|
- func: __ilshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
3984
4196
|
variants: method
|
3985
4197
|
dispatch:
|
3986
|
-
CPU:
|
3987
|
-
CUDA:
|
4198
|
+
CPU: __ilshift__
|
4199
|
+
CUDA: __ilshift__
|
3988
4200
|
|
3989
4201
|
- func: __ilshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
3990
4202
|
variants: method
|
3991
4203
|
dispatch:
|
3992
|
-
CPU:
|
3993
|
-
CUDA:
|
4204
|
+
CPU: __ilshift__
|
4205
|
+
CUDA: __ilshift__
|
3994
4206
|
|
3995
4207
|
- func: __rshift__.Scalar(Tensor self, Scalar other) -> Tensor
|
3996
4208
|
use_c10_dispatcher: full
|
3997
4209
|
variants: method, function
|
3998
4210
|
dispatch:
|
3999
|
-
CPU:
|
4000
|
-
CUDA:
|
4211
|
+
CPU: __rshift__
|
4212
|
+
CUDA: __rshift__
|
4001
4213
|
|
4002
4214
|
- func: __rshift__.Tensor(Tensor self, Tensor other) -> Tensor
|
4003
4215
|
use_c10_dispatcher: full
|
4004
4216
|
variants: method, function
|
4005
4217
|
dispatch:
|
4006
|
-
CPU:
|
4007
|
-
CUDA:
|
4218
|
+
CPU: __rshift__
|
4219
|
+
CUDA: __rshift__
|
4008
4220
|
|
4009
4221
|
- func: __irshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4010
4222
|
variants: method
|
4011
4223
|
dispatch:
|
4012
|
-
CPU:
|
4013
|
-
CUDA:
|
4224
|
+
CPU: __irshift__
|
4225
|
+
CUDA: __irshift__
|
4014
4226
|
|
4015
4227
|
- func: __irshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4016
4228
|
variants: method
|
4017
4229
|
dispatch:
|
4018
|
-
CPU:
|
4019
|
-
CUDA:
|
4230
|
+
CPU: __irshift__
|
4231
|
+
CUDA: __irshift__
|
4020
4232
|
|
4021
4233
|
- func: lgamma_(Tensor(a!) self) -> Tensor(a!)
|
4022
4234
|
supports_named_tensor: True
|
@@ -4084,26 +4296,26 @@
|
|
4084
4296
|
- func: fmod_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4085
4297
|
variants: method
|
4086
4298
|
dispatch:
|
4087
|
-
CPU:
|
4299
|
+
CPU: fmod_
|
4088
4300
|
CUDA: legacy::cuda::_th_fmod_
|
4089
4301
|
|
4090
4302
|
- func: fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4091
4303
|
variants: method
|
4092
4304
|
dispatch:
|
4093
|
-
CPU:
|
4305
|
+
CPU: fmod_
|
4094
4306
|
CUDA: legacy::cuda::_th_fmod_
|
4095
4307
|
|
4096
4308
|
- func: remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)
|
4097
4309
|
variants: method
|
4098
4310
|
dispatch:
|
4099
|
-
CPU:
|
4100
|
-
CUDA:
|
4311
|
+
CPU: remainder_
|
4312
|
+
CUDA: remainder_
|
4101
4313
|
|
4102
4314
|
- func: remainder_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)
|
4103
4315
|
variants: method
|
4104
4316
|
dispatch:
|
4105
|
-
CPU:
|
4106
|
-
CUDA:
|
4317
|
+
CPU: remainder_
|
4318
|
+
CUDA: remainder_
|
4107
4319
|
|
4108
4320
|
- func: addbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)
|
4109
4321
|
variants: method
|
@@ -4127,25 +4339,16 @@
|
|
4127
4339
|
variants: method
|
4128
4340
|
supports_named_tensor: True
|
4129
4341
|
|
4130
|
-
- func: random_.from(Tensor(a!) self, int from, int to, *, Generator? generator=None) -> Tensor(a!)
|
4342
|
+
- func: random_.from(Tensor(a!) self, int from, int? to, *, Generator? generator=None) -> Tensor(a!)
|
4131
4343
|
variants: method
|
4132
|
-
dispatch:
|
4133
|
-
CPU: legacy::cpu::_th_random_
|
4134
|
-
CUDA: clamped_random_cuda_
|
4135
4344
|
supports_named_tensor: True
|
4136
4345
|
|
4137
4346
|
- func: random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!)
|
4138
4347
|
variants: method
|
4139
|
-
dispatch:
|
4140
|
-
CPU: legacy::cpu::_th_random_
|
4141
|
-
CUDA: capped_random_cuda_
|
4142
4348
|
supports_named_tensor: True
|
4143
4349
|
|
4144
4350
|
- func: random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!)
|
4145
4351
|
variants: method
|
4146
|
-
dispatch:
|
4147
|
-
CPU: legacy::cpu::_th_random_
|
4148
|
-
CUDA: random_cuda_
|
4149
4352
|
supports_named_tensor: True
|
4150
4353
|
|
4151
4354
|
- func: uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)
|
@@ -4155,39 +4358,20 @@
|
|
4155
4358
|
CUDA: uniform_cuda_
|
4156
4359
|
supports_named_tensor: True
|
4157
4360
|
|
4158
|
-
- func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)
|
4159
|
-
variants: method
|
4160
|
-
dispatch:
|
4161
|
-
CPU: legacy::cpu::_th_normal_
|
4162
|
-
CUDA: normal_cuda_
|
4163
|
-
supports_named_tensor: True
|
4164
|
-
|
4165
4361
|
- func: cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!)
|
4166
4362
|
variants: method
|
4167
|
-
dispatch:
|
4168
|
-
CPU: legacy::cpu::_th_cauchy_
|
4169
|
-
CUDA: cauchy_cuda_
|
4170
4363
|
supports_named_tensor: True
|
4171
4364
|
|
4172
4365
|
- func: log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!)
|
4173
4366
|
variants: method
|
4174
|
-
dispatch:
|
4175
|
-
CPU: legacy::cpu::_th_log_normal_
|
4176
|
-
CUDA: log_normal_cuda_
|
4177
4367
|
supports_named_tensor: True
|
4178
4368
|
|
4179
4369
|
- func: exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!)
|
4180
4370
|
variants: method
|
4181
|
-
dispatch:
|
4182
|
-
CPU: legacy::cpu::_th_exponential_
|
4183
|
-
CUDA: exponential_cuda_
|
4184
4371
|
supports_named_tensor: True
|
4185
4372
|
|
4186
4373
|
- func: geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!)
|
4187
4374
|
variants: method
|
4188
|
-
dispatch:
|
4189
|
-
CPU: legacy::cpu::_th_geometric_
|
4190
|
-
CUDA: geometric_cuda_
|
4191
4375
|
supports_named_tensor: True
|
4192
4376
|
|
4193
4377
|
# wrappers for TH functions
|
@@ -4451,14 +4635,14 @@
|
|
4451
4635
|
|
4452
4636
|
- func: index_select.out(Tensor self, int dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!)
|
4453
4637
|
dispatch:
|
4454
|
-
CPU:
|
4638
|
+
CPU: index_select_out_cpu_
|
4455
4639
|
CUDA: legacy::cuda::_th_index_select_out
|
4456
4640
|
|
4457
4641
|
- func: index_select(Tensor self, int dim, Tensor index) -> Tensor
|
4458
4642
|
use_c10_dispatcher: full
|
4459
4643
|
variants: method, function
|
4460
4644
|
dispatch:
|
4461
|
-
CPU:
|
4645
|
+
CPU: index_select_cpu_
|
4462
4646
|
CUDA: legacy::cuda::_th_index_select
|
4463
4647
|
SparseCPU: index_select_sparse
|
4464
4648
|
SparseCUDA: index_select_sparse
|
@@ -4794,9 +4978,6 @@
|
|
4794
4978
|
- func: dist(Tensor self, Tensor other, Scalar p=2) -> Tensor
|
4795
4979
|
use_c10_dispatcher: full
|
4796
4980
|
variants: method, function
|
4797
|
-
dispatch:
|
4798
|
-
CPU: legacy::cpu::_th_dist
|
4799
|
-
CUDA: legacy::cuda::_th_dist
|
4800
4981
|
|
4801
4982
|
- func: atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4802
4983
|
supports_named_tensor: True
|
@@ -4844,90 +5025,78 @@
|
|
4844
5025
|
|
4845
5026
|
- func: fmod.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4846
5027
|
dispatch:
|
4847
|
-
CPU:
|
5028
|
+
CPU: fmod_out
|
4848
5029
|
CUDA: legacy::cuda::_th_fmod_out
|
4849
5030
|
|
4850
5031
|
- func: fmod.Scalar(Tensor self, Scalar other) -> Tensor
|
4851
5032
|
use_c10_dispatcher: full
|
4852
5033
|
variants: method, function
|
4853
5034
|
dispatch:
|
4854
|
-
CPU:
|
5035
|
+
CPU: fmod
|
4855
5036
|
CUDA: legacy::cuda::_th_fmod
|
4856
5037
|
|
4857
5038
|
- func: fmod.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4858
5039
|
dispatch:
|
4859
|
-
CPU:
|
5040
|
+
CPU: fmod_out
|
4860
5041
|
CUDA: legacy::cuda::_th_fmod_out
|
4861
5042
|
|
4862
5043
|
- func: fmod.Tensor(Tensor self, Tensor other) -> Tensor
|
4863
5044
|
use_c10_dispatcher: full
|
4864
5045
|
variants: method, function
|
4865
5046
|
dispatch:
|
4866
|
-
CPU:
|
5047
|
+
CPU: fmod
|
4867
5048
|
CUDA: legacy::cuda::_th_fmod
|
4868
5049
|
|
4869
5050
|
- func: remainder.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)
|
4870
5051
|
dispatch:
|
4871
|
-
CPU:
|
4872
|
-
CUDA:
|
5052
|
+
CPU: remainder_out
|
5053
|
+
CUDA: remainder_out
|
4873
5054
|
|
4874
5055
|
- func: remainder.Scalar(Tensor self, Scalar other) -> Tensor
|
4875
5056
|
use_c10_dispatcher: full
|
4876
5057
|
variants: method, function
|
4877
5058
|
dispatch:
|
4878
|
-
CPU:
|
4879
|
-
CUDA:
|
5059
|
+
CPU: remainder
|
5060
|
+
CUDA: remainder
|
4880
5061
|
|
4881
5062
|
- func: remainder.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4882
5063
|
dispatch:
|
4883
|
-
CPU:
|
4884
|
-
CUDA:
|
5064
|
+
CPU: remainder_out
|
5065
|
+
CUDA: remainder_out
|
4885
5066
|
|
4886
5067
|
- func: remainder.Tensor(Tensor self, Tensor other) -> Tensor
|
4887
5068
|
use_c10_dispatcher: full
|
4888
5069
|
variants: method, function
|
4889
5070
|
dispatch:
|
4890
|
-
CPU:
|
4891
|
-
CUDA:
|
5071
|
+
CPU: remainder
|
5072
|
+
CUDA: remainder
|
4892
5073
|
|
4893
5074
|
- func: min.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4894
|
-
dispatch:
|
4895
|
-
CPU: legacy::cpu::_th_min_out
|
4896
|
-
CUDA: legacy::cuda::_th_min_out
|
4897
5075
|
|
4898
5076
|
- func: min.other(Tensor self, Tensor other) -> Tensor
|
4899
5077
|
use_c10_dispatcher: full
|
4900
5078
|
variants: method, function
|
4901
|
-
dispatch:
|
4902
|
-
CPU: legacy::cpu::_th_min
|
4903
|
-
CUDA: legacy::cuda::_th_min
|
4904
5079
|
|
4905
5080
|
- func: min(Tensor self) -> Tensor
|
4906
5081
|
use_c10_dispatcher: full
|
4907
5082
|
variants: method, function
|
4908
5083
|
dispatch:
|
4909
|
-
CPU:
|
5084
|
+
CPU: min
|
4910
5085
|
CUDA: legacy::cuda::_th_min
|
4911
5086
|
QuantizedCPU: min_quant
|
4912
5087
|
supports_named_tensor: True
|
4913
5088
|
|
4914
5089
|
- func: max.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)
|
4915
|
-
dispatch:
|
4916
|
-
CPU: legacy::cpu::_th_max_out
|
4917
|
-
CUDA: legacy::cuda::_th_max_out
|
4918
5090
|
|
4919
5091
|
- func: max.other(Tensor self, Tensor other) -> Tensor
|
4920
5092
|
use_c10_dispatcher: full
|
4921
5093
|
variants: method, function
|
4922
|
-
dispatch:
|
4923
|
-
CPU: legacy::cpu::_th_max
|
4924
|
-
CUDA: legacy::cuda::_th_max
|
4925
5094
|
|
4926
5095
|
- func: max(Tensor self) -> Tensor
|
4927
5096
|
use_c10_dispatcher: full
|
4928
5097
|
variants: method, function
|
4929
5098
|
dispatch:
|
4930
|
-
CPU:
|
5099
|
+
CPU: max
|
4931
5100
|
CUDA: legacy::cuda::_th_max
|
4932
5101
|
QuantizedCPU: max_quant
|
4933
5102
|
supports_named_tensor: True
|
@@ -4985,6 +5154,11 @@
|
|
4985
5154
|
use_c10_dispatcher: full
|
4986
5155
|
supports_named_tensor: True
|
4987
5156
|
variants: method, function
|
5157
|
+
dispatch:
|
5158
|
+
CPU: any
|
5159
|
+
CUDA: any
|
5160
|
+
SparseCPU: any_sparse
|
5161
|
+
SparseCUDA: any_sparse
|
4988
5162
|
|
4989
5163
|
- func: renorm.out(Tensor self, Scalar p, int dim, Scalar maxnorm, *, Tensor(a!) out) -> Tensor(a!)
|
4990
5164
|
dispatch:
|
@@ -5041,34 +5215,41 @@
|
|
5041
5215
|
CPU: pow
|
5042
5216
|
CUDA: pow
|
5043
5217
|
|
5218
|
+
- func: normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)
|
5219
|
+
variants: method
|
5220
|
+
dispatch:
|
5221
|
+
CPU: normal_cpu_
|
5222
|
+
CUDA: normal_cuda_
|
5223
|
+
supports_named_tensor: True
|
5224
|
+
|
5044
5225
|
- func: normal.Tensor_float_out(Tensor mean, float std=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5045
5226
|
dispatch:
|
5046
|
-
CPU:
|
5227
|
+
CPU: normal_out_cpu
|
5047
5228
|
CUDA: normal_out_cuda
|
5048
5229
|
|
5049
5230
|
- func: normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor
|
5050
5231
|
dispatch:
|
5051
|
-
CPU:
|
5232
|
+
CPU: normal_cpu
|
5052
5233
|
CUDA: normal_cuda
|
5053
5234
|
|
5054
5235
|
- func: normal.float_Tensor_out(float mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5055
5236
|
dispatch:
|
5056
|
-
CPU:
|
5237
|
+
CPU: normal_out_cpu
|
5057
5238
|
CUDA: normal_out_cuda
|
5058
5239
|
|
5059
5240
|
- func: normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5060
5241
|
dispatch:
|
5061
|
-
CPU:
|
5242
|
+
CPU: normal_cpu
|
5062
5243
|
CUDA: normal_cuda
|
5063
5244
|
|
5064
5245
|
- func: normal.Tensor_Tensor_out(Tensor mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)
|
5065
5246
|
dispatch:
|
5066
|
-
CPU:
|
5247
|
+
CPU: normal_out_cpu
|
5067
5248
|
CUDA: normal_out_cuda
|
5068
5249
|
|
5069
5250
|
- func: normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor
|
5070
5251
|
dispatch:
|
5071
|
-
CPU:
|
5252
|
+
CPU: normal_cpu
|
5072
5253
|
CUDA: normal_cuda
|
5073
5254
|
|
5074
5255
|
- func: normal.float_float(float mean, float std, int[] size, *, Generator? generator=None, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
|
@@ -5103,23 +5284,23 @@
|
|
5103
5284
|
- func: _cumsum(Tensor self, int dim) -> Tensor
|
5104
5285
|
use_c10_dispatcher: full
|
5105
5286
|
dispatch:
|
5106
|
-
CPU:
|
5287
|
+
CPU: _cumsum_cpu
|
5107
5288
|
CUDA: legacy::cuda::_th_cumsum
|
5108
5289
|
|
5109
5290
|
- func: _cumsum.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
5110
5291
|
dispatch:
|
5111
|
-
CPU:
|
5292
|
+
CPU: _cumsum_out_cpu
|
5112
5293
|
CUDA: legacy::cuda::_th_cumsum_out
|
5113
5294
|
|
5114
5295
|
- func: _cumprod(Tensor self, int dim) -> Tensor
|
5115
5296
|
use_c10_dispatcher: full
|
5116
5297
|
dispatch:
|
5117
|
-
CPU:
|
5298
|
+
CPU: _cumprod_cpu
|
5118
5299
|
CUDA: legacy::cuda::_th_cumprod
|
5119
5300
|
|
5120
5301
|
- func: _cumprod.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)
|
5121
5302
|
dispatch:
|
5122
|
-
CPU:
|
5303
|
+
CPU: _cumprod_out_cpu
|
5123
5304
|
CUDA: legacy::cuda::_th_cumprod_out
|
5124
5305
|
|
5125
5306
|
- func: _var(Tensor self, bool unbiased=True) -> Tensor
|
@@ -5136,15 +5317,27 @@
|
|
5136
5317
|
CUDA: legacy::cuda::_th_std
|
5137
5318
|
supports_named_tensor: True
|
5138
5319
|
|
5320
|
+
- func: _amp_non_finite_check_and_unscale_(Tensor(a!) self, Tensor(b!) found_inf, Tensor inv_scale) -> ()
|
5321
|
+
variants: function
|
5322
|
+
dispatch:
|
5323
|
+
CUDA: _amp_non_finite_check_and_unscale_cuda_
|
5324
|
+
|
5325
|
+
- func: _amp_update_scale(Tensor(a!) growth_tracker, Tensor current_scale, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> Tensor
|
5326
|
+
variants: function
|
5327
|
+
dispatch:
|
5328
|
+
CUDA: _amp_update_scale_cuda
|
5329
|
+
|
5139
5330
|
- func: _cat(Tensor[] tensors, int dim=0) -> Tensor
|
5140
5331
|
dispatch:
|
5141
|
-
CPU:
|
5142
|
-
CUDA:
|
5332
|
+
CPU: _cat_cpu
|
5333
|
+
CUDA: cat_cuda
|
5334
|
+
QuantizedCPU: quantized_cat
|
5143
5335
|
|
5144
5336
|
- func: _cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)
|
5145
5337
|
dispatch:
|
5146
|
-
CPU:
|
5147
|
-
CUDA:
|
5338
|
+
CPU: _cat_out_cpu
|
5339
|
+
CUDA: cat_out_cuda
|
5340
|
+
QuantizedCPU: quantized_cat_out
|
5148
5341
|
|
5149
5342
|
- func: _mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor, Tensor)
|
5150
5343
|
dispatch:
|
@@ -5178,30 +5371,6 @@
|
|
5178
5371
|
|
5179
5372
|
## NN wrappers
|
5180
5373
|
|
5181
|
-
- func: binary_cross_entropy.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5182
|
-
python_module: nn
|
5183
|
-
dispatch:
|
5184
|
-
CPU: legacy::cpu::_thnn_binary_cross_entropy_forward_out
|
5185
|
-
CUDA: legacy::cuda::_thnn_binary_cross_entropy_forward_out
|
5186
|
-
|
5187
|
-
- func: binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor
|
5188
|
-
python_module: nn
|
5189
|
-
dispatch:
|
5190
|
-
CPU: legacy::cpu::_thnn_binary_cross_entropy_forward
|
5191
|
-
CUDA: legacy::cuda::_thnn_binary_cross_entropy_forward
|
5192
|
-
|
5193
|
-
- func: binary_cross_entropy_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5194
|
-
python_module: nn
|
5195
|
-
dispatch:
|
5196
|
-
CPU: legacy::cpu::_thnn_binary_cross_entropy_backward_out
|
5197
|
-
CUDA: legacy::cuda::_thnn_binary_cross_entropy_backward_out
|
5198
|
-
|
5199
|
-
- func: binary_cross_entropy_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor
|
5200
|
-
python_module: nn
|
5201
|
-
dispatch:
|
5202
|
-
CPU: legacy::cpu::_thnn_binary_cross_entropy_backward
|
5203
|
-
CUDA: legacy::cuda::_thnn_binary_cross_entropy_backward
|
5204
|
-
|
5205
5374
|
- func: mse_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5206
5375
|
python_module: nn
|
5207
5376
|
|
@@ -5377,151 +5546,147 @@
|
|
5377
5546
|
|
5378
5547
|
- func: soft_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)
|
5379
5548
|
python_module: nn
|
5380
|
-
dispatch:
|
5381
|
-
CPU: legacy::cpu::_thnn_soft_margin_loss_forward_out
|
5382
|
-
CUDA: legacy::cuda::_thnn_soft_margin_loss_forward_out
|
5383
5549
|
|
5384
5550
|
- func: soft_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
|
5385
5551
|
use_c10_dispatcher: full
|
5386
5552
|
python_module: nn
|
5387
|
-
dispatch:
|
5388
|
-
CPU: legacy::cpu::_thnn_soft_margin_loss_forward
|
5389
|
-
CUDA: legacy::cuda::_thnn_soft_margin_loss_forward
|
5390
5553
|
|
5391
5554
|
- func: soft_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5392
5555
|
python_module: nn
|
5393
|
-
dispatch:
|
5394
|
-
CPU: legacy::cpu::_thnn_soft_margin_loss_backward_out
|
5395
|
-
CUDA: legacy::cuda::_thnn_soft_margin_loss_backward_out
|
5396
5556
|
|
5397
5557
|
- func: soft_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor
|
5398
5558
|
use_c10_dispatcher: full
|
5399
5559
|
python_module: nn
|
5400
|
-
dispatch:
|
5401
|
-
CPU: legacy::cpu::_thnn_soft_margin_loss_backward
|
5402
|
-
CUDA: legacy::cuda::_thnn_soft_margin_loss_backward
|
5403
5560
|
|
5404
5561
|
- func: elu.out(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1, *, Tensor(a!) out) -> Tensor(a!)
|
5405
5562
|
python_module: nn
|
5406
5563
|
dispatch:
|
5407
|
-
CPU:
|
5408
|
-
CUDA:
|
5564
|
+
CPU: elu_out
|
5565
|
+
CUDA: elu_out
|
5566
|
+
QuantizedCPU: quantized_elu_out
|
5409
5567
|
|
5410
5568
|
- func: elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor
|
5411
5569
|
use_c10_dispatcher: full
|
5412
5570
|
python_module: nn
|
5413
5571
|
dispatch:
|
5414
|
-
CPU:
|
5415
|
-
CUDA:
|
5572
|
+
CPU: elu
|
5573
|
+
CUDA: elu
|
5574
|
+
QuantizedCPU: quantized_elu
|
5416
5575
|
|
5417
5576
|
- func: elu_backward.grad_input(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5418
5577
|
python_module: nn
|
5419
5578
|
dispatch:
|
5420
|
-
CPU:
|
5421
|
-
CUDA:
|
5579
|
+
CPU: elu_backward_out
|
5580
|
+
CUDA: elu_backward_out
|
5422
5581
|
|
5423
5582
|
- func: elu_backward(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, Tensor output) -> Tensor
|
5424
5583
|
use_c10_dispatcher: full
|
5425
5584
|
python_module: nn
|
5426
|
-
dispatch:
|
5427
|
-
CPU: legacy::cpu::_thnn_elu_backward
|
5428
|
-
CUDA: legacy::cuda::_thnn_elu_backward
|
5429
5585
|
|
5430
5586
|
- func: elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!)
|
5431
5587
|
python_module: nn
|
5432
5588
|
dispatch:
|
5433
|
-
CPU:
|
5434
|
-
CUDA:
|
5589
|
+
CPU: elu_
|
5590
|
+
CUDA: elu_
|
5591
|
+
QuantizedCPU: quantized_elu_
|
5435
5592
|
|
5436
5593
|
- func: glu.out(Tensor self, int dim=-1, *, Tensor(a!) out) -> Tensor(a!)
|
5437
5594
|
python_module: nn
|
5438
5595
|
dispatch:
|
5439
|
-
CPU:
|
5596
|
+
CPU: glu_out
|
5440
5597
|
CUDA: legacy::cuda::_thnn_glu_forward_out
|
5441
5598
|
|
5442
5599
|
- func: glu(Tensor self, int dim=-1) -> Tensor
|
5443
5600
|
use_c10_dispatcher: full
|
5444
5601
|
python_module: nn
|
5445
5602
|
dispatch:
|
5446
|
-
CPU:
|
5603
|
+
CPU: glu
|
5447
5604
|
CUDA: legacy::cuda::_thnn_glu_forward
|
5448
5605
|
|
5449
5606
|
- func: glu_backward.grad_input(Tensor grad_output, Tensor self, int dim, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5450
5607
|
python_module: nn
|
5451
5608
|
dispatch:
|
5452
|
-
CPU:
|
5609
|
+
CPU: glu_backward_out
|
5453
5610
|
CUDA: legacy::cuda::_thnn_glu_backward_out
|
5454
5611
|
|
5455
5612
|
- func: glu_backward(Tensor grad_output, Tensor self, int dim) -> Tensor
|
5456
5613
|
use_c10_dispatcher: full
|
5457
5614
|
python_module: nn
|
5458
5615
|
dispatch:
|
5459
|
-
CPU:
|
5616
|
+
CPU: glu_backward
|
5460
5617
|
CUDA: legacy::cuda::_thnn_glu_backward
|
5461
5618
|
|
5619
|
+
- func: hardsigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
5620
|
+
python_module: nn
|
5621
|
+
|
5622
|
+
- func: hardsigmoid(Tensor self) -> Tensor
|
5623
|
+
use_c10_dispatcher: full
|
5624
|
+
python_module: nn
|
5625
|
+
|
5626
|
+
- func: hardsigmoid_(Tensor(a!) self) -> Tensor(a!)
|
5627
|
+
python_module: nn
|
5628
|
+
|
5629
|
+
- func: hardsigmoid_backward(Tensor grad_output, Tensor self) -> Tensor
|
5630
|
+
use_c10_dispatcher: full
|
5631
|
+
python_module: nn
|
5632
|
+
|
5462
5633
|
- func: hardtanh.out(Tensor self, Scalar min_val=-1, Scalar max_val=1, *, Tensor(a!) out) -> Tensor(a!)
|
5463
5634
|
python_module: nn
|
5464
5635
|
dispatch:
|
5465
|
-
CPU:
|
5466
|
-
CUDA:
|
5636
|
+
CPU: hardtanh_out
|
5637
|
+
CUDA: hardtanh_out
|
5638
|
+
QuantizedCPU: quantized_hardtanh_out
|
5467
5639
|
|
5468
5640
|
- func: hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor
|
5469
5641
|
use_c10_dispatcher: full
|
5470
5642
|
python_module: nn
|
5471
5643
|
dispatch:
|
5472
|
-
CPU:
|
5473
|
-
CUDA:
|
5644
|
+
CPU: hardtanh
|
5645
|
+
CUDA: hardtanh
|
5646
|
+
QuantizedCPU: quantized_hardtanh
|
5474
5647
|
|
5475
5648
|
- func: hardtanh_backward.grad_input(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5476
5649
|
python_module: nn
|
5477
5650
|
dispatch:
|
5478
|
-
CPU:
|
5479
|
-
CUDA:
|
5651
|
+
CPU: hardtanh_backward_out
|
5652
|
+
CUDA: hardtanh_backward_out
|
5480
5653
|
|
5481
5654
|
- func: hardtanh_backward(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val) -> Tensor
|
5482
5655
|
use_c10_dispatcher: full
|
5483
5656
|
python_module: nn
|
5484
|
-
dispatch:
|
5485
|
-
CPU: legacy::cpu::_thnn_hardtanh_backward
|
5486
|
-
CUDA: legacy::cuda::_thnn_hardtanh_backward
|
5487
5657
|
|
5488
5658
|
- func: hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> Tensor(a!)
|
5489
5659
|
python_module: nn
|
5490
5660
|
dispatch:
|
5491
|
-
CPU:
|
5492
|
-
CUDA:
|
5661
|
+
CPU: hardtanh_
|
5662
|
+
CUDA: hardtanh_
|
5663
|
+
QuantizedCPU: quantized_hardtanh_
|
5493
5664
|
|
5494
5665
|
- func: leaky_relu.out(Tensor self, Scalar negative_slope=0.01, *, Tensor(a!) out) -> Tensor(a!)
|
5495
5666
|
python_module: nn
|
5496
5667
|
dispatch:
|
5497
|
-
CPU:
|
5498
|
-
CUDA:
|
5668
|
+
CPU: leaky_relu_out
|
5669
|
+
CUDA: leaky_relu_out
|
5670
|
+
QuantizedCPU: quantized_leaky_relu_out
|
5499
5671
|
|
5500
5672
|
- func: leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor
|
5501
5673
|
use_c10_dispatcher: full
|
5502
5674
|
python_module: nn
|
5503
5675
|
dispatch:
|
5504
|
-
CPU:
|
5505
|
-
CUDA:
|
5506
|
-
|
5507
|
-
- func: leaky_relu_backward.grad_input(Tensor grad_output, Tensor self, Scalar negative_slope, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5508
|
-
python_module: nn
|
5509
|
-
dispatch:
|
5510
|
-
CPU: legacy::cpu::_thnn_leaky_relu_backward_out
|
5511
|
-
CUDA: legacy::cuda::_thnn_leaky_relu_backward_out
|
5676
|
+
CPU: leaky_relu
|
5677
|
+
CUDA: leaky_relu
|
5678
|
+
QuantizedCPU: quantized_leaky_relu
|
5512
5679
|
|
5513
|
-
- func: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope) -> Tensor
|
5680
|
+
- func: leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result) -> Tensor
|
5514
5681
|
use_c10_dispatcher: full
|
5515
5682
|
python_module: nn
|
5516
|
-
dispatch:
|
5517
|
-
CPU: legacy::cpu::_thnn_leaky_relu_backward
|
5518
|
-
CUDA: legacy::cuda::_thnn_leaky_relu_backward
|
5519
5683
|
|
5520
5684
|
- func: leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!)
|
5521
5685
|
python_module: nn
|
5522
5686
|
dispatch:
|
5523
|
-
CPU:
|
5524
|
-
CUDA:
|
5687
|
+
CPU: leaky_relu_
|
5688
|
+
CUDA: leaky_relu_
|
5689
|
+
QuantizedCPU: quantized_leaky_relu_
|
5525
5690
|
|
5526
5691
|
- func: log_sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
|
5527
5692
|
python_module: nn
|
@@ -5533,110 +5698,83 @@
|
|
5533
5698
|
- func: log_sigmoid_forward.output(Tensor self, *, Tensor(a!) output, Tensor(b!) buffer) -> (Tensor(a!), Tensor(b!))
|
5534
5699
|
python_module: nn
|
5535
5700
|
dispatch:
|
5536
|
-
CPU:
|
5701
|
+
CPU: log_sigmoid_forward_out_cpu
|
5537
5702
|
CUDA: legacy::cuda::_thnn_log_sigmoid_forward_out
|
5538
5703
|
|
5539
5704
|
- func: log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer)
|
5540
5705
|
python_module: nn
|
5541
5706
|
dispatch:
|
5542
|
-
CPU:
|
5707
|
+
CPU: log_sigmoid_forward_cpu
|
5543
5708
|
CUDA: legacy::cuda::_thnn_log_sigmoid_forward
|
5544
5709
|
|
5545
5710
|
- func: log_sigmoid_backward.grad_input(Tensor grad_output, Tensor self, Tensor buffer, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5546
5711
|
python_module: nn
|
5547
5712
|
dispatch:
|
5548
|
-
CPU:
|
5713
|
+
CPU: log_sigmoid_backward_out_cpu
|
5549
5714
|
CUDA: legacy::cuda::_thnn_log_sigmoid_backward_out
|
5550
5715
|
|
5551
5716
|
- func: log_sigmoid_backward(Tensor grad_output, Tensor self, Tensor buffer) -> Tensor
|
5552
5717
|
use_c10_dispatcher: full
|
5553
5718
|
python_module: nn
|
5554
5719
|
dispatch:
|
5555
|
-
CPU:
|
5720
|
+
CPU: log_sigmoid_backward_cpu
|
5556
5721
|
CUDA: legacy::cuda::_thnn_log_sigmoid_backward
|
5557
5722
|
|
5558
5723
|
- func: rrelu_with_noise.out(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)
|
5559
5724
|
python_module: nn
|
5560
5725
|
dispatch:
|
5561
|
-
CPU:
|
5726
|
+
CPU: rrelu_with_noise_out_cpu
|
5562
5727
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward_out
|
5563
5728
|
|
5564
5729
|
- func: rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor
|
5565
5730
|
python_module: nn
|
5566
5731
|
dispatch:
|
5567
|
-
CPU:
|
5732
|
+
CPU: rrelu_with_noise_cpu
|
5568
5733
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward
|
5569
5734
|
|
5570
|
-
- func: rrelu_with_noise_backward
|
5571
|
-
python_module: nn
|
5572
|
-
dispatch:
|
5573
|
-
CPU: legacy::cpu::_thnn_rrelu_with_noise_backward_out
|
5574
|
-
CUDA: legacy::cuda::_thnn_rrelu_with_noise_backward_out
|
5575
|
-
|
5576
|
-
- func: rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training) -> Tensor
|
5735
|
+
- func: rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, bool self_is_result) -> Tensor
|
5577
5736
|
use_c10_dispatcher: full
|
5578
5737
|
python_module: nn
|
5579
|
-
dispatch:
|
5580
|
-
CPU: legacy::cpu::_thnn_rrelu_with_noise_backward
|
5581
|
-
CUDA: legacy::cuda::_thnn_rrelu_with_noise_backward
|
5582
5738
|
|
5583
5739
|
- func: rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)
|
5584
5740
|
python_module: nn
|
5585
5741
|
dispatch:
|
5586
|
-
CPU:
|
5742
|
+
CPU: rrelu_with_noise_cpu_
|
5587
5743
|
CUDA: legacy::cuda::_thnn_rrelu_with_noise_forward_
|
5588
5744
|
|
5589
5745
|
- func: softplus.out(Tensor self, Scalar beta=1, Scalar threshold=20, *, Tensor(a!) out) -> Tensor(a!)
|
5590
5746
|
python_module: nn
|
5591
|
-
dispatch:
|
5592
|
-
CPU: legacy::cpu::_thnn_softplus_forward_out
|
5593
|
-
CUDA: legacy::cuda::_thnn_softplus_forward_out
|
5594
5747
|
|
5595
5748
|
- func: softplus(Tensor self, Scalar beta=1, Scalar threshold=20) -> Tensor
|
5596
5749
|
use_c10_dispatcher: full
|
5597
5750
|
python_module: nn
|
5598
|
-
dispatch:
|
5599
|
-
CPU: legacy::cpu::_thnn_softplus_forward
|
5600
|
-
CUDA: legacy::cuda::_thnn_softplus_forward
|
5601
5751
|
|
5602
5752
|
- func: softplus_backward.grad_input(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5603
5753
|
python_module: nn
|
5604
5754
|
dispatch:
|
5605
|
-
CPU:
|
5606
|
-
CUDA:
|
5755
|
+
CPU: softplus_backward_out
|
5756
|
+
CUDA: softplus_backward_out
|
5607
5757
|
|
5608
5758
|
- func: softplus_backward(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, Tensor output) -> Tensor
|
5609
5759
|
use_c10_dispatcher: full
|
5610
5760
|
python_module: nn
|
5611
|
-
dispatch:
|
5612
|
-
CPU: legacy::cpu::_thnn_softplus_backward
|
5613
|
-
CUDA: legacy::cuda::_thnn_softplus_backward
|
5614
5761
|
|
5615
5762
|
- func: softshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!)
|
5616
5763
|
python_module: nn
|
5617
|
-
dispatch:
|
5618
|
-
CPU: legacy::cpu::_thnn_softshrink_forward_out
|
5619
|
-
CUDA: legacy::cuda::_thnn_softshrink_forward_out
|
5620
5764
|
|
5621
5765
|
- func: softshrink(Tensor self, Scalar lambd=0.5) -> Tensor
|
5622
5766
|
use_c10_dispatcher: full
|
5623
5767
|
python_module: nn
|
5624
|
-
dispatch:
|
5625
|
-
CPU: legacy::cpu::_thnn_softshrink_forward
|
5626
|
-
CUDA: legacy::cuda::_thnn_softshrink_forward
|
5627
5768
|
|
5628
5769
|
- func: softshrink_backward.grad_input(Tensor grad_output, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5629
5770
|
python_module: nn
|
5630
5771
|
dispatch:
|
5631
|
-
CPU:
|
5632
|
-
CUDA:
|
5772
|
+
CPU: softshrink_backward_out
|
5773
|
+
CUDA: softshrink_backward_out
|
5633
5774
|
|
5634
5775
|
- func: softshrink_backward(Tensor grad_output, Tensor self, Scalar lambd) -> Tensor
|
5635
5776
|
use_c10_dispatcher: full
|
5636
5777
|
python_module: nn
|
5637
|
-
dispatch:
|
5638
|
-
CPU: legacy::cpu::_thnn_softshrink_backward
|
5639
|
-
CUDA: legacy::cuda::_thnn_softshrink_backward
|
5640
5778
|
|
5641
5779
|
- func: adaptive_avg_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
5642
5780
|
python_module: nn
|
@@ -5783,6 +5921,7 @@
|
|
5783
5921
|
dispatch:
|
5784
5922
|
CPU: avg_pool3d_cpu
|
5785
5923
|
CUDA: avg_pool3d_cuda
|
5924
|
+
QuantizedCPU: quantized_avg_pool3d
|
5786
5925
|
|
5787
5926
|
- func: avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5788
5927
|
python_module: nn
|
@@ -5861,6 +6000,7 @@
|
|
5861
6000
|
dispatch:
|
5862
6001
|
CPU: max_pool2d_with_indices_cpu
|
5863
6002
|
CUDA: max_pool2d_with_indices_cuda
|
6003
|
+
supports_named_tensor: True
|
5864
6004
|
|
5865
6005
|
- func: max_pool2d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5866
6006
|
python_module: nn
|
@@ -5887,6 +6027,7 @@
|
|
5887
6027
|
dispatch:
|
5888
6028
|
CPU: max_pool3d_with_indices_cpu
|
5889
6029
|
CUDA: max_pool3d_with_indices_cuda
|
6030
|
+
supports_named_tensor: True
|
5890
6031
|
|
5891
6032
|
- func: max_pool3d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)
|
5892
6033
|
python_module: nn
|
@@ -6068,174 +6209,172 @@
|
|
6068
6209
|
CPU: replication_pad3d_backward_cpu
|
6069
6210
|
CUDA: replication_pad3d_backward_cuda
|
6070
6211
|
|
6071
|
-
- func:
|
6072
|
-
variants: function
|
6073
|
-
|
6074
|
-
- func: upsample_linear1d.out(Tensor self, int[1] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6212
|
+
- func: upsample_linear1d.out(Tensor self, int[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!)
|
6075
6213
|
python_module: nn
|
6076
6214
|
dispatch:
|
6077
6215
|
CPU: upsample_linear1d_out_cpu
|
6078
6216
|
CUDA: upsample_linear1d_out_cuda
|
6079
6217
|
|
6080
|
-
- func: upsample_linear1d(Tensor self, int[1] output_size, bool align_corners) -> Tensor
|
6218
|
+
- func: upsample_linear1d(Tensor self, int[1] output_size, bool align_corners, float? scales=None) -> Tensor
|
6081
6219
|
python_module: nn
|
6082
6220
|
dispatch:
|
6083
6221
|
CPU: upsample_linear1d_cpu
|
6084
6222
|
CUDA: upsample_linear1d_cuda
|
6085
6223
|
|
6086
|
-
- func: upsample_linear1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6224
|
+
- func: upsample_linear1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6087
6225
|
python_module: nn
|
6088
6226
|
dispatch:
|
6089
6227
|
CPU: upsample_linear1d_backward_out_cpu
|
6090
6228
|
CUDA: upsample_linear1d_backward_out_cuda
|
6091
6229
|
|
6092
|
-
- func: upsample_linear1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners) -> Tensor
|
6230
|
+
- func: upsample_linear1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, bool align_corners, float? scales=None) -> Tensor
|
6093
6231
|
python_module: nn
|
6094
6232
|
dispatch:
|
6095
6233
|
CPU: upsample_linear1d_backward_cpu
|
6096
6234
|
CUDA: upsample_linear1d_backward_cuda
|
6097
6235
|
|
6098
|
-
- func: upsample_bilinear2d.out(Tensor self, int[2] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6236
|
+
- func: upsample_bilinear2d.out(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6099
6237
|
python_module: nn
|
6100
6238
|
dispatch:
|
6101
6239
|
CPU: upsample_bilinear2d_out_cpu
|
6102
6240
|
CUDA: upsample_bilinear2d_out_cuda
|
6103
6241
|
|
6104
|
-
- func: upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners) -> Tensor
|
6242
|
+
- func: upsample_bilinear2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6105
6243
|
python_module: nn
|
6106
6244
|
dispatch:
|
6107
6245
|
CPU: upsample_bilinear2d_cpu
|
6108
6246
|
CUDA: upsample_bilinear2d_cuda
|
6109
6247
|
QuantizedCPU: quantized_upsample_bilinear2d_cpu
|
6110
6248
|
|
6111
|
-
- func: upsample_bilinear2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6249
|
+
- func: upsample_bilinear2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6112
6250
|
python_module: nn
|
6113
6251
|
dispatch:
|
6114
6252
|
CPU: upsample_bilinear2d_backward_out_cpu
|
6115
6253
|
CUDA: upsample_bilinear2d_backward_out_cuda
|
6116
6254
|
|
6117
|
-
- func: upsample_bilinear2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners) -> Tensor
|
6255
|
+
- func: upsample_bilinear2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6118
6256
|
python_module: nn
|
6119
6257
|
dispatch:
|
6120
6258
|
CPU: upsample_bilinear2d_backward_cpu
|
6121
6259
|
CUDA: upsample_bilinear2d_backward_cuda
|
6122
6260
|
|
6123
|
-
- func: upsample_bicubic2d.out(Tensor self, int[2] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6261
|
+
- func: upsample_bicubic2d.out(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6124
6262
|
python_module: nn
|
6125
6263
|
dispatch:
|
6126
6264
|
CPU: upsample_bicubic2d_out_cpu
|
6127
6265
|
CUDA: upsample_bicubic2d_out_cuda
|
6128
6266
|
|
6129
|
-
- func: upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners) -> Tensor
|
6267
|
+
- func: upsample_bicubic2d(Tensor self, int[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6130
6268
|
python_module: nn
|
6131
6269
|
dispatch:
|
6132
6270
|
CPU: upsample_bicubic2d_cpu
|
6133
6271
|
CUDA: upsample_bicubic2d_cuda
|
6134
6272
|
|
6135
|
-
- func: upsample_bicubic2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6273
|
+
- func: upsample_bicubic2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6136
6274
|
python_module: nn
|
6137
6275
|
dispatch:
|
6138
6276
|
CPU: upsample_bicubic2d_backward_out_cpu
|
6139
6277
|
CUDA: upsample_bicubic2d_backward_out_cuda
|
6140
6278
|
|
6141
|
-
- func: upsample_bicubic2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners) -> Tensor
|
6279
|
+
- func: upsample_bicubic2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor
|
6142
6280
|
python_module: nn
|
6143
6281
|
dispatch:
|
6144
6282
|
CPU: upsample_bicubic2d_backward_cpu
|
6145
6283
|
CUDA: upsample_bicubic2d_backward_cuda
|
6146
6284
|
|
6147
|
-
- func: upsample_trilinear3d.out(Tensor self, int[3] output_size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)
|
6285
|
+
- func: upsample_trilinear3d.out(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6148
6286
|
python_module: nn
|
6149
6287
|
dispatch:
|
6150
6288
|
CPU: upsample_trilinear3d_out_cpu
|
6151
6289
|
CUDA: upsample_trilinear3d_out_cuda
|
6152
6290
|
|
6153
|
-
- func: upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners) -> Tensor
|
6291
|
+
- func: upsample_trilinear3d(Tensor self, int[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6154
6292
|
python_module: nn
|
6155
6293
|
dispatch:
|
6156
6294
|
CPU: upsample_trilinear3d_cpu
|
6157
6295
|
CUDA: upsample_trilinear3d_cuda
|
6158
6296
|
|
6159
|
-
- func: upsample_trilinear3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6297
|
+
- func: upsample_trilinear3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6160
6298
|
python_module: nn
|
6161
6299
|
dispatch:
|
6162
6300
|
CPU: upsample_trilinear3d_backward_out_cpu
|
6163
6301
|
CUDA: upsample_trilinear3d_backward_out_cuda
|
6164
6302
|
|
6165
|
-
- func: upsample_trilinear3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners) -> Tensor
|
6303
|
+
- func: upsample_trilinear3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6166
6304
|
python_module: nn
|
6167
6305
|
dispatch:
|
6168
6306
|
CPU: upsample_trilinear3d_backward_cpu
|
6169
6307
|
CUDA: upsample_trilinear3d_backward_cuda
|
6170
6308
|
|
6171
|
-
- func: upsample_nearest1d.out(Tensor self, int[1] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
6309
|
+
- func: upsample_nearest1d.out(Tensor self, int[1] output_size, float? scales=None, *, Tensor(a!) out) -> Tensor(a!)
|
6172
6310
|
python_module: nn
|
6173
6311
|
dispatch:
|
6174
6312
|
CPU: upsample_nearest1d_out_cpu
|
6175
6313
|
CUDA: upsample_nearest1d_out_cuda
|
6176
6314
|
|
6177
|
-
- func: upsample_nearest1d(Tensor self, int[1] output_size) -> Tensor
|
6315
|
+
- func: upsample_nearest1d(Tensor self, int[1] output_size, float? scales=None) -> Tensor
|
6178
6316
|
python_module: nn
|
6179
6317
|
dispatch:
|
6180
6318
|
CPU: upsample_nearest1d_cpu
|
6181
6319
|
CUDA: upsample_nearest1d_cuda
|
6182
6320
|
|
6183
|
-
- func: upsample_nearest1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6321
|
+
- func: upsample_nearest1d_backward.grad_input(Tensor grad_output, int[1] output_size, int[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6184
6322
|
python_module: nn
|
6185
6323
|
dispatch:
|
6186
6324
|
CPU: upsample_nearest1d_backward_out_cpu
|
6187
6325
|
CUDA: upsample_nearest1d_backward_out_cuda
|
6188
6326
|
|
6189
|
-
- func: upsample_nearest1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size) -> Tensor
|
6327
|
+
- func: upsample_nearest1d_backward(Tensor grad_output, int[1] output_size, int[3] input_size, float? scales=None) -> Tensor
|
6190
6328
|
python_module: nn
|
6191
6329
|
dispatch:
|
6192
6330
|
CPU: upsample_nearest1d_backward_cpu
|
6193
6331
|
CUDA: upsample_nearest1d_backward_cuda
|
6194
6332
|
|
6195
|
-
- func: upsample_nearest2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
6333
|
+
- func: upsample_nearest2d.out(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6196
6334
|
python_module: nn
|
6197
6335
|
dispatch:
|
6198
6336
|
CPU: upsample_nearest2d_out_cpu
|
6199
6337
|
CUDA: upsample_nearest2d_out_cuda
|
6200
6338
|
|
6201
|
-
- func: upsample_nearest2d(Tensor self, int[2] output_size) -> Tensor
|
6339
|
+
- func: upsample_nearest2d(Tensor self, int[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor
|
6202
6340
|
python_module: nn
|
6203
6341
|
dispatch:
|
6204
6342
|
CPU: upsample_nearest2d_cpu
|
6205
6343
|
CUDA: upsample_nearest2d_cuda
|
6206
6344
|
QuantizedCPU: quantized_upsample_nearest2d_cpu
|
6207
6345
|
|
6208
|
-
- func: upsample_nearest2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6346
|
+
- func: upsample_nearest2d_backward.grad_input(Tensor grad_output, int[2] output_size, int[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6209
6347
|
python_module: nn
|
6210
6348
|
dispatch:
|
6211
6349
|
CPU: upsample_nearest2d_backward_out_cpu
|
6212
6350
|
CUDA: upsample_nearest2d_backward_out_cuda
|
6213
6351
|
|
6214
|
-
- func: upsample_nearest2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size) -> Tensor
|
6352
|
+
- func: upsample_nearest2d_backward(Tensor grad_output, int[2] output_size, int[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor
|
6215
6353
|
python_module: nn
|
6216
6354
|
dispatch:
|
6217
6355
|
CPU: upsample_nearest2d_backward_cpu
|
6218
6356
|
CUDA: upsample_nearest2d_backward_cuda
|
6219
6357
|
|
6220
|
-
- func: upsample_nearest3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out) -> Tensor(a!)
|
6358
|
+
- func: upsample_nearest3d.out(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)
|
6221
6359
|
python_module: nn
|
6222
6360
|
dispatch:
|
6223
6361
|
CPU: upsample_nearest3d_out_cpu
|
6224
6362
|
CUDA: upsample_nearest3d_out_cuda
|
6225
6363
|
|
6226
|
-
- func: upsample_nearest3d(Tensor self, int[3] output_size) -> Tensor
|
6364
|
+
- func: upsample_nearest3d(Tensor self, int[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6227
6365
|
python_module: nn
|
6228
6366
|
dispatch:
|
6229
6367
|
CPU: upsample_nearest3d_cpu
|
6230
6368
|
CUDA: upsample_nearest3d_cuda
|
6369
|
+
QuantizedCPU: quantized_upsample_nearest3d_cpu
|
6231
6370
|
|
6232
|
-
- func: upsample_nearest3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6371
|
+
- func: upsample_nearest3d_backward.grad_input(Tensor grad_output, int[3] output_size, int[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6233
6372
|
python_module: nn
|
6234
6373
|
dispatch:
|
6235
6374
|
CPU: upsample_nearest3d_backward_out_cpu
|
6236
6375
|
CUDA: upsample_nearest3d_backward_out_cuda
|
6237
6376
|
|
6238
|
-
- func: upsample_nearest3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size) -> Tensor
|
6377
|
+
- func: upsample_nearest3d_backward(Tensor grad_output, int[3] output_size, int[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor
|
6239
6378
|
python_module: nn
|
6240
6379
|
dispatch:
|
6241
6380
|
CPU: upsample_nearest3d_backward_cpu
|
@@ -6254,15 +6393,12 @@
|
|
6254
6393
|
- func: tanh_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)
|
6255
6394
|
python_module: nn
|
6256
6395
|
dispatch:
|
6257
|
-
CPU:
|
6258
|
-
CUDA:
|
6396
|
+
CPU: tanh_backward_out
|
6397
|
+
CUDA: tanh_backward_out
|
6259
6398
|
|
6260
6399
|
- func: tanh_backward(Tensor grad_output, Tensor output) -> Tensor
|
6261
6400
|
use_c10_dispatcher: full
|
6262
6401
|
python_module: nn
|
6263
|
-
dispatch:
|
6264
|
-
CPU: legacy::cpu::_thnn_tanh_backward
|
6265
|
-
CUDA: legacy::cuda::_thnn_tanh_backward
|
6266
6402
|
|
6267
6403
|
# What's a thnn_conv_ versus a slow_conv_?
|
6268
6404
|
#
|
@@ -6489,3 +6625,9 @@
|
|
6489
6625
|
variants: function
|
6490
6626
|
device_guard: False
|
6491
6627
|
supports_named_tensor: True
|
6628
|
+
|
6629
|
+
- func: isinf(Tensor self) -> Tensor
|
6630
|
+
use_c10_dispatcher: full
|
6631
|
+
variants: function
|
6632
|
+
device_guard: False
|
6633
|
+
supports_named_tensor: True
|