torch-rb 0.1.8 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +11 -2
- data/README.md +35 -11
- data/ext/torch/ext.cpp +37 -28
- data/ext/torch/extconf.rb +33 -6
- data/ext/torch/nn_functions.cpp +560 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.hpp +2 -0
- data/ext/torch/tensor_functions.cpp +2085 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +3175 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/hub.rb +9 -0
- data/lib/torch/native/generator.rb +6 -3
- data/lib/torch/native/native_functions.yaml +539 -397
- data/lib/torch/native/parser.rb +2 -0
- data/lib/torch/nn/adaptive_avg_pool1d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_pool2d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_pool3d.rb +9 -0
- data/lib/torch/nn/adaptive_avg_poolnd.rb +14 -0
- data/lib/torch/nn/adaptive_max_pool1d.rb +9 -0
- data/lib/torch/nn/adaptive_max_pool2d.rb +9 -0
- data/lib/torch/nn/adaptive_max_pool3d.rb +9 -0
- data/lib/torch/nn/adaptive_max_poolnd.rb +15 -0
- data/lib/torch/nn/functional.rb +40 -2
- data/lib/torch/nn/module.rb +22 -1
- data/lib/torch/optim/lr_scheduler/cosine_annealing_lr.rb +29 -0
- data/lib/torch/optim/lr_scheduler/exponential_lr.rb +22 -0
- data/lib/torch/optim/lr_scheduler/lambda_lr.rb +28 -0
- data/lib/torch/optim/lr_scheduler/multi_step_lr.rb +23 -0
- data/lib/torch/optim/lr_scheduler/multiplicative_lr.rb +32 -0
- data/lib/torch/tensor.rb +8 -0
- data/lib/torch/version.rb +1 -1
- data/lib/torch.rb +21 -0
- metadata +38 -3
@@ -0,0 +1,3175 @@
|
|
1
|
+
// generated by rake generate:functions
|
2
|
+
// do not edit by hand
|
3
|
+
|
4
|
+
#include <torch/torch.h>
|
5
|
+
#include <rice/Module.hpp>
|
6
|
+
#include "templates.hpp"
|
7
|
+
|
8
|
+
void add_torch_functions(Module m) {
|
9
|
+
m
|
10
|
+
.define_singleton_method(
|
11
|
+
"_abs",
|
12
|
+
*[](const Tensor &self) {
|
13
|
+
return torch::abs(self);
|
14
|
+
})
|
15
|
+
.define_singleton_method(
|
16
|
+
"_abs_",
|
17
|
+
*[](Tensor &self) {
|
18
|
+
return torch::abs_(self);
|
19
|
+
})
|
20
|
+
.define_singleton_method(
|
21
|
+
"_abs_out",
|
22
|
+
*[](const Tensor &self, Tensor &out) {
|
23
|
+
return torch::abs_out(out, self);
|
24
|
+
})
|
25
|
+
.define_singleton_method(
|
26
|
+
"_acos",
|
27
|
+
*[](const Tensor &self) {
|
28
|
+
return torch::acos(self);
|
29
|
+
})
|
30
|
+
.define_singleton_method(
|
31
|
+
"_acos_",
|
32
|
+
*[](Tensor &self) {
|
33
|
+
return torch::acos_(self);
|
34
|
+
})
|
35
|
+
.define_singleton_method(
|
36
|
+
"_acos_out",
|
37
|
+
*[](const Tensor &self, Tensor &out) {
|
38
|
+
return torch::acos_out(out, self);
|
39
|
+
})
|
40
|
+
.define_singleton_method(
|
41
|
+
"_adaptive_avg_pool1d",
|
42
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
43
|
+
return torch::adaptive_avg_pool1d(self, output_size);
|
44
|
+
})
|
45
|
+
.define_singleton_method(
|
46
|
+
"_adaptive_max_pool1d",
|
47
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
48
|
+
return wrap(torch::adaptive_max_pool1d(self, output_size));
|
49
|
+
})
|
50
|
+
.define_singleton_method(
|
51
|
+
"_add_out",
|
52
|
+
*[](const Tensor &self, const Tensor &other, Scalar alpha, Tensor &out) {
|
53
|
+
return torch::add_out(out, self, other, alpha);
|
54
|
+
})
|
55
|
+
.define_singleton_method(
|
56
|
+
"_add_scalar",
|
57
|
+
*[](const Tensor &self, Scalar other, Scalar alpha) {
|
58
|
+
return torch::add(self, other, alpha);
|
59
|
+
})
|
60
|
+
.define_singleton_method(
|
61
|
+
"_add_tensor",
|
62
|
+
*[](const Tensor &self, const Tensor &other, Scalar alpha) {
|
63
|
+
return torch::add(self, other, alpha);
|
64
|
+
})
|
65
|
+
.define_singleton_method(
|
66
|
+
"_addbmm",
|
67
|
+
*[](const Tensor &self, const Tensor &batch1, const Tensor &batch2, Scalar beta, Scalar alpha) {
|
68
|
+
return torch::addbmm(self, batch1, batch2, beta, alpha);
|
69
|
+
})
|
70
|
+
.define_singleton_method(
|
71
|
+
"_addbmm_out",
|
72
|
+
*[](const Tensor &self, const Tensor &batch1, const Tensor &batch2, Scalar beta, Scalar alpha, Tensor &out) {
|
73
|
+
return torch::addbmm_out(out, self, batch1, batch2, beta, alpha);
|
74
|
+
})
|
75
|
+
.define_singleton_method(
|
76
|
+
"_addcdiv",
|
77
|
+
*[](const Tensor &self, const Tensor &tensor1, const Tensor &tensor2, Scalar value) {
|
78
|
+
return torch::addcdiv(self, tensor1, tensor2, value);
|
79
|
+
})
|
80
|
+
.define_singleton_method(
|
81
|
+
"_addcdiv_out",
|
82
|
+
*[](const Tensor &self, const Tensor &tensor1, const Tensor &tensor2, Scalar value, Tensor &out) {
|
83
|
+
return torch::addcdiv_out(out, self, tensor1, tensor2, value);
|
84
|
+
})
|
85
|
+
.define_singleton_method(
|
86
|
+
"_addcmul",
|
87
|
+
*[](const Tensor &self, const Tensor &tensor1, const Tensor &tensor2, Scalar value) {
|
88
|
+
return torch::addcmul(self, tensor1, tensor2, value);
|
89
|
+
})
|
90
|
+
.define_singleton_method(
|
91
|
+
"_addcmul_out",
|
92
|
+
*[](const Tensor &self, const Tensor &tensor1, const Tensor &tensor2, Scalar value, Tensor &out) {
|
93
|
+
return torch::addcmul_out(out, self, tensor1, tensor2, value);
|
94
|
+
})
|
95
|
+
.define_singleton_method(
|
96
|
+
"_addmm",
|
97
|
+
*[](const Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha) {
|
98
|
+
return torch::addmm(self, mat1, mat2, beta, alpha);
|
99
|
+
})
|
100
|
+
.define_singleton_method(
|
101
|
+
"_addmm_out",
|
102
|
+
*[](const Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha, Tensor &out) {
|
103
|
+
return torch::addmm_out(out, self, mat1, mat2, beta, alpha);
|
104
|
+
})
|
105
|
+
.define_singleton_method(
|
106
|
+
"_addmv",
|
107
|
+
*[](const Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta, Scalar alpha) {
|
108
|
+
return torch::addmv(self, mat, vec, beta, alpha);
|
109
|
+
})
|
110
|
+
.define_singleton_method(
|
111
|
+
"_addmv_",
|
112
|
+
*[](Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta, Scalar alpha) {
|
113
|
+
return torch::addmv_(self, mat, vec, beta, alpha);
|
114
|
+
})
|
115
|
+
.define_singleton_method(
|
116
|
+
"_addmv_out",
|
117
|
+
*[](const Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta, Scalar alpha, Tensor &out) {
|
118
|
+
return torch::addmv_out(out, self, mat, vec, beta, alpha);
|
119
|
+
})
|
120
|
+
.define_singleton_method(
|
121
|
+
"_addr",
|
122
|
+
*[](const Tensor &self, const Tensor &vec1, const Tensor &vec2, Scalar beta, Scalar alpha) {
|
123
|
+
return torch::addr(self, vec1, vec2, beta, alpha);
|
124
|
+
})
|
125
|
+
.define_singleton_method(
|
126
|
+
"_addr_out",
|
127
|
+
*[](const Tensor &self, const Tensor &vec1, const Tensor &vec2, Scalar beta, Scalar alpha, Tensor &out) {
|
128
|
+
return torch::addr_out(out, self, vec1, vec2, beta, alpha);
|
129
|
+
})
|
130
|
+
.define_singleton_method(
|
131
|
+
"_affine_grid_generator",
|
132
|
+
*[](const Tensor &theta, IntArrayRef size, bool align_corners) {
|
133
|
+
return torch::affine_grid_generator(theta, size, align_corners);
|
134
|
+
})
|
135
|
+
.define_singleton_method(
|
136
|
+
"_alias",
|
137
|
+
*[](Tensor &self) {
|
138
|
+
return torch::alias(self);
|
139
|
+
})
|
140
|
+
.define_singleton_method(
|
141
|
+
"_align_tensors",
|
142
|
+
*[](TensorList tensors) {
|
143
|
+
return torch::align_tensors(tensors);
|
144
|
+
})
|
145
|
+
.define_singleton_method(
|
146
|
+
"_all",
|
147
|
+
*[](const Tensor &self) {
|
148
|
+
return torch::all(self);
|
149
|
+
})
|
150
|
+
.define_singleton_method(
|
151
|
+
"_all_dim",
|
152
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
153
|
+
return torch::all(self, dim, keepdim);
|
154
|
+
})
|
155
|
+
.define_singleton_method(
|
156
|
+
"_all_out",
|
157
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &out) {
|
158
|
+
return torch::all_out(out, self, dim, keepdim);
|
159
|
+
})
|
160
|
+
.define_singleton_method(
|
161
|
+
"_allclose",
|
162
|
+
*[](const Tensor &self, const Tensor &other, double rtol, double atol, bool equal_nan) {
|
163
|
+
return torch::allclose(self, other, rtol, atol, equal_nan);
|
164
|
+
})
|
165
|
+
.define_singleton_method(
|
166
|
+
"_alpha_dropout",
|
167
|
+
*[](const Tensor &input, double p, bool train) {
|
168
|
+
return torch::alpha_dropout(input, p, train);
|
169
|
+
})
|
170
|
+
.define_singleton_method(
|
171
|
+
"_alpha_dropout_",
|
172
|
+
*[](Tensor &self, double p, bool train) {
|
173
|
+
return torch::alpha_dropout_(self, p, train);
|
174
|
+
})
|
175
|
+
.define_singleton_method(
|
176
|
+
"_angle",
|
177
|
+
*[](const Tensor &self) {
|
178
|
+
return torch::angle(self);
|
179
|
+
})
|
180
|
+
.define_singleton_method(
|
181
|
+
"_angle_out",
|
182
|
+
*[](const Tensor &self, Tensor &out) {
|
183
|
+
return torch::angle_out(out, self);
|
184
|
+
})
|
185
|
+
.define_singleton_method(
|
186
|
+
"_any",
|
187
|
+
*[](const Tensor &self) {
|
188
|
+
return torch::any(self);
|
189
|
+
})
|
190
|
+
.define_singleton_method(
|
191
|
+
"_any_dim",
|
192
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
193
|
+
return torch::any(self, dim, keepdim);
|
194
|
+
})
|
195
|
+
.define_singleton_method(
|
196
|
+
"_any_out",
|
197
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &out) {
|
198
|
+
return torch::any_out(out, self, dim, keepdim);
|
199
|
+
})
|
200
|
+
.define_singleton_method(
|
201
|
+
"_arange_out",
|
202
|
+
*[](Scalar end, Tensor &out) {
|
203
|
+
return torch::arange_out(out, end);
|
204
|
+
})
|
205
|
+
.define_singleton_method(
|
206
|
+
"_arange_start_out",
|
207
|
+
*[](Scalar start, Scalar end, Scalar step, Tensor &out) {
|
208
|
+
return torch::arange_out(out, start, end, step);
|
209
|
+
})
|
210
|
+
.define_singleton_method(
|
211
|
+
"_argmax",
|
212
|
+
*[](const Tensor &self) {
|
213
|
+
return torch::argmax(self);
|
214
|
+
})
|
215
|
+
.define_singleton_method(
|
216
|
+
"_argmax_dim",
|
217
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
218
|
+
return torch::argmax(self, dim, keepdim);
|
219
|
+
})
|
220
|
+
.define_singleton_method(
|
221
|
+
"_argmin",
|
222
|
+
*[](const Tensor &self) {
|
223
|
+
return torch::argmin(self);
|
224
|
+
})
|
225
|
+
.define_singleton_method(
|
226
|
+
"_argmin_dim",
|
227
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
228
|
+
return torch::argmin(self, dim, keepdim);
|
229
|
+
})
|
230
|
+
.define_singleton_method(
|
231
|
+
"_argsort",
|
232
|
+
*[](const Tensor &self, int64_t dim, bool descending) {
|
233
|
+
return torch::argsort(self, dim, descending);
|
234
|
+
})
|
235
|
+
.define_singleton_method(
|
236
|
+
"_as_strided",
|
237
|
+
*[](Tensor &self, IntArrayRef size, IntArrayRef stride) {
|
238
|
+
return torch::as_strided(self, size, stride);
|
239
|
+
})
|
240
|
+
.define_singleton_method(
|
241
|
+
"_as_strided_",
|
242
|
+
*[](Tensor &self, IntArrayRef size, IntArrayRef stride) {
|
243
|
+
return torch::as_strided_(self, size, stride);
|
244
|
+
})
|
245
|
+
.define_singleton_method(
|
246
|
+
"_as_strided__storage_offset",
|
247
|
+
*[](Tensor &self, IntArrayRef size, IntArrayRef stride, int64_t storage_offset) {
|
248
|
+
return torch::as_strided_(self, size, stride, storage_offset);
|
249
|
+
})
|
250
|
+
.define_singleton_method(
|
251
|
+
"_as_strided_storage_offset",
|
252
|
+
*[](Tensor &self, IntArrayRef size, IntArrayRef stride, int64_t storage_offset) {
|
253
|
+
return torch::as_strided(self, size, stride, storage_offset);
|
254
|
+
})
|
255
|
+
.define_singleton_method(
|
256
|
+
"_asin",
|
257
|
+
*[](const Tensor &self) {
|
258
|
+
return torch::asin(self);
|
259
|
+
})
|
260
|
+
.define_singleton_method(
|
261
|
+
"_asin_",
|
262
|
+
*[](Tensor &self) {
|
263
|
+
return torch::asin_(self);
|
264
|
+
})
|
265
|
+
.define_singleton_method(
|
266
|
+
"_asin_out",
|
267
|
+
*[](const Tensor &self, Tensor &out) {
|
268
|
+
return torch::asin_out(out, self);
|
269
|
+
})
|
270
|
+
.define_singleton_method(
|
271
|
+
"_atan",
|
272
|
+
*[](const Tensor &self) {
|
273
|
+
return torch::atan(self);
|
274
|
+
})
|
275
|
+
.define_singleton_method(
|
276
|
+
"_atan2",
|
277
|
+
*[](const Tensor &self, const Tensor &other) {
|
278
|
+
return torch::atan2(self, other);
|
279
|
+
})
|
280
|
+
.define_singleton_method(
|
281
|
+
"_atan2_out",
|
282
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
283
|
+
return torch::atan2_out(out, self, other);
|
284
|
+
})
|
285
|
+
.define_singleton_method(
|
286
|
+
"_atan_",
|
287
|
+
*[](Tensor &self) {
|
288
|
+
return torch::atan_(self);
|
289
|
+
})
|
290
|
+
.define_singleton_method(
|
291
|
+
"_atan_out",
|
292
|
+
*[](const Tensor &self, Tensor &out) {
|
293
|
+
return torch::atan_out(out, self);
|
294
|
+
})
|
295
|
+
.define_singleton_method(
|
296
|
+
"_avg_pool1d",
|
297
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
|
298
|
+
return torch::avg_pool1d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
|
299
|
+
})
|
300
|
+
.define_singleton_method(
|
301
|
+
"_baddbmm",
|
302
|
+
*[](const Tensor &self, const Tensor &batch1, const Tensor &batch2, Scalar beta, Scalar alpha) {
|
303
|
+
return torch::baddbmm(self, batch1, batch2, beta, alpha);
|
304
|
+
})
|
305
|
+
.define_singleton_method(
|
306
|
+
"_baddbmm_out",
|
307
|
+
*[](const Tensor &self, const Tensor &batch1, const Tensor &batch2, Scalar beta, Scalar alpha, Tensor &out) {
|
308
|
+
return torch::baddbmm_out(out, self, batch1, batch2, beta, alpha);
|
309
|
+
})
|
310
|
+
.define_singleton_method(
|
311
|
+
"_batch_norm",
|
312
|
+
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool training, double momentum, double eps, bool cudnn_enabled) {
|
313
|
+
return torch::batch_norm(input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled);
|
314
|
+
})
|
315
|
+
.define_singleton_method(
|
316
|
+
"_batch_norm_backward_elemt",
|
317
|
+
*[](const Tensor &grad_out, const Tensor &input, const Tensor &mean, const Tensor &invstd, OptionalTensor weight, const Tensor &mean_dy, const Tensor &mean_dy_xmu) {
|
318
|
+
return torch::batch_norm_backward_elemt(grad_out, input, mean, invstd, weight, mean_dy, mean_dy_xmu);
|
319
|
+
})
|
320
|
+
.define_singleton_method(
|
321
|
+
"_batch_norm_backward_reduce",
|
322
|
+
*[](const Tensor &grad_out, const Tensor &input, const Tensor &mean, const Tensor &invstd, OptionalTensor weight, bool input_g, bool weight_g, bool bias_g) {
|
323
|
+
return wrap(torch::batch_norm_backward_reduce(grad_out, input, mean, invstd, weight, input_g, weight_g, bias_g));
|
324
|
+
})
|
325
|
+
.define_singleton_method(
|
326
|
+
"_batch_norm_elemt",
|
327
|
+
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, const Tensor &mean, const Tensor &invstd, double eps) {
|
328
|
+
return torch::batch_norm_elemt(input, weight, bias, mean, invstd, eps);
|
329
|
+
})
|
330
|
+
.define_singleton_method(
|
331
|
+
"_batch_norm_elemt_out",
|
332
|
+
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, const Tensor &mean, const Tensor &invstd, double eps, Tensor &out) {
|
333
|
+
return torch::batch_norm_elemt_out(out, input, weight, bias, mean, invstd, eps);
|
334
|
+
})
|
335
|
+
.define_singleton_method(
|
336
|
+
"_batch_norm_gather_stats",
|
337
|
+
*[](const Tensor &input, const Tensor &mean, const Tensor &invstd, OptionalTensor running_mean, OptionalTensor running_var, double momentum, double eps, int64_t count) {
|
338
|
+
return wrap(torch::batch_norm_gather_stats(input, mean, invstd, running_mean, running_var, momentum, eps, count));
|
339
|
+
})
|
340
|
+
.define_singleton_method(
|
341
|
+
"_batch_norm_gather_stats_with_counts",
|
342
|
+
*[](const Tensor &input, const Tensor &mean, const Tensor &invstd, OptionalTensor running_mean, OptionalTensor running_var, double momentum, double eps, IntArrayRef counts) {
|
343
|
+
return wrap(torch::batch_norm_gather_stats_with_counts(input, mean, invstd, running_mean, running_var, momentum, eps, counts));
|
344
|
+
})
|
345
|
+
.define_singleton_method(
|
346
|
+
"_batch_norm_stats",
|
347
|
+
*[](const Tensor &input, double eps) {
|
348
|
+
return wrap(torch::batch_norm_stats(input, eps));
|
349
|
+
})
|
350
|
+
.define_singleton_method(
|
351
|
+
"_batch_norm_update_stats",
|
352
|
+
*[](const Tensor &input, OptionalTensor running_mean, OptionalTensor running_var, double momentum) {
|
353
|
+
return wrap(torch::batch_norm_update_stats(input, running_mean, running_var, momentum));
|
354
|
+
})
|
355
|
+
.define_singleton_method(
|
356
|
+
"_bernoulli",
|
357
|
+
*[](const Tensor &self) {
|
358
|
+
return torch::bernoulli(self);
|
359
|
+
})
|
360
|
+
.define_singleton_method(
|
361
|
+
"_bernoulli_out",
|
362
|
+
*[](const Tensor &self, Tensor &out) {
|
363
|
+
return torch::bernoulli_out(out, self);
|
364
|
+
})
|
365
|
+
.define_singleton_method(
|
366
|
+
"_bernoulli_p",
|
367
|
+
*[](const Tensor &self, double p) {
|
368
|
+
return torch::bernoulli(self, p);
|
369
|
+
})
|
370
|
+
.define_singleton_method(
|
371
|
+
"_bilinear",
|
372
|
+
*[](const Tensor &input1, const Tensor &input2, const Tensor &weight, OptionalTensor bias) {
|
373
|
+
return torch::bilinear(input1, input2, weight, bias);
|
374
|
+
})
|
375
|
+
.define_singleton_method(
|
376
|
+
"_binary_cross_entropy_with_logits",
|
377
|
+
*[](const Tensor &self, const Tensor &target, OptionalTensor weight, OptionalTensor pos_weight, MyReduction reduction) {
|
378
|
+
return torch::binary_cross_entropy_with_logits(self, target, weight, pos_weight, reduction);
|
379
|
+
})
|
380
|
+
.define_singleton_method(
|
381
|
+
"_bincount",
|
382
|
+
*[](const Tensor &self, OptionalTensor weights, int64_t minlength) {
|
383
|
+
return torch::bincount(self, weights, minlength);
|
384
|
+
})
|
385
|
+
.define_singleton_method(
|
386
|
+
"_bitwise_and_scalar",
|
387
|
+
*[](const Tensor &self, Scalar other) {
|
388
|
+
return torch::bitwise_and(self, other);
|
389
|
+
})
|
390
|
+
.define_singleton_method(
|
391
|
+
"_bitwise_and_scalar_out",
|
392
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
393
|
+
return torch::bitwise_and_out(out, self, other);
|
394
|
+
})
|
395
|
+
.define_singleton_method(
|
396
|
+
"_bitwise_and_tensor",
|
397
|
+
*[](const Tensor &self, const Tensor &other) {
|
398
|
+
return torch::bitwise_and(self, other);
|
399
|
+
})
|
400
|
+
.define_singleton_method(
|
401
|
+
"_bitwise_and_tensor_out",
|
402
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
403
|
+
return torch::bitwise_and_out(out, self, other);
|
404
|
+
})
|
405
|
+
.define_singleton_method(
|
406
|
+
"_bitwise_not",
|
407
|
+
*[](const Tensor &self) {
|
408
|
+
return torch::bitwise_not(self);
|
409
|
+
})
|
410
|
+
.define_singleton_method(
|
411
|
+
"_bitwise_not_out",
|
412
|
+
*[](const Tensor &self, Tensor &out) {
|
413
|
+
return torch::bitwise_not_out(out, self);
|
414
|
+
})
|
415
|
+
.define_singleton_method(
|
416
|
+
"_bitwise_or_scalar",
|
417
|
+
*[](const Tensor &self, Scalar other) {
|
418
|
+
return torch::bitwise_or(self, other);
|
419
|
+
})
|
420
|
+
.define_singleton_method(
|
421
|
+
"_bitwise_or_scalar_out",
|
422
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
423
|
+
return torch::bitwise_or_out(out, self, other);
|
424
|
+
})
|
425
|
+
.define_singleton_method(
|
426
|
+
"_bitwise_or_tensor",
|
427
|
+
*[](const Tensor &self, const Tensor &other) {
|
428
|
+
return torch::bitwise_or(self, other);
|
429
|
+
})
|
430
|
+
.define_singleton_method(
|
431
|
+
"_bitwise_or_tensor_out",
|
432
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
433
|
+
return torch::bitwise_or_out(out, self, other);
|
434
|
+
})
|
435
|
+
.define_singleton_method(
|
436
|
+
"_bitwise_xor_scalar",
|
437
|
+
*[](const Tensor &self, Scalar other) {
|
438
|
+
return torch::bitwise_xor(self, other);
|
439
|
+
})
|
440
|
+
.define_singleton_method(
|
441
|
+
"_bitwise_xor_scalar_out",
|
442
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
443
|
+
return torch::bitwise_xor_out(out, self, other);
|
444
|
+
})
|
445
|
+
.define_singleton_method(
|
446
|
+
"_bitwise_xor_tensor",
|
447
|
+
*[](const Tensor &self, const Tensor &other) {
|
448
|
+
return torch::bitwise_xor(self, other);
|
449
|
+
})
|
450
|
+
.define_singleton_method(
|
451
|
+
"_bitwise_xor_tensor_out",
|
452
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
453
|
+
return torch::bitwise_xor_out(out, self, other);
|
454
|
+
})
|
455
|
+
.define_singleton_method(
|
456
|
+
"_bmm",
|
457
|
+
*[](const Tensor &self, const Tensor &mat2) {
|
458
|
+
return torch::bmm(self, mat2);
|
459
|
+
})
|
460
|
+
.define_singleton_method(
|
461
|
+
"_bmm_out",
|
462
|
+
*[](const Tensor &self, const Tensor &mat2, Tensor &out) {
|
463
|
+
return torch::bmm_out(out, self, mat2);
|
464
|
+
})
|
465
|
+
.define_singleton_method(
|
466
|
+
"_broadcast_tensors",
|
467
|
+
*[](TensorList tensors) {
|
468
|
+
return torch::broadcast_tensors(tensors);
|
469
|
+
})
|
470
|
+
.define_singleton_method(
|
471
|
+
"_can_cast",
|
472
|
+
*[](ScalarType from, ScalarType to) {
|
473
|
+
return torch::can_cast(from, to);
|
474
|
+
})
|
475
|
+
.define_singleton_method(
|
476
|
+
"_cartesian_prod",
|
477
|
+
*[](TensorList tensors) {
|
478
|
+
return torch::cartesian_prod(tensors);
|
479
|
+
})
|
480
|
+
.define_singleton_method(
|
481
|
+
"_cat",
|
482
|
+
*[](TensorList tensors, int64_t dim) {
|
483
|
+
return torch::cat(tensors, dim);
|
484
|
+
})
|
485
|
+
.define_singleton_method(
|
486
|
+
"_cat_out",
|
487
|
+
*[](TensorList tensors, int64_t dim, Tensor &out) {
|
488
|
+
return torch::cat_out(out, tensors, dim);
|
489
|
+
})
|
490
|
+
.define_singleton_method(
|
491
|
+
"_cdist",
|
492
|
+
*[](const Tensor &x1, const Tensor &x2, double p) {
|
493
|
+
return torch::cdist(x1, x2, p);
|
494
|
+
})
|
495
|
+
.define_singleton_method(
|
496
|
+
"_cdist_compute_mode",
|
497
|
+
*[](const Tensor &x1, const Tensor &x2, double p, int64_t compute_mode) {
|
498
|
+
return torch::cdist(x1, x2, p, compute_mode);
|
499
|
+
})
|
500
|
+
.define_singleton_method(
|
501
|
+
"_ceil",
|
502
|
+
*[](const Tensor &self) {
|
503
|
+
return torch::ceil(self);
|
504
|
+
})
|
505
|
+
.define_singleton_method(
|
506
|
+
"_ceil_",
|
507
|
+
*[](Tensor &self) {
|
508
|
+
return torch::ceil_(self);
|
509
|
+
})
|
510
|
+
.define_singleton_method(
|
511
|
+
"_ceil_out",
|
512
|
+
*[](const Tensor &self, Tensor &out) {
|
513
|
+
return torch::ceil_out(out, self);
|
514
|
+
})
|
515
|
+
.define_singleton_method(
|
516
|
+
"_celu",
|
517
|
+
*[](const Tensor &self, Scalar alpha) {
|
518
|
+
return torch::celu(self, alpha);
|
519
|
+
})
|
520
|
+
.define_singleton_method(
|
521
|
+
"_celu_",
|
522
|
+
*[](Tensor &self, Scalar alpha) {
|
523
|
+
return torch::celu_(self, alpha);
|
524
|
+
})
|
525
|
+
.define_singleton_method(
|
526
|
+
"_chain_matmul",
|
527
|
+
*[](TensorList matrices) {
|
528
|
+
return torch::chain_matmul(matrices);
|
529
|
+
})
|
530
|
+
.define_singleton_method(
|
531
|
+
"_cholesky",
|
532
|
+
*[](const Tensor &self, bool upper) {
|
533
|
+
return torch::cholesky(self, upper);
|
534
|
+
})
|
535
|
+
.define_singleton_method(
|
536
|
+
"_cholesky_inverse",
|
537
|
+
*[](const Tensor &self, bool upper) {
|
538
|
+
return torch::cholesky_inverse(self, upper);
|
539
|
+
})
|
540
|
+
.define_singleton_method(
|
541
|
+
"_cholesky_inverse_out",
|
542
|
+
*[](const Tensor &self, bool upper, Tensor &out) {
|
543
|
+
return torch::cholesky_inverse_out(out, self, upper);
|
544
|
+
})
|
545
|
+
.define_singleton_method(
|
546
|
+
"_cholesky_out",
|
547
|
+
*[](const Tensor &self, bool upper, Tensor &out) {
|
548
|
+
return torch::cholesky_out(out, self, upper);
|
549
|
+
})
|
550
|
+
.define_singleton_method(
|
551
|
+
"_cholesky_solve",
|
552
|
+
*[](const Tensor &self, const Tensor &input2, bool upper) {
|
553
|
+
return torch::cholesky_solve(self, input2, upper);
|
554
|
+
})
|
555
|
+
.define_singleton_method(
|
556
|
+
"_cholesky_solve_out",
|
557
|
+
*[](const Tensor &self, const Tensor &input2, bool upper, Tensor &out) {
|
558
|
+
return torch::cholesky_solve_out(out, self, input2, upper);
|
559
|
+
})
|
560
|
+
.define_singleton_method(
|
561
|
+
"_chunk",
|
562
|
+
*[](Tensor &self, int64_t chunks, int64_t dim) {
|
563
|
+
return torch::chunk(self, chunks, dim);
|
564
|
+
})
|
565
|
+
.define_singleton_method(
|
566
|
+
"_clamp_max",
|
567
|
+
*[](const Tensor &self, Scalar max) {
|
568
|
+
return torch::clamp_max(self, max);
|
569
|
+
})
|
570
|
+
.define_singleton_method(
|
571
|
+
"_clamp_max_",
|
572
|
+
*[](Tensor &self, Scalar max) {
|
573
|
+
return torch::clamp_max_(self, max);
|
574
|
+
})
|
575
|
+
.define_singleton_method(
|
576
|
+
"_clamp_max_out",
|
577
|
+
*[](const Tensor &self, Scalar max, Tensor &out) {
|
578
|
+
return torch::clamp_max_out(out, self, max);
|
579
|
+
})
|
580
|
+
.define_singleton_method(
|
581
|
+
"_clamp_min",
|
582
|
+
*[](const Tensor &self, Scalar min) {
|
583
|
+
return torch::clamp_min(self, min);
|
584
|
+
})
|
585
|
+
.define_singleton_method(
|
586
|
+
"_clamp_min_",
|
587
|
+
*[](Tensor &self, Scalar min) {
|
588
|
+
return torch::clamp_min_(self, min);
|
589
|
+
})
|
590
|
+
.define_singleton_method(
|
591
|
+
"_clamp_min_out",
|
592
|
+
*[](const Tensor &self, Scalar min, Tensor &out) {
|
593
|
+
return torch::clamp_min_out(out, self, min);
|
594
|
+
})
|
595
|
+
.define_singleton_method(
|
596
|
+
"_clone",
|
597
|
+
*[](const Tensor &self) {
|
598
|
+
return torch::clone(self);
|
599
|
+
})
|
600
|
+
.define_singleton_method(
|
601
|
+
"_combinations",
|
602
|
+
*[](const Tensor &self, int64_t r, bool with_replacement) {
|
603
|
+
return torch::combinations(self, r, with_replacement);
|
604
|
+
})
|
605
|
+
.define_singleton_method(
|
606
|
+
"_conj",
|
607
|
+
*[](const Tensor &self) {
|
608
|
+
return torch::conj(self);
|
609
|
+
})
|
610
|
+
.define_singleton_method(
|
611
|
+
"_conj_out",
|
612
|
+
*[](const Tensor &self, Tensor &out) {
|
613
|
+
return torch::conj_out(out, self);
|
614
|
+
})
|
615
|
+
.define_singleton_method(
|
616
|
+
"_constant_pad_nd",
|
617
|
+
*[](const Tensor &self, IntArrayRef pad, Scalar value) {
|
618
|
+
return torch::constant_pad_nd(self, pad, value);
|
619
|
+
})
|
620
|
+
.define_singleton_method(
|
621
|
+
"_conv1d",
|
622
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) {
|
623
|
+
return torch::conv1d(input, weight, bias, stride, padding, dilation, groups);
|
624
|
+
})
|
625
|
+
.define_singleton_method(
|
626
|
+
"_conv2d",
|
627
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) {
|
628
|
+
return torch::conv2d(input, weight, bias, stride, padding, dilation, groups);
|
629
|
+
})
|
630
|
+
.define_singleton_method(
|
631
|
+
"_conv3d",
|
632
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, int64_t groups) {
|
633
|
+
return torch::conv3d(input, weight, bias, stride, padding, dilation, groups);
|
634
|
+
})
|
635
|
+
.define_singleton_method(
|
636
|
+
"_conv_tbc",
|
637
|
+
*[](const Tensor &self, const Tensor &weight, const Tensor &bias, int64_t pad) {
|
638
|
+
return torch::conv_tbc(self, weight, bias, pad);
|
639
|
+
})
|
640
|
+
.define_singleton_method(
|
641
|
+
"_conv_transpose1d",
|
642
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation) {
|
643
|
+
return torch::conv_transpose1d(input, weight, bias, stride, padding, output_padding, groups, dilation);
|
644
|
+
})
|
645
|
+
.define_singleton_method(
|
646
|
+
"_conv_transpose2d_input",
|
647
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation) {
|
648
|
+
return torch::conv_transpose2d(input, weight, bias, stride, padding, output_padding, groups, dilation);
|
649
|
+
})
|
650
|
+
.define_singleton_method(
|
651
|
+
"_conv_transpose3d_input",
|
652
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, int64_t groups, IntArrayRef dilation) {
|
653
|
+
return torch::conv_transpose3d(input, weight, bias, stride, padding, output_padding, groups, dilation);
|
654
|
+
})
|
655
|
+
.define_singleton_method(
|
656
|
+
"_convolution",
|
657
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups) {
|
658
|
+
return torch::convolution(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups);
|
659
|
+
})
|
660
|
+
.define_singleton_method(
|
661
|
+
"_convolution_overrideable",
|
662
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool transposed, IntArrayRef output_padding, int64_t groups) {
|
663
|
+
return torch::convolution_overrideable(input, weight, bias, stride, padding, dilation, transposed, output_padding, groups);
|
664
|
+
})
|
665
|
+
.define_singleton_method(
|
666
|
+
"_copy_sparse_to_sparse_",
|
667
|
+
*[](Tensor &self, const Tensor &src, bool non_blocking) {
|
668
|
+
return torch::copy_sparse_to_sparse_(self, src, non_blocking);
|
669
|
+
})
|
670
|
+
.define_singleton_method(
|
671
|
+
"_cos",
|
672
|
+
*[](const Tensor &self) {
|
673
|
+
return torch::cos(self);
|
674
|
+
})
|
675
|
+
.define_singleton_method(
|
676
|
+
"_cos_",
|
677
|
+
*[](Tensor &self) {
|
678
|
+
return torch::cos_(self);
|
679
|
+
})
|
680
|
+
.define_singleton_method(
|
681
|
+
"_cos_out",
|
682
|
+
*[](const Tensor &self, Tensor &out) {
|
683
|
+
return torch::cos_out(out, self);
|
684
|
+
})
|
685
|
+
.define_singleton_method(
|
686
|
+
"_cosh",
|
687
|
+
*[](const Tensor &self) {
|
688
|
+
return torch::cosh(self);
|
689
|
+
})
|
690
|
+
.define_singleton_method(
|
691
|
+
"_cosh_",
|
692
|
+
*[](Tensor &self) {
|
693
|
+
return torch::cosh_(self);
|
694
|
+
})
|
695
|
+
.define_singleton_method(
|
696
|
+
"_cosh_out",
|
697
|
+
*[](const Tensor &self, Tensor &out) {
|
698
|
+
return torch::cosh_out(out, self);
|
699
|
+
})
|
700
|
+
.define_singleton_method(
|
701
|
+
"_cosine_embedding_loss",
|
702
|
+
*[](const Tensor &input1, const Tensor &input2, const Tensor &target, double margin, MyReduction reduction) {
|
703
|
+
return torch::cosine_embedding_loss(input1, input2, target, margin, reduction);
|
704
|
+
})
|
705
|
+
.define_singleton_method(
|
706
|
+
"_cosine_similarity",
|
707
|
+
*[](const Tensor &x1, const Tensor &x2, int64_t dim, double eps) {
|
708
|
+
return torch::cosine_similarity(x1, x2, dim, eps);
|
709
|
+
})
|
710
|
+
.define_singleton_method(
|
711
|
+
"_ctc_loss_intlist",
|
712
|
+
*[](const Tensor &log_probs, const Tensor &targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, MyReduction reduction, bool zero_infinity) {
|
713
|
+
return torch::ctc_loss(log_probs, targets, input_lengths, target_lengths, blank, reduction, zero_infinity);
|
714
|
+
})
|
715
|
+
.define_singleton_method(
|
716
|
+
"_ctc_loss_tensor",
|
717
|
+
*[](const Tensor &log_probs, const Tensor &targets, const Tensor &input_lengths, const Tensor &target_lengths, int64_t blank, MyReduction reduction, bool zero_infinity) {
|
718
|
+
return torch::ctc_loss(log_probs, targets, input_lengths, target_lengths, blank, reduction, zero_infinity);
|
719
|
+
})
|
720
|
+
.define_singleton_method(
|
721
|
+
"_cudnn_affine_grid_generator",
|
722
|
+
*[](const Tensor &theta, int64_t N, int64_t C, int64_t H, int64_t W) {
|
723
|
+
return torch::cudnn_affine_grid_generator(theta, N, C, H, W);
|
724
|
+
})
|
725
|
+
.define_singleton_method(
|
726
|
+
"_cudnn_batch_norm",
|
727
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool training, double exponential_average_factor, double epsilon) {
|
728
|
+
return wrap(torch::cudnn_batch_norm(input, weight, bias, running_mean, running_var, training, exponential_average_factor, epsilon));
|
729
|
+
})
|
730
|
+
.define_singleton_method(
|
731
|
+
"_cudnn_convolution",
|
732
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
733
|
+
return torch::cudnn_convolution(self, weight, padding, stride, dilation, groups, benchmark, deterministic);
|
734
|
+
})
|
735
|
+
.define_singleton_method(
|
736
|
+
"_cudnn_convolution_backward_input",
|
737
|
+
*[](IntArrayRef self_size, const Tensor &grad_output, const Tensor &weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
738
|
+
return torch::cudnn_convolution_backward_input(self_size, grad_output, weight, padding, stride, dilation, groups, benchmark, deterministic);
|
739
|
+
})
|
740
|
+
.define_singleton_method(
|
741
|
+
"_cudnn_convolution_backward_weight",
|
742
|
+
*[](IntArrayRef weight_size, const Tensor &grad_output, const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
743
|
+
return torch::cudnn_convolution_backward_weight(weight_size, grad_output, self, padding, stride, dilation, groups, benchmark, deterministic);
|
744
|
+
})
|
745
|
+
.define_singleton_method(
|
746
|
+
"_cudnn_convolution_deprecated",
|
747
|
+
*[](const Tensor &self, const Tensor &weight, OptionalTensor bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
748
|
+
return torch::cudnn_convolution(self, weight, bias, padding, stride, dilation, groups, benchmark, deterministic);
|
749
|
+
})
|
750
|
+
.define_singleton_method(
|
751
|
+
"_cudnn_convolution_transpose",
|
752
|
+
*[](const Tensor &self, const Tensor &weight, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
753
|
+
return torch::cudnn_convolution_transpose(self, weight, padding, output_padding, stride, dilation, groups, benchmark, deterministic);
|
754
|
+
})
|
755
|
+
.define_singleton_method(
|
756
|
+
"_cudnn_convolution_transpose_backward_input",
|
757
|
+
*[](const Tensor &grad_output, const Tensor &weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
758
|
+
return torch::cudnn_convolution_transpose_backward_input(grad_output, weight, padding, stride, dilation, groups, benchmark, deterministic);
|
759
|
+
})
|
760
|
+
.define_singleton_method(
|
761
|
+
"_cudnn_convolution_transpose_backward_weight",
|
762
|
+
*[](IntArrayRef weight_size, const Tensor &grad_output, const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
763
|
+
return torch::cudnn_convolution_transpose_backward_weight(weight_size, grad_output, self, padding, stride, dilation, groups, benchmark, deterministic);
|
764
|
+
})
|
765
|
+
.define_singleton_method(
|
766
|
+
"_cudnn_convolution_transpose_deprecated",
|
767
|
+
*[](const Tensor &self, const Tensor &weight, OptionalTensor bias, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
768
|
+
return torch::cudnn_convolution_transpose(self, weight, bias, padding, output_padding, stride, dilation, groups, benchmark, deterministic);
|
769
|
+
})
|
770
|
+
.define_singleton_method(
|
771
|
+
"_cudnn_grid_sampler",
|
772
|
+
*[](const Tensor &self, const Tensor &grid) {
|
773
|
+
return torch::cudnn_grid_sampler(self, grid);
|
774
|
+
})
|
775
|
+
.define_singleton_method(
|
776
|
+
"_cudnn_is_acceptable",
|
777
|
+
*[](const Tensor &self) {
|
778
|
+
return torch::cudnn_is_acceptable(self);
|
779
|
+
})
|
780
|
+
.define_singleton_method(
|
781
|
+
"_cummax",
|
782
|
+
*[](const Tensor &self, int64_t dim) {
|
783
|
+
return wrap(torch::cummax(self, dim));
|
784
|
+
})
|
785
|
+
.define_singleton_method(
|
786
|
+
"_cummax_out",
|
787
|
+
*[](const Tensor &self, int64_t dim, Tensor &values, Tensor &indices) {
|
788
|
+
return wrap(torch::cummax_out(values, indices, self, dim));
|
789
|
+
})
|
790
|
+
.define_singleton_method(
|
791
|
+
"_cummin",
|
792
|
+
*[](const Tensor &self, int64_t dim) {
|
793
|
+
return wrap(torch::cummin(self, dim));
|
794
|
+
})
|
795
|
+
.define_singleton_method(
|
796
|
+
"_cummin_out",
|
797
|
+
*[](const Tensor &self, int64_t dim, Tensor &values, Tensor &indices) {
|
798
|
+
return wrap(torch::cummin_out(values, indices, self, dim));
|
799
|
+
})
|
800
|
+
.define_singleton_method(
|
801
|
+
"_cumprod",
|
802
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
803
|
+
return torch::cumprod(self, dim, dtype);
|
804
|
+
})
|
805
|
+
.define_singleton_method(
|
806
|
+
"_cumprod_out",
|
807
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype, Tensor &out) {
|
808
|
+
return torch::cumprod_out(out, self, dim, dtype);
|
809
|
+
})
|
810
|
+
.define_singleton_method(
|
811
|
+
"_cumsum",
|
812
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
813
|
+
return torch::cumsum(self, dim, dtype);
|
814
|
+
})
|
815
|
+
.define_singleton_method(
|
816
|
+
"_cumsum_out",
|
817
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype, Tensor &out) {
|
818
|
+
return torch::cumsum_out(out, self, dim, dtype);
|
819
|
+
})
|
820
|
+
.define_singleton_method(
|
821
|
+
"_dequantize",
|
822
|
+
*[](const Tensor &self) {
|
823
|
+
return torch::dequantize(self);
|
824
|
+
})
|
825
|
+
.define_singleton_method(
|
826
|
+
"_det",
|
827
|
+
*[](const Tensor &self) {
|
828
|
+
return torch::det(self);
|
829
|
+
})
|
830
|
+
.define_singleton_method(
|
831
|
+
"_detach",
|
832
|
+
*[](const Tensor &self) {
|
833
|
+
return torch::detach(self);
|
834
|
+
})
|
835
|
+
.define_singleton_method(
|
836
|
+
"_detach_",
|
837
|
+
*[](Tensor &self) {
|
838
|
+
return torch::detach_(self);
|
839
|
+
})
|
840
|
+
.define_singleton_method(
|
841
|
+
"_diag",
|
842
|
+
*[](const Tensor &self, int64_t diagonal) {
|
843
|
+
return torch::diag(self, diagonal);
|
844
|
+
})
|
845
|
+
.define_singleton_method(
|
846
|
+
"_diag_embed",
|
847
|
+
*[](const Tensor &self, int64_t offset, int64_t dim1, int64_t dim2) {
|
848
|
+
return torch::diag_embed(self, offset, dim1, dim2);
|
849
|
+
})
|
850
|
+
.define_singleton_method(
|
851
|
+
"_diag_out",
|
852
|
+
*[](const Tensor &self, int64_t diagonal, Tensor &out) {
|
853
|
+
return torch::diag_out(out, self, diagonal);
|
854
|
+
})
|
855
|
+
.define_singleton_method(
|
856
|
+
"_diagflat",
|
857
|
+
*[](const Tensor &self, int64_t offset) {
|
858
|
+
return torch::diagflat(self, offset);
|
859
|
+
})
|
860
|
+
.define_singleton_method(
|
861
|
+
"_diagonal",
|
862
|
+
*[](Tensor &self, int64_t offset, int64_t dim1, int64_t dim2) {
|
863
|
+
return torch::diagonal(self, offset, dim1, dim2);
|
864
|
+
})
|
865
|
+
.define_singleton_method(
|
866
|
+
"_digamma",
|
867
|
+
*[](const Tensor &self) {
|
868
|
+
return torch::digamma(self);
|
869
|
+
})
|
870
|
+
.define_singleton_method(
|
871
|
+
"_digamma_out",
|
872
|
+
*[](const Tensor &self, Tensor &out) {
|
873
|
+
return torch::digamma_out(out, self);
|
874
|
+
})
|
875
|
+
.define_singleton_method(
|
876
|
+
"_dist",
|
877
|
+
*[](const Tensor &self, const Tensor &other, Scalar p) {
|
878
|
+
return torch::dist(self, other, p);
|
879
|
+
})
|
880
|
+
.define_singleton_method(
|
881
|
+
"_div_out",
|
882
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
883
|
+
return torch::div_out(out, self, other);
|
884
|
+
})
|
885
|
+
.define_singleton_method(
|
886
|
+
"_div_scalar",
|
887
|
+
*[](const Tensor &self, Scalar other) {
|
888
|
+
return torch::div(self, other);
|
889
|
+
})
|
890
|
+
.define_singleton_method(
|
891
|
+
"_div_tensor",
|
892
|
+
*[](const Tensor &self, const Tensor &other) {
|
893
|
+
return torch::div(self, other);
|
894
|
+
})
|
895
|
+
.define_singleton_method(
|
896
|
+
"_dot",
|
897
|
+
*[](const Tensor &self, const Tensor &tensor) {
|
898
|
+
return torch::dot(self, tensor);
|
899
|
+
})
|
900
|
+
.define_singleton_method(
|
901
|
+
"_dot_out",
|
902
|
+
*[](const Tensor &self, const Tensor &tensor, Tensor &out) {
|
903
|
+
return torch::dot_out(out, self, tensor);
|
904
|
+
})
|
905
|
+
.define_singleton_method(
|
906
|
+
"_dropout",
|
907
|
+
*[](const Tensor &input, double p, bool train) {
|
908
|
+
return torch::dropout(input, p, train);
|
909
|
+
})
|
910
|
+
.define_singleton_method(
|
911
|
+
"_dropout_",
|
912
|
+
*[](Tensor &self, double p, bool train) {
|
913
|
+
return torch::dropout_(self, p, train);
|
914
|
+
})
|
915
|
+
.define_singleton_method(
|
916
|
+
"_eig",
|
917
|
+
*[](const Tensor &self, bool eigenvectors) {
|
918
|
+
return wrap(torch::eig(self, eigenvectors));
|
919
|
+
})
|
920
|
+
.define_singleton_method(
|
921
|
+
"_eig_e",
|
922
|
+
*[](const Tensor &self, bool eigenvectors, Tensor &e, Tensor &v) {
|
923
|
+
return wrap(torch::eig_out(e, v, self, eigenvectors));
|
924
|
+
})
|
925
|
+
.define_singleton_method(
|
926
|
+
"_einsum",
|
927
|
+
*[](std::string equation, TensorList tensors) {
|
928
|
+
return torch::einsum(equation, tensors);
|
929
|
+
})
|
930
|
+
.define_singleton_method(
|
931
|
+
"_embedding",
|
932
|
+
*[](const Tensor &weight, const Tensor &indices, int64_t padding_idx, bool scale_grad_by_freq, bool sparse) {
|
933
|
+
return torch::embedding(weight, indices, padding_idx, scale_grad_by_freq, sparse);
|
934
|
+
})
|
935
|
+
.define_singleton_method(
|
936
|
+
"_embedding_bag",
|
937
|
+
*[](const Tensor &weight, const Tensor &indices, const Tensor &offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, OptionalTensor per_sample_weights, bool include_last_offset) {
|
938
|
+
return wrap(torch::embedding_bag(weight, indices, offsets, scale_grad_by_freq, mode, sparse, per_sample_weights, include_last_offset));
|
939
|
+
})
|
940
|
+
.define_singleton_method(
|
941
|
+
"_embedding_renorm_",
|
942
|
+
*[](Tensor &self, const Tensor &indices, double max_norm, double norm_type) {
|
943
|
+
return torch::embedding_renorm_(self, indices, max_norm, norm_type);
|
944
|
+
})
|
945
|
+
.define_singleton_method(
|
946
|
+
"_empty_out",
|
947
|
+
*[](IntArrayRef size, Tensor &out) {
|
948
|
+
return torch::empty_out(out, size);
|
949
|
+
})
|
950
|
+
.define_singleton_method(
|
951
|
+
"_eq_scalar",
|
952
|
+
*[](const Tensor &self, Scalar other) {
|
953
|
+
return torch::eq(self, other);
|
954
|
+
})
|
955
|
+
.define_singleton_method(
|
956
|
+
"_eq_scalar_out",
|
957
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
958
|
+
return torch::eq_out(out, self, other);
|
959
|
+
})
|
960
|
+
.define_singleton_method(
|
961
|
+
"_eq_tensor",
|
962
|
+
*[](const Tensor &self, const Tensor &other) {
|
963
|
+
return torch::eq(self, other);
|
964
|
+
})
|
965
|
+
.define_singleton_method(
|
966
|
+
"_eq_tensor_out",
|
967
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
968
|
+
return torch::eq_out(out, self, other);
|
969
|
+
})
|
970
|
+
.define_singleton_method(
|
971
|
+
"_equal",
|
972
|
+
*[](const Tensor &self, const Tensor &other) {
|
973
|
+
return torch::equal(self, other);
|
974
|
+
})
|
975
|
+
.define_singleton_method(
|
976
|
+
"_erf",
|
977
|
+
*[](const Tensor &self) {
|
978
|
+
return torch::erf(self);
|
979
|
+
})
|
980
|
+
.define_singleton_method(
|
981
|
+
"_erf_",
|
982
|
+
*[](Tensor &self) {
|
983
|
+
return torch::erf_(self);
|
984
|
+
})
|
985
|
+
.define_singleton_method(
|
986
|
+
"_erf_out",
|
987
|
+
*[](const Tensor &self, Tensor &out) {
|
988
|
+
return torch::erf_out(out, self);
|
989
|
+
})
|
990
|
+
.define_singleton_method(
|
991
|
+
"_erfc",
|
992
|
+
*[](const Tensor &self) {
|
993
|
+
return torch::erfc(self);
|
994
|
+
})
|
995
|
+
.define_singleton_method(
|
996
|
+
"_erfc_",
|
997
|
+
*[](Tensor &self) {
|
998
|
+
return torch::erfc_(self);
|
999
|
+
})
|
1000
|
+
.define_singleton_method(
|
1001
|
+
"_erfc_out",
|
1002
|
+
*[](const Tensor &self, Tensor &out) {
|
1003
|
+
return torch::erfc_out(out, self);
|
1004
|
+
})
|
1005
|
+
.define_singleton_method(
|
1006
|
+
"_erfinv",
|
1007
|
+
*[](const Tensor &self) {
|
1008
|
+
return torch::erfinv(self);
|
1009
|
+
})
|
1010
|
+
.define_singleton_method(
|
1011
|
+
"_erfinv_out",
|
1012
|
+
*[](const Tensor &self, Tensor &out) {
|
1013
|
+
return torch::erfinv_out(out, self);
|
1014
|
+
})
|
1015
|
+
.define_singleton_method(
|
1016
|
+
"_exp",
|
1017
|
+
*[](const Tensor &self) {
|
1018
|
+
return torch::exp(self);
|
1019
|
+
})
|
1020
|
+
.define_singleton_method(
|
1021
|
+
"_exp_",
|
1022
|
+
*[](Tensor &self) {
|
1023
|
+
return torch::exp_(self);
|
1024
|
+
})
|
1025
|
+
.define_singleton_method(
|
1026
|
+
"_exp_out",
|
1027
|
+
*[](const Tensor &self, Tensor &out) {
|
1028
|
+
return torch::exp_out(out, self);
|
1029
|
+
})
|
1030
|
+
.define_singleton_method(
|
1031
|
+
"_expm1",
|
1032
|
+
*[](const Tensor &self) {
|
1033
|
+
return torch::expm1(self);
|
1034
|
+
})
|
1035
|
+
.define_singleton_method(
|
1036
|
+
"_expm1_",
|
1037
|
+
*[](Tensor &self) {
|
1038
|
+
return torch::expm1_(self);
|
1039
|
+
})
|
1040
|
+
.define_singleton_method(
|
1041
|
+
"_expm1_out",
|
1042
|
+
*[](const Tensor &self, Tensor &out) {
|
1043
|
+
return torch::expm1_out(out, self);
|
1044
|
+
})
|
1045
|
+
.define_singleton_method(
|
1046
|
+
"_eye_m_out",
|
1047
|
+
*[](int64_t n, int64_t m, Tensor &out) {
|
1048
|
+
return torch::eye_out(out, n, m);
|
1049
|
+
})
|
1050
|
+
.define_singleton_method(
|
1051
|
+
"_eye_out",
|
1052
|
+
*[](int64_t n, Tensor &out) {
|
1053
|
+
return torch::eye_out(out, n);
|
1054
|
+
})
|
1055
|
+
.define_singleton_method(
|
1056
|
+
"_fake_quantize_per_channel_affine",
|
1057
|
+
*[](const Tensor &self, const Tensor &scale, const Tensor &zero_point, int64_t axis, int64_t quant_min, int64_t quant_max) {
|
1058
|
+
return torch::fake_quantize_per_channel_affine(self, scale, zero_point, axis, quant_min, quant_max);
|
1059
|
+
})
|
1060
|
+
.define_singleton_method(
|
1061
|
+
"_fake_quantize_per_tensor_affine",
|
1062
|
+
*[](const Tensor &self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max) {
|
1063
|
+
return torch::fake_quantize_per_tensor_affine(self, scale, zero_point, quant_min, quant_max);
|
1064
|
+
})
|
1065
|
+
.define_singleton_method(
|
1066
|
+
"_fbgemm_linear_fp16_weight",
|
1067
|
+
*[](const Tensor &input, const Tensor &packed_weight, const Tensor &bias) {
|
1068
|
+
return torch::fbgemm_linear_fp16_weight(input, packed_weight, bias);
|
1069
|
+
})
|
1070
|
+
.define_singleton_method(
|
1071
|
+
"_fbgemm_linear_fp16_weight_fp32_activation",
|
1072
|
+
*[](const Tensor &input, const Tensor &packed_weight, const Tensor &bias) {
|
1073
|
+
return torch::fbgemm_linear_fp16_weight_fp32_activation(input, packed_weight, bias);
|
1074
|
+
})
|
1075
|
+
.define_singleton_method(
|
1076
|
+
"_fbgemm_linear_int8_weight",
|
1077
|
+
*[](const Tensor &input, const Tensor &weight, const Tensor &packed, const Tensor &col_offsets, Scalar weight_scale, Scalar weight_zero_point, const Tensor &bias) {
|
1078
|
+
return torch::fbgemm_linear_int8_weight(input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias);
|
1079
|
+
})
|
1080
|
+
.define_singleton_method(
|
1081
|
+
"_fbgemm_linear_int8_weight_fp32_activation",
|
1082
|
+
*[](const Tensor &input, const Tensor &weight, const Tensor &packed, const Tensor &col_offsets, Scalar weight_scale, Scalar weight_zero_point, const Tensor &bias) {
|
1083
|
+
return torch::fbgemm_linear_int8_weight_fp32_activation(input, weight, packed, col_offsets, weight_scale, weight_zero_point, bias);
|
1084
|
+
})
|
1085
|
+
.define_singleton_method(
|
1086
|
+
"_fbgemm_linear_quantize_weight",
|
1087
|
+
*[](const Tensor &input) {
|
1088
|
+
return wrap(torch::fbgemm_linear_quantize_weight(input));
|
1089
|
+
})
|
1090
|
+
.define_singleton_method(
|
1091
|
+
"_fbgemm_pack_gemm_matrix_fp16",
|
1092
|
+
*[](const Tensor &input) {
|
1093
|
+
return torch::fbgemm_pack_gemm_matrix_fp16(input);
|
1094
|
+
})
|
1095
|
+
.define_singleton_method(
|
1096
|
+
"_fbgemm_pack_quantized_matrix",
|
1097
|
+
*[](const Tensor &input) {
|
1098
|
+
return torch::fbgemm_pack_quantized_matrix(input);
|
1099
|
+
})
|
1100
|
+
.define_singleton_method(
|
1101
|
+
"_fbgemm_pack_quantized_matrix_kn",
|
1102
|
+
*[](const Tensor &input, int64_t K, int64_t N) {
|
1103
|
+
return torch::fbgemm_pack_quantized_matrix(input, K, N);
|
1104
|
+
})
|
1105
|
+
.define_singleton_method(
|
1106
|
+
"_feature_alpha_dropout",
|
1107
|
+
*[](const Tensor &input, double p, bool train) {
|
1108
|
+
return torch::feature_alpha_dropout(input, p, train);
|
1109
|
+
})
|
1110
|
+
.define_singleton_method(
|
1111
|
+
"_feature_alpha_dropout_",
|
1112
|
+
*[](Tensor &self, double p, bool train) {
|
1113
|
+
return torch::feature_alpha_dropout_(self, p, train);
|
1114
|
+
})
|
1115
|
+
.define_singleton_method(
|
1116
|
+
"_feature_dropout",
|
1117
|
+
*[](const Tensor &input, double p, bool train) {
|
1118
|
+
return torch::feature_dropout(input, p, train);
|
1119
|
+
})
|
1120
|
+
.define_singleton_method(
|
1121
|
+
"_feature_dropout_",
|
1122
|
+
*[](Tensor &self, double p, bool train) {
|
1123
|
+
return torch::feature_dropout_(self, p, train);
|
1124
|
+
})
|
1125
|
+
.define_singleton_method(
|
1126
|
+
"_fft",
|
1127
|
+
*[](const Tensor &self, int64_t signal_ndim, bool normalized) {
|
1128
|
+
return torch::fft(self, signal_ndim, normalized);
|
1129
|
+
})
|
1130
|
+
.define_singleton_method(
|
1131
|
+
"_fill__scalar",
|
1132
|
+
*[](Tensor &self, Scalar value) {
|
1133
|
+
return torch::fill_(self, value);
|
1134
|
+
})
|
1135
|
+
.define_singleton_method(
|
1136
|
+
"_fill__tensor",
|
1137
|
+
*[](Tensor &self, const Tensor &value) {
|
1138
|
+
return torch::fill_(self, value);
|
1139
|
+
})
|
1140
|
+
.define_singleton_method(
|
1141
|
+
"_flatten_using_ints",
|
1142
|
+
*[](const Tensor &self, int64_t start_dim, int64_t end_dim) {
|
1143
|
+
return torch::flatten(self, start_dim, end_dim);
|
1144
|
+
})
|
1145
|
+
.define_singleton_method(
|
1146
|
+
"_flip",
|
1147
|
+
*[](const Tensor &self, IntArrayRef dims) {
|
1148
|
+
return torch::flip(self, dims);
|
1149
|
+
})
|
1150
|
+
.define_singleton_method(
|
1151
|
+
"_floor",
|
1152
|
+
*[](const Tensor &self) {
|
1153
|
+
return torch::floor(self);
|
1154
|
+
})
|
1155
|
+
.define_singleton_method(
|
1156
|
+
"_floor_",
|
1157
|
+
*[](Tensor &self) {
|
1158
|
+
return torch::floor_(self);
|
1159
|
+
})
|
1160
|
+
.define_singleton_method(
|
1161
|
+
"_floor_divide",
|
1162
|
+
*[](const Tensor &self, const Tensor &other) {
|
1163
|
+
return torch::floor_divide(self, other);
|
1164
|
+
})
|
1165
|
+
.define_singleton_method(
|
1166
|
+
"_floor_divide_out",
|
1167
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1168
|
+
return torch::floor_divide_out(out, self, other);
|
1169
|
+
})
|
1170
|
+
.define_singleton_method(
|
1171
|
+
"_floor_divide_scalar",
|
1172
|
+
*[](const Tensor &self, Scalar other) {
|
1173
|
+
return torch::floor_divide(self, other);
|
1174
|
+
})
|
1175
|
+
.define_singleton_method(
|
1176
|
+
"_floor_out",
|
1177
|
+
*[](const Tensor &self, Tensor &out) {
|
1178
|
+
return torch::floor_out(out, self);
|
1179
|
+
})
|
1180
|
+
.define_singleton_method(
|
1181
|
+
"_fmod_scalar",
|
1182
|
+
*[](const Tensor &self, Scalar other) {
|
1183
|
+
return torch::fmod(self, other);
|
1184
|
+
})
|
1185
|
+
.define_singleton_method(
|
1186
|
+
"_fmod_scalar_out",
|
1187
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
1188
|
+
return torch::fmod_out(out, self, other);
|
1189
|
+
})
|
1190
|
+
.define_singleton_method(
|
1191
|
+
"_fmod_tensor",
|
1192
|
+
*[](const Tensor &self, const Tensor &other) {
|
1193
|
+
return torch::fmod(self, other);
|
1194
|
+
})
|
1195
|
+
.define_singleton_method(
|
1196
|
+
"_fmod_tensor_out",
|
1197
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1198
|
+
return torch::fmod_out(out, self, other);
|
1199
|
+
})
|
1200
|
+
.define_singleton_method(
|
1201
|
+
"_frac",
|
1202
|
+
*[](const Tensor &self) {
|
1203
|
+
return torch::frac(self);
|
1204
|
+
})
|
1205
|
+
.define_singleton_method(
|
1206
|
+
"_frac_",
|
1207
|
+
*[](Tensor &self) {
|
1208
|
+
return torch::frac_(self);
|
1209
|
+
})
|
1210
|
+
.define_singleton_method(
|
1211
|
+
"_frac_out",
|
1212
|
+
*[](const Tensor &self, Tensor &out) {
|
1213
|
+
return torch::frac_out(out, self);
|
1214
|
+
})
|
1215
|
+
.define_singleton_method(
|
1216
|
+
"_frobenius_norm",
|
1217
|
+
*[](const Tensor &self) {
|
1218
|
+
return torch::frobenius_norm(self);
|
1219
|
+
})
|
1220
|
+
.define_singleton_method(
|
1221
|
+
"_frobenius_norm_dim",
|
1222
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
1223
|
+
return torch::frobenius_norm(self, dim, keepdim);
|
1224
|
+
})
|
1225
|
+
.define_singleton_method(
|
1226
|
+
"_frobenius_norm_out",
|
1227
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, Tensor &out) {
|
1228
|
+
return torch::frobenius_norm_out(out, self, dim, keepdim);
|
1229
|
+
})
|
1230
|
+
.define_singleton_method(
|
1231
|
+
"_full_out",
|
1232
|
+
*[](IntArrayRef size, Scalar fill_value, Tensor &out) {
|
1233
|
+
return torch::full_out(out, size, fill_value);
|
1234
|
+
})
|
1235
|
+
.define_singleton_method(
|
1236
|
+
"_gather",
|
1237
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, bool sparse_grad) {
|
1238
|
+
return torch::gather(self, dim, index, sparse_grad);
|
1239
|
+
})
|
1240
|
+
.define_singleton_method(
|
1241
|
+
"_gather_out",
|
1242
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, bool sparse_grad, Tensor &out) {
|
1243
|
+
return torch::gather_out(out, self, dim, index, sparse_grad);
|
1244
|
+
})
|
1245
|
+
.define_singleton_method(
|
1246
|
+
"_ge_scalar",
|
1247
|
+
*[](const Tensor &self, Scalar other) {
|
1248
|
+
return torch::ge(self, other);
|
1249
|
+
})
|
1250
|
+
.define_singleton_method(
|
1251
|
+
"_ge_scalar_out",
|
1252
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
1253
|
+
return torch::ge_out(out, self, other);
|
1254
|
+
})
|
1255
|
+
.define_singleton_method(
|
1256
|
+
"_ge_tensor",
|
1257
|
+
*[](const Tensor &self, const Tensor &other) {
|
1258
|
+
return torch::ge(self, other);
|
1259
|
+
})
|
1260
|
+
.define_singleton_method(
|
1261
|
+
"_ge_tensor_out",
|
1262
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1263
|
+
return torch::ge_out(out, self, other);
|
1264
|
+
})
|
1265
|
+
.define_singleton_method(
|
1266
|
+
"_geqrf",
|
1267
|
+
*[](const Tensor &self) {
|
1268
|
+
return wrap(torch::geqrf(self));
|
1269
|
+
})
|
1270
|
+
.define_singleton_method(
|
1271
|
+
"_geqrf_a",
|
1272
|
+
*[](const Tensor &self, Tensor &a, Tensor &tau) {
|
1273
|
+
return wrap(torch::geqrf_out(a, tau, self));
|
1274
|
+
})
|
1275
|
+
.define_singleton_method(
|
1276
|
+
"_ger",
|
1277
|
+
*[](const Tensor &self, const Tensor &vec2) {
|
1278
|
+
return torch::ger(self, vec2);
|
1279
|
+
})
|
1280
|
+
.define_singleton_method(
|
1281
|
+
"_ger_out",
|
1282
|
+
*[](const Tensor &self, const Tensor &vec2, Tensor &out) {
|
1283
|
+
return torch::ger_out(out, self, vec2);
|
1284
|
+
})
|
1285
|
+
.define_singleton_method(
|
1286
|
+
"_grid_sampler",
|
1287
|
+
*[](const Tensor &input, const Tensor &grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) {
|
1288
|
+
return torch::grid_sampler(input, grid, interpolation_mode, padding_mode, align_corners);
|
1289
|
+
})
|
1290
|
+
.define_singleton_method(
|
1291
|
+
"_grid_sampler_2d",
|
1292
|
+
*[](const Tensor &input, const Tensor &grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) {
|
1293
|
+
return torch::grid_sampler_2d(input, grid, interpolation_mode, padding_mode, align_corners);
|
1294
|
+
})
|
1295
|
+
.define_singleton_method(
|
1296
|
+
"_grid_sampler_3d",
|
1297
|
+
*[](const Tensor &input, const Tensor &grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners) {
|
1298
|
+
return torch::grid_sampler_3d(input, grid, interpolation_mode, padding_mode, align_corners);
|
1299
|
+
})
|
1300
|
+
.define_singleton_method(
|
1301
|
+
"_group_norm",
|
1302
|
+
*[](const Tensor &input, int64_t num_groups, OptionalTensor weight, OptionalTensor bias, double eps, bool cudnn_enabled) {
|
1303
|
+
return torch::group_norm(input, num_groups, weight, bias, eps, cudnn_enabled);
|
1304
|
+
})
|
1305
|
+
.define_singleton_method(
|
1306
|
+
"_gru_cell",
|
1307
|
+
*[](const Tensor &input, const Tensor &hx, const Tensor &w_ih, const Tensor &w_hh, OptionalTensor b_ih, OptionalTensor b_hh) {
|
1308
|
+
return torch::gru_cell(input, hx, w_ih, w_hh, b_ih, b_hh);
|
1309
|
+
})
|
1310
|
+
.define_singleton_method(
|
1311
|
+
"_gru_data",
|
1312
|
+
*[](const Tensor &data, const Tensor &batch_sizes, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
1313
|
+
return wrap(torch::gru(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
1314
|
+
})
|
1315
|
+
.define_singleton_method(
|
1316
|
+
"_gru_input",
|
1317
|
+
*[](const Tensor &input, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
1318
|
+
return wrap(torch::gru(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
1319
|
+
})
|
1320
|
+
.define_singleton_method(
|
1321
|
+
"_gt_scalar",
|
1322
|
+
*[](const Tensor &self, Scalar other) {
|
1323
|
+
return torch::gt(self, other);
|
1324
|
+
})
|
1325
|
+
.define_singleton_method(
|
1326
|
+
"_gt_scalar_out",
|
1327
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
1328
|
+
return torch::gt_out(out, self, other);
|
1329
|
+
})
|
1330
|
+
.define_singleton_method(
|
1331
|
+
"_gt_tensor",
|
1332
|
+
*[](const Tensor &self, const Tensor &other) {
|
1333
|
+
return torch::gt(self, other);
|
1334
|
+
})
|
1335
|
+
.define_singleton_method(
|
1336
|
+
"_gt_tensor_out",
|
1337
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1338
|
+
return torch::gt_out(out, self, other);
|
1339
|
+
})
|
1340
|
+
.define_singleton_method(
|
1341
|
+
"_hardshrink",
|
1342
|
+
*[](const Tensor &self, Scalar lambd) {
|
1343
|
+
return torch::hardshrink(self, lambd);
|
1344
|
+
})
|
1345
|
+
.define_singleton_method(
|
1346
|
+
"_hinge_embedding_loss",
|
1347
|
+
*[](const Tensor &self, const Tensor &target, double margin, MyReduction reduction) {
|
1348
|
+
return torch::hinge_embedding_loss(self, target, margin, reduction);
|
1349
|
+
})
|
1350
|
+
.define_singleton_method(
|
1351
|
+
"_histc",
|
1352
|
+
*[](const Tensor &self, int64_t bins, Scalar min, Scalar max) {
|
1353
|
+
return torch::histc(self, bins, min, max);
|
1354
|
+
})
|
1355
|
+
.define_singleton_method(
|
1356
|
+
"_histc_out",
|
1357
|
+
*[](const Tensor &self, int64_t bins, Scalar min, Scalar max, Tensor &out) {
|
1358
|
+
return torch::histc_out(out, self, bins, min, max);
|
1359
|
+
})
|
1360
|
+
.define_singleton_method(
|
1361
|
+
"_hspmm",
|
1362
|
+
*[](const Tensor &mat1, const Tensor &mat2) {
|
1363
|
+
return torch::hspmm(mat1, mat2);
|
1364
|
+
})
|
1365
|
+
.define_singleton_method(
|
1366
|
+
"_hspmm_out",
|
1367
|
+
*[](const Tensor &mat1, const Tensor &mat2, Tensor &out) {
|
1368
|
+
return torch::hspmm_out(out, mat1, mat2);
|
1369
|
+
})
|
1370
|
+
.define_singleton_method(
|
1371
|
+
"_ifft",
|
1372
|
+
*[](const Tensor &self, int64_t signal_ndim, bool normalized) {
|
1373
|
+
return torch::ifft(self, signal_ndim, normalized);
|
1374
|
+
})
|
1375
|
+
.define_singleton_method(
|
1376
|
+
"_imag",
|
1377
|
+
*[](const Tensor &self) {
|
1378
|
+
return torch::imag(self);
|
1379
|
+
})
|
1380
|
+
.define_singleton_method(
|
1381
|
+
"_index_add",
|
1382
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &source) {
|
1383
|
+
return torch::index_add(self, dim, index, source);
|
1384
|
+
})
|
1385
|
+
.define_singleton_method(
|
1386
|
+
"_index_copy",
|
1387
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &source) {
|
1388
|
+
return torch::index_copy(self, dim, index, source);
|
1389
|
+
})
|
1390
|
+
.define_singleton_method(
|
1391
|
+
"_index_fill_int_scalar",
|
1392
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, Scalar value) {
|
1393
|
+
return torch::index_fill(self, dim, index, value);
|
1394
|
+
})
|
1395
|
+
.define_singleton_method(
|
1396
|
+
"_index_fill_int_tensor",
|
1397
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &value) {
|
1398
|
+
return torch::index_fill(self, dim, index, value);
|
1399
|
+
})
|
1400
|
+
.define_singleton_method(
|
1401
|
+
"_index_select",
|
1402
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index) {
|
1403
|
+
return torch::index_select(self, dim, index);
|
1404
|
+
})
|
1405
|
+
.define_singleton_method(
|
1406
|
+
"_index_select_out",
|
1407
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, Tensor &out) {
|
1408
|
+
return torch::index_select_out(out, self, dim, index);
|
1409
|
+
})
|
1410
|
+
.define_singleton_method(
|
1411
|
+
"_instance_norm",
|
1412
|
+
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool use_input_stats, double momentum, double eps, bool cudnn_enabled) {
|
1413
|
+
return torch::instance_norm(input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps, cudnn_enabled);
|
1414
|
+
})
|
1415
|
+
.define_singleton_method(
|
1416
|
+
"_int_repr",
|
1417
|
+
*[](const Tensor &self) {
|
1418
|
+
return torch::int_repr(self);
|
1419
|
+
})
|
1420
|
+
.define_singleton_method(
|
1421
|
+
"_inverse",
|
1422
|
+
*[](const Tensor &self) {
|
1423
|
+
return torch::inverse(self);
|
1424
|
+
})
|
1425
|
+
.define_singleton_method(
|
1426
|
+
"_inverse_out",
|
1427
|
+
*[](const Tensor &self, Tensor &out) {
|
1428
|
+
return torch::inverse_out(out, self);
|
1429
|
+
})
|
1430
|
+
.define_singleton_method(
|
1431
|
+
"_irfft",
|
1432
|
+
*[](const Tensor &self, int64_t signal_ndim, bool normalized, bool onesided, IntArrayRef signal_sizes) {
|
1433
|
+
return torch::irfft(self, signal_ndim, normalized, onesided, signal_sizes);
|
1434
|
+
})
|
1435
|
+
.define_singleton_method(
|
1436
|
+
"_is_complex",
|
1437
|
+
*[](const Tensor &self) {
|
1438
|
+
return torch::is_complex(self);
|
1439
|
+
})
|
1440
|
+
.define_singleton_method(
|
1441
|
+
"_is_distributed",
|
1442
|
+
*[](const Tensor &self) {
|
1443
|
+
return torch::is_distributed(self);
|
1444
|
+
})
|
1445
|
+
.define_singleton_method(
|
1446
|
+
"_is_floating_point",
|
1447
|
+
*[](const Tensor &self) {
|
1448
|
+
return torch::is_floating_point(self);
|
1449
|
+
})
|
1450
|
+
.define_singleton_method(
|
1451
|
+
"_is_nonzero",
|
1452
|
+
*[](const Tensor &self) {
|
1453
|
+
return torch::is_nonzero(self);
|
1454
|
+
})
|
1455
|
+
.define_singleton_method(
|
1456
|
+
"_is_same_size",
|
1457
|
+
*[](const Tensor &self, const Tensor &other) {
|
1458
|
+
return torch::is_same_size(self, other);
|
1459
|
+
})
|
1460
|
+
.define_singleton_method(
|
1461
|
+
"_is_signed",
|
1462
|
+
*[](const Tensor &self) {
|
1463
|
+
return torch::is_signed(self);
|
1464
|
+
})
|
1465
|
+
.define_singleton_method(
|
1466
|
+
"_isclose",
|
1467
|
+
*[](const Tensor &self, const Tensor &other, double rtol, double atol, bool equal_nan) {
|
1468
|
+
return torch::isclose(self, other, rtol, atol, equal_nan);
|
1469
|
+
})
|
1470
|
+
.define_singleton_method(
|
1471
|
+
"_isfinite",
|
1472
|
+
*[](const Tensor &self) {
|
1473
|
+
return torch::isfinite(self);
|
1474
|
+
})
|
1475
|
+
.define_singleton_method(
|
1476
|
+
"_isinf",
|
1477
|
+
*[](const Tensor &self) {
|
1478
|
+
return torch::isinf(self);
|
1479
|
+
})
|
1480
|
+
.define_singleton_method(
|
1481
|
+
"_isnan",
|
1482
|
+
*[](const Tensor &self) {
|
1483
|
+
return torch::isnan(self);
|
1484
|
+
})
|
1485
|
+
.define_singleton_method(
|
1486
|
+
"_kl_div",
|
1487
|
+
*[](const Tensor &self, const Tensor &target, MyReduction reduction) {
|
1488
|
+
return torch::kl_div(self, target, reduction);
|
1489
|
+
})
|
1490
|
+
.define_singleton_method(
|
1491
|
+
"_kthvalue",
|
1492
|
+
*[](const Tensor &self, int64_t k, int64_t dim, bool keepdim) {
|
1493
|
+
return wrap(torch::kthvalue(self, k, dim, keepdim));
|
1494
|
+
})
|
1495
|
+
.define_singleton_method(
|
1496
|
+
"_kthvalue_values",
|
1497
|
+
*[](const Tensor &self, int64_t k, int64_t dim, bool keepdim, Tensor &values, Tensor &indices) {
|
1498
|
+
return wrap(torch::kthvalue_out(values, indices, self, k, dim, keepdim));
|
1499
|
+
})
|
1500
|
+
.define_singleton_method(
|
1501
|
+
"_layer_norm",
|
1502
|
+
*[](const Tensor &input, IntArrayRef normalized_shape, OptionalTensor weight, OptionalTensor bias, double eps, bool cudnn_enable) {
|
1503
|
+
return torch::layer_norm(input, normalized_shape, weight, bias, eps, cudnn_enable);
|
1504
|
+
})
|
1505
|
+
.define_singleton_method(
|
1506
|
+
"_le_scalar",
|
1507
|
+
*[](const Tensor &self, Scalar other) {
|
1508
|
+
return torch::le(self, other);
|
1509
|
+
})
|
1510
|
+
.define_singleton_method(
|
1511
|
+
"_le_scalar_out",
|
1512
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
1513
|
+
return torch::le_out(out, self, other);
|
1514
|
+
})
|
1515
|
+
.define_singleton_method(
|
1516
|
+
"_le_tensor",
|
1517
|
+
*[](const Tensor &self, const Tensor &other) {
|
1518
|
+
return torch::le(self, other);
|
1519
|
+
})
|
1520
|
+
.define_singleton_method(
|
1521
|
+
"_le_tensor_out",
|
1522
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1523
|
+
return torch::le_out(out, self, other);
|
1524
|
+
})
|
1525
|
+
.define_singleton_method(
|
1526
|
+
"_lerp_scalar",
|
1527
|
+
*[](const Tensor &self, const Tensor &end, Scalar weight) {
|
1528
|
+
return torch::lerp(self, end, weight);
|
1529
|
+
})
|
1530
|
+
.define_singleton_method(
|
1531
|
+
"_lerp_scalar_out",
|
1532
|
+
*[](const Tensor &self, const Tensor &end, Scalar weight, Tensor &out) {
|
1533
|
+
return torch::lerp_out(out, self, end, weight);
|
1534
|
+
})
|
1535
|
+
.define_singleton_method(
|
1536
|
+
"_lerp_tensor",
|
1537
|
+
*[](const Tensor &self, const Tensor &end, const Tensor &weight) {
|
1538
|
+
return torch::lerp(self, end, weight);
|
1539
|
+
})
|
1540
|
+
.define_singleton_method(
|
1541
|
+
"_lerp_tensor_out",
|
1542
|
+
*[](const Tensor &self, const Tensor &end, const Tensor &weight, Tensor &out) {
|
1543
|
+
return torch::lerp_out(out, self, end, weight);
|
1544
|
+
})
|
1545
|
+
.define_singleton_method(
|
1546
|
+
"_lgamma",
|
1547
|
+
*[](const Tensor &self) {
|
1548
|
+
return torch::lgamma(self);
|
1549
|
+
})
|
1550
|
+
.define_singleton_method(
|
1551
|
+
"_lgamma_out",
|
1552
|
+
*[](const Tensor &self, Tensor &out) {
|
1553
|
+
return torch::lgamma_out(out, self);
|
1554
|
+
})
|
1555
|
+
.define_singleton_method(
|
1556
|
+
"_linspace_out",
|
1557
|
+
*[](Scalar start, Scalar end, int64_t steps, Tensor &out) {
|
1558
|
+
return torch::linspace_out(out, start, end, steps);
|
1559
|
+
})
|
1560
|
+
.define_singleton_method(
|
1561
|
+
"_log",
|
1562
|
+
*[](const Tensor &self) {
|
1563
|
+
return torch::log(self);
|
1564
|
+
})
|
1565
|
+
.define_singleton_method(
|
1566
|
+
"_log10",
|
1567
|
+
*[](const Tensor &self) {
|
1568
|
+
return torch::log10(self);
|
1569
|
+
})
|
1570
|
+
.define_singleton_method(
|
1571
|
+
"_log10_",
|
1572
|
+
*[](Tensor &self) {
|
1573
|
+
return torch::log10_(self);
|
1574
|
+
})
|
1575
|
+
.define_singleton_method(
|
1576
|
+
"_log10_out",
|
1577
|
+
*[](const Tensor &self, Tensor &out) {
|
1578
|
+
return torch::log10_out(out, self);
|
1579
|
+
})
|
1580
|
+
.define_singleton_method(
|
1581
|
+
"_log1p",
|
1582
|
+
*[](const Tensor &self) {
|
1583
|
+
return torch::log1p(self);
|
1584
|
+
})
|
1585
|
+
.define_singleton_method(
|
1586
|
+
"_log1p_",
|
1587
|
+
*[](Tensor &self) {
|
1588
|
+
return torch::log1p_(self);
|
1589
|
+
})
|
1590
|
+
.define_singleton_method(
|
1591
|
+
"_log1p_out",
|
1592
|
+
*[](const Tensor &self, Tensor &out) {
|
1593
|
+
return torch::log1p_out(out, self);
|
1594
|
+
})
|
1595
|
+
.define_singleton_method(
|
1596
|
+
"_log2",
|
1597
|
+
*[](const Tensor &self) {
|
1598
|
+
return torch::log2(self);
|
1599
|
+
})
|
1600
|
+
.define_singleton_method(
|
1601
|
+
"_log2_",
|
1602
|
+
*[](Tensor &self) {
|
1603
|
+
return torch::log2_(self);
|
1604
|
+
})
|
1605
|
+
.define_singleton_method(
|
1606
|
+
"_log2_out",
|
1607
|
+
*[](const Tensor &self, Tensor &out) {
|
1608
|
+
return torch::log2_out(out, self);
|
1609
|
+
})
|
1610
|
+
.define_singleton_method(
|
1611
|
+
"_log_",
|
1612
|
+
*[](Tensor &self) {
|
1613
|
+
return torch::log_(self);
|
1614
|
+
})
|
1615
|
+
.define_singleton_method(
|
1616
|
+
"_log_out",
|
1617
|
+
*[](const Tensor &self, Tensor &out) {
|
1618
|
+
return torch::log_out(out, self);
|
1619
|
+
})
|
1620
|
+
.define_singleton_method(
|
1621
|
+
"_log_softmax_int",
|
1622
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
1623
|
+
return torch::log_softmax(self, dim, dtype);
|
1624
|
+
})
|
1625
|
+
.define_singleton_method(
|
1626
|
+
"_logdet",
|
1627
|
+
*[](const Tensor &self) {
|
1628
|
+
return torch::logdet(self);
|
1629
|
+
})
|
1630
|
+
.define_singleton_method(
|
1631
|
+
"_logical_and",
|
1632
|
+
*[](const Tensor &self, const Tensor &other) {
|
1633
|
+
return torch::logical_and(self, other);
|
1634
|
+
})
|
1635
|
+
.define_singleton_method(
|
1636
|
+
"_logical_and_out",
|
1637
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1638
|
+
return torch::logical_and_out(out, self, other);
|
1639
|
+
})
|
1640
|
+
.define_singleton_method(
|
1641
|
+
"_logical_not",
|
1642
|
+
*[](const Tensor &self) {
|
1643
|
+
return torch::logical_not(self);
|
1644
|
+
})
|
1645
|
+
.define_singleton_method(
|
1646
|
+
"_logical_not_out",
|
1647
|
+
*[](const Tensor &self, Tensor &out) {
|
1648
|
+
return torch::logical_not_out(out, self);
|
1649
|
+
})
|
1650
|
+
.define_singleton_method(
|
1651
|
+
"_logical_or",
|
1652
|
+
*[](const Tensor &self, const Tensor &other) {
|
1653
|
+
return torch::logical_or(self, other);
|
1654
|
+
})
|
1655
|
+
.define_singleton_method(
|
1656
|
+
"_logical_or_out",
|
1657
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1658
|
+
return torch::logical_or_out(out, self, other);
|
1659
|
+
})
|
1660
|
+
.define_singleton_method(
|
1661
|
+
"_logical_xor",
|
1662
|
+
*[](const Tensor &self, const Tensor &other) {
|
1663
|
+
return torch::logical_xor(self, other);
|
1664
|
+
})
|
1665
|
+
.define_singleton_method(
|
1666
|
+
"_logical_xor_out",
|
1667
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1668
|
+
return torch::logical_xor_out(out, self, other);
|
1669
|
+
})
|
1670
|
+
.define_singleton_method(
|
1671
|
+
"_logspace_out",
|
1672
|
+
*[](Scalar start, Scalar end, int64_t steps, double base, Tensor &out) {
|
1673
|
+
return torch::logspace_out(out, start, end, steps, base);
|
1674
|
+
})
|
1675
|
+
.define_singleton_method(
|
1676
|
+
"_logsumexp",
|
1677
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
1678
|
+
return torch::logsumexp(self, dim, keepdim);
|
1679
|
+
})
|
1680
|
+
.define_singleton_method(
|
1681
|
+
"_logsumexp_out",
|
1682
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, Tensor &out) {
|
1683
|
+
return torch::logsumexp_out(out, self, dim, keepdim);
|
1684
|
+
})
|
1685
|
+
.define_singleton_method(
|
1686
|
+
"_lstm_cell",
|
1687
|
+
*[](const Tensor &input, TensorList hx, const Tensor &w_ih, const Tensor &w_hh, OptionalTensor b_ih, OptionalTensor b_hh) {
|
1688
|
+
return wrap(torch::lstm_cell(input, hx, w_ih, w_hh, b_ih, b_hh));
|
1689
|
+
})
|
1690
|
+
.define_singleton_method(
|
1691
|
+
"_lstm_data",
|
1692
|
+
*[](const Tensor &data, const Tensor &batch_sizes, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
1693
|
+
return wrap(torch::lstm(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
1694
|
+
})
|
1695
|
+
.define_singleton_method(
|
1696
|
+
"_lstm_input",
|
1697
|
+
*[](const Tensor &input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
1698
|
+
return wrap(torch::lstm(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
1699
|
+
})
|
1700
|
+
.define_singleton_method(
|
1701
|
+
"_lstsq",
|
1702
|
+
*[](const Tensor &self, const Tensor &A) {
|
1703
|
+
return wrap(torch::lstsq(self, A));
|
1704
|
+
})
|
1705
|
+
.define_singleton_method(
|
1706
|
+
"_lstsq_x",
|
1707
|
+
*[](const Tensor &self, const Tensor &A, Tensor &X, Tensor &qr) {
|
1708
|
+
return wrap(torch::lstsq_out(X, qr, self, A));
|
1709
|
+
})
|
1710
|
+
.define_singleton_method(
|
1711
|
+
"_lt_scalar",
|
1712
|
+
*[](const Tensor &self, Scalar other) {
|
1713
|
+
return torch::lt(self, other);
|
1714
|
+
})
|
1715
|
+
.define_singleton_method(
|
1716
|
+
"_lt_scalar_out",
|
1717
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
1718
|
+
return torch::lt_out(out, self, other);
|
1719
|
+
})
|
1720
|
+
.define_singleton_method(
|
1721
|
+
"_lt_tensor",
|
1722
|
+
*[](const Tensor &self, const Tensor &other) {
|
1723
|
+
return torch::lt(self, other);
|
1724
|
+
})
|
1725
|
+
.define_singleton_method(
|
1726
|
+
"_lt_tensor_out",
|
1727
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1728
|
+
return torch::lt_out(out, self, other);
|
1729
|
+
})
|
1730
|
+
.define_singleton_method(
|
1731
|
+
"_lu_solve",
|
1732
|
+
*[](const Tensor &self, const Tensor &LU_data, const Tensor &LU_pivots) {
|
1733
|
+
return torch::lu_solve(self, LU_data, LU_pivots);
|
1734
|
+
})
|
1735
|
+
.define_singleton_method(
|
1736
|
+
"_lu_solve_out",
|
1737
|
+
*[](const Tensor &self, const Tensor &LU_data, const Tensor &LU_pivots, Tensor &out) {
|
1738
|
+
return torch::lu_solve_out(out, self, LU_data, LU_pivots);
|
1739
|
+
})
|
1740
|
+
.define_singleton_method(
|
1741
|
+
"_margin_ranking_loss",
|
1742
|
+
*[](const Tensor &input1, const Tensor &input2, const Tensor &target, double margin, MyReduction reduction) {
|
1743
|
+
return torch::margin_ranking_loss(input1, input2, target, margin, reduction);
|
1744
|
+
})
|
1745
|
+
.define_singleton_method(
|
1746
|
+
"_masked_fill_scalar",
|
1747
|
+
*[](const Tensor &self, const Tensor &mask, Scalar value) {
|
1748
|
+
return torch::masked_fill(self, mask, value);
|
1749
|
+
})
|
1750
|
+
.define_singleton_method(
|
1751
|
+
"_masked_fill_tensor",
|
1752
|
+
*[](const Tensor &self, const Tensor &mask, const Tensor &value) {
|
1753
|
+
return torch::masked_fill(self, mask, value);
|
1754
|
+
})
|
1755
|
+
.define_singleton_method(
|
1756
|
+
"_masked_scatter",
|
1757
|
+
*[](const Tensor &self, const Tensor &mask, const Tensor &source) {
|
1758
|
+
return torch::masked_scatter(self, mask, source);
|
1759
|
+
})
|
1760
|
+
.define_singleton_method(
|
1761
|
+
"_masked_select",
|
1762
|
+
*[](const Tensor &self, const Tensor &mask) {
|
1763
|
+
return torch::masked_select(self, mask);
|
1764
|
+
})
|
1765
|
+
.define_singleton_method(
|
1766
|
+
"_masked_select_out",
|
1767
|
+
*[](const Tensor &self, const Tensor &mask, Tensor &out) {
|
1768
|
+
return torch::masked_select_out(out, self, mask);
|
1769
|
+
})
|
1770
|
+
.define_singleton_method(
|
1771
|
+
"_matmul",
|
1772
|
+
*[](const Tensor &self, const Tensor &other) {
|
1773
|
+
return torch::matmul(self, other);
|
1774
|
+
})
|
1775
|
+
.define_singleton_method(
|
1776
|
+
"_matmul_out",
|
1777
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1778
|
+
return torch::matmul_out(out, self, other);
|
1779
|
+
})
|
1780
|
+
.define_singleton_method(
|
1781
|
+
"_matrix_power",
|
1782
|
+
*[](const Tensor &self, int64_t n) {
|
1783
|
+
return torch::matrix_power(self, n);
|
1784
|
+
})
|
1785
|
+
.define_singleton_method(
|
1786
|
+
"_matrix_rank",
|
1787
|
+
*[](const Tensor &self, bool symmetric) {
|
1788
|
+
return torch::matrix_rank(self, symmetric);
|
1789
|
+
})
|
1790
|
+
.define_singleton_method(
|
1791
|
+
"_matrix_rank_tol",
|
1792
|
+
*[](const Tensor &self, double tol, bool symmetric) {
|
1793
|
+
return torch::matrix_rank(self, tol, symmetric);
|
1794
|
+
})
|
1795
|
+
.define_singleton_method(
|
1796
|
+
"_max",
|
1797
|
+
*[](const Tensor &self) {
|
1798
|
+
return torch::max(self);
|
1799
|
+
})
|
1800
|
+
.define_singleton_method(
|
1801
|
+
"_max_dim",
|
1802
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1803
|
+
return wrap(torch::max(self, dim, keepdim));
|
1804
|
+
})
|
1805
|
+
.define_singleton_method(
|
1806
|
+
"_max_dim_max",
|
1807
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &max, Tensor &max_values) {
|
1808
|
+
return wrap(torch::max_out(max, max_values, self, dim, keepdim));
|
1809
|
+
})
|
1810
|
+
.define_singleton_method(
|
1811
|
+
"_max_other",
|
1812
|
+
*[](const Tensor &self, const Tensor &other) {
|
1813
|
+
return torch::max(self, other);
|
1814
|
+
})
|
1815
|
+
.define_singleton_method(
|
1816
|
+
"_max_out",
|
1817
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1818
|
+
return torch::max_out(out, self, other);
|
1819
|
+
})
|
1820
|
+
.define_singleton_method(
|
1821
|
+
"_max_pool1d",
|
1822
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
1823
|
+
return torch::max_pool1d(self, kernel_size, stride, padding, dilation, ceil_mode);
|
1824
|
+
})
|
1825
|
+
.define_singleton_method(
|
1826
|
+
"_max_pool1d_with_indices",
|
1827
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
1828
|
+
return wrap(torch::max_pool1d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
|
1829
|
+
})
|
1830
|
+
.define_singleton_method(
|
1831
|
+
"_max_pool2d",
|
1832
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
1833
|
+
return torch::max_pool2d(self, kernel_size, stride, padding, dilation, ceil_mode);
|
1834
|
+
})
|
1835
|
+
.define_singleton_method(
|
1836
|
+
"_max_pool3d",
|
1837
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
1838
|
+
return torch::max_pool3d(self, kernel_size, stride, padding, dilation, ceil_mode);
|
1839
|
+
})
|
1840
|
+
.define_singleton_method(
|
1841
|
+
"_max_values",
|
1842
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
1843
|
+
return torch::max_values(self, dim, keepdim);
|
1844
|
+
})
|
1845
|
+
.define_singleton_method(
|
1846
|
+
"_mean",
|
1847
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
1848
|
+
return torch::mean(self, dtype);
|
1849
|
+
})
|
1850
|
+
.define_singleton_method(
|
1851
|
+
"_mean_dim",
|
1852
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype) {
|
1853
|
+
return torch::mean(self, dim, keepdim, dtype);
|
1854
|
+
})
|
1855
|
+
.define_singleton_method(
|
1856
|
+
"_mean_out",
|
1857
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype, Tensor &out) {
|
1858
|
+
return torch::mean_out(out, self, dim, keepdim, dtype);
|
1859
|
+
})
|
1860
|
+
.define_singleton_method(
|
1861
|
+
"_median",
|
1862
|
+
*[](const Tensor &self) {
|
1863
|
+
return torch::median(self);
|
1864
|
+
})
|
1865
|
+
.define_singleton_method(
|
1866
|
+
"_median_dim",
|
1867
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1868
|
+
return wrap(torch::median(self, dim, keepdim));
|
1869
|
+
})
|
1870
|
+
.define_singleton_method(
|
1871
|
+
"_median_dim_values",
|
1872
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &values, Tensor &indices) {
|
1873
|
+
return wrap(torch::median_out(values, indices, self, dim, keepdim));
|
1874
|
+
})
|
1875
|
+
.define_singleton_method(
|
1876
|
+
"_meshgrid",
|
1877
|
+
*[](TensorList tensors) {
|
1878
|
+
return torch::meshgrid(tensors);
|
1879
|
+
})
|
1880
|
+
.define_singleton_method(
|
1881
|
+
"_min",
|
1882
|
+
*[](const Tensor &self) {
|
1883
|
+
return torch::min(self);
|
1884
|
+
})
|
1885
|
+
.define_singleton_method(
|
1886
|
+
"_min_dim",
|
1887
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1888
|
+
return wrap(torch::min(self, dim, keepdim));
|
1889
|
+
})
|
1890
|
+
.define_singleton_method(
|
1891
|
+
"_min_dim_min",
|
1892
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &min, Tensor &min_indices) {
|
1893
|
+
return wrap(torch::min_out(min, min_indices, self, dim, keepdim));
|
1894
|
+
})
|
1895
|
+
.define_singleton_method(
|
1896
|
+
"_min_other",
|
1897
|
+
*[](const Tensor &self, const Tensor &other) {
|
1898
|
+
return torch::min(self, other);
|
1899
|
+
})
|
1900
|
+
.define_singleton_method(
|
1901
|
+
"_min_out",
|
1902
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
1903
|
+
return torch::min_out(out, self, other);
|
1904
|
+
})
|
1905
|
+
.define_singleton_method(
|
1906
|
+
"_min_values",
|
1907
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
1908
|
+
return torch::min_values(self, dim, keepdim);
|
1909
|
+
})
|
1910
|
+
.define_singleton_method(
|
1911
|
+
"_miopen_batch_norm",
|
1912
|
+
*[](const Tensor &input, const Tensor &weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool training, double exponential_average_factor, double epsilon) {
|
1913
|
+
return wrap(torch::miopen_batch_norm(input, weight, bias, running_mean, running_var, training, exponential_average_factor, epsilon));
|
1914
|
+
})
|
1915
|
+
.define_singleton_method(
|
1916
|
+
"_miopen_convolution",
|
1917
|
+
*[](const Tensor &self, const Tensor &weight, OptionalTensor bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1918
|
+
return torch::miopen_convolution(self, weight, bias, padding, stride, dilation, groups, benchmark, deterministic);
|
1919
|
+
})
|
1920
|
+
.define_singleton_method(
|
1921
|
+
"_miopen_convolution_backward_bias",
|
1922
|
+
*[](const Tensor &grad_output) {
|
1923
|
+
return torch::miopen_convolution_backward_bias(grad_output);
|
1924
|
+
})
|
1925
|
+
.define_singleton_method(
|
1926
|
+
"_miopen_convolution_backward_input",
|
1927
|
+
*[](IntArrayRef self_size, const Tensor &grad_output, const Tensor &weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1928
|
+
return torch::miopen_convolution_backward_input(self_size, grad_output, weight, padding, stride, dilation, groups, benchmark, deterministic);
|
1929
|
+
})
|
1930
|
+
.define_singleton_method(
|
1931
|
+
"_miopen_convolution_backward_weight",
|
1932
|
+
*[](IntArrayRef weight_size, const Tensor &grad_output, const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1933
|
+
return torch::miopen_convolution_backward_weight(weight_size, grad_output, self, padding, stride, dilation, groups, benchmark, deterministic);
|
1934
|
+
})
|
1935
|
+
.define_singleton_method(
|
1936
|
+
"_miopen_convolution_transpose",
|
1937
|
+
*[](const Tensor &self, const Tensor &weight, OptionalTensor bias, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1938
|
+
return torch::miopen_convolution_transpose(self, weight, bias, padding, output_padding, stride, dilation, groups, benchmark, deterministic);
|
1939
|
+
})
|
1940
|
+
.define_singleton_method(
|
1941
|
+
"_miopen_convolution_transpose_backward_input",
|
1942
|
+
*[](const Tensor &grad_output, const Tensor &weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1943
|
+
return torch::miopen_convolution_transpose_backward_input(grad_output, weight, padding, stride, dilation, groups, benchmark, deterministic);
|
1944
|
+
})
|
1945
|
+
.define_singleton_method(
|
1946
|
+
"_miopen_convolution_transpose_backward_weight",
|
1947
|
+
*[](IntArrayRef weight_size, const Tensor &grad_output, const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1948
|
+
return torch::miopen_convolution_transpose_backward_weight(weight_size, grad_output, self, padding, stride, dilation, groups, benchmark, deterministic);
|
1949
|
+
})
|
1950
|
+
.define_singleton_method(
|
1951
|
+
"_miopen_depthwise_convolution",
|
1952
|
+
*[](const Tensor &self, const Tensor &weight, OptionalTensor bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1953
|
+
return torch::miopen_depthwise_convolution(self, weight, bias, padding, stride, dilation, groups, benchmark, deterministic);
|
1954
|
+
})
|
1955
|
+
.define_singleton_method(
|
1956
|
+
"_miopen_depthwise_convolution_backward_input",
|
1957
|
+
*[](IntArrayRef self_size, const Tensor &grad_output, const Tensor &weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1958
|
+
return torch::miopen_depthwise_convolution_backward_input(self_size, grad_output, weight, padding, stride, dilation, groups, benchmark, deterministic);
|
1959
|
+
})
|
1960
|
+
.define_singleton_method(
|
1961
|
+
"_miopen_depthwise_convolution_backward_weight",
|
1962
|
+
*[](IntArrayRef weight_size, const Tensor &grad_output, const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool benchmark, bool deterministic) {
|
1963
|
+
return torch::miopen_depthwise_convolution_backward_weight(weight_size, grad_output, self, padding, stride, dilation, groups, benchmark, deterministic);
|
1964
|
+
})
|
1965
|
+
.define_singleton_method(
|
1966
|
+
"_miopen_rnn",
|
1967
|
+
*[](const Tensor &input, TensorList weight, int64_t weight_stride0, const Tensor &hx, OptionalTensor cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, OptionalTensor dropout_state) {
|
1968
|
+
return wrap(torch::miopen_rnn(input, weight, weight_stride0, hx, cx, mode, hidden_size, num_layers, batch_first, dropout, train, bidirectional, batch_sizes, dropout_state));
|
1969
|
+
})
|
1970
|
+
.define_singleton_method(
|
1971
|
+
"_mkldnn_adaptive_avg_pool2d",
|
1972
|
+
*[](const Tensor &self, IntArrayRef output_size) {
|
1973
|
+
return torch::mkldnn_adaptive_avg_pool2d(self, output_size);
|
1974
|
+
})
|
1975
|
+
.define_singleton_method(
|
1976
|
+
"_mkldnn_convolution",
|
1977
|
+
*[](const Tensor &self, const Tensor &weight, OptionalTensor bias, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups) {
|
1978
|
+
return torch::mkldnn_convolution(self, weight, bias, padding, stride, dilation, groups);
|
1979
|
+
})
|
1980
|
+
.define_singleton_method(
|
1981
|
+
"_mkldnn_convolution_backward_input",
|
1982
|
+
*[](IntArrayRef self_size, const Tensor &grad_output, const Tensor &weight, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool bias_defined) {
|
1983
|
+
return torch::mkldnn_convolution_backward_input(self_size, grad_output, weight, padding, stride, dilation, groups, bias_defined);
|
1984
|
+
})
|
1985
|
+
.define_singleton_method(
|
1986
|
+
"_mkldnn_convolution_backward_weights",
|
1987
|
+
*[](IntArrayRef weight_size, const Tensor &grad_output, const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups, bool bias_defined) {
|
1988
|
+
return wrap(torch::mkldnn_convolution_backward_weights(weight_size, grad_output, self, padding, stride, dilation, groups, bias_defined));
|
1989
|
+
})
|
1990
|
+
.define_singleton_method(
|
1991
|
+
"_mkldnn_max_pool2d",
|
1992
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
1993
|
+
return torch::mkldnn_max_pool2d(self, kernel_size, stride, padding, dilation, ceil_mode);
|
1994
|
+
})
|
1995
|
+
.define_singleton_method(
|
1996
|
+
"_mm",
|
1997
|
+
*[](const Tensor &self, const Tensor &mat2) {
|
1998
|
+
return torch::mm(self, mat2);
|
1999
|
+
})
|
2000
|
+
.define_singleton_method(
|
2001
|
+
"_mm_out",
|
2002
|
+
*[](const Tensor &self, const Tensor &mat2, Tensor &out) {
|
2003
|
+
return torch::mm_out(out, self, mat2);
|
2004
|
+
})
|
2005
|
+
.define_singleton_method(
|
2006
|
+
"_mode",
|
2007
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
2008
|
+
return wrap(torch::mode(self, dim, keepdim));
|
2009
|
+
})
|
2010
|
+
.define_singleton_method(
|
2011
|
+
"_mode_values",
|
2012
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, Tensor &values, Tensor &indices) {
|
2013
|
+
return wrap(torch::mode_out(values, indices, self, dim, keepdim));
|
2014
|
+
})
|
2015
|
+
.define_singleton_method(
|
2016
|
+
"_mul_out",
|
2017
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
2018
|
+
return torch::mul_out(out, self, other);
|
2019
|
+
})
|
2020
|
+
.define_singleton_method(
|
2021
|
+
"_mul_scalar",
|
2022
|
+
*[](const Tensor &self, Scalar other) {
|
2023
|
+
return torch::mul(self, other);
|
2024
|
+
})
|
2025
|
+
.define_singleton_method(
|
2026
|
+
"_mul_tensor",
|
2027
|
+
*[](const Tensor &self, const Tensor &other) {
|
2028
|
+
return torch::mul(self, other);
|
2029
|
+
})
|
2030
|
+
.define_singleton_method(
|
2031
|
+
"_multinomial",
|
2032
|
+
*[](const Tensor &self, int64_t num_samples, bool replacement) {
|
2033
|
+
return torch::multinomial(self, num_samples, replacement);
|
2034
|
+
})
|
2035
|
+
.define_singleton_method(
|
2036
|
+
"_multinomial_out",
|
2037
|
+
*[](const Tensor &self, int64_t num_samples, bool replacement, Tensor &out) {
|
2038
|
+
return torch::multinomial_out(out, self, num_samples, replacement);
|
2039
|
+
})
|
2040
|
+
.define_singleton_method(
|
2041
|
+
"_mv",
|
2042
|
+
*[](const Tensor &self, const Tensor &vec) {
|
2043
|
+
return torch::mv(self, vec);
|
2044
|
+
})
|
2045
|
+
.define_singleton_method(
|
2046
|
+
"_mv_out",
|
2047
|
+
*[](const Tensor &self, const Tensor &vec, Tensor &out) {
|
2048
|
+
return torch::mv_out(out, self, vec);
|
2049
|
+
})
|
2050
|
+
.define_singleton_method(
|
2051
|
+
"_mvlgamma",
|
2052
|
+
*[](const Tensor &self, int64_t p) {
|
2053
|
+
return torch::mvlgamma(self, p);
|
2054
|
+
})
|
2055
|
+
.define_singleton_method(
|
2056
|
+
"_narrow",
|
2057
|
+
*[](Tensor &self, int64_t dim, int64_t start, int64_t length) {
|
2058
|
+
return torch::narrow(self, dim, start, length);
|
2059
|
+
})
|
2060
|
+
.define_singleton_method(
|
2061
|
+
"_narrow_tensor",
|
2062
|
+
*[](Tensor &self, int64_t dim, const Tensor &start, int64_t length) {
|
2063
|
+
return torch::narrow(self, dim, start, length);
|
2064
|
+
})
|
2065
|
+
.define_singleton_method(
|
2066
|
+
"_native_batch_norm",
|
2067
|
+
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool training, double momentum, double eps) {
|
2068
|
+
return wrap(torch::native_batch_norm(input, weight, bias, running_mean, running_var, training, momentum, eps));
|
2069
|
+
})
|
2070
|
+
.define_singleton_method(
|
2071
|
+
"_native_batch_norm_out",
|
2072
|
+
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, OptionalTensor running_mean, OptionalTensor running_var, bool training, double momentum, double eps, Tensor &out, Tensor &save_mean, Tensor &save_invstd) {
|
2073
|
+
return wrap(torch::native_batch_norm_out(out, save_mean, save_invstd, input, weight, bias, running_mean, running_var, training, momentum, eps));
|
2074
|
+
})
|
2075
|
+
.define_singleton_method(
|
2076
|
+
"_native_layer_norm",
|
2077
|
+
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, int64_t M, int64_t N, double eps) {
|
2078
|
+
return wrap(torch::native_layer_norm(input, weight, bias, M, N, eps));
|
2079
|
+
})
|
2080
|
+
.define_singleton_method(
|
2081
|
+
"_native_norm",
|
2082
|
+
*[](const Tensor &self, Scalar p) {
|
2083
|
+
return torch::native_norm(self, p);
|
2084
|
+
})
|
2085
|
+
.define_singleton_method(
|
2086
|
+
"_ne_scalar",
|
2087
|
+
*[](const Tensor &self, Scalar other) {
|
2088
|
+
return torch::ne(self, other);
|
2089
|
+
})
|
2090
|
+
.define_singleton_method(
|
2091
|
+
"_ne_scalar_out",
|
2092
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
2093
|
+
return torch::ne_out(out, self, other);
|
2094
|
+
})
|
2095
|
+
.define_singleton_method(
|
2096
|
+
"_ne_tensor",
|
2097
|
+
*[](const Tensor &self, const Tensor &other) {
|
2098
|
+
return torch::ne(self, other);
|
2099
|
+
})
|
2100
|
+
.define_singleton_method(
|
2101
|
+
"_ne_tensor_out",
|
2102
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
2103
|
+
return torch::ne_out(out, self, other);
|
2104
|
+
})
|
2105
|
+
.define_singleton_method(
|
2106
|
+
"_neg",
|
2107
|
+
*[](const Tensor &self) {
|
2108
|
+
return torch::neg(self);
|
2109
|
+
})
|
2110
|
+
.define_singleton_method(
|
2111
|
+
"_neg_",
|
2112
|
+
*[](Tensor &self) {
|
2113
|
+
return torch::neg_(self);
|
2114
|
+
})
|
2115
|
+
.define_singleton_method(
|
2116
|
+
"_neg_out",
|
2117
|
+
*[](const Tensor &self, Tensor &out) {
|
2118
|
+
return torch::neg_out(out, self);
|
2119
|
+
})
|
2120
|
+
.define_singleton_method(
|
2121
|
+
"_nonzero",
|
2122
|
+
*[](const Tensor &self) {
|
2123
|
+
return torch::nonzero(self);
|
2124
|
+
})
|
2125
|
+
.define_singleton_method(
|
2126
|
+
"_nonzero_numpy",
|
2127
|
+
*[](const Tensor &self) {
|
2128
|
+
return torch::nonzero_numpy(self);
|
2129
|
+
})
|
2130
|
+
.define_singleton_method(
|
2131
|
+
"_nonzero_out",
|
2132
|
+
*[](const Tensor &self, Tensor &out) {
|
2133
|
+
return torch::nonzero_out(out, self);
|
2134
|
+
})
|
2135
|
+
.define_singleton_method(
|
2136
|
+
"_norm_except_dim",
|
2137
|
+
*[](const Tensor &v, int64_t pow, int64_t dim) {
|
2138
|
+
return torch::norm_except_dim(v, pow, dim);
|
2139
|
+
})
|
2140
|
+
.define_singleton_method(
|
2141
|
+
"_norm_scalar",
|
2142
|
+
*[](const Tensor &self, Scalar p) {
|
2143
|
+
return torch::norm(self, p);
|
2144
|
+
})
|
2145
|
+
.define_singleton_method(
|
2146
|
+
"_normal_float_float_out",
|
2147
|
+
*[](double mean, double std, IntArrayRef size, Tensor &out) {
|
2148
|
+
return torch::normal_out(out, mean, std, size);
|
2149
|
+
})
|
2150
|
+
.define_singleton_method(
|
2151
|
+
"_normal_float_tensor_out",
|
2152
|
+
*[](double mean, const Tensor &std, Tensor &out) {
|
2153
|
+
return torch::normal_out(out, mean, std);
|
2154
|
+
})
|
2155
|
+
.define_singleton_method(
|
2156
|
+
"_normal_tensor_float_out",
|
2157
|
+
*[](const Tensor &mean, double std, Tensor &out) {
|
2158
|
+
return torch::normal_out(out, mean, std);
|
2159
|
+
})
|
2160
|
+
.define_singleton_method(
|
2161
|
+
"_normal_tensor_tensor_out",
|
2162
|
+
*[](const Tensor &mean, const Tensor &std, Tensor &out) {
|
2163
|
+
return torch::normal_out(out, mean, std);
|
2164
|
+
})
|
2165
|
+
.define_singleton_method(
|
2166
|
+
"_nuclear_norm",
|
2167
|
+
*[](const Tensor &self, bool keepdim) {
|
2168
|
+
return torch::nuclear_norm(self, keepdim);
|
2169
|
+
})
|
2170
|
+
.define_singleton_method(
|
2171
|
+
"_nuclear_norm_dim",
|
2172
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
2173
|
+
return torch::nuclear_norm(self, dim, keepdim);
|
2174
|
+
})
|
2175
|
+
.define_singleton_method(
|
2176
|
+
"_nuclear_norm_dim_out",
|
2177
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, Tensor &out) {
|
2178
|
+
return torch::nuclear_norm_out(out, self, dim, keepdim);
|
2179
|
+
})
|
2180
|
+
.define_singleton_method(
|
2181
|
+
"_nuclear_norm_out",
|
2182
|
+
*[](const Tensor &self, bool keepdim, Tensor &out) {
|
2183
|
+
return torch::nuclear_norm_out(out, self, keepdim);
|
2184
|
+
})
|
2185
|
+
.define_singleton_method(
|
2186
|
+
"_ones_out",
|
2187
|
+
*[](IntArrayRef size, Tensor &out) {
|
2188
|
+
return torch::ones_out(out, size);
|
2189
|
+
})
|
2190
|
+
.define_singleton_method(
|
2191
|
+
"_orgqr",
|
2192
|
+
*[](const Tensor &self, const Tensor &input2) {
|
2193
|
+
return torch::orgqr(self, input2);
|
2194
|
+
})
|
2195
|
+
.define_singleton_method(
|
2196
|
+
"_orgqr_out",
|
2197
|
+
*[](const Tensor &self, const Tensor &input2, Tensor &out) {
|
2198
|
+
return torch::orgqr_out(out, self, input2);
|
2199
|
+
})
|
2200
|
+
.define_singleton_method(
|
2201
|
+
"_ormqr",
|
2202
|
+
*[](const Tensor &self, const Tensor &input2, const Tensor &input3, bool left, bool transpose) {
|
2203
|
+
return torch::ormqr(self, input2, input3, left, transpose);
|
2204
|
+
})
|
2205
|
+
.define_singleton_method(
|
2206
|
+
"_ormqr_out",
|
2207
|
+
*[](const Tensor &self, const Tensor &input2, const Tensor &input3, bool left, bool transpose, Tensor &out) {
|
2208
|
+
return torch::ormqr_out(out, self, input2, input3, left, transpose);
|
2209
|
+
})
|
2210
|
+
.define_singleton_method(
|
2211
|
+
"_pairwise_distance",
|
2212
|
+
*[](const Tensor &x1, const Tensor &x2, double p, double eps, bool keepdim) {
|
2213
|
+
return torch::pairwise_distance(x1, x2, p, eps, keepdim);
|
2214
|
+
})
|
2215
|
+
.define_singleton_method(
|
2216
|
+
"_pdist",
|
2217
|
+
*[](const Tensor &self, double p) {
|
2218
|
+
return torch::pdist(self, p);
|
2219
|
+
})
|
2220
|
+
.define_singleton_method(
|
2221
|
+
"_pinverse",
|
2222
|
+
*[](const Tensor &self, double rcond) {
|
2223
|
+
return torch::pinverse(self, rcond);
|
2224
|
+
})
|
2225
|
+
.define_singleton_method(
|
2226
|
+
"_pixel_shuffle",
|
2227
|
+
*[](const Tensor &self, int64_t upscale_factor) {
|
2228
|
+
return torch::pixel_shuffle(self, upscale_factor);
|
2229
|
+
})
|
2230
|
+
.define_singleton_method(
|
2231
|
+
"_poisson",
|
2232
|
+
*[](const Tensor &self) {
|
2233
|
+
return torch::poisson(self);
|
2234
|
+
})
|
2235
|
+
.define_singleton_method(
|
2236
|
+
"_poisson_nll_loss",
|
2237
|
+
*[](const Tensor &input, const Tensor &target, bool log_input, bool full, double eps, MyReduction reduction) {
|
2238
|
+
return torch::poisson_nll_loss(input, target, log_input, full, eps, reduction);
|
2239
|
+
})
|
2240
|
+
.define_singleton_method(
|
2241
|
+
"_polygamma",
|
2242
|
+
*[](int64_t n, const Tensor &self) {
|
2243
|
+
return torch::polygamma(n, self);
|
2244
|
+
})
|
2245
|
+
.define_singleton_method(
|
2246
|
+
"_polygamma_out",
|
2247
|
+
*[](int64_t n, const Tensor &self, Tensor &out) {
|
2248
|
+
return torch::polygamma_out(out, n, self);
|
2249
|
+
})
|
2250
|
+
.define_singleton_method(
|
2251
|
+
"_pow_scalar",
|
2252
|
+
*[](Scalar self, const Tensor &exponent) {
|
2253
|
+
return torch::pow(self, exponent);
|
2254
|
+
})
|
2255
|
+
.define_singleton_method(
|
2256
|
+
"_pow_scalar_out",
|
2257
|
+
*[](Scalar self, const Tensor &exponent, Tensor &out) {
|
2258
|
+
return torch::pow_out(out, self, exponent);
|
2259
|
+
})
|
2260
|
+
.define_singleton_method(
|
2261
|
+
"_pow_tensor_scalar",
|
2262
|
+
*[](const Tensor &self, Scalar exponent) {
|
2263
|
+
return torch::pow(self, exponent);
|
2264
|
+
})
|
2265
|
+
.define_singleton_method(
|
2266
|
+
"_pow_tensor_scalar_out",
|
2267
|
+
*[](const Tensor &self, Scalar exponent, Tensor &out) {
|
2268
|
+
return torch::pow_out(out, self, exponent);
|
2269
|
+
})
|
2270
|
+
.define_singleton_method(
|
2271
|
+
"_pow_tensor_tensor",
|
2272
|
+
*[](const Tensor &self, const Tensor &exponent) {
|
2273
|
+
return torch::pow(self, exponent);
|
2274
|
+
})
|
2275
|
+
.define_singleton_method(
|
2276
|
+
"_pow_tensor_tensor_out",
|
2277
|
+
*[](const Tensor &self, const Tensor &exponent, Tensor &out) {
|
2278
|
+
return torch::pow_out(out, self, exponent);
|
2279
|
+
})
|
2280
|
+
.define_singleton_method(
|
2281
|
+
"_prelu",
|
2282
|
+
*[](const Tensor &self, const Tensor &weight) {
|
2283
|
+
return torch::prelu(self, weight);
|
2284
|
+
})
|
2285
|
+
.define_singleton_method(
|
2286
|
+
"_prod",
|
2287
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
2288
|
+
return torch::prod(self, dtype);
|
2289
|
+
})
|
2290
|
+
.define_singleton_method(
|
2291
|
+
"_prod_dim_int",
|
2292
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, OptionalScalarType dtype) {
|
2293
|
+
return torch::prod(self, dim, keepdim, dtype);
|
2294
|
+
})
|
2295
|
+
.define_singleton_method(
|
2296
|
+
"_prod_int_out",
|
2297
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, OptionalScalarType dtype, Tensor &out) {
|
2298
|
+
return torch::prod_out(out, self, dim, keepdim, dtype);
|
2299
|
+
})
|
2300
|
+
.define_singleton_method(
|
2301
|
+
"_promote_types",
|
2302
|
+
*[](ScalarType type1, ScalarType type2) {
|
2303
|
+
return torch::promote_types(type1, type2);
|
2304
|
+
})
|
2305
|
+
.define_singleton_method(
|
2306
|
+
"_q_per_channel_axis",
|
2307
|
+
*[](const Tensor &self) {
|
2308
|
+
return torch::q_per_channel_axis(self);
|
2309
|
+
})
|
2310
|
+
.define_singleton_method(
|
2311
|
+
"_q_per_channel_scales",
|
2312
|
+
*[](const Tensor &self) {
|
2313
|
+
return torch::q_per_channel_scales(self);
|
2314
|
+
})
|
2315
|
+
.define_singleton_method(
|
2316
|
+
"_q_per_channel_zero_points",
|
2317
|
+
*[](const Tensor &self) {
|
2318
|
+
return torch::q_per_channel_zero_points(self);
|
2319
|
+
})
|
2320
|
+
.define_singleton_method(
|
2321
|
+
"_q_scale",
|
2322
|
+
*[](const Tensor &self) {
|
2323
|
+
return torch::q_scale(self);
|
2324
|
+
})
|
2325
|
+
.define_singleton_method(
|
2326
|
+
"_q_zero_point",
|
2327
|
+
*[](const Tensor &self) {
|
2328
|
+
return torch::q_zero_point(self);
|
2329
|
+
})
|
2330
|
+
.define_singleton_method(
|
2331
|
+
"_qr",
|
2332
|
+
*[](const Tensor &self, bool some) {
|
2333
|
+
return wrap(torch::qr(self, some));
|
2334
|
+
})
|
2335
|
+
.define_singleton_method(
|
2336
|
+
"_qr_q",
|
2337
|
+
*[](const Tensor &self, bool some, Tensor &Q, Tensor &R) {
|
2338
|
+
return wrap(torch::qr_out(Q, R, self, some));
|
2339
|
+
})
|
2340
|
+
.define_singleton_method(
|
2341
|
+
"_quantize_per_channel",
|
2342
|
+
*[](const Tensor &self, const Tensor &scales, const Tensor &zero_points, int64_t axis, ScalarType dtype) {
|
2343
|
+
return torch::quantize_per_channel(self, scales, zero_points, axis, dtype);
|
2344
|
+
})
|
2345
|
+
.define_singleton_method(
|
2346
|
+
"_quantize_per_tensor",
|
2347
|
+
*[](const Tensor &self, double scale, int64_t zero_point, ScalarType dtype) {
|
2348
|
+
return torch::quantize_per_tensor(self, scale, zero_point, dtype);
|
2349
|
+
})
|
2350
|
+
.define_singleton_method(
|
2351
|
+
"_quantized_batch_norm",
|
2352
|
+
*[](const Tensor &input, OptionalTensor weight, OptionalTensor bias, const Tensor &mean, const Tensor &var, double eps, double output_scale, int64_t output_zero_point) {
|
2353
|
+
return torch::quantized_batch_norm(input, weight, bias, mean, var, eps, output_scale, output_zero_point);
|
2354
|
+
})
|
2355
|
+
.define_singleton_method(
|
2356
|
+
"_quantized_gru_cell",
|
2357
|
+
*[](const Tensor &input, const Tensor &hx, const Tensor &w_ih, const Tensor &w_hh, const Tensor &b_ih, const Tensor &b_hh, const Tensor &packed_ih, const Tensor &packed_hh, const Tensor &col_offsets_ih, const Tensor &col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) {
|
2358
|
+
return torch::quantized_gru_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh);
|
2359
|
+
})
|
2360
|
+
.define_singleton_method(
|
2361
|
+
"_quantized_gru_data",
|
2362
|
+
*[](const Tensor &data, const Tensor &batch_sizes, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
2363
|
+
return wrap(torch::quantized_gru(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
2364
|
+
})
|
2365
|
+
.define_singleton_method(
|
2366
|
+
"_quantized_gru_input",
|
2367
|
+
*[](const Tensor &input, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
2368
|
+
return wrap(torch::quantized_gru(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
2369
|
+
})
|
2370
|
+
.define_singleton_method(
|
2371
|
+
"_quantized_lstm",
|
2372
|
+
*[](const Tensor &input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first, OptionalScalarType dtype, bool use_dynamic) {
|
2373
|
+
return wrap(torch::quantized_lstm(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first, dtype, use_dynamic));
|
2374
|
+
})
|
2375
|
+
.define_singleton_method(
|
2376
|
+
"_quantized_lstm_cell",
|
2377
|
+
*[](const Tensor &input, TensorList hx, const Tensor &w_ih, const Tensor &w_hh, const Tensor &b_ih, const Tensor &b_hh, const Tensor &packed_ih, const Tensor &packed_hh, const Tensor &col_offsets_ih, const Tensor &col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) {
|
2378
|
+
return wrap(torch::quantized_lstm_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh));
|
2379
|
+
})
|
2380
|
+
.define_singleton_method(
|
2381
|
+
"_quantized_lstm_data",
|
2382
|
+
*[](const Tensor &data, const Tensor &batch_sizes, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, OptionalScalarType dtype, bool use_dynamic) {
|
2383
|
+
return wrap(torch::quantized_lstm(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional, dtype, use_dynamic));
|
2384
|
+
})
|
2385
|
+
.define_singleton_method(
|
2386
|
+
"_quantized_max_pool2d",
|
2387
|
+
*[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
|
2388
|
+
return torch::quantized_max_pool2d(self, kernel_size, stride, padding, dilation, ceil_mode);
|
2389
|
+
})
|
2390
|
+
.define_singleton_method(
|
2391
|
+
"_quantized_rnn_relu_cell",
|
2392
|
+
*[](const Tensor &input, const Tensor &hx, const Tensor &w_ih, const Tensor &w_hh, const Tensor &b_ih, const Tensor &b_hh, const Tensor &packed_ih, const Tensor &packed_hh, const Tensor &col_offsets_ih, const Tensor &col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) {
|
2393
|
+
return torch::quantized_rnn_relu_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh);
|
2394
|
+
})
|
2395
|
+
.define_singleton_method(
|
2396
|
+
"_quantized_rnn_tanh_cell",
|
2397
|
+
*[](const Tensor &input, const Tensor &hx, const Tensor &w_ih, const Tensor &w_hh, const Tensor &b_ih, const Tensor &b_hh, const Tensor &packed_ih, const Tensor &packed_hh, const Tensor &col_offsets_ih, const Tensor &col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) {
|
2398
|
+
return torch::quantized_rnn_tanh_cell(input, hx, w_ih, w_hh, b_ih, b_hh, packed_ih, packed_hh, col_offsets_ih, col_offsets_hh, scale_ih, scale_hh, zero_point_ih, zero_point_hh);
|
2399
|
+
})
|
2400
|
+
.define_singleton_method(
|
2401
|
+
"_rand_generator_out",
|
2402
|
+
*[](IntArrayRef size, Tensor &out) {
|
2403
|
+
return torch::rand_out(out, size);
|
2404
|
+
})
|
2405
|
+
.define_singleton_method(
|
2406
|
+
"_rand_out",
|
2407
|
+
*[](IntArrayRef size, Tensor &out) {
|
2408
|
+
return torch::rand_out(out, size);
|
2409
|
+
})
|
2410
|
+
.define_singleton_method(
|
2411
|
+
"_randint_generator_out",
|
2412
|
+
*[](int64_t high, IntArrayRef size, Tensor &out) {
|
2413
|
+
return torch::randint_out(out, high, size);
|
2414
|
+
})
|
2415
|
+
.define_singleton_method(
|
2416
|
+
"_randint_low_generator_out",
|
2417
|
+
*[](int64_t low, int64_t high, IntArrayRef size, Tensor &out) {
|
2418
|
+
return torch::randint_out(out, low, high, size);
|
2419
|
+
})
|
2420
|
+
.define_singleton_method(
|
2421
|
+
"_randint_low_out",
|
2422
|
+
*[](int64_t low, int64_t high, IntArrayRef size, Tensor &out) {
|
2423
|
+
return torch::randint_out(out, low, high, size);
|
2424
|
+
})
|
2425
|
+
.define_singleton_method(
|
2426
|
+
"_randint_out",
|
2427
|
+
*[](int64_t high, IntArrayRef size, Tensor &out) {
|
2428
|
+
return torch::randint_out(out, high, size);
|
2429
|
+
})
|
2430
|
+
.define_singleton_method(
|
2431
|
+
"_randn_generator_out",
|
2432
|
+
*[](IntArrayRef size, Tensor &out) {
|
2433
|
+
return torch::randn_out(out, size);
|
2434
|
+
})
|
2435
|
+
.define_singleton_method(
|
2436
|
+
"_randn_out",
|
2437
|
+
*[](IntArrayRef size, Tensor &out) {
|
2438
|
+
return torch::randn_out(out, size);
|
2439
|
+
})
|
2440
|
+
.define_singleton_method(
|
2441
|
+
"_randperm_generator_out",
|
2442
|
+
*[](int64_t n, Tensor &out) {
|
2443
|
+
return torch::randperm_out(out, n);
|
2444
|
+
})
|
2445
|
+
.define_singleton_method(
|
2446
|
+
"_randperm_out",
|
2447
|
+
*[](int64_t n, Tensor &out) {
|
2448
|
+
return torch::randperm_out(out, n);
|
2449
|
+
})
|
2450
|
+
.define_singleton_method(
|
2451
|
+
"_range_out",
|
2452
|
+
*[](Scalar start, Scalar end, Scalar step, Tensor &out) {
|
2453
|
+
return torch::range_out(out, start, end, step);
|
2454
|
+
})
|
2455
|
+
.define_singleton_method(
|
2456
|
+
"_real",
|
2457
|
+
*[](const Tensor &self) {
|
2458
|
+
return torch::real(self);
|
2459
|
+
})
|
2460
|
+
.define_singleton_method(
|
2461
|
+
"_reciprocal",
|
2462
|
+
*[](const Tensor &self) {
|
2463
|
+
return torch::reciprocal(self);
|
2464
|
+
})
|
2465
|
+
.define_singleton_method(
|
2466
|
+
"_reciprocal_",
|
2467
|
+
*[](Tensor &self) {
|
2468
|
+
return torch::reciprocal_(self);
|
2469
|
+
})
|
2470
|
+
.define_singleton_method(
|
2471
|
+
"_reciprocal_out",
|
2472
|
+
*[](const Tensor &self, Tensor &out) {
|
2473
|
+
return torch::reciprocal_out(out, self);
|
2474
|
+
})
|
2475
|
+
.define_singleton_method(
|
2476
|
+
"_relu",
|
2477
|
+
*[](const Tensor &self) {
|
2478
|
+
return torch::relu(self);
|
2479
|
+
})
|
2480
|
+
.define_singleton_method(
|
2481
|
+
"_relu_",
|
2482
|
+
*[](Tensor &self) {
|
2483
|
+
return torch::relu_(self);
|
2484
|
+
})
|
2485
|
+
.define_singleton_method(
|
2486
|
+
"_remainder_scalar",
|
2487
|
+
*[](const Tensor &self, Scalar other) {
|
2488
|
+
return torch::remainder(self, other);
|
2489
|
+
})
|
2490
|
+
.define_singleton_method(
|
2491
|
+
"_remainder_scalar_out",
|
2492
|
+
*[](const Tensor &self, Scalar other, Tensor &out) {
|
2493
|
+
return torch::remainder_out(out, self, other);
|
2494
|
+
})
|
2495
|
+
.define_singleton_method(
|
2496
|
+
"_remainder_tensor",
|
2497
|
+
*[](const Tensor &self, const Tensor &other) {
|
2498
|
+
return torch::remainder(self, other);
|
2499
|
+
})
|
2500
|
+
.define_singleton_method(
|
2501
|
+
"_remainder_tensor_out",
|
2502
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
2503
|
+
return torch::remainder_out(out, self, other);
|
2504
|
+
})
|
2505
|
+
.define_singleton_method(
|
2506
|
+
"_renorm",
|
2507
|
+
*[](const Tensor &self, Scalar p, int64_t dim, Scalar maxnorm) {
|
2508
|
+
return torch::renorm(self, p, dim, maxnorm);
|
2509
|
+
})
|
2510
|
+
.define_singleton_method(
|
2511
|
+
"_renorm_out",
|
2512
|
+
*[](const Tensor &self, Scalar p, int64_t dim, Scalar maxnorm, Tensor &out) {
|
2513
|
+
return torch::renorm_out(out, self, p, dim, maxnorm);
|
2514
|
+
})
|
2515
|
+
.define_singleton_method(
|
2516
|
+
"_repeat_interleave_self_int",
|
2517
|
+
*[](const Tensor &self, int64_t repeats) {
|
2518
|
+
return torch::repeat_interleave(self, repeats);
|
2519
|
+
})
|
2520
|
+
.define_singleton_method(
|
2521
|
+
"_repeat_interleave_self_int_dim",
|
2522
|
+
*[](const Tensor &self, int64_t repeats, int64_t dim) {
|
2523
|
+
return torch::repeat_interleave(self, repeats, dim);
|
2524
|
+
})
|
2525
|
+
.define_singleton_method(
|
2526
|
+
"_repeat_interleave_self_tensor",
|
2527
|
+
*[](const Tensor &self, const Tensor &repeats) {
|
2528
|
+
return torch::repeat_interleave(self, repeats);
|
2529
|
+
})
|
2530
|
+
.define_singleton_method(
|
2531
|
+
"_repeat_interleave_self_tensor_dim",
|
2532
|
+
*[](const Tensor &self, const Tensor &repeats, int64_t dim) {
|
2533
|
+
return torch::repeat_interleave(self, repeats, dim);
|
2534
|
+
})
|
2535
|
+
.define_singleton_method(
|
2536
|
+
"_repeat_interleave_tensor",
|
2537
|
+
*[](const Tensor &repeats) {
|
2538
|
+
return torch::repeat_interleave(repeats);
|
2539
|
+
})
|
2540
|
+
.define_singleton_method(
|
2541
|
+
"_reshape",
|
2542
|
+
*[](const Tensor &self, IntArrayRef shape) {
|
2543
|
+
return torch::reshape(self, shape);
|
2544
|
+
})
|
2545
|
+
.define_singleton_method(
|
2546
|
+
"_resize_as_",
|
2547
|
+
*[](Tensor &self, const Tensor &the_template) {
|
2548
|
+
return torch::resize_as_(self, the_template);
|
2549
|
+
})
|
2550
|
+
.define_singleton_method(
|
2551
|
+
"_result_type_scalar",
|
2552
|
+
*[](const Tensor &tensor, Scalar other) {
|
2553
|
+
return torch::result_type(tensor, other);
|
2554
|
+
})
|
2555
|
+
.define_singleton_method(
|
2556
|
+
"_result_type_scalar_scalar",
|
2557
|
+
*[](Scalar scalar1, Scalar scalar2) {
|
2558
|
+
return torch::result_type(scalar1, scalar2);
|
2559
|
+
})
|
2560
|
+
.define_singleton_method(
|
2561
|
+
"_result_type_scalar_tensor",
|
2562
|
+
*[](Scalar scalar, const Tensor &tensor) {
|
2563
|
+
return torch::result_type(scalar, tensor);
|
2564
|
+
})
|
2565
|
+
.define_singleton_method(
|
2566
|
+
"_result_type_tensor",
|
2567
|
+
*[](const Tensor &tensor, const Tensor &other) {
|
2568
|
+
return torch::result_type(tensor, other);
|
2569
|
+
})
|
2570
|
+
.define_singleton_method(
|
2571
|
+
"_rfft",
|
2572
|
+
*[](const Tensor &self, int64_t signal_ndim, bool normalized, bool onesided) {
|
2573
|
+
return torch::rfft(self, signal_ndim, normalized, onesided);
|
2574
|
+
})
|
2575
|
+
.define_singleton_method(
|
2576
|
+
"_rnn_relu_cell",
|
2577
|
+
*[](const Tensor &input, const Tensor &hx, const Tensor &w_ih, const Tensor &w_hh, OptionalTensor b_ih, OptionalTensor b_hh) {
|
2578
|
+
return torch::rnn_relu_cell(input, hx, w_ih, w_hh, b_ih, b_hh);
|
2579
|
+
})
|
2580
|
+
.define_singleton_method(
|
2581
|
+
"_rnn_relu_data",
|
2582
|
+
*[](const Tensor &data, const Tensor &batch_sizes, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
2583
|
+
return wrap(torch::rnn_relu(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
2584
|
+
})
|
2585
|
+
.define_singleton_method(
|
2586
|
+
"_rnn_relu_input",
|
2587
|
+
*[](const Tensor &input, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
2588
|
+
return wrap(torch::rnn_relu(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
2589
|
+
})
|
2590
|
+
.define_singleton_method(
|
2591
|
+
"_rnn_tanh_cell",
|
2592
|
+
*[](const Tensor &input, const Tensor &hx, const Tensor &w_ih, const Tensor &w_hh, OptionalTensor b_ih, OptionalTensor b_hh) {
|
2593
|
+
return torch::rnn_tanh_cell(input, hx, w_ih, w_hh, b_ih, b_hh);
|
2594
|
+
})
|
2595
|
+
.define_singleton_method(
|
2596
|
+
"_rnn_tanh_data",
|
2597
|
+
*[](const Tensor &data, const Tensor &batch_sizes, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional) {
|
2598
|
+
return wrap(torch::rnn_tanh(data, batch_sizes, hx, params, has_biases, num_layers, dropout, train, bidirectional));
|
2599
|
+
})
|
2600
|
+
.define_singleton_method(
|
2601
|
+
"_rnn_tanh_input",
|
2602
|
+
*[](const Tensor &input, const Tensor &hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first) {
|
2603
|
+
return wrap(torch::rnn_tanh(input, hx, params, has_biases, num_layers, dropout, train, bidirectional, batch_first));
|
2604
|
+
})
|
2605
|
+
.define_singleton_method(
|
2606
|
+
"_roll",
|
2607
|
+
*[](const Tensor &self, IntArrayRef shifts, IntArrayRef dims) {
|
2608
|
+
return torch::roll(self, shifts, dims);
|
2609
|
+
})
|
2610
|
+
.define_singleton_method(
|
2611
|
+
"_rot90",
|
2612
|
+
*[](const Tensor &self, int64_t k, IntArrayRef dims) {
|
2613
|
+
return torch::rot90(self, k, dims);
|
2614
|
+
})
|
2615
|
+
.define_singleton_method(
|
2616
|
+
"_round",
|
2617
|
+
*[](const Tensor &self) {
|
2618
|
+
return torch::round(self);
|
2619
|
+
})
|
2620
|
+
.define_singleton_method(
|
2621
|
+
"_round_",
|
2622
|
+
*[](Tensor &self) {
|
2623
|
+
return torch::round_(self);
|
2624
|
+
})
|
2625
|
+
.define_singleton_method(
|
2626
|
+
"_round_out",
|
2627
|
+
*[](const Tensor &self, Tensor &out) {
|
2628
|
+
return torch::round_out(out, self);
|
2629
|
+
})
|
2630
|
+
.define_singleton_method(
|
2631
|
+
"_rrelu",
|
2632
|
+
*[](const Tensor &self, Scalar lower, Scalar upper, bool training) {
|
2633
|
+
return torch::rrelu(self, lower, upper, training);
|
2634
|
+
})
|
2635
|
+
.define_singleton_method(
|
2636
|
+
"_rrelu_",
|
2637
|
+
*[](Tensor &self, Scalar lower, Scalar upper, bool training) {
|
2638
|
+
return torch::rrelu_(self, lower, upper, training);
|
2639
|
+
})
|
2640
|
+
.define_singleton_method(
|
2641
|
+
"_rsqrt",
|
2642
|
+
*[](const Tensor &self) {
|
2643
|
+
return torch::rsqrt(self);
|
2644
|
+
})
|
2645
|
+
.define_singleton_method(
|
2646
|
+
"_rsqrt_",
|
2647
|
+
*[](Tensor &self) {
|
2648
|
+
return torch::rsqrt_(self);
|
2649
|
+
})
|
2650
|
+
.define_singleton_method(
|
2651
|
+
"_rsqrt_out",
|
2652
|
+
*[](const Tensor &self, Tensor &out) {
|
2653
|
+
return torch::rsqrt_out(out, self);
|
2654
|
+
})
|
2655
|
+
.define_singleton_method(
|
2656
|
+
"_rsub_scalar",
|
2657
|
+
*[](const Tensor &self, Scalar other, Scalar alpha) {
|
2658
|
+
return torch::rsub(self, other, alpha);
|
2659
|
+
})
|
2660
|
+
.define_singleton_method(
|
2661
|
+
"_rsub_tensor",
|
2662
|
+
*[](const Tensor &self, const Tensor &other, Scalar alpha) {
|
2663
|
+
return torch::rsub(self, other, alpha);
|
2664
|
+
})
|
2665
|
+
.define_singleton_method(
|
2666
|
+
"_scatter_add",
|
2667
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &src) {
|
2668
|
+
return torch::scatter_add(self, dim, index, src);
|
2669
|
+
})
|
2670
|
+
.define_singleton_method(
|
2671
|
+
"_scatter_src",
|
2672
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &src) {
|
2673
|
+
return torch::scatter(self, dim, index, src);
|
2674
|
+
})
|
2675
|
+
.define_singleton_method(
|
2676
|
+
"_scatter_value",
|
2677
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, Scalar value) {
|
2678
|
+
return torch::scatter(self, dim, index, value);
|
2679
|
+
})
|
2680
|
+
.define_singleton_method(
|
2681
|
+
"_select_int",
|
2682
|
+
*[](Tensor &self, int64_t dim, int64_t index) {
|
2683
|
+
return torch::select(self, dim, index);
|
2684
|
+
})
|
2685
|
+
.define_singleton_method(
|
2686
|
+
"_selu",
|
2687
|
+
*[](const Tensor &self) {
|
2688
|
+
return torch::selu(self);
|
2689
|
+
})
|
2690
|
+
.define_singleton_method(
|
2691
|
+
"_selu_",
|
2692
|
+
*[](Tensor &self) {
|
2693
|
+
return torch::selu_(self);
|
2694
|
+
})
|
2695
|
+
.define_singleton_method(
|
2696
|
+
"_sigmoid",
|
2697
|
+
*[](const Tensor &self) {
|
2698
|
+
return torch::sigmoid(self);
|
2699
|
+
})
|
2700
|
+
.define_singleton_method(
|
2701
|
+
"_sigmoid_",
|
2702
|
+
*[](Tensor &self) {
|
2703
|
+
return torch::sigmoid_(self);
|
2704
|
+
})
|
2705
|
+
.define_singleton_method(
|
2706
|
+
"_sigmoid_out",
|
2707
|
+
*[](const Tensor &self, Tensor &out) {
|
2708
|
+
return torch::sigmoid_out(out, self);
|
2709
|
+
})
|
2710
|
+
.define_singleton_method(
|
2711
|
+
"_sign",
|
2712
|
+
*[](const Tensor &self) {
|
2713
|
+
return torch::sign(self);
|
2714
|
+
})
|
2715
|
+
.define_singleton_method(
|
2716
|
+
"_sign_out",
|
2717
|
+
*[](const Tensor &self, Tensor &out) {
|
2718
|
+
return torch::sign_out(out, self);
|
2719
|
+
})
|
2720
|
+
.define_singleton_method(
|
2721
|
+
"_sin",
|
2722
|
+
*[](const Tensor &self) {
|
2723
|
+
return torch::sin(self);
|
2724
|
+
})
|
2725
|
+
.define_singleton_method(
|
2726
|
+
"_sin_",
|
2727
|
+
*[](Tensor &self) {
|
2728
|
+
return torch::sin_(self);
|
2729
|
+
})
|
2730
|
+
.define_singleton_method(
|
2731
|
+
"_sin_out",
|
2732
|
+
*[](const Tensor &self, Tensor &out) {
|
2733
|
+
return torch::sin_out(out, self);
|
2734
|
+
})
|
2735
|
+
.define_singleton_method(
|
2736
|
+
"_sinh",
|
2737
|
+
*[](const Tensor &self) {
|
2738
|
+
return torch::sinh(self);
|
2739
|
+
})
|
2740
|
+
.define_singleton_method(
|
2741
|
+
"_sinh_",
|
2742
|
+
*[](Tensor &self) {
|
2743
|
+
return torch::sinh_(self);
|
2744
|
+
})
|
2745
|
+
.define_singleton_method(
|
2746
|
+
"_sinh_out",
|
2747
|
+
*[](const Tensor &self, Tensor &out) {
|
2748
|
+
return torch::sinh_out(out, self);
|
2749
|
+
})
|
2750
|
+
.define_singleton_method(
|
2751
|
+
"_size_int",
|
2752
|
+
*[](const Tensor &self, int64_t dim) {
|
2753
|
+
return torch::size(self, dim);
|
2754
|
+
})
|
2755
|
+
.define_singleton_method(
|
2756
|
+
"_slice_tensor",
|
2757
|
+
*[](Tensor &self, int64_t dim, int64_t start, int64_t end, int64_t step) {
|
2758
|
+
return torch::slice(self, dim, start, end, step);
|
2759
|
+
})
|
2760
|
+
.define_singleton_method(
|
2761
|
+
"_slogdet",
|
2762
|
+
*[](const Tensor &self) {
|
2763
|
+
return wrap(torch::slogdet(self));
|
2764
|
+
})
|
2765
|
+
.define_singleton_method(
|
2766
|
+
"_smm",
|
2767
|
+
*[](const Tensor &self, const Tensor &mat2) {
|
2768
|
+
return torch::smm(self, mat2);
|
2769
|
+
})
|
2770
|
+
.define_singleton_method(
|
2771
|
+
"_softmax_int",
|
2772
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
2773
|
+
return torch::softmax(self, dim, dtype);
|
2774
|
+
})
|
2775
|
+
.define_singleton_method(
|
2776
|
+
"_solve",
|
2777
|
+
*[](const Tensor &self, const Tensor &A) {
|
2778
|
+
return wrap(torch::solve(self, A));
|
2779
|
+
})
|
2780
|
+
.define_singleton_method(
|
2781
|
+
"_solve_solution",
|
2782
|
+
*[](const Tensor &self, const Tensor &A, Tensor &solution, Tensor &lu) {
|
2783
|
+
return wrap(torch::solve_out(solution, lu, self, A));
|
2784
|
+
})
|
2785
|
+
.define_singleton_method(
|
2786
|
+
"_sort",
|
2787
|
+
*[](const Tensor &self, int64_t dim, bool descending) {
|
2788
|
+
return wrap(torch::sort(self, dim, descending));
|
2789
|
+
})
|
2790
|
+
.define_singleton_method(
|
2791
|
+
"_sort_values",
|
2792
|
+
*[](const Tensor &self, int64_t dim, bool descending, Tensor &values, Tensor &indices) {
|
2793
|
+
return wrap(torch::sort_out(values, indices, self, dim, descending));
|
2794
|
+
})
|
2795
|
+
.define_singleton_method(
|
2796
|
+
"_split_tensor",
|
2797
|
+
*[](Tensor &self, int64_t split_size, int64_t dim) {
|
2798
|
+
return torch::split(self, split_size, dim);
|
2799
|
+
})
|
2800
|
+
.define_singleton_method(
|
2801
|
+
"_split_with_sizes",
|
2802
|
+
*[](const Tensor &self, IntArrayRef split_sizes, int64_t dim) {
|
2803
|
+
return torch::split_with_sizes(self, split_sizes, dim);
|
2804
|
+
})
|
2805
|
+
.define_singleton_method(
|
2806
|
+
"_sqrt",
|
2807
|
+
*[](const Tensor &self) {
|
2808
|
+
return torch::sqrt(self);
|
2809
|
+
})
|
2810
|
+
.define_singleton_method(
|
2811
|
+
"_sqrt_",
|
2812
|
+
*[](Tensor &self) {
|
2813
|
+
return torch::sqrt_(self);
|
2814
|
+
})
|
2815
|
+
.define_singleton_method(
|
2816
|
+
"_sqrt_out",
|
2817
|
+
*[](const Tensor &self, Tensor &out) {
|
2818
|
+
return torch::sqrt_out(out, self);
|
2819
|
+
})
|
2820
|
+
.define_singleton_method(
|
2821
|
+
"_square",
|
2822
|
+
*[](const Tensor &self) {
|
2823
|
+
return torch::square(self);
|
2824
|
+
})
|
2825
|
+
.define_singleton_method(
|
2826
|
+
"_square_",
|
2827
|
+
*[](Tensor &self) {
|
2828
|
+
return torch::square_(self);
|
2829
|
+
})
|
2830
|
+
.define_singleton_method(
|
2831
|
+
"_squeeze",
|
2832
|
+
*[](Tensor &self) {
|
2833
|
+
return torch::squeeze(self);
|
2834
|
+
})
|
2835
|
+
.define_singleton_method(
|
2836
|
+
"_squeeze_dim",
|
2837
|
+
*[](Tensor &self, int64_t dim) {
|
2838
|
+
return torch::squeeze(self, dim);
|
2839
|
+
})
|
2840
|
+
.define_singleton_method(
|
2841
|
+
"_sspaddmm",
|
2842
|
+
*[](const Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha) {
|
2843
|
+
return torch::sspaddmm(self, mat1, mat2, beta, alpha);
|
2844
|
+
})
|
2845
|
+
.define_singleton_method(
|
2846
|
+
"_sspaddmm_out",
|
2847
|
+
*[](const Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha, Tensor &out) {
|
2848
|
+
return torch::sspaddmm_out(out, self, mat1, mat2, beta, alpha);
|
2849
|
+
})
|
2850
|
+
.define_singleton_method(
|
2851
|
+
"_stack",
|
2852
|
+
*[](TensorList tensors, int64_t dim) {
|
2853
|
+
return torch::stack(tensors, dim);
|
2854
|
+
})
|
2855
|
+
.define_singleton_method(
|
2856
|
+
"_stack_out",
|
2857
|
+
*[](TensorList tensors, int64_t dim, Tensor &out) {
|
2858
|
+
return torch::stack_out(out, tensors, dim);
|
2859
|
+
})
|
2860
|
+
.define_singleton_method(
|
2861
|
+
"_std",
|
2862
|
+
*[](const Tensor &self, bool unbiased) {
|
2863
|
+
return torch::std(self, unbiased);
|
2864
|
+
})
|
2865
|
+
.define_singleton_method(
|
2866
|
+
"_std_dim",
|
2867
|
+
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim) {
|
2868
|
+
return torch::std(self, dim, unbiased, keepdim);
|
2869
|
+
})
|
2870
|
+
.define_singleton_method(
|
2871
|
+
"_std_mean",
|
2872
|
+
*[](const Tensor &self, bool unbiased) {
|
2873
|
+
return wrap(torch::std_mean(self, unbiased));
|
2874
|
+
})
|
2875
|
+
.define_singleton_method(
|
2876
|
+
"_std_mean_dim",
|
2877
|
+
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim) {
|
2878
|
+
return wrap(torch::std_mean(self, dim, unbiased, keepdim));
|
2879
|
+
})
|
2880
|
+
.define_singleton_method(
|
2881
|
+
"_std_out",
|
2882
|
+
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim, Tensor &out) {
|
2883
|
+
return torch::std_out(out, self, dim, unbiased, keepdim);
|
2884
|
+
})
|
2885
|
+
.define_singleton_method(
|
2886
|
+
"_stride_int",
|
2887
|
+
*[](const Tensor &self, int64_t dim) {
|
2888
|
+
return torch::stride(self, dim);
|
2889
|
+
})
|
2890
|
+
.define_singleton_method(
|
2891
|
+
"_sub_out",
|
2892
|
+
*[](const Tensor &self, const Tensor &other, Scalar alpha, Tensor &out) {
|
2893
|
+
return torch::sub_out(out, self, other, alpha);
|
2894
|
+
})
|
2895
|
+
.define_singleton_method(
|
2896
|
+
"_sub_scalar",
|
2897
|
+
*[](const Tensor &self, Scalar other, Scalar alpha) {
|
2898
|
+
return torch::sub(self, other, alpha);
|
2899
|
+
})
|
2900
|
+
.define_singleton_method(
|
2901
|
+
"_sub_tensor",
|
2902
|
+
*[](const Tensor &self, const Tensor &other, Scalar alpha) {
|
2903
|
+
return torch::sub(self, other, alpha);
|
2904
|
+
})
|
2905
|
+
.define_singleton_method(
|
2906
|
+
"_sum",
|
2907
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
2908
|
+
return torch::sum(self, dtype);
|
2909
|
+
})
|
2910
|
+
.define_singleton_method(
|
2911
|
+
"_sum_dim_intlist",
|
2912
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype) {
|
2913
|
+
return torch::sum(self, dim, keepdim, dtype);
|
2914
|
+
})
|
2915
|
+
.define_singleton_method(
|
2916
|
+
"_sum_intlist_out",
|
2917
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype, Tensor &out) {
|
2918
|
+
return torch::sum_out(out, self, dim, keepdim, dtype);
|
2919
|
+
})
|
2920
|
+
.define_singleton_method(
|
2921
|
+
"_svd",
|
2922
|
+
*[](const Tensor &self, bool some, bool compute_uv) {
|
2923
|
+
return wrap(torch::svd(self, some, compute_uv));
|
2924
|
+
})
|
2925
|
+
.define_singleton_method(
|
2926
|
+
"_svd_u",
|
2927
|
+
*[](const Tensor &self, bool some, bool compute_uv, Tensor &U, Tensor &S, Tensor &V) {
|
2928
|
+
return wrap(torch::svd_out(U, S, V, self, some, compute_uv));
|
2929
|
+
})
|
2930
|
+
.define_singleton_method(
|
2931
|
+
"_symeig",
|
2932
|
+
*[](const Tensor &self, bool eigenvectors, bool upper) {
|
2933
|
+
return wrap(torch::symeig(self, eigenvectors, upper));
|
2934
|
+
})
|
2935
|
+
.define_singleton_method(
|
2936
|
+
"_symeig_e",
|
2937
|
+
*[](const Tensor &self, bool eigenvectors, bool upper, Tensor &e, Tensor &V) {
|
2938
|
+
return wrap(torch::symeig_out(e, V, self, eigenvectors, upper));
|
2939
|
+
})
|
2940
|
+
.define_singleton_method(
|
2941
|
+
"_t",
|
2942
|
+
*[](Tensor &self) {
|
2943
|
+
return torch::t(self);
|
2944
|
+
})
|
2945
|
+
.define_singleton_method(
|
2946
|
+
"_take",
|
2947
|
+
*[](const Tensor &self, const Tensor &index) {
|
2948
|
+
return torch::take(self, index);
|
2949
|
+
})
|
2950
|
+
.define_singleton_method(
|
2951
|
+
"_take_out",
|
2952
|
+
*[](const Tensor &self, const Tensor &index, Tensor &out) {
|
2953
|
+
return torch::take_out(out, self, index);
|
2954
|
+
})
|
2955
|
+
.define_singleton_method(
|
2956
|
+
"_tan",
|
2957
|
+
*[](const Tensor &self) {
|
2958
|
+
return torch::tan(self);
|
2959
|
+
})
|
2960
|
+
.define_singleton_method(
|
2961
|
+
"_tan_",
|
2962
|
+
*[](Tensor &self) {
|
2963
|
+
return torch::tan_(self);
|
2964
|
+
})
|
2965
|
+
.define_singleton_method(
|
2966
|
+
"_tan_out",
|
2967
|
+
*[](const Tensor &self, Tensor &out) {
|
2968
|
+
return torch::tan_out(out, self);
|
2969
|
+
})
|
2970
|
+
.define_singleton_method(
|
2971
|
+
"_tanh",
|
2972
|
+
*[](const Tensor &self) {
|
2973
|
+
return torch::tanh(self);
|
2974
|
+
})
|
2975
|
+
.define_singleton_method(
|
2976
|
+
"_tanh_",
|
2977
|
+
*[](Tensor &self) {
|
2978
|
+
return torch::tanh_(self);
|
2979
|
+
})
|
2980
|
+
.define_singleton_method(
|
2981
|
+
"_tanh_out",
|
2982
|
+
*[](const Tensor &self, Tensor &out) {
|
2983
|
+
return torch::tanh_out(out, self);
|
2984
|
+
})
|
2985
|
+
.define_singleton_method(
|
2986
|
+
"_tensordot",
|
2987
|
+
*[](const Tensor &self, const Tensor &other, IntArrayRef dims_self, IntArrayRef dims_other) {
|
2988
|
+
return torch::tensordot(self, other, dims_self, dims_other);
|
2989
|
+
})
|
2990
|
+
.define_singleton_method(
|
2991
|
+
"_threshold",
|
2992
|
+
*[](const Tensor &self, Scalar threshold, Scalar value) {
|
2993
|
+
return torch::threshold(self, threshold, value);
|
2994
|
+
})
|
2995
|
+
.define_singleton_method(
|
2996
|
+
"_threshold_",
|
2997
|
+
*[](Tensor &self, Scalar threshold, Scalar value) {
|
2998
|
+
return torch::threshold_(self, threshold, value);
|
2999
|
+
})
|
3000
|
+
.define_singleton_method(
|
3001
|
+
"_threshold_out",
|
3002
|
+
*[](const Tensor &self, Scalar threshold, Scalar value, Tensor &out) {
|
3003
|
+
return torch::threshold_out(out, self, threshold, value);
|
3004
|
+
})
|
3005
|
+
.define_singleton_method(
|
3006
|
+
"_topk",
|
3007
|
+
*[](const Tensor &self, int64_t k, int64_t dim, bool largest, bool sorted) {
|
3008
|
+
return wrap(torch::topk(self, k, dim, largest, sorted));
|
3009
|
+
})
|
3010
|
+
.define_singleton_method(
|
3011
|
+
"_topk_values",
|
3012
|
+
*[](const Tensor &self, int64_t k, int64_t dim, bool largest, bool sorted, Tensor &values, Tensor &indices) {
|
3013
|
+
return wrap(torch::topk_out(values, indices, self, k, dim, largest, sorted));
|
3014
|
+
})
|
3015
|
+
.define_singleton_method(
|
3016
|
+
"_trace",
|
3017
|
+
*[](const Tensor &self) {
|
3018
|
+
return torch::trace(self);
|
3019
|
+
})
|
3020
|
+
.define_singleton_method(
|
3021
|
+
"_transpose_int",
|
3022
|
+
*[](Tensor &self, int64_t dim0, int64_t dim1) {
|
3023
|
+
return torch::transpose(self, dim0, dim1);
|
3024
|
+
})
|
3025
|
+
.define_singleton_method(
|
3026
|
+
"_trapz_dx",
|
3027
|
+
*[](const Tensor &y, double dx, int64_t dim) {
|
3028
|
+
return torch::trapz(y, dx, dim);
|
3029
|
+
})
|
3030
|
+
.define_singleton_method(
|
3031
|
+
"_trapz_x",
|
3032
|
+
*[](const Tensor &y, const Tensor &x, int64_t dim) {
|
3033
|
+
return torch::trapz(y, x, dim);
|
3034
|
+
})
|
3035
|
+
.define_singleton_method(
|
3036
|
+
"_triangular_solve",
|
3037
|
+
*[](const Tensor &self, const Tensor &A, bool upper, bool transpose, bool unitriangular) {
|
3038
|
+
return wrap(torch::triangular_solve(self, A, upper, transpose, unitriangular));
|
3039
|
+
})
|
3040
|
+
.define_singleton_method(
|
3041
|
+
"_triangular_solve_x",
|
3042
|
+
*[](const Tensor &self, const Tensor &A, bool upper, bool transpose, bool unitriangular, Tensor &X, Tensor &M) {
|
3043
|
+
return wrap(torch::triangular_solve_out(X, M, self, A, upper, transpose, unitriangular));
|
3044
|
+
})
|
3045
|
+
.define_singleton_method(
|
3046
|
+
"_tril",
|
3047
|
+
*[](const Tensor &self, int64_t diagonal) {
|
3048
|
+
return torch::tril(self, diagonal);
|
3049
|
+
})
|
3050
|
+
.define_singleton_method(
|
3051
|
+
"_tril_out",
|
3052
|
+
*[](const Tensor &self, int64_t diagonal, Tensor &out) {
|
3053
|
+
return torch::tril_out(out, self, diagonal);
|
3054
|
+
})
|
3055
|
+
.define_singleton_method(
|
3056
|
+
"_triplet_margin_loss",
|
3057
|
+
*[](const Tensor &anchor, const Tensor &positive, const Tensor &negative, double margin, double p, double eps, bool swap, MyReduction reduction) {
|
3058
|
+
return torch::triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, reduction);
|
3059
|
+
})
|
3060
|
+
.define_singleton_method(
|
3061
|
+
"_triu",
|
3062
|
+
*[](const Tensor &self, int64_t diagonal) {
|
3063
|
+
return torch::triu(self, diagonal);
|
3064
|
+
})
|
3065
|
+
.define_singleton_method(
|
3066
|
+
"_triu_out",
|
3067
|
+
*[](const Tensor &self, int64_t diagonal, Tensor &out) {
|
3068
|
+
return torch::triu_out(out, self, diagonal);
|
3069
|
+
})
|
3070
|
+
.define_singleton_method(
|
3071
|
+
"_true_divide_out",
|
3072
|
+
*[](const Tensor &self, const Tensor &other, Tensor &out) {
|
3073
|
+
return torch::true_divide_out(out, self, other);
|
3074
|
+
})
|
3075
|
+
.define_singleton_method(
|
3076
|
+
"_true_divide_scalar",
|
3077
|
+
*[](const Tensor &self, Scalar other) {
|
3078
|
+
return torch::true_divide(self, other);
|
3079
|
+
})
|
3080
|
+
.define_singleton_method(
|
3081
|
+
"_true_divide_tensor",
|
3082
|
+
*[](const Tensor &self, const Tensor &other) {
|
3083
|
+
return torch::true_divide(self, other);
|
3084
|
+
})
|
3085
|
+
.define_singleton_method(
|
3086
|
+
"_trunc",
|
3087
|
+
*[](const Tensor &self) {
|
3088
|
+
return torch::trunc(self);
|
3089
|
+
})
|
3090
|
+
.define_singleton_method(
|
3091
|
+
"_trunc_",
|
3092
|
+
*[](Tensor &self) {
|
3093
|
+
return torch::trunc_(self);
|
3094
|
+
})
|
3095
|
+
.define_singleton_method(
|
3096
|
+
"_trunc_out",
|
3097
|
+
*[](const Tensor &self, Tensor &out) {
|
3098
|
+
return torch::trunc_out(out, self);
|
3099
|
+
})
|
3100
|
+
.define_singleton_method(
|
3101
|
+
"_unbind_int",
|
3102
|
+
*[](Tensor &self, int64_t dim) {
|
3103
|
+
return torch::unbind(self, dim);
|
3104
|
+
})
|
3105
|
+
.define_singleton_method(
|
3106
|
+
"_unique_consecutive",
|
3107
|
+
*[](const Tensor &self, bool return_inverse, bool return_counts) {
|
3108
|
+
return wrap(torch::unique_consecutive(self, return_inverse, return_counts));
|
3109
|
+
})
|
3110
|
+
.define_singleton_method(
|
3111
|
+
"_unique_consecutive_dim",
|
3112
|
+
*[](const Tensor &self, bool return_inverse, bool return_counts, int64_t dim) {
|
3113
|
+
return wrap(torch::unique_consecutive(self, return_inverse, return_counts, dim));
|
3114
|
+
})
|
3115
|
+
.define_singleton_method(
|
3116
|
+
"_unique_dim",
|
3117
|
+
*[](const Tensor &self, int64_t dim, bool sorted, bool return_inverse, bool return_counts) {
|
3118
|
+
return wrap(torch::unique_dim(self, dim, sorted, return_inverse, return_counts));
|
3119
|
+
})
|
3120
|
+
.define_singleton_method(
|
3121
|
+
"_unique_dim_consecutive",
|
3122
|
+
*[](const Tensor &self, int64_t dim, bool return_inverse, bool return_counts) {
|
3123
|
+
return wrap(torch::unique_dim_consecutive(self, dim, return_inverse, return_counts));
|
3124
|
+
})
|
3125
|
+
.define_singleton_method(
|
3126
|
+
"_unsqueeze",
|
3127
|
+
*[](Tensor &self, int64_t dim) {
|
3128
|
+
return torch::unsqueeze(self, dim);
|
3129
|
+
})
|
3130
|
+
.define_singleton_method(
|
3131
|
+
"_var",
|
3132
|
+
*[](const Tensor &self, bool unbiased) {
|
3133
|
+
return torch::var(self, unbiased);
|
3134
|
+
})
|
3135
|
+
.define_singleton_method(
|
3136
|
+
"_var_dim",
|
3137
|
+
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim) {
|
3138
|
+
return torch::var(self, dim, unbiased, keepdim);
|
3139
|
+
})
|
3140
|
+
.define_singleton_method(
|
3141
|
+
"_var_mean",
|
3142
|
+
*[](const Tensor &self, bool unbiased) {
|
3143
|
+
return wrap(torch::var_mean(self, unbiased));
|
3144
|
+
})
|
3145
|
+
.define_singleton_method(
|
3146
|
+
"_var_mean_dim",
|
3147
|
+
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim) {
|
3148
|
+
return wrap(torch::var_mean(self, dim, unbiased, keepdim));
|
3149
|
+
})
|
3150
|
+
.define_singleton_method(
|
3151
|
+
"_var_out",
|
3152
|
+
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim, Tensor &out) {
|
3153
|
+
return torch::var_out(out, self, dim, unbiased, keepdim);
|
3154
|
+
})
|
3155
|
+
.define_singleton_method(
|
3156
|
+
"_where",
|
3157
|
+
*[](const Tensor &condition) {
|
3158
|
+
return torch::where(condition);
|
3159
|
+
})
|
3160
|
+
.define_singleton_method(
|
3161
|
+
"_where_self",
|
3162
|
+
*[](const Tensor &condition, const Tensor &self, const Tensor &other) {
|
3163
|
+
return torch::where(condition, self, other);
|
3164
|
+
})
|
3165
|
+
.define_singleton_method(
|
3166
|
+
"_zero_",
|
3167
|
+
*[](Tensor &self) {
|
3168
|
+
return torch::zero_(self);
|
3169
|
+
})
|
3170
|
+
.define_singleton_method(
|
3171
|
+
"_zeros_out",
|
3172
|
+
*[](IntArrayRef size, Tensor &out) {
|
3173
|
+
return torch::zeros_out(out, size);
|
3174
|
+
});
|
3175
|
+
}
|