torch-rb 0.1.8 → 0.2.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,560 @@
1
+ // generated by rake generate:functions
2
+ // do not edit by hand
3
+
4
+ #include <torch/torch.h>
5
+ #include <rice/Module.hpp>
6
+ #include "templates.hpp"
7
+
8
+ void add_nn_functions(Module m) {
9
+ m
10
+ .define_singleton_method(
11
+ "_adaptive_avg_pool2d",
12
+ *[](const Tensor &self, IntArrayRef output_size) {
13
+ return torch::adaptive_avg_pool2d(self, output_size);
14
+ })
15
+ .define_singleton_method(
16
+ "_adaptive_avg_pool2d_out",
17
+ *[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
18
+ return torch::adaptive_avg_pool2d_out(out, self, output_size);
19
+ })
20
+ .define_singleton_method(
21
+ "_adaptive_avg_pool3d",
22
+ *[](const Tensor &self, IntArrayRef output_size) {
23
+ return torch::adaptive_avg_pool3d(self, output_size);
24
+ })
25
+ .define_singleton_method(
26
+ "_adaptive_avg_pool3d_out",
27
+ *[](const Tensor &self, IntArrayRef output_size, Tensor &out) {
28
+ return torch::adaptive_avg_pool3d_out(out, self, output_size);
29
+ })
30
+ .define_singleton_method(
31
+ "_adaptive_max_pool2d",
32
+ *[](const Tensor &self, IntArrayRef output_size) {
33
+ return wrap(torch::adaptive_max_pool2d(self, output_size));
34
+ })
35
+ .define_singleton_method(
36
+ "_adaptive_max_pool2d_out",
37
+ *[](const Tensor &self, IntArrayRef output_size, Tensor &out, Tensor &indices) {
38
+ return wrap(torch::adaptive_max_pool2d_out(out, indices, self, output_size));
39
+ })
40
+ .define_singleton_method(
41
+ "_adaptive_max_pool3d",
42
+ *[](const Tensor &self, IntArrayRef output_size) {
43
+ return wrap(torch::adaptive_max_pool3d(self, output_size));
44
+ })
45
+ .define_singleton_method(
46
+ "_adaptive_max_pool3d_out",
47
+ *[](const Tensor &self, IntArrayRef output_size, Tensor &out, Tensor &indices) {
48
+ return wrap(torch::adaptive_max_pool3d_out(out, indices, self, output_size));
49
+ })
50
+ .define_singleton_method(
51
+ "_avg_pool2d",
52
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
53
+ return torch::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
54
+ })
55
+ .define_singleton_method(
56
+ "_avg_pool2d_divisor_override",
57
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, int64_t divisor_override) {
58
+ return torch::avg_pool2d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
59
+ })
60
+ .define_singleton_method(
61
+ "_avg_pool3d",
62
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad) {
63
+ return torch::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad);
64
+ })
65
+ .define_singleton_method(
66
+ "_avg_pool3d_divisor_override",
67
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, int64_t divisor_override) {
68
+ return torch::avg_pool3d(self, kernel_size, stride, padding, ceil_mode, count_include_pad, divisor_override);
69
+ })
70
+ .define_singleton_method(
71
+ "_binary_cross_entropy",
72
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction) {
73
+ return torch::binary_cross_entropy(self, target, weight, reduction);
74
+ })
75
+ .define_singleton_method(
76
+ "_binary_cross_entropy_out",
77
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, Tensor &out) {
78
+ return torch::binary_cross_entropy_out(out, self, target, weight, reduction);
79
+ })
80
+ .define_singleton_method(
81
+ "_col2im",
82
+ *[](const Tensor &self, IntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) {
83
+ return torch::col2im(self, output_size, kernel_size, dilation, padding, stride);
84
+ })
85
+ .define_singleton_method(
86
+ "_col2im_out",
87
+ *[](const Tensor &self, IntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor &out) {
88
+ return torch::col2im_out(out, self, output_size, kernel_size, dilation, padding, stride);
89
+ })
90
+ .define_singleton_method(
91
+ "_elu",
92
+ *[](const Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale) {
93
+ return torch::elu(self, alpha, scale, input_scale);
94
+ })
95
+ .define_singleton_method(
96
+ "_elu_",
97
+ *[](Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale) {
98
+ return torch::elu_(self, alpha, scale, input_scale);
99
+ })
100
+ .define_singleton_method(
101
+ "_elu_out",
102
+ *[](const Tensor &self, Scalar alpha, Scalar scale, Scalar input_scale, Tensor &out) {
103
+ return torch::elu_out(out, self, alpha, scale, input_scale);
104
+ })
105
+ .define_singleton_method(
106
+ "_fractional_max_pool2d",
107
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples) {
108
+ return wrap(torch::fractional_max_pool2d(self, kernel_size, output_size, random_samples));
109
+ })
110
+ .define_singleton_method(
111
+ "_fractional_max_pool2d_output",
112
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples, Tensor &output, Tensor &indices) {
113
+ return wrap(torch::fractional_max_pool2d_out(output, indices, self, kernel_size, output_size, random_samples));
114
+ })
115
+ .define_singleton_method(
116
+ "_fractional_max_pool3d",
117
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples) {
118
+ return wrap(torch::fractional_max_pool3d(self, kernel_size, output_size, random_samples));
119
+ })
120
+ .define_singleton_method(
121
+ "_fractional_max_pool3d_output",
122
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor &random_samples, Tensor &output, Tensor &indices) {
123
+ return wrap(torch::fractional_max_pool3d_out(output, indices, self, kernel_size, output_size, random_samples));
124
+ })
125
+ .define_singleton_method(
126
+ "_gelu",
127
+ *[](const Tensor &self) {
128
+ return torch::gelu(self);
129
+ })
130
+ .define_singleton_method(
131
+ "_glu",
132
+ *[](const Tensor &self, int64_t dim) {
133
+ return torch::glu(self, dim);
134
+ })
135
+ .define_singleton_method(
136
+ "_glu_out",
137
+ *[](const Tensor &self, int64_t dim, Tensor &out) {
138
+ return torch::glu_out(out, self, dim);
139
+ })
140
+ .define_singleton_method(
141
+ "_hardsigmoid",
142
+ *[](const Tensor &self) {
143
+ return torch::hardsigmoid(self);
144
+ })
145
+ .define_singleton_method(
146
+ "_hardsigmoid_",
147
+ *[](Tensor &self) {
148
+ return torch::hardsigmoid_(self);
149
+ })
150
+ .define_singleton_method(
151
+ "_hardsigmoid_out",
152
+ *[](const Tensor &self, Tensor &out) {
153
+ return torch::hardsigmoid_out(out, self);
154
+ })
155
+ .define_singleton_method(
156
+ "_hardtanh",
157
+ *[](const Tensor &self, Scalar min_val, Scalar max_val) {
158
+ return torch::hardtanh(self, min_val, max_val);
159
+ })
160
+ .define_singleton_method(
161
+ "_hardtanh_",
162
+ *[](Tensor &self, Scalar min_val, Scalar max_val) {
163
+ return torch::hardtanh_(self, min_val, max_val);
164
+ })
165
+ .define_singleton_method(
166
+ "_hardtanh_out",
167
+ *[](const Tensor &self, Scalar min_val, Scalar max_val, Tensor &out) {
168
+ return torch::hardtanh_out(out, self, min_val, max_val);
169
+ })
170
+ .define_singleton_method(
171
+ "_im2col",
172
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride) {
173
+ return torch::im2col(self, kernel_size, dilation, padding, stride);
174
+ })
175
+ .define_singleton_method(
176
+ "_im2col_out",
177
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor &out) {
178
+ return torch::im2col_out(out, self, kernel_size, dilation, padding, stride);
179
+ })
180
+ .define_singleton_method(
181
+ "_l1_loss",
182
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction) {
183
+ return torch::l1_loss(self, target, reduction);
184
+ })
185
+ .define_singleton_method(
186
+ "_l1_loss_out",
187
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
188
+ return torch::l1_loss_out(out, self, target, reduction);
189
+ })
190
+ .define_singleton_method(
191
+ "_leaky_relu",
192
+ *[](const Tensor &self, Scalar negative_slope) {
193
+ return torch::leaky_relu(self, negative_slope);
194
+ })
195
+ .define_singleton_method(
196
+ "_leaky_relu_",
197
+ *[](Tensor &self, Scalar negative_slope) {
198
+ return torch::leaky_relu_(self, negative_slope);
199
+ })
200
+ .define_singleton_method(
201
+ "_leaky_relu_out",
202
+ *[](const Tensor &self, Scalar negative_slope, Tensor &out) {
203
+ return torch::leaky_relu_out(out, self, negative_slope);
204
+ })
205
+ .define_singleton_method(
206
+ "_linear",
207
+ *[](const Tensor &input, const Tensor &weight, OptionalTensor bias) {
208
+ return torch::linear(input, weight, bias);
209
+ })
210
+ .define_singleton_method(
211
+ "_log_sigmoid",
212
+ *[](const Tensor &self) {
213
+ return torch::log_sigmoid(self);
214
+ })
215
+ .define_singleton_method(
216
+ "_log_sigmoid_forward",
217
+ *[](const Tensor &self) {
218
+ return wrap(torch::log_sigmoid_forward(self));
219
+ })
220
+ .define_singleton_method(
221
+ "_log_sigmoid_forward_output",
222
+ *[](const Tensor &self, Tensor &output, Tensor &buffer) {
223
+ return wrap(torch::log_sigmoid_forward_out(output, buffer, self));
224
+ })
225
+ .define_singleton_method(
226
+ "_log_sigmoid_out",
227
+ *[](const Tensor &self, Tensor &out) {
228
+ return torch::log_sigmoid_out(out, self);
229
+ })
230
+ .define_singleton_method(
231
+ "_max_pool2d_with_indices",
232
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
233
+ return wrap(torch::max_pool2d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
234
+ })
235
+ .define_singleton_method(
236
+ "_max_pool2d_with_indices_out",
237
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor &out, Tensor &indices) {
238
+ return wrap(torch::max_pool2d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode));
239
+ })
240
+ .define_singleton_method(
241
+ "_max_pool3d_with_indices",
242
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode) {
243
+ return wrap(torch::max_pool3d_with_indices(self, kernel_size, stride, padding, dilation, ceil_mode));
244
+ })
245
+ .define_singleton_method(
246
+ "_max_pool3d_with_indices_out",
247
+ *[](const Tensor &self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor &out, Tensor &indices) {
248
+ return wrap(torch::max_pool3d_with_indices_out(out, indices, self, kernel_size, stride, padding, dilation, ceil_mode));
249
+ })
250
+ .define_singleton_method(
251
+ "_max_unpool2d",
252
+ *[](const Tensor &self, const Tensor &indices, IntArrayRef output_size) {
253
+ return torch::max_unpool2d(self, indices, output_size);
254
+ })
255
+ .define_singleton_method(
256
+ "_max_unpool2d_out",
257
+ *[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, Tensor &out) {
258
+ return torch::max_unpool2d_out(out, self, indices, output_size);
259
+ })
260
+ .define_singleton_method(
261
+ "_max_unpool3d",
262
+ *[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, IntArrayRef stride, IntArrayRef padding) {
263
+ return torch::max_unpool3d(self, indices, output_size, stride, padding);
264
+ })
265
+ .define_singleton_method(
266
+ "_max_unpool3d_out",
267
+ *[](const Tensor &self, const Tensor &indices, IntArrayRef output_size, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
268
+ return torch::max_unpool3d_out(out, self, indices, output_size, stride, padding);
269
+ })
270
+ .define_singleton_method(
271
+ "_mkldnn_linear",
272
+ *[](const Tensor &input, const Tensor &weight, OptionalTensor bias) {
273
+ return torch::mkldnn_linear(input, weight, bias);
274
+ })
275
+ .define_singleton_method(
276
+ "_mkldnn_reorder_conv2d_weight",
277
+ *[](const Tensor &self, IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups) {
278
+ return torch::mkldnn_reorder_conv2d_weight(self, padding, stride, dilation, groups);
279
+ })
280
+ .define_singleton_method(
281
+ "_mse_loss",
282
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction) {
283
+ return torch::mse_loss(self, target, reduction);
284
+ })
285
+ .define_singleton_method(
286
+ "_mse_loss_out",
287
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
288
+ return torch::mse_loss_out(out, self, target, reduction);
289
+ })
290
+ .define_singleton_method(
291
+ "_multi_margin_loss",
292
+ *[](const Tensor &self, const Tensor &target, Scalar p, Scalar margin, OptionalTensor weight, MyReduction reduction) {
293
+ return torch::multi_margin_loss(self, target, p, margin, weight, reduction);
294
+ })
295
+ .define_singleton_method(
296
+ "_multi_margin_loss_out",
297
+ *[](const Tensor &self, const Tensor &target, Scalar p, Scalar margin, OptionalTensor weight, MyReduction reduction, Tensor &out) {
298
+ return torch::multi_margin_loss_out(out, self, target, p, margin, weight, reduction);
299
+ })
300
+ .define_singleton_method(
301
+ "_multilabel_margin_loss",
302
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction) {
303
+ return torch::multilabel_margin_loss(self, target, reduction);
304
+ })
305
+ .define_singleton_method(
306
+ "_multilabel_margin_loss_forward",
307
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction) {
308
+ return wrap(torch::multilabel_margin_loss_forward(self, target, reduction));
309
+ })
310
+ .define_singleton_method(
311
+ "_multilabel_margin_loss_forward_output",
312
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &output, Tensor &is_target) {
313
+ return wrap(torch::multilabel_margin_loss_forward_out(output, is_target, self, target, reduction));
314
+ })
315
+ .define_singleton_method(
316
+ "_multilabel_margin_loss_out",
317
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
318
+ return torch::multilabel_margin_loss_out(out, self, target, reduction);
319
+ })
320
+ .define_singleton_method(
321
+ "_nll_loss",
322
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
323
+ return torch::nll_loss(self, target, weight, reduction, ignore_index);
324
+ })
325
+ .define_singleton_method(
326
+ "_nll_loss2d",
327
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
328
+ return torch::nll_loss2d(self, target, weight, reduction, ignore_index);
329
+ })
330
+ .define_singleton_method(
331
+ "_nll_loss2d_forward",
332
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
333
+ return wrap(torch::nll_loss2d_forward(self, target, weight, reduction, ignore_index));
334
+ })
335
+ .define_singleton_method(
336
+ "_nll_loss2d_forward_output",
337
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &output, Tensor &total_weight) {
338
+ return wrap(torch::nll_loss2d_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
339
+ })
340
+ .define_singleton_method(
341
+ "_nll_loss2d_out",
342
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &out) {
343
+ return torch::nll_loss2d_out(out, self, target, weight, reduction, ignore_index);
344
+ })
345
+ .define_singleton_method(
346
+ "_nll_loss_forward",
347
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index) {
348
+ return wrap(torch::nll_loss_forward(self, target, weight, reduction, ignore_index));
349
+ })
350
+ .define_singleton_method(
351
+ "_nll_loss_forward_output",
352
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &output, Tensor &total_weight) {
353
+ return wrap(torch::nll_loss_forward_out(output, total_weight, self, target, weight, reduction, ignore_index));
354
+ })
355
+ .define_singleton_method(
356
+ "_nll_loss_out",
357
+ *[](const Tensor &self, const Tensor &target, OptionalTensor weight, MyReduction reduction, int64_t ignore_index, Tensor &out) {
358
+ return torch::nll_loss_out(out, self, target, weight, reduction, ignore_index);
359
+ })
360
+ .define_singleton_method(
361
+ "_one_hot",
362
+ *[](const Tensor &self, int64_t num_classes) {
363
+ return torch::one_hot(self, num_classes);
364
+ })
365
+ .define_singleton_method(
366
+ "_reflection_pad1d",
367
+ *[](const Tensor &self, IntArrayRef padding) {
368
+ return torch::reflection_pad1d(self, padding);
369
+ })
370
+ .define_singleton_method(
371
+ "_reflection_pad1d_out",
372
+ *[](const Tensor &self, IntArrayRef padding, Tensor &out) {
373
+ return torch::reflection_pad1d_out(out, self, padding);
374
+ })
375
+ .define_singleton_method(
376
+ "_reflection_pad2d",
377
+ *[](const Tensor &self, IntArrayRef padding) {
378
+ return torch::reflection_pad2d(self, padding);
379
+ })
380
+ .define_singleton_method(
381
+ "_reflection_pad2d_out",
382
+ *[](const Tensor &self, IntArrayRef padding, Tensor &out) {
383
+ return torch::reflection_pad2d_out(out, self, padding);
384
+ })
385
+ .define_singleton_method(
386
+ "_replication_pad1d",
387
+ *[](const Tensor &self, IntArrayRef padding) {
388
+ return torch::replication_pad1d(self, padding);
389
+ })
390
+ .define_singleton_method(
391
+ "_replication_pad1d_out",
392
+ *[](const Tensor &self, IntArrayRef padding, Tensor &out) {
393
+ return torch::replication_pad1d_out(out, self, padding);
394
+ })
395
+ .define_singleton_method(
396
+ "_replication_pad2d",
397
+ *[](const Tensor &self, IntArrayRef padding) {
398
+ return torch::replication_pad2d(self, padding);
399
+ })
400
+ .define_singleton_method(
401
+ "_replication_pad2d_out",
402
+ *[](const Tensor &self, IntArrayRef padding, Tensor &out) {
403
+ return torch::replication_pad2d_out(out, self, padding);
404
+ })
405
+ .define_singleton_method(
406
+ "_replication_pad3d",
407
+ *[](const Tensor &self, IntArrayRef padding) {
408
+ return torch::replication_pad3d(self, padding);
409
+ })
410
+ .define_singleton_method(
411
+ "_replication_pad3d_out",
412
+ *[](const Tensor &self, IntArrayRef padding, Tensor &out) {
413
+ return torch::replication_pad3d_out(out, self, padding);
414
+ })
415
+ .define_singleton_method(
416
+ "_rrelu_with_noise",
417
+ *[](const Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training) {
418
+ return torch::rrelu_with_noise(self, noise, lower, upper, training);
419
+ })
420
+ .define_singleton_method(
421
+ "_rrelu_with_noise_",
422
+ *[](Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training) {
423
+ return torch::rrelu_with_noise_(self, noise, lower, upper, training);
424
+ })
425
+ .define_singleton_method(
426
+ "_rrelu_with_noise_out",
427
+ *[](const Tensor &self, const Tensor &noise, Scalar lower, Scalar upper, bool training, Tensor &out) {
428
+ return torch::rrelu_with_noise_out(out, self, noise, lower, upper, training);
429
+ })
430
+ .define_singleton_method(
431
+ "_slow_conv3d",
432
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
433
+ return torch::slow_conv3d(self, weight, kernel_size, bias, stride, padding);
434
+ })
435
+ .define_singleton_method(
436
+ "_slow_conv3d_forward",
437
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
438
+ return wrap(torch::slow_conv3d_forward(self, weight, kernel_size, bias, stride, padding));
439
+ })
440
+ .define_singleton_method(
441
+ "_slow_conv3d_forward_output",
442
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &output, Tensor &finput, Tensor &fgrad_input) {
443
+ return wrap(torch::slow_conv3d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding));
444
+ })
445
+ .define_singleton_method(
446
+ "_slow_conv3d_out",
447
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
448
+ return torch::slow_conv3d_out(out, self, weight, kernel_size, bias, stride, padding);
449
+ })
450
+ .define_singleton_method(
451
+ "_slow_conv_dilated2d",
452
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
453
+ return torch::slow_conv_dilated2d(self, weight, kernel_size, bias, stride, padding, dilation);
454
+ })
455
+ .define_singleton_method(
456
+ "_slow_conv_dilated3d",
457
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
458
+ return torch::slow_conv_dilated3d(self, weight, kernel_size, bias, stride, padding, dilation);
459
+ })
460
+ .define_singleton_method(
461
+ "_slow_conv_transpose2d",
462
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation) {
463
+ return torch::slow_conv_transpose2d(self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
464
+ })
465
+ .define_singleton_method(
466
+ "_slow_conv_transpose2d_out",
467
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation, Tensor &out) {
468
+ return torch::slow_conv_transpose2d_out(out, self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
469
+ })
470
+ .define_singleton_method(
471
+ "_slow_conv_transpose3d",
472
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation) {
473
+ return torch::slow_conv_transpose3d(self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
474
+ })
475
+ .define_singleton_method(
476
+ "_slow_conv_transpose3d_out",
477
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef output_padding, IntArrayRef dilation, Tensor &out) {
478
+ return torch::slow_conv_transpose3d_out(out, self, weight, kernel_size, bias, stride, padding, output_padding, dilation);
479
+ })
480
+ .define_singleton_method(
481
+ "_smooth_l1_loss",
482
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction) {
483
+ return torch::smooth_l1_loss(self, target, reduction);
484
+ })
485
+ .define_singleton_method(
486
+ "_smooth_l1_loss_out",
487
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
488
+ return torch::smooth_l1_loss_out(out, self, target, reduction);
489
+ })
490
+ .define_singleton_method(
491
+ "_soft_margin_loss",
492
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction) {
493
+ return torch::soft_margin_loss(self, target, reduction);
494
+ })
495
+ .define_singleton_method(
496
+ "_soft_margin_loss_out",
497
+ *[](const Tensor &self, const Tensor &target, MyReduction reduction, Tensor &out) {
498
+ return torch::soft_margin_loss_out(out, self, target, reduction);
499
+ })
500
+ .define_singleton_method(
501
+ "_softplus",
502
+ *[](const Tensor &self, Scalar beta, Scalar threshold) {
503
+ return torch::softplus(self, beta, threshold);
504
+ })
505
+ .define_singleton_method(
506
+ "_softplus_out",
507
+ *[](const Tensor &self, Scalar beta, Scalar threshold, Tensor &out) {
508
+ return torch::softplus_out(out, self, beta, threshold);
509
+ })
510
+ .define_singleton_method(
511
+ "_softshrink",
512
+ *[](const Tensor &self, Scalar lambd) {
513
+ return torch::softshrink(self, lambd);
514
+ })
515
+ .define_singleton_method(
516
+ "_softshrink_out",
517
+ *[](const Tensor &self, Scalar lambd, Tensor &out) {
518
+ return torch::softshrink_out(out, self, lambd);
519
+ })
520
+ .define_singleton_method(
521
+ "_thnn_conv2d",
522
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
523
+ return torch::thnn_conv2d(self, weight, kernel_size, bias, stride, padding);
524
+ })
525
+ .define_singleton_method(
526
+ "_thnn_conv2d_forward",
527
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding) {
528
+ return wrap(torch::thnn_conv2d_forward(self, weight, kernel_size, bias, stride, padding));
529
+ })
530
+ .define_singleton_method(
531
+ "_thnn_conv2d_forward_output",
532
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &output, Tensor &finput, Tensor &fgrad_input) {
533
+ return wrap(torch::thnn_conv2d_forward_out(output, finput, fgrad_input, self, weight, kernel_size, bias, stride, padding));
534
+ })
535
+ .define_singleton_method(
536
+ "_thnn_conv2d_out",
537
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, Tensor &out) {
538
+ return torch::thnn_conv2d_out(out, self, weight, kernel_size, bias, stride, padding);
539
+ })
540
+ .define_singleton_method(
541
+ "_thnn_conv_depthwise2d",
542
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
543
+ return torch::thnn_conv_depthwise2d(self, weight, kernel_size, bias, stride, padding, dilation);
544
+ })
545
+ .define_singleton_method(
546
+ "_thnn_conv_depthwise2d_forward",
547
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation) {
548
+ return torch::thnn_conv_depthwise2d_forward(self, weight, kernel_size, bias, stride, padding, dilation);
549
+ })
550
+ .define_singleton_method(
551
+ "_thnn_conv_depthwise2d_forward_out",
552
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, Tensor &out) {
553
+ return torch::thnn_conv_depthwise2d_forward_out(out, self, weight, kernel_size, bias, stride, padding, dilation);
554
+ })
555
+ .define_singleton_method(
556
+ "_thnn_conv_depthwise2d_out",
557
+ *[](const Tensor &self, const Tensor &weight, IntArrayRef kernel_size, OptionalTensor bias, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, Tensor &out) {
558
+ return torch::thnn_conv_depthwise2d_out(out, self, weight, kernel_size, bias, stride, padding, dilation);
559
+ });
560
+ }
@@ -0,0 +1,6 @@
1
+ // generated by rake generate:functions
2
+ // do not edit by hand
3
+
4
+ #pragma once
5
+
6
+ void add_nn_functions(Module m);
@@ -159,6 +159,8 @@ class MyReduction {
159
159
  return torch::Reduction::Mean;
160
160
  } else if (s == "sum") {
161
161
  return torch::Reduction::Sum;
162
+ } else if (s == "none") {
163
+ return torch::Reduction::None;
162
164
  } else {
163
165
  throw std::runtime_error("Unsupported reduction: " + s);
164
166
  }