svmlightcli 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +13 -0
- data/Gemfile +4 -0
- data/Gemfile.lock +23 -0
- data/LICENSE.txt +85 -0
- data/README.md +49 -0
- data/Rakefile +10 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/bin/svm_classify +23 -0
- data/bin/svm_learn +23 -0
- data/ext/svmlightcli/Makefile +95 -0
- data/ext/svmlightcli/extconf.rb +33 -0
- data/ext/svmlightcli/kernel.h +40 -0
- data/ext/svmlightcli/svm_classify.c +197 -0
- data/ext/svmlightcli/svm_common.c +985 -0
- data/ext/svmlightcli/svm_common.h +301 -0
- data/ext/svmlightcli/svm_hideo.c +1062 -0
- data/ext/svmlightcli/svm_learn.c +4147 -0
- data/ext/svmlightcli/svm_learn.h +169 -0
- data/ext/svmlightcli/svm_learn_main.c +397 -0
- data/lib/svmlightcli.rb +6 -0
- data/lib/svmlightcli/version.rb +3 -0
- data/svmlightcli.gemspec +28 -0
- metadata +113 -0
@@ -0,0 +1,169 @@
|
|
1
|
+
/***********************************************************************/
|
2
|
+
/* */
|
3
|
+
/* svm_learn.h */
|
4
|
+
/* */
|
5
|
+
/* Declarations for learning module of Support Vector Machine. */
|
6
|
+
/* */
|
7
|
+
/* Author: Thorsten Joachims */
|
8
|
+
/* Date: 02.07.02 */
|
9
|
+
/* */
|
10
|
+
/* Copyright (c) 2002 Thorsten Joachims - All rights reserved */
|
11
|
+
/* */
|
12
|
+
/* This software is available for non-commercial use only. It must */
|
13
|
+
/* not be modified and distributed without prior permission of the */
|
14
|
+
/* author. The author is not responsible for implications from the */
|
15
|
+
/* use of this software. */
|
16
|
+
/* */
|
17
|
+
/***********************************************************************/
|
18
|
+
|
19
|
+
#ifndef SVM_LEARN
|
20
|
+
#define SVM_LEARN
|
21
|
+
|
22
|
+
void svm_learn_classification(DOC **, double *, long, long, LEARN_PARM *,
|
23
|
+
KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
|
24
|
+
double *);
|
25
|
+
void svm_learn_regression(DOC **, double *, long, long, LEARN_PARM *,
|
26
|
+
KERNEL_PARM *, KERNEL_CACHE **, MODEL *);
|
27
|
+
void svm_learn_ranking(DOC **, double *, long, long, LEARN_PARM *,
|
28
|
+
KERNEL_PARM *, KERNEL_CACHE **, MODEL *);
|
29
|
+
void svm_learn_optimization(DOC **, double *, long, long, LEARN_PARM *,
|
30
|
+
KERNEL_PARM *, KERNEL_CACHE *, MODEL *,
|
31
|
+
double *);
|
32
|
+
long optimize_to_convergence(DOC **, long *, long, long, LEARN_PARM *,
|
33
|
+
KERNEL_PARM *, KERNEL_CACHE *, SHRINK_STATE *,
|
34
|
+
MODEL *, long *, long *, double *,
|
35
|
+
double *, double *,
|
36
|
+
TIMING *, double *, long, long);
|
37
|
+
long optimize_to_convergence_sharedslack(DOC **, long *, long, long,
|
38
|
+
LEARN_PARM *,
|
39
|
+
KERNEL_PARM *, KERNEL_CACHE *, SHRINK_STATE *,
|
40
|
+
MODEL *, double *, double *, double *,
|
41
|
+
TIMING *, double *);
|
42
|
+
double compute_objective_function(double *, double *, double *, double,
|
43
|
+
long *, long *);
|
44
|
+
void clear_index(long *);
|
45
|
+
void add_to_index(long *, long);
|
46
|
+
long compute_index(long *,long, long *);
|
47
|
+
void optimize_svm(DOC **, long *, long *, long *, double, long *, long *,
|
48
|
+
MODEL *,
|
49
|
+
long, long *, long, double *, double *, double *,
|
50
|
+
LEARN_PARM *, CFLOAT *, KERNEL_PARM *, QP *, double *);
|
51
|
+
void compute_matrices_for_optimization(DOC **, long *, long *, long *, double,
|
52
|
+
long *,
|
53
|
+
long *, long *, MODEL *, double *,
|
54
|
+
double *, double *, long, long, LEARN_PARM *,
|
55
|
+
CFLOAT *, KERNEL_PARM *, QP *);
|
56
|
+
long calculate_svm_model(DOC **, long *, long *, double *, double *,
|
57
|
+
double *, double *, LEARN_PARM *, long *,
|
58
|
+
long *, MODEL *);
|
59
|
+
long check_optimality(MODEL *, long *, long *, double *, double *,
|
60
|
+
double *, long,
|
61
|
+
LEARN_PARM *,double *, double, long *, long *, long *,
|
62
|
+
long *, long, KERNEL_PARM *);
|
63
|
+
long check_optimality_sharedslack(DOC **docs, MODEL *model, long int *label,
|
64
|
+
double *a, double *lin, double *c, double *slack,
|
65
|
+
double *alphaslack, long int totdoc,
|
66
|
+
LEARN_PARM *learn_parm, double *maxdiff,
|
67
|
+
double epsilon_crit_org, long int *misclassified,
|
68
|
+
long int *active2dnum,
|
69
|
+
long int *last_suboptimal_at,
|
70
|
+
long int iteration, KERNEL_PARM *kernel_parm);
|
71
|
+
void compute_shared_slacks(DOC **docs, long int *label, double *a,
|
72
|
+
double *lin, double *c, long int *active2dnum,
|
73
|
+
LEARN_PARM *learn_parm,
|
74
|
+
double *slack, double *alphaslack);
|
75
|
+
long identify_inconsistent(double *, long *, long *, long, LEARN_PARM *,
|
76
|
+
long *, long *);
|
77
|
+
long identify_misclassified(double *, long *, long *, long,
|
78
|
+
MODEL *, long *, long *);
|
79
|
+
long identify_one_misclassified(double *, long *, long *, long,
|
80
|
+
MODEL *, long *, long *);
|
81
|
+
long incorporate_unlabeled_examples(MODEL *, long *,long *, long *,
|
82
|
+
double *, double *, long, double *,
|
83
|
+
long *, long *, long, KERNEL_PARM *,
|
84
|
+
LEARN_PARM *);
|
85
|
+
void update_linear_component(DOC **, long *, long *, double *, double *,
|
86
|
+
long *, long, long, KERNEL_PARM *,
|
87
|
+
KERNEL_CACHE *, double *,
|
88
|
+
CFLOAT *, double *);
|
89
|
+
long select_next_qp_subproblem_grad(long *, long *, double *,
|
90
|
+
double *, double *, long,
|
91
|
+
long, LEARN_PARM *, long *, long *,
|
92
|
+
long *, double *, long *, KERNEL_CACHE *,
|
93
|
+
long, long *, long *);
|
94
|
+
long select_next_qp_subproblem_rand(long *, long *, double *,
|
95
|
+
double *, double *, long,
|
96
|
+
long, LEARN_PARM *, long *, long *,
|
97
|
+
long *, double *, long *, KERNEL_CACHE *,
|
98
|
+
long *, long *, long);
|
99
|
+
long select_next_qp_slackset(DOC **docs, long int *label, double *a,
|
100
|
+
double *lin, double *slack, double *alphaslack,
|
101
|
+
double *c, LEARN_PARM *learn_parm,
|
102
|
+
long int *active2dnum, double *maxviol);
|
103
|
+
void select_top_n(double *, long, long *, long);
|
104
|
+
void init_shrink_state(SHRINK_STATE *, long, long);
|
105
|
+
void shrink_state_cleanup(SHRINK_STATE *);
|
106
|
+
long shrink_problem(DOC **, LEARN_PARM *, SHRINK_STATE *, KERNEL_PARM *,
|
107
|
+
long *, long *, long, long, long, double *, long *);
|
108
|
+
void reactivate_inactive_examples(long *, long *, double *, SHRINK_STATE *,
|
109
|
+
double *, double*, long, long, long, LEARN_PARM *,
|
110
|
+
long *, DOC **, KERNEL_PARM *,
|
111
|
+
KERNEL_CACHE *, MODEL *, CFLOAT *,
|
112
|
+
double *, double *);
|
113
|
+
|
114
|
+
/* cache kernel evalutations to improve speed */
|
115
|
+
KERNEL_CACHE *kernel_cache_init(long, long);
|
116
|
+
void kernel_cache_cleanup(KERNEL_CACHE *);
|
117
|
+
void get_kernel_row(KERNEL_CACHE *,DOC **, long, long, long *, CFLOAT *,
|
118
|
+
KERNEL_PARM *);
|
119
|
+
void cache_kernel_row(KERNEL_CACHE *,DOC **, long, KERNEL_PARM *);
|
120
|
+
void cache_multiple_kernel_rows(KERNEL_CACHE *,DOC **, long *, long,
|
121
|
+
KERNEL_PARM *);
|
122
|
+
void kernel_cache_shrink(KERNEL_CACHE *,long, long, long *);
|
123
|
+
void kernel_cache_reset_lru(KERNEL_CACHE *);
|
124
|
+
long kernel_cache_malloc(KERNEL_CACHE *);
|
125
|
+
void kernel_cache_free(KERNEL_CACHE *,long);
|
126
|
+
long kernel_cache_free_lru(KERNEL_CACHE *);
|
127
|
+
CFLOAT *kernel_cache_clean_and_malloc(KERNEL_CACHE *,long);
|
128
|
+
long kernel_cache_touch(KERNEL_CACHE *,long);
|
129
|
+
long kernel_cache_check(KERNEL_CACHE *,long);
|
130
|
+
long kernel_cache_space_available(KERNEL_CACHE *);
|
131
|
+
|
132
|
+
void compute_xa_estimates(MODEL *, long *, long *, long, DOC **,
|
133
|
+
double *, double *, KERNEL_PARM *,
|
134
|
+
LEARN_PARM *, double *, double *, double *);
|
135
|
+
double xa_estimate_error(MODEL *, long *, long *, long, DOC **,
|
136
|
+
double *, double *, KERNEL_PARM *,
|
137
|
+
LEARN_PARM *);
|
138
|
+
double xa_estimate_recall(MODEL *, long *, long *, long, DOC **,
|
139
|
+
double *, double *, KERNEL_PARM *,
|
140
|
+
LEARN_PARM *);
|
141
|
+
double xa_estimate_precision(MODEL *, long *, long *, long, DOC **,
|
142
|
+
double *, double *, KERNEL_PARM *,
|
143
|
+
LEARN_PARM *);
|
144
|
+
void avg_similarity_of_sv_of_one_class(MODEL *, DOC **, double *, long *, KERNEL_PARM *, double *, double *);
|
145
|
+
double most_similar_sv_of_same_class(MODEL *, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *);
|
146
|
+
double distribute_alpha_t_greedily(long *, long, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *, double);
|
147
|
+
double distribute_alpha_t_greedily_noindex(MODEL *, DOC **, double *, long, long *, KERNEL_PARM *, LEARN_PARM *, double);
|
148
|
+
void estimate_transduction_quality(MODEL *, long *, long *, long, DOC **, double *);
|
149
|
+
double estimate_margin_vcdim(MODEL *, double, double, KERNEL_PARM *);
|
150
|
+
double estimate_sphere(MODEL *, KERNEL_PARM *);
|
151
|
+
double estimate_r_delta_average(DOC **, long, KERNEL_PARM *);
|
152
|
+
double estimate_r_delta(DOC **, long, KERNEL_PARM *);
|
153
|
+
double length_of_longest_document_vector(DOC **, long, KERNEL_PARM *);
|
154
|
+
|
155
|
+
void write_model(char *, MODEL *);
|
156
|
+
void write_prediction(char *, MODEL *, double *, double *, long *, long *,
|
157
|
+
long, LEARN_PARM *);
|
158
|
+
void write_alphas(char *, double *, long *, long);
|
159
|
+
|
160
|
+
typedef struct cache_parm_s {
|
161
|
+
KERNEL_CACHE *kernel_cache;
|
162
|
+
CFLOAT *cache;
|
163
|
+
DOC **docs;
|
164
|
+
long m;
|
165
|
+
KERNEL_PARM *kernel_parm;
|
166
|
+
long offset,stepsize;
|
167
|
+
} cache_parm_t;
|
168
|
+
|
169
|
+
#endif
|
@@ -0,0 +1,397 @@
|
|
1
|
+
/***********************************************************************/
|
2
|
+
/* */
|
3
|
+
/* svm_learn_main.c */
|
4
|
+
/* */
|
5
|
+
/* Command line interface to the learning module of the */
|
6
|
+
/* Support Vector Machine. */
|
7
|
+
/* */
|
8
|
+
/* Author: Thorsten Joachims */
|
9
|
+
/* Date: 02.07.02 */
|
10
|
+
/* */
|
11
|
+
/* Copyright (c) 2000 Thorsten Joachims - All rights reserved */
|
12
|
+
/* */
|
13
|
+
/* This software is available for non-commercial use only. It must */
|
14
|
+
/* not be modified and distributed without prior permission of the */
|
15
|
+
/* author. The author is not responsible for implications from the */
|
16
|
+
/* use of this software. */
|
17
|
+
/* */
|
18
|
+
/***********************************************************************/
|
19
|
+
|
20
|
+
|
21
|
+
/* if svm-learn is used out of C++, define it as extern "C" */
|
22
|
+
#ifdef __cplusplus
|
23
|
+
extern "C" {
|
24
|
+
#endif
|
25
|
+
|
26
|
+
# include "svm_common.h"
|
27
|
+
# include "svm_learn.h"
|
28
|
+
|
29
|
+
#ifdef __cplusplus
|
30
|
+
}
|
31
|
+
#endif
|
32
|
+
|
33
|
+
char docfile[200]; /* file with training examples */
|
34
|
+
char modelfile[200]; /* file for resulting classifier */
|
35
|
+
char restartfile[200]; /* file with initial alphas */
|
36
|
+
|
37
|
+
void read_input_parameters(int, char **, char *, char *, char *, long *,
|
38
|
+
LEARN_PARM *, KERNEL_PARM *);
|
39
|
+
void wait_any_key();
|
40
|
+
void print_help();
|
41
|
+
|
42
|
+
|
43
|
+
|
44
|
+
int main (int argc, char* argv[])
|
45
|
+
{
|
46
|
+
DOC **docs; /* training examples */
|
47
|
+
long totwords,totdoc,i;
|
48
|
+
double *target;
|
49
|
+
double *alpha_in=NULL;
|
50
|
+
KERNEL_CACHE *kernel_cache;
|
51
|
+
LEARN_PARM learn_parm;
|
52
|
+
KERNEL_PARM kernel_parm;
|
53
|
+
MODEL *model=(MODEL *)my_malloc(sizeof(MODEL));
|
54
|
+
|
55
|
+
read_input_parameters(argc,argv,docfile,modelfile,restartfile,&verbosity,
|
56
|
+
&learn_parm,&kernel_parm);
|
57
|
+
read_documents(docfile,&docs,&target,&totwords,&totdoc);
|
58
|
+
if(restartfile[0]) alpha_in=read_alphas(restartfile,totdoc);
|
59
|
+
|
60
|
+
if(kernel_parm.kernel_type == LINEAR) { /* don't need the cache */
|
61
|
+
kernel_cache=NULL;
|
62
|
+
}
|
63
|
+
else {
|
64
|
+
/* Always get a new kernel cache. It is not possible to use the
|
65
|
+
same cache for two different training runs */
|
66
|
+
kernel_cache=kernel_cache_init(totdoc,learn_parm.kernel_cache_size);
|
67
|
+
}
|
68
|
+
|
69
|
+
if(learn_parm.type == CLASSIFICATION) {
|
70
|
+
svm_learn_classification(docs,target,totdoc,totwords,&learn_parm,
|
71
|
+
&kernel_parm,kernel_cache,model,alpha_in);
|
72
|
+
}
|
73
|
+
else if(learn_parm.type == REGRESSION) {
|
74
|
+
svm_learn_regression(docs,target,totdoc,totwords,&learn_parm,
|
75
|
+
&kernel_parm,&kernel_cache,model);
|
76
|
+
}
|
77
|
+
else if(learn_parm.type == RANKING) {
|
78
|
+
svm_learn_ranking(docs,target,totdoc,totwords,&learn_parm,
|
79
|
+
&kernel_parm,&kernel_cache,model);
|
80
|
+
}
|
81
|
+
else if(learn_parm.type == OPTIMIZATION) {
|
82
|
+
svm_learn_optimization(docs,target,totdoc,totwords,&learn_parm,
|
83
|
+
&kernel_parm,kernel_cache,model,alpha_in);
|
84
|
+
}
|
85
|
+
|
86
|
+
if(kernel_cache) {
|
87
|
+
/* Free the memory used for the cache. */
|
88
|
+
kernel_cache_cleanup(kernel_cache);
|
89
|
+
}
|
90
|
+
|
91
|
+
/* Warning: The model contains references to the original data 'docs'.
|
92
|
+
If you want to free the original data, and only keep the model, you
|
93
|
+
have to make a deep copy of 'model'. */
|
94
|
+
/* deep_copy_of_model=copy_model(model); */
|
95
|
+
write_model(modelfile,model);
|
96
|
+
|
97
|
+
free(alpha_in);
|
98
|
+
free_model(model,0);
|
99
|
+
for(i=0;i<totdoc;i++)
|
100
|
+
free_example(docs[i],1);
|
101
|
+
free(docs);
|
102
|
+
free(target);
|
103
|
+
|
104
|
+
return(0);
|
105
|
+
}
|
106
|
+
|
107
|
+
/*---------------------------------------------------------------------------*/
|
108
|
+
|
109
|
+
void read_input_parameters(int argc,char *argv[],char *docfile,char *modelfile,
|
110
|
+
char *restartfile,long *verbosity,
|
111
|
+
LEARN_PARM *learn_parm,KERNEL_PARM *kernel_parm)
|
112
|
+
{
|
113
|
+
long i;
|
114
|
+
char type[100];
|
115
|
+
|
116
|
+
/* set default */
|
117
|
+
strcpy (modelfile, "svm_model");
|
118
|
+
strcpy (learn_parm->predfile, "trans_predictions");
|
119
|
+
strcpy (learn_parm->alphafile, "");
|
120
|
+
strcpy (restartfile, "");
|
121
|
+
(*verbosity)=1;
|
122
|
+
learn_parm->biased_hyperplane=1;
|
123
|
+
learn_parm->sharedslack=0;
|
124
|
+
learn_parm->remove_inconsistent=0;
|
125
|
+
learn_parm->skip_final_opt_check=0;
|
126
|
+
learn_parm->svm_maxqpsize=10;
|
127
|
+
learn_parm->svm_newvarsinqp=0;
|
128
|
+
learn_parm->svm_iter_to_shrink=-9999;
|
129
|
+
learn_parm->maxiter=100000;
|
130
|
+
learn_parm->kernel_cache_size=40;
|
131
|
+
learn_parm->svm_c=0.0;
|
132
|
+
learn_parm->eps=0.1;
|
133
|
+
learn_parm->transduction_posratio=-1.0;
|
134
|
+
learn_parm->svm_costratio=1.0;
|
135
|
+
learn_parm->svm_costratio_unlab=1.0;
|
136
|
+
learn_parm->svm_unlabbound=1E-5;
|
137
|
+
learn_parm->epsilon_crit=0.001;
|
138
|
+
learn_parm->epsilon_a=1E-15;
|
139
|
+
learn_parm->compute_loo=0;
|
140
|
+
learn_parm->rho=1.0;
|
141
|
+
learn_parm->xa_depth=0;
|
142
|
+
kernel_parm->kernel_type=0;
|
143
|
+
kernel_parm->poly_degree=3;
|
144
|
+
kernel_parm->rbf_gamma=1.0;
|
145
|
+
kernel_parm->coef_lin=1;
|
146
|
+
kernel_parm->coef_const=1;
|
147
|
+
strcpy(kernel_parm->custom,"empty");
|
148
|
+
strcpy(type,"c");
|
149
|
+
|
150
|
+
for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) {
|
151
|
+
switch ((argv[i])[1])
|
152
|
+
{
|
153
|
+
case '?': print_help(); exit(0);
|
154
|
+
case 'z': i++; strcpy(type,argv[i]); break;
|
155
|
+
case 'v': i++; (*verbosity)=atol(argv[i]); break;
|
156
|
+
case 'b': i++; learn_parm->biased_hyperplane=atol(argv[i]); break;
|
157
|
+
case 'i': i++; learn_parm->remove_inconsistent=atol(argv[i]); break;
|
158
|
+
case 'f': i++; learn_parm->skip_final_opt_check=!atol(argv[i]); break;
|
159
|
+
case 'q': i++; learn_parm->svm_maxqpsize=atol(argv[i]); break;
|
160
|
+
case 'n': i++; learn_parm->svm_newvarsinqp=atol(argv[i]); break;
|
161
|
+
case '#': i++; learn_parm->maxiter=atol(argv[i]); break;
|
162
|
+
case 'h': i++; learn_parm->svm_iter_to_shrink=atol(argv[i]); break;
|
163
|
+
case 'm': i++; learn_parm->kernel_cache_size=atol(argv[i]); break;
|
164
|
+
case 'c': i++; learn_parm->svm_c=atof(argv[i]); break;
|
165
|
+
case 'w': i++; learn_parm->eps=atof(argv[i]); break;
|
166
|
+
case 'p': i++; learn_parm->transduction_posratio=atof(argv[i]); break;
|
167
|
+
case 'j': i++; learn_parm->svm_costratio=atof(argv[i]); break;
|
168
|
+
case 'e': i++; learn_parm->epsilon_crit=atof(argv[i]); break;
|
169
|
+
case 'o': i++; learn_parm->rho=atof(argv[i]); break;
|
170
|
+
case 'k': i++; learn_parm->xa_depth=atol(argv[i]); break;
|
171
|
+
case 'x': i++; learn_parm->compute_loo=atol(argv[i]); break;
|
172
|
+
case 't': i++; kernel_parm->kernel_type=atol(argv[i]); break;
|
173
|
+
case 'd': i++; kernel_parm->poly_degree=atol(argv[i]); break;
|
174
|
+
case 'g': i++; kernel_parm->rbf_gamma=atof(argv[i]); break;
|
175
|
+
case 's': i++; kernel_parm->coef_lin=atof(argv[i]); break;
|
176
|
+
case 'r': i++; kernel_parm->coef_const=atof(argv[i]); break;
|
177
|
+
case 'u': i++; strcpy(kernel_parm->custom,argv[i]); break;
|
178
|
+
case 'l': i++; strcpy(learn_parm->predfile,argv[i]); break;
|
179
|
+
case 'a': i++; strcpy(learn_parm->alphafile,argv[i]); break;
|
180
|
+
case 'y': i++; strcpy(restartfile,argv[i]); break;
|
181
|
+
default: printf("\nUnrecognized option %s!\n\n",argv[i]);
|
182
|
+
print_help();
|
183
|
+
exit(0);
|
184
|
+
}
|
185
|
+
}
|
186
|
+
if(i>=argc) {
|
187
|
+
printf("\nNot enough input parameters!\n\n");
|
188
|
+
wait_any_key();
|
189
|
+
print_help();
|
190
|
+
exit(0);
|
191
|
+
}
|
192
|
+
strcpy (docfile, argv[i]);
|
193
|
+
if((i+1)<argc) {
|
194
|
+
strcpy (modelfile, argv[i+1]);
|
195
|
+
}
|
196
|
+
if(learn_parm->svm_iter_to_shrink == -9999) {
|
197
|
+
if(kernel_parm->kernel_type == LINEAR)
|
198
|
+
learn_parm->svm_iter_to_shrink=2;
|
199
|
+
else
|
200
|
+
learn_parm->svm_iter_to_shrink=100;
|
201
|
+
}
|
202
|
+
if(strcmp(type,"c")==0) {
|
203
|
+
learn_parm->type=CLASSIFICATION;
|
204
|
+
}
|
205
|
+
else if(strcmp(type,"r")==0) {
|
206
|
+
learn_parm->type=REGRESSION;
|
207
|
+
}
|
208
|
+
else if(strcmp(type,"p")==0) {
|
209
|
+
learn_parm->type=RANKING;
|
210
|
+
}
|
211
|
+
else if(strcmp(type,"o")==0) {
|
212
|
+
learn_parm->type=OPTIMIZATION;
|
213
|
+
}
|
214
|
+
else if(strcmp(type,"s")==0) {
|
215
|
+
learn_parm->type=OPTIMIZATION;
|
216
|
+
learn_parm->sharedslack=1;
|
217
|
+
}
|
218
|
+
else {
|
219
|
+
printf("\nUnknown type '%s': Valid types are 'c' (classification), 'r' regession, and 'p' preference ranking.\n",type);
|
220
|
+
wait_any_key();
|
221
|
+
print_help();
|
222
|
+
exit(0);
|
223
|
+
}
|
224
|
+
if((learn_parm->skip_final_opt_check)
|
225
|
+
&& (kernel_parm->kernel_type == LINEAR)) {
|
226
|
+
printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n");
|
227
|
+
learn_parm->skip_final_opt_check=0;
|
228
|
+
}
|
229
|
+
if((learn_parm->skip_final_opt_check)
|
230
|
+
&& (learn_parm->remove_inconsistent)) {
|
231
|
+
printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n");
|
232
|
+
wait_any_key();
|
233
|
+
print_help();
|
234
|
+
exit(0);
|
235
|
+
}
|
236
|
+
if((learn_parm->svm_maxqpsize<2)) {
|
237
|
+
printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize);
|
238
|
+
wait_any_key();
|
239
|
+
print_help();
|
240
|
+
exit(0);
|
241
|
+
}
|
242
|
+
if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
|
243
|
+
printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize);
|
244
|
+
printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp);
|
245
|
+
wait_any_key();
|
246
|
+
print_help();
|
247
|
+
exit(0);
|
248
|
+
}
|
249
|
+
if(learn_parm->svm_iter_to_shrink<1) {
|
250
|
+
printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink);
|
251
|
+
wait_any_key();
|
252
|
+
print_help();
|
253
|
+
exit(0);
|
254
|
+
}
|
255
|
+
if(learn_parm->svm_c<0) {
|
256
|
+
printf("\nThe C parameter must be greater than zero!\n\n");
|
257
|
+
wait_any_key();
|
258
|
+
print_help();
|
259
|
+
exit(0);
|
260
|
+
}
|
261
|
+
if(learn_parm->transduction_posratio>1) {
|
262
|
+
printf("\nThe fraction of unlabeled examples to classify as positives must\n");
|
263
|
+
printf("be less than 1.0 !!!\n\n");
|
264
|
+
wait_any_key();
|
265
|
+
print_help();
|
266
|
+
exit(0);
|
267
|
+
}
|
268
|
+
if(learn_parm->svm_costratio<=0) {
|
269
|
+
printf("\nThe COSTRATIO parameter must be greater than zero!\n\n");
|
270
|
+
wait_any_key();
|
271
|
+
print_help();
|
272
|
+
exit(0);
|
273
|
+
}
|
274
|
+
if(learn_parm->epsilon_crit<=0) {
|
275
|
+
printf("\nThe epsilon parameter must be greater than zero!\n\n");
|
276
|
+
wait_any_key();
|
277
|
+
print_help();
|
278
|
+
exit(0);
|
279
|
+
}
|
280
|
+
if(learn_parm->rho<0) {
|
281
|
+
printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n");
|
282
|
+
printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n");
|
283
|
+
printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n");
|
284
|
+
wait_any_key();
|
285
|
+
print_help();
|
286
|
+
exit(0);
|
287
|
+
}
|
288
|
+
if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
|
289
|
+
printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n");
|
290
|
+
printf("for switching to the conventional xa/estimates described in T. Joachims,\n");
|
291
|
+
printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n");
|
292
|
+
wait_any_key();
|
293
|
+
print_help();
|
294
|
+
exit(0);
|
295
|
+
}
|
296
|
+
}
|
297
|
+
|
298
|
+
void wait_any_key()
|
299
|
+
{
|
300
|
+
printf("\n(more)\n");
|
301
|
+
(void)getc(stdin);
|
302
|
+
}
|
303
|
+
|
304
|
+
void print_help()
|
305
|
+
{
|
306
|
+
printf("\nSVM-light %s: Support Vector Machine, learning module %s\n",VERSION,VERSION_DATE);
|
307
|
+
copyright_notice();
|
308
|
+
printf(" usage: svm_learn [options] example_file model_file\n\n");
|
309
|
+
printf("Arguments:\n");
|
310
|
+
printf(" example_file-> file with training data\n");
|
311
|
+
printf(" model_file -> file to store learned decision rule in\n");
|
312
|
+
|
313
|
+
printf("General options:\n");
|
314
|
+
printf(" -? -> this help\n");
|
315
|
+
printf(" -v [0..3] -> verbosity level (default 1)\n");
|
316
|
+
printf("Learning options:\n");
|
317
|
+
printf(" -z {c,r,p} -> select between classification (c), regression (r),\n");
|
318
|
+
printf(" and preference ranking (p) (default classification)\n");
|
319
|
+
printf(" -c float -> C: trade-off between training error\n");
|
320
|
+
printf(" and margin (default [avg. x*x]^-1)\n");
|
321
|
+
printf(" -w [0..] -> epsilon width of tube for regression\n");
|
322
|
+
printf(" (default 0.1)\n");
|
323
|
+
printf(" -j float -> Cost: cost-factor, by which training errors on\n");
|
324
|
+
printf(" positive examples outweight errors on negative\n");
|
325
|
+
printf(" examples (default 1) (see [4])\n");
|
326
|
+
printf(" -b [0,1] -> use biased hyperplane (i.e. x*w+b>0) instead\n");
|
327
|
+
printf(" of unbiased hyperplane (i.e. x*w>0) (default 1)\n");
|
328
|
+
printf(" -i [0,1] -> remove inconsistent training examples\n");
|
329
|
+
printf(" and retrain (default 0)\n");
|
330
|
+
printf("Performance estimation options:\n");
|
331
|
+
printf(" -x [0,1] -> compute leave-one-out estimates (default 0)\n");
|
332
|
+
printf(" (see [5])\n");
|
333
|
+
printf(" -o ]0..2] -> value of rho for XiAlpha-estimator and for pruning\n");
|
334
|
+
printf(" leave-one-out computation (default 1.0) (see [2])\n");
|
335
|
+
printf(" -k [0..100] -> search depth for extended XiAlpha-estimator \n");
|
336
|
+
printf(" (default 0)\n");
|
337
|
+
printf("Transduction options (see [3]):\n");
|
338
|
+
printf(" -p [0..1] -> fraction of unlabeled examples to be classified\n");
|
339
|
+
printf(" into the positive class (default is the ratio of\n");
|
340
|
+
printf(" positive and negative examples in the training data)\n");
|
341
|
+
printf("Kernel options:\n");
|
342
|
+
printf(" -t int -> type of kernel function:\n");
|
343
|
+
printf(" 0: linear (default)\n");
|
344
|
+
printf(" 1: polynomial (s a*b+c)^d\n");
|
345
|
+
printf(" 2: radial basis function exp(-gamma ||a-b||^2)\n");
|
346
|
+
printf(" 3: sigmoid tanh(s a*b + c)\n");
|
347
|
+
printf(" 4: user defined kernel from kernel.h\n");
|
348
|
+
printf(" -d int -> parameter d in polynomial kernel\n");
|
349
|
+
printf(" -g float -> parameter gamma in rbf kernel\n");
|
350
|
+
printf(" -s float -> parameter s in sigmoid/poly kernel\n");
|
351
|
+
printf(" -r float -> parameter c in sigmoid/poly kernel\n");
|
352
|
+
printf(" -u string -> parameter of user defined kernel\n");
|
353
|
+
printf("Optimization options (see [1]):\n");
|
354
|
+
printf(" -q [2..] -> maximum size of QP-subproblems (default 10)\n");
|
355
|
+
printf(" -n [2..q] -> number of new variables entering the working set\n");
|
356
|
+
printf(" in each iteration (default n = q). Set n<q to prevent\n");
|
357
|
+
printf(" zig-zagging.\n");
|
358
|
+
printf(" -m [5..] -> size of cache for kernel evaluations in MB (default 40)\n");
|
359
|
+
printf(" The larger the faster...\n");
|
360
|
+
printf(" -e float -> eps: Allow that error for termination criterion\n");
|
361
|
+
printf(" [y [w*x+b] - 1] >= eps (default 0.001)\n");
|
362
|
+
printf(" -y [0,1] -> restart the optimization from alpha values in file\n");
|
363
|
+
printf(" specified by -a option. (default 0)\n");
|
364
|
+
printf(" -h [5..] -> number of iterations a variable needs to be\n");
|
365
|
+
printf(" optimal before considered for shrinking (default 100)\n");
|
366
|
+
printf(" -f [0,1] -> do final optimality check for variables removed\n");
|
367
|
+
printf(" by shrinking. Although this test is usually \n");
|
368
|
+
printf(" positive, there is no guarantee that the optimum\n");
|
369
|
+
printf(" was found if the test is omitted. (default 1)\n");
|
370
|
+
printf(" -y string -> if option is given, reads alphas from file with given\n");
|
371
|
+
printf(" and uses them as starting point. (default 'disabled')\n");
|
372
|
+
printf(" -# int -> terminate optimization, if no progress after this\n");
|
373
|
+
printf(" number of iterations. (default 100000)\n");
|
374
|
+
printf("Output options:\n");
|
375
|
+
printf(" -l string -> file to write predicted labels of unlabeled\n");
|
376
|
+
printf(" examples into after transductive learning\n");
|
377
|
+
printf(" -a string -> write all alphas to this file after learning\n");
|
378
|
+
printf(" (in the same order as in the training set)\n");
|
379
|
+
wait_any_key();
|
380
|
+
printf("\nMore details in:\n");
|
381
|
+
printf("[1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n");
|
382
|
+
printf(" Kernel Methods - Support Vector Learning, B. Sch�lkopf and C. Burges and\n");
|
383
|
+
printf(" A. Smola (ed.), MIT Press, 1999.\n");
|
384
|
+
printf("[2] T. Joachims, Estimating the Generalization performance of an SVM\n");
|
385
|
+
printf(" Efficiently. International Conference on Machine Learning (ICML), 2000.\n");
|
386
|
+
printf("[3] T. Joachims, Transductive Inference for Text Classification using Support\n");
|
387
|
+
printf(" Vector Machines. International Conference on Machine Learning (ICML),\n");
|
388
|
+
printf(" 1999.\n");
|
389
|
+
printf("[4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning\n");
|
390
|
+
printf(" with a knowledge-based approach - A case study in intensive care \n");
|
391
|
+
printf(" monitoring. International Conference on Machine Learning (ICML), 1999.\n");
|
392
|
+
printf("[5] T. Joachims, Learning to Classify Text Using Support Vector\n");
|
393
|
+
printf(" Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n");
|
394
|
+
printf(" 2002.\n\n");
|
395
|
+
}
|
396
|
+
|
397
|
+
|