svmlightcli 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +13 -0
- data/Gemfile +4 -0
- data/Gemfile.lock +23 -0
- data/LICENSE.txt +85 -0
- data/README.md +49 -0
- data/Rakefile +10 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/bin/svm_classify +23 -0
- data/bin/svm_learn +23 -0
- data/ext/svmlightcli/Makefile +95 -0
- data/ext/svmlightcli/extconf.rb +33 -0
- data/ext/svmlightcli/kernel.h +40 -0
- data/ext/svmlightcli/svm_classify.c +197 -0
- data/ext/svmlightcli/svm_common.c +985 -0
- data/ext/svmlightcli/svm_common.h +301 -0
- data/ext/svmlightcli/svm_hideo.c +1062 -0
- data/ext/svmlightcli/svm_learn.c +4147 -0
- data/ext/svmlightcli/svm_learn.h +169 -0
- data/ext/svmlightcli/svm_learn_main.c +397 -0
- data/lib/svmlightcli.rb +6 -0
- data/lib/svmlightcli/version.rb +3 -0
- data/svmlightcli.gemspec +28 -0
- metadata +113 -0
@@ -0,0 +1,197 @@
|
|
1
|
+
/***********************************************************************/
|
2
|
+
/* */
|
3
|
+
/* svm_classify.c */
|
4
|
+
/* */
|
5
|
+
/* Classification module of Support Vector Machine. */
|
6
|
+
/* */
|
7
|
+
/* Author: Thorsten Joachims */
|
8
|
+
/* Date: 02.07.02 */
|
9
|
+
/* */
|
10
|
+
/* Copyright (c) 2002 Thorsten Joachims - All rights reserved */
|
11
|
+
/* */
|
12
|
+
/* This software is available for non-commercial use only. It must */
|
13
|
+
/* not be modified and distributed without prior permission of the */
|
14
|
+
/* author. The author is not responsible for implications from the */
|
15
|
+
/* use of this software. */
|
16
|
+
/* */
|
17
|
+
/************************************************************************/
|
18
|
+
|
19
|
+
# include "svm_common.h"
|
20
|
+
|
21
|
+
char docfile[200];
|
22
|
+
char modelfile[200];
|
23
|
+
char predictionsfile[200];
|
24
|
+
|
25
|
+
void read_input_parameters(int, char **, char *, char *, char *, long *,
|
26
|
+
long *);
|
27
|
+
void print_help(void);
|
28
|
+
|
29
|
+
|
30
|
+
int main (int argc, char* argv[])
|
31
|
+
{
|
32
|
+
DOC *doc; /* test example */
|
33
|
+
WORD *words;
|
34
|
+
long max_docs,max_words_doc,lld;
|
35
|
+
long totdoc=0,queryid,slackid;
|
36
|
+
long correct=0,incorrect=0,no_accuracy=0;
|
37
|
+
long res_a=0,res_b=0,res_c=0,res_d=0,wnum,pred_format;
|
38
|
+
long j;
|
39
|
+
double t1,runtime=0;
|
40
|
+
double dist,doc_label,costfactor;
|
41
|
+
char *line,*comment;
|
42
|
+
FILE *predfl,*docfl;
|
43
|
+
MODEL *model;
|
44
|
+
|
45
|
+
read_input_parameters(argc,argv,docfile,modelfile,predictionsfile,
|
46
|
+
&verbosity,&pred_format);
|
47
|
+
|
48
|
+
nol_ll(docfile,&max_docs,&max_words_doc,&lld); /* scan size of input file */
|
49
|
+
max_words_doc+=2;
|
50
|
+
lld+=2;
|
51
|
+
|
52
|
+
line = (char *)my_malloc(sizeof(char)*lld);
|
53
|
+
words = (WORD *)my_malloc(sizeof(WORD)*(max_words_doc+10));
|
54
|
+
|
55
|
+
model=read_model(modelfile);
|
56
|
+
|
57
|
+
if(model->kernel_parm.kernel_type == 0) { /* linear kernel */
|
58
|
+
/* compute weight vector */
|
59
|
+
add_weight_vector_to_linear_model(model);
|
60
|
+
}
|
61
|
+
|
62
|
+
if(verbosity>=2) {
|
63
|
+
printf("Classifying test examples.."); fflush(stdout);
|
64
|
+
}
|
65
|
+
|
66
|
+
if ((docfl = fopen (docfile, "r")) == NULL)
|
67
|
+
{ perror (docfile); exit (1); }
|
68
|
+
if ((predfl = fopen (predictionsfile, "w")) == NULL)
|
69
|
+
{ perror (predictionsfile); exit (1); }
|
70
|
+
|
71
|
+
while((!feof(docfl)) && fgets(line,(int)lld,docfl)) {
|
72
|
+
if(line[0] == '#') continue; /* line contains comments */
|
73
|
+
parse_document(line,words,&doc_label,&queryid,&slackid,&costfactor,&wnum,
|
74
|
+
max_words_doc,&comment);
|
75
|
+
totdoc++;
|
76
|
+
if(model->kernel_parm.kernel_type == 0) { /* linear kernel */
|
77
|
+
for(j=0;(words[j]).wnum != 0;j++) { /* Check if feature numbers */
|
78
|
+
if((words[j]).wnum>model->totwords) /* are not larger than in */
|
79
|
+
(words[j]).wnum=0; /* model. Remove feature if */
|
80
|
+
} /* necessary. */
|
81
|
+
doc = create_example(-1,0,0,0.0,create_svector(words,comment,1.0));
|
82
|
+
t1=get_runtime();
|
83
|
+
dist=classify_example_linear(model,doc);
|
84
|
+
runtime+=(get_runtime()-t1);
|
85
|
+
free_example(doc,1);
|
86
|
+
}
|
87
|
+
else { /* non-linear kernel */
|
88
|
+
doc = create_example(-1,0,0,0.0,create_svector(words,comment,1.0));
|
89
|
+
t1=get_runtime();
|
90
|
+
dist=classify_example(model,doc);
|
91
|
+
runtime+=(get_runtime()-t1);
|
92
|
+
free_example(doc,1);
|
93
|
+
}
|
94
|
+
if(dist>0) {
|
95
|
+
if(pred_format==0) { /* old weired output format */
|
96
|
+
fprintf(predfl,"%.8g:+1 %.8g:-1\n",dist,-dist);
|
97
|
+
}
|
98
|
+
if(doc_label>0) correct++; else incorrect++;
|
99
|
+
if(doc_label>0) res_a++; else res_b++;
|
100
|
+
}
|
101
|
+
else {
|
102
|
+
if(pred_format==0) { /* old weired output format */
|
103
|
+
fprintf(predfl,"%.8g:-1 %.8g:+1\n",-dist,dist);
|
104
|
+
}
|
105
|
+
if(doc_label<0) correct++; else incorrect++;
|
106
|
+
if(doc_label>0) res_c++; else res_d++;
|
107
|
+
}
|
108
|
+
if(pred_format==1) { /* output the value of decision function */
|
109
|
+
fprintf(predfl,"%.8g\n",dist);
|
110
|
+
}
|
111
|
+
if((int)(0.01+(doc_label*doc_label)) != 1)
|
112
|
+
{ no_accuracy=1; } /* test data is not binary labeled */
|
113
|
+
if(verbosity>=2) {
|
114
|
+
if(totdoc % 100 == 0) {
|
115
|
+
printf("%ld..",totdoc); fflush(stdout);
|
116
|
+
}
|
117
|
+
}
|
118
|
+
}
|
119
|
+
fclose(predfl);
|
120
|
+
fclose(docfl);
|
121
|
+
free(line);
|
122
|
+
free(words);
|
123
|
+
free_model(model,1);
|
124
|
+
|
125
|
+
if(verbosity>=2) {
|
126
|
+
printf("done\n");
|
127
|
+
|
128
|
+
/* Note by Gary Boone Date: 29 April 2000 */
|
129
|
+
/* o Timing is inaccurate. The timer has 0.01 second resolution. */
|
130
|
+
/* Because classification of a single vector takes less than */
|
131
|
+
/* 0.01 secs, the timer was underflowing. */
|
132
|
+
printf("Runtime (without IO) in cpu-seconds: %.2f\n",
|
133
|
+
(float)(runtime/100.0));
|
134
|
+
|
135
|
+
}
|
136
|
+
if((!no_accuracy) && (verbosity>=1)) {
|
137
|
+
printf("Accuracy on test set: %.2f%% (%ld correct, %ld incorrect, %ld total)\n",(float)(correct)*100.0/totdoc,correct,incorrect,totdoc);
|
138
|
+
printf("Precision/recall on test set: %.2f%%/%.2f%%\n",(float)(res_a)*100.0/(res_a+res_b),(float)(res_a)*100.0/(res_a+res_c));
|
139
|
+
}
|
140
|
+
|
141
|
+
return(0);
|
142
|
+
}
|
143
|
+
|
144
|
+
void read_input_parameters(int argc, char **argv, char *docfile,
|
145
|
+
char *modelfile, char *predictionsfile,
|
146
|
+
long int *verbosity, long int *pred_format)
|
147
|
+
{
|
148
|
+
long i;
|
149
|
+
|
150
|
+
/* set default */
|
151
|
+
strcpy (modelfile, "svm_model");
|
152
|
+
strcpy (predictionsfile, "svm_predictions");
|
153
|
+
(*verbosity)=2;
|
154
|
+
(*pred_format)=1;
|
155
|
+
|
156
|
+
for(i=1;(i<argc) && ((argv[i])[0] == '-');i++) {
|
157
|
+
switch ((argv[i])[1])
|
158
|
+
{
|
159
|
+
case 'h': print_help(); exit(0);
|
160
|
+
case 'v': i++; (*verbosity)=atol(argv[i]); break;
|
161
|
+
case 'f': i++; (*pred_format)=atol(argv[i]); break;
|
162
|
+
default: printf("\nUnrecognized option %s!\n\n",argv[i]);
|
163
|
+
print_help();
|
164
|
+
exit(0);
|
165
|
+
}
|
166
|
+
}
|
167
|
+
if((i+1)>=argc) {
|
168
|
+
printf("\nNot enough input parameters!\n\n");
|
169
|
+
print_help();
|
170
|
+
exit(0);
|
171
|
+
}
|
172
|
+
strcpy (docfile, argv[i]);
|
173
|
+
strcpy (modelfile, argv[i+1]);
|
174
|
+
if((i+2)<argc) {
|
175
|
+
strcpy (predictionsfile, argv[i+2]);
|
176
|
+
}
|
177
|
+
if(((*pred_format) != 0) && ((*pred_format) != 1)) {
|
178
|
+
printf("\nOutput format can only take the values 0 or 1!\n\n");
|
179
|
+
print_help();
|
180
|
+
exit(0);
|
181
|
+
}
|
182
|
+
}
|
183
|
+
|
184
|
+
void print_help(void)
|
185
|
+
{
|
186
|
+
printf("\nSVM-light %s: Support Vector Machine, classification module %s\n",VERSION,VERSION_DATE);
|
187
|
+
copyright_notice();
|
188
|
+
printf(" usage: svm_classify [options] example_file model_file output_file\n\n");
|
189
|
+
printf("options: -h -> this help\n");
|
190
|
+
printf(" -v [0..3] -> verbosity level (default 2)\n");
|
191
|
+
printf(" -f [0,1] -> 0: old output format of V1.0\n");
|
192
|
+
printf(" -> 1: output the value of decision function (default)\n\n");
|
193
|
+
}
|
194
|
+
|
195
|
+
|
196
|
+
|
197
|
+
|
@@ -0,0 +1,985 @@
|
|
1
|
+
/************************************************************************/
|
2
|
+
/* */
|
3
|
+
/* svm_common.c */
|
4
|
+
/* */
|
5
|
+
/* Definitions and functions used in both svm_learn and svm_classify. */
|
6
|
+
/* */
|
7
|
+
/* Author: Thorsten Joachims */
|
8
|
+
/* Date: 02.07.04 */
|
9
|
+
/* */
|
10
|
+
/* Copyright (c) 2004 Thorsten Joachims - All rights reserved */
|
11
|
+
/* */
|
12
|
+
/* This software is available for non-commercial use only. It must */
|
13
|
+
/* not be modified and distributed without prior permission of the */
|
14
|
+
/* author. The author is not responsible for implications from the */
|
15
|
+
/* use of this software. */
|
16
|
+
/* */
|
17
|
+
/************************************************************************/
|
18
|
+
|
19
|
+
# include "ctype.h"
|
20
|
+
# include "svm_common.h"
|
21
|
+
# include "kernel.h" /* this contains a user supplied kernel */
|
22
|
+
|
23
|
+
long verbosity; /* verbosity level (0-4) */
|
24
|
+
long kernel_cache_statistic;
|
25
|
+
|
26
|
+
double classify_example(MODEL *model, DOC *ex)
|
27
|
+
/* classifies one example */
|
28
|
+
{
|
29
|
+
register long i;
|
30
|
+
register double dist;
|
31
|
+
|
32
|
+
if((model->kernel_parm.kernel_type == LINEAR) && (model->lin_weights))
|
33
|
+
return(classify_example_linear(model,ex));
|
34
|
+
|
35
|
+
dist=0;
|
36
|
+
for(i=1;i<model->sv_num;i++) {
|
37
|
+
dist+=kernel(&model->kernel_parm,model->supvec[i],ex)*model->alpha[i];
|
38
|
+
}
|
39
|
+
return(dist-model->b);
|
40
|
+
}
|
41
|
+
|
42
|
+
double classify_example_linear(MODEL *model, DOC *ex)
|
43
|
+
/* classifies example for linear kernel */
|
44
|
+
|
45
|
+
/* important: the model must have the linear weight vector computed */
|
46
|
+
/* use: add_weight_vector_to_linear_model(&model); */
|
47
|
+
|
48
|
+
|
49
|
+
/* important: the feature numbers in the example to classify must */
|
50
|
+
/* not be larger than the weight vector! */
|
51
|
+
{
|
52
|
+
double sum=0;
|
53
|
+
SVECTOR *f;
|
54
|
+
|
55
|
+
for(f=ex->fvec;f;f=f->next)
|
56
|
+
sum+=f->factor*sprod_ns(model->lin_weights,f);
|
57
|
+
return(sum-model->b);
|
58
|
+
}
|
59
|
+
|
60
|
+
|
61
|
+
double kernel(KERNEL_PARM *kernel_parm, DOC *a, DOC *b)
|
62
|
+
/* calculate the kernel function */
|
63
|
+
{
|
64
|
+
double sum=0;
|
65
|
+
SVECTOR *fa,*fb;
|
66
|
+
|
67
|
+
/* in case the constraints are sums of feature vector as represented
|
68
|
+
as a list of SVECTOR's with their coefficient factor in the sum,
|
69
|
+
take the kernel between all pairs */
|
70
|
+
for(fa=a->fvec;fa;fa=fa->next) {
|
71
|
+
for(fb=b->fvec;fb;fb=fb->next) {
|
72
|
+
if(fa->kernel_id == fb->kernel_id)
|
73
|
+
sum+=fa->factor*fb->factor*single_kernel(kernel_parm,fa,fb);
|
74
|
+
}
|
75
|
+
}
|
76
|
+
return(sum);
|
77
|
+
}
|
78
|
+
|
79
|
+
double single_kernel(KERNEL_PARM *kernel_parm, SVECTOR *a, SVECTOR *b)
|
80
|
+
/* calculate the kernel function between two vectors */
|
81
|
+
{
|
82
|
+
kernel_cache_statistic++;
|
83
|
+
switch(kernel_parm->kernel_type) {
|
84
|
+
case 0: /* linear */
|
85
|
+
return(sprod_ss(a,b));
|
86
|
+
case 1: /* polynomial */
|
87
|
+
return(pow(kernel_parm->coef_lin*sprod_ss(a,b)+kernel_parm->coef_const,(double)kernel_parm->poly_degree));
|
88
|
+
case 2: /* radial basis function */
|
89
|
+
return(exp(-kernel_parm->rbf_gamma*(a->twonorm_sq-2*sprod_ss(a,b)+b->twonorm_sq)));
|
90
|
+
case 3: /* sigmoid neural net */
|
91
|
+
return(tanh(kernel_parm->coef_lin*sprod_ss(a,b)+kernel_parm->coef_const));
|
92
|
+
case 4: /* custom-kernel supplied in file kernel.h*/
|
93
|
+
return(custom_kernel(kernel_parm,a,b));
|
94
|
+
default: printf("Error: Unknown kernel function\n"); exit(1);
|
95
|
+
}
|
96
|
+
}
|
97
|
+
|
98
|
+
|
99
|
+
SVECTOR *create_svector(WORD *words,char *userdefined,double factor)
|
100
|
+
{
|
101
|
+
SVECTOR *vec;
|
102
|
+
long fnum,i;
|
103
|
+
|
104
|
+
fnum=0;
|
105
|
+
while(words[fnum].wnum) {
|
106
|
+
fnum++;
|
107
|
+
}
|
108
|
+
fnum++;
|
109
|
+
vec = (SVECTOR *)my_malloc(sizeof(SVECTOR));
|
110
|
+
vec->words = (WORD *)my_malloc(sizeof(WORD)*(fnum));
|
111
|
+
for(i=0;i<fnum;i++) {
|
112
|
+
vec->words[i]=words[i];
|
113
|
+
}
|
114
|
+
vec->twonorm_sq=sprod_ss(vec,vec);
|
115
|
+
|
116
|
+
fnum=0;
|
117
|
+
while(userdefined[fnum]) {
|
118
|
+
fnum++;
|
119
|
+
}
|
120
|
+
fnum++;
|
121
|
+
vec->userdefined = (char *)my_malloc(sizeof(char)*(fnum));
|
122
|
+
for(i=0;i<fnum;i++) {
|
123
|
+
vec->userdefined[i]=userdefined[i];
|
124
|
+
}
|
125
|
+
vec->kernel_id=0;
|
126
|
+
vec->next=NULL;
|
127
|
+
vec->factor=factor;
|
128
|
+
return(vec);
|
129
|
+
}
|
130
|
+
|
131
|
+
SVECTOR *copy_svector(SVECTOR *vec)
|
132
|
+
{
|
133
|
+
SVECTOR *newvec=NULL;
|
134
|
+
if(vec) {
|
135
|
+
newvec=create_svector(vec->words,vec->userdefined,vec->factor);
|
136
|
+
newvec->next=copy_svector(vec->next);
|
137
|
+
}
|
138
|
+
return(newvec);
|
139
|
+
}
|
140
|
+
|
141
|
+
void free_svector(SVECTOR *vec)
|
142
|
+
{
|
143
|
+
if(vec) {
|
144
|
+
free(vec->words);
|
145
|
+
if(vec->userdefined)
|
146
|
+
free(vec->userdefined);
|
147
|
+
free_svector(vec->next);
|
148
|
+
free(vec);
|
149
|
+
}
|
150
|
+
}
|
151
|
+
|
152
|
+
double sprod_ss(SVECTOR *a, SVECTOR *b)
|
153
|
+
/* compute the inner product of two sparse vectors */
|
154
|
+
{
|
155
|
+
register double sum=0;
|
156
|
+
register WORD *ai,*bj;
|
157
|
+
ai=a->words;
|
158
|
+
bj=b->words;
|
159
|
+
while (ai->wnum && bj->wnum) {
|
160
|
+
if(ai->wnum > bj->wnum) {
|
161
|
+
bj++;
|
162
|
+
}
|
163
|
+
else if (ai->wnum < bj->wnum) {
|
164
|
+
ai++;
|
165
|
+
}
|
166
|
+
else {
|
167
|
+
sum+=(ai->weight) * (bj->weight);
|
168
|
+
ai++;
|
169
|
+
bj++;
|
170
|
+
}
|
171
|
+
}
|
172
|
+
return((double)sum);
|
173
|
+
}
|
174
|
+
|
175
|
+
SVECTOR* sub_ss(SVECTOR *a, SVECTOR *b)
|
176
|
+
/* compute the difference a-b of two sparse vectors */
|
177
|
+
/* Note: SVECTOR lists are not followed, but only the first
|
178
|
+
SVECTOR is used */
|
179
|
+
{
|
180
|
+
SVECTOR *vec;
|
181
|
+
register WORD *sum,*sumi;
|
182
|
+
register WORD *ai,*bj;
|
183
|
+
long veclength;
|
184
|
+
|
185
|
+
ai=a->words;
|
186
|
+
bj=b->words;
|
187
|
+
veclength=0;
|
188
|
+
while (ai->wnum && bj->wnum) {
|
189
|
+
if(ai->wnum > bj->wnum) {
|
190
|
+
veclength++;
|
191
|
+
bj++;
|
192
|
+
}
|
193
|
+
else if (ai->wnum < bj->wnum) {
|
194
|
+
veclength++;
|
195
|
+
ai++;
|
196
|
+
}
|
197
|
+
else {
|
198
|
+
veclength++;
|
199
|
+
ai++;
|
200
|
+
bj++;
|
201
|
+
}
|
202
|
+
}
|
203
|
+
while (bj->wnum) {
|
204
|
+
veclength++;
|
205
|
+
bj++;
|
206
|
+
}
|
207
|
+
while (ai->wnum) {
|
208
|
+
veclength++;
|
209
|
+
ai++;
|
210
|
+
}
|
211
|
+
veclength++;
|
212
|
+
|
213
|
+
sum=(WORD *)my_malloc(sizeof(WORD)*veclength);
|
214
|
+
sumi=sum;
|
215
|
+
ai=a->words;
|
216
|
+
bj=b->words;
|
217
|
+
while (ai->wnum && bj->wnum) {
|
218
|
+
if(ai->wnum > bj->wnum) {
|
219
|
+
(*sumi)=(*bj);
|
220
|
+
sumi->weight*=(-1);
|
221
|
+
sumi++;
|
222
|
+
bj++;
|
223
|
+
}
|
224
|
+
else if (ai->wnum < bj->wnum) {
|
225
|
+
(*sumi)=(*ai);
|
226
|
+
sumi++;
|
227
|
+
ai++;
|
228
|
+
}
|
229
|
+
else {
|
230
|
+
(*sumi)=(*ai);
|
231
|
+
sumi->weight-=bj->weight;
|
232
|
+
if(sumi->weight != 0)
|
233
|
+
sumi++;
|
234
|
+
ai++;
|
235
|
+
bj++;
|
236
|
+
}
|
237
|
+
}
|
238
|
+
while (bj->wnum) {
|
239
|
+
(*sumi)=(*bj);
|
240
|
+
sumi->weight*=(-1);
|
241
|
+
sumi++;
|
242
|
+
bj++;
|
243
|
+
}
|
244
|
+
while (ai->wnum) {
|
245
|
+
(*sumi)=(*ai);
|
246
|
+
sumi++;
|
247
|
+
ai++;
|
248
|
+
}
|
249
|
+
sumi->wnum=0;
|
250
|
+
|
251
|
+
vec=create_svector(sum,"",1.0);
|
252
|
+
free(sum);
|
253
|
+
|
254
|
+
return(vec);
|
255
|
+
}
|
256
|
+
|
257
|
+
SVECTOR* add_ss(SVECTOR *a, SVECTOR *b)
|
258
|
+
/* compute the sum a+b of two sparse vectors */
|
259
|
+
/* Note: SVECTOR lists are not followed, but only the first
|
260
|
+
SVECTOR is used */
|
261
|
+
{
|
262
|
+
SVECTOR *vec;
|
263
|
+
register WORD *sum,*sumi;
|
264
|
+
register WORD *ai,*bj;
|
265
|
+
long veclength;
|
266
|
+
|
267
|
+
ai=a->words;
|
268
|
+
bj=b->words;
|
269
|
+
veclength=0;
|
270
|
+
while (ai->wnum && bj->wnum) {
|
271
|
+
if(ai->wnum > bj->wnum) {
|
272
|
+
veclength++;
|
273
|
+
bj++;
|
274
|
+
}
|
275
|
+
else if (ai->wnum < bj->wnum) {
|
276
|
+
veclength++;
|
277
|
+
ai++;
|
278
|
+
}
|
279
|
+
else {
|
280
|
+
veclength++;
|
281
|
+
ai++;
|
282
|
+
bj++;
|
283
|
+
}
|
284
|
+
}
|
285
|
+
while (bj->wnum) {
|
286
|
+
veclength++;
|
287
|
+
bj++;
|
288
|
+
}
|
289
|
+
while (ai->wnum) {
|
290
|
+
veclength++;
|
291
|
+
ai++;
|
292
|
+
}
|
293
|
+
veclength++;
|
294
|
+
|
295
|
+
/*** is veclength=lengSequence(a)+lengthSequence(b)? ***/
|
296
|
+
|
297
|
+
sum=(WORD *)my_malloc(sizeof(WORD)*veclength);
|
298
|
+
sumi=sum;
|
299
|
+
ai=a->words;
|
300
|
+
bj=b->words;
|
301
|
+
while (ai->wnum && bj->wnum) {
|
302
|
+
if(ai->wnum > bj->wnum) {
|
303
|
+
(*sumi)=(*bj);
|
304
|
+
sumi++;
|
305
|
+
bj++;
|
306
|
+
}
|
307
|
+
else if (ai->wnum < bj->wnum) {
|
308
|
+
(*sumi)=(*ai);
|
309
|
+
sumi++;
|
310
|
+
ai++;
|
311
|
+
}
|
312
|
+
else {
|
313
|
+
(*sumi)=(*ai);
|
314
|
+
sumi->weight+=bj->weight;
|
315
|
+
if(sumi->weight != 0)
|
316
|
+
sumi++;
|
317
|
+
ai++;
|
318
|
+
bj++;
|
319
|
+
}
|
320
|
+
}
|
321
|
+
while (bj->wnum) {
|
322
|
+
(*sumi)=(*bj);
|
323
|
+
sumi++;
|
324
|
+
bj++;
|
325
|
+
}
|
326
|
+
while (ai->wnum) {
|
327
|
+
(*sumi)=(*ai);
|
328
|
+
sumi++;
|
329
|
+
ai++;
|
330
|
+
}
|
331
|
+
sumi->wnum=0;
|
332
|
+
|
333
|
+
vec=create_svector(sum,"",1.0);
|
334
|
+
free(sum);
|
335
|
+
|
336
|
+
return(vec);
|
337
|
+
}
|
338
|
+
|
339
|
+
SVECTOR* add_list_ss(SVECTOR *a)
|
340
|
+
/* computes the linear combination of the SVECTOR list weighted
|
341
|
+
by the factor of each SVECTOR */
|
342
|
+
{
|
343
|
+
SVECTOR *scaled,*oldsum,*sum,*f;
|
344
|
+
WORD empty[2];
|
345
|
+
|
346
|
+
if(a){
|
347
|
+
sum=smult_s(a,a->factor);
|
348
|
+
for(f=a->next;f;f=f->next) {
|
349
|
+
scaled=smult_s(f,f->factor);
|
350
|
+
oldsum=sum;
|
351
|
+
sum=add_ss(sum,scaled);
|
352
|
+
free_svector(oldsum);
|
353
|
+
free_svector(scaled);
|
354
|
+
}
|
355
|
+
sum->factor=1.0;
|
356
|
+
}
|
357
|
+
else {
|
358
|
+
empty[0].wnum=0;
|
359
|
+
sum=create_svector(empty,"",1.0);
|
360
|
+
}
|
361
|
+
return(sum);
|
362
|
+
}
|
363
|
+
|
364
|
+
void append_svector_list(SVECTOR *a, SVECTOR *b)
|
365
|
+
/* appends SVECTOR b to the end of SVECTOR a. */
|
366
|
+
{
|
367
|
+
SVECTOR *f;
|
368
|
+
|
369
|
+
for(f=a;f->next;f=f->next); /* find end of first vector list */
|
370
|
+
f->next=b; /* append the two vector lists */
|
371
|
+
}
|
372
|
+
|
373
|
+
SVECTOR* smult_s(SVECTOR *a, double factor)
|
374
|
+
/* scale sparse vector a by factor */
|
375
|
+
{
|
376
|
+
SVECTOR *vec;
|
377
|
+
register WORD *sum,*sumi;
|
378
|
+
register WORD *ai;
|
379
|
+
long veclength;
|
380
|
+
|
381
|
+
ai=a->words;
|
382
|
+
veclength=0;
|
383
|
+
while (ai->wnum) {
|
384
|
+
veclength++;
|
385
|
+
ai++;
|
386
|
+
}
|
387
|
+
veclength++;
|
388
|
+
|
389
|
+
sum=(WORD *)my_malloc(sizeof(WORD)*veclength);
|
390
|
+
sumi=sum;
|
391
|
+
ai=a->words;
|
392
|
+
while (ai->wnum) {
|
393
|
+
(*sumi)=(*ai);
|
394
|
+
sumi->weight*=factor;
|
395
|
+
if(sumi->weight != 0)
|
396
|
+
sumi++;
|
397
|
+
ai++;
|
398
|
+
}
|
399
|
+
sumi->wnum=0;
|
400
|
+
|
401
|
+
vec=create_svector(sum,a->userdefined,a->factor);
|
402
|
+
free(sum);
|
403
|
+
|
404
|
+
return(vec);
|
405
|
+
}
|
406
|
+
|
407
|
+
int featvec_eq(SVECTOR *a, SVECTOR *b)
|
408
|
+
/* tests two sparse vectors for equality */
|
409
|
+
{
|
410
|
+
register WORD *ai,*bj;
|
411
|
+
ai=a->words;
|
412
|
+
bj=b->words;
|
413
|
+
while (ai->wnum && bj->wnum) {
|
414
|
+
if(ai->wnum > bj->wnum) {
|
415
|
+
if((bj->weight) != 0)
|
416
|
+
return(0);
|
417
|
+
bj++;
|
418
|
+
}
|
419
|
+
else if (ai->wnum < bj->wnum) {
|
420
|
+
if((ai->weight) != 0)
|
421
|
+
return(0);
|
422
|
+
ai++;
|
423
|
+
}
|
424
|
+
else {
|
425
|
+
if((ai->weight) != (bj->weight))
|
426
|
+
return(0);
|
427
|
+
ai++;
|
428
|
+
bj++;
|
429
|
+
}
|
430
|
+
}
|
431
|
+
return(1);
|
432
|
+
}
|
433
|
+
|
434
|
+
double model_length_s(MODEL *model, KERNEL_PARM *kernel_parm)
|
435
|
+
/* compute length of weight vector */
|
436
|
+
{
|
437
|
+
register long i,j;
|
438
|
+
register double sum=0,alphai;
|
439
|
+
register DOC *supveci;
|
440
|
+
|
441
|
+
for(i=1;i<model->sv_num;i++) {
|
442
|
+
alphai=model->alpha[i];
|
443
|
+
supveci=model->supvec[i];
|
444
|
+
for(j=1;j<model->sv_num;j++) {
|
445
|
+
sum+=alphai*model->alpha[j]
|
446
|
+
*kernel(kernel_parm,supveci,model->supvec[j]);
|
447
|
+
}
|
448
|
+
}
|
449
|
+
return(sqrt(sum));
|
450
|
+
}
|
451
|
+
|
452
|
+
void clear_vector_n(double *vec, long int n)
|
453
|
+
{
|
454
|
+
register long i;
|
455
|
+
for(i=0;i<=n;i++) vec[i]=0;
|
456
|
+
}
|
457
|
+
|
458
|
+
void add_vector_ns(double *vec_n, SVECTOR *vec_s, double faktor)
|
459
|
+
{
|
460
|
+
register WORD *ai;
|
461
|
+
ai=vec_s->words;
|
462
|
+
while (ai->wnum) {
|
463
|
+
vec_n[ai->wnum]+=(faktor*ai->weight);
|
464
|
+
ai++;
|
465
|
+
}
|
466
|
+
}
|
467
|
+
|
468
|
+
double sprod_ns(double *vec_n, SVECTOR *vec_s)
|
469
|
+
{
|
470
|
+
register double sum=0;
|
471
|
+
register WORD *ai;
|
472
|
+
ai=vec_s->words;
|
473
|
+
while (ai->wnum) {
|
474
|
+
sum+=(vec_n[ai->wnum]*ai->weight);
|
475
|
+
ai++;
|
476
|
+
}
|
477
|
+
return(sum);
|
478
|
+
}
|
479
|
+
|
480
|
+
void add_weight_vector_to_linear_model(MODEL *model)
|
481
|
+
/* compute weight vector in linear case and add to model */
|
482
|
+
{
|
483
|
+
long i;
|
484
|
+
SVECTOR *f;
|
485
|
+
|
486
|
+
model->lin_weights=(double *)my_malloc(sizeof(double)*(model->totwords+1));
|
487
|
+
clear_vector_n(model->lin_weights,model->totwords);
|
488
|
+
for(i=1;i<model->sv_num;i++) {
|
489
|
+
for(f=(model->supvec[i])->fvec;f;f=f->next)
|
490
|
+
add_vector_ns(model->lin_weights,f,f->factor*model->alpha[i]);
|
491
|
+
}
|
492
|
+
}
|
493
|
+
|
494
|
+
|
495
|
+
DOC *create_example(long docnum, long queryid, long slackid,
|
496
|
+
double costfactor, SVECTOR *fvec)
|
497
|
+
{
|
498
|
+
DOC *example;
|
499
|
+
example = (DOC *)my_malloc(sizeof(DOC));
|
500
|
+
example->docnum=docnum;
|
501
|
+
example->queryid=queryid;
|
502
|
+
example->slackid=slackid;
|
503
|
+
example->costfactor=costfactor;
|
504
|
+
example->fvec=fvec;
|
505
|
+
return(example);
|
506
|
+
}
|
507
|
+
|
508
|
+
void free_example(DOC *example, long deep)
|
509
|
+
{
|
510
|
+
if(example) {
|
511
|
+
if(deep) {
|
512
|
+
if(example->fvec)
|
513
|
+
free_svector(example->fvec);
|
514
|
+
}
|
515
|
+
free(example);
|
516
|
+
}
|
517
|
+
}
|
518
|
+
|
519
|
+
void write_model(char *modelfile, MODEL *model)
|
520
|
+
{
|
521
|
+
FILE *modelfl;
|
522
|
+
long j,i,sv_num;
|
523
|
+
SVECTOR *v;
|
524
|
+
|
525
|
+
if(verbosity>=1) {
|
526
|
+
printf("Writing model file..."); fflush(stdout);
|
527
|
+
}
|
528
|
+
if ((modelfl = fopen (modelfile, "w")) == NULL)
|
529
|
+
{ perror (modelfile); exit (1); }
|
530
|
+
fprintf(modelfl,"SVM-light Version %s\n",VERSION);
|
531
|
+
fprintf(modelfl,"%ld # kernel type\n",
|
532
|
+
model->kernel_parm.kernel_type);
|
533
|
+
fprintf(modelfl,"%ld # kernel parameter -d \n",
|
534
|
+
model->kernel_parm.poly_degree);
|
535
|
+
fprintf(modelfl,"%.8g # kernel parameter -g \n",
|
536
|
+
model->kernel_parm.rbf_gamma);
|
537
|
+
fprintf(modelfl,"%.8g # kernel parameter -s \n",
|
538
|
+
model->kernel_parm.coef_lin);
|
539
|
+
fprintf(modelfl,"%.8g # kernel parameter -r \n",
|
540
|
+
model->kernel_parm.coef_const);
|
541
|
+
fprintf(modelfl,"%s# kernel parameter -u \n",model->kernel_parm.custom);
|
542
|
+
fprintf(modelfl,"%ld # highest feature index \n",model->totwords);
|
543
|
+
fprintf(modelfl,"%ld # number of training documents \n",model->totdoc);
|
544
|
+
|
545
|
+
sv_num=1;
|
546
|
+
for(i=1;i<model->sv_num;i++) {
|
547
|
+
for(v=model->supvec[i]->fvec;v;v=v->next)
|
548
|
+
sv_num++;
|
549
|
+
}
|
550
|
+
fprintf(modelfl,"%ld # number of support vectors plus 1 \n",sv_num);
|
551
|
+
fprintf(modelfl,"%.8g # threshold b, each following line is a SV (starting with alpha*y)\n",model->b);
|
552
|
+
|
553
|
+
for(i=1;i<model->sv_num;i++) {
|
554
|
+
for(v=model->supvec[i]->fvec;v;v=v->next) {
|
555
|
+
fprintf(modelfl,"%.32g ",model->alpha[i]*v->factor);
|
556
|
+
for (j=0; (v->words[j]).wnum; j++) {
|
557
|
+
fprintf(modelfl,"%ld:%.8g ",
|
558
|
+
(long)(v->words[j]).wnum,
|
559
|
+
(double)(v->words[j]).weight);
|
560
|
+
}
|
561
|
+
fprintf(modelfl,"#%s\n",v->userdefined);
|
562
|
+
/* NOTE: this could be made more efficient by summing the
|
563
|
+
alpha's of identical vectors before writing them to the
|
564
|
+
file. */
|
565
|
+
}
|
566
|
+
}
|
567
|
+
fclose(modelfl);
|
568
|
+
if(verbosity>=1) {
|
569
|
+
printf("done\n");
|
570
|
+
}
|
571
|
+
}
|
572
|
+
|
573
|
+
|
574
|
+
MODEL *read_model(char *modelfile)
|
575
|
+
{
|
576
|
+
FILE *modelfl;
|
577
|
+
long i,queryid,slackid;
|
578
|
+
double costfactor;
|
579
|
+
long max_sv,max_words,ll,wpos;
|
580
|
+
char *line,*comment;
|
581
|
+
WORD *words;
|
582
|
+
char version_buffer[100];
|
583
|
+
MODEL *model;
|
584
|
+
|
585
|
+
if(verbosity>=1) {
|
586
|
+
printf("Reading model..."); fflush(stdout);
|
587
|
+
}
|
588
|
+
|
589
|
+
nol_ll(modelfile,&max_sv,&max_words,&ll); /* scan size of model file */
|
590
|
+
max_words+=2;
|
591
|
+
ll+=2;
|
592
|
+
|
593
|
+
words = (WORD *)my_malloc(sizeof(WORD)*(max_words+10));
|
594
|
+
line = (char *)my_malloc(sizeof(char)*ll);
|
595
|
+
model = (MODEL *)my_malloc(sizeof(MODEL));
|
596
|
+
|
597
|
+
if ((modelfl = fopen (modelfile, "r")) == NULL)
|
598
|
+
{ perror (modelfile); exit (1); }
|
599
|
+
|
600
|
+
fscanf(modelfl,"SVM-light Version %s\n",version_buffer);
|
601
|
+
if(strcmp(version_buffer,VERSION)) {
|
602
|
+
perror ("Version of model-file does not match version of svm_classify!");
|
603
|
+
exit (1);
|
604
|
+
}
|
605
|
+
fscanf(modelfl,"%ld%*[^\n]\n", &model->kernel_parm.kernel_type);
|
606
|
+
fscanf(modelfl,"%ld%*[^\n]\n", &model->kernel_parm.poly_degree);
|
607
|
+
fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.rbf_gamma);
|
608
|
+
fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.coef_lin);
|
609
|
+
fscanf(modelfl,"%lf%*[^\n]\n", &model->kernel_parm.coef_const);
|
610
|
+
fscanf(modelfl,"%[^#]%*[^\n]\n", model->kernel_parm.custom);
|
611
|
+
|
612
|
+
fscanf(modelfl,"%ld%*[^\n]\n", &model->totwords);
|
613
|
+
fscanf(modelfl,"%ld%*[^\n]\n", &model->totdoc);
|
614
|
+
fscanf(modelfl,"%ld%*[^\n]\n", &model->sv_num);
|
615
|
+
fscanf(modelfl,"%lf%*[^\n]\n", &model->b);
|
616
|
+
|
617
|
+
model->supvec = (DOC **)my_malloc(sizeof(DOC *)*model->sv_num);
|
618
|
+
model->alpha = (double *)my_malloc(sizeof(double)*model->sv_num);
|
619
|
+
model->index=NULL;
|
620
|
+
model->lin_weights=NULL;
|
621
|
+
|
622
|
+
for(i=1;i<model->sv_num;i++) {
|
623
|
+
fgets(line,(int)ll,modelfl);
|
624
|
+
if(!parse_document(line,words,&(model->alpha[i]),&queryid,&slackid,
|
625
|
+
&costfactor,&wpos,max_words,&comment)) {
|
626
|
+
printf("\nParsing error while reading model file in SV %ld!\n%s",
|
627
|
+
i,line);
|
628
|
+
exit(1);
|
629
|
+
}
|
630
|
+
model->supvec[i] = create_example(-1,
|
631
|
+
0,0,
|
632
|
+
0.0,
|
633
|
+
create_svector(words,comment,1.0));
|
634
|
+
}
|
635
|
+
fclose(modelfl);
|
636
|
+
free(line);
|
637
|
+
free(words);
|
638
|
+
if(verbosity>=1) {
|
639
|
+
fprintf(stdout, "OK. (%d support vectors read)\n",(int)(model->sv_num-1));
|
640
|
+
}
|
641
|
+
return(model);
|
642
|
+
}
|
643
|
+
|
644
|
+
MODEL *copy_model(MODEL *model)
|
645
|
+
{
|
646
|
+
MODEL *newmodel;
|
647
|
+
long i;
|
648
|
+
|
649
|
+
newmodel=(MODEL *)my_malloc(sizeof(MODEL));
|
650
|
+
(*newmodel)=(*model);
|
651
|
+
newmodel->supvec = (DOC **)my_malloc(sizeof(DOC *)*model->sv_num);
|
652
|
+
newmodel->alpha = (double *)my_malloc(sizeof(double)*model->sv_num);
|
653
|
+
newmodel->index = NULL; /* index is not copied */
|
654
|
+
newmodel->supvec[0] = NULL;
|
655
|
+
newmodel->alpha[0] = 0;
|
656
|
+
for(i=1;i<model->sv_num;i++) {
|
657
|
+
newmodel->alpha[i]=model->alpha[i];
|
658
|
+
newmodel->supvec[i]=create_example(model->supvec[i]->docnum,
|
659
|
+
model->supvec[i]->queryid,0,
|
660
|
+
model->supvec[i]->costfactor,
|
661
|
+
copy_svector(model->supvec[i]->fvec));
|
662
|
+
}
|
663
|
+
if(model->lin_weights) {
|
664
|
+
newmodel->lin_weights = (double *)my_malloc(sizeof(double)*(model->totwords+1));
|
665
|
+
for(i=0;i<model->totwords+1;i++)
|
666
|
+
newmodel->lin_weights[i]=model->lin_weights[i];
|
667
|
+
}
|
668
|
+
return(newmodel);
|
669
|
+
}
|
670
|
+
|
671
|
+
void free_model(MODEL *model, int deep)
|
672
|
+
{
|
673
|
+
long i;
|
674
|
+
|
675
|
+
if(model->supvec) {
|
676
|
+
if(deep) {
|
677
|
+
for(i=1;i<model->sv_num;i++) {
|
678
|
+
free_example(model->supvec[i],1);
|
679
|
+
}
|
680
|
+
}
|
681
|
+
free(model->supvec);
|
682
|
+
}
|
683
|
+
if(model->alpha) free(model->alpha);
|
684
|
+
if(model->index) free(model->index);
|
685
|
+
if(model->lin_weights) free(model->lin_weights);
|
686
|
+
free(model);
|
687
|
+
}
|
688
|
+
|
689
|
+
|
690
|
+
void read_documents(char *docfile, DOC ***docs, double **label,
|
691
|
+
long int *totwords, long int *totdoc)
|
692
|
+
{
|
693
|
+
char *line,*comment;
|
694
|
+
WORD *words;
|
695
|
+
long dnum=0,wpos,dpos=0,dneg=0,dunlab=0,queryid,slackid,max_docs;
|
696
|
+
long max_words_doc, ll;
|
697
|
+
double doc_label,costfactor;
|
698
|
+
FILE *docfl;
|
699
|
+
|
700
|
+
if(verbosity>=1) {
|
701
|
+
printf("Scanning examples..."); fflush(stdout);
|
702
|
+
}
|
703
|
+
nol_ll(docfile,&max_docs,&max_words_doc,&ll); /* scan size of input file */
|
704
|
+
max_words_doc+=2;
|
705
|
+
ll+=2;
|
706
|
+
max_docs+=2;
|
707
|
+
if(verbosity>=1) {
|
708
|
+
printf("done\n"); fflush(stdout);
|
709
|
+
}
|
710
|
+
|
711
|
+
(*docs) = (DOC **)my_malloc(sizeof(DOC *)*max_docs); /* feature vectors */
|
712
|
+
(*label) = (double *)my_malloc(sizeof(double)*max_docs); /* target values */
|
713
|
+
line = (char *)my_malloc(sizeof(char)*ll);
|
714
|
+
|
715
|
+
if ((docfl = fopen (docfile, "r")) == NULL)
|
716
|
+
{ perror (docfile); exit (1); }
|
717
|
+
|
718
|
+
words = (WORD *)my_malloc(sizeof(WORD)*(max_words_doc+10));
|
719
|
+
if(verbosity>=1) {
|
720
|
+
printf("Reading examples into memory..."); fflush(stdout);
|
721
|
+
}
|
722
|
+
dnum=0;
|
723
|
+
(*totwords)=0;
|
724
|
+
while((!feof(docfl)) && fgets(line,(int)ll,docfl)) {
|
725
|
+
if(line[0] == '#') continue; /* line contains comments */
|
726
|
+
if(!parse_document(line,words,&doc_label,&queryid,&slackid,&costfactor,
|
727
|
+
&wpos,max_words_doc,&comment)) {
|
728
|
+
printf("\nParsing error in line %ld!\n%s",dnum,line);
|
729
|
+
exit(1);
|
730
|
+
}
|
731
|
+
(*label)[dnum]=doc_label;
|
732
|
+
/* printf("docnum=%ld: Class=%f ",dnum,doc_label); */
|
733
|
+
if(doc_label > 0) dpos++;
|
734
|
+
if (doc_label < 0) dneg++;
|
735
|
+
if (doc_label == 0) dunlab++;
|
736
|
+
if((wpos>1) && ((words[wpos-2]).wnum>(*totwords)))
|
737
|
+
(*totwords)=(words[wpos-2]).wnum;
|
738
|
+
if((*totwords) > MAXFEATNUM) {
|
739
|
+
printf("\nMaximum feature number exceeds limit defined in MAXFEATNUM!\n");
|
740
|
+
printf("LINE: %s\n",line);
|
741
|
+
exit(1);
|
742
|
+
}
|
743
|
+
(*docs)[dnum] = create_example(dnum,queryid,slackid,costfactor,
|
744
|
+
create_svector(words,comment,1.0));
|
745
|
+
/* printf("\nNorm=%f\n",((*docs)[dnum]->fvec)->twonorm_sq); */
|
746
|
+
dnum++;
|
747
|
+
if(verbosity>=1) {
|
748
|
+
if((dnum % 100) == 0) {
|
749
|
+
printf("%ld..",dnum); fflush(stdout);
|
750
|
+
}
|
751
|
+
}
|
752
|
+
}
|
753
|
+
|
754
|
+
fclose(docfl);
|
755
|
+
free(line);
|
756
|
+
free(words);
|
757
|
+
if(verbosity>=1) {
|
758
|
+
fprintf(stdout, "OK. (%ld examples read)\n", dnum);
|
759
|
+
}
|
760
|
+
(*totdoc)=dnum;
|
761
|
+
}
|
762
|
+
|
763
|
+
int parse_document(char *line, WORD *words, double *label,
|
764
|
+
long *queryid, long *slackid, double *costfactor,
|
765
|
+
long int *numwords, long int max_words_doc,
|
766
|
+
char **comment)
|
767
|
+
{
|
768
|
+
register long wpos,pos;
|
769
|
+
long wnum;
|
770
|
+
double weight;
|
771
|
+
int numread;
|
772
|
+
char featurepair[1000],junk[1000];
|
773
|
+
|
774
|
+
(*queryid)=0;
|
775
|
+
(*slackid)=0;
|
776
|
+
(*costfactor)=1;
|
777
|
+
|
778
|
+
pos=0;
|
779
|
+
(*comment)=NULL;
|
780
|
+
while(line[pos] ) { /* cut off comments */
|
781
|
+
if((line[pos] == '#') && (!(*comment))) {
|
782
|
+
line[pos]=0;
|
783
|
+
(*comment)=&(line[pos+1]);
|
784
|
+
}
|
785
|
+
if(line[pos] == '\n') { /* strip the CR */
|
786
|
+
line[pos]=0;
|
787
|
+
}
|
788
|
+
pos++;
|
789
|
+
}
|
790
|
+
if(!(*comment)) (*comment)=&(line[pos]);
|
791
|
+
/* printf("Comment: '%s'\n",(*comment)); */
|
792
|
+
|
793
|
+
wpos=0;
|
794
|
+
/* check, that line starts with target value or zero, but not with
|
795
|
+
feature pair */
|
796
|
+
if(sscanf(line,"%s",featurepair) == EOF) return(0);
|
797
|
+
pos=0;
|
798
|
+
while((featurepair[pos] != ':') && featurepair[pos]) pos++;
|
799
|
+
if(featurepair[pos] == ':') {
|
800
|
+
perror ("Line must start with label or 0!!!\n");
|
801
|
+
printf("LINE: %s\n",line);
|
802
|
+
exit (1);
|
803
|
+
}
|
804
|
+
/* read the target value */
|
805
|
+
if(sscanf(line,"%lf",label) == EOF) return(0);
|
806
|
+
pos=0;
|
807
|
+
while(space_or_null((int)line[pos])) pos++;
|
808
|
+
while((!space_or_null((int)line[pos])) && line[pos]) pos++;
|
809
|
+
while(((numread=sscanf(line+pos,"%s",featurepair)) != EOF) &&
|
810
|
+
(numread > 0) &&
|
811
|
+
(wpos<max_words_doc)) {
|
812
|
+
/* printf("%s\n",featurepair); */
|
813
|
+
while(space_or_null((int)line[pos])) pos++;
|
814
|
+
while((!space_or_null((int)line[pos])) && line[pos]) pos++;
|
815
|
+
if(sscanf(featurepair,"qid:%ld%s",&wnum,junk)==1) {
|
816
|
+
/* it is the query id */
|
817
|
+
(*queryid)=(long)wnum;
|
818
|
+
}
|
819
|
+
else if(sscanf(featurepair,"sid:%ld%s",&wnum,junk)==1) {
|
820
|
+
/* it is the slack id */
|
821
|
+
if(wnum > 0)
|
822
|
+
(*slackid)=(long)wnum;
|
823
|
+
else {
|
824
|
+
perror ("Slack-id must be greater or equal to 1!!!\n");
|
825
|
+
printf("LINE: %s\n",line);
|
826
|
+
exit (1);
|
827
|
+
}
|
828
|
+
}
|
829
|
+
else if(sscanf(featurepair,"cost:%lf%s",&weight,junk)==1) {
|
830
|
+
/* it is the example-dependent cost factor */
|
831
|
+
(*costfactor)=(double)weight;
|
832
|
+
}
|
833
|
+
else if(sscanf(featurepair,"%ld:%lf%s",&wnum,&weight,junk)==2) {
|
834
|
+
/* it is a regular feature */
|
835
|
+
if(wnum<=0) {
|
836
|
+
perror ("Feature numbers must be larger or equal to 1!!!\n");
|
837
|
+
printf("LINE: %s\n",line);
|
838
|
+
exit (1);
|
839
|
+
}
|
840
|
+
if((wpos>0) && ((words[wpos-1]).wnum >= wnum)) {
|
841
|
+
perror ("Features must be in increasing order!!!\n");
|
842
|
+
printf("LINE: %s\n",line);
|
843
|
+
exit (1);
|
844
|
+
}
|
845
|
+
(words[wpos]).wnum=wnum;
|
846
|
+
(words[wpos]).weight=(FVAL)weight;
|
847
|
+
wpos++;
|
848
|
+
}
|
849
|
+
else {
|
850
|
+
perror ("Cannot parse feature/value pair!!!\n");
|
851
|
+
printf("'%s' in LINE: %s\n",featurepair,line);
|
852
|
+
exit (1);
|
853
|
+
}
|
854
|
+
}
|
855
|
+
(words[wpos]).wnum=0;
|
856
|
+
(*numwords)=wpos+1;
|
857
|
+
return(1);
|
858
|
+
}
|
859
|
+
|
860
|
+
double *read_alphas(char *alphafile,long totdoc)
|
861
|
+
/* reads the alpha vector from a file as written by the
|
862
|
+
write_alphas function */
|
863
|
+
{
|
864
|
+
FILE *fl;
|
865
|
+
double *alpha;
|
866
|
+
long dnum;
|
867
|
+
|
868
|
+
if ((fl = fopen (alphafile, "r")) == NULL)
|
869
|
+
{ perror (alphafile); exit (1); }
|
870
|
+
|
871
|
+
alpha = (double *)my_malloc(sizeof(double)*totdoc);
|
872
|
+
if(verbosity>=1) {
|
873
|
+
printf("Reading alphas..."); fflush(stdout);
|
874
|
+
}
|
875
|
+
dnum=0;
|
876
|
+
while((!feof(fl)) && fscanf(fl,"%lf\n",&alpha[dnum]) && (dnum<totdoc)) {
|
877
|
+
dnum++;
|
878
|
+
}
|
879
|
+
if(dnum != totdoc)
|
880
|
+
{ perror ("\nNot enough values in alpha file!"); exit (1); }
|
881
|
+
fclose(fl);
|
882
|
+
|
883
|
+
if(verbosity>=1) {
|
884
|
+
printf("done\n"); fflush(stdout);
|
885
|
+
}
|
886
|
+
|
887
|
+
return(alpha);
|
888
|
+
}
|
889
|
+
|
890
|
+
void nol_ll(char *file, long int *nol, long int *wol, long int *ll)
|
891
|
+
/* Grep through file and count number of lines, maximum number of
|
892
|
+
spaces per line, and longest line. */
|
893
|
+
{
|
894
|
+
FILE *fl;
|
895
|
+
int ic;
|
896
|
+
char c;
|
897
|
+
long current_length,current_wol;
|
898
|
+
|
899
|
+
if ((fl = fopen (file, "r")) == NULL)
|
900
|
+
{ perror (file); exit (1); }
|
901
|
+
current_length=0;
|
902
|
+
current_wol=0;
|
903
|
+
(*ll)=0;
|
904
|
+
(*nol)=1;
|
905
|
+
(*wol)=0;
|
906
|
+
while((ic=getc(fl)) != EOF) {
|
907
|
+
c=(char)ic;
|
908
|
+
current_length++;
|
909
|
+
if(space_or_null((int)c)) {
|
910
|
+
current_wol++;
|
911
|
+
}
|
912
|
+
if(c == '\n') {
|
913
|
+
(*nol)++;
|
914
|
+
if(current_length>(*ll)) {
|
915
|
+
(*ll)=current_length;
|
916
|
+
}
|
917
|
+
if(current_wol>(*wol)) {
|
918
|
+
(*wol)=current_wol;
|
919
|
+
}
|
920
|
+
current_length=0;
|
921
|
+
current_wol=0;
|
922
|
+
}
|
923
|
+
}
|
924
|
+
fclose(fl);
|
925
|
+
}
|
926
|
+
|
927
|
+
long minl(long int a, long int b)
|
928
|
+
{
|
929
|
+
if(a<b)
|
930
|
+
return(a);
|
931
|
+
else
|
932
|
+
return(b);
|
933
|
+
}
|
934
|
+
|
935
|
+
long maxl(long int a, long int b)
|
936
|
+
{
|
937
|
+
if(a>b)
|
938
|
+
return(a);
|
939
|
+
else
|
940
|
+
return(b);
|
941
|
+
}
|
942
|
+
|
943
|
+
long get_runtime(void)
|
944
|
+
{
|
945
|
+
clock_t start;
|
946
|
+
start = clock();
|
947
|
+
return((long)((double)start*100.0/(double)CLOCKS_PER_SEC));
|
948
|
+
}
|
949
|
+
|
950
|
+
|
951
|
+
# ifdef _MSC_VER
|
952
|
+
|
953
|
+
int isnan(double a)
|
954
|
+
{
|
955
|
+
return(_isnan(a));
|
956
|
+
}
|
957
|
+
|
958
|
+
# endif
|
959
|
+
|
960
|
+
int space_or_null(int c) {
|
961
|
+
if (c==0)
|
962
|
+
return 1;
|
963
|
+
return isspace((unsigned char)c);
|
964
|
+
}
|
965
|
+
|
966
|
+
void *my_malloc(size_t size)
|
967
|
+
{
|
968
|
+
void *ptr;
|
969
|
+
if(size<=0) size=1; /* for AIX compatibility */
|
970
|
+
ptr=(void *)malloc(size);
|
971
|
+
if(!ptr) {
|
972
|
+
perror ("Out of memory!\n");
|
973
|
+
exit (1);
|
974
|
+
}
|
975
|
+
return(ptr);
|
976
|
+
}
|
977
|
+
|
978
|
+
void copyright_notice(void)
|
979
|
+
{
|
980
|
+
printf("\nCopyright: Thorsten Joachims, thorsten@joachims.org\n\n");
|
981
|
+
printf("This software is available for non-commercial use only. It must not\n");
|
982
|
+
printf("be modified and distributed without prior permission of the author.\n");
|
983
|
+
printf("The author is not responsible for implications from the use of this\n");
|
984
|
+
printf("software.\n\n");
|
985
|
+
}
|