svmlightcli 0.1.0

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,301 @@
1
+ /************************************************************************/
2
+ /* */
3
+ /* svm_common.h */
4
+ /* */
5
+ /* Definitions and functions used in both svm_learn and svm_classify. */
6
+ /* */
7
+ /* Author: Thorsten Joachims */
8
+ /* Date: 02.07.02 */
9
+ /* */
10
+ /* Copyright (c) 2002 Thorsten Joachims - All rights reserved */
11
+ /* */
12
+ /* This software is available for non-commercial use only. It must */
13
+ /* not be modified and distributed without prior permission of the */
14
+ /* author. The author is not responsible for implications from the */
15
+ /* use of this software. */
16
+ /* */
17
+ /************************************************************************/
18
+
19
+ #ifndef SVM_COMMON
20
+ #define SVM_COMMON
21
+
22
+ # include <stdio.h>
23
+ # include <ctype.h>
24
+ # include <math.h>
25
+ # include <string.h>
26
+ # include <stdlib.h>
27
+ # include <time.h>
28
+ # include <float.h>
29
+
30
+ # define VERSION "V6.02"
31
+ # define VERSION_DATE "14.08.08"
32
+
33
+ # define CFLOAT float /* the type of float to use for caching */
34
+ /* kernel evaluations. Using float saves */
35
+ /* us some memory, but you can use double, too */
36
+ # define FNUM long /* the type used for storing feature ids */
37
+ # define FVAL float /* the type used for storing feature values */
38
+ # define MAXFEATNUM 99999999 /* maximum feature number (must be in
39
+ valid range of FNUM type and long int!) */
40
+
41
+ # define LINEAR 0 /* linear kernel type */
42
+ # define POLY 1 /* polynoial kernel type */
43
+ # define RBF 2 /* rbf kernel type */
44
+ # define SIGMOID 3 /* sigmoid kernel type */
45
+
46
+ # define CLASSIFICATION 1 /* train classification model */
47
+ # define REGRESSION 2 /* train regression model */
48
+ # define RANKING 3 /* train ranking model */
49
+ # define OPTIMIZATION 4 /* train on general set of constraints */
50
+
51
+ # define MAXSHRINK 50000 /* maximum number of shrinking rounds */
52
+
53
+ typedef struct word {
54
+ FNUM wnum; /* word number */
55
+ FVAL weight; /* word weight */
56
+ } WORD;
57
+
58
+ typedef struct svector {
59
+ WORD *words; /* The features/values in the vector by
60
+ increasing feature-number. Feature
61
+ numbers that are skipped are
62
+ interpreted as having value zero. */
63
+ double twonorm_sq; /* The squared euclidian length of the
64
+ vector. Used to speed up the RBF kernel. */
65
+ char *userdefined; /* You can put additional information
66
+ here. This can be useful, if you are
67
+ implementing your own kernel that
68
+ does not work with feature/values
69
+ representations (for example a
70
+ string kernel). By default,
71
+ svm-light will put here the string
72
+ after the # sign from each line of
73
+ the input file. */
74
+ long kernel_id; /* Feature vectors with different
75
+ kernel_id's are orthogonal (ie. the
76
+ feature number do not match). This
77
+ is used for computing component
78
+ kernels for linear constraints which
79
+ are a sum of several different
80
+ weight vectors. (currently not
81
+ implemented). */
82
+ struct svector *next; /* Let's you set up a list of SVECTOR's
83
+ for linear constraints which are a
84
+ sum of multiple feature
85
+ vectors. List is terminated by
86
+ NULL. */
87
+ double factor; /* Factor by which this feature vector
88
+ is multiplied in the sum. */
89
+ } SVECTOR;
90
+
91
+ typedef struct doc {
92
+ long docnum; /* Document ID. This has to be the position of
93
+ the document in the training set array. */
94
+ long queryid; /* for learning rankings, constraints are
95
+ generated for documents with the same
96
+ queryID. */
97
+ double costfactor; /* Scales the cost of misclassifying this
98
+ document by this factor. The effect of this
99
+ value is, that the upper bound on the alpha
100
+ for this example is scaled by this factor.
101
+ The factors are set by the feature
102
+ 'cost:<val>' in the training data. */
103
+ long slackid; /* Index of the slack variable
104
+ corresponding to this
105
+ constraint. All constraints with the
106
+ same slackid share the same slack
107
+ variable. This can only be used for
108
+ svm_learn_optimization. */
109
+ SVECTOR *fvec; /* Feature vector of the example. The
110
+ feature vector can actually be a
111
+ list of feature vectors. For
112
+ example, the list will have two
113
+ elements, if this DOC is a
114
+ preference constraint. The one
115
+ vector that is supposed to be ranked
116
+ higher, will have a factor of +1,
117
+ the lower ranked one should have a
118
+ factor of -1. */
119
+ } DOC;
120
+
121
+ typedef struct learn_parm {
122
+ long type; /* selects between regression and
123
+ classification */
124
+ double svm_c; /* upper bound C on alphas */
125
+ double eps; /* regression epsilon (eps=1.0 for
126
+ classification */
127
+ double svm_costratio; /* factor to multiply C for positive examples */
128
+ double transduction_posratio;/* fraction of unlabeled examples to be */
129
+ /* classified as positives */
130
+ long biased_hyperplane; /* if nonzero, use hyperplane w*x+b=0
131
+ otherwise w*x=0 */
132
+ long sharedslack; /* if nonzero, it will use the shared
133
+ slack variable mode in
134
+ svm_learn_optimization. It requires
135
+ that the slackid is set for every
136
+ training example */
137
+ long svm_maxqpsize; /* size q of working set */
138
+ long svm_newvarsinqp; /* new variables to enter the working set
139
+ in each iteration */
140
+ long kernel_cache_size; /* size of kernel cache in megabytes */
141
+ double epsilon_crit; /* tolerable error for distances used
142
+ in stopping criterion */
143
+ double epsilon_shrink; /* how much a multiplier should be above
144
+ zero for shrinking */
145
+ long svm_iter_to_shrink; /* iterations h after which an example can
146
+ be removed by shrinking */
147
+ long maxiter; /* number of iterations after which the
148
+ optimizer terminates, if there was
149
+ no progress in maxdiff */
150
+ long remove_inconsistent; /* exclude examples with alpha at C and
151
+ retrain */
152
+ long skip_final_opt_check; /* do not check KT-Conditions at the end of
153
+ optimization for examples removed by
154
+ shrinking. WARNING: This might lead to
155
+ sub-optimal solutions! */
156
+ long compute_loo; /* if nonzero, computes leave-one-out
157
+ estimates */
158
+ double rho; /* parameter in xi/alpha-estimates and for
159
+ pruning leave-one-out range [1..2] */
160
+ long xa_depth; /* parameter in xi/alpha-estimates upper
161
+ bounding the number of SV the current
162
+ alpha_t is distributed over */
163
+ char predfile[200]; /* file for predicitions on unlabeled examples
164
+ in transduction */
165
+ char alphafile[200]; /* file to store optimal alphas in. use
166
+ empty string if alphas should not be
167
+ output */
168
+
169
+ /* you probably do not want to touch the following */
170
+ double epsilon_const; /* tolerable error on eq-constraint */
171
+ double epsilon_a; /* tolerable error on alphas at bounds */
172
+ double opt_precision; /* precision of solver, set to e.g. 1e-21
173
+ if you get convergence problems */
174
+
175
+ /* the following are only for internal use */
176
+ long svm_c_steps; /* do so many steps for finding optimal C */
177
+ double svm_c_factor; /* increase C by this factor every step */
178
+ double svm_costratio_unlab;
179
+ double svm_unlabbound;
180
+ double *svm_cost; /* individual upper bounds for each var */
181
+ long totwords; /* number of features */
182
+ } LEARN_PARM;
183
+
184
+ typedef struct kernel_parm {
185
+ long kernel_type; /* 0=linear, 1=poly, 2=rbf, 3=sigmoid, 4=custom */
186
+ long poly_degree;
187
+ double rbf_gamma;
188
+ double coef_lin;
189
+ double coef_const;
190
+ char custom[50]; /* for user supplied kernel */
191
+ } KERNEL_PARM;
192
+
193
+ typedef struct model {
194
+ long sv_num;
195
+ long at_upper_bound;
196
+ double b;
197
+ DOC **supvec;
198
+ double *alpha;
199
+ long *index; /* index from docnum to position in model */
200
+ long totwords; /* number of features */
201
+ long totdoc; /* number of training documents */
202
+ KERNEL_PARM kernel_parm; /* kernel */
203
+
204
+ /* the following values are not written to file */
205
+ double loo_error,loo_recall,loo_precision; /* leave-one-out estimates */
206
+ double xa_error,xa_recall,xa_precision; /* xi/alpha estimates */
207
+ double *lin_weights; /* weights for linear case using
208
+ folding */
209
+ double maxdiff; /* precision, up to which this
210
+ model is accurate */
211
+ } MODEL;
212
+
213
+ typedef struct quadratic_program {
214
+ long opt_n; /* number of variables */
215
+ long opt_m; /* number of linear equality constraints */
216
+ double *opt_ce,*opt_ce0; /* linear equality constraints */
217
+ double *opt_g; /* hessian of objective */
218
+ double *opt_g0; /* linear part of objective */
219
+ double *opt_xinit; /* initial value for variables */
220
+ double *opt_low,*opt_up; /* box constraints */
221
+ } QP;
222
+
223
+ typedef struct kernel_cache {
224
+ long *index; /* cache some kernel evalutations */
225
+ CFLOAT *buffer; /* to improve speed */
226
+ long *invindex;
227
+ long *active2totdoc;
228
+ long *totdoc2active;
229
+ long *lru;
230
+ long *occu;
231
+ long elems;
232
+ long max_elems;
233
+ long time;
234
+ long activenum;
235
+ long buffsize;
236
+ } KERNEL_CACHE;
237
+
238
+
239
+ typedef struct timing_profile {
240
+ long time_kernel;
241
+ long time_opti;
242
+ long time_shrink;
243
+ long time_update;
244
+ long time_model;
245
+ long time_check;
246
+ long time_select;
247
+ } TIMING;
248
+
249
+ typedef struct shrink_state {
250
+ long *active;
251
+ long *inactive_since;
252
+ long deactnum;
253
+ double **a_history; /* for shrinking with non-linear kernel */
254
+ long maxhistory;
255
+ double *last_a; /* for shrinking with linear kernel */
256
+ double *last_lin; /* for shrinking with linear kernel */
257
+ } SHRINK_STATE;
258
+
259
+ double classify_example(MODEL *, DOC *);
260
+ double classify_example_linear(MODEL *, DOC *);
261
+ double kernel(KERNEL_PARM *, DOC *, DOC *);
262
+ double single_kernel(KERNEL_PARM *, SVECTOR *, SVECTOR *);
263
+ double custom_kernel(KERNEL_PARM *, SVECTOR *, SVECTOR *);
264
+ SVECTOR *create_svector(WORD *, char *, double);
265
+ SVECTOR *copy_svector(SVECTOR *);
266
+ void free_svector(SVECTOR *);
267
+ double sprod_ss(SVECTOR *, SVECTOR *);
268
+ SVECTOR* sub_ss(SVECTOR *, SVECTOR *);
269
+ SVECTOR* add_ss(SVECTOR *, SVECTOR *);
270
+ SVECTOR* add_list_ss(SVECTOR *);
271
+ void append_svector_list(SVECTOR *a, SVECTOR *b);
272
+ SVECTOR* smult_s(SVECTOR *, double);
273
+ int featvec_eq(SVECTOR *, SVECTOR *);
274
+ double model_length_s(MODEL *, KERNEL_PARM *);
275
+ void clear_vector_n(double *, long);
276
+ void add_vector_ns(double *, SVECTOR *, double);
277
+ double sprod_ns(double *, SVECTOR *);
278
+ void add_weight_vector_to_linear_model(MODEL *);
279
+ DOC *create_example(long, long, long, double, SVECTOR *);
280
+ void free_example(DOC *, long);
281
+ MODEL *read_model(char *);
282
+ MODEL *copy_model(MODEL *);
283
+ void free_model(MODEL *, int);
284
+ void read_documents(char *, DOC ***, double **, long *, long *);
285
+ int parse_document(char *, WORD *, double *, long *, long *, double *, long *, long, char **);
286
+ double *read_alphas(char *,long);
287
+ void nol_ll(char *, long *, long *, long *);
288
+ long minl(long, long);
289
+ long maxl(long, long);
290
+ long get_runtime(void);
291
+ int space_or_null(int);
292
+ void *my_malloc(size_t);
293
+ void copyright_notice(void);
294
+ # ifdef _MSC_VER
295
+ int isnan(double);
296
+ # endif
297
+
298
+ extern long verbosity; /* verbosity level (0-4) */
299
+ extern long kernel_cache_statistic;
300
+
301
+ #endif
@@ -0,0 +1,1062 @@
1
+ /***********************************************************************/
2
+ /* */
3
+ /* svm_hideo.c */
4
+ /* */
5
+ /* The Hildreth and D'Espo solver specialized for SVMs. */
6
+ /* */
7
+ /* Author: Thorsten Joachims */
8
+ /* Date: 02.07.02 */
9
+ /* */
10
+ /* Copyright (c) 2002 Thorsten Joachims - All rights reserved */
11
+ /* */
12
+ /* This software is available for non-commercial use only. It must */
13
+ /* not be modified and distributed without prior permission of the */
14
+ /* author. The author is not responsible for implications from the */
15
+ /* use of this software. */
16
+ /* */
17
+ /***********************************************************************/
18
+
19
+ # include <math.h>
20
+ # include "svm_common.h"
21
+
22
+ /*
23
+ solve the quadratic programming problem
24
+
25
+ minimize g0 * x + 1/2 x' * G * x
26
+ subject to ce*x = ce0
27
+ l <= x <= u
28
+
29
+ The linear constraint vector ce can only have -1/+1 as entries
30
+ */
31
+
32
+ /* Common Block Declarations */
33
+
34
+ long verbosity;
35
+
36
+ # define PRIMAL_OPTIMAL 1
37
+ # define DUAL_OPTIMAL 2
38
+ # define MAXITER_EXCEEDED 3
39
+ # define NAN_SOLUTION 4
40
+ # define ONLY_ONE_VARIABLE 5
41
+
42
+ # define LARGEROUND 0
43
+ # define SMALLROUND 1
44
+
45
+ /* /////////////////////////////////////////////////////////////// */
46
+
47
+ # define DEF_PRECISION 1E-5
48
+ # define DEF_MAX_ITERATIONS 200
49
+ # define DEF_LINDEP_SENSITIVITY 1E-8
50
+ # define EPSILON_HIDEO 1E-20
51
+ # define EPSILON_EQ 1E-5
52
+
53
+ double *optimize_qp(QP *, double *, long, double *, LEARN_PARM *);
54
+ double *primal=0,*dual=0;
55
+ long precision_violations=0;
56
+ double opt_precision=DEF_PRECISION;
57
+ long maxiter=DEF_MAX_ITERATIONS;
58
+ double lindep_sensitivity=DEF_LINDEP_SENSITIVITY;
59
+ double *buffer;
60
+ long *nonoptimal;
61
+
62
+ long smallroundcount=0;
63
+ long roundnumber=0;
64
+
65
+ /* /////////////////////////////////////////////////////////////// */
66
+
67
+ void *my_malloc();
68
+
69
+ int optimize_hildreth_despo(long,long,double,double,double,long,long,long,double,double *,
70
+ double *,double *,double *,double *,double *,
71
+ double *,double *,double *,long *,double *,double *);
72
+ int solve_dual(long,long,double,double,long,double *,double *,double *,
73
+ double *,double *,double *,double *,double *,double *,
74
+ double *,double *,double *,double *,long);
75
+
76
+ void linvert_matrix(double *, long, double *, double, long *);
77
+ void lprint_matrix(double *, long);
78
+ void ladd_matrix(double *, long, double);
79
+ void lcopy_matrix(double *, long, double *);
80
+ void lswitch_rows_matrix(double *, long, long, long);
81
+ void lswitchrk_matrix(double *, long, long, long);
82
+
83
+ double calculate_qp_objective(long, double *, double *, double *);
84
+
85
+
86
+
87
+ double *optimize_qp(qp,epsilon_crit,nx,threshold,learn_parm)
88
+ QP *qp;
89
+ double *epsilon_crit;
90
+ long nx; /* Maximum number of variables in QP */
91
+ double *threshold;
92
+ LEARN_PARM *learn_parm;
93
+ /* start the optimizer and return the optimal values */
94
+ /* The HIDEO optimizer does not necessarily fully solve the problem. */
95
+ /* Since it requires a strictly positive definite hessian, the solution */
96
+ /* is restricted to a linear independent subset in case the matrix is */
97
+ /* only semi-definite. */
98
+ {
99
+ long i,j;
100
+ int result;
101
+ double eq,progress;
102
+
103
+ roundnumber++;
104
+
105
+ if(!primal) { /* allocate memory at first call */
106
+ primal=(double *)my_malloc(sizeof(double)*nx);
107
+ dual=(double *)my_malloc(sizeof(double)*((nx+1)*2));
108
+ nonoptimal=(long *)my_malloc(sizeof(long)*(nx));
109
+ buffer=(double *)my_malloc(sizeof(double)*((nx+1)*2*(nx+1)*2+
110
+ nx*nx+2*(nx+1)*2+2*nx+1+2*nx+
111
+ nx+nx+nx*nx));
112
+ (*threshold)=0;
113
+ for(i=0;i<nx;i++) {
114
+ primal[i]=0;
115
+ }
116
+ }
117
+
118
+ if(verbosity>=4) { /* really verbose */
119
+ printf("\n\n");
120
+ eq=qp->opt_ce0[0];
121
+ for(i=0;i<qp->opt_n;i++) {
122
+ eq+=qp->opt_xinit[i]*qp->opt_ce[i];
123
+ printf("%f: ",qp->opt_g0[i]);
124
+ for(j=0;j<qp->opt_n;j++) {
125
+ printf("%f ",qp->opt_g[i*qp->opt_n+j]);
126
+ }
127
+ printf(": a=%.10f < %f",qp->opt_xinit[i],qp->opt_up[i]);
128
+ printf(": y=%f\n",qp->opt_ce[i]);
129
+ }
130
+ if(qp->opt_m) {
131
+ printf("EQ: %f*x0",qp->opt_ce[0]);
132
+ for(i=1;i<qp->opt_n;i++) {
133
+ printf(" + %f*x%ld",qp->opt_ce[i],i);
134
+ }
135
+ printf(" = %f\n\n",-qp->opt_ce0[0]);
136
+ }
137
+ }
138
+
139
+ result=optimize_hildreth_despo(qp->opt_n,qp->opt_m,
140
+ opt_precision,(*epsilon_crit),
141
+ learn_parm->epsilon_a,maxiter,
142
+ /* (long)PRIMAL_OPTIMAL, */
143
+ (long)0, (long)0,
144
+ lindep_sensitivity,
145
+ qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0,
146
+ qp->opt_low,qp->opt_up,primal,qp->opt_xinit,
147
+ dual,nonoptimal,buffer,&progress);
148
+ if(verbosity>=3) {
149
+ printf("return(%d)...",result);
150
+ }
151
+
152
+ if(learn_parm->totwords < learn_parm->svm_maxqpsize) {
153
+ /* larger working sets will be linear dependent anyway */
154
+ learn_parm->svm_maxqpsize=maxl(learn_parm->totwords,(long)2);
155
+ }
156
+
157
+ if(result == NAN_SOLUTION) {
158
+ lindep_sensitivity*=2; /* throw out linear dependent examples more */
159
+ /* generously */
160
+ if(learn_parm->svm_maxqpsize>2) {
161
+ learn_parm->svm_maxqpsize--; /* decrease size of qp-subproblems */
162
+ }
163
+ precision_violations++;
164
+ }
165
+
166
+ /* take one round of only two variable to get unstuck */
167
+ if((result != PRIMAL_OPTIMAL) || (!(roundnumber % 31)) || (progress <= 0)) {
168
+
169
+ smallroundcount++;
170
+
171
+ result=optimize_hildreth_despo(qp->opt_n,qp->opt_m,
172
+ opt_precision,(*epsilon_crit),
173
+ learn_parm->epsilon_a,(long)maxiter,
174
+ (long)PRIMAL_OPTIMAL,(long)SMALLROUND,
175
+ lindep_sensitivity,
176
+ qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0,
177
+ qp->opt_low,qp->opt_up,primal,qp->opt_xinit,
178
+ dual,nonoptimal,buffer,&progress);
179
+ if(verbosity>=3) {
180
+ printf("return_srd(%d)...",result);
181
+ }
182
+
183
+ if(result != PRIMAL_OPTIMAL) {
184
+ if(result != ONLY_ONE_VARIABLE)
185
+ precision_violations++;
186
+ if(result == MAXITER_EXCEEDED)
187
+ maxiter+=100;
188
+ if(result == NAN_SOLUTION) {
189
+ lindep_sensitivity*=2; /* throw out linear dependent examples more */
190
+ /* generously */
191
+ /* results not valid, so return inital values */
192
+ for(i=0;i<qp->opt_n;i++) {
193
+ primal[i]=qp->opt_xinit[i];
194
+ }
195
+ }
196
+ }
197
+ }
198
+
199
+
200
+ if(precision_violations > 50) {
201
+ precision_violations=0;
202
+ (*epsilon_crit)*=10.0;
203
+ if(verbosity>=1) {
204
+ printf("\nWARNING: Relaxing epsilon on KT-Conditions (%f).\n",
205
+ (*epsilon_crit));
206
+ }
207
+ }
208
+
209
+ if((qp->opt_m>0) && (result != NAN_SOLUTION) && (!isnan(dual[1]-dual[0])))
210
+ (*threshold)=dual[1]-dual[0];
211
+ else
212
+ (*threshold)=0;
213
+
214
+ if(verbosity>=4) { /* really verbose */
215
+ printf("\n\n");
216
+ eq=qp->opt_ce0[0];
217
+ for(i=0;i<qp->opt_n;i++) {
218
+ eq+=primal[i]*qp->opt_ce[i];
219
+ printf("%f: ",qp->opt_g0[i]);
220
+ for(j=0;j<qp->opt_n;j++) {
221
+ printf("%f ",qp->opt_g[i*qp->opt_n+j]);
222
+ }
223
+ printf(": a=%.30f",primal[i]);
224
+ printf(": nonopti=%ld",nonoptimal[i]);
225
+ printf(": y=%f\n",qp->opt_ce[i]);
226
+ }
227
+ printf("eq-constraint=%.30f\n",eq);
228
+ printf("b=%f\n",(*threshold));
229
+ printf(" smallroundcount=%ld ",smallroundcount);
230
+ }
231
+
232
+ return(primal);
233
+ }
234
+
235
+
236
+
237
+ int optimize_hildreth_despo(n,m,precision,epsilon_crit,epsilon_a,maxiter,goal,
238
+ smallround,lindep_sensitivity,g,g0,ce,ce0,low,up,
239
+ primal,init,dual,lin_dependent,buffer,progress)
240
+ long n; /* number of variables */
241
+ long m; /* number of linear equality constraints [0,1] */
242
+ double precision; /* solve at least to this dual precision */
243
+ double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */
244
+ double epsilon_a; /* precision of alphas at bounds */
245
+ long maxiter; /* stop after this many iterations */
246
+ long goal; /* keep going until goal fulfilled */
247
+ long smallround; /* use only two variables of steepest descent */
248
+ double lindep_sensitivity; /* epsilon for detecting linear dependent ex */
249
+ double *g; /* hessian of objective */
250
+ double *g0; /* linear part of objective */
251
+ double *ce,*ce0; /* linear equality constraints */
252
+ double *low,*up; /* box constraints */
253
+ double *primal; /* primal variables */
254
+ double *init; /* initial values of primal */
255
+ double *dual; /* dual variables */
256
+ long *lin_dependent;
257
+ double *buffer;
258
+ double *progress; /* delta in the objective function between
259
+ before and after */
260
+ {
261
+ long i,j,k,from,to,n_indep,changed;
262
+ double sum,bmin=0,bmax=0;
263
+ double *d,*d0,*ig,*dual_old,*temp,*start;
264
+ double *g0_new,*g_new,*ce_new,*ce0_new,*low_new,*up_new;
265
+ double add,t;
266
+ int result;
267
+ double obj_before,obj_after;
268
+ long b1,b2;
269
+ double g0_b1,g0_b2,ce0_b;
270
+
271
+ g0_new=&(buffer[0]); /* claim regions of buffer */
272
+ d=&(buffer[n]);
273
+ d0=&(buffer[n+(n+m)*2*(n+m)*2]);
274
+ ce_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2]);
275
+ ce0_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n]);
276
+ ig=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m]);
277
+ dual_old=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n]);
278
+ low_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2]);
279
+ up_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n]);
280
+ start=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n]);
281
+ g_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n]);
282
+ temp=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n+n*n]);
283
+
284
+ b1=-1;
285
+ b2=-1;
286
+ for(i=0;i<n;i++) { /* get variables with steepest feasible descent */
287
+ sum=g0[i];
288
+ for(j=0;j<n;j++)
289
+ sum+=init[j]*g[i*n+j];
290
+ sum=sum*ce[i];
291
+ if(((b1==-1) || (sum<bmin))
292
+ && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]<0.0)))
293
+ && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]>0.0)))
294
+ ) {
295
+ bmin=sum;
296
+ b1=i;
297
+ }
298
+ if(((b2==-1) || (sum>=bmax))
299
+ && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]>0.0)))
300
+ && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]<0.0)))
301
+ ) {
302
+ bmax=sum;
303
+ b2=i;
304
+ }
305
+ }
306
+ /* in case of unbiased hyperplane, the previous projection on */
307
+ /* equality constraint can lead to b1 or b2 being -1. */
308
+ if((b1 == -1) || (b2 == -1)) {
309
+ b1=maxl(b1,b2);
310
+ b2=maxl(b1,b2);
311
+ }
312
+
313
+ for(i=0;i<n;i++) {
314
+ start[i]=init[i];
315
+ }
316
+
317
+ /* in case both example vectors are linearly dependent */
318
+ /* WARNING: Assumes that ce[] in {-1,1} */
319
+ add=0;
320
+ changed=0;
321
+ if((b1 != b2) && (m==1)) {
322
+ for(i=0;i<n;i++) { /* fix other vectors */
323
+ if(i==b1)
324
+ g0_b1=g0[i];
325
+ if(i==b2)
326
+ g0_b2=g0[i];
327
+ }
328
+ ce0_b=ce0[0];
329
+ for(i=0;i<n;i++) {
330
+ if((i!=b1) && (i!=b2)) {
331
+ for(j=0;j<n;j++) {
332
+ if(j==b1)
333
+ g0_b1+=start[i]*g[i*n+j];
334
+ if(j==b2)
335
+ g0_b2+=start[i]*g[i*n+j];
336
+ }
337
+ ce0_b-=(start[i]*ce[i]);
338
+ }
339
+ }
340
+ if((g[b1*n+b2] == g[b1*n+b1]) && (g[b1*n+b2] == g[b2*n+b2])) {
341
+ /* printf("euqal\n"); */
342
+ if(ce[b1] == ce[b2]) {
343
+ if(g0_b1 <= g0_b2) { /* set b1 to upper bound */
344
+ /* printf("case +=<\n"); */
345
+ changed=1;
346
+ t=up[b1]-init[b1];
347
+ if((init[b2]-low[b2]) < t) {
348
+ t=init[b2]-low[b2];
349
+ }
350
+ start[b1]=init[b1]+t;
351
+ start[b2]=init[b2]-t;
352
+ }
353
+ else if(g0_b1 > g0_b2) { /* set b2 to upper bound */
354
+ /* printf("case +=>\n"); */
355
+ changed=1;
356
+ t=up[b2]-init[b2];
357
+ if((init[b1]-low[b1]) < t) {
358
+ t=init[b1]-low[b1];
359
+ }
360
+ start[b1]=init[b1]-t;
361
+ start[b2]=init[b2]+t;
362
+ }
363
+ }
364
+ else if(((g[b1*n+b1]>0) || (g[b2*n+b2]>0))) { /* (ce[b1] != ce[b2]) */
365
+ /* printf("case +!\n"); */
366
+ t=((ce[b2]/ce[b1])*g0[b1]-g0[b2]+ce0[0]*(g[b1*n+b1]*ce[b2]/ce[b1]-g[b1*n+b2]/ce[b1]))/((ce[b2]*ce[b2]/(ce[b1]*ce[b1]))*g[b1*n+b1]+g[b2*n+b2]-2*(g[b1*n+b2]*ce[b2]/ce[b1]))-init[b2];
367
+ changed=1;
368
+ if((up[b2]-init[b2]) < t) {
369
+ t=up[b2]-init[b2];
370
+ }
371
+ if((init[b2]-low[b2]) < -t) {
372
+ t=-(init[b2]-low[b2]);
373
+ }
374
+ if((up[b1]-init[b1]) < t) {
375
+ t=(up[b1]-init[b1]);
376
+ }
377
+ if((init[b1]-low[b1]) < -t) {
378
+ t=-(init[b1]-low[b1]);
379
+ }
380
+ start[b1]=init[b1]+t;
381
+ start[b2]=init[b2]+t;
382
+ }
383
+ }
384
+ if((-g[b1*n+b2] == g[b1*n+b1]) && (-g[b1*n+b2] == g[b2*n+b2])) {
385
+ /* printf("diffeuqal\n"); */
386
+ if(ce[b1] != ce[b2]) {
387
+ if((g0_b1+g0_b2) < 0) { /* set b1 and b2 to upper bound */
388
+ /* printf("case -!<\n"); */
389
+ changed=1;
390
+ t=up[b1]-init[b1];
391
+ if((up[b2]-init[b2]) < t) {
392
+ t=up[b2]-init[b2];
393
+ }
394
+ start[b1]=init[b1]+t;
395
+ start[b2]=init[b2]+t;
396
+ }
397
+ else if((g0_b1+g0_b2) >= 0) { /* set b1 and b2 to lower bound */
398
+ /* printf("case -!>\n"); */
399
+ changed=1;
400
+ t=init[b1]-low[b1];
401
+ if((init[b2]-low[b2]) < t) {
402
+ t=init[b2]-low[b2];
403
+ }
404
+ start[b1]=init[b1]-t;
405
+ start[b2]=init[b2]-t;
406
+ }
407
+ }
408
+ else if(((g[b1*n+b1]>0) || (g[b2*n+b2]>0))) { /* (ce[b1]==ce[b2]) */
409
+ /* printf("case -=\n"); */
410
+ t=((ce[b2]/ce[b1])*g0[b1]-g0[b2]+ce0[0]*(g[b1*n+b1]*ce[b2]/ce[b1]-g[b1*n+b2]/ce[b1]))/((ce[b2]*ce[b2]/(ce[b1]*ce[b1]))*g[b1*n+b1]+g[b2*n+b2]-2*(g[b1*n+b2]*ce[b2]/ce[b1]))-init[b2];
411
+ changed=1;
412
+ if((up[b2]-init[b2]) < t) {
413
+ t=up[b2]-init[b2];
414
+ }
415
+ if((init[b2]-low[b2]) < -t) {
416
+ t=-(init[b2]-low[b2]);
417
+ }
418
+ if((up[b1]-init[b1]) < -t) {
419
+ t=-(up[b1]-init[b1]);
420
+ }
421
+ if((init[b1]-low[b1]) < t) {
422
+ t=init[b1]-low[b1];
423
+ }
424
+ start[b1]=init[b1]-t;
425
+ start[b2]=init[b2]+t;
426
+ }
427
+ }
428
+ }
429
+ /* if we have a biased hyperplane, then adding a constant to the */
430
+ /* hessian does not change the solution. So that is done for examples */
431
+ /* with zero diagonal entry, since HIDEO cannot handle them. */
432
+ if((m>0)
433
+ && ((fabs(g[b1*n+b1]) < lindep_sensitivity)
434
+ || (fabs(g[b2*n+b2]) < lindep_sensitivity))) {
435
+ /* printf("Case 0\n"); */
436
+ add+=0.093274;
437
+ }
438
+ /* in case both examples are linear dependent */
439
+ else if((m>0)
440
+ && (g[b1*n+b2] != 0 && g[b2*n+b2] != 0)
441
+ && (fabs(g[b1*n+b1]/g[b1*n+b2] - g[b1*n+b2]/g[b2*n+b2])
442
+ < lindep_sensitivity)) {
443
+ /* printf("Case lindep\n"); */
444
+ add+=0.078274;
445
+ }
446
+
447
+ /* special case for zero diagonal entry on unbiased hyperplane */
448
+ if((m==0) && (b1>=0)) {
449
+ if(fabs(g[b1*n+b1]) < lindep_sensitivity) {
450
+ /* printf("Case 0b1\n"); */
451
+ for(i=0;i<n;i++) { /* fix other vectors */
452
+ if(i==b1)
453
+ g0_b1=g0[i];
454
+ }
455
+ for(i=0;i<n;i++) {
456
+ if(i!=b1) {
457
+ for(j=0;j<n;j++) {
458
+ if(j==b1)
459
+ g0_b1+=start[i]*g[i*n+j];
460
+ }
461
+ }
462
+ }
463
+ if(g0_b1<0)
464
+ start[b1]=up[b1];
465
+ if(g0_b1>=0)
466
+ start[b1]=low[b1];
467
+ }
468
+ }
469
+ if((m==0) && (b2>=0)) {
470
+ if(fabs(g[b2*n+b2]) < lindep_sensitivity) {
471
+ /* printf("Case 0b2\n"); */
472
+ for(i=0;i<n;i++) { /* fix other vectors */
473
+ if(i==b2)
474
+ g0_b2=g0[i];
475
+ }
476
+ for(i=0;i<n;i++) {
477
+ if(i!=b2) {
478
+ for(j=0;j<n;j++) {
479
+ if(j==b2)
480
+ g0_b2+=start[i]*g[i*n+j];
481
+ }
482
+ }
483
+ }
484
+ if(g0_b2<0)
485
+ start[b2]=up[b2];
486
+ if(g0_b2>=0)
487
+ start[b2]=low[b2];
488
+ }
489
+ }
490
+
491
+ /* printf("b1=%ld,b2=%ld\n",b1,b2); */
492
+
493
+ lcopy_matrix(g,n,d);
494
+ if((m==1) && (add>0.0)) {
495
+ for(j=0;j<n;j++) {
496
+ for(k=0;k<n;k++) {
497
+ d[j*n+k]+=add*ce[j]*ce[k];
498
+ }
499
+ }
500
+ }
501
+ else {
502
+ add=0.0;
503
+ }
504
+
505
+ if(n>2) { /* switch, so that variables are better mixed */
506
+ lswitchrk_matrix(d,n,b1,(long)0);
507
+ if(b2 == 0)
508
+ lswitchrk_matrix(d,n,b1,(long)1);
509
+ else
510
+ lswitchrk_matrix(d,n,b2,(long)1);
511
+ }
512
+ if(smallround == SMALLROUND) {
513
+ for(i=2;i<n;i++) {
514
+ lin_dependent[i]=1;
515
+ }
516
+ if(m>0) { /* for biased hyperplane, pick two variables */
517
+ lin_dependent[0]=0;
518
+ lin_dependent[1]=0;
519
+ }
520
+ else { /* for unbiased hyperplane, pick only one variable */
521
+ lin_dependent[0]=smallroundcount % 2;
522
+ lin_dependent[1]=(smallroundcount+1) % 2;
523
+ }
524
+ }
525
+ else {
526
+ for(i=0;i<n;i++) {
527
+ lin_dependent[i]=0;
528
+ }
529
+ }
530
+ linvert_matrix(d,n,ig,lindep_sensitivity,lin_dependent);
531
+ if(n>2) { /* now switch back */
532
+ if(b2 == 0) {
533
+ lswitchrk_matrix(ig,n,b1,(long)1);
534
+ i=lin_dependent[1];
535
+ lin_dependent[1]=lin_dependent[b1];
536
+ lin_dependent[b1]=i;
537
+ }
538
+ else {
539
+ lswitchrk_matrix(ig,n,b2,(long)1);
540
+ i=lin_dependent[1];
541
+ lin_dependent[1]=lin_dependent[b2];
542
+ lin_dependent[b2]=i;
543
+ }
544
+ lswitchrk_matrix(ig,n,b1,(long)0);
545
+ i=lin_dependent[0];
546
+ lin_dependent[0]=lin_dependent[b1];
547
+ lin_dependent[b1]=i;
548
+ }
549
+ /* lprint_matrix(d,n); */
550
+ /* lprint_matrix(ig,n); */
551
+
552
+ lcopy_matrix(g,n,g_new); /* restore g_new matrix */
553
+ if(add>0)
554
+ for(j=0;j<n;j++) {
555
+ for(k=0;k<n;k++) {
556
+ g_new[j*n+k]+=add*ce[j]*ce[k];
557
+ }
558
+ }
559
+
560
+ for(i=0;i<n;i++) { /* fix linear dependent vectors */
561
+ g0_new[i]=g0[i]+add*ce0[0]*ce[i];
562
+ }
563
+ if(m>0) ce0_new[0]=-ce0[0];
564
+ for(i=0;i<n;i++) { /* fix linear dependent vectors */
565
+ if(lin_dependent[i]) {
566
+ for(j=0;j<n;j++) {
567
+ if(!lin_dependent[j]) {
568
+ g0_new[j]+=start[i]*g_new[i*n+j];
569
+ }
570
+ }
571
+ if(m>0) ce0_new[0]-=(start[i]*ce[i]);
572
+ }
573
+ }
574
+ from=0; /* remove linear dependent vectors */
575
+ to=0;
576
+ n_indep=0;
577
+ for(i=0;i<n;i++) {
578
+ if(!lin_dependent[i]) {
579
+ g0_new[n_indep]=g0_new[i];
580
+ ce_new[n_indep]=ce[i];
581
+ low_new[n_indep]=low[i];
582
+ up_new[n_indep]=up[i];
583
+ primal[n_indep]=start[i];
584
+ n_indep++;
585
+ }
586
+ for(j=0;j<n;j++) {
587
+ if((!lin_dependent[i]) && (!lin_dependent[j])) {
588
+ ig[to]=ig[from];
589
+ g_new[to]=g_new[from];
590
+ to++;
591
+ }
592
+ from++;
593
+ }
594
+ }
595
+
596
+ if(verbosity>=3) {
597
+ printf("real_qp_size(%ld)...",n_indep);
598
+ }
599
+
600
+ /* cannot optimize with only one variable */
601
+ if((n_indep<=1) && (m>0) && (!changed)) {
602
+ for(i=n-1;i>=0;i--) {
603
+ primal[i]=init[i];
604
+ }
605
+ return((int)ONLY_ONE_VARIABLE);
606
+ }
607
+
608
+ if((!changed) || (n_indep>1)) {
609
+ result=solve_dual(n_indep,m,precision,epsilon_crit,maxiter,g_new,g0_new,
610
+ ce_new,ce0_new,low_new,up_new,primal,d,d0,ig,
611
+ dual,dual_old,temp,goal);
612
+ }
613
+ else {
614
+ result=PRIMAL_OPTIMAL;
615
+ }
616
+
617
+ j=n_indep;
618
+ for(i=n-1;i>=0;i--) {
619
+ if(!lin_dependent[i]) {
620
+ j--;
621
+ primal[i]=primal[j];
622
+ }
623
+ else {
624
+ primal[i]=start[i]; /* leave as is */
625
+ }
626
+ temp[i]=primal[i];
627
+ }
628
+
629
+ obj_before=calculate_qp_objective(n,g,g0,init);
630
+ obj_after=calculate_qp_objective(n,g,g0,primal);
631
+ (*progress)=obj_before-obj_after;
632
+ if(verbosity>=3) {
633
+ printf("before(%.30f)...after(%.30f)...result_sd(%d)...",
634
+ obj_before,obj_after,result);
635
+ }
636
+
637
+ return((int)result);
638
+ }
639
+
640
+
641
+ int solve_dual(n,m,precision,epsilon_crit,maxiter,g,g0,ce,ce0,low,up,primal,
642
+ d,d0,ig,dual,dual_old,temp,goal)
643
+ /* Solves the dual using the method of Hildreth and D'Espo. */
644
+ /* Can only handle problems with zero or exactly one */
645
+ /* equality constraints. */
646
+
647
+ long n; /* number of variables */
648
+ long m; /* number of linear equality constraints */
649
+ double precision; /* solve at least to this dual precision */
650
+ double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */
651
+ long maxiter; /* stop after that many iterations */
652
+ double *g;
653
+ double *g0; /* linear part of objective */
654
+ double *ce,*ce0; /* linear equality constraints */
655
+ double *low,*up; /* box constraints */
656
+ double *primal; /* variables (with initial values) */
657
+ double *d,*d0,*ig,*dual,*dual_old,*temp; /* buffer */
658
+ long goal;
659
+ {
660
+ long i,j,k,iter;
661
+ double sum,w,maxviol,viol,temp1,temp2,isnantest;
662
+ double model_b,dist;
663
+ long retrain,maxfaktor,primal_optimal=0,at_bound,scalemaxiter;
664
+ double epsilon_a=1E-15,epsilon_hideo;
665
+ double eq;
666
+
667
+ if((m<0) || (m>1))
668
+ perror("SOLVE DUAL: inappropriate number of eq-constrains!");
669
+
670
+ /*
671
+ printf("\n");
672
+ for(i=0;i<n;i++) {
673
+ printf("%f: ",g0[i]);
674
+ for(j=0;j<n;j++) {
675
+ printf("%f ",g[i*n+j]);
676
+ }
677
+ printf(": a=%.30f",primal[i]);
678
+ printf(": y=%f\n",ce[i]);
679
+ }
680
+ */
681
+
682
+ for(i=0;i<2*(n+m);i++) {
683
+ dual[i]=0;
684
+ dual_old[i]=0;
685
+ }
686
+ for(i=0;i<n;i++) {
687
+ for(j=0;j<n;j++) { /* dual hessian for box constraints */
688
+ d[i*2*(n+m)+j]=ig[i*n+j];
689
+ d[(i+n)*2*(n+m)+j]=-ig[i*n+j];
690
+ d[i*2*(n+m)+j+n]=-ig[i*n+j];
691
+ d[(i+n)*2*(n+m)+j+n]=ig[i*n+j];
692
+ }
693
+ if(m>0) {
694
+ sum=0; /* dual hessian for eq constraints */
695
+ for(j=0;j<n;j++) {
696
+ sum+=(ce[j]*ig[i*n+j]);
697
+ }
698
+ d[i*2*(n+m)+2*n]=sum;
699
+ d[i*2*(n+m)+2*n+1]=-sum;
700
+ d[(n+i)*2*(n+m)+2*n]=-sum;
701
+ d[(n+i)*2*(n+m)+2*n+1]=sum;
702
+ d[(n+n)*2*(n+m)+i]=sum;
703
+ d[(n+n+1)*2*(n+m)+i]=-sum;
704
+ d[(n+n)*2*(n+m)+(n+i)]=-sum;
705
+ d[(n+n+1)*2*(n+m)+(n+i)]=sum;
706
+
707
+ sum=0;
708
+ for(j=0;j<n;j++) {
709
+ for(k=0;k<n;k++) {
710
+ sum+=(ce[k]*ce[j]*ig[j*n+k]);
711
+ }
712
+ }
713
+ d[(n+n)*2*(n+m)+2*n]=sum;
714
+ d[(n+n)*2*(n+m)+2*n+1]=-sum;
715
+ d[(n+n+1)*2*(n+m)+2*n]=-sum;
716
+ d[(n+n+1)*2*(n+m)+2*n+1]=sum;
717
+ }
718
+ }
719
+
720
+ for(i=0;i<n;i++) { /* dual linear component for the box constraints */
721
+ w=0;
722
+ for(j=0;j<n;j++) {
723
+ w+=(ig[i*n+j]*g0[j]);
724
+ }
725
+ d0[i]=up[i]+w;
726
+ d0[i+n]=-low[i]-w;
727
+ }
728
+
729
+ if(m>0) {
730
+ sum=0; /* dual linear component for eq constraints */
731
+ for(j=0;j<n;j++) {
732
+ for(k=0;k<n;k++) {
733
+ sum+=(ce[k]*ig[k*n+j]*g0[j]);
734
+ }
735
+ }
736
+ d0[2*n]=ce0[0]+sum;
737
+ d0[2*n+1]=-ce0[0]-sum;
738
+ }
739
+
740
+ maxviol=999999;
741
+ iter=0;
742
+ retrain=1;
743
+ maxfaktor=1;
744
+ scalemaxiter=maxiter/5;
745
+ while((retrain) && (maxviol > 0) && (iter < (scalemaxiter*maxfaktor))) {
746
+ iter++;
747
+
748
+ while((maxviol > precision) && (iter < (scalemaxiter*maxfaktor))) {
749
+ iter++;
750
+ maxviol=0;
751
+ for(i=0;i<2*(n+m);i++) {
752
+ sum=d0[i];
753
+ for(j=0;j<2*(n+m);j++) {
754
+ sum+=d[i*2*(n+m)+j]*dual_old[j];
755
+ }
756
+ sum-=d[i*2*(n+m)+i]*dual_old[i];
757
+ dual[i]=-sum/d[i*2*(n+m)+i];
758
+ if(dual[i]<0) dual[i]=0;
759
+
760
+ viol=fabs(dual[i]-dual_old[i]);
761
+ if(viol>maxviol)
762
+ maxviol=viol;
763
+ dual_old[i]=dual[i];
764
+ }
765
+ /*
766
+ printf("%d) maxviol=%20f precision=%f\n",iter,maxviol,precision);
767
+ */
768
+ }
769
+
770
+ if(m>0) {
771
+ for(i=0;i<n;i++) {
772
+ temp[i]=dual[i]-dual[i+n]+ce[i]*(dual[n+n]-dual[n+n+1])+g0[i];
773
+ }
774
+ }
775
+ else {
776
+ for(i=0;i<n;i++) {
777
+ temp[i]=dual[i]-dual[i+n]+g0[i];
778
+ }
779
+ }
780
+ for(i=0;i<n;i++) {
781
+ primal[i]=0; /* calc value of primal variables */
782
+ for(j=0;j<n;j++) {
783
+ primal[i]+=ig[i*n+j]*temp[j];
784
+ }
785
+ primal[i]*=-1.0;
786
+ if(primal[i]<=(low[i])) { /* clip conservatively */
787
+ primal[i]=low[i];
788
+ }
789
+ else if(primal[i]>=(up[i])) {
790
+ primal[i]=up[i];
791
+ }
792
+ }
793
+
794
+ if(m>0)
795
+ model_b=dual[n+n+1]-dual[n+n];
796
+ else
797
+ model_b=0;
798
+
799
+ epsilon_hideo=EPSILON_HIDEO;
800
+ for(i=0;i<n;i++) { /* check precision of alphas */
801
+ dist=-model_b*ce[i];
802
+ dist+=(g0[i]+1.0);
803
+ for(j=0;j<i;j++) {
804
+ dist+=(primal[j]*g[j*n+i]);
805
+ }
806
+ for(j=i;j<n;j++) {
807
+ dist+=(primal[j]*g[i*n+j]);
808
+ }
809
+ if((primal[i]<(up[i]-epsilon_hideo)) && (dist < (1.0-epsilon_crit))) {
810
+ epsilon_hideo=(up[i]-primal[i])*2.0;
811
+ }
812
+ else if((primal[i]>(low[i]+epsilon_hideo)) &&(dist>(1.0+epsilon_crit))) {
813
+ epsilon_hideo=(primal[i]-low[i])*2.0;
814
+ }
815
+ }
816
+ /* printf("\nEPSILON_HIDEO=%.30f\n",epsilon_hideo); */
817
+
818
+ for(i=0;i<n;i++) { /* clip alphas to bounds */
819
+ if(primal[i]<=(low[i]+epsilon_hideo)) {
820
+ primal[i]=low[i];
821
+ }
822
+ else if(primal[i]>=(up[i]-epsilon_hideo)) {
823
+ primal[i]=up[i];
824
+ }
825
+ }
826
+
827
+ retrain=0;
828
+ primal_optimal=1;
829
+ at_bound=0;
830
+ for(i=0;(i<n);i++) { /* check primal KT-Conditions */
831
+ dist=-model_b*ce[i];
832
+ dist+=(g0[i]+1.0);
833
+ for(j=0;j<i;j++) {
834
+ dist+=(primal[j]*g[j*n+i]);
835
+ }
836
+ for(j=i;j<n;j++) {
837
+ dist+=(primal[j]*g[i*n+j]);
838
+ }
839
+ if((primal[i]<(up[i]-epsilon_a)) && (dist < (1.0-epsilon_crit))) {
840
+ retrain=1;
841
+ primal_optimal=0;
842
+ }
843
+ else if((primal[i]>(low[i]+epsilon_a)) && (dist > (1.0+epsilon_crit))) {
844
+ retrain=1;
845
+ primal_optimal=0;
846
+ }
847
+ if((primal[i]<=(low[i]+epsilon_a)) || (primal[i]>=(up[i]-epsilon_a))) {
848
+ at_bound++;
849
+ }
850
+ /* printf("HIDEOtemp: a[%ld]=%.30f, dist=%.6f, b=%f, at_bound=%ld\n",i,primal[i],dist,model_b,at_bound); */
851
+ }
852
+ if(m>0) {
853
+ eq=-ce0[0]; /* check precision of eq-constraint */
854
+ for(i=0;i<n;i++) {
855
+ eq+=(ce[i]*primal[i]);
856
+ }
857
+ if((EPSILON_EQ < fabs(eq))
858
+ /*
859
+ && !((goal==PRIMAL_OPTIMAL)
860
+ && (at_bound==n)) */
861
+ ) {
862
+ retrain=1;
863
+ primal_optimal=0;
864
+ }
865
+ /* printf("\n eq=%.30f ce0=%f at-bound=%ld\n",eq,ce0[0],at_bound); */
866
+ }
867
+
868
+ if(retrain) {
869
+ precision/=10;
870
+ if(((goal == PRIMAL_OPTIMAL) && (maxfaktor < 50000))
871
+ || (maxfaktor < 5)) {
872
+ maxfaktor++;
873
+ }
874
+ }
875
+ }
876
+
877
+ if(!primal_optimal) {
878
+ for(i=0;i<n;i++) {
879
+ primal[i]=0; /* calc value of primal variables */
880
+ for(j=0;j<n;j++) {
881
+ primal[i]+=ig[i*n+j]*temp[j];
882
+ }
883
+ primal[i]*=-1.0;
884
+ if(primal[i]<=(low[i]+epsilon_a)) { /* clip conservatively */
885
+ primal[i]=low[i];
886
+ }
887
+ else if(primal[i]>=(up[i]-epsilon_a)) {
888
+ primal[i]=up[i];
889
+ }
890
+ }
891
+ }
892
+
893
+ isnantest=0;
894
+ for(i=0;i<n;i++) { /* check for isnan */
895
+ isnantest+=primal[i];
896
+ }
897
+
898
+ if(m>0) {
899
+ temp1=dual[n+n+1]; /* copy the dual variables for the eq */
900
+ temp2=dual[n+n]; /* constraints to a handier location */
901
+ for(i=n+n+1;i>=2;i--) {
902
+ dual[i]=dual[i-2];
903
+ }
904
+ dual[0]=temp2;
905
+ dual[1]=temp1;
906
+ isnantest+=temp1+temp2;
907
+ }
908
+
909
+ if(isnan(isnantest)) {
910
+ return((int)NAN_SOLUTION);
911
+ }
912
+ else if(primal_optimal) {
913
+ return((int)PRIMAL_OPTIMAL);
914
+ }
915
+ else if(maxviol == 0.0) {
916
+ return((int)DUAL_OPTIMAL);
917
+ }
918
+ else {
919
+ return((int)MAXITER_EXCEEDED);
920
+ }
921
+ }
922
+
923
+
924
+ void linvert_matrix(matrix,depth,inverse,lindep_sensitivity,lin_dependent)
925
+ double *matrix;
926
+ long depth;
927
+ double *inverse,lindep_sensitivity;
928
+ long *lin_dependent; /* indicates the active parts of matrix on
929
+ input and output*/
930
+ {
931
+ long i,j,k;
932
+ double factor;
933
+
934
+ for(i=0;i<depth;i++) {
935
+ /* lin_dependent[i]=0; */
936
+ for(j=0;j<depth;j++) {
937
+ inverse[i*depth+j]=0.0;
938
+ }
939
+ inverse[i*depth+i]=1.0;
940
+ }
941
+ for(i=0;i<depth;i++) {
942
+ if(lin_dependent[i] || (fabs(matrix[i*depth+i])<lindep_sensitivity)) {
943
+ lin_dependent[i]=1;
944
+ }
945
+ else {
946
+ for(j=i+1;j<depth;j++) {
947
+ factor=matrix[j*depth+i]/matrix[i*depth+i];
948
+ for(k=i;k<depth;k++) {
949
+ matrix[j*depth+k]-=(factor*matrix[i*depth+k]);
950
+ }
951
+ for(k=0;k<depth;k++) {
952
+ inverse[j*depth+k]-=(factor*inverse[i*depth+k]);
953
+ }
954
+ }
955
+ }
956
+ }
957
+ for(i=depth-1;i>=0;i--) {
958
+ if(!lin_dependent[i]) {
959
+ factor=1/matrix[i*depth+i];
960
+ for(k=0;k<depth;k++) {
961
+ inverse[i*depth+k]*=factor;
962
+ }
963
+ matrix[i*depth+i]=1;
964
+ for(j=i-1;j>=0;j--) {
965
+ factor=matrix[j*depth+i];
966
+ matrix[j*depth+i]=0;
967
+ for(k=0;k<depth;k++) {
968
+ inverse[j*depth+k]-=(factor*inverse[i*depth+k]);
969
+ }
970
+ }
971
+ }
972
+ }
973
+ }
974
+
975
+ void lprint_matrix(matrix,depth)
976
+ double *matrix;
977
+ long depth;
978
+ {
979
+ long i,j;
980
+ for(i=0;i<depth;i++) {
981
+ for(j=0;j<depth;j++) {
982
+ printf("%5.2f ",(double)(matrix[i*depth+j]));
983
+ }
984
+ printf("\n");
985
+ }
986
+ printf("\n");
987
+ }
988
+
989
+ void ladd_matrix(matrix,depth,scalar)
990
+ double *matrix;
991
+ long depth;
992
+ double scalar;
993
+ {
994
+ long i,j;
995
+ for(i=0;i<depth;i++) {
996
+ for(j=0;j<depth;j++) {
997
+ matrix[i*depth+j]+=scalar;
998
+ }
999
+ }
1000
+ }
1001
+
1002
+ void lcopy_matrix(matrix,depth,matrix2)
1003
+ double *matrix;
1004
+ long depth;
1005
+ double *matrix2;
1006
+ {
1007
+ long i;
1008
+
1009
+ for(i=0;i<(depth)*(depth);i++) {
1010
+ matrix2[i]=matrix[i];
1011
+ }
1012
+ }
1013
+
1014
+ void lswitch_rows_matrix(matrix,depth,r1,r2)
1015
+ double *matrix;
1016
+ long depth,r1,r2;
1017
+ {
1018
+ long i;
1019
+ double temp;
1020
+
1021
+ for(i=0;i<depth;i++) {
1022
+ temp=matrix[r1*depth+i];
1023
+ matrix[r1*depth+i]=matrix[r2*depth+i];
1024
+ matrix[r2*depth+i]=temp;
1025
+ }
1026
+ }
1027
+
1028
+ void lswitchrk_matrix(matrix,depth,rk1,rk2)
1029
+ double *matrix;
1030
+ long depth,rk1,rk2;
1031
+ {
1032
+ long i;
1033
+ double temp;
1034
+
1035
+ for(i=0;i<depth;i++) {
1036
+ temp=matrix[rk1*depth+i];
1037
+ matrix[rk1*depth+i]=matrix[rk2*depth+i];
1038
+ matrix[rk2*depth+i]=temp;
1039
+ }
1040
+ for(i=0;i<depth;i++) {
1041
+ temp=matrix[i*depth+rk1];
1042
+ matrix[i*depth+rk1]=matrix[i*depth+rk2];
1043
+ matrix[i*depth+rk2]=temp;
1044
+ }
1045
+ }
1046
+
1047
+ double calculate_qp_objective(opt_n,opt_g,opt_g0,alpha)
1048
+ long opt_n;
1049
+ double *opt_g,*opt_g0,*alpha;
1050
+ {
1051
+ double obj;
1052
+ long i,j;
1053
+ obj=0; /* calculate objective */
1054
+ for(i=0;i<opt_n;i++) {
1055
+ obj+=(opt_g0[i]*alpha[i]);
1056
+ obj+=(0.5*alpha[i]*alpha[i]*opt_g[i*opt_n+i]);
1057
+ for(j=0;j<i;j++) {
1058
+ obj+=(alpha[j]*alpha[i]*opt_g[j*opt_n+i]);
1059
+ }
1060
+ }
1061
+ return(obj);
1062
+ }