rumale 0.13.8 → 0.14.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +24 -0
- data/README.md +8 -10
- data/lib/rumale.rb +3 -0
- data/lib/rumale/base/classifier.rb +2 -2
- data/lib/rumale/base/cluster_analyzer.rb +2 -2
- data/lib/rumale/base/regressor.rb +2 -2
- data/lib/rumale/clustering/dbscan.rb +3 -4
- data/lib/rumale/clustering/gaussian_mixture.rb +5 -6
- data/lib/rumale/clustering/hdbscan.rb +4 -4
- data/lib/rumale/clustering/k_means.rb +5 -6
- data/lib/rumale/clustering/k_medoids.rb +5 -6
- data/lib/rumale/clustering/power_iteration.rb +4 -6
- data/lib/rumale/clustering/single_linkage.rb +3 -3
- data/lib/rumale/clustering/snn.rb +1 -1
- data/lib/rumale/clustering/spectral_clustering.rb +4 -6
- data/lib/rumale/dataset.rb +6 -10
- data/lib/rumale/decomposition/factor_analysis.rb +4 -4
- data/lib/rumale/decomposition/fast_ica.rb +6 -7
- data/lib/rumale/decomposition/nmf.rb +6 -7
- data/lib/rumale/decomposition/pca.rb +6 -7
- data/lib/rumale/ensemble/ada_boost_classifier.rb +8 -8
- data/lib/rumale/ensemble/ada_boost_regressor.rb +7 -7
- data/lib/rumale/ensemble/extra_trees_classifier.rb +8 -8
- data/lib/rumale/ensemble/extra_trees_regressor.rb +7 -7
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +8 -8
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +8 -8
- data/lib/rumale/ensemble/random_forest_classifier.rb +8 -8
- data/lib/rumale/ensemble/random_forest_regressor.rb +7 -7
- data/lib/rumale/evaluation_measure/accuracy.rb +2 -2
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +2 -2
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +2 -2
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +2 -2
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +2 -2
- data/lib/rumale/evaluation_measure/f_score.rb +2 -2
- data/lib/rumale/evaluation_measure/log_loss.rb +2 -2
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +2 -2
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +2 -2
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +2 -2
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +2 -2
- data/lib/rumale/evaluation_measure/mutual_information.rb +2 -2
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +2 -2
- data/lib/rumale/evaluation_measure/precision.rb +2 -2
- data/lib/rumale/evaluation_measure/purity.rb +2 -2
- data/lib/rumale/evaluation_measure/r2_score.rb +2 -2
- data/lib/rumale/evaluation_measure/recall.rb +2 -2
- data/lib/rumale/evaluation_measure/roc_auc.rb +6 -3
- data/lib/rumale/evaluation_measure/silhouette_score.rb +2 -2
- data/lib/rumale/kernel_approximation/rbf.rb +5 -6
- data/lib/rumale/kernel_machine/kernel_pca.rb +4 -4
- data/lib/rumale/kernel_machine/kernel_ridge.rb +3 -3
- data/lib/rumale/kernel_machine/kernel_svc.rb +7 -8
- data/lib/rumale/linear_model/lasso.rb +5 -6
- data/lib/rumale/linear_model/linear_regression.rb +5 -6
- data/lib/rumale/linear_model/logistic_regression.rb +16 -15
- data/lib/rumale/linear_model/ridge.rb +5 -6
- data/lib/rumale/linear_model/svc.rb +34 -28
- data/lib/rumale/linear_model/svr.rb +5 -6
- data/lib/rumale/manifold/mds.rb +3 -4
- data/lib/rumale/manifold/tsne.rb +3 -5
- data/lib/rumale/model_selection/cross_validation.rb +6 -5
- data/lib/rumale/model_selection/grid_search_cv.rb +6 -6
- data/lib/rumale/model_selection/k_fold.rb +3 -3
- data/lib/rumale/model_selection/shuffle_split.rb +3 -5
- data/lib/rumale/model_selection/stratified_k_fold.rb +4 -4
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +4 -6
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +4 -4
- data/lib/rumale/naive_bayes/naive_bayes.rb +14 -14
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +5 -5
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +4 -4
- data/lib/rumale/neural_network/base_mlp.rb +244 -0
- data/lib/rumale/neural_network/mlp_classifier.rb +119 -0
- data/lib/rumale/neural_network/mlp_regressor.rb +89 -0
- data/lib/rumale/optimizer/ada_grad.rb +1 -1
- data/lib/rumale/optimizer/adam.rb +3 -3
- data/lib/rumale/optimizer/nadam.rb +1 -1
- data/lib/rumale/optimizer/rmsprop.rb +1 -1
- data/lib/rumale/optimizer/sgd.rb +1 -1
- data/lib/rumale/optimizer/yellow_fin.rb +1 -2
- data/lib/rumale/pairwise_metric.rb +17 -19
- data/lib/rumale/pipeline/pipeline.rb +10 -10
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +29 -21
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +6 -6
- data/lib/rumale/preprocessing/bin_discretizer.rb +3 -3
- data/lib/rumale/preprocessing/l2_normalizer.rb +2 -2
- data/lib/rumale/preprocessing/label_binarizer.rb +2 -2
- data/lib/rumale/preprocessing/label_encoder.rb +1 -1
- data/lib/rumale/preprocessing/max_abs_scaler.rb +3 -3
- data/lib/rumale/preprocessing/min_max_scaler.rb +3 -3
- data/lib/rumale/preprocessing/one_hot_encoder.rb +4 -3
- data/lib/rumale/preprocessing/ordinal_encoder.rb +1 -1
- data/lib/rumale/preprocessing/standard_scaler.rb +3 -3
- data/lib/rumale/tree/base_decision_tree.rb +1 -1
- data/lib/rumale/tree/decision_tree_classifier.rb +7 -7
- data/lib/rumale/tree/decision_tree_regressor.rb +6 -6
- data/lib/rumale/tree/extra_tree_classifier.rb +7 -7
- data/lib/rumale/tree/extra_tree_regressor.rb +6 -6
- data/lib/rumale/tree/gradient_tree_regressor.rb +9 -9
- data/lib/rumale/validation.rb +32 -2
- data/lib/rumale/version.rb +1 -1
- data/rumale.gemspec +7 -7
- metadata +11 -7
@@ -61,10 +61,10 @@ module Rumale
|
|
61
61
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
62
62
|
def initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0,
|
63
63
|
max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil)
|
64
|
-
|
65
|
-
|
64
|
+
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
65
|
+
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size)
|
66
66
|
check_params_string(loss: loss)
|
67
|
-
|
67
|
+
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
68
68
|
check_params_positive(n_factors: n_factors,
|
69
69
|
reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
70
70
|
max_iter: max_iter, batch_size: batch_size)
|
@@ -78,15 +78,15 @@ module Rumale
|
|
78
78
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
79
79
|
# @return [FactorizationMachineClassifier] The learned classifier itself.
|
80
80
|
def fit(x, y)
|
81
|
-
|
82
|
-
|
81
|
+
x = check_convert_sample_array(x)
|
82
|
+
y = check_convert_label_array(y)
|
83
83
|
check_sample_label_size(x, y)
|
84
84
|
|
85
85
|
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
86
|
-
n_classes = @classes.size
|
87
|
-
_n_samples, n_features = x.shape
|
88
86
|
|
89
|
-
if
|
87
|
+
if multiclass_problem?
|
88
|
+
n_classes = @classes.size
|
89
|
+
n_features = x.shape[1]
|
90
90
|
@factor_mat = Numo::DFloat.zeros(n_classes, @params[:n_factors], n_features)
|
91
91
|
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
92
92
|
@bias_term = Numo::DFloat.zeros(n_classes)
|
@@ -105,7 +105,7 @@ module Rumale
|
|
105
105
|
end
|
106
106
|
end
|
107
107
|
else
|
108
|
-
negative_label =
|
108
|
+
negative_label = @classes[0]
|
109
109
|
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
110
110
|
@factor_mat, @weight_vec, @bias_term = partial_fit(x, bin_y)
|
111
111
|
end
|
@@ -118,12 +118,12 @@ module Rumale
|
|
118
118
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
119
119
|
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
120
120
|
def decision_function(x)
|
121
|
-
|
121
|
+
x = check_convert_sample_array(x)
|
122
122
|
linear_term = @bias_term + x.dot(@weight_vec.transpose)
|
123
|
-
factor_term = if
|
124
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
125
|
-
else
|
123
|
+
factor_term = if multiclass_problem?
|
126
124
|
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
|
125
|
+
else
|
126
|
+
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
127
127
|
end
|
128
128
|
linear_term + factor_term
|
129
129
|
end
|
@@ -133,15 +133,19 @@ module Rumale
|
|
133
133
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
134
134
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
135
135
|
def predict(x)
|
136
|
-
|
137
|
-
return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2
|
136
|
+
x = check_convert_sample_array(x)
|
138
137
|
|
139
138
|
n_samples = x.shape[0]
|
140
|
-
|
141
|
-
|
142
|
-
|
139
|
+
predicted = if multiclass_problem?
|
140
|
+
decision_values = decision_function(x)
|
141
|
+
if enable_parallel?
|
142
|
+
parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
143
|
+
else
|
144
|
+
Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
145
|
+
end
|
143
146
|
else
|
144
|
-
|
147
|
+
decision_values = decision_function(x).ge(0.0).to_a
|
148
|
+
Array.new(n_samples) { |n| @classes[decision_values[n]] }
|
145
149
|
end
|
146
150
|
Numo::Int32.asarray(predicted)
|
147
151
|
end
|
@@ -151,9 +155,9 @@ module Rumale
|
|
151
155
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
152
156
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
153
157
|
def predict_proba(x)
|
154
|
-
|
158
|
+
x = check_convert_sample_array(x)
|
155
159
|
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
156
|
-
return (proba.transpose / proba.sum(axis: 1)).transpose if
|
160
|
+
return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem?
|
157
161
|
|
158
162
|
n_samples, = x.shape
|
159
163
|
probs = Numo::DFloat.zeros(n_samples, 2)
|
@@ -211,6 +215,10 @@ module Rumale
|
|
211
215
|
logistic_loss_gradient(x, ex_x, y, factor, weight)
|
212
216
|
end
|
213
217
|
end
|
218
|
+
|
219
|
+
def multiclass_problem?
|
220
|
+
@classes.size > 2
|
221
|
+
end
|
214
222
|
end
|
215
223
|
end
|
216
224
|
end
|
@@ -54,9 +54,9 @@ module Rumale
|
|
54
54
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
55
55
|
def initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0,
|
56
56
|
max_iter: 1000, batch_size: 10, optimizer: nil, n_jobs: nil, random_seed: nil)
|
57
|
-
|
58
|
-
|
59
|
-
|
57
|
+
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
58
|
+
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size)
|
59
|
+
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
60
60
|
check_params_positive(n_factors: n_factors, reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
61
61
|
max_iter: max_iter, batch_size: batch_size)
|
62
62
|
keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h.merge(loss: nil)
|
@@ -69,8 +69,8 @@ module Rumale
|
|
69
69
|
# @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
70
70
|
# @return [FactorizationMachineRegressor] The learned regressor itself.
|
71
71
|
def fit(x, y)
|
72
|
-
|
73
|
-
|
72
|
+
x = check_convert_sample_array(x)
|
73
|
+
y = check_convert_tvalue_array(y)
|
74
74
|
check_sample_tvalue_size(x, y)
|
75
75
|
|
76
76
|
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
@@ -98,7 +98,7 @@ module Rumale
|
|
98
98
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
99
99
|
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
100
100
|
def predict(x)
|
101
|
-
|
101
|
+
x = check_convert_sample_array(x)
|
102
102
|
linear_term = @bias_term + x.dot(@weight_vec.transpose)
|
103
103
|
factor_term = if @weight_vec.shape[1].nil?
|
104
104
|
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
@@ -50,7 +50,7 @@ module Rumale
|
|
50
50
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the feature ranges.
|
51
51
|
# @return [BinDiscretizer]
|
52
52
|
def fit(x, _y = nil)
|
53
|
-
|
53
|
+
x = check_convert_sample_array(x)
|
54
54
|
n_features = x.shape[1]
|
55
55
|
max_vals = x.max(0)
|
56
56
|
min_vals = x.min(0)
|
@@ -67,7 +67,7 @@ module Rumale
|
|
67
67
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be discretized.
|
68
68
|
# @return [Numo::DFloat] The discretized samples.
|
69
69
|
def fit_transform(x, _y = nil)
|
70
|
-
|
70
|
+
x = check_convert_sample_array(x)
|
71
71
|
fit(x).transform(x)
|
72
72
|
end
|
73
73
|
|
@@ -76,7 +76,7 @@ module Rumale
|
|
76
76
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be discretized.
|
77
77
|
# @return [Numo::DFloat] The discretized samples.
|
78
78
|
def transform(x)
|
79
|
-
|
79
|
+
x = check_convert_sample_array(x)
|
80
80
|
n_samples, n_features = x.shape
|
81
81
|
transformed = Numo::DFloat.zeros(n_samples, n_features)
|
82
82
|
n_features.times do |n|
|
@@ -32,7 +32,7 @@ module Rumale
|
|
32
32
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms.
|
33
33
|
# @return [L2Normalizer]
|
34
34
|
def fit(x, _y = nil)
|
35
|
-
|
35
|
+
x = check_convert_sample_array(x)
|
36
36
|
@norm_vec = Numo::NMath.sqrt((x**2).sum(1))
|
37
37
|
self
|
38
38
|
end
|
@@ -44,7 +44,7 @@ module Rumale
|
|
44
44
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate L2-norms.
|
45
45
|
# @return [Numo::DFloat] The normalized samples.
|
46
46
|
def fit_transform(x, _y = nil)
|
47
|
-
|
47
|
+
x = check_convert_sample_array(x)
|
48
48
|
fit(x)
|
49
49
|
x / @norm_vec.tile(x.shape[1], 1).transpose
|
50
50
|
end
|
@@ -31,7 +31,7 @@ module Rumale
|
|
31
31
|
# @param neg_label [Integer] The value represents negative label.
|
32
32
|
# @param pos_label [Integer] The value represents positive label.
|
33
33
|
def initialize(neg_label: 0, pos_label: 1)
|
34
|
-
|
34
|
+
check_params_numeric(neg_label: neg_label, pos_label: pos_label)
|
35
35
|
@params = {}
|
36
36
|
@params[:neg_label] = neg_label
|
37
37
|
@params[:pos_label] = pos_label
|
@@ -80,7 +80,7 @@ module Rumale
|
|
80
80
|
# @param x [Numo::Int32] (shape: [n_samples, n_classes]) The binarized labels to be decoded.
|
81
81
|
# @return [Array] (shape: [n_samples]) The decoded labels.
|
82
82
|
def inverse_transform(x)
|
83
|
-
|
83
|
+
x = Numo::Int32.cast(x) unless x.is_a?(Numo::Int32)
|
84
84
|
n_samples = x.shape[0]
|
85
85
|
Array.new(n_samples) { |n| @classes[x[n, true].ne(@params[:neg_label]).where[0]] }
|
86
86
|
end
|
@@ -71,7 +71,7 @@ module Rumale
|
|
71
71
|
# @param x [Numo::Int32] (shape: [n_samples]) The labels to be decoded.
|
72
72
|
# @return [Array] The decoded labels.
|
73
73
|
def inverse_transform(x)
|
74
|
-
|
74
|
+
x = check_convert_label_array(x)
|
75
75
|
x.to_a.map { |n| @classes[n] }
|
76
76
|
end
|
77
77
|
|
@@ -32,7 +32,7 @@ module Rumale
|
|
32
32
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate maximum absolute value for each feature.
|
33
33
|
# @return [MaxAbsScaler]
|
34
34
|
def fit(x, _y = nil)
|
35
|
-
|
35
|
+
x = check_convert_sample_array(x)
|
36
36
|
@max_abs_vec = x.abs.max(0)
|
37
37
|
self
|
38
38
|
end
|
@@ -44,7 +44,7 @@ module Rumale
|
|
44
44
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate maximum absolute value for each feature.
|
45
45
|
# @return [Numo::DFloat] The scaled samples.
|
46
46
|
def fit_transform(x, _y = nil)
|
47
|
-
|
47
|
+
x = check_convert_sample_array(x)
|
48
48
|
fit(x).transform(x)
|
49
49
|
end
|
50
50
|
|
@@ -53,7 +53,7 @@ module Rumale
|
|
53
53
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be scaled.
|
54
54
|
# @return [Numo::DFloat] The scaled samples.
|
55
55
|
def transform(x)
|
56
|
-
|
56
|
+
x = check_convert_sample_array(x)
|
57
57
|
x / @max_abs_vec
|
58
58
|
end
|
59
59
|
|
@@ -42,7 +42,7 @@ module Rumale
|
|
42
42
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values.
|
43
43
|
# @return [MinMaxScaler]
|
44
44
|
def fit(x, _y = nil)
|
45
|
-
|
45
|
+
x = check_convert_sample_array(x)
|
46
46
|
@min_vec = x.min(0)
|
47
47
|
@max_vec = x.max(0)
|
48
48
|
self
|
@@ -55,7 +55,7 @@ module Rumale
|
|
55
55
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the minimum and maximum values.
|
56
56
|
# @return [Numo::DFloat] The scaled samples.
|
57
57
|
def fit_transform(x, _y = nil)
|
58
|
-
|
58
|
+
x = check_convert_sample_array(x)
|
59
59
|
fit(x).transform(x)
|
60
60
|
end
|
61
61
|
|
@@ -64,7 +64,7 @@ module Rumale
|
|
64
64
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be scaled.
|
65
65
|
# @return [Numo::DFloat] The scaled samples.
|
66
66
|
def transform(x)
|
67
|
-
|
67
|
+
x = check_convert_sample_array(x)
|
68
68
|
n_samples, = x.shape
|
69
69
|
dif_vec = @max_vec - @min_vec
|
70
70
|
dif_vec[dif_vec.eq(0)] = 1.0
|
@@ -49,7 +49,7 @@ module Rumale
|
|
49
49
|
# @param x [Numo::Int32] (shape: [n_samples, n_features]) The samples to fit one-hot-encoder.
|
50
50
|
# @return [OneHotEncoder]
|
51
51
|
def fit(x, _y = nil)
|
52
|
-
|
52
|
+
x = Numo::Int32.cast(x) unless x.is_a?(Numo::Int32)
|
53
53
|
raise ArgumentError, 'Expected the input samples only consists of non-negative integer values.' if x.lt(0).any?
|
54
54
|
@n_values = x.max(0) + 1
|
55
55
|
@feature_indices = Numo::Int32.hstack([[0], @n_values]).cumsum
|
@@ -64,7 +64,8 @@ module Rumale
|
|
64
64
|
# @param x [Numo::Int32] (shape: [n_samples, n_features]) The samples to encode into one-hot-vectors.
|
65
65
|
# @return [Numo::DFloat] The one-hot-vectors.
|
66
66
|
def fit_transform(x, _y = nil)
|
67
|
-
|
67
|
+
x = Numo::Int32.cast(x) unless x.is_a?(Numo::Int32)
|
68
|
+
raise ArgumentError, 'Expected the input samples only consists of non-negative integer values.' if x.lt(0).any?
|
68
69
|
raise ArgumentError, 'Expected the input samples only consists of non-negative integer values.' if x.lt(0).any?
|
69
70
|
fit(x).transform(x)
|
70
71
|
end
|
@@ -74,7 +75,7 @@ module Rumale
|
|
74
75
|
# @param x [Numo::Int32] (shape: [n_samples, n_features]) The samples to encode into one-hot-vectors.
|
75
76
|
# @return [Numo::DFloat] The one-hot-vectors.
|
76
77
|
def transform(x)
|
77
|
-
|
78
|
+
x = Numo::Int32.cast(x) unless x.is_a?(Numo::Int32)
|
78
79
|
raise ArgumentError, 'Expected the input samples only consists of non-negative integer values.' if x.lt(0).any?
|
79
80
|
codes = encode(x, @feature_indices)
|
80
81
|
codes[true, @active_features].dup
|
@@ -91,7 +91,7 @@ module Rumale
|
|
91
91
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples consisting of values transformed from categorical features.
|
92
92
|
# @return [Numo::NArray] The decoded features.
|
93
93
|
def inverse_transform(x)
|
94
|
-
|
94
|
+
x = check_convert_sample_array(x)
|
95
95
|
|
96
96
|
n_features = x.shape[1]
|
97
97
|
raise ArgumentError, 'Expect the number of features and the number of categories to be equal' if n_features != @categories.size
|
@@ -39,7 +39,7 @@ module Rumale
|
|
39
39
|
# The samples to calculate the mean values and standard deviations.
|
40
40
|
# @return [StandardScaler]
|
41
41
|
def fit(x, _y = nil)
|
42
|
-
|
42
|
+
x = check_convert_sample_array(x)
|
43
43
|
@mean_vec = x.mean(0)
|
44
44
|
@std_vec = x.stddev(0)
|
45
45
|
self
|
@@ -53,7 +53,7 @@ module Rumale
|
|
53
53
|
# The samples to calculate the mean values and standard deviations.
|
54
54
|
# @return [Numo::DFloat] The scaled samples.
|
55
55
|
def fit_transform(x, _y = nil)
|
56
|
-
|
56
|
+
x = check_convert_sample_array(x)
|
57
57
|
fit(x).transform(x)
|
58
58
|
end
|
59
59
|
|
@@ -62,7 +62,7 @@ module Rumale
|
|
62
62
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be scaled.
|
63
63
|
# @return [Numo::DFloat] The scaled samples.
|
64
64
|
def transform(x)
|
65
|
-
|
65
|
+
x = check_convert_sample_array(x)
|
66
66
|
n_samples, = x.shape
|
67
67
|
(x - @mean_vec.tile(n_samples, 1)) / @std_vec.tile(n_samples, 1)
|
68
68
|
end
|
@@ -43,7 +43,7 @@ module Rumale
|
|
43
43
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
44
44
|
# @return [Numo::Int32] (shape: [n_samples]) Leaf index for sample.
|
45
45
|
def apply(x)
|
46
|
-
|
46
|
+
x = check_convert_sample_array(x)
|
47
47
|
Numo::Int32[*(Array.new(x.shape[0]) { |n| apply_at_node(@tree, x[n, true]) })]
|
48
48
|
end
|
49
49
|
|
@@ -53,9 +53,9 @@ module Rumale
|
|
53
53
|
# It is used to randomly determine the order of features when deciding spliting point.
|
54
54
|
def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
|
55
55
|
random_seed: nil)
|
56
|
-
|
57
|
-
|
58
|
-
|
56
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
57
|
+
max_features: max_features, random_seed: random_seed)
|
58
|
+
check_params_numeric(min_samples_leaf: min_samples_leaf)
|
59
59
|
check_params_string(criterion: criterion)
|
60
60
|
check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
61
61
|
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
@@ -69,8 +69,8 @@ module Rumale
|
|
69
69
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
70
70
|
# @return [DecisionTreeClassifier] The learned classifier itself.
|
71
71
|
def fit(x, y)
|
72
|
-
|
73
|
-
|
72
|
+
x = check_convert_sample_array(x)
|
73
|
+
y = check_convert_label_array(y)
|
74
74
|
check_sample_label_size(x, y)
|
75
75
|
n_samples, n_features = x.shape
|
76
76
|
@params[:max_features] = n_features if @params[:max_features].nil?
|
@@ -91,7 +91,7 @@ module Rumale
|
|
91
91
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
92
92
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
93
93
|
def predict(x)
|
94
|
-
|
94
|
+
x = check_convert_sample_array(x)
|
95
95
|
@leaf_labels[apply(x)].dup
|
96
96
|
end
|
97
97
|
|
@@ -100,7 +100,7 @@ module Rumale
|
|
100
100
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
101
101
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
102
102
|
def predict_proba(x)
|
103
|
-
|
103
|
+
x = check_convert_sample_array(x)
|
104
104
|
Numo::DFloat[*(Array.new(x.shape[0]) { |n| predict_proba_at_node(@tree, x[n, true]) })]
|
105
105
|
end
|
106
106
|
|
@@ -49,9 +49,9 @@ module Rumale
|
|
49
49
|
# It is used to randomly determine the order of features when deciding spliting point.
|
50
50
|
def initialize(criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
|
51
51
|
random_seed: nil)
|
52
|
-
|
53
|
-
|
54
|
-
|
52
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
53
|
+
max_features: max_features, random_seed: random_seed)
|
54
|
+
check_params_numeric(min_samples_leaf: min_samples_leaf)
|
55
55
|
check_params_string(criterion: criterion)
|
56
56
|
check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
57
57
|
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
@@ -65,8 +65,8 @@ module Rumale
|
|
65
65
|
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The taget values to be used for fitting the model.
|
66
66
|
# @return [DecisionTreeRegressor] The learned regressor itself.
|
67
67
|
def fit(x, y)
|
68
|
-
|
69
|
-
|
68
|
+
x = check_convert_sample_array(x)
|
69
|
+
y = check_convert_tvalue_array(y)
|
70
70
|
check_sample_tvalue_size(x, y)
|
71
71
|
n_samples, n_features = x.shape
|
72
72
|
@params[:max_features] = n_features if @params[:max_features].nil?
|
@@ -86,7 +86,7 @@ module Rumale
|
|
86
86
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
87
87
|
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
88
88
|
def predict(x)
|
89
|
-
|
89
|
+
x = check_convert_sample_array(x)
|
90
90
|
@leaf_values.shape[1].nil? ? @leaf_values[apply(x)].dup : @leaf_values[apply(x), true].dup
|
91
91
|
end
|
92
92
|
|
@@ -50,9 +50,9 @@ module Rumale
|
|
50
50
|
# It is used to randomly determine the order of features when deciding spliting point.
|
51
51
|
def initialize(criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1, max_features: nil,
|
52
52
|
random_seed: nil)
|
53
|
-
|
54
|
-
|
55
|
-
|
53
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
54
|
+
max_features: max_features, random_seed: random_seed)
|
55
|
+
check_params_numeric(min_samples_leaf: min_samples_leaf)
|
56
56
|
check_params_string(criterion: criterion)
|
57
57
|
check_params_positive(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
58
58
|
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
@@ -65,8 +65,8 @@ module Rumale
|
|
65
65
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
66
66
|
# @return [ExtraTreeClassifier] The learned classifier itself.
|
67
67
|
def fit(x, y)
|
68
|
-
|
69
|
-
|
68
|
+
x = check_convert_sample_array(x)
|
69
|
+
y = check_convert_label_array(y)
|
70
70
|
check_sample_label_size(x, y)
|
71
71
|
super
|
72
72
|
end
|
@@ -76,7 +76,7 @@ module Rumale
|
|
76
76
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
77
77
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
78
78
|
def predict(x)
|
79
|
-
|
79
|
+
x = check_convert_sample_array(x)
|
80
80
|
super
|
81
81
|
end
|
82
82
|
|
@@ -85,7 +85,7 @@ module Rumale
|
|
85
85
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
86
86
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
87
87
|
def predict_proba(x)
|
88
|
-
|
88
|
+
x = check_convert_sample_array(x)
|
89
89
|
super
|
90
90
|
end
|
91
91
|
|