rumale 0.13.8 → 0.14.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (102) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +24 -0
  3. data/README.md +8 -10
  4. data/lib/rumale.rb +3 -0
  5. data/lib/rumale/base/classifier.rb +2 -2
  6. data/lib/rumale/base/cluster_analyzer.rb +2 -2
  7. data/lib/rumale/base/regressor.rb +2 -2
  8. data/lib/rumale/clustering/dbscan.rb +3 -4
  9. data/lib/rumale/clustering/gaussian_mixture.rb +5 -6
  10. data/lib/rumale/clustering/hdbscan.rb +4 -4
  11. data/lib/rumale/clustering/k_means.rb +5 -6
  12. data/lib/rumale/clustering/k_medoids.rb +5 -6
  13. data/lib/rumale/clustering/power_iteration.rb +4 -6
  14. data/lib/rumale/clustering/single_linkage.rb +3 -3
  15. data/lib/rumale/clustering/snn.rb +1 -1
  16. data/lib/rumale/clustering/spectral_clustering.rb +4 -6
  17. data/lib/rumale/dataset.rb +6 -10
  18. data/lib/rumale/decomposition/factor_analysis.rb +4 -4
  19. data/lib/rumale/decomposition/fast_ica.rb +6 -7
  20. data/lib/rumale/decomposition/nmf.rb +6 -7
  21. data/lib/rumale/decomposition/pca.rb +6 -7
  22. data/lib/rumale/ensemble/ada_boost_classifier.rb +8 -8
  23. data/lib/rumale/ensemble/ada_boost_regressor.rb +7 -7
  24. data/lib/rumale/ensemble/extra_trees_classifier.rb +8 -8
  25. data/lib/rumale/ensemble/extra_trees_regressor.rb +7 -7
  26. data/lib/rumale/ensemble/gradient_boosting_classifier.rb +8 -8
  27. data/lib/rumale/ensemble/gradient_boosting_regressor.rb +8 -8
  28. data/lib/rumale/ensemble/random_forest_classifier.rb +8 -8
  29. data/lib/rumale/ensemble/random_forest_regressor.rb +7 -7
  30. data/lib/rumale/evaluation_measure/accuracy.rb +2 -2
  31. data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +2 -2
  32. data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +2 -2
  33. data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +2 -2
  34. data/lib/rumale/evaluation_measure/explained_variance_score.rb +2 -2
  35. data/lib/rumale/evaluation_measure/f_score.rb +2 -2
  36. data/lib/rumale/evaluation_measure/log_loss.rb +2 -2
  37. data/lib/rumale/evaluation_measure/mean_absolute_error.rb +2 -2
  38. data/lib/rumale/evaluation_measure/mean_squared_error.rb +2 -2
  39. data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +2 -2
  40. data/lib/rumale/evaluation_measure/median_absolute_error.rb +2 -2
  41. data/lib/rumale/evaluation_measure/mutual_information.rb +2 -2
  42. data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +2 -2
  43. data/lib/rumale/evaluation_measure/precision.rb +2 -2
  44. data/lib/rumale/evaluation_measure/purity.rb +2 -2
  45. data/lib/rumale/evaluation_measure/r2_score.rb +2 -2
  46. data/lib/rumale/evaluation_measure/recall.rb +2 -2
  47. data/lib/rumale/evaluation_measure/roc_auc.rb +6 -3
  48. data/lib/rumale/evaluation_measure/silhouette_score.rb +2 -2
  49. data/lib/rumale/kernel_approximation/rbf.rb +5 -6
  50. data/lib/rumale/kernel_machine/kernel_pca.rb +4 -4
  51. data/lib/rumale/kernel_machine/kernel_ridge.rb +3 -3
  52. data/lib/rumale/kernel_machine/kernel_svc.rb +7 -8
  53. data/lib/rumale/linear_model/lasso.rb +5 -6
  54. data/lib/rumale/linear_model/linear_regression.rb +5 -6
  55. data/lib/rumale/linear_model/logistic_regression.rb +16 -15
  56. data/lib/rumale/linear_model/ridge.rb +5 -6
  57. data/lib/rumale/linear_model/svc.rb +34 -28
  58. data/lib/rumale/linear_model/svr.rb +5 -6
  59. data/lib/rumale/manifold/mds.rb +3 -4
  60. data/lib/rumale/manifold/tsne.rb +3 -5
  61. data/lib/rumale/model_selection/cross_validation.rb +6 -5
  62. data/lib/rumale/model_selection/grid_search_cv.rb +6 -6
  63. data/lib/rumale/model_selection/k_fold.rb +3 -3
  64. data/lib/rumale/model_selection/shuffle_split.rb +3 -5
  65. data/lib/rumale/model_selection/stratified_k_fold.rb +4 -4
  66. data/lib/rumale/model_selection/stratified_shuffle_split.rb +4 -6
  67. data/lib/rumale/multiclass/one_vs_rest_classifier.rb +4 -4
  68. data/lib/rumale/naive_bayes/naive_bayes.rb +14 -14
  69. data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +5 -5
  70. data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +4 -4
  71. data/lib/rumale/neural_network/base_mlp.rb +244 -0
  72. data/lib/rumale/neural_network/mlp_classifier.rb +119 -0
  73. data/lib/rumale/neural_network/mlp_regressor.rb +89 -0
  74. data/lib/rumale/optimizer/ada_grad.rb +1 -1
  75. data/lib/rumale/optimizer/adam.rb +3 -3
  76. data/lib/rumale/optimizer/nadam.rb +1 -1
  77. data/lib/rumale/optimizer/rmsprop.rb +1 -1
  78. data/lib/rumale/optimizer/sgd.rb +1 -1
  79. data/lib/rumale/optimizer/yellow_fin.rb +1 -2
  80. data/lib/rumale/pairwise_metric.rb +17 -19
  81. data/lib/rumale/pipeline/pipeline.rb +10 -10
  82. data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +29 -21
  83. data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +6 -6
  84. data/lib/rumale/preprocessing/bin_discretizer.rb +3 -3
  85. data/lib/rumale/preprocessing/l2_normalizer.rb +2 -2
  86. data/lib/rumale/preprocessing/label_binarizer.rb +2 -2
  87. data/lib/rumale/preprocessing/label_encoder.rb +1 -1
  88. data/lib/rumale/preprocessing/max_abs_scaler.rb +3 -3
  89. data/lib/rumale/preprocessing/min_max_scaler.rb +3 -3
  90. data/lib/rumale/preprocessing/one_hot_encoder.rb +4 -3
  91. data/lib/rumale/preprocessing/ordinal_encoder.rb +1 -1
  92. data/lib/rumale/preprocessing/standard_scaler.rb +3 -3
  93. data/lib/rumale/tree/base_decision_tree.rb +1 -1
  94. data/lib/rumale/tree/decision_tree_classifier.rb +7 -7
  95. data/lib/rumale/tree/decision_tree_regressor.rb +6 -6
  96. data/lib/rumale/tree/extra_tree_classifier.rb +7 -7
  97. data/lib/rumale/tree/extra_tree_regressor.rb +6 -6
  98. data/lib/rumale/tree/gradient_tree_regressor.rb +9 -9
  99. data/lib/rumale/validation.rb +32 -2
  100. data/lib/rumale/version.rb +1 -1
  101. data/rumale.gemspec +7 -7
  102. metadata +11 -7
@@ -55,11 +55,10 @@ module Rumale
55
55
  # @param random_seed [Integer] The seed value using to initialize the random generator.
56
56
  def initialize(fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil,
57
57
  solver: 'sgd', n_jobs: nil, random_seed: nil)
58
- check_params_float(bias_scale: bias_scale)
59
- check_params_integer(max_iter: max_iter, batch_size: batch_size)
58
+ check_params_numeric(bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
60
59
  check_params_boolean(fit_bias: fit_bias)
61
60
  check_params_string(solver: solver)
62
- check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed)
61
+ check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
63
62
  check_params_positive(max_iter: max_iter, batch_size: batch_size)
64
63
  keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h.merge(reg_param: 0.0)
65
64
  keywd_args.delete(:solver)
@@ -73,8 +72,8 @@ module Rumale
73
72
  # @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
74
73
  # @return [LinearRegression] The learned regressor itself.
75
74
  def fit(x, y)
76
- check_sample_array(x)
77
- check_tvalue_array(y)
75
+ x = check_convert_sample_array(x)
76
+ y = check_convert_tvalue_array(y)
78
77
  check_sample_tvalue_size(x, y)
79
78
 
80
79
  if @params[:solver] == 'svd' && enable_linalg?
@@ -91,7 +90,7 @@ module Rumale
91
90
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
92
91
  # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
93
92
  def predict(x)
94
- check_sample_array(x)
93
+ x = check_convert_sample_array(x)
95
94
  x.dot(@weight_vec.transpose) + @bias_term
96
95
  end
97
96
 
@@ -57,10 +57,9 @@ module Rumale
57
57
  # @param random_seed [Integer] The seed value using to initialize the random generator.
58
58
  def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
59
59
  max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil)
60
- check_params_float(reg_param: reg_param, bias_scale: bias_scale)
61
- check_params_integer(max_iter: max_iter, batch_size: batch_size)
60
+ check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
62
61
  check_params_boolean(fit_bias: fit_bias)
63
- check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed)
62
+ check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
64
63
  check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
65
64
  super
66
65
  @classes = nil
@@ -72,15 +71,15 @@ module Rumale
72
71
  # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
73
72
  # @return [LogisticRegression] The learned classifier itself.
74
73
  def fit(x, y)
75
- check_sample_array(x)
76
- check_label_array(y)
74
+ x = check_convert_sample_array(x)
75
+ y = check_convert_label_array(y)
77
76
  check_sample_label_size(x, y)
78
77
 
79
78
  @classes = Numo::Int32[*y.to_a.uniq.sort]
80
- n_classes = @classes.size
81
- n_features = x.shape[1]
82
79
 
83
- if n_classes > 2
80
+ if multiclass_problem?
81
+ n_classes = @classes.size
82
+ n_features = x.shape[1]
84
83
  @weight_vec = Numo::DFloat.zeros(n_classes, n_features)
85
84
  @bias_term = Numo::DFloat.zeros(n_classes)
86
85
  if enable_parallel?
@@ -98,7 +97,7 @@ module Rumale
98
97
  end
99
98
  end
100
99
  else
101
- negative_label = y.to_a.uniq.min
100
+ negative_label = @classes[0]
102
101
  bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
103
102
  @weight_vec, @bias_term = partial_fit(x, bin_y)
104
103
  end
@@ -111,7 +110,7 @@ module Rumale
111
110
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
112
111
  # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
113
112
  def decision_function(x)
114
- check_sample_array(x)
113
+ x = check_convert_sample_array(x)
115
114
  x.dot(@weight_vec.transpose) + @bias_term
116
115
  end
117
116
 
@@ -120,9 +119,7 @@ module Rumale
120
119
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
121
120
  # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
122
121
  def predict(x)
123
- check_sample_array(x)
124
-
125
- return Numo::Int32.cast(predict_proba(x)[true, 1].ge(0.5)) * 2 - 1 if @classes.size <= 2
122
+ x = check_convert_sample_array(x)
126
123
 
127
124
  n_samples, = x.shape
128
125
  decision_values = predict_proba(x)
@@ -139,10 +136,10 @@ module Rumale
139
136
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
140
137
  # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
141
138
  def predict_proba(x)
142
- check_sample_array(x)
139
+ x = check_convert_sample_array(x)
143
140
 
144
141
  proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
145
- return (proba.transpose / proba.sum(axis: 1)).transpose if @classes.size > 2
142
+ return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem?
146
143
 
147
144
  n_samples, = x.shape
148
145
  probs = Numo::DFloat.zeros(n_samples, 2)
@@ -177,6 +174,10 @@ module Rumale
177
174
  def calc_loss_gradient(x, y, weight)
178
175
  y / (Numo::NMath.exp(-y * x.dot(weight)) + 1.0) - y
179
176
  end
177
+
178
+ def multiclass_problem?
179
+ @classes.size > 2
180
+ end
180
181
  end
181
182
  end
182
183
  end
@@ -56,11 +56,10 @@ module Rumale
56
56
  # @param random_seed [Integer] The seed value using to initialize the random generator.
57
57
  def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, max_iter: 1000, batch_size: 10, optimizer: nil,
58
58
  solver: 'sgd', n_jobs: nil, random_seed: nil)
59
- check_params_float(reg_param: reg_param, bias_scale: bias_scale)
60
- check_params_integer(max_iter: max_iter, batch_size: batch_size)
59
+ check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
61
60
  check_params_boolean(fit_bias: fit_bias)
62
61
  check_params_string(solver: solver)
63
- check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed)
62
+ check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
64
63
  check_params_positive(reg_param: reg_param, max_iter: max_iter, batch_size: batch_size)
65
64
  keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h
66
65
  keywd_args.delete(:solver)
@@ -74,8 +73,8 @@ module Rumale
74
73
  # @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
75
74
  # @return [Ridge] The learned regressor itself.
76
75
  def fit(x, y)
77
- check_sample_array(x)
78
- check_tvalue_array(y)
76
+ x = check_convert_sample_array(x)
77
+ y = check_convert_tvalue_array(y)
79
78
  check_sample_tvalue_size(x, y)
80
79
 
81
80
  if @params[:solver] == 'svd' && enable_linalg?
@@ -92,7 +91,7 @@ module Rumale
92
91
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
93
92
  # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
94
93
  def predict(x)
95
- check_sample_array(x)
94
+ x = check_convert_sample_array(x)
96
95
  x.dot(@weight_vec.transpose) + @bias_term
97
96
  end
98
97
 
@@ -59,10 +59,9 @@ module Rumale
59
59
  # @param random_seed [Integer] The seed value using to initialize the random generator.
60
60
  def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0,
61
61
  max_iter: 1000, batch_size: 20, probability: false, optimizer: nil, n_jobs: nil, random_seed: nil)
62
- check_params_float(reg_param: reg_param, bias_scale: bias_scale)
63
- check_params_integer(max_iter: max_iter, batch_size: batch_size)
62
+ check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
64
63
  check_params_boolean(fit_bias: fit_bias, probability: probability)
65
- check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed)
64
+ check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
66
65
  check_params_positive(reg_param: reg_param, bias_scale: bias_scale, max_iter: max_iter, batch_size: batch_size)
67
66
  keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h
68
67
  keywd_args.delete(:probability)
@@ -78,15 +77,15 @@ module Rumale
78
77
  # @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
79
78
  # @return [SVC] The learned classifier itself.
80
79
  def fit(x, y)
81
- check_sample_array(x)
82
- check_label_array(y)
80
+ x = check_convert_sample_array(x)
81
+ y = check_convert_label_array(y)
83
82
  check_sample_label_size(x, y)
84
83
 
85
84
  @classes = Numo::Int32[*y.to_a.uniq.sort]
86
- n_classes = @classes.size
87
- n_features = x.shape[1]
88
85
 
89
- if n_classes > 2
86
+ if multiclass_problem?
87
+ n_classes = @classes.size
88
+ n_features = x.shape[1]
90
89
  # initialize model.
91
90
  @weight_vec = Numo::DFloat.zeros(n_classes, n_features)
92
91
  @bias_term = Numo::DFloat.zeros(n_classes)
@@ -108,7 +107,7 @@ module Rumale
108
107
  # store model.
109
108
  models.each_with_index { |model, n| @weight_vec[n, true], @bias_term[n], @prob_param[n, true] = model }
110
109
  else
111
- negative_label = y.to_a.uniq.min
110
+ negative_label = @classes[0]
112
111
  bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
113
112
  @weight_vec, @bias_term, @prob_param = partial_fit(x, bin_y)
114
113
  end
@@ -121,7 +120,7 @@ module Rumale
121
120
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
122
121
  # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
123
122
  def decision_function(x)
124
- check_sample_array(x)
123
+ x = check_convert_sample_array(x)
125
124
  x.dot(@weight_vec.transpose) + @bias_term
126
125
  end
127
126
 
@@ -130,16 +129,19 @@ module Rumale
130
129
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
131
130
  # @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
132
131
  def predict(x)
133
- check_sample_array(x)
134
-
135
- return Numo::Int32.cast(decision_function(x).ge(0.0)) * 2 - 1 if @classes.size <= 2
136
-
137
- n_samples, = x.shape
138
- decision_values = decision_function(x)
139
- predicted = if enable_parallel?
140
- parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
132
+ x = check_convert_sample_array(x)
133
+
134
+ n_samples = x.shape[0]
135
+ predicted = if multiclass_problem?
136
+ decision_values = decision_function(x)
137
+ if enable_parallel?
138
+ parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
139
+ else
140
+ Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
141
+ end
141
142
  else
142
- Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
143
+ decision_values = decision_function(x).ge(0.0).to_a
144
+ Array.new(n_samples) { |n| @classes[decision_values[n]] }
143
145
  end
144
146
  Numo::Int32.asarray(predicted)
145
147
  end
@@ -149,18 +151,18 @@ module Rumale
149
151
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
150
152
  # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
151
153
  def predict_proba(x)
152
- check_sample_array(x)
154
+ x = check_convert_sample_array(x)
153
155
 
154
- if @classes.size > 2
156
+ if multiclass_problem?
155
157
  probs = 1.0 / (Numo::NMath.exp(@prob_param[true, 0] * decision_function(x) + @prob_param[true, 1]) + 1.0)
156
- return (probs.transpose / probs.sum(axis: 1)).transpose
158
+ (probs.transpose / probs.sum(axis: 1)).transpose.dup
159
+ else
160
+ n_samples, = x.shape
161
+ probs = Numo::DFloat.zeros(n_samples, 2)
162
+ probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
163
+ probs[true, 0] = 1.0 - probs[true, 1]
164
+ probs
157
165
  end
158
-
159
- n_samples, = x.shape
160
- probs = Numo::DFloat.zeros(n_samples, 2)
161
- probs[true, 1] = 1.0 / (Numo::NMath.exp(@prob_param[0] * decision_function(x) + @prob_param[1]) + 1.0)
162
- probs[true, 0] = 1.0 - probs[true, 1]
163
- probs
164
166
  end
165
167
 
166
168
  # Dump marshal data.
@@ -204,6 +206,10 @@ module Rumale
204
206
  grad[target_ids] = -y[target_ids]
205
207
  grad
206
208
  end
209
+
210
+ def multiclass_problem?
211
+ @classes.size > 2
212
+ end
207
213
  end
208
214
  end
209
215
  end
@@ -52,10 +52,9 @@ module Rumale
52
52
  # @param random_seed [Integer] The seed value using to initialize the random generator.
53
53
  def initialize(reg_param: 1.0, fit_bias: false, bias_scale: 1.0, epsilon: 0.1,
54
54
  max_iter: 1000, batch_size: 20, optimizer: nil, n_jobs: nil, random_seed: nil)
55
- check_params_float(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon)
56
- check_params_integer(max_iter: max_iter, batch_size: batch_size)
55
+ check_params_numeric(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon, max_iter: max_iter, batch_size: batch_size)
57
56
  check_params_boolean(fit_bias: fit_bias)
58
- check_params_type_or_nil(Integer, n_jobs: n_jobs, random_seed: random_seed)
57
+ check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
59
58
  check_params_positive(reg_param: reg_param, bias_scale: bias_scale, epsilon: epsilon,
60
59
  max_iter: max_iter, batch_size: batch_size)
61
60
  keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h
@@ -70,8 +69,8 @@ module Rumale
70
69
  # @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
71
70
  # @return [SVR] The learned regressor itself.
72
71
  def fit(x, y)
73
- check_sample_array(x)
74
- check_tvalue_array(y)
72
+ x = check_convert_sample_array(x)
73
+ y = check_convert_tvalue_array(y)
75
74
  check_sample_tvalue_size(x, y)
76
75
 
77
76
  n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
@@ -98,7 +97,7 @@ module Rumale
98
97
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
99
98
  # @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
100
99
  def predict(x)
101
- check_sample_array(x)
100
+ x = check_convert_sample_array(x)
102
101
  x.dot(@weight_vec.transpose) + @bias_term
103
102
  end
104
103
 
@@ -53,11 +53,10 @@ module Rumale
53
53
  # @param random_seed [Integer] The seed value using to initialize the random generator.
54
54
  def initialize(n_components: 2, metric: 'euclidean', init: 'random',
55
55
  max_iter: 300, tol: nil, verbose: false, random_seed: nil)
56
- check_params_integer(n_components: n_components, max_iter: max_iter)
56
+ check_params_numeric(n_components: n_components, max_iter: max_iter)
57
57
  check_params_string(metric: metric, init: init)
58
58
  check_params_boolean(verbose: verbose)
59
- check_params_type_or_nil(Float, tol: tol)
60
- check_params_type_or_nil(Integer, random_seed: random_seed)
59
+ check_params_numeric_or_nil(tol: tol, random_seed: random_seed)
61
60
  check_params_positive(n_components: n_components, max_iter: max_iter)
62
61
  @params = {}
63
62
  @params[:n_components] = n_components
@@ -82,7 +81,7 @@ module Rumale
82
81
  # If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
83
82
  # @return [MDS] The learned transformer itself.
84
83
  def fit(x, _not_used = nil)
85
- check_sample_array(x)
84
+ x = check_convert_sample_array(x)
86
85
  raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
87
86
  # initialize some varibales.
88
87
  n_samples = x.shape[0]
@@ -58,12 +58,10 @@ module Rumale
58
58
  # @param random_seed [Integer] The seed value using to initialize the random generator.
59
59
  def initialize(n_components: 2, perplexity: 30.0, metric: 'euclidean', init: 'random',
60
60
  max_iter: 500, tol: nil, verbose: false, random_seed: nil)
61
- check_params_integer(n_components: n_components, max_iter: max_iter)
62
- check_params_float(perplexity: perplexity)
61
+ check_params_numeric(n_components: n_components, max_iter: max_iter, perplexity: perplexity)
63
62
  check_params_string(metric: metric, init: init)
64
63
  check_params_boolean(verbose: verbose)
65
- check_params_type_or_nil(Float, tol: tol)
66
- check_params_type_or_nil(Integer, random_seed: random_seed)
64
+ check_params_numeric_or_nil(tol: tol, random_seed: random_seed)
67
65
  check_params_positive(n_components: n_components, perplexity: perplexity, max_iter: max_iter)
68
66
  @params = {}
69
67
  @params[:n_components] = n_components
@@ -89,7 +87,7 @@ module Rumale
89
87
  # If the metric is 'precomputed', x must be a square distance matrix (shape: [n_samples, n_samples]).
90
88
  # @return [TSNE] The learned transformer itself.
91
89
  def fit(x, _not_used = nil)
92
- check_sample_array(x)
90
+ x = check_convert_sample_array(x)
93
91
  raise ArgumentError, 'Expect the input distance matrix to be square.' if @params[:metric] == 'precomputed' && x.shape[0] != x.shape[1]
94
92
  # initialize some varibales.
95
93
  @n_iter = 0
@@ -68,14 +68,15 @@ module Rumale
68
68
  # * :train_score (Array<Float>) The scores of training dataset for each split. This option is nil if
69
69
  # the return_train_score is false.
70
70
  def perform(x, y)
71
- check_sample_array(x)
71
+ x = check_convert_sample_array(x)
72
72
  if @estimator.is_a?(Rumale::Base::Classifier)
73
- check_label_array(y)
73
+ y = check_convert_label_array(y)
74
74
  check_sample_label_size(x, y)
75
- end
76
- if @estimator.is_a?(Rumale::Base::Regressor)
77
- check_tvalue_array(y)
75
+ elsif @estimator.is_a?(Rumale::Base::Regressor)
76
+ y = check_convert_tvalue_array(y)
78
77
  check_sample_tvalue_size(x, y)
78
+ else
79
+ y = Numo::NArray.asarray(y)
79
80
  end
80
81
  # Initialize the report of cross validation.
81
82
  report = { test_score: [], train_score: nil, fit_time: [] }
@@ -88,7 +88,7 @@ module Rumale
88
88
  # @param y [Numo::NArray] (shape: [n_samples, n_outputs]) The target values or labels to be used for fitting the model.
89
89
  # @return [GridSearchCV] The learned estimator with grid search.
90
90
  def fit(x, y)
91
- check_sample_array(x)
91
+ x = check_convert_sample_array(x)
92
92
 
93
93
  init_attrs
94
94
 
@@ -111,7 +111,7 @@ module Rumale
111
111
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
112
112
  # @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
113
113
  def decision_function(x)
114
- check_sample_array(x)
114
+ x = check_convert_sample_array(x)
115
115
  @best_estimator.decision_function(x)
116
116
  end
117
117
 
@@ -120,7 +120,7 @@ module Rumale
120
120
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to obtain prediction result.
121
121
  # @return [Numo::NArray] Predicted results.
122
122
  def predict(x)
123
- check_sample_array(x)
123
+ x = check_convert_sample_array(x)
124
124
  @best_estimator.predict(x)
125
125
  end
126
126
 
@@ -129,7 +129,7 @@ module Rumale
129
129
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the log-probailities.
130
130
  # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted log-probability of each class per sample.
131
131
  def predict_log_proba(x)
132
- check_sample_array(x)
132
+ x = check_convert_sample_array(x)
133
133
  @best_estimator.predict_log_proba(x)
134
134
  end
135
135
 
@@ -138,7 +138,7 @@ module Rumale
138
138
  # @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
139
139
  # @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
140
140
  def predict_proba(x)
141
- check_sample_array(x)
141
+ x = check_convert_sample_array(x)
142
142
  @best_estimator.predict_proba(x)
143
143
  end
144
144
 
@@ -148,7 +148,7 @@ module Rumale
148
148
  # @param y [Numo::NArray] (shape: [n_samples, n_outputs]) True target values or labels for testing data.
149
149
  # @return [Float] The score of estimator.
150
150
  def score(x, y)
151
- check_sample_array(x)
151
+ x = check_convert_sample_array(x)
152
152
  @best_estimator.score(x, y)
153
153
  end
154
154
 
@@ -36,9 +36,9 @@ module Rumale
36
36
  # @param shuffle [Boolean] The flag indicating whether to shuffle the dataset.
37
37
  # @param random_seed [Integer] The seed value using to initialize the random generator.
38
38
  def initialize(n_splits: 3, shuffle: false, random_seed: nil)
39
- check_params_integer(n_splits: n_splits)
39
+ check_params_numeric(n_splits: n_splits)
40
40
  check_params_boolean(shuffle: shuffle)
41
- check_params_type_or_nil(Integer, random_seed: random_seed)
41
+ check_params_numeric_or_nil(random_seed: random_seed)
42
42
  check_params_positive(n_splits: n_splits)
43
43
  @n_splits = n_splits
44
44
  @shuffle = shuffle
@@ -53,7 +53,7 @@ module Rumale
53
53
  # The dataset to be used to generate data indices for K-fold cross validation.
54
54
  # @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
55
55
  def split(x, _y = nil)
56
- check_sample_array(x)
56
+ x = check_convert_sample_array(x)
57
57
  # Initialize and check some variables.
58
58
  n_samples, = x.shape
59
59
  unless @n_splits.between?(2, n_samples)
@@ -32,10 +32,8 @@ module Rumale
32
32
  # @param train_size [Float] The ratio of number of samples for train data.
33
33
  # @param random_seed [Integer] The seed value using to initialize the random generator.
34
34
  def initialize(n_splits: 3, test_size: 0.1, train_size: nil, random_seed: nil)
35
- check_params_integer(n_splits: n_splits)
36
- check_params_float(test_size: test_size)
37
- check_params_type_or_nil(Float, train_size: train_size)
38
- check_params_type_or_nil(Integer, random_seed: random_seed)
35
+ check_params_numeric(n_splits: n_splits, test_size: test_size)
36
+ check_params_numeric_or_nil(train_size: train_size, random_seed: random_seed)
39
37
  check_params_positive(n_splits: n_splits)
40
38
  check_params_positive(test_size: test_size)
41
39
  check_params_positive(train_size: train_size) unless train_size.nil?
@@ -53,7 +51,7 @@ module Rumale
53
51
  # The dataset to be used to generate data indices for random permutation cross validation.
54
52
  # @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
55
53
  def split(x, _y = nil)
56
- check_sample_array(x)
54
+ x = check_convert_sample_array(x)
57
55
  # Initialize and check some variables.
58
56
  n_samples = x.shape[0]
59
57
  n_test_samples = (@test_size * n_samples).to_i