rumale 0.13.8 → 0.14.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +24 -0
- data/README.md +8 -10
- data/lib/rumale.rb +3 -0
- data/lib/rumale/base/classifier.rb +2 -2
- data/lib/rumale/base/cluster_analyzer.rb +2 -2
- data/lib/rumale/base/regressor.rb +2 -2
- data/lib/rumale/clustering/dbscan.rb +3 -4
- data/lib/rumale/clustering/gaussian_mixture.rb +5 -6
- data/lib/rumale/clustering/hdbscan.rb +4 -4
- data/lib/rumale/clustering/k_means.rb +5 -6
- data/lib/rumale/clustering/k_medoids.rb +5 -6
- data/lib/rumale/clustering/power_iteration.rb +4 -6
- data/lib/rumale/clustering/single_linkage.rb +3 -3
- data/lib/rumale/clustering/snn.rb +1 -1
- data/lib/rumale/clustering/spectral_clustering.rb +4 -6
- data/lib/rumale/dataset.rb +6 -10
- data/lib/rumale/decomposition/factor_analysis.rb +4 -4
- data/lib/rumale/decomposition/fast_ica.rb +6 -7
- data/lib/rumale/decomposition/nmf.rb +6 -7
- data/lib/rumale/decomposition/pca.rb +6 -7
- data/lib/rumale/ensemble/ada_boost_classifier.rb +8 -8
- data/lib/rumale/ensemble/ada_boost_regressor.rb +7 -7
- data/lib/rumale/ensemble/extra_trees_classifier.rb +8 -8
- data/lib/rumale/ensemble/extra_trees_regressor.rb +7 -7
- data/lib/rumale/ensemble/gradient_boosting_classifier.rb +8 -8
- data/lib/rumale/ensemble/gradient_boosting_regressor.rb +8 -8
- data/lib/rumale/ensemble/random_forest_classifier.rb +8 -8
- data/lib/rumale/ensemble/random_forest_regressor.rb +7 -7
- data/lib/rumale/evaluation_measure/accuracy.rb +2 -2
- data/lib/rumale/evaluation_measure/adjusted_rand_score.rb +2 -2
- data/lib/rumale/evaluation_measure/calinski_harabasz_score.rb +2 -2
- data/lib/rumale/evaluation_measure/davies_bouldin_score.rb +2 -2
- data/lib/rumale/evaluation_measure/explained_variance_score.rb +2 -2
- data/lib/rumale/evaluation_measure/f_score.rb +2 -2
- data/lib/rumale/evaluation_measure/log_loss.rb +2 -2
- data/lib/rumale/evaluation_measure/mean_absolute_error.rb +2 -2
- data/lib/rumale/evaluation_measure/mean_squared_error.rb +2 -2
- data/lib/rumale/evaluation_measure/mean_squared_log_error.rb +2 -2
- data/lib/rumale/evaluation_measure/median_absolute_error.rb +2 -2
- data/lib/rumale/evaluation_measure/mutual_information.rb +2 -2
- data/lib/rumale/evaluation_measure/normalized_mutual_information.rb +2 -2
- data/lib/rumale/evaluation_measure/precision.rb +2 -2
- data/lib/rumale/evaluation_measure/purity.rb +2 -2
- data/lib/rumale/evaluation_measure/r2_score.rb +2 -2
- data/lib/rumale/evaluation_measure/recall.rb +2 -2
- data/lib/rumale/evaluation_measure/roc_auc.rb +6 -3
- data/lib/rumale/evaluation_measure/silhouette_score.rb +2 -2
- data/lib/rumale/kernel_approximation/rbf.rb +5 -6
- data/lib/rumale/kernel_machine/kernel_pca.rb +4 -4
- data/lib/rumale/kernel_machine/kernel_ridge.rb +3 -3
- data/lib/rumale/kernel_machine/kernel_svc.rb +7 -8
- data/lib/rumale/linear_model/lasso.rb +5 -6
- data/lib/rumale/linear_model/linear_regression.rb +5 -6
- data/lib/rumale/linear_model/logistic_regression.rb +16 -15
- data/lib/rumale/linear_model/ridge.rb +5 -6
- data/lib/rumale/linear_model/svc.rb +34 -28
- data/lib/rumale/linear_model/svr.rb +5 -6
- data/lib/rumale/manifold/mds.rb +3 -4
- data/lib/rumale/manifold/tsne.rb +3 -5
- data/lib/rumale/model_selection/cross_validation.rb +6 -5
- data/lib/rumale/model_selection/grid_search_cv.rb +6 -6
- data/lib/rumale/model_selection/k_fold.rb +3 -3
- data/lib/rumale/model_selection/shuffle_split.rb +3 -5
- data/lib/rumale/model_selection/stratified_k_fold.rb +4 -4
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +4 -6
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +4 -4
- data/lib/rumale/naive_bayes/naive_bayes.rb +14 -14
- data/lib/rumale/nearest_neighbors/k_neighbors_classifier.rb +5 -5
- data/lib/rumale/nearest_neighbors/k_neighbors_regressor.rb +4 -4
- data/lib/rumale/neural_network/base_mlp.rb +244 -0
- data/lib/rumale/neural_network/mlp_classifier.rb +119 -0
- data/lib/rumale/neural_network/mlp_regressor.rb +89 -0
- data/lib/rumale/optimizer/ada_grad.rb +1 -1
- data/lib/rumale/optimizer/adam.rb +3 -3
- data/lib/rumale/optimizer/nadam.rb +1 -1
- data/lib/rumale/optimizer/rmsprop.rb +1 -1
- data/lib/rumale/optimizer/sgd.rb +1 -1
- data/lib/rumale/optimizer/yellow_fin.rb +1 -2
- data/lib/rumale/pairwise_metric.rb +17 -19
- data/lib/rumale/pipeline/pipeline.rb +10 -10
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +29 -21
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +6 -6
- data/lib/rumale/preprocessing/bin_discretizer.rb +3 -3
- data/lib/rumale/preprocessing/l2_normalizer.rb +2 -2
- data/lib/rumale/preprocessing/label_binarizer.rb +2 -2
- data/lib/rumale/preprocessing/label_encoder.rb +1 -1
- data/lib/rumale/preprocessing/max_abs_scaler.rb +3 -3
- data/lib/rumale/preprocessing/min_max_scaler.rb +3 -3
- data/lib/rumale/preprocessing/one_hot_encoder.rb +4 -3
- data/lib/rumale/preprocessing/ordinal_encoder.rb +1 -1
- data/lib/rumale/preprocessing/standard_scaler.rb +3 -3
- data/lib/rumale/tree/base_decision_tree.rb +1 -1
- data/lib/rumale/tree/decision_tree_classifier.rb +7 -7
- data/lib/rumale/tree/decision_tree_regressor.rb +6 -6
- data/lib/rumale/tree/extra_tree_classifier.rb +7 -7
- data/lib/rumale/tree/extra_tree_regressor.rb +6 -6
- data/lib/rumale/tree/gradient_tree_regressor.rb +9 -9
- data/lib/rumale/validation.rb +32 -2
- data/lib/rumale/version.rb +1 -1
- data/rumale.gemspec +7 -7
- metadata +11 -7
@@ -46,8 +46,8 @@ module Rumale
|
|
46
46
|
# @param tol [Float/Nil] The tolerance of termination criterion for EM algorithm.
|
47
47
|
# If nil is given, iterate EM steps up to the maximum number of iterations.
|
48
48
|
def initialize(n_components: 2, max_iter: 100, tol: 1e-8)
|
49
|
-
|
50
|
-
|
49
|
+
check_params_numeric(n_components: n_components, max_iter: max_iter)
|
50
|
+
check_params_numeric_or_nil(tol: tol)
|
51
51
|
check_params_positive(n_components: n_components, max_iter: max_iter)
|
52
52
|
@params = {}
|
53
53
|
@params[:n_components] = n_components
|
@@ -107,7 +107,7 @@ module Rumale
|
|
107
107
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
108
108
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
109
109
|
def fit_transform(x, _y = nil)
|
110
|
-
|
110
|
+
x = check_convert_sample_array(x)
|
111
111
|
raise 'FactorAnalysis#fit_transform requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
112
112
|
|
113
113
|
fit(x).transform(x)
|
@@ -118,7 +118,7 @@ module Rumale
|
|
118
118
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
119
119
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
120
120
|
def transform(x)
|
121
|
-
|
121
|
+
x = check_convert_sample_array(x)
|
122
122
|
raise 'FactorAnalysis#transform requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
123
123
|
|
124
124
|
factors = @params[:n_components] == 1 ? @components.expand_dims(0) : @components
|
@@ -47,11 +47,10 @@ module Rumale
|
|
47
47
|
# @param tol [Float] The tolerance of termination criterion.
|
48
48
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
49
49
|
def initialize(n_components: 2, whiten: true, fun: 'logcosh', alpha: 1.0, max_iter: 200, tol: 1e-4, random_seed: nil)
|
50
|
-
|
50
|
+
check_params_numeric(n_components: n_components, max_iter: max_iter, alpha: alpha, tol: tol)
|
51
51
|
check_params_boolean(whiten: whiten)
|
52
52
|
check_params_string(fun: fun)
|
53
|
-
|
54
|
-
check_params_type_or_nil(Integer, random_seed: random_seed)
|
53
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
55
54
|
check_params_positive(n_components: n_components, max_iter: max_iter, tol: tol)
|
56
55
|
@params = {}
|
57
56
|
@params[:n_components] = n_components
|
@@ -75,7 +74,7 @@ module Rumale
|
|
75
74
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
76
75
|
# @return [FastICA] The learned transformer itself.
|
77
76
|
def fit(x, _y = nil)
|
78
|
-
|
77
|
+
x = check_convert_sample_array(x)
|
79
78
|
raise 'FastICA#fit requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
80
79
|
|
81
80
|
@mean, whiten_mat = whitening(x, @params[:n_components]) if @params[:whiten]
|
@@ -96,7 +95,7 @@ module Rumale
|
|
96
95
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
97
96
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
98
97
|
def fit_transform(x, _y = nil)
|
99
|
-
|
98
|
+
x = check_convert_sample_array(x)
|
100
99
|
raise 'FastICA#fit_transform requires Numo::Linalg but that is not loaded.' unless enable_linalg?
|
101
100
|
|
102
101
|
fit(x).transform(x)
|
@@ -107,7 +106,7 @@ module Rumale
|
|
107
106
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
108
107
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
109
108
|
def transform(x)
|
110
|
-
|
109
|
+
x = check_convert_sample_array(x)
|
111
110
|
cx = @params[:whiten] ? (x - @mean) : x
|
112
111
|
cx.dot(@components.transpose)
|
113
112
|
end
|
@@ -117,7 +116,7 @@ module Rumale
|
|
117
116
|
# @param z [Numo::DFloat] (shape: [n_samples, n_components]) The source data reconstructed to the mixed data.
|
118
117
|
# @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The mixed data.
|
119
118
|
def inverse_transform(z)
|
120
|
-
|
119
|
+
z = check_convert_sample_array(z)
|
121
120
|
m = @mixing.shape[1].nil? ? @mixing.expand_dims(0).transpose : @mixing
|
122
121
|
x = z.dot(m.transpose)
|
123
122
|
x += @mean if @params[:whiten]
|
@@ -34,9 +34,8 @@ module Rumale
|
|
34
34
|
# @param eps [Float] A small value close to zero to avoid zero division error.
|
35
35
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
36
36
|
def initialize(n_components: 2, max_iter: 500, tol: 1.0e-4, eps: 1.0e-16, random_seed: nil)
|
37
|
-
|
38
|
-
|
39
|
-
check_params_type_or_nil(Integer, random_seed: random_seed)
|
37
|
+
check_params_numeric(n_components: n_components, max_iter: max_iter, tol: tol, eps: eps)
|
38
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
40
39
|
check_params_positive(n_components: n_components, max_iter: max_iter, tol: tol, eps: eps)
|
41
40
|
@params = {}
|
42
41
|
@params[:n_components] = n_components
|
@@ -56,7 +55,7 @@ module Rumale
|
|
56
55
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
57
56
|
# @return [NMF] The learned transformer itself.
|
58
57
|
def fit(x, _y = nil)
|
59
|
-
|
58
|
+
x = check_convert_sample_array(x)
|
60
59
|
partial_fit(x)
|
61
60
|
self
|
62
61
|
end
|
@@ -68,7 +67,7 @@ module Rumale
|
|
68
67
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
69
68
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
70
69
|
def fit_transform(x, _y = nil)
|
71
|
-
|
70
|
+
x = check_convert_sample_array(x)
|
72
71
|
partial_fit(x)
|
73
72
|
end
|
74
73
|
|
@@ -77,7 +76,7 @@ module Rumale
|
|
77
76
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
78
77
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
79
78
|
def transform(x)
|
80
|
-
|
79
|
+
x = check_convert_sample_array(x)
|
81
80
|
partial_fit(x, false)
|
82
81
|
end
|
83
82
|
|
@@ -86,7 +85,7 @@ module Rumale
|
|
86
85
|
# @param z [Numo::DFloat] (shape: [n_samples, n_components]) The data to be restored into original space with the learned model.
|
87
86
|
# @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored data.
|
88
87
|
def inverse_transform(z)
|
89
|
-
|
88
|
+
z = check_convert_sample_array(z)
|
90
89
|
z.dot(@components)
|
91
90
|
end
|
92
91
|
|
@@ -44,10 +44,9 @@ module Rumale
|
|
44
44
|
# @param tol [Float] The tolerance of termination criterion. If solver = 'evd', this parameter is ignored.
|
45
45
|
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
46
46
|
def initialize(n_components: 2, solver: 'fpt', max_iter: 100, tol: 1.0e-4, random_seed: nil)
|
47
|
-
|
47
|
+
check_params_numeric(n_components: n_components, max_iter: max_iter, tol: tol)
|
48
48
|
check_params_string(solver: solver)
|
49
|
-
|
50
|
-
check_params_type_or_nil(Integer, random_seed: random_seed)
|
49
|
+
check_params_numeric_or_nil(random_seed: random_seed)
|
51
50
|
check_params_positive(n_components: n_components, max_iter: max_iter, tol: tol)
|
52
51
|
@params = {}
|
53
52
|
@params[:solver] = solver != 'evd' ? 'fpt' : 'evd'
|
@@ -68,7 +67,7 @@ module Rumale
|
|
68
67
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
69
68
|
# @return [PCA] The learned transformer itself.
|
70
69
|
def fit(x, _y = nil)
|
71
|
-
|
70
|
+
x = check_convert_sample_array(x)
|
72
71
|
# initialize some variables.
|
73
72
|
@components = nil
|
74
73
|
n_samples, n_features = x.shape
|
@@ -103,7 +102,7 @@ module Rumale
|
|
103
102
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
104
103
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data
|
105
104
|
def fit_transform(x, _y = nil)
|
106
|
-
|
105
|
+
x = check_convert_sample_array(x)
|
107
106
|
fit(x).transform(x)
|
108
107
|
end
|
109
108
|
|
@@ -112,7 +111,7 @@ module Rumale
|
|
112
111
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The data to be transformed with the learned model.
|
113
112
|
# @return [Numo::DFloat] (shape: [n_samples, n_components]) The transformed data.
|
114
113
|
def transform(x)
|
115
|
-
|
114
|
+
x = check_convert_sample_array(x)
|
116
115
|
(x - @mean).dot(@components.transpose)
|
117
116
|
end
|
118
117
|
|
@@ -121,7 +120,7 @@ module Rumale
|
|
121
120
|
# @param z [Numo::DFloat] (shape: [n_samples, n_components]) The data to be restored into original space with the learned model.
|
122
121
|
# @return [Numo::DFloat] (shape: [n_samples, n_featuress]) The restored data.
|
123
122
|
def inverse_transform(z)
|
124
|
-
|
123
|
+
z = check_convert_sample_array(z)
|
125
124
|
c = @components.shape[1].nil? ? @components.expand_dims(0) : @components
|
126
125
|
z.dot(c) + @mean
|
127
126
|
end
|
@@ -56,9 +56,9 @@ module Rumale
|
|
56
56
|
def initialize(n_estimators: 50,
|
57
57
|
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
58
58
|
max_features: nil, random_seed: nil)
|
59
|
-
|
60
|
-
|
61
|
-
|
59
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
60
|
+
max_features: max_features, random_seed: random_seed)
|
61
|
+
check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
|
62
62
|
check_params_string(criterion: criterion)
|
63
63
|
check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
|
64
64
|
max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
|
@@ -84,8 +84,8 @@ module Rumale
|
|
84
84
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
85
85
|
# @return [AdaBoostClassifier] The learned classifier itself.
|
86
86
|
def fit(x, y) # rubocop:disable Metrics/AbcSize
|
87
|
-
|
88
|
-
|
87
|
+
x = check_convert_sample_array(x)
|
88
|
+
y = check_convert_label_array(y)
|
89
89
|
check_sample_label_size(x, y)
|
90
90
|
## Initialize some variables.
|
91
91
|
n_samples, n_features = x.shape
|
@@ -137,7 +137,7 @@ module Rumale
|
|
137
137
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
138
138
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
139
139
|
def decision_function(x)
|
140
|
-
|
140
|
+
x = check_convert_sample_array(x)
|
141
141
|
n_samples, = x.shape
|
142
142
|
n_classes = @classes.size
|
143
143
|
sum_probs = Numo::DFloat.zeros(n_samples, n_classes)
|
@@ -153,7 +153,7 @@ module Rumale
|
|
153
153
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
154
154
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
155
155
|
def predict(x)
|
156
|
-
|
156
|
+
x = check_convert_sample_array(x)
|
157
157
|
n_samples, = x.shape
|
158
158
|
probs = decision_function(x)
|
159
159
|
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[probs[n, true].max_index] })
|
@@ -164,7 +164,7 @@ module Rumale
|
|
164
164
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
165
165
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
166
166
|
def predict_proba(x)
|
167
|
-
|
167
|
+
x = check_convert_sample_array(x)
|
168
168
|
n_classes = @classes.size
|
169
169
|
probs = Numo::NMath.exp(1.fdiv(n_classes - 1) * decision_function(x))
|
170
170
|
sum_probs = probs.sum(1)
|
@@ -58,10 +58,10 @@ module Rumale
|
|
58
58
|
def initialize(n_estimators: 10, threshold: 0.2, exponent: 1.0,
|
59
59
|
criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
60
60
|
max_features: nil, random_seed: nil)
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
61
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
62
|
+
max_features: max_features, random_seed: random_seed)
|
63
|
+
check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf,
|
64
|
+
threshold: threshold, exponent: exponent)
|
65
65
|
check_params_string(criterion: criterion)
|
66
66
|
check_params_positive(n_estimators: n_estimators, threshold: threshold, exponent: exponent,
|
67
67
|
max_depth: max_depth,
|
@@ -89,8 +89,8 @@ module Rumale
|
|
89
89
|
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
90
90
|
# @return [AdaBoostRegressor] The learned regressor itself.
|
91
91
|
def fit(x, y) # rubocop:disable Metrics/AbcSize
|
92
|
-
|
93
|
-
|
92
|
+
x = check_convert_sample_array(x)
|
93
|
+
y = check_convert_tvalue_array(y)
|
94
94
|
check_sample_tvalue_size(x, y)
|
95
95
|
# Check target values
|
96
96
|
raise ArgumentError, 'Expect target value vector to be 1-D arrray' unless y.shape.size == 1
|
@@ -144,7 +144,7 @@ module Rumale
|
|
144
144
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
145
145
|
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
146
146
|
def predict(x)
|
147
|
-
|
147
|
+
x = check_convert_sample_array(x)
|
148
148
|
n_samples, = x.shape
|
149
149
|
predictions = Numo::DFloat.zeros(n_samples)
|
150
150
|
@estimators.size.times do |t|
|
@@ -56,9 +56,9 @@ module Rumale
|
|
56
56
|
def initialize(n_estimators: 10,
|
57
57
|
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
58
58
|
max_features: nil, n_jobs: nil, random_seed: nil)
|
59
|
-
|
60
|
-
|
61
|
-
|
59
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
60
|
+
max_features: max_features, n_jobs: n_jobs, random_seed: random_seed)
|
61
|
+
check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
|
62
62
|
check_params_string(criterion: criterion)
|
63
63
|
check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
|
64
64
|
max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
|
@@ -72,8 +72,8 @@ module Rumale
|
|
72
72
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
73
73
|
# @return [ExtraTreesClassifier] The learned classifier itself.
|
74
74
|
def fit(x, y)
|
75
|
-
|
76
|
-
|
75
|
+
x = check_convert_sample_array(x)
|
76
|
+
y = check_convert_label_array(y)
|
77
77
|
check_sample_label_size(x, y)
|
78
78
|
# Initialize some variables.
|
79
79
|
n_features = x.shape[1]
|
@@ -103,7 +103,7 @@ module Rumale
|
|
103
103
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
104
104
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
105
105
|
def predict(x)
|
106
|
-
|
106
|
+
x = check_convert_sample_array(x)
|
107
107
|
super
|
108
108
|
end
|
109
109
|
|
@@ -112,7 +112,7 @@ module Rumale
|
|
112
112
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
113
113
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
114
114
|
def predict_proba(x)
|
115
|
-
|
115
|
+
x = check_convert_sample_array(x)
|
116
116
|
super
|
117
117
|
end
|
118
118
|
|
@@ -121,7 +121,7 @@ module Rumale
|
|
121
121
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
122
122
|
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
123
123
|
def apply(x)
|
124
|
-
|
124
|
+
x = check_convert_sample_array(x)
|
125
125
|
super
|
126
126
|
end
|
127
127
|
|
@@ -52,9 +52,9 @@ module Rumale
|
|
52
52
|
def initialize(n_estimators: 10,
|
53
53
|
criterion: 'mse', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
54
54
|
max_features: nil, n_jobs: nil, random_seed: nil)
|
55
|
-
|
56
|
-
|
57
|
-
|
55
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
56
|
+
max_features: max_features, n_jobs: n_jobs, random_seed: random_seed)
|
57
|
+
check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
|
58
58
|
check_params_string(criterion: criterion)
|
59
59
|
check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
|
60
60
|
max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
|
@@ -68,8 +68,8 @@ module Rumale
|
|
68
68
|
# @param y [Numo::DFloat] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
69
69
|
# @return [ExtraTreesRegressor] The learned regressor itself.
|
70
70
|
def fit(x, y)
|
71
|
-
|
72
|
-
|
71
|
+
x = check_convert_sample_array(x)
|
72
|
+
y = check_convert_tvalue_array(y)
|
73
73
|
check_sample_tvalue_size(x, y)
|
74
74
|
# Initialize some variables.
|
75
75
|
n_features = x.shape[1]
|
@@ -98,7 +98,7 @@ module Rumale
|
|
98
98
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
99
99
|
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted value per sample.
|
100
100
|
def predict(x)
|
101
|
-
|
101
|
+
x = check_convert_sample_array(x)
|
102
102
|
super
|
103
103
|
end
|
104
104
|
|
@@ -107,7 +107,7 @@ module Rumale
|
|
107
107
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to assign each leaf.
|
108
108
|
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
109
109
|
def apply(x)
|
110
|
-
|
110
|
+
x = check_convert_sample_array(x)
|
111
111
|
super
|
112
112
|
end
|
113
113
|
|
@@ -67,8 +67,8 @@ module Rumale
|
|
67
67
|
max_features: nil, n_jobs: nil, random_seed: nil)
|
68
68
|
check_params_type_or_nil(Integer, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
69
69
|
max_features: max_features, n_jobs: n_jobs, random_seed: random_seed)
|
70
|
-
|
71
|
-
|
70
|
+
check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf,
|
71
|
+
learning_rate: learning_rate, reg_lambda: reg_lambda, subsample: subsample)
|
72
72
|
check_params_positive(n_estimators: n_estimators, learning_rate: learning_rate, reg_lambda: reg_lambda,
|
73
73
|
subsample: subsample, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
74
74
|
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
@@ -97,8 +97,8 @@ module Rumale
|
|
97
97
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
98
98
|
# @return [GradientBoostingClassifier] The learned classifier itself.
|
99
99
|
def fit(x, y)
|
100
|
-
|
101
|
-
|
100
|
+
x = check_convert_sample_array(x)
|
101
|
+
y = check_convert_label_array(y)
|
102
102
|
check_sample_label_size(x, y)
|
103
103
|
# initialize some variables.
|
104
104
|
n_features = x.shape[1]
|
@@ -131,7 +131,7 @@ module Rumale
|
|
131
131
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
132
132
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Confidence score per sample.
|
133
133
|
def decision_function(x)
|
134
|
-
|
134
|
+
x = check_convert_sample_array(x)
|
135
135
|
n_classes = @classes.size
|
136
136
|
if n_classes > 2
|
137
137
|
multiclass_scores(x)
|
@@ -145,7 +145,7 @@ module Rumale
|
|
145
145
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
146
146
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
147
147
|
def predict(x)
|
148
|
-
|
148
|
+
x = check_convert_sample_array(x)
|
149
149
|
n_samples = x.shape[0]
|
150
150
|
probs = predict_proba(x)
|
151
151
|
Numo::Int32.asarray(Array.new(n_samples) { |n| @classes[probs[n, true].max_index] })
|
@@ -156,7 +156,7 @@ module Rumale
|
|
156
156
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
157
157
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
158
158
|
def predict_proba(x)
|
159
|
-
|
159
|
+
x = check_convert_sample_array(x)
|
160
160
|
|
161
161
|
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
162
162
|
|
@@ -174,7 +174,7 @@ module Rumale
|
|
174
174
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
175
175
|
# @return [Numo::Int32] (shape: [n_samples, n_estimators, n_classes]) Leaf index for sample.
|
176
176
|
def apply(x)
|
177
|
-
|
177
|
+
x = check_convert_sample_array(x)
|
178
178
|
n_classes = @classes.size
|
179
179
|
leaf_ids = if n_classes > 2
|
180
180
|
Array.new(n_classes) { |n| @estimators[n].map { |tree| tree.apply(x) } }
|
@@ -60,10 +60,10 @@ module Rumale
|
|
60
60
|
def initialize(n_estimators: 100, learning_rate: 0.1, reg_lambda: 0.0, subsample: 1.0,
|
61
61
|
max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
62
62
|
max_features: nil, n_jobs: nil, random_seed: nil)
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
63
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
64
|
+
max_features: max_features, n_jobs: n_jobs, random_seed: random_seed)
|
65
|
+
check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf,
|
66
|
+
learning_rate: learning_rate, reg_lambda: reg_lambda, subsample: subsample)
|
67
67
|
check_params_positive(n_estimators: n_estimators, learning_rate: learning_rate, reg_lambda: reg_lambda,
|
68
68
|
subsample: subsample, max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
69
69
|
min_samples_leaf: min_samples_leaf, max_features: max_features)
|
@@ -91,8 +91,8 @@ module Rumale
|
|
91
91
|
# @param y [Numo::DFloat] (shape: [n_samples]) The target values to be used for fitting the model.
|
92
92
|
# @return [GradientBoostingRegressor] The learned regressor itself.
|
93
93
|
def fit(x, y)
|
94
|
-
|
95
|
-
|
94
|
+
x = check_convert_sample_array(x)
|
95
|
+
y = check_convert_tvalue_array(y)
|
96
96
|
check_sample_tvalue_size(x, y)
|
97
97
|
# initialize some variables.
|
98
98
|
n_features = x.shape[1]
|
@@ -120,7 +120,7 @@ module Rumale
|
|
120
120
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
121
121
|
# @return [Numo::DFloat] (shape: [n_samples]) Predicted values per sample.
|
122
122
|
def predict(x)
|
123
|
-
|
123
|
+
x = check_convert_sample_array(x)
|
124
124
|
n_outputs = @estimators.first.is_a?(Array) ? @estimators.size : 1
|
125
125
|
if n_outputs > 1
|
126
126
|
multivar_predict(x)
|
@@ -138,7 +138,7 @@ module Rumale
|
|
138
138
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
139
139
|
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
140
140
|
def apply(x)
|
141
|
-
|
141
|
+
x = check_convert_sample_array(x)
|
142
142
|
n_outputs = @estimators.first.is_a?(Array) ? @estimators.size : 1
|
143
143
|
leaf_ids = if n_outputs > 1
|
144
144
|
Array.new(n_outputs) { |n| @estimators[n].map { |tree| tree.apply(x) } }
|
@@ -57,9 +57,9 @@ module Rumale
|
|
57
57
|
def initialize(n_estimators: 10,
|
58
58
|
criterion: 'gini', max_depth: nil, max_leaf_nodes: nil, min_samples_leaf: 1,
|
59
59
|
max_features: nil, n_jobs: nil, random_seed: nil)
|
60
|
-
|
61
|
-
|
62
|
-
|
60
|
+
check_params_numeric_or_nil(max_depth: max_depth, max_leaf_nodes: max_leaf_nodes,
|
61
|
+
max_features: max_features, n_jobs: n_jobs, random_seed: random_seed)
|
62
|
+
check_params_numeric(n_estimators: n_estimators, min_samples_leaf: min_samples_leaf)
|
63
63
|
check_params_string(criterion: criterion)
|
64
64
|
check_params_positive(n_estimators: n_estimators, max_depth: max_depth,
|
65
65
|
max_leaf_nodes: max_leaf_nodes, min_samples_leaf: min_samples_leaf,
|
@@ -86,8 +86,8 @@ module Rumale
|
|
86
86
|
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
87
87
|
# @return [RandomForestClassifier] The learned classifier itself.
|
88
88
|
def fit(x, y)
|
89
|
-
|
90
|
-
|
89
|
+
x = check_convert_sample_array(x)
|
90
|
+
y = check_convert_label_array(y)
|
91
91
|
check_sample_label_size(x, y)
|
92
92
|
# Initialize some variables.
|
93
93
|
n_samples, n_features = x.shape
|
@@ -126,7 +126,7 @@ module Rumale
|
|
126
126
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
127
127
|
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
128
128
|
def predict(x)
|
129
|
-
|
129
|
+
x = check_convert_sample_array(x)
|
130
130
|
n_samples = x.shape[0]
|
131
131
|
n_estimators = @estimators.size
|
132
132
|
predicted = if enable_parallel?
|
@@ -144,7 +144,7 @@ module Rumale
|
|
144
144
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
145
145
|
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
146
146
|
def predict_proba(x)
|
147
|
-
|
147
|
+
x = check_convert_sample_array(x)
|
148
148
|
n_estimators = @estimators.size
|
149
149
|
if enable_parallel?
|
150
150
|
parallel_map(n_estimators) { |n| predict_proba_tree(@estimators[n], x) }.reduce(&:+) / n_estimators
|
@@ -158,7 +158,7 @@ module Rumale
|
|
158
158
|
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
159
159
|
# @return [Numo::Int32] (shape: [n_samples, n_estimators]) Leaf index for sample.
|
160
160
|
def apply(x)
|
161
|
-
|
161
|
+
x = check_convert_sample_array(x)
|
162
162
|
Numo::Int32[*Array.new(@params[:n_estimators]) { |n| @estimators[n].apply(x) }].transpose
|
163
163
|
end
|
164
164
|
|