ruby-vips 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/CHANGELOG.md +15 -0
- data/Gemfile.lock +31 -0
- data/LICENSE +20 -0
- data/README.md +96 -0
- data/TODO +18 -0
- data/ext/extconf.rb +10 -0
- data/ext/header.c +440 -0
- data/ext/header.h +8 -0
- data/ext/image.c +639 -0
- data/ext/image.h +71 -0
- data/ext/image_arithmetic.c +940 -0
- data/ext/image_arithmetic.h +38 -0
- data/ext/image_boolean.c +302 -0
- data/ext/image_boolean.h +8 -0
- data/ext/image_colour.c +593 -0
- data/ext/image_colour.h +36 -0
- data/ext/image_conversion.c +863 -0
- data/ext/image_conversion.h +37 -0
- data/ext/image_convolution.c +371 -0
- data/ext/image_convolution.h +13 -0
- data/ext/image_freq_filt.c +742 -0
- data/ext/image_freq_filt.h +27 -0
- data/ext/image_histograms_lut.c +646 -0
- data/ext/image_histograms_lut.h +28 -0
- data/ext/image_morphology.c +330 -0
- data/ext/image_morphology.h +13 -0
- data/ext/image_mosaicing.c +556 -0
- data/ext/image_mosaicing.h +14 -0
- data/ext/image_relational.c +386 -0
- data/ext/image_relational.h +8 -0
- data/ext/image_resample.c +253 -0
- data/ext/image_resample.h +9 -0
- data/ext/interpolator.c +106 -0
- data/ext/interpolator.h +6 -0
- data/ext/mask.c +349 -0
- data/ext/mask.h +17 -0
- data/ext/reader.c +315 -0
- data/ext/ruby_vips.c +131 -0
- data/ext/ruby_vips.h +26 -0
- data/ext/writer.c +346 -0
- data/lib/vips.rb +7 -0
- data/lib/vips/reader.rb +183 -0
- data/lib/vips/version.rb +3 -0
- data/lib/vips/writer.rb +275 -0
- data/ruby-vips.gemspec +93 -0
- metadata +163 -0
@@ -0,0 +1,28 @@
|
|
1
|
+
VALUE img_histgr(int, VALUE*, VALUE);
|
2
|
+
VALUE img_histnd(VALUE, VALUE);
|
3
|
+
VALUE img_hist_indexed(VALUE, VALUE);
|
4
|
+
VALUE img_s_identity(VALUE, VALUE);
|
5
|
+
VALUE img_s_identity_ushort(VALUE, VALUE, VALUE);
|
6
|
+
VALUE img_s_invertlut(VALUE, VALUE, VALUE);
|
7
|
+
VALUE img_s_buildlut(VALUE, VALUE);
|
8
|
+
VALUE img_project(VALUE);
|
9
|
+
VALUE img_histnorm(VALUE);
|
10
|
+
VALUE img_histcum(VALUE);
|
11
|
+
VALUE img_histeq(VALUE);
|
12
|
+
VALUE img_histspec(VALUE, VALUE);
|
13
|
+
VALUE img_maplut(VALUE, VALUE);
|
14
|
+
VALUE img_histplot(VALUE);
|
15
|
+
VALUE img_monotonic_p(VALUE);
|
16
|
+
VALUE img_hist(int, VALUE*, VALUE);
|
17
|
+
VALUE img_hsp(VALUE, VALUE);
|
18
|
+
VALUE img_gammacorrect(VALUE, VALUE);
|
19
|
+
VALUE img_mpercent_hist(VALUE, VALUE);
|
20
|
+
VALUE img_mpercent(VALUE, VALUE);
|
21
|
+
VALUE img_heq(int, VALUE*, VALUE);
|
22
|
+
VALUE img_lhisteq(VALUE, VALUE, VALUE);
|
23
|
+
VALUE img_stdif(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
24
|
+
VALUE img_s_tone_build_range(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE,
|
25
|
+
VALUE, VALUE, VALUE, VALUE);
|
26
|
+
VALUE img_s_tone_build(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE,
|
27
|
+
VALUE);
|
28
|
+
VALUE img_tone_analyze(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
@@ -0,0 +1,330 @@
|
|
1
|
+
#include "ruby_vips.h"
|
2
|
+
#include "image.h"
|
3
|
+
#include "mask.h"
|
4
|
+
#include "image_morphology.h"
|
5
|
+
|
6
|
+
/*
|
7
|
+
* call-seq:
|
8
|
+
* im.dilate(mask) -> image
|
9
|
+
*
|
10
|
+
* Dilates *self*, according to <i>mask</i>. The output image is the same size
|
11
|
+
* as the input. Sets pixels in the output if *any* part of the mask matches.
|
12
|
+
*
|
13
|
+
* *self* must be a one channel binary image ie. with pixels that are either 0
|
14
|
+
* (black) or 255 (white). This method assume that *self* contains white
|
15
|
+
* objects against a black background.
|
16
|
+
*
|
17
|
+
* <i>mask</i> can be a two-dimensional array or a Mask object. All mask values
|
18
|
+
* must be integers or this method will raise an exception.
|
19
|
+
*
|
20
|
+
* Mask coefficients can be either 0 (for object) or 255 (for background) or
|
21
|
+
* 128 (for do not care). The mask should have odd length sides and the origin
|
22
|
+
* of the mask is at location (mask_columns/2, mask_rows/2) integer division.
|
23
|
+
*
|
24
|
+
* Based on the book "Fundamentals of Digital Image Processing" by A. Jain,
|
25
|
+
* pp 384-388, Prentice-Hall, 1989.
|
26
|
+
*/
|
27
|
+
|
28
|
+
VALUE
|
29
|
+
img_dilate(VALUE obj, VALUE mask)
|
30
|
+
{
|
31
|
+
INTMASK *imask;
|
32
|
+
|
33
|
+
GetImg(obj, data, im);
|
34
|
+
OutImg2(obj, mask, new, data_new, im_new);
|
35
|
+
|
36
|
+
mask_arg2mask(mask, &imask, NULL);
|
37
|
+
|
38
|
+
if (im_dilate(im, im_new, imask))
|
39
|
+
vips_lib_error();
|
40
|
+
|
41
|
+
return new;
|
42
|
+
}
|
43
|
+
|
44
|
+
/*
|
45
|
+
* call-seq:
|
46
|
+
* im.erode(mask) -> image
|
47
|
+
*
|
48
|
+
* Erodes *self*, according to <i>mask</i>. The output image is the same size
|
49
|
+
* as the input. Sets pixels in the output if *all* part of the mask matches.
|
50
|
+
*
|
51
|
+
* *self* must be a one channel binary image ie. with pixels that are either 0
|
52
|
+
* (black) or 255 (white). This method assume that *self* contains white
|
53
|
+
* objects against a black background.
|
54
|
+
*
|
55
|
+
* <i>mask</i> can be a two-dimensional array or a Mask object. All mask values
|
56
|
+
* must be integers or this method will raise an exception.
|
57
|
+
*
|
58
|
+
* Mask coefficients can be either 0 (for object) or 255 (for background) or
|
59
|
+
* 128 (for do not care). The mask should have odd length sides and the origin
|
60
|
+
* of the mask is at location (mask_columns/2, mask_rows/2) integer division.
|
61
|
+
*
|
62
|
+
* Based on the book "Fundamentals of Digital Image Processing" by A. Jain,
|
63
|
+
* pp 384-388, Prentice-Hall, 1989.
|
64
|
+
*/
|
65
|
+
|
66
|
+
VALUE
|
67
|
+
img_erode(VALUE obj, VALUE mask)
|
68
|
+
{
|
69
|
+
INTMASK *imask;
|
70
|
+
|
71
|
+
GetImg(obj, data, im);
|
72
|
+
OutImg2(obj, mask, new, data_new, im_new);
|
73
|
+
|
74
|
+
mask_arg2mask(mask, &imask, NULL);
|
75
|
+
|
76
|
+
if (im_erode(im, im_new, imask))
|
77
|
+
vips_lib_error();
|
78
|
+
|
79
|
+
return new;
|
80
|
+
}
|
81
|
+
|
82
|
+
/*
|
83
|
+
* call-seq:
|
84
|
+
* im.rank(xsize, ysize, n) -> image
|
85
|
+
*
|
86
|
+
* Does rank filtering on an image. A window of size <i>xsize</i> by
|
87
|
+
* <i>ysize</i> is passed over the image. At each position, the pixels inside
|
88
|
+
* the window are sorted into ascending order and the pixel at the <i>n</i>th
|
89
|
+
* position is output. <i>n</i> numbers from 0.
|
90
|
+
*
|
91
|
+
* It works for any non-complex image type, with any number of bands. The input
|
92
|
+
* is expanded by copying edge pixels before performing the operation so that
|
93
|
+
* the output image has the same size as *self*. Edge pixels in the output
|
94
|
+
* image are therefore only approximate.
|
95
|
+
*/
|
96
|
+
|
97
|
+
VALUE
|
98
|
+
img_rank(VALUE obj, VALUE xsize, VALUE ysize, VALUE order)
|
99
|
+
{
|
100
|
+
GetImg(obj, data, im);
|
101
|
+
OutImg(obj, new, data_new, im_new);
|
102
|
+
|
103
|
+
if (im_rank(im, im_new, NUM2INT(xsize), NUM2INT(ysize), NUM2INT(order)))
|
104
|
+
vips_lib_error();
|
105
|
+
|
106
|
+
return new;
|
107
|
+
}
|
108
|
+
|
109
|
+
VALUE
|
110
|
+
img_rank_image_internal(int argc, VALUE *argv, VALUE obj, int index)
|
111
|
+
{
|
112
|
+
vipsImg *im_t;
|
113
|
+
IMAGE **ins;
|
114
|
+
int i;
|
115
|
+
GetImg(obj, data, im);
|
116
|
+
OutImg(obj, new, data_new, im_new);
|
117
|
+
|
118
|
+
ins = IM_ARRAY(im_new, argc + 1, IMAGE*);
|
119
|
+
ins[0] = im;
|
120
|
+
|
121
|
+
for (i = 0; i < argc; i++) {
|
122
|
+
img_add_dep(data_new, argv[i]);
|
123
|
+
Data_Get_Struct(argv[i], vipsImg, im_t);
|
124
|
+
ins[i + 1] = im_t->in;
|
125
|
+
}
|
126
|
+
|
127
|
+
if (im_rank_image(ins, im_new, argc + 1, index))
|
128
|
+
vips_lib_error();
|
129
|
+
|
130
|
+
return new;
|
131
|
+
}
|
132
|
+
|
133
|
+
/*
|
134
|
+
* call-seq:
|
135
|
+
* im.rank_image(index, other_image, ...)
|
136
|
+
*
|
137
|
+
* Sorts the input images pixel-wise, then outputs an image in which each pixel
|
138
|
+
* is selected from the sorted list by <i>index</i> parameter. For example, if
|
139
|
+
* <i>index</i> is zero, then each output pixel will be the minimum of all the
|
140
|
+
* corresponding input pixels.
|
141
|
+
*
|
142
|
+
* It works for any uncoded, non-complex image type. All input images must
|
143
|
+
* match in size, format, and number of bands.
|
144
|
+
*/
|
145
|
+
|
146
|
+
VALUE
|
147
|
+
img_rank_image(int argc, VALUE *argv, VALUE obj)
|
148
|
+
{
|
149
|
+
VALUE index, *images;
|
150
|
+
if (argc < 2)
|
151
|
+
rb_raise(rb_eArgError, "Need an index and at least one image");
|
152
|
+
|
153
|
+
index = argv[0];
|
154
|
+
images = RARRAY_PTR(rb_ary_new4(argc - 1, argv + 1));
|
155
|
+
|
156
|
+
return img_rank_image_internal(argc - 1, images, obj, NUM2INT(index));
|
157
|
+
}
|
158
|
+
|
159
|
+
/*
|
160
|
+
* call-seq:
|
161
|
+
* im.maxvalue(other_image, ...) -> image
|
162
|
+
*
|
163
|
+
* Sorts the input images pixel-wise, then outputs an image in which each pixel
|
164
|
+
* is the maximum from the input pixels.
|
165
|
+
*
|
166
|
+
* It works for any uncoded, non-complex image type. All input images must
|
167
|
+
* match in size, format, and number of bands.
|
168
|
+
*/
|
169
|
+
|
170
|
+
VALUE
|
171
|
+
img_maxvalue(int argc, VALUE *argv, VALUE obj)
|
172
|
+
{
|
173
|
+
img_rank_image_internal(argc, argv, obj, argc - 1);
|
174
|
+
}
|
175
|
+
|
176
|
+
static VALUE
|
177
|
+
img_cntlines(VALUE obj, int flag) {
|
178
|
+
double nolines;
|
179
|
+
GetImg(obj, data, im);
|
180
|
+
|
181
|
+
if (im_cntlines(im, &nolines, flag))
|
182
|
+
vips_lib_error();
|
183
|
+
|
184
|
+
return DBL2NUM(nolines);
|
185
|
+
}
|
186
|
+
|
187
|
+
/*
|
188
|
+
* call-seq:
|
189
|
+
* im.cntlines_h -> number
|
190
|
+
*
|
191
|
+
* Calculates the number of transitions between black and white for the
|
192
|
+
* horizontal direction of an image. black is < 128, and white is >= 128.
|
193
|
+
*
|
194
|
+
* Returns the mean of the result. Input should be binary one channel.
|
195
|
+
*/
|
196
|
+
|
197
|
+
VALUE
|
198
|
+
img_cntlines_h(VALUE obj) {
|
199
|
+
return img_cntlines(obj, 0);
|
200
|
+
}
|
201
|
+
|
202
|
+
/*
|
203
|
+
* call-seq:
|
204
|
+
* im.cntlines_v -> number
|
205
|
+
*
|
206
|
+
* Calculates the number of transitions between black and white for the
|
207
|
+
* vertical direction of an image. black is < 128, and white is >= 128.
|
208
|
+
*
|
209
|
+
* Returns the mean of the result. Input should be binary one channel.
|
210
|
+
*/
|
211
|
+
|
212
|
+
VALUE
|
213
|
+
img_cntlines_v(VALUE obj) {
|
214
|
+
return img_cntlines(obj, 1);
|
215
|
+
}
|
216
|
+
|
217
|
+
static VALUE
|
218
|
+
img_zerox(VALUE obj, int flag)
|
219
|
+
{
|
220
|
+
GetImg(obj, data, im);
|
221
|
+
OutImg(obj, new, data_new, im_new);
|
222
|
+
|
223
|
+
if (im_zerox(im, im_new, flag))
|
224
|
+
vips_lib_error();
|
225
|
+
|
226
|
+
return new;
|
227
|
+
}
|
228
|
+
|
229
|
+
/*
|
230
|
+
* call-seq:
|
231
|
+
* im.zerox_pos -> image
|
232
|
+
*
|
233
|
+
* Detects the +ve edges of zero crossings of *self*. Works on integer images.
|
234
|
+
* The output image is byte with zero crossing set to 255 and all other values
|
235
|
+
* set to zero.
|
236
|
+
*/
|
237
|
+
|
238
|
+
VALUE
|
239
|
+
img_zerox_pos(VALUE obj)
|
240
|
+
{
|
241
|
+
return img_zerox(obj, 1);
|
242
|
+
}
|
243
|
+
|
244
|
+
/*
|
245
|
+
* call-seq:
|
246
|
+
* im.zerox_neg -> image
|
247
|
+
*
|
248
|
+
* Detects the -ve edges of zero crossings of *self*. Works on integer images.
|
249
|
+
* The output image is byte with zero crossing set to 255 and all other values
|
250
|
+
* set to zero.
|
251
|
+
*/
|
252
|
+
|
253
|
+
VALUE
|
254
|
+
img_zerox_neg(VALUE obj)
|
255
|
+
{
|
256
|
+
return img_zerox(obj, -1);
|
257
|
+
}
|
258
|
+
|
259
|
+
static VALUE
|
260
|
+
img_profile(VALUE obj, int dir)
|
261
|
+
{
|
262
|
+
GetImg(obj, data, im);
|
263
|
+
OutImg(obj, new, data_new, im_new);
|
264
|
+
|
265
|
+
if (im_profile(im, im_new, dir))
|
266
|
+
vips_lib_error();
|
267
|
+
|
268
|
+
return new;
|
269
|
+
}
|
270
|
+
|
271
|
+
/*
|
272
|
+
* call-seq:
|
273
|
+
* im.profile_h -> image
|
274
|
+
*
|
275
|
+
* For each horizontal line, find the position of the first non-zero pixel from
|
276
|
+
* the left. Output is USHORT with width = 1 and height = input height.
|
277
|
+
*/
|
278
|
+
|
279
|
+
VALUE
|
280
|
+
img_profile_h(VALUE obj)
|
281
|
+
{
|
282
|
+
return img_profile(obj, 1);
|
283
|
+
}
|
284
|
+
|
285
|
+
/*
|
286
|
+
* call-seq:
|
287
|
+
* im.profile_v -> image
|
288
|
+
*
|
289
|
+
* For each vertical line, find the position of the first non-zero pixel from
|
290
|
+
* the top. Output is USHORT with width = input width and height = 1.
|
291
|
+
*/
|
292
|
+
|
293
|
+
VALUE
|
294
|
+
img_profile_v(VALUE obj)
|
295
|
+
{
|
296
|
+
return img_profile(obj, 0);
|
297
|
+
}
|
298
|
+
|
299
|
+
/*
|
300
|
+
* call-seq:
|
301
|
+
* im.label_regions -> image, segments
|
302
|
+
*
|
303
|
+
* *self* is repeatedly scanned and regions of 4-connected pixels with the same
|
304
|
+
* pixel value found. Every time a region is discovered, those pixels are
|
305
|
+
* marked in the output image with a unique serial number. Once all pixels have
|
306
|
+
* been labelled, the operation returns, returning an an image and
|
307
|
+
* <i>segments</i>, the number of discrete regions which were detected.
|
308
|
+
*
|
309
|
+
* The output image is always a 1-band image with band format :UINT, and of the
|
310
|
+
* same dimensions as *self*.
|
311
|
+
*
|
312
|
+
* This operation is useful for, for example, blob counting. You can use the
|
313
|
+
* morphological operators to detect and isolate a series of objects, then use
|
314
|
+
* this method to number them all.
|
315
|
+
*
|
316
|
+
* Use Image#histindexed to (for example) find blob coordinates.
|
317
|
+
*/
|
318
|
+
|
319
|
+
VALUE
|
320
|
+
img_label_regions(VALUE obj)
|
321
|
+
{
|
322
|
+
int segments;
|
323
|
+
GetImg(obj, data, im);
|
324
|
+
OutImg(obj, new, data_new, im_new);
|
325
|
+
|
326
|
+
if (im_label_regions(im, im_new, &segments))
|
327
|
+
vips_lib_error();
|
328
|
+
|
329
|
+
return rb_ary_new3(2, new, segments);
|
330
|
+
}
|
@@ -0,0 +1,13 @@
|
|
1
|
+
VALUE img_dilate(VALUE, VALUE);
|
2
|
+
VALUE img_erode(VALUE, VALUE);
|
3
|
+
VALUE img_rank(VALUE, VALUE, VALUE, VALUE);
|
4
|
+
VALUE img_rank_image_internal(int, VALUE*, VALUE, int);
|
5
|
+
VALUE img_rank_image(int, VALUE*, VALUE);
|
6
|
+
VALUE img_maxvalue(int, VALUE*, VALUE);
|
7
|
+
VALUE img_cntlines_h(VALUE);
|
8
|
+
VALUE img_cntlines_v(VALUE);
|
9
|
+
VALUE img_zerox_pos(VALUE);
|
10
|
+
VALUE img_zerox_neg(VALUE);
|
11
|
+
VALUE img_profile_h(VALUE);
|
12
|
+
VALUE img_profile_v(VALUE);
|
13
|
+
VALUE img_label_regions(VALUE);
|
@@ -0,0 +1,556 @@
|
|
1
|
+
#include "ruby_vips.h"
|
2
|
+
#include "image.h"
|
3
|
+
#include "image_mosaicing.h"
|
4
|
+
|
5
|
+
ID id_match_left, id_match_right, id_match_both, id_match_none;
|
6
|
+
|
7
|
+
/*
|
8
|
+
* call-seq:
|
9
|
+
* im.lrmerge(other_image, dx, dy [,mwidth]) -> image
|
10
|
+
*
|
11
|
+
* Merge *self* as the reference image and <i>other_image</i> as the secondary
|
12
|
+
* image according to the values <i>dx</i> and <i>dy</i>. <i>dx</i> and
|
13
|
+
* <i>dy</i> give the displacement of <i>other_image</i> relative to *self*.
|
14
|
+
* The result is written to the output image.
|
15
|
+
*
|
16
|
+
* The program carries out a smooth merge using a raised cosine function.
|
17
|
+
* Works for any image type, including LABPACK.
|
18
|
+
*
|
19
|
+
* Pixels are treated with the value zero as "transparent", that is, zero
|
20
|
+
* pixels in the overlap area do not contribute to the merge. This makes it
|
21
|
+
* possible to join non-rectangular images.
|
22
|
+
*
|
23
|
+
* The "mwidth" parameter limits the maximum width of the blend area. If not
|
24
|
+
* given, the width will be unlimited.
|
25
|
+
*/
|
26
|
+
|
27
|
+
VALUE
|
28
|
+
img_lrmerge(int argc, VALUE *argv, VALUE obj)
|
29
|
+
{
|
30
|
+
VALUE obj2, dx, dy, mwidth_v;
|
31
|
+
int mwidth = -1;
|
32
|
+
|
33
|
+
rb_scan_args(argc, argv, "31", &obj2, &dx, &dy, &mwidth_v);
|
34
|
+
if (!NIL_P(mwidth_v))
|
35
|
+
mwidth = NUM2INT(mwidth_v);
|
36
|
+
|
37
|
+
GetImg(obj, data, im);
|
38
|
+
GetImg(obj2, data2, im2);
|
39
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
40
|
+
|
41
|
+
if (im_lrmerge(im, im2, im_new, NUM2INT(dx), NUM2INT(dy), mwidth))
|
42
|
+
vips_lib_error();
|
43
|
+
|
44
|
+
return new;
|
45
|
+
}
|
46
|
+
|
47
|
+
/*
|
48
|
+
* call-seq:
|
49
|
+
* im.tbmerge(other_image, dx, dy [,mheight]) -> image
|
50
|
+
*
|
51
|
+
* see Image#lrmerge .
|
52
|
+
*/
|
53
|
+
|
54
|
+
VALUE
|
55
|
+
img_tbmerge(int argc, VALUE *argv, VALUE obj)
|
56
|
+
{
|
57
|
+
VALUE obj2, dx, dy, mwidth_v;
|
58
|
+
int mwidth = -1;
|
59
|
+
|
60
|
+
rb_scan_args(argc, argv, "31", &obj2, &dx, &dy, &mwidth_v);
|
61
|
+
if (!NIL_P(mwidth_v))
|
62
|
+
mwidth = NUM2INT(mwidth_v);
|
63
|
+
|
64
|
+
GetImg(obj, data, im);
|
65
|
+
GetImg(obj2, data2, im2);
|
66
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
67
|
+
|
68
|
+
if (im_tbmerge(im, im2, im_new, NUM2INT(dx), NUM2INT(dy), mwidth))
|
69
|
+
vips_lib_error();
|
70
|
+
|
71
|
+
return new;
|
72
|
+
}
|
73
|
+
|
74
|
+
/*
|
75
|
+
* call-seq:
|
76
|
+
* im.lrmerge1(other_image, xr1, yr1, xs1, ys1, xr2, yr2, xs2, ys2
|
77
|
+
* [,mwidth]) -> image
|
78
|
+
*
|
79
|
+
* 1st order left-right merge.
|
80
|
+
*/
|
81
|
+
|
82
|
+
VALUE
|
83
|
+
img_lrmerge1(int argc, VALUE *argv, VALUE obj)
|
84
|
+
{
|
85
|
+
VALUE obj2, xr1, yr1, xs1, ys1, xr2, yr2, xs2, ys2, mwidth_v;
|
86
|
+
int mwidth = -1;
|
87
|
+
|
88
|
+
rb_scan_args(argc, argv, "91", &obj2, &xr1, &yr1, &xs1, &ys1, &xr2, &yr2,
|
89
|
+
&xs2, &ys2, &mwidth_v);
|
90
|
+
if (!NIL_P(mwidth_v))
|
91
|
+
mwidth = NUM2INT(mwidth_v);
|
92
|
+
|
93
|
+
GetImg(obj, data, im);
|
94
|
+
GetImg(obj2, data2, im2);
|
95
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
96
|
+
|
97
|
+
if (im_lrmerge1(im, im2, im_new, NUM2INT(xr1), NUM2INT(yr1), NUM2INT(xs1),
|
98
|
+
NUM2INT(ys1), NUM2INT(xr2), NUM2INT(yr2), NUM2INT(xs2), NUM2INT(ys2),
|
99
|
+
mwidth))
|
100
|
+
vips_lib_error();
|
101
|
+
|
102
|
+
return new;
|
103
|
+
}
|
104
|
+
|
105
|
+
/*
|
106
|
+
* call-seq:
|
107
|
+
* im.tbmerge1(other_image, xr1, yr1, xs1, ys1, xr2, yr2, xs2, ys2
|
108
|
+
* [,mheight]) -> image
|
109
|
+
*
|
110
|
+
* 1st order top-bottom merge.
|
111
|
+
*/
|
112
|
+
|
113
|
+
VALUE
|
114
|
+
img_tbmerge1(int argc, VALUE *argv, VALUE obj)
|
115
|
+
{
|
116
|
+
VALUE obj2, xr1, yr1, xs1, ys1, xr2, yr2, xs2, ys2, mwidth_v;
|
117
|
+
int mwidth = -1;
|
118
|
+
|
119
|
+
rb_scan_args(argc, argv, "91", &obj2, &xr1, &yr1, &xs1, &ys1, &xr2, &yr2,
|
120
|
+
&xs2, &ys2, &mwidth_v);
|
121
|
+
if (!NIL_P(mwidth_v))
|
122
|
+
mwidth = NUM2INT(mwidth_v);
|
123
|
+
|
124
|
+
GetImg(obj, data, im);
|
125
|
+
GetImg(obj2, data2, im2);
|
126
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
127
|
+
|
128
|
+
if (im_tbmerge1(im, im2, im_new, NUM2INT(xr1), NUM2INT(yr1), NUM2INT(xs1),
|
129
|
+
NUM2INT(ys1), NUM2INT(xr2), NUM2INT(yr2), NUM2INT(xs2), NUM2INT(ys2),
|
130
|
+
mwidth))
|
131
|
+
vips_lib_error();
|
132
|
+
|
133
|
+
return new;
|
134
|
+
}
|
135
|
+
|
136
|
+
/*
|
137
|
+
* call-seq:
|
138
|
+
* im.lrmosaic(other_image, band, xref, yref, xsec, ysec,
|
139
|
+
* halfcorrelation=5, halfarea=14 [,balancetype] [,mwidth]) -> image
|
140
|
+
*
|
141
|
+
* Mosaic *self* and <i>other_image</i> left-right.
|
142
|
+
*
|
143
|
+
* In order to carry out mosaicing, the coordinates of one tie point are
|
144
|
+
* required. The tie point is expected to be in the overlapping area and has
|
145
|
+
* coordinates (<i>xref</i>, <i>yref</i>) on *self*, and (<i>xsec</i>,
|
146
|
+
* <i>ysec</i>) on <i>other_image</i>. The tie-point is not used as a start
|
147
|
+
* point for the search, but is used to specify the overlap of the two images.
|
148
|
+
*
|
149
|
+
* The function splits the overlap area into three parts (top, middle and
|
150
|
+
* bottom) and searches t*self* in each part for the 20 best high contrast
|
151
|
+
* points. These 60 points are then searched for in <i>other_image</i>, giving
|
152
|
+
* a set of 60 possible corrected vectors.
|
153
|
+
*
|
154
|
+
* A straight line is fitted through the 60 vectors, and points discarded which
|
155
|
+
* lie a significant distance from the line. The line is then refitted to the
|
156
|
+
* remaining points, and the process repeated until either all remaining points
|
157
|
+
* lie on a straight line, or too many points have been discarded.
|
158
|
+
*
|
159
|
+
* If a good straight line fit is found, *self* and <i>other_image</i> are
|
160
|
+
* joined. If no fit was found, the function fails with an error message. Note
|
161
|
+
* that this function detects rotation: if the straight line found requires
|
162
|
+
* <i>other_image</i> to be rotated, it also fails with an error message.
|
163
|
+
*
|
164
|
+
* <i>halfcorrelationsize</i> - sets the size of the fragments of *self* for
|
165
|
+
* which the function searches sec. The actual window will be of size
|
166
|
+
* 2 * <i>halfcorrelationsize</i> + 1. We recommend a value of 5.
|
167
|
+
*
|
168
|
+
* <i>halfareasize</i> - sets the size of the area of sec that is searched. The
|
169
|
+
* The actual area searched will be of size 2 * <i>halfareasize</i> + 1. We
|
170
|
+
* recommend a value of 14.
|
171
|
+
*
|
172
|
+
* <i>balancetype</i> - sets the style of the balancing the functions perform.
|
173
|
+
* Balancing finds the average value of pixels in the overlap area, and scales
|
174
|
+
* the left and right images so as to make the images match in average overlap.
|
175
|
+
*
|
176
|
+
* * :balance_none - no balancing.
|
177
|
+
* * :balance_left - keep the left image unadjusted and adjust the contrast of
|
178
|
+
* the right image to match the left.
|
179
|
+
* * :balance_right - keep the right image unadjusted and scale the left image
|
180
|
+
* to match it.
|
181
|
+
* * :balance_both - adjust the contrast of both the left and right images to
|
182
|
+
* bring both averages to a middle value. The middle value chosen is weighted
|
183
|
+
* by the number of pixels in each image: large images will be adjusted less
|
184
|
+
* than small images.
|
185
|
+
*
|
186
|
+
* Balancing is useful for mosaicing frames from photographic or video sources
|
187
|
+
* where exact colour control is impossible and exposure varies from frame to
|
188
|
+
* frame. Balancing is only allowed for uncoded uchar images.
|
189
|
+
*
|
190
|
+
* The <i>mwidth</i> parameter sets the maximum blend width, see Image#lrmerge.
|
191
|
+
*/
|
192
|
+
|
193
|
+
VALUE
|
194
|
+
img_lrmosaic(int argc, VALUE *argv, VALUE obj)
|
195
|
+
{
|
196
|
+
VALUE obj2, bandno, xref, yref, xsec, ysec, halfcorrelation_v, halfarea_v,
|
197
|
+
balancetype_v, mwidth_v;
|
198
|
+
ID balancetype_id;
|
199
|
+
int mwidth = -1, halfcorrelation = 5, halfarea = 14, balancetype = 0;
|
200
|
+
|
201
|
+
rb_scan_args(argc, argv, "64", &obj2, &bandno, &xref, &yref, &xsec, &ysec,
|
202
|
+
&halfcorrelation_v, &halfarea_v, &balancetype_v, &mwidth_v);
|
203
|
+
|
204
|
+
if (!NIL_P(halfcorrelation_v))
|
205
|
+
halfcorrelation = NUM2INT(halfcorrelation_v);
|
206
|
+
|
207
|
+
if (!NIL_P(halfarea_v))
|
208
|
+
halfarea = NUM2INT(halfarea_v);
|
209
|
+
|
210
|
+
if (!NIL_P(balancetype_v)) {
|
211
|
+
balancetype_id = SYM2ID(balancetype_v);
|
212
|
+
if (balancetype_id == id_match_none) balancetype = 0;
|
213
|
+
else if (balancetype_id == id_match_left) balancetype = 1;
|
214
|
+
else if (balancetype_id == id_match_right) balancetype = 2;
|
215
|
+
else if (balancetype_id == id_match_both) balancetype = 3;
|
216
|
+
else
|
217
|
+
rb_raise(rb_eArgError, "Balance type must be nil, :match_left, :match_right, or :match_both");
|
218
|
+
}
|
219
|
+
|
220
|
+
if (!NIL_P(mwidth_v))
|
221
|
+
mwidth = NUM2INT(mwidth_v);
|
222
|
+
|
223
|
+
GetImg(obj, data, im);
|
224
|
+
GetImg(obj2, data2, im2);
|
225
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
226
|
+
|
227
|
+
if (im_lrmosaic(im, im2, im_new, NUM2INT(bandno), NUM2INT(xref),
|
228
|
+
NUM2INT(yref), NUM2INT(xsec), NUM2INT(ysec), NUM2INT(halfcorrelation),
|
229
|
+
NUM2INT(halfarea), NUM2INT(balancetype), NUM2INT(mwidth)))
|
230
|
+
vips_lib_error();
|
231
|
+
|
232
|
+
return new;
|
233
|
+
}
|
234
|
+
|
235
|
+
/*
|
236
|
+
* call-seq:
|
237
|
+
* im.tbmosaic(other_image, band, xref, yref, xsec, ysec,
|
238
|
+
* halfcorrelation=5, halfarea=14 [,balancetype] [,mheight]) -> image
|
239
|
+
*
|
240
|
+
* Mosaic *self* and <i>other_image</i> top-bottom.
|
241
|
+
*
|
242
|
+
* See Image#lrmosaic .
|
243
|
+
*/
|
244
|
+
|
245
|
+
VALUE
|
246
|
+
img_tbmosaic(int argc, VALUE *argv, VALUE obj)
|
247
|
+
{
|
248
|
+
VALUE obj2, bandno, xref, yref, xsec, ysec, halfcorrelation_v, halfarea_v,
|
249
|
+
balancetype_v, mwidth_v;
|
250
|
+
ID balancetype_id;
|
251
|
+
int mwidth = -1, halfcorrelation = 5, halfarea = 14, balancetype = 0;
|
252
|
+
|
253
|
+
rb_scan_args(argc, argv, "64", &obj2, &bandno, &xref, &yref, &xsec, &ysec,
|
254
|
+
&halfcorrelation_v, &halfarea_v, &balancetype_v, &mwidth_v);
|
255
|
+
|
256
|
+
if (!NIL_P(halfcorrelation_v))
|
257
|
+
halfcorrelation = NUM2INT(halfcorrelation_v);
|
258
|
+
|
259
|
+
if (!NIL_P(halfarea_v))
|
260
|
+
halfarea = NUM2INT(halfarea_v);
|
261
|
+
|
262
|
+
if (!NIL_P(balancetype_v)) {
|
263
|
+
balancetype_id = SYM2ID(balancetype_v);
|
264
|
+
|
265
|
+
if (balancetype_id == id_match_left) balancetype = 1;
|
266
|
+
else if (balancetype_id == id_match_right) balancetype = 2;
|
267
|
+
else if (balancetype_id == id_match_both) balancetype = 3;
|
268
|
+
else
|
269
|
+
rb_raise(rb_eArgError, "Balance type must be nil, :match_left, :match_right, or :match_both");
|
270
|
+
}
|
271
|
+
|
272
|
+
if (!NIL_P(mwidth_v))
|
273
|
+
mwidth = NUM2INT(mwidth_v);
|
274
|
+
|
275
|
+
GetImg(obj, data, im);
|
276
|
+
GetImg(obj2, data2, im2);
|
277
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
278
|
+
|
279
|
+
if (im_tbmosaic(im, im2, im_new, NUM2INT(bandno), NUM2INT(xref),
|
280
|
+
NUM2INT(yref), NUM2INT(xsec), NUM2INT(ysec), halfcorrelation, halfarea,
|
281
|
+
balancetype, mwidth))
|
282
|
+
vips_lib_error();
|
283
|
+
|
284
|
+
return new;
|
285
|
+
}
|
286
|
+
|
287
|
+
/*
|
288
|
+
* call-seq:
|
289
|
+
* im.lrmosaic1(other_image, band, xr1, yr1, xs1, ys1, xr2, yr2, xs2, ys2,
|
290
|
+
* halfcorrelation=5, halfarea=14 [,balancetype] [,mwidth]) -> image
|
291
|
+
*
|
292
|
+
* 1st order left-right mosaic.
|
293
|
+
*/
|
294
|
+
|
295
|
+
VALUE
|
296
|
+
img_lrmosaic1(int argc, VALUE *argv, VALUE obj)
|
297
|
+
{
|
298
|
+
VALUE obj2, bandno, xr1, yr1, xs1, ys1, xr2, yr2, xs2, ys2,
|
299
|
+
halfcorrelation_v, halfarea_v, balancetype_v, mwidth_v;
|
300
|
+
ID balancetype_id;
|
301
|
+
int mwidth = -1, halfcorrelation = 5, halfarea = 14, balancetype = 0;
|
302
|
+
|
303
|
+
rb_scan_args(argc, argv, "95", &obj2, &bandno, &xr1, &yr1, &xs1, &ys1, &xr2,
|
304
|
+
&yr2, &xs2, &ys2, &halfcorrelation_v, &halfarea_v, &balancetype_v,
|
305
|
+
&mwidth_v);
|
306
|
+
|
307
|
+
if (argc < 10)
|
308
|
+
rb_raise(rb_eArgError, "Need at least 10 arguments.");
|
309
|
+
|
310
|
+
if (!NIL_P(halfcorrelation_v))
|
311
|
+
halfcorrelation = NUM2INT(halfcorrelation_v);
|
312
|
+
|
313
|
+
if (!NIL_P(halfarea_v))
|
314
|
+
halfarea = NUM2INT(halfarea_v);
|
315
|
+
|
316
|
+
if (!NIL_P(balancetype_v)) {
|
317
|
+
balancetype_id = SYM2ID(balancetype_v);
|
318
|
+
|
319
|
+
if (balancetype_id == id_match_left) balancetype = 1;
|
320
|
+
else if (balancetype_id == id_match_right) balancetype = 2;
|
321
|
+
else if (balancetype_id == id_match_both) balancetype = 3;
|
322
|
+
else
|
323
|
+
rb_raise(rb_eArgError, "Balance type must be nil, :match_left, :match_right, or :match_both");
|
324
|
+
}
|
325
|
+
|
326
|
+
if (!NIL_P(mwidth_v))
|
327
|
+
mwidth = NUM2INT(mwidth_v);
|
328
|
+
|
329
|
+
GetImg(obj, data, im);
|
330
|
+
GetImg(obj2, data2, im2);
|
331
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
332
|
+
|
333
|
+
if (im_lrmosaic1(im, im2, im_new, NUM2INT(bandno), NUM2INT(xr1),
|
334
|
+
NUM2INT(yr1), NUM2INT(xs1), NUM2INT(ys1), NUM2INT(xr2), NUM2INT(yr2),
|
335
|
+
NUM2INT(xs2), NUM2INT(ys2), halfcorrelation, halfarea, balancetype,
|
336
|
+
mwidth))
|
337
|
+
vips_lib_error();
|
338
|
+
|
339
|
+
return new;
|
340
|
+
}
|
341
|
+
|
342
|
+
/*
|
343
|
+
* call-seq:
|
344
|
+
* im.tbmosaic1(other_image, band, xr1, yr1, xs1, ys1, xr2, yr2, xs2, ys2,
|
345
|
+
* halfcorrelation=5, halfarea=14 [,balancetype] [,mheight]) -> image
|
346
|
+
*
|
347
|
+
* 1st order top-bottom mosaic.
|
348
|
+
*/
|
349
|
+
|
350
|
+
VALUE
|
351
|
+
img_tbmosaic1(int argc, VALUE *argv, VALUE obj)
|
352
|
+
{
|
353
|
+
VALUE obj2, bandno, xr1, yr1, xs1, ys1, xr2, yr2, xs2, ys2,
|
354
|
+
halfcorrelation_v, halfarea_v, balancetype_v, mwidth_v;
|
355
|
+
ID balancetype_id;
|
356
|
+
int mwidth = -1, halfcorrelation = 5, halfarea = 14, balancetype = 0;
|
357
|
+
|
358
|
+
rb_scan_args(argc, argv, "95", &obj2, &bandno, &xr1, &yr1, &xs1, &ys1, &xr2,
|
359
|
+
&yr2, &xs2, &ys2, &halfcorrelation_v, &halfarea_v, &balancetype_v,
|
360
|
+
&mwidth_v);
|
361
|
+
|
362
|
+
if (argc < 10)
|
363
|
+
rb_raise(rb_eArgError, "Need at least 10 arguments.");
|
364
|
+
|
365
|
+
if (!NIL_P(halfcorrelation_v))
|
366
|
+
halfcorrelation = NUM2INT(halfcorrelation_v);
|
367
|
+
|
368
|
+
if (!NIL_P(halfarea_v))
|
369
|
+
halfarea = NUM2INT(halfarea_v);
|
370
|
+
|
371
|
+
if (!NIL_P(balancetype_v)) {
|
372
|
+
balancetype_id = SYM2ID(balancetype_v);
|
373
|
+
|
374
|
+
if (balancetype_id == id_match_left) balancetype = 1;
|
375
|
+
else if (balancetype_id == id_match_right) balancetype = 2;
|
376
|
+
else if (balancetype_id == id_match_both) balancetype = 3;
|
377
|
+
else
|
378
|
+
rb_raise(rb_eArgError, "Balance type must be nil, :match_left, :match_right, or :match_both");
|
379
|
+
}
|
380
|
+
|
381
|
+
if (!NIL_P(mwidth_v))
|
382
|
+
mwidth = NUM2INT(mwidth_v);
|
383
|
+
|
384
|
+
GetImg(obj, data, im);
|
385
|
+
GetImg(obj2, data2, im2);
|
386
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
387
|
+
|
388
|
+
if (im_tbmosaic1(im, im2, im_new, NUM2INT(bandno), NUM2INT(xr1),
|
389
|
+
NUM2INT(yr1), NUM2INT(xs1), NUM2INT(ys1), NUM2INT(xr2), NUM2INT(yr2),
|
390
|
+
NUM2INT(xs2), NUM2INT(ys2), halfcorrelation, halfarea, balancetype,
|
391
|
+
mwidth))
|
392
|
+
vips_lib_error();
|
393
|
+
|
394
|
+
return new;
|
395
|
+
}
|
396
|
+
|
397
|
+
/*
|
398
|
+
* call-seq:
|
399
|
+
* im.global_balance(gamma) -> image
|
400
|
+
*
|
401
|
+
* Takes an image assembled with the mosaicing functions, take it apart, and
|
402
|
+
* reassemble it, globally optimising the image balance. This is useful for
|
403
|
+
* assembling image mosaics from sources where the exposure is uncontrolled and
|
404
|
+
* may vary from tile to tile --- such as video, or photographic sources.
|
405
|
+
*
|
406
|
+
* The function finds a set of factors, one for each of the input images, and
|
407
|
+
* scales each image by its factor before reassembling. The factors are chosen
|
408
|
+
* so as to minimise the average grey-level difference between neighboring
|
409
|
+
* images at their overlaps. Trivial overlaps (where the width and height of
|
410
|
+
* the overlap are both less than 20 pixels) are ignored.
|
411
|
+
*
|
412
|
+
* The <i>gamma</i> parameter is the gamma of the image input system. It is
|
413
|
+
* used during brightness adjustment. Set to 1.0 to disable gamma, to 1.6 for a
|
414
|
+
* typical IR vidicon camera, or 2.3 for a typical video camera.
|
415
|
+
*
|
416
|
+
* It relies on information left by the mosaicing functions in ".desc" files.
|
417
|
+
* If the ".desc" file of the input image has been corrupted, or is strangely
|
418
|
+
* complicated, or if any of the original input images have been moved or
|
419
|
+
* deleted, the function can fail.
|
420
|
+
*
|
421
|
+
* The function will fail for mosaics larger than about 7 by 7 frames, since it
|
422
|
+
* will run out of file descriptors (UNIX sets a limit of 256 per process). To
|
423
|
+
* balance larger mosaics, just assemble them in 7x7 sections, balancing and
|
424
|
+
* saving each part in turn, before loading, assembling and balancing the final
|
425
|
+
* image. The function can also fail if there are significant mosaicing errors.
|
426
|
+
*/
|
427
|
+
|
428
|
+
VALUE
|
429
|
+
img_global_balance(VALUE obj, VALUE gamma)
|
430
|
+
{
|
431
|
+
GetImg(obj, data, im);
|
432
|
+
OutImg(obj, new, data_new, im_new);
|
433
|
+
|
434
|
+
if (im_global_balance(im, im_new, NUM2DBL(gamma)))
|
435
|
+
vips_lib_error();
|
436
|
+
|
437
|
+
return new;
|
438
|
+
}
|
439
|
+
|
440
|
+
/*
|
441
|
+
* call-seq:
|
442
|
+
* im.global_balancef(gamma) -> image
|
443
|
+
*
|
444
|
+
* Works as Image#global_balance, but outputs a float rather than a uchar
|
445
|
+
* image. This lets you adjust the range of the image manually, if the
|
446
|
+
* automatically-found scales are causing burn-out.
|
447
|
+
*/
|
448
|
+
|
449
|
+
VALUE
|
450
|
+
img_global_balancef(VALUE obj, VALUE gamma)
|
451
|
+
{
|
452
|
+
GetImg(obj, data, im);
|
453
|
+
OutImg(obj, new, data_new, im_new);
|
454
|
+
|
455
|
+
if (im_global_balancef(im, im_new, NUM2DBL(gamma)))
|
456
|
+
vips_lib_error();
|
457
|
+
|
458
|
+
return new;
|
459
|
+
}
|
460
|
+
|
461
|
+
/*
|
462
|
+
* call-seq:
|
463
|
+
* im.correl(other_image, xref, yref, xsec, ysec, hwindowsize,
|
464
|
+
* hsearchsize) -> correlation, x, y
|
465
|
+
*
|
466
|
+
* Find position of <i>other_image</i> within *self*. Search around point
|
467
|
+
* <i>xsec</i>, <i>ysec</i> for the best match for the area around <i>xref</i>,
|
468
|
+
* <i>yref</i>. Search an area of size <i>hsearchsize</i> for an of size
|
469
|
+
* <i>hwindowsize</i>.
|
470
|
+
*
|
471
|
+
* Return a new value for xsec, ysec and the correlation at that point.
|
472
|
+
*/
|
473
|
+
|
474
|
+
VALUE
|
475
|
+
img_correl(VALUE obj, VALUE obj2, VALUE xref, VALUE yref, VALUE xsec,
|
476
|
+
VALUE ysec, VALUE hwindowsize, VALUE hsearchsize)
|
477
|
+
{
|
478
|
+
int x, y;
|
479
|
+
double correlation;
|
480
|
+
GetImg(obj, data, im);
|
481
|
+
GetImg(obj2, data2, im2);
|
482
|
+
|
483
|
+
if (im_correl(im, im2, NUM2INT(xref), NUM2INT(yref), NUM2INT(xsec),
|
484
|
+
NUM2INT(ysec), NUM2INT(hwindowsize), NUM2INT(hsearchsize), &correlation,
|
485
|
+
&x, &y))
|
486
|
+
vips_lib_error();
|
487
|
+
|
488
|
+
return rb_ary_new3(3, DBL2NUM(correlation), INT2NUM(x), INT2NUM(y));
|
489
|
+
}
|
490
|
+
|
491
|
+
/*
|
492
|
+
* call-seq:
|
493
|
+
* im.align_bands -> image
|
494
|
+
*
|
495
|
+
* Brute force align the bands of an image.
|
496
|
+
*/
|
497
|
+
|
498
|
+
VALUE
|
499
|
+
img_align_bands(VALUE obj)
|
500
|
+
{
|
501
|
+
RUBY_VIPS_UNARY(im_align_bands);
|
502
|
+
}
|
503
|
+
|
504
|
+
/*
|
505
|
+
* call-seq:
|
506
|
+
* im.maxpos_subpel -> x, y
|
507
|
+
*
|
508
|
+
* This function implements "Extension of Phase Correlation to Subpixel
|
509
|
+
* Registration" by H. Foroosh, from IEEE trans. Im. Proc. 11(3), 2002.
|
510
|
+
*
|
511
|
+
* If the best three matches in the correlation are aranged:
|
512
|
+
*
|
513
|
+
* 02 or 01
|
514
|
+
* 1 2
|
515
|
+
*
|
516
|
+
* then we return a subpixel match using the ratio of correlations in the
|
517
|
+
* vertical and horizontal dimension.
|
518
|
+
*
|
519
|
+
* ( xs[0], ys[0] ) is the best integer alignment
|
520
|
+
* ( xs[ use_x ], ys[ use_x ] ) is equal in y and (+/-)1 off in x
|
521
|
+
* ( xs[ use_y ], ys[ use_y ] ) is equal in x and (+/-)1 off in y
|
522
|
+
*
|
523
|
+
* Alternatively if the best four matches in the correlation are aranged in
|
524
|
+
* a square:
|
525
|
+
*
|
526
|
+
* 01 or 03 or 02 or 03
|
527
|
+
* 32 12 31 21
|
528
|
+
*
|
529
|
+
* then we return a subpixel match weighting with the sum the two on each
|
530
|
+
* side over the sum of all four, but only if all four of them are very
|
531
|
+
* close to the best, and the fifth is nowhere near.
|
532
|
+
*
|
533
|
+
* This alternative method is not described by Foroosh, but is often the
|
534
|
+
* case where the match is close to n-and-a-half pixels in both dimensions.
|
535
|
+
*/
|
536
|
+
|
537
|
+
VALUE
|
538
|
+
img_maxpos_subpel(VALUE obj)
|
539
|
+
{
|
540
|
+
double x, y;
|
541
|
+
GetImg(obj, data, im);
|
542
|
+
|
543
|
+
if (im_maxpos_subpel(im, &x, &y))
|
544
|
+
vips_lib_error();
|
545
|
+
|
546
|
+
return rb_ary_new3(2, DBL2NUM(x), INT2NUM(y));
|
547
|
+
}
|
548
|
+
|
549
|
+
void
|
550
|
+
init_Image_mosaicing(void)
|
551
|
+
{
|
552
|
+
id_match_none = rb_intern("match_none");
|
553
|
+
id_match_left = rb_intern("match_left");
|
554
|
+
id_match_right = rb_intern("match_right");
|
555
|
+
id_match_both = rb_intern("match_both");
|
556
|
+
}
|