ruby-vips 0.1.1
Sign up to get free protection for your applications and to get access to all the features.
- data/CHANGELOG.md +15 -0
- data/Gemfile.lock +31 -0
- data/LICENSE +20 -0
- data/README.md +96 -0
- data/TODO +18 -0
- data/ext/extconf.rb +10 -0
- data/ext/header.c +440 -0
- data/ext/header.h +8 -0
- data/ext/image.c +639 -0
- data/ext/image.h +71 -0
- data/ext/image_arithmetic.c +940 -0
- data/ext/image_arithmetic.h +38 -0
- data/ext/image_boolean.c +302 -0
- data/ext/image_boolean.h +8 -0
- data/ext/image_colour.c +593 -0
- data/ext/image_colour.h +36 -0
- data/ext/image_conversion.c +863 -0
- data/ext/image_conversion.h +37 -0
- data/ext/image_convolution.c +371 -0
- data/ext/image_convolution.h +13 -0
- data/ext/image_freq_filt.c +742 -0
- data/ext/image_freq_filt.h +27 -0
- data/ext/image_histograms_lut.c +646 -0
- data/ext/image_histograms_lut.h +28 -0
- data/ext/image_morphology.c +330 -0
- data/ext/image_morphology.h +13 -0
- data/ext/image_mosaicing.c +556 -0
- data/ext/image_mosaicing.h +14 -0
- data/ext/image_relational.c +386 -0
- data/ext/image_relational.h +8 -0
- data/ext/image_resample.c +253 -0
- data/ext/image_resample.h +9 -0
- data/ext/interpolator.c +106 -0
- data/ext/interpolator.h +6 -0
- data/ext/mask.c +349 -0
- data/ext/mask.h +17 -0
- data/ext/reader.c +315 -0
- data/ext/ruby_vips.c +131 -0
- data/ext/ruby_vips.h +26 -0
- data/ext/writer.c +346 -0
- data/lib/vips.rb +7 -0
- data/lib/vips/reader.rb +183 -0
- data/lib/vips/version.rb +3 -0
- data/lib/vips/writer.rb +275 -0
- data/ruby-vips.gemspec +93 -0
- metadata +163 -0
@@ -0,0 +1,37 @@
|
|
1
|
+
VALUE img_to_mask(VALUE);
|
2
|
+
VALUE img_dup(VALUE);
|
3
|
+
VALUE img_copy_swap(VALUE);
|
4
|
+
VALUE img_copy_native(VALUE, VALUE);
|
5
|
+
VALUE img_copy_file(VALUE);
|
6
|
+
VALUE img_clip2fmt(VALUE, VALUE);
|
7
|
+
VALUE img_scale(VALUE);
|
8
|
+
VALUE img_msb(int, VALUE*, VALUE);
|
9
|
+
VALUE img_c2amph(VALUE);
|
10
|
+
VALUE img_c2rect(VALUE);
|
11
|
+
VALUE img_ri2c(VALUE, VALUE);
|
12
|
+
VALUE img_c2imag(VALUE);
|
13
|
+
VALUE img_c2real(VALUE);
|
14
|
+
VALUE img_scaleps(VALUE);
|
15
|
+
VALUE img_falsecolour(VALUE);
|
16
|
+
VALUE img_s_gaussnoise(VALUE, VALUE, VALUE, VALUE, VALUE);
|
17
|
+
VALUE img_s_black(VALUE, VALUE, VALUE, VALUE);
|
18
|
+
VALUE img_s_text(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
19
|
+
VALUE img_extract_band(int, VALUE*, VALUE);
|
20
|
+
VALUE img_extract_area(int, VALUE*, VALUE);
|
21
|
+
VALUE img_embed(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
22
|
+
VALUE img_bandjoin(int, VALUE *argv, VALUE);
|
23
|
+
VALUE img_insert_noexpand(VALUE, VALUE, VALUE, VALUE);
|
24
|
+
VALUE img_insert(int, VALUE *argv, VALUE);
|
25
|
+
VALUE img_lrjoin(VALUE, VALUE);
|
26
|
+
VALUE img_tbjoin(VALUE, VALUE);
|
27
|
+
VALUE img_replicate(VALUE, VALUE, VALUE);
|
28
|
+
VALUE img_grid(VALUE, VALUE, VALUE, VALUE);
|
29
|
+
VALUE img_wrap(VALUE, VALUE, VALUE);
|
30
|
+
VALUE img_fliphor(VALUE);
|
31
|
+
VALUE img_flipver(VALUE);
|
32
|
+
VALUE img_rot90(VALUE);
|
33
|
+
VALUE img_rot180(VALUE);
|
34
|
+
VALUE img_rot270(VALUE);
|
35
|
+
VALUE img_subsample(int, VALUE*, VALUE);
|
36
|
+
VALUE img_zoom(int, VALUE*, VALUE);
|
37
|
+
void init_Image_conversion();
|
@@ -0,0 +1,371 @@
|
|
1
|
+
#include "ruby_vips.h"
|
2
|
+
#include "image.h"
|
3
|
+
#include "mask.h"
|
4
|
+
#include "image_convolution.h"
|
5
|
+
|
6
|
+
/*
|
7
|
+
* call-seq:
|
8
|
+
* im.conv(mask) -> image
|
9
|
+
*
|
10
|
+
* Convolve *self* with <i>mask</i>. The output image always has the same band format
|
11
|
+
* as *self*. Non-complex images only.
|
12
|
+
*
|
13
|
+
* Each output pixel is calculated as sigma[i]{pixel[i] * <i>mask</i>[i]} /
|
14
|
+
* scale + offset, where scale and offset are part of <i>mask</i>. For integer
|
15
|
+
* *self*, the division by scale includes round-to-nearest.
|
16
|
+
*
|
17
|
+
* <i>mask</i> can be an array in which case scale defaults to 1 and offset
|
18
|
+
* defaults to zero. <i>mask</i> can also be a Mask object.
|
19
|
+
*/
|
20
|
+
|
21
|
+
VALUE
|
22
|
+
img_conv(VALUE obj, VALUE m)
|
23
|
+
{
|
24
|
+
DOUBLEMASK *dmask;
|
25
|
+
INTMASK *imask;
|
26
|
+
|
27
|
+
GetImg(obj, data, im);
|
28
|
+
OutImg2(obj, m, new, data_new, im_new);
|
29
|
+
|
30
|
+
mask_arg2mask(m, &imask, &dmask);
|
31
|
+
|
32
|
+
if (imask) {
|
33
|
+
if (im_conv(im, im_new, imask))
|
34
|
+
vips_lib_error();
|
35
|
+
} else if (im_conv_f(im, im_new, dmask))
|
36
|
+
vips_lib_error();
|
37
|
+
|
38
|
+
return new;
|
39
|
+
}
|
40
|
+
|
41
|
+
/*
|
42
|
+
* call-seq:
|
43
|
+
* im.convsep(mask) -> image
|
44
|
+
*
|
45
|
+
* Perform a separable convolution of *self* with <i>mask</i> using integer
|
46
|
+
* arithmetic.
|
47
|
+
*
|
48
|
+
* <i>mask</i> must be 1xn or nx1 elements.
|
49
|
+
*
|
50
|
+
* The output image always has the same band format as *self*. Non-complex
|
51
|
+
* images only.
|
52
|
+
*
|
53
|
+
* The image is convolved twice: once with <i>mask</i> and then again with
|
54
|
+
* <i>mask</i> rotated by 90 degrees. This is much faster for certain types of
|
55
|
+
* mask (gaussian blur, for example) than doing a full 2D convolution.
|
56
|
+
*
|
57
|
+
* Each output pixel is calculated as sigma[i]{pixel[i] * <i>mask</i>[i]} /
|
58
|
+
* scale + offset, where scale and offset are part of <i>mask</i>. For integer
|
59
|
+
* *self*, the division by scale includes round-to-nearest.
|
60
|
+
*
|
61
|
+
* <i>mask</i> can be an array in which case scale defaults to 1 and offset
|
62
|
+
* defaults to zero. <i>mask</i> can also be a Mask object.
|
63
|
+
*/
|
64
|
+
|
65
|
+
VALUE
|
66
|
+
img_convsep(VALUE obj, VALUE mask)
|
67
|
+
{
|
68
|
+
DOUBLEMASK *dmask;
|
69
|
+
INTMASK *imask;
|
70
|
+
|
71
|
+
GetImg(obj, data, im);
|
72
|
+
OutImg2(obj, mask, new, data_new, im_new);
|
73
|
+
|
74
|
+
mask_arg2mask(mask, &imask, &dmask);
|
75
|
+
|
76
|
+
if(imask) {
|
77
|
+
if (im_convsep(im, im_new, imask))
|
78
|
+
vips_lib_error();
|
79
|
+
} else if (im_convsep_f(im, im_new, dmask))
|
80
|
+
vips_lib_error();
|
81
|
+
|
82
|
+
return new;
|
83
|
+
}
|
84
|
+
|
85
|
+
/*
|
86
|
+
* call-seq:
|
87
|
+
* im.compass(mask) -> image
|
88
|
+
*
|
89
|
+
* *self* is convolved 8 times with <i>mask</i>, each time <i>mask</i> is
|
90
|
+
* rotated by 45 degrees. Each output pixel is the largest absolute value of
|
91
|
+
* the 8 convolutions.
|
92
|
+
*
|
93
|
+
* <i>mask</i> can be an array or a Mask object.
|
94
|
+
*/
|
95
|
+
|
96
|
+
VALUE
|
97
|
+
img_compass(VALUE obj, VALUE mask)
|
98
|
+
{
|
99
|
+
INTMASK *imask;
|
100
|
+
GetImg(obj, data, im);
|
101
|
+
OutImg2(obj, mask, new, data_new, im_new);
|
102
|
+
|
103
|
+
mask_arg2mask(mask, &imask, NULL);
|
104
|
+
|
105
|
+
if (im_compass(im, im_new, imask))
|
106
|
+
vips_lib_error();
|
107
|
+
|
108
|
+
return new;
|
109
|
+
}
|
110
|
+
|
111
|
+
/*
|
112
|
+
* call-seq:
|
113
|
+
* im.gradient(mask) -> image
|
114
|
+
*
|
115
|
+
* *self* is convolved with <i>mask</i> and with <i>mask</i> after a 90 degree
|
116
|
+
* rotation. The result is the sum of the absolute value of the two
|
117
|
+
* convolutions.
|
118
|
+
*
|
119
|
+
* <i>mask</i> can be an array or a Mask object.
|
120
|
+
*/
|
121
|
+
|
122
|
+
VALUE
|
123
|
+
img_gradient(VALUE obj, VALUE mask)
|
124
|
+
{
|
125
|
+
INTMASK *imask;
|
126
|
+
|
127
|
+
GetImg(obj, data, im);
|
128
|
+
OutImg2(obj, mask, new, data_new, im_new);
|
129
|
+
|
130
|
+
mask_arg2mask(mask, &imask, NULL);
|
131
|
+
|
132
|
+
if (im_gradient(im, im_new, imask) )
|
133
|
+
vips_lib_error();
|
134
|
+
|
135
|
+
return new;
|
136
|
+
}
|
137
|
+
|
138
|
+
/*
|
139
|
+
* call-seq:
|
140
|
+
* im.lindetect(mask) -> image
|
141
|
+
*
|
142
|
+
* *self* is convolved four times with @mask, each time @mask is rotated by 45
|
143
|
+
* degrees. Each output pixel is the largest absolute value of the four
|
144
|
+
* convolutions.
|
145
|
+
*
|
146
|
+
* <i>mask</i> can be an array or a Mask object.
|
147
|
+
*/
|
148
|
+
|
149
|
+
VALUE
|
150
|
+
img_lindetect(VALUE obj, VALUE mask)
|
151
|
+
{
|
152
|
+
INTMASK *imask;
|
153
|
+
|
154
|
+
GetImg(obj, data, im);
|
155
|
+
OutImg2(obj, mask, new, data_new, im_new);
|
156
|
+
|
157
|
+
mask_arg2mask(mask, &imask, NULL);
|
158
|
+
|
159
|
+
if (im_lindetect(im, im_new, imask))
|
160
|
+
vips_lib_error();
|
161
|
+
|
162
|
+
return new;
|
163
|
+
}
|
164
|
+
|
165
|
+
/*
|
166
|
+
* call-seq:
|
167
|
+
* im.sharpen(mask_size, x1, y2, y3, m1, m2) -> image
|
168
|
+
*
|
169
|
+
* Selectively sharpen the L channel of a LAB image. Works for :LABQ coding and
|
170
|
+
* LABS images.
|
171
|
+
*
|
172
|
+
* The operation performs a gaussian blur of size <i>mask_size</i> and
|
173
|
+
* subtract from *self* to generate a high-frequency signal. This signal is
|
174
|
+
* passed through a lookup table formed from the five parameters and added back
|
175
|
+
* to *self*.
|
176
|
+
*
|
177
|
+
*
|
178
|
+
* For printing, we recommend the following settings:
|
179
|
+
*
|
180
|
+
* mask_size == 7
|
181
|
+
* x1 == 1.5
|
182
|
+
* y2 == 20 (don't brighten by more than 20 L*)
|
183
|
+
* y3 == 50 (can darken by up to 50 L*)
|
184
|
+
*
|
185
|
+
* m1 == 1 (some sharpening in flat areas)
|
186
|
+
* m2 == 2 (more sharpening in jaggy areas)
|
187
|
+
*
|
188
|
+
* If you want more or less sharpening, we suggest you just change the
|
189
|
+
* <i>m1</i> and <i>m2</i> parameters.
|
190
|
+
*
|
191
|
+
* The <i>mask_size</i> parameter changes the width of the fringe and can be
|
192
|
+
* adjusted according to the output printing resolution. As an approximate
|
193
|
+
* guideline, use 3 for 4 pixels/mm (CRT display resolution), 5 for 8
|
194
|
+
* pixels/mm, 7 for 12 pixels/mm and 9 for 16 pixels/mm (300 dpi == 12
|
195
|
+
* pixels/mm). These figures refer to the image raster, not the half-tone
|
196
|
+
* resolution.
|
197
|
+
*/
|
198
|
+
|
199
|
+
VALUE
|
200
|
+
img_sharpen(VALUE obj, VALUE mask_size, VALUE x1, VALUE y2, VALUE y3, VALUE m1,
|
201
|
+
VALUE m2)
|
202
|
+
{
|
203
|
+
GetImg(obj, data, im);
|
204
|
+
OutImg(obj, new, data_new, im_new);
|
205
|
+
|
206
|
+
if (im_sharpen(im, im_new, NUM2INT(mask_size), NUM2DBL(x1), NUM2DBL(y2),
|
207
|
+
NUM2DBL(y3), NUM2DBL(m1), NUM2DBL(m2)))
|
208
|
+
vips_lib_error();
|
209
|
+
|
210
|
+
return new;
|
211
|
+
}
|
212
|
+
|
213
|
+
/*
|
214
|
+
* call-seq:
|
215
|
+
* im.grad_x -> image
|
216
|
+
*
|
217
|
+
* Find horizontal differences between adjacent pixels.
|
218
|
+
*
|
219
|
+
* Generates an image where the value of each pixel is the difference between
|
220
|
+
* it and the pixel to its right. The output has the same height as the input
|
221
|
+
* and one pixel less width. One-band integer formats only. The result is
|
222
|
+
* always band format :INT.
|
223
|
+
*
|
224
|
+
* This operation is much faster than (though equivalent to) Image#conv with
|
225
|
+
* the mask [[-1, 1]].
|
226
|
+
*/
|
227
|
+
|
228
|
+
VALUE
|
229
|
+
img_grad_x(VALUE obj)
|
230
|
+
{
|
231
|
+
RUBY_VIPS_UNARY(im_grad_x);
|
232
|
+
}
|
233
|
+
|
234
|
+
/*
|
235
|
+
* call-seq:
|
236
|
+
* im.grad_y -> image
|
237
|
+
*
|
238
|
+
* Find vertical differences between adjacent pixels.
|
239
|
+
*
|
240
|
+
* Generates an image where the value of each pixel is the difference between
|
241
|
+
* it and the pixel below it. The output has the same width as the input
|
242
|
+
* and one pixel less height. One-band integer formats only. The result is
|
243
|
+
* always band format :INT.
|
244
|
+
*
|
245
|
+
* This operation is much faster than (though equivalent to) Image#conv with
|
246
|
+
* the mask [[-1], [1]].
|
247
|
+
*/
|
248
|
+
|
249
|
+
VALUE
|
250
|
+
img_grad_y(VALUE obj)
|
251
|
+
{
|
252
|
+
RUBY_VIPS_UNARY(im_grad_y);
|
253
|
+
}
|
254
|
+
|
255
|
+
/*
|
256
|
+
* call-seq:
|
257
|
+
* im.fastcor(other_image) -> image
|
258
|
+
*
|
259
|
+
* Calculate a fast correlation surface.
|
260
|
+
*
|
261
|
+
* <i>other_image</i> is placed at every position in *self* and the sum of
|
262
|
+
* squares of differences calculated. One-band, 8-bit unsigned images only. The
|
263
|
+
* output image is always band format :UINT. <i>other_image</i> must be smaller
|
264
|
+
* than or equal to *self*. The output image is the same size as the input.
|
265
|
+
*/
|
266
|
+
|
267
|
+
VALUE
|
268
|
+
img_fastcor(VALUE obj, VALUE obj2)
|
269
|
+
{
|
270
|
+
RUBY_VIPS_BINARY(im_fastcor);
|
271
|
+
}
|
272
|
+
|
273
|
+
/*
|
274
|
+
* call-seq:
|
275
|
+
* im.spcor(other_image) -> image
|
276
|
+
*
|
277
|
+
* Calculate a correlation surface.
|
278
|
+
*
|
279
|
+
* <i>other_image</i> is placed at every position in *self* and the correlation
|
280
|
+
* coefficient calculated. One-band, 8 or 16-bit images only. *self* and
|
281
|
+
* <i>other_image</i> must have the same band format.. The output image is
|
282
|
+
* always band format :FLOAT. <i>other_image</i> must be smaller than or equal
|
283
|
+
* to *self*. The output image is the same size as *self*.
|
284
|
+
*
|
285
|
+
* The correlation coefficient is calculated as:
|
286
|
+
*
|
287
|
+
* sumij (ref(i,j)-mean(ref))(inkl(i,j)-mean(inkl))
|
288
|
+
* c(k,l) = ------------------------------------------------
|
289
|
+
* sqrt(sumij (ref(i,j)-mean(ref))^2) *
|
290
|
+
* sqrt(sumij (inkl(i,j)-mean(inkl))^2)
|
291
|
+
*
|
292
|
+
* where inkl is the area of *self* centred at position (k,l).
|
293
|
+
*
|
294
|
+
* from Niblack "An Introduction to Digital Image Processing", Prentice/Hall,
|
295
|
+
* pp 138.
|
296
|
+
*/
|
297
|
+
|
298
|
+
VALUE
|
299
|
+
img_spcor(VALUE obj, VALUE obj2)
|
300
|
+
{
|
301
|
+
RUBY_VIPS_BINARY(im_spcor);
|
302
|
+
}
|
303
|
+
|
304
|
+
/*
|
305
|
+
* call-seq:
|
306
|
+
* im.gradcor(other_image) -> image
|
307
|
+
*
|
308
|
+
* Calculate a correlation surface.
|
309
|
+
*
|
310
|
+
* <i>other_image</i> is placed at every position in *self* and a correlation
|
311
|
+
* coefficient calculated. One-band, integer images only. *self* and
|
312
|
+
* <i>other_image</i> must have the same band format. The output image is
|
313
|
+
* always band format :FLOAT. <i>other_image</i> must be smaller than *self*.
|
314
|
+
* The output image is the same size as the input.
|
315
|
+
*
|
316
|
+
* The method takes the gradient images of the two images then takes the
|
317
|
+
* dot-product correlation of the two vector images. The vector expression of
|
318
|
+
* this method is my (tcv) own creation. It is equivalent to the complex-number
|
319
|
+
* method of:
|
320
|
+
*
|
321
|
+
* ARGYRIOU, V. et al. 2003. Estimation of sub-pixel motion using gradient
|
322
|
+
* cross correlation. Electronics Letters, 39 (13).
|
323
|
+
*/
|
324
|
+
|
325
|
+
VALUE
|
326
|
+
img_gradcor(VALUE obj, VALUE obj2)
|
327
|
+
{
|
328
|
+
RUBY_VIPS_BINARY(im_gradcor);
|
329
|
+
}
|
330
|
+
|
331
|
+
/*
|
332
|
+
* call-seq:
|
333
|
+
* im.contrast_surface(half_win_size, spacing) -> image
|
334
|
+
*
|
335
|
+
* Generate an image where the value of each pixel represents the contrast
|
336
|
+
* within a window of half_win_size from the corresponsing point in the input
|
337
|
+
* image. Sub-sample by a factor of spacing.
|
338
|
+
*/
|
339
|
+
|
340
|
+
VALUE
|
341
|
+
img_contrast_surface(VALUE obj, VALUE half_win_size, VALUE spacing)
|
342
|
+
{
|
343
|
+
GetImg(obj, data, im);
|
344
|
+
OutImg(obj, new, data_new, im_new);
|
345
|
+
|
346
|
+
if (im_contrast_surface(im, im_new, NUM2INT(half_win_size),
|
347
|
+
NUM2INT(spacing)))
|
348
|
+
vips_lib_error();
|
349
|
+
|
350
|
+
return new;
|
351
|
+
}
|
352
|
+
|
353
|
+
/*
|
354
|
+
* call-seq:
|
355
|
+
* im.addgnoise(sigma) -> image
|
356
|
+
*
|
357
|
+
* Add gaussian noise with mean 0 and variance sigma to *self*. The noise is
|
358
|
+
* generated by averaging 12 random numbers, see page 78, PIETGEN, 1989.
|
359
|
+
*/
|
360
|
+
|
361
|
+
VALUE
|
362
|
+
img_addgnoise(VALUE obj, VALUE sigma)
|
363
|
+
{
|
364
|
+
GetImg(obj, data, im);
|
365
|
+
OutImg(obj, new, data_new, im_new);
|
366
|
+
|
367
|
+
if (im_addgnoise(im, im_new, NUM2INT(sigma)))
|
368
|
+
vips_lib_error();
|
369
|
+
|
370
|
+
return new;
|
371
|
+
}
|
@@ -0,0 +1,13 @@
|
|
1
|
+
VALUE img_conv(VALUE, VALUE);
|
2
|
+
VALUE img_convsep(VALUE, VALUE);
|
3
|
+
VALUE img_compass(VALUE, VALUE);
|
4
|
+
VALUE img_gradient(VALUE, VALUE);
|
5
|
+
VALUE img_lindetect(VALUE, VALUE);
|
6
|
+
VALUE img_sharpen(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
7
|
+
VALUE img_grad_x(VALUE);
|
8
|
+
VALUE img_grad_y(VALUE);
|
9
|
+
VALUE img_fastcor(VALUE, VALUE);
|
10
|
+
VALUE img_spcor(VALUE, VALUE);
|
11
|
+
VALUE img_gradcor(VALUE, VALUE);
|
12
|
+
VALUE img_contrast_surface(VALUE, VALUE, VALUE);
|
13
|
+
VALUE img_addgnoise(VALUE, VALUE);
|
@@ -0,0 +1,742 @@
|
|
1
|
+
#include "ruby_vips.h"
|
2
|
+
#include "image.h"
|
3
|
+
#include "image_freq_filt.h"
|
4
|
+
|
5
|
+
/*
|
6
|
+
* call-seq:
|
7
|
+
* im.fwfft -> image
|
8
|
+
*
|
9
|
+
* Transform an image to Fourier space.
|
10
|
+
*
|
11
|
+
* VIPS uses the fftw3 or fftw2 Fourier transform libraries if possible. If
|
12
|
+
* they were not available when VIPS was built, it falls back to its own
|
13
|
+
* FFT functions which are slow and only work for square images whose sides
|
14
|
+
* are a power of two.
|
15
|
+
*/
|
16
|
+
|
17
|
+
VALUE
|
18
|
+
img_fwfft(VALUE obj)
|
19
|
+
{
|
20
|
+
RUBY_VIPS_UNARY(im_fwfft);
|
21
|
+
}
|
22
|
+
|
23
|
+
/*
|
24
|
+
* call-seq:
|
25
|
+
* im.invfft -> image
|
26
|
+
*
|
27
|
+
* Transform an image from Fourier space to real space. The result is complex.
|
28
|
+
* If you are OK with a real result, use Image#invfftr instead, it's quicker.
|
29
|
+
*
|
30
|
+
* VIPS uses the fftw3 or fftw2 Fourier transform libraries if possible. If
|
31
|
+
* they were not available when VIPS was built, it falls back to its own FFT
|
32
|
+
* functions which are slow and only work for square images whose sides are a
|
33
|
+
* power of two.
|
34
|
+
*/
|
35
|
+
|
36
|
+
VALUE
|
37
|
+
img_invfft(VALUE obj)
|
38
|
+
{
|
39
|
+
RUBY_VIPS_UNARY(im_invfft);
|
40
|
+
}
|
41
|
+
|
42
|
+
/*
|
43
|
+
* call-seq:
|
44
|
+
* im.rotquad -> image
|
45
|
+
*
|
46
|
+
* Rotate the quadrants of the image so that the point that was at the
|
47
|
+
* top-left is now in the centre. Handy for moving Fourier images to optical
|
48
|
+
* space.
|
49
|
+
*/
|
50
|
+
|
51
|
+
VALUE
|
52
|
+
img_rotquad(VALUE obj)
|
53
|
+
{
|
54
|
+
RUBY_VIPS_UNARY(im_rotquad);
|
55
|
+
}
|
56
|
+
|
57
|
+
/*
|
58
|
+
* call-seq:
|
59
|
+
* im.invfftr -> image
|
60
|
+
*
|
61
|
+
* Transform an image from Fourier space to real space, giving a real result.
|
62
|
+
* This is faster than Image#invfft, which gives a complex result.
|
63
|
+
*
|
64
|
+
* VIPS uses the fftw3 or fftw2 Fourier transform libraries if possible. If
|
65
|
+
* they were not available when VIPS was built, it falls back to it's own
|
66
|
+
* FFT functions which are slow and only work for square images whose sides
|
67
|
+
* are a power of two.
|
68
|
+
*/
|
69
|
+
|
70
|
+
VALUE
|
71
|
+
img_invfftr(VALUE obj)
|
72
|
+
{
|
73
|
+
RUBY_VIPS_UNARY(im_invfftr);
|
74
|
+
}
|
75
|
+
|
76
|
+
#if IM_MAJOR_VERSION > 7 || IM_MINOR_VERSION >= 22
|
77
|
+
|
78
|
+
/*
|
79
|
+
* call-seq:
|
80
|
+
* Image.fmask_ideal_lowpass(x, y, frequency_cutoff) -> image
|
81
|
+
*
|
82
|
+
* This operation creates a one-band float image of the size <i>x</i> by
|
83
|
+
* <i>y</i>. The image must be square, and the sides must be a power of two.
|
84
|
+
* The image has values in the range [0, 1] and is typically used for
|
85
|
+
* multiplying against frequency domain images to filter them.
|
86
|
+
*
|
87
|
+
* All masks are created with the DC component at (0, 0), so you might want to
|
88
|
+
* rotate the quadrants with im_rotquad() before viewing. The DC pixel always
|
89
|
+
* has the value 1.0.
|
90
|
+
*
|
91
|
+
* Unless noted below, all parameters are expressed as percentages, scaled to
|
92
|
+
* [0, 1].
|
93
|
+
*
|
94
|
+
* * High-pass, low-pass masks: A high pass filter mask filters the low
|
95
|
+
* frequencies while allowing the high frequencies to get through.
|
96
|
+
* The reverse happens with a low pass filter mask.
|
97
|
+
*
|
98
|
+
* * Ring-pass, ring-reject masks: A ring filter passes or rejects a range of
|
99
|
+
* frequencies. The range is specified by the <i>frequency_cutoff</i> and
|
100
|
+
* the <i>width</i>.
|
101
|
+
*
|
102
|
+
* * Band-pass, band-reject masks: These masks are used to pass or remove
|
103
|
+
* spatial frequencies around a given frequency. The position of the
|
104
|
+
* frequency to pass or remove is given by <i>frequency_cutoffx</i> and
|
105
|
+
* <i>frequency_cutoffy</i>. The size of the region around the point is
|
106
|
+
* given by <i>radius</i>.
|
107
|
+
*
|
108
|
+
* * Ideal filters: These filters pass or reject frequencies with a sharp
|
109
|
+
* cutoff at the transition.
|
110
|
+
*
|
111
|
+
* * Butterworth filters: These filters use a Butterworth function to separate
|
112
|
+
* the frequencies (see Gonzalez and Wintz, Digital Image Processing, 1987).
|
113
|
+
* The shape of the curve is controlled by <i>order</i>: higher values give
|
114
|
+
* a sharper transition.
|
115
|
+
*
|
116
|
+
* * Gaussian filters: These filters have a smooth Gaussian shape,
|
117
|
+
* controlled by <i>amplitude_cutoff</i>.
|
118
|
+
*/
|
119
|
+
|
120
|
+
VALUE
|
121
|
+
img_s_fmask_ideal_highpass(VALUE obj, VALUE x, VALUE y, VALUE frequency_cutoff)
|
122
|
+
{
|
123
|
+
OutPartial(new, data, im);
|
124
|
+
|
125
|
+
if (im_create_fmask(im, NUM2INT(x), NUM2INT(y), VIPS_MASK_IDEAL_HIGHPASS,
|
126
|
+
NUM2DBL(frequency_cutoff)))
|
127
|
+
vips_lib_error();
|
128
|
+
|
129
|
+
return new;
|
130
|
+
}
|
131
|
+
|
132
|
+
/*
|
133
|
+
* call-seq:
|
134
|
+
* Image.fmask_ideal_lowpass(x, y, frequency_cutoff) -> image
|
135
|
+
*
|
136
|
+
* See Image.fmask_ideal_highpass
|
137
|
+
*
|
138
|
+
*/
|
139
|
+
|
140
|
+
VALUE
|
141
|
+
img_s_fmask_ideal_lowpass(VALUE obj, VALUE x, VALUE y, VALUE frequency_cutoff)
|
142
|
+
{
|
143
|
+
OutPartial(new, data, im);
|
144
|
+
|
145
|
+
if (im_create_fmask(im, NUM2INT(x), NUM2INT(y),
|
146
|
+
VIPS_MASK_IDEAL_LOWPASS, NUM2DBL(frequency_cutoff)))
|
147
|
+
vips_lib_error();
|
148
|
+
|
149
|
+
return new;
|
150
|
+
}
|
151
|
+
|
152
|
+
/*
|
153
|
+
* call-seq:
|
154
|
+
* Image.fmask_butterworth_highpass(x, y, order, frequency_cutoff,
|
155
|
+
* amplitude_cutoff) -> image
|
156
|
+
*
|
157
|
+
* See Image.fmask_ideal_highpass
|
158
|
+
*/
|
159
|
+
|
160
|
+
VALUE
|
161
|
+
img_s_fmask_butterworth_highpass(VALUE obj, VALUE x, VALUE y,
|
162
|
+
VALUE order, VALUE frequency_cutoff, VALUE amplitude_cutoff)
|
163
|
+
{
|
164
|
+
OutPartial(new, data, im);
|
165
|
+
|
166
|
+
if (im_create_fmask(im,
|
167
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_BUTTERWORTH_HIGHPASS, NUM2DBL(order),
|
168
|
+
NUM2DBL(frequency_cutoff), NUM2DBL(amplitude_cutoff)))
|
169
|
+
vips_lib_error();
|
170
|
+
|
171
|
+
return new;
|
172
|
+
}
|
173
|
+
|
174
|
+
/*
|
175
|
+
* call-seq:
|
176
|
+
* Image.fmask_butterworth_lowpass(x, y, order, frequency_cutoff,
|
177
|
+
* amplitude_cutoff)
|
178
|
+
*
|
179
|
+
* See Image.fmask_ideal_highpass
|
180
|
+
*/
|
181
|
+
|
182
|
+
VALUE
|
183
|
+
img_s_fmask_butterworth_lowpass(VALUE obj, VALUE x, VALUE y,
|
184
|
+
VALUE order, VALUE frequency_cutoff, VALUE amplitude_cutoff)
|
185
|
+
{
|
186
|
+
OutPartial(new, data, im);
|
187
|
+
|
188
|
+
if (im_create_fmask(im,
|
189
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_BUTTERWORTH_LOWPASS, NUM2DBL(order),
|
190
|
+
NUM2DBL(frequency_cutoff), NUM2DBL(amplitude_cutoff)))
|
191
|
+
vips_lib_error();
|
192
|
+
|
193
|
+
return new;
|
194
|
+
}
|
195
|
+
|
196
|
+
/*
|
197
|
+
* call-seq:
|
198
|
+
* Image.fmask_gauss_highpass(x, y, frequency_cutoff, amplitude_cutoff) ->
|
199
|
+
* image
|
200
|
+
*
|
201
|
+
* See Image.fmask_ideal_highpass
|
202
|
+
*/
|
203
|
+
|
204
|
+
VALUE
|
205
|
+
img_s_fmask_gauss_highpass(VALUE obj, VALUE x, VALUE y,
|
206
|
+
VALUE frequency_cutoff, VALUE amplitude_cutoff)
|
207
|
+
{
|
208
|
+
OutPartial(new, data, im);
|
209
|
+
|
210
|
+
if (im_create_fmask(im,
|
211
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_GAUSS_HIGHPASS,
|
212
|
+
NUM2DBL(frequency_cutoff), NUM2DBL(amplitude_cutoff)))
|
213
|
+
vips_lib_error();
|
214
|
+
|
215
|
+
return new;
|
216
|
+
}
|
217
|
+
|
218
|
+
/*
|
219
|
+
* call-seq:
|
220
|
+
* Image.fmask_gauss_lowpass(x, y, frequency_cutoff, amplitude_cutoff) ->
|
221
|
+
* image
|
222
|
+
*
|
223
|
+
* See Image.fmask_ideal_highpass
|
224
|
+
*/
|
225
|
+
|
226
|
+
VALUE
|
227
|
+
img_s_fmask_gauss_lowpass(VALUE obj, VALUE x, VALUE y,
|
228
|
+
VALUE frequency_cutoff, VALUE amplitude_cutoff)
|
229
|
+
{
|
230
|
+
OutPartial(new, data, im);
|
231
|
+
|
232
|
+
if (im_create_fmask(im,
|
233
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_GAUSS_LOWPASS,
|
234
|
+
NUM2DBL(frequency_cutoff), NUM2DBL(amplitude_cutoff)))
|
235
|
+
vips_lib_error();
|
236
|
+
|
237
|
+
return new;
|
238
|
+
}
|
239
|
+
|
240
|
+
/*
|
241
|
+
* call-seq:
|
242
|
+
* Image.fmask_ideal_ringpass(x, y, frequency_cutoff, width) -> image
|
243
|
+
*
|
244
|
+
* See Image.fmask_ideal_highpass
|
245
|
+
*/
|
246
|
+
|
247
|
+
VALUE
|
248
|
+
img_s_fmask_ideal_ringpass(VALUE obj, VALUE x, VALUE y,
|
249
|
+
VALUE frequency_cutoff, VALUE width)
|
250
|
+
{
|
251
|
+
OutPartial(new, data, im);
|
252
|
+
|
253
|
+
if (im_create_fmask(im,
|
254
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_IDEAL_RINGPASS,
|
255
|
+
NUM2DBL(frequency_cutoff), NUM2DBL(width)))
|
256
|
+
vips_lib_error();
|
257
|
+
|
258
|
+
return new;
|
259
|
+
}
|
260
|
+
|
261
|
+
/*
|
262
|
+
* call-seq:
|
263
|
+
* Image.fmask_ideal_ringreject(x, y, frequency_cutoff, width) -> image
|
264
|
+
*
|
265
|
+
* See Image.fmask_ideal_highpass
|
266
|
+
*/
|
267
|
+
|
268
|
+
VALUE
|
269
|
+
img_s_fmask_ideal_ringreject(VALUE obj, VALUE x, VALUE y,
|
270
|
+
VALUE frequency_cutoff, VALUE width)
|
271
|
+
{
|
272
|
+
OutPartial(new, data, im);
|
273
|
+
|
274
|
+
if (im_create_fmask(im,
|
275
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_IDEAL_RINGREJECT,
|
276
|
+
NUM2DBL(frequency_cutoff), NUM2DBL(width)))
|
277
|
+
vips_lib_error();
|
278
|
+
|
279
|
+
return new;
|
280
|
+
}
|
281
|
+
|
282
|
+
/*
|
283
|
+
* call-seq:
|
284
|
+
* Image.fmask_butterworth_ringpass(x, y, order, frequency_cutoff,
|
285
|
+
* width, amplitude_cutoff) -> image
|
286
|
+
*
|
287
|
+
* See Image.fmask_ideal_highpass
|
288
|
+
*/
|
289
|
+
|
290
|
+
VALUE
|
291
|
+
img_s_fmask_butterworth_ringpass(VALUE obj, VALUE x, VALUE y,
|
292
|
+
VALUE order, VALUE frequency_cutoff, VALUE width, VALUE amplitude_cutoff)
|
293
|
+
{
|
294
|
+
OutPartial(new, data, im);
|
295
|
+
|
296
|
+
if (im_create_fmask(im,
|
297
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_BUTTERWORTH_RINGPASS,
|
298
|
+
NUM2DBL(order), NUM2DBL(frequency_cutoff), NUM2DBL(width),
|
299
|
+
NUM2DBL(amplitude_cutoff)))
|
300
|
+
vips_lib_error();
|
301
|
+
|
302
|
+
return new;
|
303
|
+
}
|
304
|
+
|
305
|
+
/*
|
306
|
+
* call-seq:
|
307
|
+
* Image.fmask_butterworth_ringreject(x, y, order, frequency_cutoff,
|
308
|
+
* width, amplitude_cutoff) -> image
|
309
|
+
*
|
310
|
+
* See Image.fmask_ideal_highpass
|
311
|
+
*/
|
312
|
+
|
313
|
+
VALUE
|
314
|
+
img_s_fmask_butterworth_ringreject(VALUE obj, VALUE x, VALUE y,
|
315
|
+
VALUE order, VALUE frequency_cutoff, VALUE width, VALUE amplitude_cutoff)
|
316
|
+
{
|
317
|
+
OutPartial(new, data, im);
|
318
|
+
|
319
|
+
if (im_create_fmask(im,
|
320
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_BUTTERWORTH_RINGREJECT,
|
321
|
+
NUM2DBL(order), NUM2DBL(frequency_cutoff), NUM2DBL(width),
|
322
|
+
NUM2DBL(amplitude_cutoff)))
|
323
|
+
vips_lib_error();
|
324
|
+
|
325
|
+
return new;
|
326
|
+
}
|
327
|
+
|
328
|
+
/*
|
329
|
+
* call-seq:
|
330
|
+
* Image.fmask_gauss_ringpass(x, y, frequency_cutoff, width,
|
331
|
+
* amplitude_cutoff) -> image
|
332
|
+
*
|
333
|
+
* See Image.fmask_ideal_highpass
|
334
|
+
*/
|
335
|
+
|
336
|
+
VALUE
|
337
|
+
img_s_fmask_gauss_ringpass(VALUE obj, VALUE x, VALUE y,
|
338
|
+
VALUE frequency_cutoff, VALUE width, VALUE amplitude_cutoff)
|
339
|
+
{
|
340
|
+
OutPartial(new, data, im);
|
341
|
+
|
342
|
+
if (im_create_fmask(im,
|
343
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_GAUSS_RINGPASS,
|
344
|
+
NUM2DBL(frequency_cutoff), NUM2DBL(width), NUM2DBL(amplitude_cutoff)))
|
345
|
+
vips_lib_error();
|
346
|
+
|
347
|
+
return new;
|
348
|
+
}
|
349
|
+
|
350
|
+
/*
|
351
|
+
* call-seq:
|
352
|
+
* Image.fmask_gauss_ringreject(x, y, frequency_cutoff, width,
|
353
|
+
* amplitude_cutoff) -> image
|
354
|
+
*
|
355
|
+
* See Image.fmask_ideal_highpass
|
356
|
+
*/
|
357
|
+
|
358
|
+
VALUE
|
359
|
+
img_s_fmask_gauss_ringreject(VALUE obj, VALUE x, VALUE y,
|
360
|
+
VALUE frequency_cutoff, VALUE width, VALUE amplitude_cutoff)
|
361
|
+
{
|
362
|
+
OutPartial(new, data, im);
|
363
|
+
|
364
|
+
if (im_create_fmask(im,
|
365
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_GAUSS_RINGREJECT,
|
366
|
+
NUM2DBL(frequency_cutoff), NUM2DBL(width), NUM2DBL(amplitude_cutoff)))
|
367
|
+
vips_lib_error();
|
368
|
+
|
369
|
+
return new;
|
370
|
+
}
|
371
|
+
|
372
|
+
/*
|
373
|
+
* call-seq:
|
374
|
+
* Image.fmask_ideal_bandpass(x, y, frequency_cutoffx, frequency_cutoffy,
|
375
|
+
* radius) -> image
|
376
|
+
*
|
377
|
+
* See Image.fmask_ideal_highpass
|
378
|
+
*/
|
379
|
+
|
380
|
+
VALUE
|
381
|
+
img_s_fmask_ideal_bandpass(VALUE obj, VALUE x, VALUE y,
|
382
|
+
VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius)
|
383
|
+
{
|
384
|
+
OutPartial(new, data, im);
|
385
|
+
|
386
|
+
if (im_create_fmask(im,
|
387
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_IDEAL_BANDPASS,
|
388
|
+
NUM2DBL(frequency_cutoffx), NUM2DBL(frequency_cutoffy),
|
389
|
+
NUM2DBL(radius)))
|
390
|
+
vips_lib_error();
|
391
|
+
|
392
|
+
return new;
|
393
|
+
}
|
394
|
+
|
395
|
+
/*
|
396
|
+
* call-seq:
|
397
|
+
* Image.fmask_ideal_bandreject(x, y, frequency_cutoffx, frequency_cutoffy,
|
398
|
+
* radius)
|
399
|
+
*
|
400
|
+
* See Image.fmask_ideal_highpass
|
401
|
+
*/
|
402
|
+
|
403
|
+
VALUE
|
404
|
+
img_s_fmask_ideal_bandreject(VALUE obj, VALUE x, VALUE y,
|
405
|
+
VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius)
|
406
|
+
{
|
407
|
+
OutPartial(new, data, im);
|
408
|
+
|
409
|
+
if (im_create_fmask(im,
|
410
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_IDEAL_BANDREJECT,
|
411
|
+
NUM2DBL(frequency_cutoffx), NUM2DBL(frequency_cutoffy),
|
412
|
+
NUM2DBL(radius)))
|
413
|
+
vips_lib_error();
|
414
|
+
|
415
|
+
return new;
|
416
|
+
}
|
417
|
+
|
418
|
+
/*
|
419
|
+
* call-seq:
|
420
|
+
* Image.fmask_butterworth_bandpass(x, y, order, frequency_cutoffx,
|
421
|
+
* frequency_cutoffy, radius, amplitude_cutoff) -> image
|
422
|
+
*
|
423
|
+
* See Image.fmask_ideal_highpass
|
424
|
+
*/
|
425
|
+
|
426
|
+
VALUE
|
427
|
+
img_s_fmask_butterworth_bandpass(VALUE obj, VALUE x, VALUE y,
|
428
|
+
VALUE order, VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius,
|
429
|
+
VALUE amplitude_cutoff)
|
430
|
+
{
|
431
|
+
OutPartial(new, data, im);
|
432
|
+
|
433
|
+
if (im_create_fmask(im,
|
434
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_BUTTERWORTH_BANDPASS,
|
435
|
+
NUM2DBL(order), NUM2DBL(frequency_cutoffx), NUM2DBL(frequency_cutoffy),
|
436
|
+
NUM2DBL(radius), NUM2DBL(amplitude_cutoff)))
|
437
|
+
vips_lib_error();
|
438
|
+
|
439
|
+
return new;
|
440
|
+
}
|
441
|
+
|
442
|
+
/*
|
443
|
+
* call-seq:
|
444
|
+
* Image.fmask_butterworth_bandreject(x, y, order, frequency_cutoffx,
|
445
|
+
* frequency_cutoffy, radius, amplitude_cutoff) -> image
|
446
|
+
*
|
447
|
+
* See Image.fmask_ideal_highpass
|
448
|
+
*/
|
449
|
+
|
450
|
+
VALUE
|
451
|
+
img_s_fmask_butterworth_bandreject(VALUE obj, VALUE x, VALUE y,
|
452
|
+
VALUE order, VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius,
|
453
|
+
VALUE amplitude_cutoff)
|
454
|
+
{
|
455
|
+
OutPartial(new, data, im);
|
456
|
+
|
457
|
+
if (im_create_fmask(im,
|
458
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_BUTTERWORTH_BANDREJECT,
|
459
|
+
NUM2DBL(order), NUM2DBL(frequency_cutoffx), NUM2DBL(frequency_cutoffy),
|
460
|
+
NUM2DBL(radius), NUM2DBL(amplitude_cutoff)))
|
461
|
+
vips_lib_error();
|
462
|
+
|
463
|
+
return new;
|
464
|
+
}
|
465
|
+
|
466
|
+
/*
|
467
|
+
* call-seq:
|
468
|
+
* Image.fmask_gaus_bandpass(x, y, frequency_cutoffx, frequency_cutoffy,
|
469
|
+
* radius, amplitude_cutoff) -> image
|
470
|
+
*
|
471
|
+
* See Image.fmask_ideal_highpass
|
472
|
+
*/
|
473
|
+
|
474
|
+
VALUE
|
475
|
+
img_s_fmask_gauss_bandpass(VALUE obj, VALUE x, VALUE y,
|
476
|
+
VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius,
|
477
|
+
VALUE amplitude_cutoff)
|
478
|
+
{
|
479
|
+
OutPartial(new, data, im);
|
480
|
+
|
481
|
+
if (im_create_fmask(im,
|
482
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_GAUSS_BANDPASS,
|
483
|
+
NUM2DBL(frequency_cutoffx), NUM2DBL(frequency_cutoffy), NUM2DBL(radius),
|
484
|
+
NUM2DBL(amplitude_cutoff)))
|
485
|
+
vips_lib_error();
|
486
|
+
|
487
|
+
return new;
|
488
|
+
}
|
489
|
+
|
490
|
+
/*
|
491
|
+
* call-seq:
|
492
|
+
* Image.fmask_gauss_bandreject, x, y, frequency_cutoffx, frequency_cutoffy,
|
493
|
+
* radius, amplitude_cutoff) -> image
|
494
|
+
*
|
495
|
+
* See Image.fmask_ideal_highpass
|
496
|
+
*/
|
497
|
+
|
498
|
+
VALUE
|
499
|
+
img_s_fmask_gauss_bandreject(VALUE obj, VALUE x, VALUE y,
|
500
|
+
VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius,
|
501
|
+
VALUE amplitude_cutoff)
|
502
|
+
{
|
503
|
+
OutPartial(new, data, im);
|
504
|
+
|
505
|
+
if (im_create_fmask(im,
|
506
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_GAUSS_BANDREJECT,
|
507
|
+
NUM2DBL(frequency_cutoffx), NUM2DBL(frequency_cutoffy), NUM2DBL(radius),
|
508
|
+
NUM2DBL(amplitude_cutoff)))
|
509
|
+
vips_lib_error();
|
510
|
+
|
511
|
+
return new;
|
512
|
+
}
|
513
|
+
|
514
|
+
/*
|
515
|
+
* call-seq:
|
516
|
+
* Image.fmask_fractal_flt(x, y, fractal_dimension) -> image
|
517
|
+
*
|
518
|
+
* This mask is handy for filtering images of gaussian noise in order to create
|
519
|
+
* surfaces of a given fractal dimension. @fractal_dimension should be between
|
520
|
+
* 2 and 3.
|
521
|
+
*/
|
522
|
+
|
523
|
+
VALUE
|
524
|
+
img_s_fmask_fractal_flt(VALUE obj, VALUE x, VALUE y,
|
525
|
+
VALUE fractal_dimension)
|
526
|
+
{
|
527
|
+
OutPartial(new, data, im);
|
528
|
+
|
529
|
+
if (im_create_fmask(im,
|
530
|
+
NUM2INT(x), NUM2INT(y), VIPS_MASK_FRACTAL_FLT,
|
531
|
+
NUM2DBL(fractal_dimension)))
|
532
|
+
vips_lib_error();
|
533
|
+
|
534
|
+
return new;
|
535
|
+
}
|
536
|
+
|
537
|
+
#else
|
538
|
+
|
539
|
+
VALUE
|
540
|
+
img_s_fmask_ideal_highpass(VALUE obj, VALUE x, VALUE y,
|
541
|
+
VALUE frequency_cutoff)
|
542
|
+
{
|
543
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
544
|
+
}
|
545
|
+
|
546
|
+
VALUE
|
547
|
+
img_s_fmask_ideal_lowpass(VALUE obj, VALUE x, VALUE y,
|
548
|
+
VALUE frequency_cutoff)
|
549
|
+
{
|
550
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
551
|
+
}
|
552
|
+
|
553
|
+
VALUE
|
554
|
+
img_s_fmask_butterworth_highpass(VALUE obj, VALUE x, VALUE y,
|
555
|
+
VALUE order, VALUE frequency_cutoff, VALUE amplitude_cutoff)
|
556
|
+
{
|
557
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
558
|
+
}
|
559
|
+
|
560
|
+
VALUE
|
561
|
+
img_s_fmask_butterworth_lowpass(VALUE obj, VALUE x, VALUE y,
|
562
|
+
VALUE order, VALUE frequency_cutoff, VALUE amplitude_cutoff)
|
563
|
+
{
|
564
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
565
|
+
}
|
566
|
+
|
567
|
+
VALUE
|
568
|
+
img_s_fmask_gauss_highpass(VALUE obj, VALUE x, VALUE y,
|
569
|
+
VALUE frequency_cutoff, VALUE amplitude_cutoff)
|
570
|
+
{
|
571
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
572
|
+
}
|
573
|
+
|
574
|
+
VALUE
|
575
|
+
img_s_fmask_gauss_lowpass(VALUE obj, VALUE x, VALUE y,
|
576
|
+
VALUE frequency_cutoff, VALUE amplitude_cutoff)
|
577
|
+
{
|
578
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
579
|
+
}
|
580
|
+
|
581
|
+
VALUE
|
582
|
+
img_s_fmask_ideal_ringpass(VALUE obj, VALUE x, VALUE y,
|
583
|
+
VALUE frequency_cutoff, VALUE width)
|
584
|
+
{
|
585
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
586
|
+
}
|
587
|
+
|
588
|
+
VALUE
|
589
|
+
img_s_fmask_ideal_ringreject(VALUE obj, VALUE x, VALUE y,
|
590
|
+
VALUE frequency_cutoff, VALUE width)
|
591
|
+
{
|
592
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
593
|
+
}
|
594
|
+
|
595
|
+
VALUE
|
596
|
+
img_s_fmask_butterworth_ringpass(VALUE obj, VALUE x, VALUE y,
|
597
|
+
VALUE order, VALUE frequency_cutoff, VALUE width, VALUE amplitude_cutoff)
|
598
|
+
{
|
599
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
600
|
+
}
|
601
|
+
|
602
|
+
VALUE
|
603
|
+
img_s_fmask_butterworth_ringreject(VALUE obj, VALUE x, VALUE y,
|
604
|
+
VALUE order, VALUE frequency_cutoff, VALUE width, VALUE amplitude_cutoff)
|
605
|
+
{
|
606
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
607
|
+
}
|
608
|
+
|
609
|
+
VALUE
|
610
|
+
img_s_fmask_gauss_ringpass(VALUE obj, VALUE x, VALUE y,
|
611
|
+
VALUE frequency_cutoff, VALUE width, VALUE amplitude_cutoff)
|
612
|
+
{
|
613
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
614
|
+
}
|
615
|
+
|
616
|
+
VALUE
|
617
|
+
img_s_fmask_gauss_ringreject(VALUE obj, VALUE x, VALUE y,
|
618
|
+
VALUE frequency_cutoff, VALUE width, VALUE amplitude_cutoff)
|
619
|
+
{
|
620
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
621
|
+
}
|
622
|
+
|
623
|
+
VALUE
|
624
|
+
img_s_fmask_ideal_bandpass(VALUE obj, VALUE x, VALUE y,
|
625
|
+
VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius)
|
626
|
+
{
|
627
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
628
|
+
}
|
629
|
+
|
630
|
+
VALUE
|
631
|
+
img_s_fmask_ideal_bandreject(VALUE obj, VALUE x, VALUE y,
|
632
|
+
VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius)
|
633
|
+
{
|
634
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
635
|
+
}
|
636
|
+
|
637
|
+
VALUE
|
638
|
+
img_s_fmask_butterworth_bandpass(VALUE obj, VALUE x, VALUE y,
|
639
|
+
VALUE order, VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius,
|
640
|
+
VALUE amplitude_cutoff)
|
641
|
+
{
|
642
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
643
|
+
}
|
644
|
+
|
645
|
+
VALUE
|
646
|
+
img_s_fmask_butterworth_bandreject(VALUE obj, VALUE x, VALUE y,
|
647
|
+
VALUE order, VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius,
|
648
|
+
VALUE amplitude_cutoff)
|
649
|
+
{
|
650
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
651
|
+
}
|
652
|
+
|
653
|
+
VALUE
|
654
|
+
img_s_fmask_gauss_bandpass(VALUE obj, VALUE x, VALUE y,
|
655
|
+
VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius,
|
656
|
+
VALUE amplitude_cutoff)
|
657
|
+
{
|
658
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
659
|
+
}
|
660
|
+
|
661
|
+
VALUE
|
662
|
+
img_s_fmask_gauss_bandreject(VALUE obj, VALUE x, VALUE y,
|
663
|
+
VALUE frequency_cutoffx, VALUE frequency_cutoffy, VALUE radius,
|
664
|
+
VALUE amplitude_cutoff)
|
665
|
+
{
|
666
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
667
|
+
}
|
668
|
+
|
669
|
+
VALUE
|
670
|
+
img_s_fmask_fractal_flt(VALUE obj, VALUE x, VALUE y,
|
671
|
+
VALUE fractal_dimension)
|
672
|
+
{
|
673
|
+
rb_raise(eVIPSError, "Operation not supported with your version of VIPS.");
|
674
|
+
}
|
675
|
+
|
676
|
+
#endif
|
677
|
+
|
678
|
+
/*
|
679
|
+
* call-seq:
|
680
|
+
* im.freqflt(other_image) -> image
|
681
|
+
*
|
682
|
+
* Filter an image in Fourier space.
|
683
|
+
*
|
684
|
+
* *self* is transformed to Fourier space, multipled with <i>other_image</i>,
|
685
|
+
* then transformed back to real space. If *self* is already a complex image,
|
686
|
+
* just multiply then inverse transform.
|
687
|
+
*/
|
688
|
+
|
689
|
+
VALUE
|
690
|
+
img_freqflt(VALUE obj, VALUE obj2)
|
691
|
+
{
|
692
|
+
RUBY_VIPS_BINARY(im_freqflt);
|
693
|
+
}
|
694
|
+
|
695
|
+
/*
|
696
|
+
* call-seq:
|
697
|
+
* im.disp_ps -> image
|
698
|
+
*
|
699
|
+
* Make a displayable (ie. 8-bit unsigned int) power spectrum.
|
700
|
+
*
|
701
|
+
* If *self* is non-complex, it is transformed to Fourier space. Then the
|
702
|
+
* absolute value is passed through Image#scaleps, and Image#rotquad.
|
703
|
+
*/
|
704
|
+
|
705
|
+
VALUE
|
706
|
+
img_disp_ps(VALUE obj)
|
707
|
+
{
|
708
|
+
RUBY_VIPS_UNARY(im_disp_ps);
|
709
|
+
}
|
710
|
+
|
711
|
+
/*
|
712
|
+
* call-seq:
|
713
|
+
* im.phasecor_fft(other_image) -> image
|
714
|
+
*
|
715
|
+
* Convert the two input images to Fourier space, calculate phase-correlation,
|
716
|
+
* back to real space.
|
717
|
+
*/
|
718
|
+
|
719
|
+
VALUE
|
720
|
+
img_phasecor_fft(VALUE obj, VALUE obj2)
|
721
|
+
{
|
722
|
+
RUBY_VIPS_BINARY(im_phasecor_fft);
|
723
|
+
}
|
724
|
+
|
725
|
+
/*
|
726
|
+
* call-seq:
|
727
|
+
* Image.fractsurf(size, frd) -> image
|
728
|
+
*
|
729
|
+
* Generate an image of size <i>size</i> and fractal dimension <i>frd</i>. The
|
730
|
+
* dimension should be between 2 and 3.
|
731
|
+
*/
|
732
|
+
|
733
|
+
VALUE
|
734
|
+
img_s_fractsurf(VALUE obj, VALUE size, VALUE frd)
|
735
|
+
{
|
736
|
+
OutPartial(new, data, im);
|
737
|
+
|
738
|
+
if (im_fractsurf(im, NUM2INT(size), NUM2DBL(frd)))
|
739
|
+
vips_lib_error();
|
740
|
+
|
741
|
+
return new;
|
742
|
+
}
|