ruby-vips 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/CHANGELOG.md +15 -0
- data/Gemfile.lock +31 -0
- data/LICENSE +20 -0
- data/README.md +96 -0
- data/TODO +18 -0
- data/ext/extconf.rb +10 -0
- data/ext/header.c +440 -0
- data/ext/header.h +8 -0
- data/ext/image.c +639 -0
- data/ext/image.h +71 -0
- data/ext/image_arithmetic.c +940 -0
- data/ext/image_arithmetic.h +38 -0
- data/ext/image_boolean.c +302 -0
- data/ext/image_boolean.h +8 -0
- data/ext/image_colour.c +593 -0
- data/ext/image_colour.h +36 -0
- data/ext/image_conversion.c +863 -0
- data/ext/image_conversion.h +37 -0
- data/ext/image_convolution.c +371 -0
- data/ext/image_convolution.h +13 -0
- data/ext/image_freq_filt.c +742 -0
- data/ext/image_freq_filt.h +27 -0
- data/ext/image_histograms_lut.c +646 -0
- data/ext/image_histograms_lut.h +28 -0
- data/ext/image_morphology.c +330 -0
- data/ext/image_morphology.h +13 -0
- data/ext/image_mosaicing.c +556 -0
- data/ext/image_mosaicing.h +14 -0
- data/ext/image_relational.c +386 -0
- data/ext/image_relational.h +8 -0
- data/ext/image_resample.c +253 -0
- data/ext/image_resample.h +9 -0
- data/ext/interpolator.c +106 -0
- data/ext/interpolator.h +6 -0
- data/ext/mask.c +349 -0
- data/ext/mask.h +17 -0
- data/ext/reader.c +315 -0
- data/ext/ruby_vips.c +131 -0
- data/ext/ruby_vips.h +26 -0
- data/ext/writer.c +346 -0
- data/lib/vips.rb +7 -0
- data/lib/vips/reader.rb +183 -0
- data/lib/vips/version.rb +3 -0
- data/lib/vips/writer.rb +275 -0
- data/ruby-vips.gemspec +93 -0
- metadata +163 -0
@@ -0,0 +1,27 @@
|
|
1
|
+
VALUE img_fwfft(VALUE);
|
2
|
+
VALUE img_invfft(VALUE);
|
3
|
+
VALUE img_rotquad(VALUE);
|
4
|
+
VALUE img_invfftr(VALUE);
|
5
|
+
VALUE img_s_fmask_ideal_highpass(VALUE, VALUE, VALUE, VALUE);
|
6
|
+
VALUE img_s_fmask_ideal_lowpass(VALUE, VALUE, VALUE, VALUE);
|
7
|
+
VALUE img_s_fmask_butterworth_highpass(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
8
|
+
VALUE img_s_fmask_butterworth_lowpass(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
9
|
+
VALUE img_s_fmask_gauss_highpass(VALUE, VALUE, VALUE, VALUE, VALUE);
|
10
|
+
VALUE img_s_fmask_gauss_lowpass(VALUE, VALUE, VALUE, VALUE, VALUE);
|
11
|
+
VALUE img_s_fmask_ideal_ringpass(VALUE, VALUE, VALUE, VALUE, VALUE);
|
12
|
+
VALUE img_s_fmask_ideal_ringreject(VALUE, VALUE, VALUE, VALUE, VALUE);
|
13
|
+
VALUE img_s_fmask_butterworth_ringpass(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
14
|
+
VALUE img_s_fmask_butterworth_ringreject(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
15
|
+
VALUE img_s_fmask_gauss_ringpass(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
16
|
+
VALUE img_s_fmask_gauss_ringreject(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
17
|
+
VALUE img_s_fmask_ideal_bandpass(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
18
|
+
VALUE img_s_fmask_ideal_bandreject(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
19
|
+
VALUE img_s_fmask_butterworth_bandpass(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
20
|
+
VALUE img_s_fmask_butterworth_bandreject(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
21
|
+
VALUE img_s_fmask_gauss_bandpass(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
22
|
+
VALUE img_s_fmask_gauss_bandreject(VALUE, VALUE, VALUE, VALUE, VALUE, VALUE, VALUE);
|
23
|
+
VALUE img_s_fmask_fractal_flt(VALUE, VALUE, VALUE, VALUE);
|
24
|
+
VALUE img_freqflt(VALUE, VALUE);
|
25
|
+
VALUE img_disp_ps(VALUE);
|
26
|
+
VALUE img_phasecor_fft(VALUE, VALUE);
|
27
|
+
VALUE img_s_fractsurf(VALUE, VALUE, VALUE);
|
@@ -0,0 +1,646 @@
|
|
1
|
+
#include "ruby_vips.h"
|
2
|
+
#include "image.h"
|
3
|
+
#include "mask.h"
|
4
|
+
#include "image_histograms_lut.h"
|
5
|
+
|
6
|
+
/*
|
7
|
+
* call-seq:
|
8
|
+
* im.histgr([band]) -> image
|
9
|
+
*
|
10
|
+
* Find the histogram of *self*. If <i>band</i> is given, find the histogram
|
11
|
+
* for that band (producing a one-band histogram). If <i>band</i> is not given,
|
12
|
+
* find the histogram for all bands (producing an n-band histogram).
|
13
|
+
*
|
14
|
+
* *self* must be u8 or u16. The output image is always u32.
|
15
|
+
*/
|
16
|
+
|
17
|
+
VALUE
|
18
|
+
img_histgr(int argc, VALUE *argv, VALUE obj)
|
19
|
+
{
|
20
|
+
VALUE v_bandno;
|
21
|
+
int bandno;
|
22
|
+
GetImg(obj, data, im);
|
23
|
+
OutImg(obj, new, data_new, im_new);
|
24
|
+
|
25
|
+
rb_scan_args(argc, argv, "01", &v_bandno);
|
26
|
+
bandno = NIL_P(v_bandno) ? -1 : NUM2INT(v_bandno);
|
27
|
+
|
28
|
+
if (im_histgr(im, im_new, bandno))
|
29
|
+
vips_lib_error();
|
30
|
+
|
31
|
+
return new;
|
32
|
+
}
|
33
|
+
|
34
|
+
/*
|
35
|
+
* call-seq:
|
36
|
+
* im.histnd(bins) -> image
|
37
|
+
*
|
38
|
+
* Make a one, two or three dimensional histogram of a 1, 2 or 3 band image.
|
39
|
+
* Divide each axis into a certain number of bins .. ie. output is 1 x bins,
|
40
|
+
* bins x bins, or bins x bins x bins bands. uchar and ushort only.
|
41
|
+
*/
|
42
|
+
|
43
|
+
VALUE
|
44
|
+
img_histnd(VALUE obj, VALUE bins)
|
45
|
+
{
|
46
|
+
GetImg(obj, data, im);
|
47
|
+
OutImg(obj, new, data_new, im_new);
|
48
|
+
|
49
|
+
if (im_histnD(im, im_new, NUM2INT(bins)))
|
50
|
+
vips_lib_error();
|
51
|
+
|
52
|
+
return new;
|
53
|
+
}
|
54
|
+
|
55
|
+
/*
|
56
|
+
* call-seq:
|
57
|
+
* im.hist_indexed(other_image) -> image
|
58
|
+
*
|
59
|
+
* Make a histogram of <i>other_image</i>, but use *self* to pick the bins. In
|
60
|
+
* other words, element zero in the output image contains the sum of all the
|
61
|
+
* pixels in <i>other_image</i> whose corresponding pixel in *self* is zero.
|
62
|
+
*
|
63
|
+
* *self* must have just one band and be u8 or u16. <i>other_image</i> must be
|
64
|
+
* non-complex. The output image always has the same size and format as
|
65
|
+
* <i>other_image</i>.
|
66
|
+
*
|
67
|
+
* This operation is useful in conjunction with Image#label_regions. You can
|
68
|
+
* use it to find the centre of gravity of blobs in an image, for example.
|
69
|
+
*/
|
70
|
+
|
71
|
+
VALUE
|
72
|
+
img_hist_indexed(VALUE obj, VALUE obj2)
|
73
|
+
{
|
74
|
+
RUBY_VIPS_BINARY(im_hist_indexed);
|
75
|
+
}
|
76
|
+
|
77
|
+
/*
|
78
|
+
* call-seq:
|
79
|
+
* Image.identity(bands) -> image
|
80
|
+
*
|
81
|
+
* Creates a image file with Xsize=256, Ysize=1, Bands=<i>bands</i>,
|
82
|
+
* BandFmt= :UCHAR, Type=:HISTOGRAM.
|
83
|
+
*
|
84
|
+
* The created image consist of a <i>bands</i>-bands linear lut and is the
|
85
|
+
* basis for building up look-up tables.
|
86
|
+
*/
|
87
|
+
|
88
|
+
VALUE
|
89
|
+
img_s_identity(VALUE obj, VALUE bands)
|
90
|
+
{
|
91
|
+
OutPartial(new, data, im);
|
92
|
+
|
93
|
+
if (im_identity(im, NUM2INT(bands)))
|
94
|
+
vips_lib_error();
|
95
|
+
|
96
|
+
return new;
|
97
|
+
}
|
98
|
+
|
99
|
+
/*
|
100
|
+
* call-seq:
|
101
|
+
* Image.identity_ushort(size) -> image
|
102
|
+
*
|
103
|
+
* As Image.identity, but make a ushort LUT. ushort LUTs can be up to 65536
|
104
|
+
* elements - <i>size</i> is the number of elements required.
|
105
|
+
*
|
106
|
+
* The created image consist of a <i>bands</i>-bands linear lut and is the
|
107
|
+
* basis for building up look-up tables.
|
108
|
+
*/
|
109
|
+
|
110
|
+
VALUE
|
111
|
+
img_s_identity_ushort(VALUE obj, VALUE bands, VALUE sz)
|
112
|
+
{
|
113
|
+
OutPartial(new, data, im);
|
114
|
+
|
115
|
+
if (im_identity_ushort(im, NUM2INT(bands), NUM2INT(sz)))
|
116
|
+
vips_lib_error();
|
117
|
+
|
118
|
+
return new;
|
119
|
+
}
|
120
|
+
|
121
|
+
/*
|
122
|
+
* call-seq:
|
123
|
+
* Image.invertlut(input, lut_size) -> image
|
124
|
+
*
|
125
|
+
* Given a <i>input</i> of target values and real values, generate a LUT which
|
126
|
+
* will map reals to targets. Handy for linearising images from measurements of
|
127
|
+
* a colour chart. All values in [0,1]. Piecewise linear interpolation,
|
128
|
+
* extrapolate head and tail to 0 and 1.
|
129
|
+
*
|
130
|
+
* Eg. input like this:
|
131
|
+
*
|
132
|
+
* input = [
|
133
|
+
* [0.2, 0.2, 0.3, 0.1],
|
134
|
+
* [0.2, 0.4, 0.4, 0.2],
|
135
|
+
* [0.7, 0.5, 0.6, 0.3]
|
136
|
+
* ]
|
137
|
+
*
|
138
|
+
* Means a patch with 10% reflectance produces an image with 20% in channel 1,
|
139
|
+
* 30% in channel 2, and 10% in channel 3, and so on.
|
140
|
+
*
|
141
|
+
* Inputs don't need to be sorted (we do that). Generate any precision LUT,
|
142
|
+
* typically you might ask for 256 elements.
|
143
|
+
*
|
144
|
+
* It won't work too well for non-monotonic camera responses.
|
145
|
+
*
|
146
|
+
* <i>input</i> can be an array or a Mask object.
|
147
|
+
*/
|
148
|
+
|
149
|
+
VALUE
|
150
|
+
img_s_invertlut(VALUE obj, VALUE input, VALUE lut_size)
|
151
|
+
{
|
152
|
+
DOUBLEMASK *dmask;
|
153
|
+
OutPartial(new, data, im);
|
154
|
+
|
155
|
+
mask_arg2mask(input, NULL, &dmask);
|
156
|
+
|
157
|
+
if (im_invertlut(dmask, im, NUM2INT(lut_size)))
|
158
|
+
vips_lib_error();
|
159
|
+
|
160
|
+
return new;
|
161
|
+
}
|
162
|
+
|
163
|
+
/*
|
164
|
+
* call-seq:
|
165
|
+
* Image.buildlut(input) -> image
|
166
|
+
*
|
167
|
+
* This operation builds a lookup table from a set of points. Intermediate
|
168
|
+
* values are generated by piecewise linear interpolation.
|
169
|
+
*
|
170
|
+
* For example, consider this 2 x 2 matrix of (x, y) coordinates:
|
171
|
+
*
|
172
|
+
* input = [
|
173
|
+
* [ 0, 0],
|
174
|
+
* [255, 100]
|
175
|
+
* ]
|
176
|
+
* im = Image.invertlut(input)
|
177
|
+
*
|
178
|
+
* We then generate an image with the following pixel values:
|
179
|
+
*
|
180
|
+
* im[0, 0] # => 0
|
181
|
+
* im[0, 1] # => 0.4
|
182
|
+
* # ...
|
183
|
+
* im[0, 255] # => 100
|
184
|
+
*
|
185
|
+
* This is then written as the output image, with the left column giving the
|
186
|
+
* index in the image to place the value.
|
187
|
+
*
|
188
|
+
* The (x, y) points don't need to be sorted: we do that. You can have several
|
189
|
+
* Ys, each becomes a band in the output LUT. You don't need to start at zero,
|
190
|
+
* any integer will do, including negatives.
|
191
|
+
*/
|
192
|
+
|
193
|
+
VALUE
|
194
|
+
img_s_buildlut(VALUE obj, VALUE input)
|
195
|
+
{
|
196
|
+
DOUBLEMASK *dmask;
|
197
|
+
OutPartial(new, data, im);
|
198
|
+
|
199
|
+
mask_arg2mask(input, NULL, &dmask);
|
200
|
+
|
201
|
+
if (im_buildlut(dmask, im))
|
202
|
+
vips_lib_error();
|
203
|
+
|
204
|
+
return new;
|
205
|
+
}
|
206
|
+
|
207
|
+
/*
|
208
|
+
* call-seq:
|
209
|
+
* im.project -> image
|
210
|
+
*
|
211
|
+
* Find the horizontal and vertical projections of an image, ie. the sum
|
212
|
+
* of every row of pixels, and the sum of every column of pixels. The output
|
213
|
+
* format is uint, int or double, depending on the input format.
|
214
|
+
*
|
215
|
+
* Non-complex images only.
|
216
|
+
*/
|
217
|
+
|
218
|
+
VALUE
|
219
|
+
img_project(VALUE obj)
|
220
|
+
{
|
221
|
+
GetImg(obj, data, im);
|
222
|
+
OutImg(obj, new, data_new, im_new);
|
223
|
+
OutImg(obj, new2, data_new2, im_new2);
|
224
|
+
|
225
|
+
if (im_project(im, im_new, im_new2))
|
226
|
+
vips_lib_error();
|
227
|
+
|
228
|
+
return rb_ary_new3(2, new, new2);
|
229
|
+
}
|
230
|
+
|
231
|
+
/*
|
232
|
+
* call-seq:
|
233
|
+
* im.histnorm -> image
|
234
|
+
*
|
235
|
+
* Normalise histogram ... normalise range to make it square (ie. max ==
|
236
|
+
* number of elements). Normalise each band separately.
|
237
|
+
*/
|
238
|
+
|
239
|
+
VALUE
|
240
|
+
img_histnorm(VALUE obj)
|
241
|
+
{
|
242
|
+
RUBY_VIPS_UNARY(im_histnorm);
|
243
|
+
}
|
244
|
+
|
245
|
+
/*
|
246
|
+
* call-seq:
|
247
|
+
* im.histcum -> image
|
248
|
+
*
|
249
|
+
* Form cumulative histogram.
|
250
|
+
*/
|
251
|
+
|
252
|
+
VALUE
|
253
|
+
img_histcum(VALUE obj)
|
254
|
+
{
|
255
|
+
RUBY_VIPS_UNARY(im_histcum);
|
256
|
+
}
|
257
|
+
|
258
|
+
/*
|
259
|
+
* call-seq:
|
260
|
+
* im.histeq -> image
|
261
|
+
*
|
262
|
+
* Histogram equalisation: normalised cumulative histogram.
|
263
|
+
*/
|
264
|
+
|
265
|
+
VALUE
|
266
|
+
img_histeq(VALUE obj)
|
267
|
+
{
|
268
|
+
RUBY_VIPS_UNARY(im_histeq);
|
269
|
+
}
|
270
|
+
|
271
|
+
/*
|
272
|
+
* call-seq:
|
273
|
+
* im.histspec(other_image) -> image
|
274
|
+
*
|
275
|
+
* Creates a lut which, when applied to the image from which histogram *self*
|
276
|
+
* was formed, will produce an image whose PDF matches that of the image from
|
277
|
+
* which <i>other_image</i> was formed.
|
278
|
+
*/
|
279
|
+
|
280
|
+
VALUE
|
281
|
+
img_histspec(VALUE obj, VALUE obj2)
|
282
|
+
{
|
283
|
+
RUBY_VIPS_BINARY(im_histspec);
|
284
|
+
}
|
285
|
+
|
286
|
+
/*
|
287
|
+
* call-seq:
|
288
|
+
* im.maplut(lut) -> image
|
289
|
+
*
|
290
|
+
* Map an image through another image acting as a LUT (Look Up Table).
|
291
|
+
* The lut may have any type, and the output image will be that type.
|
292
|
+
*
|
293
|
+
* The input image will be cast to one of the unsigned integer types, that is,
|
294
|
+
* band format :UCHAR, :USHORT or :UINT.
|
295
|
+
*
|
296
|
+
* If <i>lut</i> is too small for the input type (for example, if *self* is
|
297
|
+
* band format :UCHAR but <i>lut</i> only has 100 elements), the lut is padded
|
298
|
+
* out by copying the last element. Overflows are reported at the end of
|
299
|
+
* computation.
|
300
|
+
*
|
301
|
+
* If <i>lut</i> is too large, extra values are ignored.
|
302
|
+
*
|
303
|
+
* If <i>lut</i> has one band, then all bands of *self* pass through it. If
|
304
|
+
* <i>lut</i> has same number of bands as *self*, then each band is mapped
|
305
|
+
* separately. If *self* has one band, then @lut may have many bands and the
|
306
|
+
* output will have the same number of bands as <i>lut</i>.
|
307
|
+
*/
|
308
|
+
|
309
|
+
VALUE
|
310
|
+
img_maplut(VALUE obj, VALUE obj2)
|
311
|
+
{
|
312
|
+
GetImg(obj, data, im);
|
313
|
+
GetImg(obj2, data2, im2);
|
314
|
+
OutImg2(obj, obj2, new, data_new, im_new);
|
315
|
+
|
316
|
+
if (im_maplut(im, im_new, im2))
|
317
|
+
vips_lib_error();
|
318
|
+
|
319
|
+
return new;
|
320
|
+
}
|
321
|
+
|
322
|
+
/*
|
323
|
+
* call-seq:
|
324
|
+
* im.histplot -> image
|
325
|
+
*
|
326
|
+
* Plot a 1 by any or any by 1 image as a max by any or any by max image using
|
327
|
+
* these rules:
|
328
|
+
*
|
329
|
+
* * unsigned char max is always 256
|
330
|
+
* * other unsigned integer types output 0 - maxium value of *self*.
|
331
|
+
* * signed int types - min moved to 0, max moved to max + min.
|
332
|
+
* * float types - min moved to 0, max moved to any (square output).
|
333
|
+
*/
|
334
|
+
|
335
|
+
VALUE
|
336
|
+
img_histplot(VALUE obj)
|
337
|
+
{
|
338
|
+
RUBY_VIPS_UNARY(im_histplot);
|
339
|
+
}
|
340
|
+
|
341
|
+
/*
|
342
|
+
* call-seq:
|
343
|
+
* im.monotonic? -> true or false
|
344
|
+
*
|
345
|
+
* Test *self* for monotonicity. Returns true if *self* is monotonic.
|
346
|
+
*/
|
347
|
+
|
348
|
+
VALUE
|
349
|
+
img_monotonic_p(VALUE obj)
|
350
|
+
{
|
351
|
+
int ret;
|
352
|
+
GetImg(obj, data, im);
|
353
|
+
|
354
|
+
if( im_ismonotonic(im, &ret) )
|
355
|
+
vips_lib_error();
|
356
|
+
|
357
|
+
return( ret == 0 ? Qtrue : Qfalse );
|
358
|
+
}
|
359
|
+
|
360
|
+
/*
|
361
|
+
* call-seq:
|
362
|
+
* im.hist([band])
|
363
|
+
*
|
364
|
+
* Find and plot the histogram of *self*. If <i>band</i> is not given, plot all
|
365
|
+
* bands. Otherwise plot the specified band.
|
366
|
+
*/
|
367
|
+
|
368
|
+
VALUE
|
369
|
+
img_hist(int argc, VALUE *argv, VALUE obj)
|
370
|
+
{
|
371
|
+
VALUE v_bandno;
|
372
|
+
int bandno;
|
373
|
+
GetImg(obj, data, im);
|
374
|
+
OutImg(obj, new, data_new, im_new);
|
375
|
+
|
376
|
+
rb_scan_args(argc, argv, "01", &v_bandno);
|
377
|
+
bandno = NIL_P(v_bandno) ? -1 : NUM2INT(v_bandno);
|
378
|
+
|
379
|
+
if (im_hist(im, im_new, bandno))
|
380
|
+
vips_lib_error();
|
381
|
+
|
382
|
+
return new;
|
383
|
+
}
|
384
|
+
|
385
|
+
/*
|
386
|
+
* call-seq:
|
387
|
+
* im.hsp(other_image) -> image
|
388
|
+
*
|
389
|
+
* Maps *self* to the output image,, adjusting the histogram to match image
|
390
|
+
* <i>other_image</i>.
|
391
|
+
*
|
392
|
+
* Both images should have the same number of bands.
|
393
|
+
*/
|
394
|
+
|
395
|
+
VALUE
|
396
|
+
img_hsp(VALUE obj, VALUE obj2)
|
397
|
+
{
|
398
|
+
RUBY_VIPS_BINARY(im_hsp);
|
399
|
+
}
|
400
|
+
|
401
|
+
/*
|
402
|
+
* call-seq:
|
403
|
+
* im.gammacorrect(exponent) -> image
|
404
|
+
*
|
405
|
+
* Gamma-correct an 8- or 16-bit unsigned image with a lookup table. The
|
406
|
+
* output format is the same as the input format.
|
407
|
+
*/
|
408
|
+
|
409
|
+
VALUE
|
410
|
+
img_gammacorrect(VALUE obj, VALUE exponent)
|
411
|
+
{
|
412
|
+
GetImg(obj, data, im);
|
413
|
+
OutImg(obj, new, data_new, im_new);
|
414
|
+
|
415
|
+
if (im_gammacorrect(im, im_new, NUM2DBL(exponent)))
|
416
|
+
vips_lib_error();
|
417
|
+
|
418
|
+
return new;
|
419
|
+
}
|
420
|
+
|
421
|
+
/*
|
422
|
+
* call-seq:
|
423
|
+
* im.mpercent_hist(percent) -> number
|
424
|
+
*
|
425
|
+
* Just like Image#mpercent, except it works on an image histogram. Handy if
|
426
|
+
* you want to run Image#mpercent several times without having to recompute the
|
427
|
+
* histogram each time.
|
428
|
+
*/
|
429
|
+
|
430
|
+
VALUE
|
431
|
+
img_mpercent_hist(VALUE obj, VALUE percent)
|
432
|
+
{
|
433
|
+
#if IM_MAJOR_VERSION > 7 || IM_MINOR_VERSION >= 22
|
434
|
+
int ret;
|
435
|
+
GetImg(obj, data, im);
|
436
|
+
|
437
|
+
if (im_mpercent_hist(im, NUM2DBL(percent), &ret))
|
438
|
+
vips_lib_error();
|
439
|
+
|
440
|
+
return INT2NUM(ret);
|
441
|
+
#else
|
442
|
+
rb_raise(eVIPSError, "This operation is not supported by your version of VIPS");
|
443
|
+
#endif
|
444
|
+
}
|
445
|
+
|
446
|
+
/*
|
447
|
+
* call-seq:
|
448
|
+
* im.mpercent(percent) -> number
|
449
|
+
*
|
450
|
+
* Returns the threshold above which there are <i>percent</i> values of *self*.
|
451
|
+
* If for example percent=.1, the number of pels of the input image with values
|
452
|
+
* greater than the returned int will correspond to 10% of all pels of the
|
453
|
+
* image.
|
454
|
+
*
|
455
|
+
* The function works for uchar and ushort images only. It can be used to
|
456
|
+
* threshold the scaled result of a filtering operation.
|
457
|
+
*/
|
458
|
+
|
459
|
+
VALUE
|
460
|
+
img_mpercent(VALUE obj, VALUE percent)
|
461
|
+
{
|
462
|
+
int ret;
|
463
|
+
GetImg(obj, data, im);
|
464
|
+
|
465
|
+
if (im_mpercent(im, NUM2DBL(percent), &ret))
|
466
|
+
vips_lib_error();
|
467
|
+
|
468
|
+
return INT2NUM(ret);
|
469
|
+
}
|
470
|
+
|
471
|
+
/*
|
472
|
+
* call-seq:
|
473
|
+
* im.heq([band]) -> image
|
474
|
+
*
|
475
|
+
* Histogram-equalise *self*. Equalise using band <i>band</i>, or if not given,
|
476
|
+
* equalise all bands.
|
477
|
+
*/
|
478
|
+
|
479
|
+
VALUE
|
480
|
+
img_heq(int argc, VALUE *argv, VALUE obj)
|
481
|
+
{
|
482
|
+
VALUE v_bandno;
|
483
|
+
int bandno;
|
484
|
+
GetImg(obj, data, im);
|
485
|
+
OutImg(obj, new, data_new, im_new);
|
486
|
+
|
487
|
+
rb_scan_args(argc, argv, "01", &v_bandno);
|
488
|
+
bandno = NIL_P(v_bandno) ? -1 : NUM2INT(v_bandno);
|
489
|
+
|
490
|
+
if (im_heq(im, im_new, bandno))
|
491
|
+
vips_lib_error();
|
492
|
+
|
493
|
+
return new;
|
494
|
+
}
|
495
|
+
|
496
|
+
/*
|
497
|
+
* call-seq:
|
498
|
+
* im.lhisteq(xwin, ywin) -> image
|
499
|
+
*
|
500
|
+
* Performs local histogram equalisation on *self* using a window of size
|
501
|
+
* <i>xwin</i> by <i>ywin</i> centered on the input pixel. Works only on
|
502
|
+
* monochrome images.
|
503
|
+
*
|
504
|
+
* The output image is the same size as the input image. The edge pixels are
|
505
|
+
* created by copy edge pixels of the input image outwards.
|
506
|
+
*/
|
507
|
+
|
508
|
+
VALUE
|
509
|
+
img_lhisteq(VALUE obj, VALUE xwin, VALUE ywin)
|
510
|
+
{
|
511
|
+
GetImg(obj, data, im);
|
512
|
+
OutImg(obj, new, data_new, im_new);
|
513
|
+
|
514
|
+
if (im_lhisteq(im, im_new, NUM2INT(xwin), NUM2INT(ywin)))
|
515
|
+
vips_lib_error();
|
516
|
+
|
517
|
+
return new;
|
518
|
+
}
|
519
|
+
|
520
|
+
/*
|
521
|
+
* call-seq:
|
522
|
+
* im.stdif(a, m0, b, s, xwin, ywin) -> image
|
523
|
+
*
|
524
|
+
* Preforms statistical differencing according to the formula given in page 45
|
525
|
+
* of the book "An Introduction to Digital Image Processing" by Wayne Niblack.
|
526
|
+
* This transformation emphasises the way in which a pel differs statistically
|
527
|
+
* from its neighbours. It is useful for enhancing low-contrast images with
|
528
|
+
* lots of detail, such as X-ray plates.
|
529
|
+
*
|
530
|
+
* At point (i,j) the output is given by the equation:
|
531
|
+
*
|
532
|
+
* vout(i,j) = a * m0 + (1 - a) * meanv +
|
533
|
+
* (vin(i,j) - meanv) * (b * s0) / (s0 + b * stdv)
|
534
|
+
*
|
535
|
+
* Values <i>a</i>, <i>m0</i>, <i>b</i> and <i>s0</i> are entered, while meanv
|
536
|
+
* and stdv are the values calculated over a moving window of size <i>xwin</i>,
|
537
|
+
* <i>ywin</i> centred on pixel (i,j).
|
538
|
+
*
|
539
|
+
* <i>m0</i> is the new mean, <i>a</i> is the weight given to it. <i>s0</i> is
|
540
|
+
* the new standard deviation, <i>b</i> is the weight given to it.
|
541
|
+
*
|
542
|
+
* Try:
|
543
|
+
*
|
544
|
+
* im.stdif(0.5, 128, 0.5, 50, 11, 11)
|
545
|
+
*
|
546
|
+
* The operation works on one-band uchar images only, and writes a one-band
|
547
|
+
* uchar image as its result. The output image has the same size as the
|
548
|
+
* input.
|
549
|
+
*/
|
550
|
+
|
551
|
+
VALUE
|
552
|
+
img_stdif(VALUE obj,
|
553
|
+
VALUE a, VALUE m0, VALUE b, VALUE s0, VALUE xwin, VALUE ywin)
|
554
|
+
{
|
555
|
+
GetImg(obj, data, im);
|
556
|
+
OutImg(obj, new, data_new, im_new);
|
557
|
+
|
558
|
+
if (im_stdif(im, im_new,
|
559
|
+
NUM2DBL(a), NUM2DBL(m0), NUM2DBL(b), NUM2DBL(s0),
|
560
|
+
NUM2INT(xwin), NUM2INT(ywin)))
|
561
|
+
vips_lib_error();
|
562
|
+
|
563
|
+
return new;
|
564
|
+
}
|
565
|
+
|
566
|
+
/*
|
567
|
+
* call-seq:
|
568
|
+
* Image.tone_build_range(in_max, out_max, lb, lw, ps, pm, ph, s, m, h) -> image
|
569
|
+
*
|
570
|
+
* Generates a tone curve for the adjustment of image levels. It is mostly
|
571
|
+
* designed for adjusting the L* part of a LAB image in way suitable for print
|
572
|
+
* work, but you can use it for other things too.
|
573
|
+
*
|
574
|
+
* The curve is an unsigned 16-bit image with (<i>in_max</i> + 1) entries, each
|
575
|
+
* in the range [0, <i>out_max</i>].
|
576
|
+
*
|
577
|
+
* <i>lb</i>, <i>lw</i> are expressed as 0-100, as in LAB colour space. You
|
578
|
+
* specify the scaling for the input and output images with the <i>in_max</i>
|
579
|
+
* and <i>out_max</i> parameters.
|
580
|
+
*/
|
581
|
+
|
582
|
+
VALUE
|
583
|
+
img_s_tone_build_range(VALUE obj,
|
584
|
+
VALUE in_max, VALUE out_max,
|
585
|
+
VALUE lb, VALUE lw, VALUE ps, VALUE pm, VALUE ph, VALUE s, VALUE m, VALUE h)
|
586
|
+
{
|
587
|
+
OutPartial(new, data, im);
|
588
|
+
|
589
|
+
if (im_tone_build_range(im,
|
590
|
+
NUM2DBL(in_max), NUM2DBL(out_max),
|
591
|
+
NUM2DBL(lb), NUM2DBL(lw), NUM2DBL(ps), NUM2DBL(pm), NUM2DBL(ph),
|
592
|
+
NUM2DBL(s), NUM2DBL(m), NUM2DBL(h)))
|
593
|
+
vips_lib_error();
|
594
|
+
|
595
|
+
return new;
|
596
|
+
}
|
597
|
+
|
598
|
+
/*
|
599
|
+
* call-seq:
|
600
|
+
* Image.tone_build(lb, lw, ps, pm, ph, s, m, h) -> image
|
601
|
+
*
|
602
|
+
* As Image#tone_build_range, but set 32767 and 32767 as values for
|
603
|
+
* <i>in_max</i> and <i>out_max</i>. This makes a curve suitable for correcting
|
604
|
+
* LABS images, the most common case.
|
605
|
+
*/
|
606
|
+
|
607
|
+
VALUE
|
608
|
+
img_s_tone_build(VALUE obj,
|
609
|
+
VALUE lb, VALUE lw, VALUE ps, VALUE pm, VALUE ph, VALUE s, VALUE m, VALUE h)
|
610
|
+
{
|
611
|
+
OutPartial(new, data, im);
|
612
|
+
|
613
|
+
if (im_tone_build(im,
|
614
|
+
NUM2DBL(lb), NUM2DBL(lw), NUM2DBL(ps), NUM2DBL(pm), NUM2DBL(ph),
|
615
|
+
NUM2DBL(s), NUM2DBL(m), NUM2DBL(h)))
|
616
|
+
vips_lib_error();
|
617
|
+
|
618
|
+
return new;
|
619
|
+
}
|
620
|
+
|
621
|
+
/*
|
622
|
+
* call-seq:
|
623
|
+
* im.tone_analyze(ps, pm, ph, s, m, h) -> image
|
624
|
+
*
|
625
|
+
* As Image#tone_build, but analyse the histogram of *self* and use it to pick
|
626
|
+
* the 0.1% and 99.9% points for <i>lb</i> and <i>lw</i>.
|
627
|
+
*/
|
628
|
+
|
629
|
+
VALUE
|
630
|
+
img_tone_analyze(VALUE obj,
|
631
|
+
VALUE ps, VALUE pm, VALUE ph, VALUE s, VALUE m, VALUE h)
|
632
|
+
{
|
633
|
+
#if IM_MAJOR_VERSION > 7 || IM_MINOR_VERSION >= 23
|
634
|
+
GetImg(obj, data, im);
|
635
|
+
OutImg(obj, new, data_new, im_new);
|
636
|
+
|
637
|
+
if (im_tone_analyze(im, im_new,
|
638
|
+
NUM2DBL(ps), NUM2DBL(pm), NUM2DBL(ph),
|
639
|
+
NUM2DBL(s), NUM2DBL(m), NUM2DBL(h)) )
|
640
|
+
vips_lib_error();
|
641
|
+
|
642
|
+
return new;
|
643
|
+
#else
|
644
|
+
rb_raise(eVIPSError, "This operation is not supported by your version of VIPS");
|
645
|
+
#endif
|
646
|
+
}
|