ruby-opencv 0.0.8.pre

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (230) hide show
  1. data/Gemfile +8 -0
  2. data/History.txt +5 -0
  3. data/License.txt +30 -0
  4. data/Manifest.txt +229 -0
  5. data/README.rdoc +149 -0
  6. data/Rakefile +32 -0
  7. data/examples/alpha_blend.rb +21 -0
  8. data/examples/box.png +0 -0
  9. data/examples/box_in_scene.png +0 -0
  10. data/examples/contours/bitmap-contours-with-labels.png +0 -0
  11. data/examples/contours/bitmap-contours.png +0 -0
  12. data/examples/contours/bounding-box-detect-canny.rb +62 -0
  13. data/examples/contours/contour_retrieval_modes.rb +139 -0
  14. data/examples/contours/rotated-boxes-with-detected-bounding-rectangles.jpg +0 -0
  15. data/examples/contours/rotated-boxes.jpg +0 -0
  16. data/examples/convexhull.rb +47 -0
  17. data/examples/face_detect.rb +20 -0
  18. data/examples/find_obj.rb +169 -0
  19. data/examples/houghcircle.rb +22 -0
  20. data/examples/inpaint.png +0 -0
  21. data/examples/inpaint.rb +57 -0
  22. data/examples/lenna-rotated.jpg +0 -0
  23. data/examples/lenna.jpg +0 -0
  24. data/examples/match_kdtree.rb +88 -0
  25. data/examples/matching_to_many_images.rb +16 -0
  26. data/examples/matching_to_many_images/query.png +0 -0
  27. data/examples/matching_to_many_images/train/1.png +0 -0
  28. data/examples/matching_to_many_images/train/2.png +0 -0
  29. data/examples/matching_to_many_images/train/3.png +0 -0
  30. data/examples/matching_to_many_images/train/trainImages.txt +3 -0
  31. data/examples/paint.rb +70 -0
  32. data/examples/snake.rb +43 -0
  33. data/examples/stuff.jpg +0 -0
  34. data/examples/tiffany.jpg +0 -0
  35. data/ext/opencv/GPATH +0 -0
  36. data/ext/opencv/GSYMS +0 -0
  37. data/ext/opencv/curve.cpp +112 -0
  38. data/ext/opencv/curve.h +34 -0
  39. data/ext/opencv/cvavgcomp.cpp +67 -0
  40. data/ext/opencv/cvavgcomp.h +39 -0
  41. data/ext/opencv/cvbox2d.cpp +197 -0
  42. data/ext/opencv/cvbox2d.h +61 -0
  43. data/ext/opencv/cvcapture.cpp +499 -0
  44. data/ext/opencv/cvcapture.h +72 -0
  45. data/ext/opencv/cvchain.cpp +233 -0
  46. data/ext/opencv/cvchain.h +46 -0
  47. data/ext/opencv/cvcircle32f.cpp +116 -0
  48. data/ext/opencv/cvcircle32f.h +52 -0
  49. data/ext/opencv/cvcondensation.cpp +282 -0
  50. data/ext/opencv/cvcondensation.h +49 -0
  51. data/ext/opencv/cvconnectedcomp.cpp +143 -0
  52. data/ext/opencv/cvconnectedcomp.h +49 -0
  53. data/ext/opencv/cvcontour.cpp +296 -0
  54. data/ext/opencv/cvcontour.h +48 -0
  55. data/ext/opencv/cvcontourtree.cpp +91 -0
  56. data/ext/opencv/cvcontourtree.h +41 -0
  57. data/ext/opencv/cvconvexitydefect.cpp +103 -0
  58. data/ext/opencv/cvconvexitydefect.h +42 -0
  59. data/ext/opencv/cverror.cpp +159 -0
  60. data/ext/opencv/cverror.h +28 -0
  61. data/ext/opencv/cvfeaturetree.cpp +125 -0
  62. data/ext/opencv/cvfeaturetree.h +55 -0
  63. data/ext/opencv/cvfont.cpp +208 -0
  64. data/ext/opencv/cvfont.h +64 -0
  65. data/ext/opencv/cvhaarclassifiercascade.cpp +168 -0
  66. data/ext/opencv/cvhaarclassifiercascade.h +39 -0
  67. data/ext/opencv/cvhistogram.cpp +546 -0
  68. data/ext/opencv/cvhistogram.h +73 -0
  69. data/ext/opencv/cvhumoments.cpp +139 -0
  70. data/ext/opencv/cvhumoments.h +51 -0
  71. data/ext/opencv/cvline.cpp +154 -0
  72. data/ext/opencv/cvline.h +54 -0
  73. data/ext/opencv/cvmat.cpp +5848 -0
  74. data/ext/opencv/cvmat.h +284 -0
  75. data/ext/opencv/cvmatnd.cpp +44 -0
  76. data/ext/opencv/cvmatnd.h +28 -0
  77. data/ext/opencv/cvmemstorage.cpp +68 -0
  78. data/ext/opencv/cvmemstorage.h +53 -0
  79. data/ext/opencv/cvmoments.cpp +287 -0
  80. data/ext/opencv/cvmoments.h +75 -0
  81. data/ext/opencv/cvpoint.cpp +228 -0
  82. data/ext/opencv/cvpoint.h +64 -0
  83. data/ext/opencv/cvpoint2d32f.cpp +211 -0
  84. data/ext/opencv/cvpoint2d32f.h +63 -0
  85. data/ext/opencv/cvpoint3d32f.cpp +245 -0
  86. data/ext/opencv/cvpoint3d32f.h +66 -0
  87. data/ext/opencv/cvrect.cpp +333 -0
  88. data/ext/opencv/cvrect.h +79 -0
  89. data/ext/opencv/cvscalar.cpp +236 -0
  90. data/ext/opencv/cvscalar.h +71 -0
  91. data/ext/opencv/cvseq.cpp +599 -0
  92. data/ext/opencv/cvseq.h +74 -0
  93. data/ext/opencv/cvsize.cpp +221 -0
  94. data/ext/opencv/cvsize.h +65 -0
  95. data/ext/opencv/cvsize2d32f.cpp +209 -0
  96. data/ext/opencv/cvsize2d32f.h +64 -0
  97. data/ext/opencv/cvslice.cpp +120 -0
  98. data/ext/opencv/cvslice.h +61 -0
  99. data/ext/opencv/cvsparsemat.cpp +44 -0
  100. data/ext/opencv/cvsparsemat.h +28 -0
  101. data/ext/opencv/cvsurfparams.cpp +199 -0
  102. data/ext/opencv/cvsurfparams.h +58 -0
  103. data/ext/opencv/cvsurfpoint.cpp +223 -0
  104. data/ext/opencv/cvsurfpoint.h +52 -0
  105. data/ext/opencv/cvtermcriteria.cpp +192 -0
  106. data/ext/opencv/cvtermcriteria.h +71 -0
  107. data/ext/opencv/cvtwopoints.cpp +116 -0
  108. data/ext/opencv/cvtwopoints.h +51 -0
  109. data/ext/opencv/cvutils.cpp +194 -0
  110. data/ext/opencv/cvutils.h +29 -0
  111. data/ext/opencv/cvvideowriter.cpp +137 -0
  112. data/ext/opencv/cvvideowriter.h +43 -0
  113. data/ext/opencv/gui.cpp +68 -0
  114. data/ext/opencv/gui.h +30 -0
  115. data/ext/opencv/iplconvkernel.cpp +192 -0
  116. data/ext/opencv/iplconvkernel.h +71 -0
  117. data/ext/opencv/iplimage.cpp +644 -0
  118. data/ext/opencv/iplimage.h +73 -0
  119. data/ext/opencv/lib/opencv.rb +3 -0
  120. data/ext/opencv/lib/opencv/psyched_yaml.rb +22 -0
  121. data/ext/opencv/lib/opencv/version.rb +3 -0
  122. data/ext/opencv/mouseevent.cpp +181 -0
  123. data/ext/opencv/mouseevent.h +56 -0
  124. data/ext/opencv/opencv.cpp +722 -0
  125. data/ext/opencv/opencv.h +400 -0
  126. data/ext/opencv/pointset.cpp +274 -0
  127. data/ext/opencv/pointset.h +68 -0
  128. data/ext/opencv/trackbar.cpp +121 -0
  129. data/ext/opencv/trackbar.h +69 -0
  130. data/ext/opencv/window.cpp +357 -0
  131. data/ext/opencv/window.h +66 -0
  132. data/extconf.rb +75 -0
  133. data/images/CvMat_sobel.png +0 -0
  134. data/images/CvMat_sub_rect.png +0 -0
  135. data/images/CvSeq_relationmap.png +0 -0
  136. data/images/face_detect_from_lena.jpg +0 -0
  137. data/ruby-opencv.gemspec +43 -0
  138. data/test/helper.rb +166 -0
  139. data/test/log.txt +55 -0
  140. data/test/runner.rb +30 -0
  141. data/test/samples/airplane.jpg +0 -0
  142. data/test/samples/baboon.jpg +0 -0
  143. data/test/samples/baboon200.jpg +0 -0
  144. data/test/samples/baboon200_rotated.jpg +0 -0
  145. data/test/samples/blank0.jpg +0 -0
  146. data/test/samples/blank1.jpg +0 -0
  147. data/test/samples/blank2.jpg +0 -0
  148. data/test/samples/blank3.jpg +0 -0
  149. data/test/samples/blank4.jpg +0 -0
  150. data/test/samples/blank5.jpg +0 -0
  151. data/test/samples/blank6.jpg +0 -0
  152. data/test/samples/blank7.jpg +0 -0
  153. data/test/samples/blank8.jpg +0 -0
  154. data/test/samples/blank9.jpg +0 -0
  155. data/test/samples/cat.jpg +0 -0
  156. data/test/samples/chessboard.jpg +0 -0
  157. data/test/samples/contours.jpg +0 -0
  158. data/test/samples/fruits.jpg +0 -0
  159. data/test/samples/haarcascade_frontalface_alt.xml.gz +0 -0
  160. data/test/samples/inpaint-mask.bmp +0 -0
  161. data/test/samples/lena-256x256.jpg +0 -0
  162. data/test/samples/lena-32x32.jpg +0 -0
  163. data/test/samples/lena-eyes.jpg +0 -0
  164. data/test/samples/lena-inpaint.jpg +0 -0
  165. data/test/samples/lena.jpg +0 -0
  166. data/test/samples/lines.jpg +0 -0
  167. data/test/samples/messy0.jpg +0 -0
  168. data/test/samples/messy1.jpg +0 -0
  169. data/test/samples/movie_sample.avi +0 -0
  170. data/test/samples/one_way_train_0000.jpg +0 -0
  171. data/test/samples/one_way_train_0001.jpg +0 -0
  172. data/test/samples/partially_blank0.jpg +0 -0
  173. data/test/samples/partially_blank1.jpg +0 -0
  174. data/test/samples/smooth0.jpg +0 -0
  175. data/test/samples/smooth1.jpg +0 -0
  176. data/test/samples/smooth2.jpg +0 -0
  177. data/test/samples/smooth3.jpg +0 -0
  178. data/test/samples/smooth4.jpg +0 -0
  179. data/test/samples/smooth5.jpg +0 -0
  180. data/test/samples/smooth6.jpg +0 -0
  181. data/test/samples/str-cv-rotated.jpg +0 -0
  182. data/test/samples/str-cv.jpg +0 -0
  183. data/test/samples/str-ov.jpg +0 -0
  184. data/test/samples/stuff.jpg +0 -0
  185. data/test/test_curve.rb +43 -0
  186. data/test/test_cvavgcomp.rb +24 -0
  187. data/test/test_cvbox2d.rb +76 -0
  188. data/test/test_cvcapture.rb +183 -0
  189. data/test/test_cvchain.rb +108 -0
  190. data/test/test_cvcircle32f.rb +41 -0
  191. data/test/test_cvconnectedcomp.rb +61 -0
  192. data/test/test_cvcontour.rb +150 -0
  193. data/test/test_cvcontourtree.rb +43 -0
  194. data/test/test_cverror.rb +50 -0
  195. data/test/test_cvfeaturetree.rb +65 -0
  196. data/test/test_cvfont.rb +58 -0
  197. data/test/test_cvhaarclassifiercascade.rb +63 -0
  198. data/test/test_cvhistogram.rb +271 -0
  199. data/test/test_cvhumoments.rb +83 -0
  200. data/test/test_cvline.rb +50 -0
  201. data/test/test_cvmat.rb +2947 -0
  202. data/test/test_cvmat_drawing.rb +349 -0
  203. data/test/test_cvmat_dxt.rb +150 -0
  204. data/test/test_cvmat_imageprocessing.rb +2025 -0
  205. data/test/test_cvmat_matching.rb +57 -0
  206. data/test/test_cvmoments.rb +180 -0
  207. data/test/test_cvpoint.rb +75 -0
  208. data/test/test_cvpoint2d32f.rb +75 -0
  209. data/test/test_cvpoint3d32f.rb +93 -0
  210. data/test/test_cvrect.rb +144 -0
  211. data/test/test_cvscalar.rb +113 -0
  212. data/test/test_cvseq.rb +295 -0
  213. data/test/test_cvsize.rb +75 -0
  214. data/test/test_cvsize2d32f.rb +75 -0
  215. data/test/test_cvslice.rb +31 -0
  216. data/test/test_cvsurfparams.rb +57 -0
  217. data/test/test_cvsurfpoint.rb +66 -0
  218. data/test/test_cvtermcriteria.rb +56 -0
  219. data/test/test_cvtwopoints.rb +40 -0
  220. data/test/test_cvvideowriter.rb +58 -0
  221. data/test/test_iplconvkernel.rb +54 -0
  222. data/test/test_iplimage.rb +236 -0
  223. data/test/test_mouseevent.rb +17 -0
  224. data/test/test_opencv.rb +324 -0
  225. data/test/test_pointset.rb +126 -0
  226. data/test/test_preliminary.rb +130 -0
  227. data/test/test_trackbar.rb +47 -0
  228. data/test/test_window.rb +115 -0
  229. data/test/videowriter_result.avi +0 -0
  230. metadata +394 -0
@@ -0,0 +1,21 @@
1
+ #!/usr/bin/env ruby
2
+ # -*- mode: ruby; coding: utf-8-unix -*-
3
+
4
+ # Alpha blending sample with GUI
5
+
6
+ require 'opencv'
7
+ include OpenCV
8
+
9
+ img1 = IplImage.load('lenna.jpg', CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
10
+ img2 = IplImage.load('tiffany.jpg', CV_LOAD_IMAGE_ANYCOLOR | CV_LOAD_IMAGE_ANYDEPTH)
11
+
12
+ window = GUI::Window.new('Alpha blend')
13
+ max = 100.0
14
+ val = max / 2.0
15
+ window.set_trackbar("Alpha", max, val) { |v|
16
+ a = v.to_f / max
17
+ window.show CvMat.add_weighted(img1, a, img2, 1.0 - a, 0)
18
+ }
19
+ window.show CvMat.add_weighted(img1, val / max, img2, 1.0 - val / max, 0)
20
+ GUI::wait_key
21
+
data/examples/box.png ADDED
Binary file
Binary file
@@ -0,0 +1,62 @@
1
+ #!/usr/bin/env ruby
2
+ #
3
+ # Detects contours in an image and
4
+ # their boundingboxes
5
+ #
6
+ require "opencv"
7
+
8
+ # Load image
9
+ cvmat = OpenCV::CvMat.load("rotated-boxes.jpg")
10
+
11
+ # The "canny" edge-detector does only work with grayscale images
12
+ # so to be sure, convert the image
13
+ # otherwise you will get an OpenCV::CvStsAssert exception.
14
+ cvmat = cvmat.BGR2GRAY
15
+
16
+ # Use the "canny" edge detection algorithm (http://en.wikipedia.org/wiki/Canny_edge_detector)
17
+ # Parameters are two colors that are then used to determine possible corners
18
+ canny = cvmat.canny(50, 150)
19
+
20
+ # Look for contours
21
+ # We want them to be returned as a flat list (CV_RETR_LIST) and simplified (CV_CHAIN_APPROX_SIMPLE)
22
+ # Both are the defaults but included here for clarity
23
+ contour = canny.find_contours(:mode => OpenCV::CV_RETR_LIST, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
24
+
25
+ # The Canny Algorithm returns two matches for every contour (see O'Reilly: Learning OpenCV Page 235)
26
+ # We need only the external edges so we ignore holes.
27
+ # When there are no more contours, contours.h_next will return nil
28
+ while contour
29
+ # No "holes" please (aka. internal contours)
30
+ unless contour.hole?
31
+
32
+ puts '-' * 80
33
+ puts "BOUNDING RECT FOUND"
34
+ puts '-' * 80
35
+
36
+ # You can detect the "bounding rectangle" which is always oriented horizontally and vertically
37
+ box = contour.bounding_rect
38
+ puts "found external contour with bounding rectangle from #{box.top_left.x},#{box.top_left.y} to #{box.bottom_right.x},#{box.bottom_right.y}"
39
+
40
+ # The contour area can be computed:
41
+ puts "that contour encloses an area of #{contour.contour_area} square pixels"
42
+
43
+ # .. as can be the length of the contour
44
+ puts "that contour is #{contour.arc_length} pixels long "
45
+
46
+ # Draw that bounding rectangle
47
+ cvmat.rectangle! box.top_left, box.bottom_right, :color => OpenCV::CvColor::Black
48
+
49
+ # You can also detect the "minimal rectangle" which has an angle, width, height and center coordinates
50
+ # and is not neccessarily horizonally or vertically aligned.
51
+ # The corner of the rectangle with the lowest y and x position is the anchor (see image here: http://bit.ly/lT1XvB)
52
+ # The zero angle position is always straight up.
53
+ # Positive angle values are clockwise and negative values counter clockwise (so -60 means 60 degree counter clockwise)
54
+ box = contour.min_area_rect2
55
+ puts "found minimal rectangle with its center at (#{box.center.x.round},#{box.center.y.round}), width of #{box.size.width.round}px, height of #{box.size.height.round} and an angle of #{box.angle.round} degree"
56
+ end
57
+ contour = contour.h_next
58
+ end
59
+
60
+ # And save the image
61
+ puts "\nSaving image with bounding rectangles"
62
+ cvmat.save_image("rotated-boxes-with-detected-bounding-rectangles.jpg")
@@ -0,0 +1,139 @@
1
+ #!/usr/bin/env ruby
2
+ #
3
+ # This file shows the different retrieval modes for contour detection
4
+ #
5
+ require "opencv"
6
+
7
+ # Load image
8
+ # The structure of the image is "explained" in bitmap-contours-with-labels.png
9
+ cvmat = OpenCV::CvMat.load("bitmap-contours.png")
10
+
11
+ # "find_contours" does only operate on bitmap images (black/white)
12
+ mat = OpenCV::CvMat.new(cvmat.rows, cvmat.cols, :cv8u, 1)
13
+ (cvmat.rows * cvmat.cols).times do |i|
14
+ mat[i] = (cvmat[i][0] <= 128) ? OpenCV::CvScalar.new(0) : OpenCV::CvScalar.new(255)
15
+ end
16
+
17
+ # find_contours takes two parameters:
18
+ # 1. Retrieval mode (:mode, defines the structure of the contour sequence returned)
19
+ # - CV_RETR_LIST (default)
20
+ # - CV_RETR_EXTERNAL
21
+ # - CV_RETR_CCOMP
22
+ # - CV_RETR_TREE
23
+ # 2. Retrieval Method (:method, how the contours are approximated)
24
+ # - CV_CHAIN_CODE
25
+ # - CV_CHAIN_APPROX_NONE
26
+ # - CV_CHAIN_APPROX_SIMPLE (default)
27
+ # - CV_CHAIN_APPROX_TC89_L1
28
+ # - CV_CHAIN_APPROX_T89_KCOS
29
+ # - CV_LINK_RUNS
30
+
31
+ #
32
+ # The default: CV_RETR_LIST and CV_CHAIN_APPROX_SIMPLE
33
+ # This produces a flat list of contours that can be traversed with .h_next and .h_prev
34
+ #
35
+ puts "Detecting using CV_RETR_LIST and CV_CHAIN_APPROX_SIMPLE"
36
+ contour = mat.find_contours(:mode => OpenCV::CV_RETR_LIST, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
37
+ cindex=1
38
+
39
+ while contour
40
+ puts "Contour ##{cindex} is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
41
+ contour = contour.h_next
42
+ cindex+=1
43
+ end
44
+
45
+ #
46
+ # CV_RETR_EXTERNAL retrieves only the outer most non "hole" contour
47
+ #
48
+ puts '-'*80
49
+ puts "Detecting using CV_RETR_EXTERNAL and CV_CHAIN_APPROX_SIMPLE"
50
+ contour = mat.find_contours(:mode => OpenCV::CV_RETR_EXTERNAL, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
51
+ cindex=1
52
+
53
+ while contour
54
+ puts "Contour ##{cindex} is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
55
+ contour = contour.h_next
56
+ cindex+=1
57
+ end
58
+
59
+ #
60
+ # CV_RETR_CCOMP organizes the contours in a two level deep stack
61
+ # The first level holds the contours
62
+ # The second level contains the holes of the contours in level 1
63
+ #
64
+ # C00001 <-> C00000 <-> C000 <-> C0
65
+ # | |
66
+ # V V
67
+ # H0000 H00
68
+ #
69
+ puts '-'*80
70
+ puts "Detecting using CV_RETR_CCOMP and CV_CHAIN_APPROX_SIMPLE"
71
+ contour = mat.find_contours(:mode => OpenCV::CV_RETR_CCOMP, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
72
+
73
+ # C00001
74
+ puts "Contour #1 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
75
+ contour = contour.h_next
76
+
77
+ # C00000
78
+ puts "Contour #2 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
79
+ contour = contour.h_next
80
+
81
+ # C000
82
+ puts "Contour #3 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
83
+ contour_down = contour.v_next
84
+
85
+ # H0000
86
+ puts "Contour #4 is #{contour_down.contour_area} px^2 (width: #{contour_down.bounding_rect.width}, height: #{contour_down.bounding_rect.height}, type: #{(contour_down.hole?)?"hole":"contour"})"
87
+ contour = contour.h_next
88
+
89
+ # C0
90
+ puts "Contour #5 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
91
+ contour_down = contour.v_next
92
+
93
+ # H00
94
+ puts "Contour #6 is #{contour_down.contour_area} px^2 (width: #{contour_down.bounding_rect.width}, height: #{contour_down.bounding_rect.height}, type: #{(contour_down.hole?)?"hole":"contour"})"
95
+
96
+ #
97
+ # CV_RETR_TREE manages the contours in a tree structure
98
+ # This reconstructs the complete hierarchy of contours and holes that the image displayed
99
+ #
100
+ # C0
101
+ # |
102
+ # V
103
+ # H00
104
+ # |
105
+ # V
106
+ # C000
107
+ # |
108
+ # V
109
+ # H0000-------+
110
+ # | |
111
+ # V V
112
+ # C00000 C00001
113
+ #
114
+ puts '-'*80
115
+ puts "Detecting using CV_RETR_TREE and CV_CHAIN_APPROX_SIMPLE"
116
+ contour = mat.find_contours(:mode => OpenCV::CV_RETR_TREE, :method => OpenCV::CV_CHAIN_APPROX_SIMPLE)
117
+
118
+ # C0
119
+ puts "Contour #1 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
120
+ contour = contour.v_next
121
+
122
+ # H00
123
+ puts "Contour #2 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
124
+ contour = contour.v_next
125
+
126
+ # C000
127
+ puts "Contour #3 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
128
+ contour = contour.v_next
129
+
130
+ # H0000
131
+ puts "Contour #4 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
132
+ contour = contour.v_next
133
+
134
+ # C00000
135
+ puts "Contour #5 is #{contour.contour_area} px^2 (width: #{contour.bounding_rect.width}, height: #{contour.bounding_rect.height}, type: #{(contour.hole?)?"hole":"contour"})"
136
+ contour_right = contour.h_next
137
+
138
+ # C00001
139
+ puts "Contour #6 is #{contour_right.contour_area} px^2 (width: #{contour_right.bounding_rect.width}, height: #{contour_right.bounding_rect.height}, type: #{(contour_right.hole?)?"hole":"contour"})"
Binary file
@@ -0,0 +1,47 @@
1
+ #!/usr/bin/env ruby
2
+ # convexhull.rb
3
+ # Draw contours and convexity defect points to captured image
4
+ require "rubygems"
5
+ require "opencv"
6
+ include OpenCV
7
+
8
+ window = GUI::Window.new("convexhull")
9
+ capture = CvCapture::open
10
+
11
+ accuracy = 1
12
+ t = window.set_trackbar("accuracy", 10, 1) { |v|
13
+ accuracy = v
14
+ }
15
+
16
+ circle_options = { :color => CvColor::Blue, :line_type => :aa, :thickness => -1 }
17
+
18
+ loop do
19
+ image = capture.query
20
+
21
+ # Calculate contours from a binary image
22
+ gray = image.BGR2GRAY
23
+ bin = gray.threshold(0x44, 0xFF, :binary)
24
+ contours = bin.find_contours
25
+
26
+ while contours
27
+ # Draw contours
28
+ poly = contours.approx(:accuracy => accuracy)
29
+ begin
30
+ image.draw_contours!(poly, CvColor::Red, CvColor::Black, 2,
31
+ :thickness => 2, :line_type => :aa)
32
+ end while (poly = poly.h_next)
33
+
34
+ # Draw convexity defects
35
+ hull = contours.convex_hull2(true, false)
36
+ contours.convexity_defects(hull).each { |cd|
37
+ image.circle!(cd.start, 3, circle_options)
38
+ image.circle!(cd.depth_point, 3, circle_options)
39
+ image.circle!(cd.end, 3, circle_options)
40
+ }
41
+ contours = contours.h_next
42
+ end
43
+
44
+ window.show image
45
+ exit if GUI::wait_key(1)
46
+ end
47
+
@@ -0,0 +1,20 @@
1
+ #!/usr/bin/env ruby
2
+ # face_detect.rb
3
+ require "rubygems"
4
+ require "opencv"
5
+
6
+ include OpenCV
7
+
8
+ window = GUI::Window.new("face detect")
9
+ capture = CvCapture.open
10
+ detector = CvHaarClassifierCascade::load("./data/haarcascades/haarcascade_frontalface_alt.xml")
11
+
12
+ loop {
13
+ image = capture.query
14
+ detector.detect_objects(image).each { |rect|
15
+ image.rectangle! rect.top_left, rect.bottom_right, :color => CvColor::Red
16
+ }
17
+ window.show image
18
+ break if GUI::wait_key(100)
19
+ }
20
+
@@ -0,0 +1,169 @@
1
+ #!/usr/bin/env ruby
2
+ # -*- mode: ruby; coding: utf-8-unix -*-
3
+
4
+ # A Demo Ruby/OpenCV Implementation of SURF
5
+ # See https://code.ros.org/trac/opencv/browser/tags/2.3.1/opencv/samples/c/find_obj.cpp
6
+ require 'opencv'
7
+ require 'benchmark'
8
+ include OpenCV
9
+
10
+ def compare_surf_descriptors(d1, d2, best, length)
11
+ raise ArgumentError unless (length % 4) == 0
12
+ total_cost = 0
13
+ 0.step(length - 1, 4) { |i|
14
+ t0 = d1[i] - d2[i]
15
+ t1 = d1[i + 1] - d2[i + 1]
16
+ t2 = d1[i + 2] - d2[i + 2]
17
+ t3 = d1[i + 3] - d2[i + 3]
18
+ total_cost += t0 * t0 + t1 * t1 + t2 * t2 + t3 * t3
19
+ break if total_cost > best
20
+ }
21
+ total_cost
22
+ end
23
+
24
+ def naive_nearest_neighbor(vec, laplacian, model_keypoints, model_descriptors)
25
+ length = model_descriptors[0].size
26
+ neighbor = nil
27
+ dist1 = 1e6
28
+ dist2 = 1e6
29
+
30
+ model_descriptors.size.times { |i|
31
+ kp = model_keypoints[i]
32
+ mvec = model_descriptors[i]
33
+ next if laplacian != kp.laplacian
34
+
35
+ d = compare_surf_descriptors(vec, mvec, dist2, length)
36
+ if d < dist1
37
+ dist2 = dist1
38
+ dist1 = d
39
+ neighbor = i
40
+ elsif d < dist2
41
+ dist2 = d
42
+ end
43
+ }
44
+
45
+ return (dist1 < 0.6 * dist2) ? neighbor : nil
46
+ end
47
+
48
+ def find_pairs(object_keypoints, object_descriptors,
49
+ image_keypoints, image_descriptors)
50
+ ptpairs = []
51
+ object_descriptors.size.times { |i|
52
+ kp = object_keypoints[i]
53
+ descriptor = object_descriptors[i]
54
+ nearest_neighbor = naive_nearest_neighbor(descriptor, kp.laplacian, image_keypoints, image_descriptors)
55
+ unless nearest_neighbor.nil?
56
+ ptpairs << i
57
+ ptpairs << nearest_neighbor
58
+ end
59
+ }
60
+ ptpairs
61
+ end
62
+
63
+ def locate_planar_object(object_keypoints, object_descriptors,
64
+ image_keypoints, image_descriptors, src_corners)
65
+ ptpairs = find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors)
66
+ n = ptpairs.size / 2
67
+ return nil if n < 4
68
+
69
+ pt1 = []
70
+ pt2 = []
71
+ n.times { |i|
72
+ pt1 << object_keypoints[ptpairs[i * 2]].pt
73
+ pt2 << image_keypoints[ptpairs[i * 2 + 1]].pt
74
+ }
75
+
76
+ _pt1 = CvMat.new(1, n, CV_32F, 2)
77
+ _pt2 = CvMat.new(1, n, CV_32F, 2)
78
+ _pt1.set_data(pt1)
79
+ _pt2.set_data(pt2)
80
+ h = CvMat.find_homography(_pt1, _pt2, :ransac, 5)
81
+
82
+ dst_corners = []
83
+ 4.times { |i|
84
+ x = src_corners[i].x
85
+ y = src_corners[i].y
86
+ z = 1.0 / (h[6][0] * x + h[7][0] * y + h[8][0])
87
+ x = (h[0][0] * x + h[1][0] * y + h[2][0]) * z
88
+ y = (h[3][0] * x + h[4][0] * y + h[5][0]) * z
89
+ dst_corners << CvPoint.new(x.to_i, y.to_i)
90
+ }
91
+
92
+ dst_corners
93
+ end
94
+
95
+
96
+ ##### Main #####
97
+ puts 'This program demonstrated the use of the SURF Detector and Descriptor using'
98
+ puts 'brute force matching on planar objects.'
99
+ puts 'Usage:'
100
+ puts "ruby #{__FILE__} <object_filename> <scene_filename>, default is box.png and box_in_scene.png"
101
+ puts
102
+
103
+ object_filename = (ARGV.size == 2) ? ARGV[0] : 'box.png'
104
+ scene_filename = (ARGV.size == 2) ? ARGV[1] : 'box_in_scene.png'
105
+
106
+ object, image = nil, nil
107
+ begin
108
+ object = IplImage.load(object_filename, CV_LOAD_IMAGE_GRAYSCALE)
109
+ image = IplImage.load(scene_filename, CV_LOAD_IMAGE_GRAYSCALE)
110
+ rescue
111
+ puts "Can not load #{object_filename} and/or #{scene_filename}"
112
+ puts "Usage: ruby #{__FILE__} [<object_filename> <scene_filename>]"
113
+ exit
114
+ end
115
+ object_color = object.GRAY2BGR
116
+
117
+ param = CvSURFParams.new(1500)
118
+
119
+ object_keypoints, object_descriptors = nil, nil
120
+ image_keypoints, image_descriptors = nil, nil
121
+ tms = Benchmark.measure {
122
+ object_keypoints, object_descriptors = object.extract_surf(param)
123
+ puts "Object Descriptors: #{object_descriptors.size}"
124
+
125
+ image_keypoints, image_descriptors = image.extract_surf(param)
126
+ puts "Image Descriptors: #{image_descriptors.size}"
127
+ }
128
+ puts "Extraction time = #{tms.real * 1000} ms"
129
+
130
+ correspond = IplImage.new(image.width, object.height + image.height, CV_8U, 1);
131
+ correspond.set_roi(CvRect.new(0, 0, object.width, object.height))
132
+ object.copy(correspond)
133
+ correspond.set_roi(CvRect.new(0, object.height, image.width, image.height))
134
+ image.copy(correspond)
135
+ correspond.reset_roi
136
+
137
+ src_corners = [CvPoint.new(0, 0), CvPoint.new(object.width, 0),
138
+ CvPoint.new(object.width, object.height), CvPoint.new(0, object.height)]
139
+ dst_corners = locate_planar_object(object_keypoints, object_descriptors,
140
+ image_keypoints, image_descriptors, src_corners)
141
+
142
+ correspond = correspond.GRAY2BGR
143
+ if dst_corners
144
+ 4.times { |i|
145
+ r1 = dst_corners[i % 4]
146
+ r2 = dst_corners[(i + 1) % 4]
147
+ correspond.line!(CvPoint.new(r1.x, r1.y + object.height), CvPoint.new(r2.x, r2.y + object.height),
148
+ :color => CvColor::Red, :thickness => 2, :line_type => :aa)
149
+ }
150
+ end
151
+
152
+ ptpairs = find_pairs(object_keypoints, object_descriptors, image_keypoints, image_descriptors)
153
+
154
+ 0.step(ptpairs.size - 1, 2) { |i|
155
+ r1 = object_keypoints[ptpairs[i]]
156
+ r2 = image_keypoints[ptpairs[i + 1]]
157
+ correspond.line!(r1.pt, CvPoint.new(r2.pt.x, r2.pt.y + object.height),
158
+ :color => CvColor::Red, :line_type => :aa)
159
+ }
160
+
161
+ object_keypoints.each { |r|
162
+ radius = (r.size * 1.2 / 9.0 * 2).to_i
163
+ object_color.circle!(r.pt, radius, :color => CvColor::Red, :line_type => :aa)
164
+ }
165
+
166
+ GUI::Window.new('Object Correspond').show correspond
167
+ GUI::Window.new('Object').show object_color
168
+ GUI::wait_key
169
+