ruby-lapack 1.6 → 1.7

Sign up to get free protection for your applications and to get access to all the features.
Files changed (1637) hide show
  1. checksums.yaml +7 -0
  2. data/Rakefile +1 -1
  3. data/dev/make_csrc.rb +8 -2
  4. data/ext/extconf.rb +15 -11
  5. data/ext/rb_lapack.h +7 -1
  6. metadata +48 -1700
  7. data/ext/cbbcsd.c +0 -283
  8. data/ext/cbdsqr.c +0 -182
  9. data/ext/cgbbrd.c +0 -157
  10. data/ext/cgbcon.c +0 -98
  11. data/ext/cgbequ.c +0 -98
  12. data/ext/cgbequb.c +0 -96
  13. data/ext/cgbrfs.c +0 -161
  14. data/ext/cgbrfsx.c +0 -249
  15. data/ext/cgbsv.c +0 -115
  16. data/ext/cgbsvx.c +0 -286
  17. data/ext/cgbsvxx.c +0 -289
  18. data/ext/cgbtf2.c +0 -93
  19. data/ext/cgbtrf.c +0 -93
  20. data/ext/cgbtrs.c +0 -111
  21. data/ext/cgebak.c +0 -101
  22. data/ext/cgebal.c +0 -91
  23. data/ext/cgebd2.c +0 -112
  24. data/ext/cgebrd.c +0 -127
  25. data/ext/cgecon.c +0 -78
  26. data/ext/cgeequ.c +0 -88
  27. data/ext/cgeequb.c +0 -88
  28. data/ext/cgees.c +0 -142
  29. data/ext/cgeesx.c +0 -152
  30. data/ext/cgeev.c +0 -132
  31. data/ext/cgeevx.c +0 -173
  32. data/ext/cgegs.c +0 -166
  33. data/ext/cgegv.c +0 -171
  34. data/ext/cgehd2.c +0 -92
  35. data/ext/cgehrd.c +0 -107
  36. data/ext/cgelq2.c +0 -86
  37. data/ext/cgelqf.c +0 -103
  38. data/ext/cgels.c +0 -137
  39. data/ext/cgelsd.c +0 -154
  40. data/ext/cgelss.c +0 -151
  41. data/ext/cgelsx.c +0 -139
  42. data/ext/cgelsy.c +0 -166
  43. data/ext/cgeql2.c +0 -88
  44. data/ext/cgeqlf.c +0 -103
  45. data/ext/cgeqp3.c +0 -129
  46. data/ext/cgeqpf.c +0 -114
  47. data/ext/cgeqr2.c +0 -88
  48. data/ext/cgeqr2p.c +0 -88
  49. data/ext/cgeqrf.c +0 -103
  50. data/ext/cgeqrfp.c +0 -103
  51. data/ext/cgerfs.c +0 -153
  52. data/ext/cgerfsx.c +0 -219
  53. data/ext/cgerq2.c +0 -86
  54. data/ext/cgerqf.c +0 -103
  55. data/ext/cgesc2.c +0 -108
  56. data/ext/cgesdd.c +0 -135
  57. data/ext/cgesv.c +0 -107
  58. data/ext/cgesvd.c +0 -146
  59. data/ext/cgesvx.c +0 -278
  60. data/ext/cgesvxx.c +0 -281
  61. data/ext/cgetc2.c +0 -89
  62. data/ext/cgetf2.c +0 -85
  63. data/ext/cgetrf.c +0 -85
  64. data/ext/cgetri.c +0 -103
  65. data/ext/cgetrs.c +0 -103
  66. data/ext/cggbak.c +0 -113
  67. data/ext/cggbal.c +0 -128
  68. data/ext/cgges.c +0 -192
  69. data/ext/cggesx.c +0 -230
  70. data/ext/cggev.c +0 -171
  71. data/ext/cggevx.c +0 -226
  72. data/ext/cggglm.c +0 -156
  73. data/ext/cgghrd.c +0 -167
  74. data/ext/cgglse.c +0 -171
  75. data/ext/cggqrf.c +0 -137
  76. data/ext/cggrqf.c +0 -141
  77. data/ext/cggsvd.c +0 -184
  78. data/ext/cggsvp.c +0 -174
  79. data/ext/cgtcon.c +0 -121
  80. data/ext/cgtrfs.c +0 -209
  81. data/ext/cgtsv.c +0 -142
  82. data/ext/cgtsvx.c +0 -256
  83. data/ext/cgttrf.c +0 -132
  84. data/ext/cgttrs.c +0 -137
  85. data/ext/cgtts2.c +0 -134
  86. data/ext/chbev.c +0 -110
  87. data/ext/chbevd.c +0 -158
  88. data/ext/chbevx.c +0 -160
  89. data/ext/chbgst.c +0 -120
  90. data/ext/chbgv.c +0 -140
  91. data/ext/chbgvd.c +0 -188
  92. data/ext/chbgvx.c +0 -189
  93. data/ext/chbtrd.c +0 -130
  94. data/ext/checon.c +0 -87
  95. data/ext/cheequb.c +0 -82
  96. data/ext/cheev.c +0 -110
  97. data/ext/cheevd.c +0 -143
  98. data/ext/cheevr.c +0 -190
  99. data/ext/cheevx.c +0 -160
  100. data/ext/chegs2.c +0 -95
  101. data/ext/chegst.c +0 -95
  102. data/ext/chegv.c +0 -140
  103. data/ext/chegvd.c +0 -173
  104. data/ext/chegvx.c +0 -190
  105. data/ext/cherfs.c +0 -153
  106. data/ext/cherfsx.c +0 -218
  107. data/ext/chesv.c +0 -123
  108. data/ext/chesvx.c +0 -183
  109. data/ext/chesvxx.c +0 -258
  110. data/ext/chetd2.c +0 -101
  111. data/ext/chetf2.c +0 -85
  112. data/ext/chetrd.c +0 -113
  113. data/ext/chetrf.c +0 -97
  114. data/ext/chetri.c +0 -92
  115. data/ext/chetrs.c +0 -103
  116. data/ext/chetrs2.c +0 -106
  117. data/ext/chfrk.c +0 -109
  118. data/ext/chgeqz.c +0 -208
  119. data/ext/chla_transtype.c +0 -51
  120. data/ext/chpcon.c +0 -85
  121. data/ext/chpev.c +0 -105
  122. data/ext/chpevd.c +0 -153
  123. data/ext/chpevx.c +0 -144
  124. data/ext/chpgst.c +0 -94
  125. data/ext/chpgv.c +0 -132
  126. data/ext/chpgvd.c +0 -170
  127. data/ext/chpgvx.c +0 -170
  128. data/ext/chprfs.c +0 -149
  129. data/ext/chpsv.c +0 -110
  130. data/ext/chpsvx.c +0 -163
  131. data/ext/chptrd.c +0 -100
  132. data/ext/chptrf.c +0 -84
  133. data/ext/chptri.c +0 -89
  134. data/ext/chptrs.c +0 -101
  135. data/ext/chsein.c +0 -185
  136. data/ext/chseqr.c +0 -145
  137. data/ext/cla_gbamv.c +0 -127
  138. data/ext/cla_gbrcond_c.c +0 -142
  139. data/ext/cla_gbrcond_x.c +0 -138
  140. data/ext/cla_gbrfsx_extended.c +0 -295
  141. data/ext/cla_gbrpvgrw.c +0 -87
  142. data/ext/cla_geamv.c +0 -117
  143. data/ext/cla_gercond_c.c +0 -134
  144. data/ext/cla_gercond_x.c +0 -130
  145. data/ext/cla_gerfsx_extended.c +0 -281
  146. data/ext/cla_heamv.c +0 -116
  147. data/ext/cla_hercond_c.c +0 -134
  148. data/ext/cla_hercond_x.c +0 -130
  149. data/ext/cla_herfsx_extended.c +0 -283
  150. data/ext/cla_herpvgrw.c +0 -107
  151. data/ext/cla_lin_berr.c +0 -84
  152. data/ext/cla_porcond_c.c +0 -122
  153. data/ext/cla_porcond_x.c +0 -118
  154. data/ext/cla_porfsx_extended.c +0 -271
  155. data/ext/cla_porpvgrw.c +0 -95
  156. data/ext/cla_rpvgrw.c +0 -79
  157. data/ext/cla_syamv.c +0 -115
  158. data/ext/cla_syrcond_c.c +0 -134
  159. data/ext/cla_syrcond_x.c +0 -130
  160. data/ext/cla_syrfsx_extended.c +0 -283
  161. data/ext/cla_syrpvgrw.c +0 -107
  162. data/ext/cla_wwaddw.c +0 -102
  163. data/ext/clabrd.c +0 -132
  164. data/ext/clacgv.c +0 -75
  165. data/ext/clacn2.c +0 -103
  166. data/ext/clacon.c +0 -80
  167. data/ext/clacp2.c +0 -77
  168. data/ext/clacpy.c +0 -77
  169. data/ext/clacrm.c +0 -90
  170. data/ext/clacrt.c +0 -108
  171. data/ext/cladiv.c +0 -57
  172. data/ext/claed0.c +0 -134
  173. data/ext/claed7.c +0 -247
  174. data/ext/claed8.c +0 -198
  175. data/ext/claein.c +0 -113
  176. data/ext/claesy.c +0 -74
  177. data/ext/claev2.c +0 -71
  178. data/ext/clag2z.c +0 -76
  179. data/ext/clags2.c +0 -92
  180. data/ext/clagtm.c +0 -132
  181. data/ext/clahef.c +0 -97
  182. data/ext/clahqr.c +0 -135
  183. data/ext/clahr2.c +0 -112
  184. data/ext/clahrd.c +0 -112
  185. data/ext/claic1.c +0 -90
  186. data/ext/clals0.c +0 -201
  187. data/ext/clalsa.c +0 -270
  188. data/ext/clalsd.c +0 -145
  189. data/ext/clangb.c +0 -76
  190. data/ext/clange.c +0 -74
  191. data/ext/clangt.c +0 -87
  192. data/ext/clanhb.c +0 -78
  193. data/ext/clanhe.c +0 -72
  194. data/ext/clanhf.c +0 -80
  195. data/ext/clanhp.c +0 -74
  196. data/ext/clanhs.c +0 -70
  197. data/ext/clanht.c +0 -75
  198. data/ext/clansb.c +0 -78
  199. data/ext/clansp.c +0 -74
  200. data/ext/clansy.c +0 -72
  201. data/ext/clantb.c +0 -80
  202. data/ext/clantp.c +0 -80
  203. data/ext/clantr.c +0 -82
  204. data/ext/clapll.c +0 -105
  205. data/ext/clapmr.c +0 -97
  206. data/ext/clapmt.c +0 -101
  207. data/ext/claqgb.c +0 -117
  208. data/ext/claqge.c +0 -109
  209. data/ext/claqhb.c +0 -97
  210. data/ext/claqhe.c +0 -97
  211. data/ext/claqhp.c +0 -94
  212. data/ext/claqp2.c +0 -158
  213. data/ext/claqps.c +0 -208
  214. data/ext/claqr0.c +0 -145
  215. data/ext/claqr1.c +0 -76
  216. data/ext/claqr2.c +0 -174
  217. data/ext/claqr3.c +0 -174
  218. data/ext/claqr4.c +0 -145
  219. data/ext/claqr5.c +0 -179
  220. data/ext/claqsb.c +0 -101
  221. data/ext/claqsp.c +0 -94
  222. data/ext/claqsy.c +0 -97
  223. data/ext/clar1v.c +0 -173
  224. data/ext/clar2v.c +0 -149
  225. data/ext/clarcm.c +0 -86
  226. data/ext/clarf.c +0 -102
  227. data/ext/clarfb.c +0 -123
  228. data/ext/clarfg.c +0 -84
  229. data/ext/clarfgp.c +0 -84
  230. data/ext/clarft.c +0 -105
  231. data/ext/clarfx.c +0 -94
  232. data/ext/clargv.c +0 -114
  233. data/ext/clarnv.c +0 -83
  234. data/ext/clarrv.c +0 -271
  235. data/ext/clarscl2.c +0 -82
  236. data/ext/clartg.c +0 -63
  237. data/ext/clartv.c +0 -130
  238. data/ext/clarz.c +0 -106
  239. data/ext/clarzb.c +0 -127
  240. data/ext/clarzt.c +0 -105
  241. data/ext/clascl.c +0 -97
  242. data/ext/clascl2.c +0 -82
  243. data/ext/claset.c +0 -88
  244. data/ext/clasr.c +0 -110
  245. data/ext/classq.c +0 -70
  246. data/ext/claswp.c +0 -94
  247. data/ext/clasyf.c +0 -97
  248. data/ext/clatbs.c +0 -130
  249. data/ext/clatdf.c +0 -119
  250. data/ext/clatps.c +0 -124
  251. data/ext/clatrd.c +0 -105
  252. data/ext/clatrs.c +0 -126
  253. data/ext/clatrz.c +0 -87
  254. data/ext/clatzm.c +0 -132
  255. data/ext/clauu2.c +0 -77
  256. data/ext/clauum.c +0 -77
  257. data/ext/cpbcon.c +0 -82
  258. data/ext/cpbequ.c +0 -83
  259. data/ext/cpbrfs.c +0 -145
  260. data/ext/cpbstf.c +0 -81
  261. data/ext/cpbsv.c +0 -107
  262. data/ext/cpbsvx.c +0 -201
  263. data/ext/cpbtf2.c +0 -81
  264. data/ext/cpbtrf.c +0 -81
  265. data/ext/cpbtrs.c +0 -95
  266. data/ext/cpftrf.c +0 -82
  267. data/ext/cpftri.c +0 -82
  268. data/ext/cpftrs.c +0 -97
  269. data/ext/cpocon.c +0 -78
  270. data/ext/cpoequ.c +0 -75
  271. data/ext/cpoequb.c +0 -75
  272. data/ext/cporfs.c +0 -141
  273. data/ext/cporfsx.c +0 -206
  274. data/ext/cposv.c +0 -103
  275. data/ext/cposvx.c +0 -197
  276. data/ext/cposvxx.c +0 -235
  277. data/ext/cpotf2.c +0 -77
  278. data/ext/cpotrf.c +0 -77
  279. data/ext/cpotri.c +0 -77
  280. data/ext/cpotrs.c +0 -91
  281. data/ext/cppcon.c +0 -78
  282. data/ext/cppequ.c +0 -79
  283. data/ext/cpprfs.c +0 -139
  284. data/ext/cppsv.c +0 -104
  285. data/ext/cppsvx.c +0 -191
  286. data/ext/cpptrf.c +0 -78
  287. data/ext/cpptri.c +0 -78
  288. data/ext/cpptrs.c +0 -93
  289. data/ext/cpstf2.c +0 -95
  290. data/ext/cpstrf.c +0 -95
  291. data/ext/cptcon.c +0 -81
  292. data/ext/cpteqr.c +0 -126
  293. data/ext/cptrfs.c +0 -161
  294. data/ext/cptsv.c +0 -119
  295. data/ext/cptsvx.c +0 -171
  296. data/ext/cpttrf.c +0 -93
  297. data/ext/cpttrs.c +0 -101
  298. data/ext/cptts2.c +0 -98
  299. data/ext/crot.c +0 -107
  300. data/ext/cspcon.c +0 -85
  301. data/ext/cspmv.c +0 -115
  302. data/ext/cspr.c +0 -96
  303. data/ext/csprfs.c +0 -149
  304. data/ext/cspsv.c +0 -110
  305. data/ext/cspsvx.c +0 -163
  306. data/ext/csptrf.c +0 -84
  307. data/ext/csptri.c +0 -89
  308. data/ext/csptrs.c +0 -101
  309. data/ext/csrscl.c +0 -79
  310. data/ext/cstedc.c +0 -177
  311. data/ext/cstegr.c +0 -188
  312. data/ext/cstein.c +0 -134
  313. data/ext/cstemr.c +0 -193
  314. data/ext/csteqr.c +0 -126
  315. data/ext/csycon.c +0 -87
  316. data/ext/csyconv.c +0 -84
  317. data/ext/csyequb.c +0 -82
  318. data/ext/csymv.c +0 -115
  319. data/ext/csyr.c +0 -95
  320. data/ext/csyrfs.c +0 -153
  321. data/ext/csyrfsx.c +0 -218
  322. data/ext/csysv.c +0 -129
  323. data/ext/csysvx.c +0 -183
  324. data/ext/csysvxx.c +0 -258
  325. data/ext/csyswapr.c +0 -82
  326. data/ext/csytf2.c +0 -85
  327. data/ext/csytrf.c +0 -97
  328. data/ext/csytri.c +0 -92
  329. data/ext/csytri2.c +0 -108
  330. data/ext/csytri2x.c +0 -96
  331. data/ext/csytrs.c +0 -103
  332. data/ext/csytrs2.c +0 -106
  333. data/ext/ctbcon.c +0 -86
  334. data/ext/ctbrfs.c +0 -127
  335. data/ext/ctbtrs.c +0 -103
  336. data/ext/ctfsm.c +0 -111
  337. data/ext/ctftri.c +0 -86
  338. data/ext/ctfttp.c +0 -79
  339. data/ext/ctfttr.c +0 -80
  340. data/ext/ctgevc.c +0 -156
  341. data/ext/ctgex2.c +0 -171
  342. data/ext/ctgexc.c +0 -172
  343. data/ext/ctgsen.c +0 -244
  344. data/ext/ctgsja.c +0 -227
  345. data/ext/ctgsna.c +0 -164
  346. data/ext/ctgsy2.c +0 -176
  347. data/ext/ctgsyl.c +0 -190
  348. data/ext/ctpcon.c +0 -82
  349. data/ext/ctprfs.c +0 -123
  350. data/ext/ctptri.c +0 -82
  351. data/ext/ctptrs.c +0 -101
  352. data/ext/ctpttf.c +0 -79
  353. data/ext/ctpttr.c +0 -76
  354. data/ext/ctrcon.c +0 -82
  355. data/ext/ctrevc.c +0 -154
  356. data/ext/ctrexc.c +0 -111
  357. data/ext/ctrrfs.c +0 -123
  358. data/ext/ctrsen.c +0 -154
  359. data/ext/ctrsna.c +0 -137
  360. data/ext/ctrsyl.c +0 -116
  361. data/ext/ctrti2.c +0 -81
  362. data/ext/ctrtri.c +0 -81
  363. data/ext/ctrtrs.c +0 -99
  364. data/ext/ctrttf.c +0 -77
  365. data/ext/ctrttp.c +0 -73
  366. data/ext/ctzrqf.c +0 -83
  367. data/ext/ctzrzf.c +0 -101
  368. data/ext/cunbdb.c +0 -232
  369. data/ext/cuncsd.c +0 -204
  370. data/ext/cung2l.c +0 -92
  371. data/ext/cung2r.c +0 -92
  372. data/ext/cungbr.c +0 -115
  373. data/ext/cunghr.c +0 -111
  374. data/ext/cungl2.c +0 -90
  375. data/ext/cunglq.c +0 -107
  376. data/ext/cungql.c +0 -107
  377. data/ext/cungqr.c +0 -107
  378. data/ext/cungr2.c +0 -90
  379. data/ext/cungrq.c +0 -107
  380. data/ext/cungtr.c +0 -107
  381. data/ext/cunm2l.c +0 -114
  382. data/ext/cunm2r.c +0 -114
  383. data/ext/cunmbr.c +0 -139
  384. data/ext/cunmhr.c +0 -133
  385. data/ext/cunml2.c +0 -110
  386. data/ext/cunmlq.c +0 -125
  387. data/ext/cunmql.c +0 -129
  388. data/ext/cunmqr.c +0 -129
  389. data/ext/cunmr2.c +0 -110
  390. data/ext/cunmr3.c +0 -114
  391. data/ext/cunmrq.c +0 -125
  392. data/ext/cunmrz.c +0 -129
  393. data/ext/cunmtr.c +0 -129
  394. data/ext/cupgtr.c +0 -91
  395. data/ext/cupmtr.c +0 -116
  396. data/ext/dbbcsd.c +0 -287
  397. data/ext/dbdsdc.c +0 -151
  398. data/ext/dbdsqr.c +0 -182
  399. data/ext/ddisna.c +0 -75
  400. data/ext/dgbbrd.c +0 -154
  401. data/ext/dgbcon.c +0 -98
  402. data/ext/dgbequ.c +0 -98
  403. data/ext/dgbequb.c +0 -96
  404. data/ext/dgbrfs.c +0 -161
  405. data/ext/dgbrfsx.c +0 -249
  406. data/ext/dgbsv.c +0 -115
  407. data/ext/dgbsvx.c +0 -286
  408. data/ext/dgbsvxx.c +0 -289
  409. data/ext/dgbtf2.c +0 -93
  410. data/ext/dgbtrf.c +0 -93
  411. data/ext/dgbtrs.c +0 -111
  412. data/ext/dgebak.c +0 -101
  413. data/ext/dgebal.c +0 -91
  414. data/ext/dgebd2.c +0 -112
  415. data/ext/dgebrd.c +0 -127
  416. data/ext/dgecon.c +0 -78
  417. data/ext/dgeequ.c +0 -88
  418. data/ext/dgeequb.c +0 -88
  419. data/ext/dgees.c +0 -148
  420. data/ext/dgeesx.c +0 -170
  421. data/ext/dgeev.c +0 -137
  422. data/ext/dgeevx.c +0 -181
  423. data/ext/dgegs.c +0 -171
  424. data/ext/dgegv.c +0 -171
  425. data/ext/dgehd2.c +0 -92
  426. data/ext/dgehrd.c +0 -107
  427. data/ext/dgejsv.c +0 -159
  428. data/ext/dgelq2.c +0 -86
  429. data/ext/dgelqf.c +0 -103
  430. data/ext/dgels.c +0 -137
  431. data/ext/dgelsd.c +0 -149
  432. data/ext/dgelss.c +0 -148
  433. data/ext/dgelsx.c +0 -136
  434. data/ext/dgelsy.c +0 -163
  435. data/ext/dgeql2.c +0 -88
  436. data/ext/dgeqlf.c +0 -103
  437. data/ext/dgeqp3.c +0 -126
  438. data/ext/dgeqpf.c +0 -111
  439. data/ext/dgeqr2.c +0 -88
  440. data/ext/dgeqr2p.c +0 -88
  441. data/ext/dgeqrf.c +0 -103
  442. data/ext/dgeqrfp.c +0 -103
  443. data/ext/dgerfs.c +0 -153
  444. data/ext/dgerfsx.c +0 -219
  445. data/ext/dgerq2.c +0 -86
  446. data/ext/dgerqf.c +0 -103
  447. data/ext/dgesc2.c +0 -108
  448. data/ext/dgesdd.c +0 -132
  449. data/ext/dgesv.c +0 -107
  450. data/ext/dgesvd.c +0 -143
  451. data/ext/dgesvj.c +0 -156
  452. data/ext/dgesvx.c +0 -278
  453. data/ext/dgesvxx.c +0 -281
  454. data/ext/dgetc2.c +0 -89
  455. data/ext/dgetf2.c +0 -85
  456. data/ext/dgetrf.c +0 -85
  457. data/ext/dgetri.c +0 -103
  458. data/ext/dgetrs.c +0 -103
  459. data/ext/dggbak.c +0 -113
  460. data/ext/dggbal.c +0 -128
  461. data/ext/dgges.c +0 -198
  462. data/ext/dggesx.c +0 -231
  463. data/ext/dggev.c +0 -171
  464. data/ext/dggevx.c +0 -229
  465. data/ext/dggglm.c +0 -156
  466. data/ext/dgghrd.c +0 -167
  467. data/ext/dgglse.c +0 -171
  468. data/ext/dggqrf.c +0 -137
  469. data/ext/dggrqf.c +0 -141
  470. data/ext/dggsvd.c +0 -181
  471. data/ext/dggsvp.c +0 -171
  472. data/ext/dgsvj0.c +0 -182
  473. data/ext/dgsvj1.c +0 -186
  474. data/ext/dgtcon.c +0 -124
  475. data/ext/dgtrfs.c +0 -209
  476. data/ext/dgtsv.c +0 -142
  477. data/ext/dgtsvx.c +0 -256
  478. data/ext/dgttrf.c +0 -132
  479. data/ext/dgttrs.c +0 -137
  480. data/ext/dgtts2.c +0 -134
  481. data/ext/dhgeqz.c +0 -213
  482. data/ext/dhsein.c +0 -205
  483. data/ext/dhseqr.c +0 -153
  484. data/ext/disnan.c +0 -51
  485. data/ext/dla_gbamv.c +0 -129
  486. data/ext/dla_gbrcond.c +0 -142
  487. data/ext/dla_gbrfsx_extended.c +0 -293
  488. data/ext/dla_gbrpvgrw.c +0 -87
  489. data/ext/dla_geamv.c +0 -119
  490. data/ext/dla_gercond.c +0 -134
  491. data/ext/dla_gerfsx_extended.c +0 -281
  492. data/ext/dla_lin_berr.c +0 -84
  493. data/ext/dla_porcond.c +0 -122
  494. data/ext/dla_porfsx_extended.c +0 -271
  495. data/ext/dla_porpvgrw.c +0 -95
  496. data/ext/dla_rpvgrw.c +0 -79
  497. data/ext/dla_syamv.c +0 -113
  498. data/ext/dla_syrcond.c +0 -134
  499. data/ext/dla_syrfsx_extended.c +0 -283
  500. data/ext/dla_syrpvgrw.c +0 -107
  501. data/ext/dla_wwaddw.c +0 -102
  502. data/ext/dlabad.c +0 -54
  503. data/ext/dlabrd.c +0 -132
  504. data/ext/dlacn2.c +0 -106
  505. data/ext/dlacon.c +0 -83
  506. data/ext/dlacpy.c +0 -77
  507. data/ext/dladiv.c +0 -66
  508. data/ext/dlae2.c +0 -62
  509. data/ext/dlaebz.c +0 -218
  510. data/ext/dlaed0.c +0 -127
  511. data/ext/dlaed1.c +0 -133
  512. data/ext/dlaed2.c +0 -189
  513. data/ext/dlaed3.c +0 -161
  514. data/ext/dlaed4.c +0 -90
  515. data/ext/dlaed5.c +0 -87
  516. data/ext/dlaed6.c +0 -90
  517. data/ext/dlaed7.c +0 -248
  518. data/ext/dlaed8.c +0 -206
  519. data/ext/dlaed9.c +0 -111
  520. data/ext/dlaeda.c +0 -160
  521. data/ext/dlaein.c +0 -143
  522. data/ext/dlaev2.c +0 -68
  523. data/ext/dlaexc.c +0 -118
  524. data/ext/dlag2.c +0 -91
  525. data/ext/dlag2s.c +0 -76
  526. data/ext/dlags2.c +0 -90
  527. data/ext/dlagtf.c +0 -140
  528. data/ext/dlagtm.c +0 -132
  529. data/ext/dlagts.c +0 -139
  530. data/ext/dlagv2.c +0 -132
  531. data/ext/dlahqr.c +0 -143
  532. data/ext/dlahr2.c +0 -112
  533. data/ext/dlahrd.c +0 -112
  534. data/ext/dlaic1.c +0 -89
  535. data/ext/dlaln2.c +0 -120
  536. data/ext/dlals0.c +0 -201
  537. data/ext/dlalsa.c +0 -270
  538. data/ext/dlalsd.c +0 -142
  539. data/ext/dlamrg.c +0 -80
  540. data/ext/dlaneg.c +0 -83
  541. data/ext/dlangb.c +0 -78
  542. data/ext/dlange.c +0 -74
  543. data/ext/dlangt.c +0 -87
  544. data/ext/dlanhs.c +0 -70
  545. data/ext/dlansb.c +0 -78
  546. data/ext/dlansf.c +0 -80
  547. data/ext/dlansp.c +0 -76
  548. data/ext/dlanst.c +0 -75
  549. data/ext/dlansy.c +0 -74
  550. data/ext/dlantb.c +0 -82
  551. data/ext/dlantp.c +0 -80
  552. data/ext/dlantr.c +0 -82
  553. data/ext/dlanv2.c +0 -82
  554. data/ext/dlapll.c +0 -105
  555. data/ext/dlapmr.c +0 -97
  556. data/ext/dlapmt.c +0 -101
  557. data/ext/dlapy2.c +0 -55
  558. data/ext/dlapy3.c +0 -59
  559. data/ext/dlaqgb.c +0 -117
  560. data/ext/dlaqge.c +0 -109
  561. data/ext/dlaqp2.c +0 -158
  562. data/ext/dlaqps.c +0 -208
  563. data/ext/dlaqr0.c +0 -153
  564. data/ext/dlaqr1.c +0 -82
  565. data/ext/dlaqr2.c +0 -182
  566. data/ext/dlaqr3.c +0 -182
  567. data/ext/dlaqr4.c +0 -153
  568. data/ext/dlaqr5.c +0 -200
  569. data/ext/dlaqsb.c +0 -101
  570. data/ext/dlaqsp.c +0 -94
  571. data/ext/dlaqsy.c +0 -97
  572. data/ext/dlaqtr.c +0 -114
  573. data/ext/dlar1v.c +0 -173
  574. data/ext/dlar2v.c +0 -149
  575. data/ext/dlarf.c +0 -101
  576. data/ext/dlarfb.c +0 -123
  577. data/ext/dlarfg.c +0 -83
  578. data/ext/dlarfgp.c +0 -83
  579. data/ext/dlarft.c +0 -105
  580. data/ext/dlarfx.c +0 -93
  581. data/ext/dlargv.c +0 -114
  582. data/ext/dlarnv.c +0 -83
  583. data/ext/dlarra.c +0 -124
  584. data/ext/dlarrb.c +0 -178
  585. data/ext/dlarrc.c +0 -96
  586. data/ext/dlarrd.c +0 -190
  587. data/ext/dlarre.c +0 -221
  588. data/ext/dlarrf.c +0 -176
  589. data/ext/dlarrj.c +0 -147
  590. data/ext/dlarrk.c +0 -97
  591. data/ext/dlarrr.c +0 -82
  592. data/ext/dlarrv.c +0 -271
  593. data/ext/dlarscl2.c +0 -82
  594. data/ext/dlartg.c +0 -61
  595. data/ext/dlartgp.c +0 -61
  596. data/ext/dlartgs.c +0 -62
  597. data/ext/dlartv.c +0 -130
  598. data/ext/dlaruv.c +0 -79
  599. data/ext/dlarz.c +0 -105
  600. data/ext/dlarzb.c +0 -127
  601. data/ext/dlarzt.c +0 -105
  602. data/ext/dlas2.c +0 -62
  603. data/ext/dlascl.c +0 -97
  604. data/ext/dlascl2.c +0 -82
  605. data/ext/dlasd0.c +0 -120
  606. data/ext/dlasd1.c +0 -162
  607. data/ext/dlasd2.c +0 -228
  608. data/ext/dlasd3.c +0 -202
  609. data/ext/dlasd4.c +0 -93
  610. data/ext/dlasd5.c +0 -90
  611. data/ext/dlasd6.c +0 -236
  612. data/ext/dlasd7.c +0 -225
  613. data/ext/dlasd8.c +0 -173
  614. data/ext/dlasda.c +0 -221
  615. data/ext/dlasdq.c +0 -186
  616. data/ext/dlasdt.c +0 -82
  617. data/ext/dlaset.c +0 -86
  618. data/ext/dlasq1.c +0 -96
  619. data/ext/dlasq2.c +0 -74
  620. data/ext/dlasq3.c +0 -138
  621. data/ext/dlasq4.c +0 -107
  622. data/ext/dlasq5.c +0 -94
  623. data/ext/dlasq6.c +0 -86
  624. data/ext/dlasr.c +0 -110
  625. data/ext/dlasrt.c +0 -74
  626. data/ext/dlassq.c +0 -70
  627. data/ext/dlasv2.c +0 -74
  628. data/ext/dlaswp.c +0 -94
  629. data/ext/dlasy2.c +0 -126
  630. data/ext/dlasyf.c +0 -97
  631. data/ext/dlat2s.c +0 -76
  632. data/ext/dlatbs.c +0 -130
  633. data/ext/dlatdf.c +0 -119
  634. data/ext/dlatps.c +0 -124
  635. data/ext/dlatrd.c +0 -105
  636. data/ext/dlatrs.c +0 -126
  637. data/ext/dlatrz.c +0 -87
  638. data/ext/dlatzm.c +0 -131
  639. data/ext/dlauu2.c +0 -77
  640. data/ext/dlauum.c +0 -77
  641. data/ext/dopgtr.c +0 -91
  642. data/ext/dopmtr.c +0 -116
  643. data/ext/dorbdb.c +0 -232
  644. data/ext/dorcsd.c +0 -197
  645. data/ext/dorg2l.c +0 -92
  646. data/ext/dorg2r.c +0 -92
  647. data/ext/dorgbr.c +0 -115
  648. data/ext/dorghr.c +0 -111
  649. data/ext/dorgl2.c +0 -90
  650. data/ext/dorglq.c +0 -107
  651. data/ext/dorgql.c +0 -107
  652. data/ext/dorgqr.c +0 -107
  653. data/ext/dorgr2.c +0 -90
  654. data/ext/dorgrq.c +0 -107
  655. data/ext/dorgtr.c +0 -107
  656. data/ext/dorm2l.c +0 -114
  657. data/ext/dorm2r.c +0 -114
  658. data/ext/dormbr.c +0 -139
  659. data/ext/dormhr.c +0 -133
  660. data/ext/dorml2.c +0 -110
  661. data/ext/dormlq.c +0 -125
  662. data/ext/dormql.c +0 -129
  663. data/ext/dormqr.c +0 -129
  664. data/ext/dormr2.c +0 -110
  665. data/ext/dormr3.c +0 -114
  666. data/ext/dormrq.c +0 -125
  667. data/ext/dormrz.c +0 -129
  668. data/ext/dormtr.c +0 -129
  669. data/ext/dpbcon.c +0 -82
  670. data/ext/dpbequ.c +0 -83
  671. data/ext/dpbrfs.c +0 -145
  672. data/ext/dpbstf.c +0 -81
  673. data/ext/dpbsv.c +0 -107
  674. data/ext/dpbsvx.c +0 -201
  675. data/ext/dpbtf2.c +0 -81
  676. data/ext/dpbtrf.c +0 -81
  677. data/ext/dpbtrs.c +0 -95
  678. data/ext/dpftrf.c +0 -82
  679. data/ext/dpftri.c +0 -82
  680. data/ext/dpftrs.c +0 -97
  681. data/ext/dpocon.c +0 -78
  682. data/ext/dpoequ.c +0 -75
  683. data/ext/dpoequb.c +0 -75
  684. data/ext/dporfs.c +0 -141
  685. data/ext/dporfsx.c +0 -206
  686. data/ext/dposv.c +0 -103
  687. data/ext/dposvx.c +0 -197
  688. data/ext/dposvxx.c +0 -235
  689. data/ext/dpotf2.c +0 -77
  690. data/ext/dpotrf.c +0 -77
  691. data/ext/dpotri.c +0 -77
  692. data/ext/dpotrs.c +0 -91
  693. data/ext/dppcon.c +0 -78
  694. data/ext/dppequ.c +0 -79
  695. data/ext/dpprfs.c +0 -139
  696. data/ext/dppsv.c +0 -104
  697. data/ext/dppsvx.c +0 -191
  698. data/ext/dpptrf.c +0 -78
  699. data/ext/dpptri.c +0 -78
  700. data/ext/dpptrs.c +0 -93
  701. data/ext/dpstf2.c +0 -95
  702. data/ext/dpstrf.c +0 -95
  703. data/ext/dptcon.c +0 -81
  704. data/ext/dpteqr.c +0 -126
  705. data/ext/dptrfs.c +0 -154
  706. data/ext/dptsv.c +0 -119
  707. data/ext/dptsvx.c +0 -168
  708. data/ext/dpttrf.c +0 -93
  709. data/ext/dpttrs.c +0 -97
  710. data/ext/dptts2.c +0 -94
  711. data/ext/drscl.c +0 -79
  712. data/ext/dsbev.c +0 -107
  713. data/ext/dsbevd.c +0 -140
  714. data/ext/dsbevx.c +0 -157
  715. data/ext/dsbgst.c +0 -117
  716. data/ext/dsbgv.c +0 -137
  717. data/ext/dsbgvd.c +0 -170
  718. data/ext/dsbgvx.c +0 -197
  719. data/ext/dsbtrd.c +0 -130
  720. data/ext/dsfrk.c +0 -109
  721. data/ext/dsgesv.c +0 -115
  722. data/ext/dspcon.c +0 -88
  723. data/ext/dspev.c +0 -102
  724. data/ext/dspevd.c +0 -135
  725. data/ext/dspevx.c +0 -141
  726. data/ext/dspgst.c +0 -94
  727. data/ext/dspgv.c +0 -129
  728. data/ext/dspgvd.c +0 -162
  729. data/ext/dspgvx.c +0 -168
  730. data/ext/dsposv.c +0 -111
  731. data/ext/dsprfs.c +0 -149
  732. data/ext/dspsv.c +0 -110
  733. data/ext/dspsvx.c +0 -163
  734. data/ext/dsptrd.c +0 -100
  735. data/ext/dsptrf.c +0 -84
  736. data/ext/dsptri.c +0 -89
  737. data/ext/dsptrs.c +0 -101
  738. data/ext/dstebz.c +0 -135
  739. data/ext/dstedc.c +0 -159
  740. data/ext/dstegr.c +0 -188
  741. data/ext/dstein.c +0 -134
  742. data/ext/dstemr.c +0 -193
  743. data/ext/dsteqr.c +0 -126
  744. data/ext/dsterf.c +0 -93
  745. data/ext/dstev.c +0 -111
  746. data/ext/dstevd.c +0 -144
  747. data/ext/dstevr.c +0 -188
  748. data/ext/dstevx.c +0 -158
  749. data/ext/dsycon.c +0 -90
  750. data/ext/dsyconv.c +0 -84
  751. data/ext/dsyequb.c +0 -82
  752. data/ext/dsyev.c +0 -107
  753. data/ext/dsyevd.c +0 -125
  754. data/ext/dsyevr.c +0 -172
  755. data/ext/dsyevx.c +0 -157
  756. data/ext/dsygs2.c +0 -95
  757. data/ext/dsygst.c +0 -95
  758. data/ext/dsygv.c +0 -137
  759. data/ext/dsygvd.c +0 -155
  760. data/ext/dsygvx.c +0 -187
  761. data/ext/dsyrfs.c +0 -153
  762. data/ext/dsyrfsx.c +0 -218
  763. data/ext/dsysv.c +0 -129
  764. data/ext/dsysvx.c +0 -183
  765. data/ext/dsysvxx.c +0 -258
  766. data/ext/dsyswapr.c +0 -82
  767. data/ext/dsytd2.c +0 -101
  768. data/ext/dsytf2.c +0 -85
  769. data/ext/dsytrd.c +0 -113
  770. data/ext/dsytrf.c +0 -97
  771. data/ext/dsytri.c +0 -92
  772. data/ext/dsytri2.c +0 -108
  773. data/ext/dsytri2x.c +0 -96
  774. data/ext/dsytrs.c +0 -103
  775. data/ext/dsytrs2.c +0 -106
  776. data/ext/dtbcon.c +0 -86
  777. data/ext/dtbrfs.c +0 -127
  778. data/ext/dtbtrs.c +0 -103
  779. data/ext/dtfsm.c +0 -110
  780. data/ext/dtftri.c +0 -86
  781. data/ext/dtfttp.c +0 -79
  782. data/ext/dtfttr.c +0 -80
  783. data/ext/dtgevc.c +0 -153
  784. data/ext/dtgex2.c +0 -180
  785. data/ext/dtgexc.c +0 -187
  786. data/ext/dtgsen.c +0 -252
  787. data/ext/dtgsja.c +0 -227
  788. data/ext/dtgsna.c +0 -164
  789. data/ext/dtgsy2.c +0 -182
  790. data/ext/dtgsyl.c +0 -190
  791. data/ext/dtpcon.c +0 -82
  792. data/ext/dtprfs.c +0 -123
  793. data/ext/dtptri.c +0 -82
  794. data/ext/dtptrs.c +0 -101
  795. data/ext/dtpttf.c +0 -79
  796. data/ext/dtpttr.c +0 -76
  797. data/ext/dtrcon.c +0 -82
  798. data/ext/dtrevc.c +0 -150
  799. data/ext/dtrexc.c +0 -116
  800. data/ext/dtrrfs.c +0 -123
  801. data/ext/dtrsen.c +0 -169
  802. data/ext/dtrsna.c +0 -137
  803. data/ext/dtrsyl.c +0 -116
  804. data/ext/dtrti2.c +0 -81
  805. data/ext/dtrtri.c +0 -81
  806. data/ext/dtrtrs.c +0 -99
  807. data/ext/dtrttf.c +0 -77
  808. data/ext/dtrttp.c +0 -73
  809. data/ext/dtzrqf.c +0 -83
  810. data/ext/dtzrzf.c +0 -101
  811. data/ext/dzsum1.c +0 -63
  812. data/ext/icmax1.c +0 -63
  813. data/ext/ieeeck.c +0 -59
  814. data/ext/ilaclc.c +0 -65
  815. data/ext/ilaclr.c +0 -65
  816. data/ext/iladiag.c +0 -51
  817. data/ext/iladlc.c +0 -65
  818. data/ext/iladlr.c +0 -65
  819. data/ext/ilaenv.c +0 -75
  820. data/ext/ilaprec.c +0 -51
  821. data/ext/ilaslc.c +0 -65
  822. data/ext/ilaslr.c +0 -65
  823. data/ext/ilatrans.c +0 -51
  824. data/ext/ilauplo.c +0 -51
  825. data/ext/ilaver.c +0 -53
  826. data/ext/ilazlc.c +0 -65
  827. data/ext/ilazlr.c +0 -65
  828. data/ext/iparmq.c +0 -75
  829. data/ext/izmax1.c +0 -63
  830. data/ext/lsamen.c +0 -59
  831. data/ext/rb_lapack.c +0 -3279
  832. data/ext/sbbcsd.c +0 -287
  833. data/ext/sbdsdc.c +0 -157
  834. data/ext/sbdsqr.c +0 -182
  835. data/ext/scsum1.c +0 -63
  836. data/ext/sdisna.c +0 -75
  837. data/ext/sgbbrd.c +0 -154
  838. data/ext/sgbcon.c +0 -98
  839. data/ext/sgbequ.c +0 -98
  840. data/ext/sgbequb.c +0 -96
  841. data/ext/sgbrfs.c +0 -161
  842. data/ext/sgbrfsx.c +0 -249
  843. data/ext/sgbsv.c +0 -115
  844. data/ext/sgbsvx.c +0 -286
  845. data/ext/sgbsvxx.c +0 -289
  846. data/ext/sgbtf2.c +0 -93
  847. data/ext/sgbtrf.c +0 -93
  848. data/ext/sgbtrs.c +0 -111
  849. data/ext/sgebak.c +0 -101
  850. data/ext/sgebal.c +0 -91
  851. data/ext/sgebd2.c +0 -112
  852. data/ext/sgebrd.c +0 -127
  853. data/ext/sgecon.c +0 -78
  854. data/ext/sgeequ.c +0 -88
  855. data/ext/sgeequb.c +0 -88
  856. data/ext/sgees.c +0 -148
  857. data/ext/sgeesx.c +0 -170
  858. data/ext/sgeev.c +0 -137
  859. data/ext/sgeevx.c +0 -181
  860. data/ext/sgegs.c +0 -171
  861. data/ext/sgegv.c +0 -171
  862. data/ext/sgehd2.c +0 -92
  863. data/ext/sgehrd.c +0 -107
  864. data/ext/sgejsv.c +0 -159
  865. data/ext/sgelq2.c +0 -86
  866. data/ext/sgelqf.c +0 -103
  867. data/ext/sgels.c +0 -137
  868. data/ext/sgelsd.c +0 -149
  869. data/ext/sgelss.c +0 -148
  870. data/ext/sgelsx.c +0 -136
  871. data/ext/sgelsy.c +0 -163
  872. data/ext/sgeql2.c +0 -88
  873. data/ext/sgeqlf.c +0 -103
  874. data/ext/sgeqp3.c +0 -126
  875. data/ext/sgeqpf.c +0 -111
  876. data/ext/sgeqr2.c +0 -88
  877. data/ext/sgeqr2p.c +0 -88
  878. data/ext/sgeqrf.c +0 -103
  879. data/ext/sgeqrfp.c +0 -103
  880. data/ext/sgerfs.c +0 -153
  881. data/ext/sgerfsx.c +0 -219
  882. data/ext/sgerq2.c +0 -86
  883. data/ext/sgerqf.c +0 -103
  884. data/ext/sgesc2.c +0 -108
  885. data/ext/sgesdd.c +0 -132
  886. data/ext/sgesv.c +0 -107
  887. data/ext/sgesvd.c +0 -143
  888. data/ext/sgesvj.c +0 -156
  889. data/ext/sgesvx.c +0 -278
  890. data/ext/sgesvxx.c +0 -281
  891. data/ext/sgetc2.c +0 -89
  892. data/ext/sgetf2.c +0 -85
  893. data/ext/sgetrf.c +0 -85
  894. data/ext/sgetri.c +0 -103
  895. data/ext/sgetrs.c +0 -103
  896. data/ext/sggbak.c +0 -113
  897. data/ext/sggbal.c +0 -128
  898. data/ext/sgges.c +0 -198
  899. data/ext/sggesx.c +0 -231
  900. data/ext/sggev.c +0 -171
  901. data/ext/sggevx.c +0 -229
  902. data/ext/sggglm.c +0 -156
  903. data/ext/sgghrd.c +0 -167
  904. data/ext/sgglse.c +0 -171
  905. data/ext/sggqrf.c +0 -137
  906. data/ext/sggrqf.c +0 -141
  907. data/ext/sggsvd.c +0 -181
  908. data/ext/sggsvp.c +0 -171
  909. data/ext/sgsvj0.c +0 -182
  910. data/ext/sgsvj1.c +0 -186
  911. data/ext/sgtcon.c +0 -124
  912. data/ext/sgtrfs.c +0 -209
  913. data/ext/sgtsv.c +0 -142
  914. data/ext/sgtsvx.c +0 -256
  915. data/ext/sgttrf.c +0 -132
  916. data/ext/sgttrs.c +0 -137
  917. data/ext/sgtts2.c +0 -134
  918. data/ext/shgeqz.c +0 -213
  919. data/ext/shsein.c +0 -205
  920. data/ext/shseqr.c +0 -153
  921. data/ext/sisnan.c +0 -51
  922. data/ext/sla_gbamv.c +0 -129
  923. data/ext/sla_gbrcond.c +0 -142
  924. data/ext/sla_gbrfsx_extended.c +0 -291
  925. data/ext/sla_gbrpvgrw.c +0 -87
  926. data/ext/sla_geamv.c +0 -119
  927. data/ext/sla_gercond.c +0 -134
  928. data/ext/sla_gerfsx_extended.c +0 -283
  929. data/ext/sla_lin_berr.c +0 -84
  930. data/ext/sla_porcond.c +0 -122
  931. data/ext/sla_porfsx_extended.c +0 -271
  932. data/ext/sla_porpvgrw.c +0 -95
  933. data/ext/sla_rpvgrw.c +0 -79
  934. data/ext/sla_syamv.c +0 -116
  935. data/ext/sla_syrcond.c +0 -134
  936. data/ext/sla_syrfsx_extended.c +0 -283
  937. data/ext/sla_syrpvgrw.c +0 -107
  938. data/ext/sla_wwaddw.c +0 -102
  939. data/ext/slabad.c +0 -54
  940. data/ext/slabrd.c +0 -132
  941. data/ext/slacn2.c +0 -106
  942. data/ext/slacon.c +0 -83
  943. data/ext/slacpy.c +0 -77
  944. data/ext/sladiv.c +0 -66
  945. data/ext/slae2.c +0 -62
  946. data/ext/slaebz.c +0 -218
  947. data/ext/slaed0.c +0 -127
  948. data/ext/slaed1.c +0 -133
  949. data/ext/slaed2.c +0 -189
  950. data/ext/slaed3.c +0 -161
  951. data/ext/slaed4.c +0 -90
  952. data/ext/slaed5.c +0 -87
  953. data/ext/slaed6.c +0 -90
  954. data/ext/slaed7.c +0 -248
  955. data/ext/slaed8.c +0 -206
  956. data/ext/slaed9.c +0 -111
  957. data/ext/slaeda.c +0 -160
  958. data/ext/slaein.c +0 -143
  959. data/ext/slaev2.c +0 -68
  960. data/ext/slaexc.c +0 -118
  961. data/ext/slag2.c +0 -91
  962. data/ext/slag2d.c +0 -76
  963. data/ext/slags2.c +0 -90
  964. data/ext/slagtf.c +0 -140
  965. data/ext/slagtm.c +0 -132
  966. data/ext/slagts.c +0 -139
  967. data/ext/slagv2.c +0 -132
  968. data/ext/slahqr.c +0 -143
  969. data/ext/slahr2.c +0 -112
  970. data/ext/slahrd.c +0 -114
  971. data/ext/slaic1.c +0 -89
  972. data/ext/slaln2.c +0 -120
  973. data/ext/slals0.c +0 -201
  974. data/ext/slalsa.c +0 -270
  975. data/ext/slalsd.c +0 -142
  976. data/ext/slamrg.c +0 -80
  977. data/ext/slaneg.c +0 -83
  978. data/ext/slangb.c +0 -78
  979. data/ext/slange.c +0 -74
  980. data/ext/slangt.c +0 -87
  981. data/ext/slanhs.c +0 -70
  982. data/ext/slansb.c +0 -78
  983. data/ext/slansf.c +0 -78
  984. data/ext/slansp.c +0 -76
  985. data/ext/slanst.c +0 -75
  986. data/ext/slansy.c +0 -74
  987. data/ext/slantb.c +0 -82
  988. data/ext/slantp.c +0 -80
  989. data/ext/slantr.c +0 -82
  990. data/ext/slanv2.c +0 -82
  991. data/ext/slapll.c +0 -105
  992. data/ext/slapmr.c +0 -97
  993. data/ext/slapmt.c +0 -101
  994. data/ext/slapy2.c +0 -55
  995. data/ext/slapy3.c +0 -59
  996. data/ext/slaqgb.c +0 -117
  997. data/ext/slaqge.c +0 -109
  998. data/ext/slaqp2.c +0 -158
  999. data/ext/slaqps.c +0 -208
  1000. data/ext/slaqr0.c +0 -153
  1001. data/ext/slaqr1.c +0 -82
  1002. data/ext/slaqr2.c +0 -182
  1003. data/ext/slaqr3.c +0 -182
  1004. data/ext/slaqr4.c +0 -153
  1005. data/ext/slaqr5.c +0 -200
  1006. data/ext/slaqsb.c +0 -101
  1007. data/ext/slaqsp.c +0 -94
  1008. data/ext/slaqsy.c +0 -97
  1009. data/ext/slaqtr.c +0 -114
  1010. data/ext/slar1v.c +0 -173
  1011. data/ext/slar2v.c +0 -149
  1012. data/ext/slarf.c +0 -101
  1013. data/ext/slarfb.c +0 -123
  1014. data/ext/slarfg.c +0 -83
  1015. data/ext/slarfgp.c +0 -83
  1016. data/ext/slarft.c +0 -105
  1017. data/ext/slarfx.c +0 -93
  1018. data/ext/slargv.c +0 -114
  1019. data/ext/slarnv.c +0 -83
  1020. data/ext/slarra.c +0 -124
  1021. data/ext/slarrb.c +0 -178
  1022. data/ext/slarrc.c +0 -96
  1023. data/ext/slarrd.c +0 -190
  1024. data/ext/slarre.c +0 -221
  1025. data/ext/slarrf.c +0 -176
  1026. data/ext/slarrj.c +0 -147
  1027. data/ext/slarrk.c +0 -97
  1028. data/ext/slarrr.c +0 -82
  1029. data/ext/slarrv.c +0 -271
  1030. data/ext/slarscl2.c +0 -82
  1031. data/ext/slartg.c +0 -61
  1032. data/ext/slartgp.c +0 -61
  1033. data/ext/slartgs.c +0 -62
  1034. data/ext/slartv.c +0 -130
  1035. data/ext/slaruv.c +0 -79
  1036. data/ext/slarz.c +0 -105
  1037. data/ext/slarzb.c +0 -127
  1038. data/ext/slarzt.c +0 -105
  1039. data/ext/slas2.c +0 -62
  1040. data/ext/slascl.c +0 -97
  1041. data/ext/slascl2.c +0 -82
  1042. data/ext/slasd0.c +0 -120
  1043. data/ext/slasd1.c +0 -160
  1044. data/ext/slasd2.c +0 -228
  1045. data/ext/slasd3.c +0 -212
  1046. data/ext/slasd4.c +0 -93
  1047. data/ext/slasd5.c +0 -90
  1048. data/ext/slasd6.c +0 -236
  1049. data/ext/slasd7.c +0 -225
  1050. data/ext/slasd8.c +0 -173
  1051. data/ext/slasda.c +0 -221
  1052. data/ext/slasdq.c +0 -186
  1053. data/ext/slasdt.c +0 -82
  1054. data/ext/slaset.c +0 -86
  1055. data/ext/slasq1.c +0 -96
  1056. data/ext/slasq2.c +0 -74
  1057. data/ext/slasq3.c +0 -138
  1058. data/ext/slasq4.c +0 -107
  1059. data/ext/slasq5.c +0 -94
  1060. data/ext/slasq6.c +0 -86
  1061. data/ext/slasr.c +0 -110
  1062. data/ext/slasrt.c +0 -74
  1063. data/ext/slassq.c +0 -70
  1064. data/ext/slasv2.c +0 -74
  1065. data/ext/slaswp.c +0 -94
  1066. data/ext/slasy2.c +0 -126
  1067. data/ext/slasyf.c +0 -97
  1068. data/ext/slatbs.c +0 -130
  1069. data/ext/slatdf.c +0 -119
  1070. data/ext/slatps.c +0 -124
  1071. data/ext/slatrd.c +0 -105
  1072. data/ext/slatrs.c +0 -126
  1073. data/ext/slatrz.c +0 -87
  1074. data/ext/slatzm.c +0 -131
  1075. data/ext/slauu2.c +0 -77
  1076. data/ext/slauum.c +0 -77
  1077. data/ext/sopgtr.c +0 -91
  1078. data/ext/sopmtr.c +0 -116
  1079. data/ext/sorbdb.c +0 -232
  1080. data/ext/sorcsd.c +0 -197
  1081. data/ext/sorg2l.c +0 -92
  1082. data/ext/sorg2r.c +0 -92
  1083. data/ext/sorgbr.c +0 -115
  1084. data/ext/sorghr.c +0 -111
  1085. data/ext/sorgl2.c +0 -90
  1086. data/ext/sorglq.c +0 -107
  1087. data/ext/sorgql.c +0 -107
  1088. data/ext/sorgqr.c +0 -107
  1089. data/ext/sorgr2.c +0 -90
  1090. data/ext/sorgrq.c +0 -107
  1091. data/ext/sorgtr.c +0 -107
  1092. data/ext/sorm2l.c +0 -114
  1093. data/ext/sorm2r.c +0 -114
  1094. data/ext/sormbr.c +0 -139
  1095. data/ext/sormhr.c +0 -133
  1096. data/ext/sorml2.c +0 -110
  1097. data/ext/sormlq.c +0 -125
  1098. data/ext/sormql.c +0 -129
  1099. data/ext/sormqr.c +0 -129
  1100. data/ext/sormr2.c +0 -110
  1101. data/ext/sormr3.c +0 -114
  1102. data/ext/sormrq.c +0 -125
  1103. data/ext/sormrz.c +0 -129
  1104. data/ext/sormtr.c +0 -129
  1105. data/ext/spbcon.c +0 -82
  1106. data/ext/spbequ.c +0 -83
  1107. data/ext/spbrfs.c +0 -145
  1108. data/ext/spbstf.c +0 -81
  1109. data/ext/spbsv.c +0 -107
  1110. data/ext/spbsvx.c +0 -201
  1111. data/ext/spbtf2.c +0 -81
  1112. data/ext/spbtrf.c +0 -81
  1113. data/ext/spbtrs.c +0 -95
  1114. data/ext/spftrf.c +0 -82
  1115. data/ext/spftri.c +0 -82
  1116. data/ext/spftrs.c +0 -97
  1117. data/ext/spocon.c +0 -78
  1118. data/ext/spoequ.c +0 -75
  1119. data/ext/spoequb.c +0 -75
  1120. data/ext/sporfs.c +0 -141
  1121. data/ext/sporfsx.c +0 -206
  1122. data/ext/sposv.c +0 -103
  1123. data/ext/sposvx.c +0 -197
  1124. data/ext/sposvxx.c +0 -235
  1125. data/ext/spotf2.c +0 -77
  1126. data/ext/spotrf.c +0 -77
  1127. data/ext/spotri.c +0 -77
  1128. data/ext/spotrs.c +0 -91
  1129. data/ext/sppcon.c +0 -78
  1130. data/ext/sppequ.c +0 -79
  1131. data/ext/spprfs.c +0 -139
  1132. data/ext/sppsv.c +0 -104
  1133. data/ext/sppsvx.c +0 -191
  1134. data/ext/spptrf.c +0 -78
  1135. data/ext/spptri.c +0 -78
  1136. data/ext/spptrs.c +0 -93
  1137. data/ext/spstf2.c +0 -95
  1138. data/ext/spstrf.c +0 -95
  1139. data/ext/sptcon.c +0 -81
  1140. data/ext/spteqr.c +0 -126
  1141. data/ext/sptrfs.c +0 -154
  1142. data/ext/sptsv.c +0 -119
  1143. data/ext/sptsvx.c +0 -168
  1144. data/ext/spttrf.c +0 -93
  1145. data/ext/spttrs.c +0 -97
  1146. data/ext/sptts2.c +0 -94
  1147. data/ext/srscl.c +0 -79
  1148. data/ext/ssbev.c +0 -107
  1149. data/ext/ssbevd.c +0 -140
  1150. data/ext/ssbevx.c +0 -157
  1151. data/ext/ssbgst.c +0 -117
  1152. data/ext/ssbgv.c +0 -137
  1153. data/ext/ssbgvd.c +0 -170
  1154. data/ext/ssbgvx.c +0 -197
  1155. data/ext/ssbtrd.c +0 -130
  1156. data/ext/ssfrk.c +0 -109
  1157. data/ext/sspcon.c +0 -88
  1158. data/ext/sspev.c +0 -102
  1159. data/ext/sspevd.c +0 -135
  1160. data/ext/sspevx.c +0 -141
  1161. data/ext/sspgst.c +0 -94
  1162. data/ext/sspgv.c +0 -129
  1163. data/ext/sspgvd.c +0 -162
  1164. data/ext/sspgvx.c +0 -168
  1165. data/ext/ssprfs.c +0 -149
  1166. data/ext/sspsv.c +0 -110
  1167. data/ext/sspsvx.c +0 -163
  1168. data/ext/ssptrd.c +0 -100
  1169. data/ext/ssptrf.c +0 -84
  1170. data/ext/ssptri.c +0 -89
  1171. data/ext/ssptrs.c +0 -101
  1172. data/ext/sstebz.c +0 -135
  1173. data/ext/sstedc.c +0 -159
  1174. data/ext/sstegr.c +0 -188
  1175. data/ext/sstein.c +0 -134
  1176. data/ext/sstemr.c +0 -193
  1177. data/ext/ssteqr.c +0 -126
  1178. data/ext/ssterf.c +0 -93
  1179. data/ext/sstev.c +0 -111
  1180. data/ext/sstevd.c +0 -144
  1181. data/ext/sstevr.c +0 -188
  1182. data/ext/sstevx.c +0 -158
  1183. data/ext/ssycon.c +0 -90
  1184. data/ext/ssyconv.c +0 -84
  1185. data/ext/ssyequb.c +0 -82
  1186. data/ext/ssyev.c +0 -107
  1187. data/ext/ssyevd.c +0 -125
  1188. data/ext/ssyevr.c +0 -172
  1189. data/ext/ssyevx.c +0 -157
  1190. data/ext/ssygs2.c +0 -95
  1191. data/ext/ssygst.c +0 -95
  1192. data/ext/ssygv.c +0 -137
  1193. data/ext/ssygvd.c +0 -155
  1194. data/ext/ssygvx.c +0 -191
  1195. data/ext/ssyrfs.c +0 -153
  1196. data/ext/ssyrfsx.c +0 -218
  1197. data/ext/ssysv.c +0 -129
  1198. data/ext/ssysvx.c +0 -183
  1199. data/ext/ssysvxx.c +0 -258
  1200. data/ext/ssyswapr.c +0 -82
  1201. data/ext/ssytd2.c +0 -101
  1202. data/ext/ssytf2.c +0 -85
  1203. data/ext/ssytrd.c +0 -113
  1204. data/ext/ssytrf.c +0 -97
  1205. data/ext/ssytri.c +0 -92
  1206. data/ext/ssytri2.c +0 -127
  1207. data/ext/ssytri2x.c +0 -96
  1208. data/ext/ssytrs.c +0 -103
  1209. data/ext/ssytrs2.c +0 -106
  1210. data/ext/stbcon.c +0 -86
  1211. data/ext/stbrfs.c +0 -127
  1212. data/ext/stbtrs.c +0 -103
  1213. data/ext/stfsm.c +0 -112
  1214. data/ext/stftri.c +0 -86
  1215. data/ext/stfttp.c +0 -79
  1216. data/ext/stfttr.c +0 -80
  1217. data/ext/stgevc.c +0 -153
  1218. data/ext/stgex2.c +0 -184
  1219. data/ext/stgexc.c +0 -191
  1220. data/ext/stgsen.c +0 -252
  1221. data/ext/stgsja.c +0 -227
  1222. data/ext/stgsna.c +0 -164
  1223. data/ext/stgsy2.c +0 -182
  1224. data/ext/stgsyl.c +0 -190
  1225. data/ext/stpcon.c +0 -82
  1226. data/ext/stprfs.c +0 -123
  1227. data/ext/stptri.c +0 -82
  1228. data/ext/stptrs.c +0 -101
  1229. data/ext/stpttf.c +0 -79
  1230. data/ext/stpttr.c +0 -76
  1231. data/ext/strcon.c +0 -82
  1232. data/ext/strevc.c +0 -150
  1233. data/ext/strexc.c +0 -116
  1234. data/ext/strrfs.c +0 -123
  1235. data/ext/strsen.c +0 -169
  1236. data/ext/strsna.c +0 -137
  1237. data/ext/strsyl.c +0 -116
  1238. data/ext/strti2.c +0 -81
  1239. data/ext/strtri.c +0 -81
  1240. data/ext/strtrs.c +0 -99
  1241. data/ext/strttf.c +0 -77
  1242. data/ext/strttp.c +0 -73
  1243. data/ext/stzrqf.c +0 -83
  1244. data/ext/stzrzf.c +0 -101
  1245. data/ext/xerbla.c +0 -52
  1246. data/ext/xerbla_array.c +0 -53
  1247. data/ext/zbbcsd.c +0 -283
  1248. data/ext/zbdsqr.c +0 -182
  1249. data/ext/zcgesv.c +0 -118
  1250. data/ext/zcposv.c +0 -114
  1251. data/ext/zdrscl.c +0 -79
  1252. data/ext/zgbbrd.c +0 -157
  1253. data/ext/zgbcon.c +0 -98
  1254. data/ext/zgbequ.c +0 -98
  1255. data/ext/zgbequb.c +0 -96
  1256. data/ext/zgbrfs.c +0 -161
  1257. data/ext/zgbrfsx.c +0 -249
  1258. data/ext/zgbsv.c +0 -115
  1259. data/ext/zgbsvx.c +0 -286
  1260. data/ext/zgbsvxx.c +0 -289
  1261. data/ext/zgbtf2.c +0 -93
  1262. data/ext/zgbtrf.c +0 -93
  1263. data/ext/zgbtrs.c +0 -111
  1264. data/ext/zgebak.c +0 -101
  1265. data/ext/zgebal.c +0 -91
  1266. data/ext/zgebd2.c +0 -112
  1267. data/ext/zgebrd.c +0 -127
  1268. data/ext/zgecon.c +0 -78
  1269. data/ext/zgeequ.c +0 -88
  1270. data/ext/zgeequb.c +0 -88
  1271. data/ext/zgees.c +0 -142
  1272. data/ext/zgeesx.c +0 -152
  1273. data/ext/zgeev.c +0 -132
  1274. data/ext/zgeevx.c +0 -173
  1275. data/ext/zgegs.c +0 -166
  1276. data/ext/zgegv.c +0 -171
  1277. data/ext/zgehd2.c +0 -92
  1278. data/ext/zgehrd.c +0 -107
  1279. data/ext/zgelq2.c +0 -86
  1280. data/ext/zgelqf.c +0 -103
  1281. data/ext/zgels.c +0 -137
  1282. data/ext/zgelsd.c +0 -154
  1283. data/ext/zgelss.c +0 -151
  1284. data/ext/zgelsx.c +0 -139
  1285. data/ext/zgelsy.c +0 -166
  1286. data/ext/zgeql2.c +0 -88
  1287. data/ext/zgeqlf.c +0 -103
  1288. data/ext/zgeqp3.c +0 -129
  1289. data/ext/zgeqpf.c +0 -114
  1290. data/ext/zgeqr2.c +0 -88
  1291. data/ext/zgeqr2p.c +0 -88
  1292. data/ext/zgeqrf.c +0 -103
  1293. data/ext/zgeqrfp.c +0 -103
  1294. data/ext/zgerfs.c +0 -153
  1295. data/ext/zgerfsx.c +0 -219
  1296. data/ext/zgerq2.c +0 -86
  1297. data/ext/zgerqf.c +0 -103
  1298. data/ext/zgesc2.c +0 -108
  1299. data/ext/zgesdd.c +0 -135
  1300. data/ext/zgesv.c +0 -107
  1301. data/ext/zgesvd.c +0 -146
  1302. data/ext/zgesvx.c +0 -278
  1303. data/ext/zgesvxx.c +0 -281
  1304. data/ext/zgetc2.c +0 -89
  1305. data/ext/zgetf2.c +0 -85
  1306. data/ext/zgetrf.c +0 -85
  1307. data/ext/zgetri.c +0 -103
  1308. data/ext/zgetrs.c +0 -103
  1309. data/ext/zggbak.c +0 -113
  1310. data/ext/zggbal.c +0 -128
  1311. data/ext/zgges.c +0 -192
  1312. data/ext/zggesx.c +0 -230
  1313. data/ext/zggev.c +0 -171
  1314. data/ext/zggevx.c +0 -226
  1315. data/ext/zggglm.c +0 -156
  1316. data/ext/zgghrd.c +0 -167
  1317. data/ext/zgglse.c +0 -171
  1318. data/ext/zggqrf.c +0 -137
  1319. data/ext/zggrqf.c +0 -141
  1320. data/ext/zggsvd.c +0 -184
  1321. data/ext/zggsvp.c +0 -174
  1322. data/ext/zgtcon.c +0 -121
  1323. data/ext/zgtrfs.c +0 -209
  1324. data/ext/zgtsv.c +0 -142
  1325. data/ext/zgtsvx.c +0 -256
  1326. data/ext/zgttrf.c +0 -132
  1327. data/ext/zgttrs.c +0 -137
  1328. data/ext/zgtts2.c +0 -134
  1329. data/ext/zhbev.c +0 -110
  1330. data/ext/zhbevd.c +0 -158
  1331. data/ext/zhbevx.c +0 -160
  1332. data/ext/zhbgst.c +0 -120
  1333. data/ext/zhbgv.c +0 -140
  1334. data/ext/zhbgvd.c +0 -188
  1335. data/ext/zhbgvx.c +0 -189
  1336. data/ext/zhbtrd.c +0 -130
  1337. data/ext/zhecon.c +0 -87
  1338. data/ext/zheequb.c +0 -82
  1339. data/ext/zheev.c +0 -110
  1340. data/ext/zheevd.c +0 -143
  1341. data/ext/zheevr.c +0 -190
  1342. data/ext/zheevx.c +0 -160
  1343. data/ext/zhegs2.c +0 -95
  1344. data/ext/zhegst.c +0 -95
  1345. data/ext/zhegv.c +0 -140
  1346. data/ext/zhegvd.c +0 -173
  1347. data/ext/zhegvx.c +0 -190
  1348. data/ext/zherfs.c +0 -153
  1349. data/ext/zherfsx.c +0 -218
  1350. data/ext/zhesv.c +0 -123
  1351. data/ext/zhesvx.c +0 -183
  1352. data/ext/zhesvxx.c +0 -258
  1353. data/ext/zhetd2.c +0 -101
  1354. data/ext/zhetf2.c +0 -85
  1355. data/ext/zhetrd.c +0 -113
  1356. data/ext/zhetrf.c +0 -97
  1357. data/ext/zhetri.c +0 -92
  1358. data/ext/zhetrs.c +0 -103
  1359. data/ext/zhetrs2.c +0 -106
  1360. data/ext/zhfrk.c +0 -109
  1361. data/ext/zhgeqz.c +0 -208
  1362. data/ext/zhpcon.c +0 -85
  1363. data/ext/zhpev.c +0 -105
  1364. data/ext/zhpevd.c +0 -153
  1365. data/ext/zhpevx.c +0 -144
  1366. data/ext/zhpgst.c +0 -94
  1367. data/ext/zhpgv.c +0 -132
  1368. data/ext/zhpgvd.c +0 -170
  1369. data/ext/zhpgvx.c +0 -170
  1370. data/ext/zhprfs.c +0 -149
  1371. data/ext/zhpsv.c +0 -110
  1372. data/ext/zhpsvx.c +0 -163
  1373. data/ext/zhptrd.c +0 -100
  1374. data/ext/zhptrf.c +0 -84
  1375. data/ext/zhptri.c +0 -89
  1376. data/ext/zhptrs.c +0 -101
  1377. data/ext/zhsein.c +0 -185
  1378. data/ext/zhseqr.c +0 -145
  1379. data/ext/zla_gbamv.c +0 -127
  1380. data/ext/zla_gbrcond_c.c +0 -142
  1381. data/ext/zla_gbrcond_x.c +0 -138
  1382. data/ext/zla_gbrfsx_extended.c +0 -295
  1383. data/ext/zla_gbrpvgrw.c +0 -87
  1384. data/ext/zla_geamv.c +0 -119
  1385. data/ext/zla_gercond_c.c +0 -134
  1386. data/ext/zla_gercond_x.c +0 -130
  1387. data/ext/zla_gerfsx_extended.c +0 -281
  1388. data/ext/zla_heamv.c +0 -116
  1389. data/ext/zla_hercond_c.c +0 -134
  1390. data/ext/zla_hercond_x.c +0 -130
  1391. data/ext/zla_herfsx_extended.c +0 -283
  1392. data/ext/zla_herpvgrw.c +0 -107
  1393. data/ext/zla_lin_berr.c +0 -84
  1394. data/ext/zla_porcond_c.c +0 -122
  1395. data/ext/zla_porcond_x.c +0 -118
  1396. data/ext/zla_porfsx_extended.c +0 -271
  1397. data/ext/zla_porpvgrw.c +0 -95
  1398. data/ext/zla_rpvgrw.c +0 -79
  1399. data/ext/zla_syamv.c +0 -116
  1400. data/ext/zla_syrcond_c.c +0 -134
  1401. data/ext/zla_syrcond_x.c +0 -130
  1402. data/ext/zla_syrfsx_extended.c +0 -283
  1403. data/ext/zla_syrpvgrw.c +0 -107
  1404. data/ext/zla_wwaddw.c +0 -102
  1405. data/ext/zlabrd.c +0 -132
  1406. data/ext/zlacgv.c +0 -75
  1407. data/ext/zlacn2.c +0 -103
  1408. data/ext/zlacon.c +0 -80
  1409. data/ext/zlacp2.c +0 -77
  1410. data/ext/zlacpy.c +0 -77
  1411. data/ext/zlacrm.c +0 -90
  1412. data/ext/zlacrt.c +0 -108
  1413. data/ext/zladiv.c +0 -57
  1414. data/ext/zlaed0.c +0 -134
  1415. data/ext/zlaed7.c +0 -247
  1416. data/ext/zlaed8.c +0 -198
  1417. data/ext/zlaein.c +0 -113
  1418. data/ext/zlaesy.c +0 -74
  1419. data/ext/zlaev2.c +0 -71
  1420. data/ext/zlag2c.c +0 -76
  1421. data/ext/zlags2.c +0 -92
  1422. data/ext/zlagtm.c +0 -132
  1423. data/ext/zlahef.c +0 -97
  1424. data/ext/zlahqr.c +0 -135
  1425. data/ext/zlahr2.c +0 -112
  1426. data/ext/zlahrd.c +0 -112
  1427. data/ext/zlaic1.c +0 -90
  1428. data/ext/zlals0.c +0 -201
  1429. data/ext/zlalsa.c +0 -270
  1430. data/ext/zlalsd.c +0 -145
  1431. data/ext/zlangb.c +0 -76
  1432. data/ext/zlange.c +0 -74
  1433. data/ext/zlangt.c +0 -87
  1434. data/ext/zlanhb.c +0 -78
  1435. data/ext/zlanhe.c +0 -74
  1436. data/ext/zlanhf.c +0 -80
  1437. data/ext/zlanhp.c +0 -76
  1438. data/ext/zlanhs.c +0 -70
  1439. data/ext/zlanht.c +0 -75
  1440. data/ext/zlansb.c +0 -78
  1441. data/ext/zlansp.c +0 -76
  1442. data/ext/zlansy.c +0 -74
  1443. data/ext/zlantb.c +0 -82
  1444. data/ext/zlantp.c +0 -80
  1445. data/ext/zlantr.c +0 -82
  1446. data/ext/zlapll.c +0 -105
  1447. data/ext/zlapmr.c +0 -97
  1448. data/ext/zlapmt.c +0 -101
  1449. data/ext/zlaqgb.c +0 -117
  1450. data/ext/zlaqge.c +0 -109
  1451. data/ext/zlaqhb.c +0 -97
  1452. data/ext/zlaqhe.c +0 -97
  1453. data/ext/zlaqhp.c +0 -94
  1454. data/ext/zlaqp2.c +0 -158
  1455. data/ext/zlaqps.c +0 -208
  1456. data/ext/zlaqr0.c +0 -153
  1457. data/ext/zlaqr1.c +0 -76
  1458. data/ext/zlaqr2.c +0 -174
  1459. data/ext/zlaqr3.c +0 -174
  1460. data/ext/zlaqr4.c +0 -147
  1461. data/ext/zlaqr5.c +0 -179
  1462. data/ext/zlaqsb.c +0 -101
  1463. data/ext/zlaqsp.c +0 -94
  1464. data/ext/zlaqsy.c +0 -97
  1465. data/ext/zlar1v.c +0 -173
  1466. data/ext/zlar2v.c +0 -149
  1467. data/ext/zlarcm.c +0 -86
  1468. data/ext/zlarf.c +0 -102
  1469. data/ext/zlarfb.c +0 -123
  1470. data/ext/zlarfg.c +0 -84
  1471. data/ext/zlarfgp.c +0 -84
  1472. data/ext/zlarft.c +0 -105
  1473. data/ext/zlarfx.c +0 -94
  1474. data/ext/zlargv.c +0 -114
  1475. data/ext/zlarnv.c +0 -83
  1476. data/ext/zlarrv.c +0 -271
  1477. data/ext/zlarscl2.c +0 -82
  1478. data/ext/zlartg.c +0 -63
  1479. data/ext/zlartv.c +0 -130
  1480. data/ext/zlarz.c +0 -106
  1481. data/ext/zlarzb.c +0 -127
  1482. data/ext/zlarzt.c +0 -105
  1483. data/ext/zlascl.c +0 -97
  1484. data/ext/zlascl2.c +0 -82
  1485. data/ext/zlaset.c +0 -88
  1486. data/ext/zlasr.c +0 -110
  1487. data/ext/zlassq.c +0 -70
  1488. data/ext/zlaswp.c +0 -94
  1489. data/ext/zlasyf.c +0 -97
  1490. data/ext/zlat2c.c +0 -76
  1491. data/ext/zlatbs.c +0 -130
  1492. data/ext/zlatdf.c +0 -119
  1493. data/ext/zlatps.c +0 -124
  1494. data/ext/zlatrd.c +0 -105
  1495. data/ext/zlatrs.c +0 -126
  1496. data/ext/zlatrz.c +0 -87
  1497. data/ext/zlatzm.c +0 -132
  1498. data/ext/zlauu2.c +0 -77
  1499. data/ext/zlauum.c +0 -77
  1500. data/ext/zpbcon.c +0 -82
  1501. data/ext/zpbequ.c +0 -83
  1502. data/ext/zpbrfs.c +0 -145
  1503. data/ext/zpbstf.c +0 -81
  1504. data/ext/zpbsv.c +0 -107
  1505. data/ext/zpbsvx.c +0 -201
  1506. data/ext/zpbtf2.c +0 -81
  1507. data/ext/zpbtrf.c +0 -81
  1508. data/ext/zpbtrs.c +0 -95
  1509. data/ext/zpftrf.c +0 -82
  1510. data/ext/zpftri.c +0 -82
  1511. data/ext/zpftrs.c +0 -97
  1512. data/ext/zpocon.c +0 -78
  1513. data/ext/zpoequ.c +0 -75
  1514. data/ext/zpoequb.c +0 -75
  1515. data/ext/zporfs.c +0 -141
  1516. data/ext/zporfsx.c +0 -206
  1517. data/ext/zposv.c +0 -103
  1518. data/ext/zposvx.c +0 -197
  1519. data/ext/zposvxx.c +0 -235
  1520. data/ext/zpotf2.c +0 -77
  1521. data/ext/zpotrf.c +0 -77
  1522. data/ext/zpotri.c +0 -77
  1523. data/ext/zpotrs.c +0 -91
  1524. data/ext/zppcon.c +0 -78
  1525. data/ext/zppequ.c +0 -79
  1526. data/ext/zpprfs.c +0 -139
  1527. data/ext/zppsv.c +0 -104
  1528. data/ext/zppsvx.c +0 -191
  1529. data/ext/zpptrf.c +0 -78
  1530. data/ext/zpptri.c +0 -78
  1531. data/ext/zpptrs.c +0 -93
  1532. data/ext/zpstf2.c +0 -95
  1533. data/ext/zpstrf.c +0 -95
  1534. data/ext/zptcon.c +0 -81
  1535. data/ext/zpteqr.c +0 -126
  1536. data/ext/zptrfs.c +0 -161
  1537. data/ext/zptsv.c +0 -123
  1538. data/ext/zptsvx.c +0 -171
  1539. data/ext/zpttrf.c +0 -93
  1540. data/ext/zpttrs.c +0 -101
  1541. data/ext/zptts2.c +0 -98
  1542. data/ext/zrot.c +0 -107
  1543. data/ext/zspcon.c +0 -85
  1544. data/ext/zspmv.c +0 -117
  1545. data/ext/zspr.c +0 -96
  1546. data/ext/zsprfs.c +0 -149
  1547. data/ext/zspsv.c +0 -110
  1548. data/ext/zspsvx.c +0 -163
  1549. data/ext/zsptrf.c +0 -84
  1550. data/ext/zsptri.c +0 -89
  1551. data/ext/zsptrs.c +0 -101
  1552. data/ext/zstedc.c +0 -177
  1553. data/ext/zstegr.c +0 -188
  1554. data/ext/zstein.c +0 -134
  1555. data/ext/zstemr.c +0 -193
  1556. data/ext/zsteqr.c +0 -126
  1557. data/ext/zsycon.c +0 -87
  1558. data/ext/zsyconv.c +0 -84
  1559. data/ext/zsyequb.c +0 -82
  1560. data/ext/zsymv.c +0 -115
  1561. data/ext/zsyr.c +0 -95
  1562. data/ext/zsyrfs.c +0 -153
  1563. data/ext/zsyrfsx.c +0 -218
  1564. data/ext/zsysv.c +0 -129
  1565. data/ext/zsysvx.c +0 -183
  1566. data/ext/zsysvxx.c +0 -258
  1567. data/ext/zsyswapr.c +0 -82
  1568. data/ext/zsytf2.c +0 -85
  1569. data/ext/zsytrf.c +0 -97
  1570. data/ext/zsytri.c +0 -92
  1571. data/ext/zsytri2.c +0 -104
  1572. data/ext/zsytri2x.c +0 -96
  1573. data/ext/zsytrs.c +0 -103
  1574. data/ext/zsytrs2.c +0 -106
  1575. data/ext/ztbcon.c +0 -86
  1576. data/ext/ztbrfs.c +0 -127
  1577. data/ext/ztbtrs.c +0 -103
  1578. data/ext/ztfsm.c +0 -111
  1579. data/ext/ztftri.c +0 -86
  1580. data/ext/ztfttp.c +0 -79
  1581. data/ext/ztfttr.c +0 -80
  1582. data/ext/ztgevc.c +0 -156
  1583. data/ext/ztgex2.c +0 -171
  1584. data/ext/ztgexc.c +0 -172
  1585. data/ext/ztgsen.c +0 -244
  1586. data/ext/ztgsja.c +0 -227
  1587. data/ext/ztgsna.c +0 -164
  1588. data/ext/ztgsy2.c +0 -176
  1589. data/ext/ztgsyl.c +0 -190
  1590. data/ext/ztpcon.c +0 -82
  1591. data/ext/ztprfs.c +0 -123
  1592. data/ext/ztptri.c +0 -82
  1593. data/ext/ztptrs.c +0 -101
  1594. data/ext/ztpttf.c +0 -79
  1595. data/ext/ztpttr.c +0 -76
  1596. data/ext/ztrcon.c +0 -82
  1597. data/ext/ztrevc.c +0 -154
  1598. data/ext/ztrexc.c +0 -111
  1599. data/ext/ztrrfs.c +0 -123
  1600. data/ext/ztrsen.c +0 -154
  1601. data/ext/ztrsna.c +0 -137
  1602. data/ext/ztrsyl.c +0 -116
  1603. data/ext/ztrti2.c +0 -81
  1604. data/ext/ztrtri.c +0 -81
  1605. data/ext/ztrtrs.c +0 -99
  1606. data/ext/ztrttf.c +0 -77
  1607. data/ext/ztrttp.c +0 -73
  1608. data/ext/ztzrqf.c +0 -83
  1609. data/ext/ztzrzf.c +0 -101
  1610. data/ext/zunbdb.c +0 -232
  1611. data/ext/zuncsd.c +0 -204
  1612. data/ext/zung2l.c +0 -92
  1613. data/ext/zung2r.c +0 -92
  1614. data/ext/zungbr.c +0 -115
  1615. data/ext/zunghr.c +0 -111
  1616. data/ext/zungl2.c +0 -90
  1617. data/ext/zunglq.c +0 -107
  1618. data/ext/zungql.c +0 -107
  1619. data/ext/zungqr.c +0 -107
  1620. data/ext/zungr2.c +0 -90
  1621. data/ext/zungrq.c +0 -107
  1622. data/ext/zungtr.c +0 -107
  1623. data/ext/zunm2l.c +0 -114
  1624. data/ext/zunm2r.c +0 -114
  1625. data/ext/zunmbr.c +0 -139
  1626. data/ext/zunmhr.c +0 -133
  1627. data/ext/zunml2.c +0 -110
  1628. data/ext/zunmlq.c +0 -125
  1629. data/ext/zunmql.c +0 -129
  1630. data/ext/zunmqr.c +0 -129
  1631. data/ext/zunmr2.c +0 -110
  1632. data/ext/zunmr3.c +0 -114
  1633. data/ext/zunmrq.c +0 -125
  1634. data/ext/zunmrz.c +0 -129
  1635. data/ext/zunmtr.c +0 -129
  1636. data/ext/zupgtr.c +0 -91
  1637. data/ext/zupmtr.c +0 -116
@@ -1,92 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID sgehd2_(integer* n, integer* ilo, integer* ihi, real* a, integer* lda, real* tau, real* work, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_sgehd2(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_ilo;
9
- integer ilo;
10
- VALUE rblapack_ihi;
11
- integer ihi;
12
- VALUE rblapack_a;
13
- real *a;
14
- VALUE rblapack_tau;
15
- real *tau;
16
- VALUE rblapack_info;
17
- integer info;
18
- VALUE rblapack_a_out__;
19
- real *a_out__;
20
- real *work;
21
-
22
- integer lda;
23
- integer n;
24
-
25
- VALUE rblapack_options;
26
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
27
- argc--;
28
- rblapack_options = argv[argc];
29
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
30
- printf("%s\n", "USAGE:\n tau, info, a = NumRu::Lapack.sgehd2( ilo, ihi, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )\n\n* Purpose\n* =======\n*\n* SGEHD2 reduces a real general matrix A to upper Hessenberg form H by\n* an orthogonal similarity transformation: Q' * A * Q = H .\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* ILO (input) INTEGER\n* IHI (input) INTEGER\n* It is assumed that A is already upper triangular in rows\n* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally\n* set by a previous call to SGEBAL; otherwise they should be\n* set to 1 and N respectively. See Further Details.\n* 1 <= ILO <= IHI <= max(1,N).\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the n by n general matrix to be reduced.\n* On exit, the upper triangle and the first subdiagonal of A\n* are overwritten with the upper Hessenberg matrix H, and the\n* elements below the first subdiagonal, with the array TAU,\n* represent the orthogonal matrix Q as a product of elementary\n* reflectors. See Further Details.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* TAU (output) REAL array, dimension (N-1)\n* The scalar factors of the elementary reflectors (see Further\n* Details).\n*\n* WORK (workspace) REAL array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of (ihi-ilo) elementary\n* reflectors\n*\n* Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real scalar, and v is a real vector with\n* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on\n* exit in A(i+2:ihi,i), and tau in TAU(i).\n*\n* The contents of A are illustrated by the following example, with\n* n = 7, ilo = 2 and ihi = 6:\n*\n* on entry, on exit,\n*\n* ( a a a a a a a ) ( a a h h h h a )\n* ( a a a a a a ) ( a h h h h a )\n* ( a a a a a a ) ( h h h h h h )\n* ( a a a a a a ) ( v2 h h h h h )\n* ( a a a a a a ) ( v2 v3 h h h h )\n* ( a a a a a a ) ( v2 v3 v4 h h h )\n* ( a ) ( a )\n*\n* where a denotes an element of the original matrix A, h denotes a\n* modified element of the upper Hessenberg matrix H, and vi denotes an\n* element of the vector defining H(i).\n*\n* =====================================================================\n*\n\n");
31
- return Qnil;
32
- }
33
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
34
- printf("%s\n", "USAGE:\n tau, info, a = NumRu::Lapack.sgehd2( ilo, ihi, a, [:usage => usage, :help => help])\n");
35
- return Qnil;
36
- }
37
- } else
38
- rblapack_options = Qnil;
39
- if (argc != 3 && argc != 3)
40
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
41
- rblapack_ilo = argv[0];
42
- rblapack_ihi = argv[1];
43
- rblapack_a = argv[2];
44
- if (argc == 3) {
45
- } else if (rblapack_options != Qnil) {
46
- } else {
47
- }
48
-
49
- ilo = NUM2INT(rblapack_ilo);
50
- if (!NA_IsNArray(rblapack_a))
51
- rb_raise(rb_eArgError, "a (3th argument) must be NArray");
52
- if (NA_RANK(rblapack_a) != 2)
53
- rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
54
- lda = NA_SHAPE0(rblapack_a);
55
- n = NA_SHAPE1(rblapack_a);
56
- if (NA_TYPE(rblapack_a) != NA_SFLOAT)
57
- rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
58
- a = NA_PTR_TYPE(rblapack_a, real*);
59
- ihi = NUM2INT(rblapack_ihi);
60
- {
61
- int shape[1];
62
- shape[0] = n-1;
63
- rblapack_tau = na_make_object(NA_SFLOAT, 1, shape, cNArray);
64
- }
65
- tau = NA_PTR_TYPE(rblapack_tau, real*);
66
- {
67
- int shape[2];
68
- shape[0] = lda;
69
- shape[1] = n;
70
- rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
71
- }
72
- a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
73
- MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
74
- rblapack_a = rblapack_a_out__;
75
- a = a_out__;
76
- work = ALLOC_N(real, (n));
77
-
78
- sgehd2_(&n, &ilo, &ihi, a, &lda, tau, work, &info);
79
-
80
- free(work);
81
- rblapack_info = INT2NUM(info);
82
- return rb_ary_new3(3, rblapack_tau, rblapack_info, rblapack_a);
83
- }
84
-
85
- void
86
- init_lapack_sgehd2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
87
- sHelp = sH;
88
- sUsage = sU;
89
- rblapack_ZERO = zero;
90
-
91
- rb_define_module_function(mLapack, "sgehd2", rblapack_sgehd2, -1);
92
- }
@@ -1,107 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID sgehrd_(integer* n, integer* ilo, integer* ihi, real* a, integer* lda, real* tau, real* work, integer* lwork, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_sgehrd(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_ilo;
9
- integer ilo;
10
- VALUE rblapack_ihi;
11
- integer ihi;
12
- VALUE rblapack_a;
13
- real *a;
14
- VALUE rblapack_lwork;
15
- integer lwork;
16
- VALUE rblapack_tau;
17
- real *tau;
18
- VALUE rblapack_work;
19
- real *work;
20
- VALUE rblapack_info;
21
- integer info;
22
- VALUE rblapack_a_out__;
23
- real *a_out__;
24
-
25
- integer lda;
26
- integer n;
27
-
28
- VALUE rblapack_options;
29
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
30
- argc--;
31
- rblapack_options = argv[argc];
32
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
33
- printf("%s\n", "USAGE:\n tau, work, info, a = NumRu::Lapack.sgehrd( ilo, ihi, a, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* SGEHRD reduces a real general matrix A to upper Hessenberg form H by\n* an orthogonal similarity transformation: Q' * A * Q = H .\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* ILO (input) INTEGER\n* IHI (input) INTEGER\n* It is assumed that A is already upper triangular in rows\n* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally\n* set by a previous call to SGEBAL; otherwise they should be\n* set to 1 and N respectively. See Further Details.\n* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the N-by-N general matrix to be reduced.\n* On exit, the upper triangle and the first subdiagonal of A\n* are overwritten with the upper Hessenberg matrix H, and the\n* elements below the first subdiagonal, with the array TAU,\n* represent the orthogonal matrix Q as a product of elementary\n* reflectors. See Further Details.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* TAU (output) REAL array, dimension (N-1)\n* The scalar factors of the elementary reflectors (see Further\n* Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to\n* zero.\n*\n* WORK (workspace/output) REAL array, dimension (LWORK)\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The length of the array WORK. LWORK >= max(1,N).\n* For optimum performance LWORK >= N*NB, where NB is the\n* optimal blocksize.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of (ihi-ilo) elementary\n* reflectors\n*\n* Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real scalar, and v is a real vector with\n* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on\n* exit in A(i+2:ihi,i), and tau in TAU(i).\n*\n* The contents of A are illustrated by the following example, with\n* n = 7, ilo = 2 and ihi = 6:\n*\n* on entry, on exit,\n*\n* ( a a a a a a a ) ( a a h h h h a )\n* ( a a a a a a ) ( a h h h h a )\n* ( a a a a a a ) ( h h h h h h )\n* ( a a a a a a ) ( v2 h h h h h )\n* ( a a a a a a ) ( v2 v3 h h h h )\n* ( a a a a a a ) ( v2 v3 v4 h h h )\n* ( a ) ( a )\n*\n* where a denotes an element of the original matrix A, h denotes a\n* modified element of the upper Hessenberg matrix H, and vi denotes an\n* element of the vector defining H(i).\n*\n* This file is a slight modification of LAPACK-3.0's DGEHRD\n* subroutine incorporating improvements proposed by Quintana-Orti and\n* Van de Geijn (2006). (See DLAHR2.)\n*\n* =====================================================================\n*\n\n");
34
- return Qnil;
35
- }
36
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
37
- printf("%s\n", "USAGE:\n tau, work, info, a = NumRu::Lapack.sgehrd( ilo, ihi, a, [:lwork => lwork, :usage => usage, :help => help])\n");
38
- return Qnil;
39
- }
40
- } else
41
- rblapack_options = Qnil;
42
- if (argc != 3 && argc != 4)
43
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
44
- rblapack_ilo = argv[0];
45
- rblapack_ihi = argv[1];
46
- rblapack_a = argv[2];
47
- if (argc == 4) {
48
- rblapack_lwork = argv[3];
49
- } else if (rblapack_options != Qnil) {
50
- rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
51
- } else {
52
- rblapack_lwork = Qnil;
53
- }
54
-
55
- ilo = NUM2INT(rblapack_ilo);
56
- if (!NA_IsNArray(rblapack_a))
57
- rb_raise(rb_eArgError, "a (3th argument) must be NArray");
58
- if (NA_RANK(rblapack_a) != 2)
59
- rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
60
- lda = NA_SHAPE0(rblapack_a);
61
- n = NA_SHAPE1(rblapack_a);
62
- if (NA_TYPE(rblapack_a) != NA_SFLOAT)
63
- rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
64
- a = NA_PTR_TYPE(rblapack_a, real*);
65
- ihi = NUM2INT(rblapack_ihi);
66
- if (rblapack_lwork == Qnil)
67
- lwork = n;
68
- else {
69
- lwork = NUM2INT(rblapack_lwork);
70
- }
71
- {
72
- int shape[1];
73
- shape[0] = n-1;
74
- rblapack_tau = na_make_object(NA_SFLOAT, 1, shape, cNArray);
75
- }
76
- tau = NA_PTR_TYPE(rblapack_tau, real*);
77
- {
78
- int shape[1];
79
- shape[0] = MAX(1,lwork);
80
- rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
81
- }
82
- work = NA_PTR_TYPE(rblapack_work, real*);
83
- {
84
- int shape[2];
85
- shape[0] = lda;
86
- shape[1] = n;
87
- rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
88
- }
89
- a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
90
- MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
91
- rblapack_a = rblapack_a_out__;
92
- a = a_out__;
93
-
94
- sgehrd_(&n, &ilo, &ihi, a, &lda, tau, work, &lwork, &info);
95
-
96
- rblapack_info = INT2NUM(info);
97
- return rb_ary_new3(4, rblapack_tau, rblapack_work, rblapack_info, rblapack_a);
98
- }
99
-
100
- void
101
- init_lapack_sgehrd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
102
- sHelp = sH;
103
- sUsage = sU;
104
- rblapack_ZERO = zero;
105
-
106
- rb_define_module_function(mLapack, "sgehrd", rblapack_sgehrd, -1);
107
- }
@@ -1,159 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID sgejsv_(char* joba, char* jobu, char* jobv, char* jobr, char* jobt, char* jobp, integer* m, integer* n, real* a, integer* lda, real* sva, real* u, integer* ldu, real* v, integer* ldv, real* work, integer* lwork, integer* iwork, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_sgejsv(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_joba;
9
- char joba;
10
- VALUE rblapack_jobu;
11
- char jobu;
12
- VALUE rblapack_jobv;
13
- char jobv;
14
- VALUE rblapack_jobr;
15
- char jobr;
16
- VALUE rblapack_jobt;
17
- char jobt;
18
- VALUE rblapack_jobp;
19
- char jobp;
20
- VALUE rblapack_m;
21
- integer m;
22
- VALUE rblapack_a;
23
- real *a;
24
- VALUE rblapack_work;
25
- real *work;
26
- VALUE rblapack_lwork;
27
- integer lwork;
28
- VALUE rblapack_sva;
29
- real *sva;
30
- VALUE rblapack_u;
31
- real *u;
32
- VALUE rblapack_v;
33
- real *v;
34
- VALUE rblapack_iwork;
35
- integer *iwork;
36
- VALUE rblapack_info;
37
- integer info;
38
- VALUE rblapack_work_out__;
39
- real *work_out__;
40
-
41
- integer lda;
42
- integer n;
43
- integer ldu;
44
- integer ldv;
45
-
46
- VALUE rblapack_options;
47
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
48
- argc--;
49
- rblapack_options = argv[argc];
50
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
51
- printf("%s\n", "USAGE:\n sva, u, v, iwork, info, work = NumRu::Lapack.sgejsv( joba, jobu, jobv, jobr, jobt, jobp, m, a, work, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, M, N, A, LDA, SVA, U, LDU, V, LDV, WORK, LWORK, IWORK, INFO )\n\n* Purpose\n* =======\n* SGEJSV computes the singular value decomposition (SVD) of a real M-by-N\n* matrix [A], where M >= N. The SVD of [A] is written as\n*\n* [A] = [U] * [SIGMA] * [V]^t,\n*\n* where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N\n* diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and\n* [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are\n* the singular values of [A]. The columns of [U] and [V] are the left and\n* the right singular vectors of [A], respectively. The matrices [U] and [V]\n* are computed and stored in the arrays U and V, respectively. The diagonal\n* of [SIGMA] is computed and stored in the array SVA.\n*\n\n* Arguments\n* =========\n*\n* JOBA (input) CHARACTER*1\n* Specifies the level of accuracy:\n* = 'C': This option works well (high relative accuracy) if A = B * D,\n* with well-conditioned B and arbitrary diagonal matrix D.\n* The accuracy cannot be spoiled by COLUMN scaling. The\n* accuracy of the computed output depends on the condition of\n* B, and the procedure aims at the best theoretical accuracy.\n* The relative error max_{i=1:N}|d sigma_i| / sigma_i is\n* bounded by f(M,N)*epsilon* cond(B), independent of D.\n* The input matrix is preprocessed with the QRF with column\n* pivoting. This initial preprocessing and preconditioning by\n* a rank revealing QR factorization is common for all values of\n* JOBA. Additional actions are specified as follows:\n* = 'E': Computation as with 'C' with an additional estimate of the\n* condition number of B. It provides a realistic error bound.\n* = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings\n* D1, D2, and well-conditioned matrix C, this option gives\n* higher accuracy than the 'C' option. If the structure of the\n* input matrix is not known, and relative accuracy is\n* desirable, then this option is advisable. The input matrix A\n* is preprocessed with QR factorization with FULL (row and\n* column) pivoting.\n* = 'G' Computation as with 'F' with an additional estimate of the\n* condition number of B, where A=D*B. If A has heavily weighted\n* rows, then using this condition number gives too pessimistic\n* error bound.\n* = 'A': Small singular values are the noise and the matrix is treated\n* as numerically rank defficient. The error in the computed\n* singular values is bounded by f(m,n)*epsilon*||A||.\n* The computed SVD A = U * S * V^t restores A up to\n* f(m,n)*epsilon*||A||.\n* This gives the procedure the licence to discard (set to zero)\n* all singular values below N*epsilon*||A||.\n* = 'R': Similar as in 'A'. Rank revealing property of the initial\n* QR factorization is used do reveal (using triangular factor)\n* a gap sigma_{r+1} < epsilon * sigma_r in which case the\n* numerical RANK is declared to be r. The SVD is computed with\n* absolute error bounds, but more accurately than with 'A'.\n* \n* JOBU (input) CHARACTER*1\n* Specifies whether to compute the columns of U:\n* = 'U': N columns of U are returned in the array U.\n* = 'F': full set of M left sing. vectors is returned in the array U.\n* = 'W': U may be used as workspace of length M*N. See the description\n* of U.\n* = 'N': U is not computed.\n* \n* JOBV (input) CHARACTER*1\n* Specifies whether to compute the matrix V:\n* = 'V': N columns of V are returned in the array V; Jacobi rotations\n* are not explicitly accumulated.\n* = 'J': N columns of V are returned in the array V, but they are\n* computed as the product of Jacobi rotations. This option is\n* allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.\n* = 'W': V may be used as workspace of length N*N. See the description\n* of V.\n* = 'N': V is not computed.\n* \n* JOBR (input) CHARACTER*1\n* Specifies the RANGE for the singular values. Issues the licence to\n* set to zero small positive singular values if they are outside\n* specified range. If A .NE. 0 is scaled so that the largest singular\n* value of c*A is around SQRT(BIG), BIG=SLAMCH('O'), then JOBR issues\n* the licence to kill columns of A whose norm in c*A is less than\n* SQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,\n* where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').\n* = 'N': Do not kill small columns of c*A. This option assumes that\n* BLAS and QR factorizations and triangular solvers are\n* implemented to work in that range. If the condition of A\n* is greater than BIG, use SGESVJ.\n* = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)]\n* (roughly, as described above). This option is recommended.\n* ===========================\n* For computing the singular values in the FULL range [SFMIN,BIG]\n* use SGESVJ.\n* \n* JOBT (input) CHARACTER*1\n* If the matrix is square then the procedure may determine to use\n* transposed A if A^t seems to be better with respect to convergence.\n* If the matrix is not square, JOBT is ignored. This is subject to\n* changes in the future.\n* The decision is based on two values of entropy over the adjoint\n* orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).\n* = 'T': transpose if entropy test indicates possibly faster\n* convergence of Jacobi process if A^t is taken as input. If A is\n* replaced with A^t, then the row pivoting is included automatically.\n* = 'N': do not speculate.\n* This option can be used to compute only the singular values, or the\n* full SVD (U, SIGMA and V). For only one set of singular vectors\n* (U or V), the caller should provide both U and V, as one of the\n* matrices is used as workspace if the matrix A is transposed.\n* The implementer can easily remove this constraint and make the\n* code more complicated. See the descriptions of U and V.\n* \n* JOBP (input) CHARACTER*1\n* Issues the licence to introduce structured perturbations to drown\n* denormalized numbers. This licence should be active if the\n* denormals are poorly implemented, causing slow computation,\n* especially in cases of fast convergence (!). For details see [1,2].\n* For the sake of simplicity, this perturbations are included only\n* when the full SVD or only the singular values are requested. The\n* implementer/user can easily add the perturbation for the cases of\n* computing one set of singular vectors.\n* = 'P': introduce perturbation\n* = 'N': do not perturb\n*\n* M (input) INTEGER\n* The number of rows of the input matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the input matrix A. M >= N >= 0.\n*\n* A (input/workspace) REAL array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* SVA (workspace/output) REAL array, dimension (N)\n* On exit,\n* - For WORK(1)/WORK(2) = ONE: The singular values of A. During the\n* computation SVA contains Euclidean column norms of the\n* iterated matrices in the array A.\n* - For WORK(1) .NE. WORK(2): The singular values of A are\n* (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if\n* sigma_max(A) overflows or if small singular values have been\n* saved from underflow by scaling the input matrix A.\n* - If JOBR='R' then some of the singular values may be returned\n* as exact zeros obtained by \"set to zero\" because they are\n* below the numerical rank threshold or are denormalized numbers.\n*\n* U (workspace/output) REAL array, dimension ( LDU, N )\n* If JOBU = 'U', then U contains on exit the M-by-N matrix of\n* the left singular vectors.\n* If JOBU = 'F', then U contains on exit the M-by-M matrix of\n* the left singular vectors, including an ONB\n* of the orthogonal complement of the Range(A).\n* If JOBU = 'W' .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),\n* then U is used as workspace if the procedure\n* replaces A with A^t. In that case, [V] is computed\n* in U as left singular vectors of A^t and then\n* copied back to the V array. This 'W' option is just\n* a reminder to the caller that in this case U is\n* reserved as workspace of length N*N.\n* If JOBU = 'N' U is not referenced.\n*\n* LDU (input) INTEGER\n* The leading dimension of the array U, LDU >= 1.\n* IF JOBU = 'U' or 'F' or 'W', then LDU >= M.\n*\n* V (workspace/output) REAL array, dimension ( LDV, N )\n* If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of\n* the right singular vectors;\n* If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),\n* then V is used as workspace if the pprocedure\n* replaces A with A^t. In that case, [U] is computed\n* in V as right singular vectors of A^t and then\n* copied back to the U array. This 'W' option is just\n* a reminder to the caller that in this case V is\n* reserved as workspace of length N*N.\n* If JOBV = 'N' V is not referenced.\n*\n* LDV (input) INTEGER\n* The leading dimension of the array V, LDV >= 1.\n* If JOBV = 'V' or 'J' or 'W', then LDV >= N.\n*\n* WORK (workspace/output) REAL array, dimension at least LWORK.\n* On exit,\n* WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such\n* that SCALE*SVA(1:N) are the computed singular values\n* of A. (See the description of SVA().)\n* WORK(2) = See the description of WORK(1).\n* WORK(3) = SCONDA is an estimate for the condition number of\n* column equilibrated A. (If JOBA .EQ. 'E' or 'G')\n* SCONDA is an estimate of SQRT(||(R^t * R)^(-1)||_1).\n* It is computed using SPOCON. It holds\n* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA\n* where R is the triangular factor from the QRF of A.\n* However, if R is truncated and the numerical rank is\n* determined to be strictly smaller than N, SCONDA is\n* returned as -1, thus indicating that the smallest\n* singular values might be lost.\n*\n* If full SVD is needed, the following two condition numbers are\n* useful for the analysis of the algorithm. They are provied for\n* a developer/implementer who is familiar with the details of\n* the method.\n*\n* WORK(4) = an estimate of the scaled condition number of the\n* triangular factor in the first QR factorization.\n* WORK(5) = an estimate of the scaled condition number of the\n* triangular factor in the second QR factorization.\n* The following two parameters are computed if JOBT .EQ. 'T'.\n* They are provided for a developer/implementer who is familiar\n* with the details of the method.\n*\n* WORK(6) = the entropy of A^t*A :: this is the Shannon entropy\n* of diag(A^t*A) / Trace(A^t*A) taken as point in the\n* probability simplex.\n* WORK(7) = the entropy of A*A^t.\n*\n* LWORK (input) INTEGER\n* Length of WORK to confirm proper allocation of work space.\n* LWORK depends on the job:\n*\n* If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and\n* -> .. no scaled condition estimate required ( JOBE.EQ.'N'):\n* LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.\n* For optimal performance (blocked code) the optimal value\n* is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal\n* block size for xGEQP3/xGEQRF.\n* -> .. an estimate of the scaled condition number of A is\n* required (JOBA='E', 'G'). In this case, LWORK is the maximum\n* of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4N,7).\n*\n* If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),\n* -> the minimal requirement is LWORK >= max(2*N+M,7).\n* -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7),\n* where NB is the optimal block size.\n*\n* If SIGMA and the left singular vectors are needed\n* -> the minimal requirement is LWORK >= max(2*N+M,7).\n* -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7),\n* where NB is the optimal block size.\n*\n* If full SVD is needed ( JOBU.EQ.'U' or 'F', JOBV.EQ.'V' ) and\n* -> .. the singular vectors are computed without explicit\n* accumulation of the Jacobi rotations, LWORK >= 6*N+2*N*N\n* -> .. in the iterative part, the Jacobi rotations are\n* explicitly accumulated (option, see the description of JOBV),\n* then the minimal requirement is LWORK >= max(M+3*N+N*N,7).\n* For better performance, if NB is the optimal block size,\n* LWORK >= max(3*N+N*N+M,3*N+N*N+N*NB,7).\n*\n* IWORK (workspace/output) INTEGER array, dimension M+3*N.\n* On exit,\n* IWORK(1) = the numerical rank determined after the initial\n* QR factorization with pivoting. See the descriptions\n* of JOBA and JOBR.\n* IWORK(2) = the number of the computed nonzero singular values\n* IWORK(3) = if nonzero, a warning message:\n* If IWORK(3).EQ.1 then some of the column norms of A\n* were denormalized floats. The requested high accuracy\n* is not warranted by the data.\n*\n* INFO (output) INTEGER\n* < 0 : if INFO = -i, then the i-th argument had an illegal value.\n* = 0 : successfull exit;\n* > 0 : SGEJSV did not converge in the maximal allowed number\n* of sweeps. The computed values may be inaccurate.\n*\n\n* Further Details\n* ===============\n*\n* SGEJSV implements a preconditioned Jacobi SVD algorithm. It uses SGEQP3,\n* SGEQRF, and SGELQF as preprocessors and preconditioners. Optionally, an\n* additional row pivoting can be used as a preprocessor, which in some\n* cases results in much higher accuracy. An example is matrix A with the\n* structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned\n* diagonal matrices and C is well-conditioned matrix. In that case, complete\n* pivoting in the first QR factorizations provides accuracy dependent on the\n* condition number of C, and independent of D1, D2. Such higher accuracy is\n* not completely understood theoretically, but it works well in practice.\n* Further, if A can be written as A = B*D, with well-conditioned B and some\n* diagonal D, then the high accuracy is guaranteed, both theoretically and\n* in software, independent of D. For more details see [1], [2].\n* The computational range for the singular values can be the full range\n* ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS\n* & LAPACK routines called by SGEJSV are implemented to work in that range.\n* If that is not the case, then the restriction for safe computation with\n* the singular values in the range of normalized IEEE numbers is that the\n* spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not\n* overflow. This code (SGEJSV) is best used in this restricted range,\n* meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are\n* returned as zeros. See JOBR for details on this.\n* Further, this implementation is somewhat slower than the one described\n* in [1,2] due to replacement of some non-LAPACK components, and because\n* the choice of some tuning parameters in the iterative part (SGESVJ) is\n* left to the implementer on a particular machine.\n* The rank revealing QR factorization (in this code: SGEQP3) should be\n* implemented as in [3]. We have a new version of SGEQP3 under development\n* that is more robust than the current one in LAPACK, with a cleaner cut in\n* rank defficient cases. It will be available in the SIGMA library [4].\n* If M is much larger than N, it is obvious that the inital QRF with\n* column pivoting can be preprocessed by the QRF without pivoting. That\n* well known trick is not used in SGEJSV because in some cases heavy row\n* weighting can be treated with complete pivoting. The overhead in cases\n* M much larger than N is then only due to pivoting, but the benefits in\n* terms of accuracy have prevailed. The implementer/user can incorporate\n* this extra QRF step easily. The implementer can also improve data movement\n* (matrix transpose, matrix copy, matrix transposed copy) - this\n* implementation of SGEJSV uses only the simplest, naive data movement.\n*\n* Contributors\n*\n* Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)\n*\n* References\n*\n* [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.\n* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.\n* LAPACK Working note 169.\n* [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.\n* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.\n* LAPACK Working note 170.\n* [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR\n* factorization software - a case study.\n* ACM Trans. math. Softw. Vol. 35, No 2 (2008), pp. 1-28.\n* LAPACK Working note 176.\n* [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,\n* QSVD, (H,K)-SVD computations.\n* Department of Mathematics, University of Zagreb, 2008.\n*\n* Bugs, examples and comments\n*\n* Please report all bugs and send interesting examples and/or comments to\n* drmac@math.hr. Thank you.\n*\n* ===========================================================================\n*\n* .. Local Parameters ..\n REAL ZERO, ONE\n PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )\n* ..\n* .. Local Scalars ..\n REAL AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,\n & CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM,\n & SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC\n INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING\n LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LSVEC,\n & L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,\n & NOSCAL, ROWPIV, RSVEC, TRANSP\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC ABS, ALOG, AMAX1, AMIN1, FLOAT,\n & MAX0, MIN0, NINT, SIGN, SQRT\n* ..\n* .. External Functions ..\n REAL SLAMCH, SNRM2\n INTEGER ISAMAX\n LOGICAL LSAME\n EXTERNAL ISAMAX, LSAME, SLAMCH, SNRM2\n* ..\n* .. External Subroutines ..\n EXTERNAL SCOPY, SGELQF, SGEQP3, SGEQRF, SLACPY, SLASCL,\n & SLASET, SLASSQ, SLASWP, SORGQR, SORMLQ,\n & SORMQR, SPOCON, SSCAL, SSWAP, STRSM, XERBLA\n*\n EXTERNAL SGESVJ\n* ..\n*\n* Test the input arguments\n*\n LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )\n JRACC = LSAME( JOBV, 'J' )\n RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC\n ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )\n L2RANK = LSAME( JOBA, 'R' )\n L2ABER = LSAME( JOBA, 'A' )\n ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )\n L2TRAN = LSAME( JOBT, 'T' )\n L2KILL = LSAME( JOBR, 'R' )\n DEFR = LSAME( JOBR, 'N' )\n L2PERT = LSAME( JOBP, 'P' )\n*\n IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.\n & ERREST .OR. LSAME( JOBA, 'C' ) )) THEN\n INFO = - 1\n ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.\n & LSAME( JOBU, 'W' )) ) THEN\n INFO = - 2\n ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.\n & LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN\n INFO = - 3\n ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN\n INFO = - 4\n ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN\n INFO = - 5\n ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN\n INFO = - 6\n ELSE IF ( M .LT. 0 ) THEN\n INFO = - 7\n ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN\n INFO = - 8\n ELSE IF ( LDA .LT. M ) THEN\n INFO = - 10\n ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN\n INFO = - 13\n ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN\n INFO = - 14\n ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.\n & (LWORK .LT. MAX0(7,4*N+1,2*M+N))) .OR.\n & (.NOT.(LSVEC .OR. LSVEC) .AND. ERREST .AND.\n & (LWORK .LT. MAX0(7,4*N+N*N,2*M+N))) .OR.\n & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX0(7,2*N+M))) .OR.\n & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX0(7,2*N+M))) .OR.\n & (LSVEC .AND. RSVEC .AND. .NOT.JRACC .AND. (LWORK.LT.6*N+2*N*N))\n & .OR. (LSVEC.AND.RSVEC.AND.JRACC.AND.LWORK.LT.MAX0(7,M+3*N+N*N)))\n & THEN\n INFO = - 17\n ELSE\n* #:)\n INFO = 0\n END IF\n*\n IF ( INFO .NE. 0 ) THEN\n* #:(\n CALL XERBLA( 'SGEJSV', - INFO )\n END IF\n*\n* Quick return for void matrix (Y3K safe)\n* #:)\n IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) RETURN\n*\n* Determine whether the matrix U should be M x N or M x M\n*\n IF ( LSVEC ) THEN\n N1 = N\n IF ( LSAME( JOBU, 'F' ) ) N1 = M\n END IF\n*\n* Set numerical parameters\n*\n*! NOTE: Make sure SLAMCH() does not fail on the target architecture.\n*\n EPSLN = SLAMCH('Epsilon')\n SFMIN = SLAMCH('SafeMinimum')\n SMALL = SFMIN / EPSLN\n BIG = SLAMCH('O')\n*\n* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N\n*\n*(!) If necessary, scale SVA() to protect the largest norm from\n* overflow. It is possible that this scaling pushes the smallest\n* column norm left from the underflow threshold (extreme case).\n*\n SCALEM = ONE / SQRT(FLOAT(M)*FLOAT(N))\n NOSCAL = .TRUE.\n GOSCAL = .TRUE.\n DO 1874 p = 1, N\n AAPP = ZERO\n AAQQ = ONE\n CALL SLASSQ( M, A(1,p), 1, AAPP, AAQQ )\n IF ( AAPP .GT. BIG ) THEN\n INFO = - 9\n CALL XERBLA( 'SGEJSV', -INFO )\n RETURN\n END IF\n AAQQ = SQRT(AAQQ)\n IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN\n SVA(p) = AAPP * AAQQ\n ELSE\n NOSCAL = .FALSE.\n SVA(p) = AAPP * ( AAQQ * SCALEM )\n IF ( GOSCAL ) THEN\n GOSCAL = .FALSE.\n CALL SSCAL( p-1, SCALEM, SVA, 1 )\n END IF\n END IF\n 1874 CONTINUE\n*\n IF ( NOSCAL ) SCALEM = ONE\n*\n AAPP = ZERO\n AAQQ = BIG\n DO 4781 p = 1, N\n AAPP = AMAX1( AAPP, SVA(p) )\n IF ( SVA(p) .NE. ZERO ) AAQQ = AMIN1( AAQQ, SVA(p) )\n 4781 CONTINUE\n*\n* Quick return for zero M x N matrix\n* #:)\n IF ( AAPP .EQ. ZERO ) THEN\n IF ( LSVEC ) CALL SLASET( 'G', M, N1, ZERO, ONE, U, LDU )\n IF ( RSVEC ) CALL SLASET( 'G', N, N, ZERO, ONE, V, LDV )\n WORK(1) = ONE\n WORK(2) = ONE\n IF ( ERREST ) WORK(3) = ONE\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = ONE\n WORK(5) = ONE\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ZERO\n WORK(7) = ZERO\n END IF\n IWORK(1) = 0\n IWORK(2) = 0\n RETURN\n END IF\n*\n* Issue warning if denormalized column norms detected. Override the\n* high relative accuracy request. Issue licence to kill columns\n* (set them to zero) whose norm is less than sigma_max / BIG (roughly).\n* #:(\n WARNING = 0\n IF ( AAQQ .LE. SFMIN ) THEN\n L2RANK = .TRUE.\n L2KILL = .TRUE.\n WARNING = 1\n END IF\n*\n* Quick return for one-column matrix\n* #:)\n IF ( N .EQ. 1 ) THEN\n*\n IF ( LSVEC ) THEN\n CALL SLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )\n CALL SLACPY( 'A', M, 1, A, LDA, U, LDU )\n* computing all M left singular vectors of the M x 1 matrix\n IF ( N1 .NE. N ) THEN\n CALL SGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )\n CALL SORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )\n CALL SCOPY( M, A(1,1), 1, U(1,1), 1 )\n END IF\n END IF\n IF ( RSVEC ) THEN\n V(1,1) = ONE\n END IF\n IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN\n SVA(1) = SVA(1) / SCALEM\n SCALEM = ONE\n END IF\n WORK(1) = ONE / SCALEM\n WORK(2) = ONE\n IF ( SVA(1) .NE. ZERO ) THEN\n IWORK(1) = 1\n IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN\n IWORK(2) = 1\n ELSE\n IWORK(2) = 0\n END IF\n ELSE\n IWORK(1) = 0\n IWORK(2) = 0\n END IF\n IF ( ERREST ) WORK(3) = ONE\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = ONE\n WORK(5) = ONE\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ZERO\n WORK(7) = ZERO\n END IF\n RETURN\n*\n END IF\n*\n TRANSP = .FALSE.\n L2TRAN = L2TRAN .AND. ( M .EQ. N )\n*\n AATMAX = -ONE\n AATMIN = BIG\n IF ( ROWPIV .OR. L2TRAN ) THEN\n*\n* Compute the row norms, needed to determine row pivoting sequence\n* (in the case of heavily row weighted A, row pivoting is strongly\n* advised) and to collect information needed to compare the\n* structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).\n*\n IF ( L2TRAN ) THEN\n DO 1950 p = 1, M\n XSC = ZERO\n TEMP1 = ONE\n CALL SLASSQ( N, A(p,1), LDA, XSC, TEMP1 )\n* SLASSQ gets both the ell_2 and the ell_infinity norm\n* in one pass through the vector\n WORK(M+N+p) = XSC * SCALEM\n WORK(N+p) = XSC * (SCALEM*SQRT(TEMP1))\n AATMAX = AMAX1( AATMAX, WORK(N+p) )\n IF (WORK(N+p) .NE. ZERO) AATMIN = AMIN1(AATMIN,WORK(N+p))\n 1950 CONTINUE\n ELSE\n DO 1904 p = 1, M\n WORK(M+N+p) = SCALEM*ABS( A(p,ISAMAX(N,A(p,1),LDA)) )\n AATMAX = AMAX1( AATMAX, WORK(M+N+p) )\n AATMIN = AMIN1( AATMIN, WORK(M+N+p) )\n 1904 CONTINUE\n END IF\n*\n END IF\n*\n* For square matrix A try to determine whether A^t would be better\n* input for the preconditioned Jacobi SVD, with faster convergence.\n* The decision is based on an O(N) function of the vector of column\n* and row norms of A, based on the Shannon entropy. This should give\n* the right choice in most cases when the difference actually matters.\n* It may fail and pick the slower converging side.\n*\n ENTRA = ZERO\n ENTRAT = ZERO\n IF ( L2TRAN ) THEN\n*\n XSC = ZERO\n TEMP1 = ONE\n CALL SLASSQ( N, SVA, 1, XSC, TEMP1 )\n TEMP1 = ONE / TEMP1\n*\n ENTRA = ZERO\n DO 1113 p = 1, N\n BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1\n IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * ALOG(BIG1)\n 1113 CONTINUE\n ENTRA = - ENTRA / ALOG(FLOAT(N))\n*\n* Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.\n* It is derived from the diagonal of A^t * A. Do the same with the\n* diagonal of A * A^t, compute the entropy of the corresponding\n* probability distribution. Note that A * A^t and A^t * A have the\n* same trace.\n*\n ENTRAT = ZERO\n DO 1114 p = N+1, N+M\n BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1\n IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * ALOG(BIG1)\n 1114 CONTINUE\n ENTRAT = - ENTRAT / ALOG(FLOAT(M))\n*\n* Analyze the entropies and decide A or A^t. Smaller entropy\n* usually means better input for the algorithm.\n*\n TRANSP = ( ENTRAT .LT. ENTRA )\n*\n* If A^t is better than A, transpose A.\n*\n IF ( TRANSP ) THEN\n* In an optimal implementation, this trivial transpose\n* should be replaced with faster transpose.\n DO 1115 p = 1, N - 1\n DO 1116 q = p + 1, N\n TEMP1 = A(q,p)\n A(q,p) = A(p,q)\n A(p,q) = TEMP1\n 1116 CONTINUE\n 1115 CONTINUE\n DO 1117 p = 1, N\n WORK(M+N+p) = SVA(p)\n SVA(p) = WORK(N+p)\n 1117 CONTINUE\n TEMP1 = AAPP\n AAPP = AATMAX\n AATMAX = TEMP1\n TEMP1 = AAQQ\n AAQQ = AATMIN\n AATMIN = TEMP1\n KILL = LSVEC\n LSVEC = RSVEC\n RSVEC = KILL\n IF ( LSVEC ) N1 = N \n*\n ROWPIV = .TRUE.\n END IF\n*\n END IF\n* END IF L2TRAN\n*\n* Scale the matrix so that its maximal singular value remains less\n* than SQRT(BIG) -- the matrix is scaled so that its maximal column\n* has Euclidean norm equal to SQRT(BIG/N). The only reason to keep\n* SQRT(BIG) instead of BIG is the fact that SGEJSV uses LAPACK and\n* BLAS routines that, in some implementations, are not capable of\n* working in the full interval [SFMIN,BIG] and that they may provoke\n* overflows in the intermediate results. If the singular values spread\n* from SFMIN to BIG, then SGESVJ will compute them. So, in that case,\n* one should use SGESVJ instead of SGEJSV.\n*\n BIG1 = SQRT( BIG )\n TEMP1 = SQRT( BIG / FLOAT(N) )\n*\n CALL SLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )\n IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN\n AAQQ = ( AAQQ / AAPP ) * TEMP1\n ELSE\n AAQQ = ( AAQQ * TEMP1 ) / AAPP\n END IF\n TEMP1 = TEMP1 * SCALEM\n CALL SLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )\n*\n* To undo scaling at the end of this procedure, multiply the\n* computed singular values with USCAL2 / USCAL1.\n*\n USCAL1 = TEMP1\n USCAL2 = AAPP\n*\n IF ( L2KILL ) THEN\n* L2KILL enforces computation of nonzero singular values in\n* the restricted range of condition number of the initial A,\n* sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN).\n XSC = SQRT( SFMIN )\n ELSE\n XSC = SMALL\n*\n* Now, if the condition number of A is too big,\n* sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN,\n* as a precaution measure, the full SVD is computed using SGESVJ\n* with accumulated Jacobi rotations. This provides numerically\n* more robust computation, at the cost of slightly increased run\n* time. Depending on the concrete implementation of BLAS and LAPACK\n* (i.e. how they behave in presence of extreme ill-conditioning) the\n* implementor may decide to remove this switch.\n IF ( ( AAQQ.LT.SQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN\n JRACC = .TRUE.\n END IF\n*\n END IF\n IF ( AAQQ .LT. XSC ) THEN\n DO 700 p = 1, N\n IF ( SVA(p) .LT. XSC ) THEN\n CALL SLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )\n SVA(p) = ZERO\n END IF\n 700 CONTINUE\n END IF\n*\n* Preconditioning using QR factorization with pivoting\n*\n IF ( ROWPIV ) THEN\n* Optional row permutation (Bjoerck row pivoting):\n* A result by Cox and Higham shows that the Bjoerck's\n* row pivoting combined with standard column pivoting\n* has similar effect as Powell-Reid complete pivoting.\n* The ell-infinity norms of A are made nonincreasing.\n DO 1952 p = 1, M - 1\n q = ISAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1\n IWORK(2*N+p) = q\n IF ( p .NE. q ) THEN\n TEMP1 = WORK(M+N+p)\n WORK(M+N+p) = WORK(M+N+q)\n WORK(M+N+q) = TEMP1\n END IF\n 1952 CONTINUE\n CALL SLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )\n END IF\n*\n* End of the preparation phase (scaling, optional sorting and\n* transposing, optional flushing of small columns).\n*\n* Preconditioning\n*\n* If the full SVD is needed, the right singular vectors are computed\n* from a matrix equation, and for that we need theoretical analysis\n* of the Businger-Golub pivoting. So we use SGEQP3 as the first RR QRF.\n* In all other cases the first RR QRF can be chosen by other criteria\n* (eg speed by replacing global with restricted window pivoting, such\n* as in SGEQPX from TOMS # 782). Good results will be obtained using\n* SGEQPX with properly (!) chosen numerical parameters.\n* Any improvement of SGEQP3 improves overal performance of SGEJSV.\n*\n* A * P1 = Q1 * [ R1^t 0]^t:\n DO 1963 p = 1, N\n* .. all columns are free columns\n IWORK(p) = 0\n 1963 CONTINUE\n CALL SGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )\n*\n* The upper triangular matrix R1 from the first QRF is inspected for\n* rank deficiency and possibilities for deflation, or possible\n* ill-conditioning. Depending on the user specified flag L2RANK,\n* the procedure explores possibilities to reduce the numerical\n* rank by inspecting the computed upper triangular factor. If\n* L2RANK or L2ABER are up, then SGEJSV will compute the SVD of\n* A + dA, where ||dA|| <= f(M,N)*EPSLN.\n*\n NR = 1\n IF ( L2ABER ) THEN\n* Standard absolute error bound suffices. All sigma_i with\n* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an\n* agressive enforcement of lower numerical rank by introducing a\n* backward error of the order of N*EPSLN*||A||.\n TEMP1 = SQRT(FLOAT(N))*EPSLN\n DO 3001 p = 2, N\n IF ( ABS(A(p,p)) .GE. (TEMP1*ABS(A(1,1))) ) THEN\n NR = NR + 1\n ELSE\n GO TO 3002\n END IF\n 3001 CONTINUE\n 3002 CONTINUE\n ELSE IF ( L2RANK ) THEN\n* .. similarly as above, only slightly more gentle (less agressive).\n* Sudden drop on the diagonal of R1 is used as the criterion for\n* close-to-rank-defficient.\n TEMP1 = SQRT(SFMIN)\n DO 3401 p = 2, N\n IF ( ( ABS(A(p,p)) .LT. (EPSLN*ABS(A(p-1,p-1))) ) .OR.\n & ( ABS(A(p,p)) .LT. SMALL ) .OR.\n & ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402\n NR = NR + 1\n 3401 CONTINUE\n 3402 CONTINUE\n*\n ELSE\n* The goal is high relative accuracy. However, if the matrix\n* has high scaled condition number the relative accuracy is in\n* general not feasible. Later on, a condition number estimator\n* will be deployed to estimate the scaled condition number.\n* Here we just remove the underflowed part of the triangular\n* factor. This prevents the situation in which the code is\n* working hard to get the accuracy not warranted by the data.\n TEMP1 = SQRT(SFMIN)\n DO 3301 p = 2, N\n IF ( ( ABS(A(p,p)) .LT. SMALL ) .OR.\n & ( L2KILL .AND. (ABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302\n NR = NR + 1\n 3301 CONTINUE\n 3302 CONTINUE\n*\n END IF\n*\n ALMORT = .FALSE.\n IF ( NR .EQ. N ) THEN\n MAXPRJ = ONE\n DO 3051 p = 2, N\n TEMP1 = ABS(A(p,p)) / SVA(IWORK(p))\n MAXPRJ = AMIN1( MAXPRJ, TEMP1 )\n 3051 CONTINUE\n IF ( MAXPRJ**2 .GE. ONE - FLOAT(N)*EPSLN ) ALMORT = .TRUE.\n END IF\n*\n*\n SCONDA = - ONE\n CONDR1 = - ONE\n CONDR2 = - ONE\n*\n IF ( ERREST ) THEN\n IF ( N .EQ. NR ) THEN\n IF ( RSVEC ) THEN\n* .. V is available as workspace\n CALL SLACPY( 'U', N, N, A, LDA, V, LDV )\n DO 3053 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL SSCAL( p, ONE/TEMP1, V(1,p), 1 )\n 3053 CONTINUE\n CALL SPOCON( 'U', N, V, LDV, ONE, TEMP1,\n & WORK(N+1), IWORK(2*N+M+1), IERR )\n ELSE IF ( LSVEC ) THEN\n* .. U is available as workspace\n CALL SLACPY( 'U', N, N, A, LDA, U, LDU )\n DO 3054 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL SSCAL( p, ONE/TEMP1, U(1,p), 1 )\n 3054 CONTINUE\n CALL SPOCON( 'U', N, U, LDU, ONE, TEMP1,\n & WORK(N+1), IWORK(2*N+M+1), IERR )\n ELSE\n CALL SLACPY( 'U', N, N, A, LDA, WORK(N+1), N )\n DO 3052 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL SSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )\n 3052 CONTINUE\n* .. the columns of R are scaled to have unit Euclidean lengths.\n CALL SPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,\n & WORK(N+N*N+1), IWORK(2*N+M+1), IERR )\n END IF\n SCONDA = ONE / SQRT(TEMP1)\n* SCONDA is an estimate of SQRT(||(R^t * R)^(-1)||_1).\n* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA\n ELSE\n SCONDA = - ONE\n END IF\n END IF\n*\n L2PERT = L2PERT .AND. ( ABS( A(1,1)/A(NR,NR) ) .GT. SQRT(BIG1) )\n* If there is no violent scaling, artificial perturbation is not needed.\n*\n* Phase 3:\n*\n IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN\n*\n* Singular Values only\n*\n* .. transpose A(1:NR,1:N)\n DO 1946 p = 1, MIN0( N-1, NR )\n CALL SCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )\n 1946 CONTINUE\n*\n* The following two DO-loops introduce small relative perturbation\n* into the strict upper triangle of the lower triangular matrix.\n* Small entries below the main diagonal are also changed.\n* This modification is useful if the computing environment does not\n* provide/allow FLUSH TO ZERO underflow, for it prevents many\n* annoying denormalized numbers in case of strongly scaled matrices.\n* The perturbation is structured so that it does not introduce any\n* new perturbation of the singular values, and it does not destroy\n* the job done by the preconditioner.\n* The licence for this perturbation is in the variable L2PERT, which\n* should be .FALSE. if FLUSH TO ZERO underflow is active.\n*\n IF ( .NOT. ALMORT ) THEN\n*\n IF ( L2PERT ) THEN\n* XSC = SQRT(SMALL)\n XSC = EPSLN / FLOAT(N)\n DO 4947 q = 1, NR\n TEMP1 = XSC*ABS(A(q,q))\n DO 4949 p = 1, N\n IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )\n & .OR. ( p .LT. q ) )\n & A(p,q) = SIGN( TEMP1, A(p,q) )\n 4949 CONTINUE\n 4947 CONTINUE\n ELSE\n CALL SLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )\n END IF\n*\n* .. second preconditioning using the QR factorization\n*\n CALL SGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )\n*\n* .. and transpose upper to lower triangular\n DO 1948 p = 1, NR - 1\n CALL SCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )\n 1948 CONTINUE\n*\n END IF\n*\n* Row-cyclic Jacobi SVD algorithm with column pivoting\n*\n* .. again some perturbation (a \"background noise\") is added\n* to drown denormals\n IF ( L2PERT ) THEN\n* XSC = SQRT(SMALL)\n XSC = EPSLN / FLOAT(N)\n DO 1947 q = 1, NR\n TEMP1 = XSC*ABS(A(q,q))\n DO 1949 p = 1, NR\n IF ( ( (p.GT.q) .AND. (ABS(A(p,q)).LE.TEMP1) )\n & .OR. ( p .LT. q ) )\n & A(p,q) = SIGN( TEMP1, A(p,q) )\n 1949 CONTINUE\n 1947 CONTINUE\n ELSE\n CALL SLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )\n END IF\n*\n* .. and one-sided Jacobi rotations are started on a lower\n* triangular matrix (plus perturbation which is ignored in\n* the part which destroys triangular form (confusing?!))\n*\n CALL SGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,\n & N, V, LDV, WORK, LWORK, INFO )\n*\n SCALEM = WORK(1)\n NUMRANK = NINT(WORK(2))\n*\n*\n ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN\n*\n* -> Singular Values and Right Singular Vectors <-\n*\n IF ( ALMORT ) THEN\n*\n* .. in this case NR equals N\n DO 1998 p = 1, NR\n CALL SCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 1998 CONTINUE\n CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n*\n CALL SGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,\n & WORK, LWORK, INFO )\n SCALEM = WORK(1)\n NUMRANK = NINT(WORK(2))\n\n ELSE\n*\n* .. two more QR factorizations ( one QRF is not enough, two require\n* accumulated product of Jacobi rotations, three are perfect )\n*\n CALL SLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )\n CALL SGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)\n CALL SLACPY( 'Lower', NR, NR, A, LDA, V, LDV )\n CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n CALL SGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n DO 8998 p = 1, NR\n CALL SCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )\n 8998 CONTINUE\n CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n*\n CALL SGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,\n & LDU, WORK(N+1), LWORK, INFO )\n SCALEM = WORK(N+1)\n NUMRANK = NINT(WORK(N+2))\n IF ( NR .LT. N ) THEN\n CALL SLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1), LDV )\n CALL SLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1), LDV )\n CALL SLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )\n END IF\n*\n CALL SORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,\n & V, LDV, WORK(N+1), LWORK-N, IERR )\n*\n END IF\n*\n DO 8991 p = 1, N\n CALL SCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )\n 8991 CONTINUE\n CALL SLACPY( 'All', N, N, A, LDA, V, LDV )\n*\n IF ( TRANSP ) THEN\n CALL SLACPY( 'All', N, N, V, LDV, U, LDU )\n END IF\n*\n ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN\n*\n* .. Singular Values and Left Singular Vectors ..\n*\n* .. second preconditioning step to avoid need to accumulate\n* Jacobi rotations in the Jacobi iterations.\n DO 1965 p = 1, NR\n CALL SCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )\n 1965 CONTINUE\n CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n*\n CALL SGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n*\n DO 1967 p = 1, NR - 1\n CALL SCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )\n 1967 CONTINUE\n CALL SLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n*\n CALL SGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,\n & LDA, WORK(N+1), LWORK-N, INFO )\n SCALEM = WORK(N+1)\n NUMRANK = NINT(WORK(N+2))\n*\n IF ( NR .LT. M ) THEN\n CALL SLASET( 'A', M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL SLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )\n CALL SLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )\n END IF\n END IF\n*\n CALL SORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n*\n IF ( ROWPIV )\n & CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n*\n DO 1974 p = 1, N1\n XSC = ONE / SNRM2( M, U(1,p), 1 )\n CALL SSCAL( M, XSC, U(1,p), 1 )\n 1974 CONTINUE\n*\n IF ( TRANSP ) THEN\n CALL SLACPY( 'All', N, N, U, LDU, V, LDV )\n END IF\n*\n ELSE\n*\n* .. Full SVD ..\n*\n IF ( .NOT. JRACC ) THEN\n*\n IF ( .NOT. ALMORT ) THEN\n*\n* Second Preconditioning Step (QRF [with pivoting])\n* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is\n* equivalent to an LQF CALL. Since in many libraries the QRF\n* seems to be better optimized than the LQF, we do explicit\n* transpose and use the QRF. This is subject to changes in an\n* optimized implementation of SGEJSV.\n*\n DO 1968 p = 1, NR\n CALL SCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 1968 CONTINUE\n*\n* .. the following two loops perturb small entries to avoid\n* denormals in the second QR factorization, where they are\n* as good as zeros. This is done to avoid painfully slow\n* computation with denormals. The relative size of the perturbation\n* is a parameter that can be changed by the implementer.\n* This perturbation device will be obsolete on machines with\n* properly implemented arithmetic.\n* To switch it off, set L2PERT=.FALSE. To remove it from the\n* code, remove the action under L2PERT=.TRUE., leave the ELSE part.\n* The following two loops should be blocked and fused with the\n* transposed copy above.\n*\n IF ( L2PERT ) THEN\n XSC = SQRT(SMALL)\n DO 2969 q = 1, NR\n TEMP1 = XSC*ABS( V(q,q) )\n DO 2968 p = 1, N\n IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )\n & .OR. ( p .LT. q ) )\n & V(p,q) = SIGN( TEMP1, V(p,q) )\n IF ( p. LT. q ) V(p,q) = - V(p,q)\n 2968 CONTINUE\n 2969 CONTINUE\n ELSE\n CALL SLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n END IF\n*\n* Estimate the row scaled condition number of R1\n* (If R1 is rectangular, N > NR, then the condition number\n* of the leading NR x NR submatrix is estimated.)\n*\n CALL SLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )\n DO 3950 p = 1, NR\n TEMP1 = SNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)\n CALL SSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)\n 3950 CONTINUE\n CALL SPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,\n & WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)\n CONDR1 = ONE / SQRT(TEMP1)\n* .. here need a second oppinion on the condition number\n* .. then assume worst case scenario\n* R1 is OK for inverse <=> CONDR1 .LT. FLOAT(N)\n* more conservative <=> CONDR1 .LT. SQRT(FLOAT(N))\n*\n COND_OK = SQRT(FLOAT(NR))\n*[TP] COND_OK is a tuning parameter.\n\n IF ( CONDR1 .LT. COND_OK ) THEN\n* .. the second QRF without pivoting. Note: in an optimized\n* implementation, this QRF should be implemented as the QRF\n* of a lower triangular matrix.\n* R1^t = Q2 * R2\n CALL SGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n*\n IF ( L2PERT ) THEN\n XSC = SQRT(SMALL)/EPSLN\n DO 3959 p = 2, NR\n DO 3958 q = 1, p - 1\n TEMP1 = XSC * AMIN1(ABS(V(p,p)),ABS(V(q,q)))\n IF ( ABS(V(q,p)) .LE. TEMP1 )\n & V(q,p) = SIGN( TEMP1, V(q,p) )\n 3958 CONTINUE\n 3959 CONTINUE\n END IF\n*\n IF ( NR .NE. N )\n* .. save ...\n & CALL SLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )\n*\n* .. this transposed copy should be better than naive\n DO 1969 p = 1, NR - 1\n CALL SCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )\n 1969 CONTINUE\n*\n CONDR2 = CONDR1\n*\n ELSE\n*\n* .. ill-conditioned case: second QRF with pivoting\n* Note that windowed pivoting would be equaly good\n* numerically, and more run-time efficient. So, in\n* an optimal implementation, the next call to SGEQP3\n* should be replaced with eg. CALL SGEQPX (ACM TOMS #782)\n* with properly (carefully) chosen parameters.\n*\n* R1^t * P2 = Q2 * R2\n DO 3003 p = 1, NR\n IWORK(N+p) = 0\n 3003 CONTINUE\n CALL SGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),\n & WORK(2*N+1), LWORK-2*N, IERR )\n** CALL SGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n** & LWORK-2*N, IERR )\n IF ( L2PERT ) THEN\n XSC = SQRT(SMALL)\n DO 3969 p = 2, NR\n DO 3968 q = 1, p - 1\n TEMP1 = XSC * AMIN1(ABS(V(p,p)),ABS(V(q,q)))\n IF ( ABS(V(q,p)) .LE. TEMP1 )\n & V(q,p) = SIGN( TEMP1, V(q,p) )\n 3968 CONTINUE\n 3969 CONTINUE\n END IF\n*\n CALL SLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )\n*\n IF ( L2PERT ) THEN\n XSC = SQRT(SMALL)\n DO 8970 p = 2, NR\n DO 8971 q = 1, p - 1\n TEMP1 = XSC * AMIN1(ABS(V(p,p)),ABS(V(q,q)))\n V(p,q) = - SIGN( TEMP1, V(q,p) )\n 8971 CONTINUE\n 8970 CONTINUE\n ELSE\n CALL SLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )\n END IF\n* Now, compute R2 = L3 * Q3, the LQ factorization.\n CALL SGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),\n & WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )\n* .. and estimate the condition number\n CALL SLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )\n DO 4950 p = 1, NR\n TEMP1 = SNRM2( p, WORK(2*N+N*NR+NR+p), NR )\n CALL SSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )\n 4950 CONTINUE\n CALL SPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,\n & WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )\n CONDR2 = ONE / SQRT(TEMP1)\n*\n IF ( CONDR2 .GE. COND_OK ) THEN\n* .. save the Householder vectors used for Q3\n* (this overwrittes the copy of R2, as it will not be\n* needed in this branch, but it does not overwritte the\n* Huseholder vectors of Q2.).\n CALL SLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )\n* .. and the rest of the information on Q3 is in\n* WORK(2*N+N*NR+1:2*N+N*NR+N)\n END IF\n*\n END IF\n*\n IF ( L2PERT ) THEN\n XSC = SQRT(SMALL)\n DO 4968 q = 2, NR\n TEMP1 = XSC * V(q,q)\n DO 4969 p = 1, q - 1\n* V(p,q) = - SIGN( TEMP1, V(q,p) )\n V(p,q) = - SIGN( TEMP1, V(p,q) )\n 4969 CONTINUE\n 4968 CONTINUE\n ELSE\n CALL SLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )\n END IF\n*\n* Second preconditioning finished; continue with Jacobi SVD\n* The input matrix is lower trinagular.\n*\n* Recover the right singular vectors as solution of a well\n* conditioned triangular matrix equation.\n*\n IF ( CONDR1 .LT. COND_OK ) THEN\n*\n CALL SGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,\n & LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = NINT(WORK(2*N+N*NR+NR+2))\n DO 3970 p = 1, NR\n CALL SCOPY( NR, V(1,p), 1, U(1,p), 1 )\n CALL SSCAL( NR, SVA(p), V(1,p), 1 )\n 3970 CONTINUE\n\n* .. pick the right matrix equation and solve it\n*\n IF ( NR. EQ. N ) THEN\n* :)) .. best case, R1 is inverted. The solution of this matrix\n* equation is Q2*V2 = the product of the Jacobi rotations\n* used in SGESVJ, premultiplied with the orthogonal matrix\n* from the second QR factorization.\n CALL STRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )\n ELSE\n* .. R1 is well conditioned, but non-square. Transpose(R2)\n* is inverted to get the product of the Jacobi rotations\n* used in SGESVJ. The Q-factor from the second QR\n* factorization is then built in explicitly.\n CALL STRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),\n & N,V,LDV)\n IF ( NR .LT. N ) THEN\n CALL SLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)\n CALL SLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)\n CALL SLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)\n END IF\n CALL SORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)\n END IF\n*\n ELSE IF ( CONDR2 .LT. COND_OK ) THEN\n*\n* :) .. the input matrix A is very likely a relative of\n* the Kahan matrix :)\n* The matrix R2 is inverted. The solution of the matrix equation\n* is Q3^T*V3 = the product of the Jacobi rotations (appplied to\n* the lower triangular L3 from the LQ factorization of\n* R2=L3*Q3), pre-multiplied with the transposed Q3.\n CALL SGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,\n & LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = NINT(WORK(2*N+N*NR+NR+2))\n DO 3870 p = 1, NR\n CALL SCOPY( NR, V(1,p), 1, U(1,p), 1 )\n CALL SSCAL( NR, SVA(p), U(1,p), 1 )\n 3870 CONTINUE\n CALL STRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)\n* .. apply the permutation from the second QR factorization\n DO 873 q = 1, NR\n DO 872 p = 1, NR\n WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)\n 872 CONTINUE\n DO 874 p = 1, NR\n U(p,q) = WORK(2*N+N*NR+NR+p)\n 874 CONTINUE\n 873 CONTINUE\n IF ( NR .LT. N ) THEN\n CALL SLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL SLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL SLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n CALL SORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n ELSE\n* Last line of defense.\n* #:( This is a rather pathological case: no scaled condition\n* improvement after two pivoted QR factorizations. Other\n* possibility is that the rank revealing QR factorization\n* or the condition estimator has failed, or the COND_OK\n* is set very close to ONE (which is unnecessary). Normally,\n* this branch should never be executed, but in rare cases of\n* failure of the RRQR or condition estimator, the last line of\n* defense ensures that SGEJSV completes the task.\n* Compute the full SVD of L3 using SGESVJ with explicit\n* accumulation of Jacobi rotations.\n CALL SGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,\n & LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = NINT(WORK(2*N+N*NR+NR+2))\n IF ( NR .LT. N ) THEN\n CALL SLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL SLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL SLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n CALL SORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n*\n CALL SORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,\n & WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),\n & LWORK-2*N-N*NR-NR, IERR )\n DO 773 q = 1, NR\n DO 772 p = 1, NR\n WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)\n 772 CONTINUE\n DO 774 p = 1, NR\n U(p,q) = WORK(2*N+N*NR+NR+p)\n 774 CONTINUE\n 773 CONTINUE\n*\n END IF\n*\n* Permute the rows of V using the (column) permutation from the\n* first QRF. Also, scale the columns to make them unit in\n* Euclidean norm. This applies to all cases.\n*\n TEMP1 = SQRT(FLOAT(N)) * EPSLN\n DO 1972 q = 1, N\n DO 972 p = 1, N\n WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)\n 972 CONTINUE\n DO 973 p = 1, N\n V(p,q) = WORK(2*N+N*NR+NR+p)\n 973 CONTINUE\n XSC = ONE / SNRM2( N, V(1,q), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL SSCAL( N, XSC, V(1,q), 1 )\n 1972 CONTINUE\n* At this moment, V contains the right singular vectors of A.\n* Next, assemble the left singular vector matrix U (M x N).\n IF ( NR .LT. M ) THEN\n CALL SLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL SLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)\n CALL SLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)\n END IF\n END IF\n*\n* The Q matrix from the first QRF is built into the left singular\n* matrix U. This applies to all cases.\n*\n CALL SORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n\n* The columns of U are normalized. The cost is O(M*N) flops.\n TEMP1 = SQRT(FLOAT(M)) * EPSLN\n DO 1973 p = 1, NR\n XSC = ONE / SNRM2( M, U(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL SSCAL( M, XSC, U(1,p), 1 )\n 1973 CONTINUE\n*\n* If the initial QRF is computed with row pivoting, the left\n* singular vectors must be adjusted.\n*\n IF ( ROWPIV )\n & CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n*\n ELSE\n*\n* .. the initial matrix A has almost orthogonal columns and\n* the second QRF is not needed\n*\n CALL SLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )\n IF ( L2PERT ) THEN\n XSC = SQRT(SMALL)\n DO 5970 p = 2, N\n TEMP1 = XSC * WORK( N + (p-1)*N + p )\n DO 5971 q = 1, p - 1\n WORK(N+(q-1)*N+p)=-SIGN(TEMP1,WORK(N+(p-1)*N+q))\n 5971 CONTINUE\n 5970 CONTINUE\n ELSE\n CALL SLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )\n END IF\n*\n CALL SGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,\n & N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )\n*\n SCALEM = WORK(N+N*N+1)\n NUMRANK = NINT(WORK(N+N*N+2))\n DO 6970 p = 1, N\n CALL SCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )\n CALL SSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )\n 6970 CONTINUE\n*\n CALL STRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,\n & ONE, A, LDA, WORK(N+1), N )\n DO 6972 p = 1, N\n CALL SCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )\n 6972 CONTINUE\n TEMP1 = SQRT(FLOAT(N))*EPSLN\n DO 6971 p = 1, N\n XSC = ONE / SNRM2( N, V(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL SSCAL( N, XSC, V(1,p), 1 )\n 6971 CONTINUE\n*\n* Assemble the left singular vector matrix U (M x N).\n*\n IF ( N .LT. M ) THEN\n CALL SLASET( 'A', M-N, N, ZERO, ZERO, U(N+1,1), LDU )\n IF ( N .LT. N1 ) THEN\n CALL SLASET( 'A',N, N1-N, ZERO, ZERO, U(1,N+1),LDU )\n CALL SLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )\n END IF\n END IF\n CALL SORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n TEMP1 = SQRT(FLOAT(M))*EPSLN\n DO 6973 p = 1, N1\n XSC = ONE / SNRM2( M, U(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL SSCAL( M, XSC, U(1,p), 1 )\n 6973 CONTINUE\n*\n IF ( ROWPIV )\n & CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n*\n END IF\n*\n* end of the >> almost orthogonal case << in the full SVD\n*\n ELSE\n*\n* This branch deploys a preconditioned Jacobi SVD with explicitly\n* accumulated rotations. It is included as optional, mainly for\n* experimental purposes. It does perfom well, and can also be used.\n* In this implementation, this branch will be automatically activated\n* if the condition number sigma_max(A) / sigma_min(A) is predicted\n* to be greater than the overflow threshold. This is because the\n* a posteriori computation of the singular vectors assumes robust\n* implementation of BLAS and some LAPACK procedures, capable of working\n* in presence of extreme values. Since that is not always the case, ...\n*\n DO 7968 p = 1, NR\n CALL SCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 7968 CONTINUE\n*\n IF ( L2PERT ) THEN\n XSC = SQRT(SMALL/EPSLN)\n DO 5969 q = 1, NR\n TEMP1 = XSC*ABS( V(q,q) )\n DO 5968 p = 1, N\n IF ( ( p .GT. q ) .AND. ( ABS(V(p,q)) .LE. TEMP1 )\n & .OR. ( p .LT. q ) )\n & V(p,q) = SIGN( TEMP1, V(p,q) )\n IF ( p. LT. q ) V(p,q) = - V(p,q)\n 5968 CONTINUE\n 5969 CONTINUE\n ELSE\n CALL SLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n END IF\n\n CALL SGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n CALL SLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )\n*\n DO 7969 p = 1, NR\n CALL SCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )\n 7969 CONTINUE\n\n IF ( L2PERT ) THEN\n XSC = SQRT(SMALL/EPSLN)\n DO 9970 q = 2, NR\n DO 9971 p = 1, q - 1\n TEMP1 = XSC * AMIN1(ABS(U(p,p)),ABS(U(q,q)))\n U(p,q) = - SIGN( TEMP1, U(q,p) )\n 9971 CONTINUE\n 9970 CONTINUE\n ELSE\n CALL SLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n END IF\n\n CALL SGESVJ( 'L', 'U', 'V', NR, NR, U, LDU, SVA,\n & N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )\n SCALEM = WORK(2*N+N*NR+1)\n NUMRANK = NINT(WORK(2*N+N*NR+2))\n\n IF ( NR .LT. N ) THEN\n CALL SLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL SLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL SLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n\n CALL SORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n*\n* Permute the rows of V using the (column) permutation from the\n* first QRF. Also, scale the columns to make them unit in\n* Euclidean norm. This applies to all cases.\n*\n TEMP1 = SQRT(FLOAT(N)) * EPSLN\n DO 7972 q = 1, N\n DO 8972 p = 1, N\n WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)\n 8972 CONTINUE\n DO 8973 p = 1, N\n V(p,q) = WORK(2*N+N*NR+NR+p)\n 8973 CONTINUE\n XSC = ONE / SNRM2( N, V(1,q), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL SSCAL( N, XSC, V(1,q), 1 )\n 7972 CONTINUE\n*\n* At this moment, V contains the right singular vectors of A.\n* Next, assemble the left singular vector matrix U (M x N).\n*\n IF ( NR .LT. M ) THEN\n CALL SLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL SLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1),LDU )\n CALL SLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )\n END IF\n END IF\n*\n CALL SORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n*\n IF ( ROWPIV )\n & CALL SLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n*\n*\n END IF\n IF ( TRANSP ) THEN\n* .. swap U and V because the procedure worked on A^t\n DO 6974 p = 1, N\n CALL SSWAP( N, U(1,p), 1, V(1,p), 1 )\n 6974 CONTINUE\n END IF\n*\n END IF\n* end of the full SVD\n*\n* Undo scaling, if necessary (and possible)\n*\n IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN\n CALL SLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )\n USCAL1 = ONE\n USCAL2 = ONE\n END IF\n*\n IF ( NR .LT. N ) THEN\n DO 3004 p = NR+1, N\n SVA(p) = ZERO\n 3004 CONTINUE\n END IF\n*\n WORK(1) = USCAL2 * SCALEM\n WORK(2) = USCAL1\n IF ( ERREST ) WORK(3) = SCONDA\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = CONDR1\n WORK(5) = CONDR2\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ENTRA\n WORK(7) = ENTRAT\n END IF\n*\n IWORK(1) = NR\n IWORK(2) = NUMRANK\n IWORK(3) = WARNING\n*\n RETURN\n* ..\n* .. END OF SGEJSV\n* ..\n END\n*\n\n");
52
- return Qnil;
53
- }
54
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
55
- printf("%s\n", "USAGE:\n sva, u, v, iwork, info, work = NumRu::Lapack.sgejsv( joba, jobu, jobv, jobr, jobt, jobp, m, a, work, [:lwork => lwork, :usage => usage, :help => help])\n");
56
- return Qnil;
57
- }
58
- } else
59
- rblapack_options = Qnil;
60
- if (argc != 9 && argc != 10)
61
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
62
- rblapack_joba = argv[0];
63
- rblapack_jobu = argv[1];
64
- rblapack_jobv = argv[2];
65
- rblapack_jobr = argv[3];
66
- rblapack_jobt = argv[4];
67
- rblapack_jobp = argv[5];
68
- rblapack_m = argv[6];
69
- rblapack_a = argv[7];
70
- rblapack_work = argv[8];
71
- if (argc == 10) {
72
- rblapack_lwork = argv[9];
73
- } else if (rblapack_options != Qnil) {
74
- rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
75
- } else {
76
- rblapack_lwork = Qnil;
77
- }
78
-
79
- joba = StringValueCStr(rblapack_joba)[0];
80
- jobv = StringValueCStr(rblapack_jobv)[0];
81
- jobt = StringValueCStr(rblapack_jobt)[0];
82
- m = NUM2INT(rblapack_m);
83
- if (!NA_IsNArray(rblapack_work))
84
- rb_raise(rb_eArgError, "work (9th argument) must be NArray");
85
- if (NA_RANK(rblapack_work) != 1)
86
- rb_raise(rb_eArgError, "rank of work (9th argument) must be %d", 1);
87
- lwork = NA_SHAPE0(rblapack_work);
88
- if (NA_TYPE(rblapack_work) != NA_SFLOAT)
89
- rblapack_work = na_change_type(rblapack_work, NA_SFLOAT);
90
- work = NA_PTR_TYPE(rblapack_work, real*);
91
- jobu = StringValueCStr(rblapack_jobu)[0];
92
- jobp = StringValueCStr(rblapack_jobp)[0];
93
- ldu = (lsame_(&jobu,"U")||lsame_(&jobu,"F")||lsame_(&jobu,"W")) ? m : 1;
94
- jobr = StringValueCStr(rblapack_jobr)[0];
95
- if (!NA_IsNArray(rblapack_a))
96
- rb_raise(rb_eArgError, "a (8th argument) must be NArray");
97
- if (NA_RANK(rblapack_a) != 2)
98
- rb_raise(rb_eArgError, "rank of a (8th argument) must be %d", 2);
99
- lda = NA_SHAPE0(rblapack_a);
100
- n = NA_SHAPE1(rblapack_a);
101
- if (NA_TYPE(rblapack_a) != NA_SFLOAT)
102
- rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
103
- a = NA_PTR_TYPE(rblapack_a, real*);
104
- ldv = (lsame_(&jobu,"U")||lsame_(&jobu,"F")||lsame_(&jobu,"W")) ? n : 1;
105
- if (rblapack_lwork == Qnil)
106
- lwork = (lsame_(&jobu,"N")&&lsame_(&jobv,"N")) ? MAX(MAX(2*m+n,4*n+n*n),7) : lsame_(&jobv,"V") ? MAX(2*n+m,7) : ((lsame_(&jobu,"U")||lsame_(&jobu,"F"))&&lsame_(&jobv,"V")) ? MAX(MAX(6*n+2*n*n,m+3*n+n*n),7) : MAX(2*n+m,7);
107
- else {
108
- lwork = NUM2INT(rblapack_lwork);
109
- }
110
- {
111
- int shape[1];
112
- shape[0] = n;
113
- rblapack_sva = na_make_object(NA_SFLOAT, 1, shape, cNArray);
114
- }
115
- sva = NA_PTR_TYPE(rblapack_sva, real*);
116
- {
117
- int shape[2];
118
- shape[0] = ldu;
119
- shape[1] = n;
120
- rblapack_u = na_make_object(NA_SFLOAT, 2, shape, cNArray);
121
- }
122
- u = NA_PTR_TYPE(rblapack_u, real*);
123
- {
124
- int shape[2];
125
- shape[0] = ldv;
126
- shape[1] = n;
127
- rblapack_v = na_make_object(NA_SFLOAT, 2, shape, cNArray);
128
- }
129
- v = NA_PTR_TYPE(rblapack_v, real*);
130
- {
131
- int shape[1];
132
- shape[0] = m+3*n;
133
- rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
134
- }
135
- iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
136
- {
137
- int shape[1];
138
- shape[0] = lwork;
139
- rblapack_work_out__ = na_make_object(NA_SFLOAT, 1, shape, cNArray);
140
- }
141
- work_out__ = NA_PTR_TYPE(rblapack_work_out__, real*);
142
- MEMCPY(work_out__, work, real, NA_TOTAL(rblapack_work));
143
- rblapack_work = rblapack_work_out__;
144
- work = work_out__;
145
-
146
- sgejsv_(&joba, &jobu, &jobv, &jobr, &jobt, &jobp, &m, &n, a, &lda, sva, u, &ldu, v, &ldv, work, &lwork, iwork, &info);
147
-
148
- rblapack_info = INT2NUM(info);
149
- return rb_ary_new3(6, rblapack_sva, rblapack_u, rblapack_v, rblapack_iwork, rblapack_info, rblapack_work);
150
- }
151
-
152
- void
153
- init_lapack_sgejsv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
154
- sHelp = sH;
155
- sUsage = sU;
156
- rblapack_ZERO = zero;
157
-
158
- rb_define_module_function(mLapack, "sgejsv", rblapack_sgejsv, -1);
159
- }
@@ -1,86 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID sgelq2_(integer* m, integer* n, real* a, integer* lda, real* tau, real* work, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_sgelq2(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_a;
9
- real *a;
10
- VALUE rblapack_tau;
11
- real *tau;
12
- VALUE rblapack_info;
13
- integer info;
14
- VALUE rblapack_a_out__;
15
- real *a_out__;
16
- real *work;
17
-
18
- integer lda;
19
- integer n;
20
- integer m;
21
-
22
- VALUE rblapack_options;
23
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
24
- argc--;
25
- rblapack_options = argv[argc];
26
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
27
- printf("%s\n", "USAGE:\n tau, info, a = NumRu::Lapack.sgelq2( a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGELQ2( M, N, A, LDA, TAU, WORK, INFO )\n\n* Purpose\n* =======\n*\n* SGELQ2 computes an LQ factorization of a real m by n matrix A:\n* A = L * Q.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the m by n matrix A.\n* On exit, the elements on and below the diagonal of the array\n* contain the m by min(m,n) lower trapezoidal matrix L (L is\n* lower triangular if m <= n); the elements above the diagonal,\n* with the array TAU, represent the orthogonal matrix Q as a\n* product of elementary reflectors (see Further Details).\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* TAU (output) REAL array, dimension (min(M,N))\n* The scalar factors of the elementary reflectors (see Further\n* Details).\n*\n* WORK (workspace) REAL array, dimension (M)\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of elementary reflectors\n*\n* Q = H(k) . . . H(2) H(1), where k = min(m,n).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real scalar, and v is a real vector with\n* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),\n* and tau in TAU(i).\n*\n* =====================================================================\n*\n\n");
28
- return Qnil;
29
- }
30
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
31
- printf("%s\n", "USAGE:\n tau, info, a = NumRu::Lapack.sgelq2( a, [:usage => usage, :help => help])\n");
32
- return Qnil;
33
- }
34
- } else
35
- rblapack_options = Qnil;
36
- if (argc != 1 && argc != 1)
37
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 1)", argc);
38
- rblapack_a = argv[0];
39
- if (argc == 1) {
40
- } else if (rblapack_options != Qnil) {
41
- } else {
42
- }
43
-
44
- if (!NA_IsNArray(rblapack_a))
45
- rb_raise(rb_eArgError, "a (1th argument) must be NArray");
46
- if (NA_RANK(rblapack_a) != 2)
47
- rb_raise(rb_eArgError, "rank of a (1th argument) must be %d", 2);
48
- lda = NA_SHAPE0(rblapack_a);
49
- n = NA_SHAPE1(rblapack_a);
50
- if (NA_TYPE(rblapack_a) != NA_SFLOAT)
51
- rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
52
- a = NA_PTR_TYPE(rblapack_a, real*);
53
- m = lda;
54
- {
55
- int shape[1];
56
- shape[0] = MIN(m,n);
57
- rblapack_tau = na_make_object(NA_SFLOAT, 1, shape, cNArray);
58
- }
59
- tau = NA_PTR_TYPE(rblapack_tau, real*);
60
- {
61
- int shape[2];
62
- shape[0] = lda;
63
- shape[1] = n;
64
- rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
65
- }
66
- a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
67
- MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
68
- rblapack_a = rblapack_a_out__;
69
- a = a_out__;
70
- work = ALLOC_N(real, (m));
71
-
72
- sgelq2_(&m, &n, a, &lda, tau, work, &info);
73
-
74
- free(work);
75
- rblapack_info = INT2NUM(info);
76
- return rb_ary_new3(3, rblapack_tau, rblapack_info, rblapack_a);
77
- }
78
-
79
- void
80
- init_lapack_sgelq2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
81
- sHelp = sH;
82
- sUsage = sU;
83
- rblapack_ZERO = zero;
84
-
85
- rb_define_module_function(mLapack, "sgelq2", rblapack_sgelq2, -1);
86
- }
@@ -1,103 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID sgelqf_(integer* m, integer* n, real* a, integer* lda, real* tau, real* work, integer* lwork, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_sgelqf(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_m;
9
- integer m;
10
- VALUE rblapack_a;
11
- real *a;
12
- VALUE rblapack_lwork;
13
- integer lwork;
14
- VALUE rblapack_tau;
15
- real *tau;
16
- VALUE rblapack_work;
17
- real *work;
18
- VALUE rblapack_info;
19
- integer info;
20
- VALUE rblapack_a_out__;
21
- real *a_out__;
22
-
23
- integer lda;
24
- integer n;
25
-
26
- VALUE rblapack_options;
27
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
28
- argc--;
29
- rblapack_options = argv[argc];
30
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
31
- printf("%s\n", "USAGE:\n tau, work, info, a = NumRu::Lapack.sgelqf( m, a, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE SGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* SGELQF computes an LQ factorization of a real M-by-N matrix A:\n* A = L * Q.\n*\n\n* Arguments\n* =========\n*\n* M (input) INTEGER\n* The number of rows of the matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the matrix A. N >= 0.\n*\n* A (input/output) REAL array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n* On exit, the elements on and below the diagonal of the array\n* contain the m-by-min(m,n) lower trapezoidal matrix L (L is\n* lower triangular if m <= n); the elements above the diagonal,\n* with the array TAU, represent the orthogonal matrix Q as a\n* product of elementary reflectors (see Further Details).\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* TAU (output) REAL array, dimension (min(M,N))\n* The scalar factors of the elementary reflectors (see Further\n* Details).\n*\n* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,M).\n* For optimum performance LWORK >= M*NB, where NB is the\n* optimal blocksize.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of elementary reflectors\n*\n* Q = H(k) . . . H(2) H(1), where k = min(m,n).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real scalar, and v is a real vector with\n* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in A(i,i+1:n),\n* and tau in TAU(i).\n*\n* =====================================================================\n*\n* .. Local Scalars ..\n LOGICAL LQUERY\n INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,\n $ NBMIN, NX\n* ..\n* .. External Subroutines ..\n EXTERNAL SGELQ2, SLARFB, SLARFT, XERBLA\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC MAX, MIN\n* ..\n* .. External Functions ..\n INTEGER ILAENV\n EXTERNAL ILAENV\n* ..\n\n");
32
- return Qnil;
33
- }
34
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
35
- printf("%s\n", "USAGE:\n tau, work, info, a = NumRu::Lapack.sgelqf( m, a, [:lwork => lwork, :usage => usage, :help => help])\n");
36
- return Qnil;
37
- }
38
- } else
39
- rblapack_options = Qnil;
40
- if (argc != 2 && argc != 3)
41
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 2)", argc);
42
- rblapack_m = argv[0];
43
- rblapack_a = argv[1];
44
- if (argc == 3) {
45
- rblapack_lwork = argv[2];
46
- } else if (rblapack_options != Qnil) {
47
- rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
48
- } else {
49
- rblapack_lwork = Qnil;
50
- }
51
-
52
- m = NUM2INT(rblapack_m);
53
- if (rblapack_lwork == Qnil)
54
- lwork = m;
55
- else {
56
- lwork = NUM2INT(rblapack_lwork);
57
- }
58
- if (!NA_IsNArray(rblapack_a))
59
- rb_raise(rb_eArgError, "a (2th argument) must be NArray");
60
- if (NA_RANK(rblapack_a) != 2)
61
- rb_raise(rb_eArgError, "rank of a (2th argument) must be %d", 2);
62
- lda = NA_SHAPE0(rblapack_a);
63
- n = NA_SHAPE1(rblapack_a);
64
- if (NA_TYPE(rblapack_a) != NA_SFLOAT)
65
- rblapack_a = na_change_type(rblapack_a, NA_SFLOAT);
66
- a = NA_PTR_TYPE(rblapack_a, real*);
67
- {
68
- int shape[1];
69
- shape[0] = MIN(m,n);
70
- rblapack_tau = na_make_object(NA_SFLOAT, 1, shape, cNArray);
71
- }
72
- tau = NA_PTR_TYPE(rblapack_tau, real*);
73
- {
74
- int shape[1];
75
- shape[0] = MAX(1,lwork);
76
- rblapack_work = na_make_object(NA_SFLOAT, 1, shape, cNArray);
77
- }
78
- work = NA_PTR_TYPE(rblapack_work, real*);
79
- {
80
- int shape[2];
81
- shape[0] = lda;
82
- shape[1] = n;
83
- rblapack_a_out__ = na_make_object(NA_SFLOAT, 2, shape, cNArray);
84
- }
85
- a_out__ = NA_PTR_TYPE(rblapack_a_out__, real*);
86
- MEMCPY(a_out__, a, real, NA_TOTAL(rblapack_a));
87
- rblapack_a = rblapack_a_out__;
88
- a = a_out__;
89
-
90
- sgelqf_(&m, &n, a, &lda, tau, work, &lwork, &info);
91
-
92
- rblapack_info = INT2NUM(info);
93
- return rb_ary_new3(4, rblapack_tau, rblapack_work, rblapack_info, rblapack_a);
94
- }
95
-
96
- void
97
- init_lapack_sgelqf(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
98
- sHelp = sH;
99
- sUsage = sU;
100
- rblapack_ZERO = zero;
101
-
102
- rb_define_module_function(mLapack, "sgelqf", rblapack_sgelqf, -1);
103
- }