ruby-lapack 1.6 → 1.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1637) hide show
  1. checksums.yaml +7 -0
  2. data/Rakefile +1 -1
  3. data/dev/make_csrc.rb +8 -2
  4. data/ext/extconf.rb +15 -11
  5. data/ext/rb_lapack.h +7 -1
  6. metadata +48 -1700
  7. data/ext/cbbcsd.c +0 -283
  8. data/ext/cbdsqr.c +0 -182
  9. data/ext/cgbbrd.c +0 -157
  10. data/ext/cgbcon.c +0 -98
  11. data/ext/cgbequ.c +0 -98
  12. data/ext/cgbequb.c +0 -96
  13. data/ext/cgbrfs.c +0 -161
  14. data/ext/cgbrfsx.c +0 -249
  15. data/ext/cgbsv.c +0 -115
  16. data/ext/cgbsvx.c +0 -286
  17. data/ext/cgbsvxx.c +0 -289
  18. data/ext/cgbtf2.c +0 -93
  19. data/ext/cgbtrf.c +0 -93
  20. data/ext/cgbtrs.c +0 -111
  21. data/ext/cgebak.c +0 -101
  22. data/ext/cgebal.c +0 -91
  23. data/ext/cgebd2.c +0 -112
  24. data/ext/cgebrd.c +0 -127
  25. data/ext/cgecon.c +0 -78
  26. data/ext/cgeequ.c +0 -88
  27. data/ext/cgeequb.c +0 -88
  28. data/ext/cgees.c +0 -142
  29. data/ext/cgeesx.c +0 -152
  30. data/ext/cgeev.c +0 -132
  31. data/ext/cgeevx.c +0 -173
  32. data/ext/cgegs.c +0 -166
  33. data/ext/cgegv.c +0 -171
  34. data/ext/cgehd2.c +0 -92
  35. data/ext/cgehrd.c +0 -107
  36. data/ext/cgelq2.c +0 -86
  37. data/ext/cgelqf.c +0 -103
  38. data/ext/cgels.c +0 -137
  39. data/ext/cgelsd.c +0 -154
  40. data/ext/cgelss.c +0 -151
  41. data/ext/cgelsx.c +0 -139
  42. data/ext/cgelsy.c +0 -166
  43. data/ext/cgeql2.c +0 -88
  44. data/ext/cgeqlf.c +0 -103
  45. data/ext/cgeqp3.c +0 -129
  46. data/ext/cgeqpf.c +0 -114
  47. data/ext/cgeqr2.c +0 -88
  48. data/ext/cgeqr2p.c +0 -88
  49. data/ext/cgeqrf.c +0 -103
  50. data/ext/cgeqrfp.c +0 -103
  51. data/ext/cgerfs.c +0 -153
  52. data/ext/cgerfsx.c +0 -219
  53. data/ext/cgerq2.c +0 -86
  54. data/ext/cgerqf.c +0 -103
  55. data/ext/cgesc2.c +0 -108
  56. data/ext/cgesdd.c +0 -135
  57. data/ext/cgesv.c +0 -107
  58. data/ext/cgesvd.c +0 -146
  59. data/ext/cgesvx.c +0 -278
  60. data/ext/cgesvxx.c +0 -281
  61. data/ext/cgetc2.c +0 -89
  62. data/ext/cgetf2.c +0 -85
  63. data/ext/cgetrf.c +0 -85
  64. data/ext/cgetri.c +0 -103
  65. data/ext/cgetrs.c +0 -103
  66. data/ext/cggbak.c +0 -113
  67. data/ext/cggbal.c +0 -128
  68. data/ext/cgges.c +0 -192
  69. data/ext/cggesx.c +0 -230
  70. data/ext/cggev.c +0 -171
  71. data/ext/cggevx.c +0 -226
  72. data/ext/cggglm.c +0 -156
  73. data/ext/cgghrd.c +0 -167
  74. data/ext/cgglse.c +0 -171
  75. data/ext/cggqrf.c +0 -137
  76. data/ext/cggrqf.c +0 -141
  77. data/ext/cggsvd.c +0 -184
  78. data/ext/cggsvp.c +0 -174
  79. data/ext/cgtcon.c +0 -121
  80. data/ext/cgtrfs.c +0 -209
  81. data/ext/cgtsv.c +0 -142
  82. data/ext/cgtsvx.c +0 -256
  83. data/ext/cgttrf.c +0 -132
  84. data/ext/cgttrs.c +0 -137
  85. data/ext/cgtts2.c +0 -134
  86. data/ext/chbev.c +0 -110
  87. data/ext/chbevd.c +0 -158
  88. data/ext/chbevx.c +0 -160
  89. data/ext/chbgst.c +0 -120
  90. data/ext/chbgv.c +0 -140
  91. data/ext/chbgvd.c +0 -188
  92. data/ext/chbgvx.c +0 -189
  93. data/ext/chbtrd.c +0 -130
  94. data/ext/checon.c +0 -87
  95. data/ext/cheequb.c +0 -82
  96. data/ext/cheev.c +0 -110
  97. data/ext/cheevd.c +0 -143
  98. data/ext/cheevr.c +0 -190
  99. data/ext/cheevx.c +0 -160
  100. data/ext/chegs2.c +0 -95
  101. data/ext/chegst.c +0 -95
  102. data/ext/chegv.c +0 -140
  103. data/ext/chegvd.c +0 -173
  104. data/ext/chegvx.c +0 -190
  105. data/ext/cherfs.c +0 -153
  106. data/ext/cherfsx.c +0 -218
  107. data/ext/chesv.c +0 -123
  108. data/ext/chesvx.c +0 -183
  109. data/ext/chesvxx.c +0 -258
  110. data/ext/chetd2.c +0 -101
  111. data/ext/chetf2.c +0 -85
  112. data/ext/chetrd.c +0 -113
  113. data/ext/chetrf.c +0 -97
  114. data/ext/chetri.c +0 -92
  115. data/ext/chetrs.c +0 -103
  116. data/ext/chetrs2.c +0 -106
  117. data/ext/chfrk.c +0 -109
  118. data/ext/chgeqz.c +0 -208
  119. data/ext/chla_transtype.c +0 -51
  120. data/ext/chpcon.c +0 -85
  121. data/ext/chpev.c +0 -105
  122. data/ext/chpevd.c +0 -153
  123. data/ext/chpevx.c +0 -144
  124. data/ext/chpgst.c +0 -94
  125. data/ext/chpgv.c +0 -132
  126. data/ext/chpgvd.c +0 -170
  127. data/ext/chpgvx.c +0 -170
  128. data/ext/chprfs.c +0 -149
  129. data/ext/chpsv.c +0 -110
  130. data/ext/chpsvx.c +0 -163
  131. data/ext/chptrd.c +0 -100
  132. data/ext/chptrf.c +0 -84
  133. data/ext/chptri.c +0 -89
  134. data/ext/chptrs.c +0 -101
  135. data/ext/chsein.c +0 -185
  136. data/ext/chseqr.c +0 -145
  137. data/ext/cla_gbamv.c +0 -127
  138. data/ext/cla_gbrcond_c.c +0 -142
  139. data/ext/cla_gbrcond_x.c +0 -138
  140. data/ext/cla_gbrfsx_extended.c +0 -295
  141. data/ext/cla_gbrpvgrw.c +0 -87
  142. data/ext/cla_geamv.c +0 -117
  143. data/ext/cla_gercond_c.c +0 -134
  144. data/ext/cla_gercond_x.c +0 -130
  145. data/ext/cla_gerfsx_extended.c +0 -281
  146. data/ext/cla_heamv.c +0 -116
  147. data/ext/cla_hercond_c.c +0 -134
  148. data/ext/cla_hercond_x.c +0 -130
  149. data/ext/cla_herfsx_extended.c +0 -283
  150. data/ext/cla_herpvgrw.c +0 -107
  151. data/ext/cla_lin_berr.c +0 -84
  152. data/ext/cla_porcond_c.c +0 -122
  153. data/ext/cla_porcond_x.c +0 -118
  154. data/ext/cla_porfsx_extended.c +0 -271
  155. data/ext/cla_porpvgrw.c +0 -95
  156. data/ext/cla_rpvgrw.c +0 -79
  157. data/ext/cla_syamv.c +0 -115
  158. data/ext/cla_syrcond_c.c +0 -134
  159. data/ext/cla_syrcond_x.c +0 -130
  160. data/ext/cla_syrfsx_extended.c +0 -283
  161. data/ext/cla_syrpvgrw.c +0 -107
  162. data/ext/cla_wwaddw.c +0 -102
  163. data/ext/clabrd.c +0 -132
  164. data/ext/clacgv.c +0 -75
  165. data/ext/clacn2.c +0 -103
  166. data/ext/clacon.c +0 -80
  167. data/ext/clacp2.c +0 -77
  168. data/ext/clacpy.c +0 -77
  169. data/ext/clacrm.c +0 -90
  170. data/ext/clacrt.c +0 -108
  171. data/ext/cladiv.c +0 -57
  172. data/ext/claed0.c +0 -134
  173. data/ext/claed7.c +0 -247
  174. data/ext/claed8.c +0 -198
  175. data/ext/claein.c +0 -113
  176. data/ext/claesy.c +0 -74
  177. data/ext/claev2.c +0 -71
  178. data/ext/clag2z.c +0 -76
  179. data/ext/clags2.c +0 -92
  180. data/ext/clagtm.c +0 -132
  181. data/ext/clahef.c +0 -97
  182. data/ext/clahqr.c +0 -135
  183. data/ext/clahr2.c +0 -112
  184. data/ext/clahrd.c +0 -112
  185. data/ext/claic1.c +0 -90
  186. data/ext/clals0.c +0 -201
  187. data/ext/clalsa.c +0 -270
  188. data/ext/clalsd.c +0 -145
  189. data/ext/clangb.c +0 -76
  190. data/ext/clange.c +0 -74
  191. data/ext/clangt.c +0 -87
  192. data/ext/clanhb.c +0 -78
  193. data/ext/clanhe.c +0 -72
  194. data/ext/clanhf.c +0 -80
  195. data/ext/clanhp.c +0 -74
  196. data/ext/clanhs.c +0 -70
  197. data/ext/clanht.c +0 -75
  198. data/ext/clansb.c +0 -78
  199. data/ext/clansp.c +0 -74
  200. data/ext/clansy.c +0 -72
  201. data/ext/clantb.c +0 -80
  202. data/ext/clantp.c +0 -80
  203. data/ext/clantr.c +0 -82
  204. data/ext/clapll.c +0 -105
  205. data/ext/clapmr.c +0 -97
  206. data/ext/clapmt.c +0 -101
  207. data/ext/claqgb.c +0 -117
  208. data/ext/claqge.c +0 -109
  209. data/ext/claqhb.c +0 -97
  210. data/ext/claqhe.c +0 -97
  211. data/ext/claqhp.c +0 -94
  212. data/ext/claqp2.c +0 -158
  213. data/ext/claqps.c +0 -208
  214. data/ext/claqr0.c +0 -145
  215. data/ext/claqr1.c +0 -76
  216. data/ext/claqr2.c +0 -174
  217. data/ext/claqr3.c +0 -174
  218. data/ext/claqr4.c +0 -145
  219. data/ext/claqr5.c +0 -179
  220. data/ext/claqsb.c +0 -101
  221. data/ext/claqsp.c +0 -94
  222. data/ext/claqsy.c +0 -97
  223. data/ext/clar1v.c +0 -173
  224. data/ext/clar2v.c +0 -149
  225. data/ext/clarcm.c +0 -86
  226. data/ext/clarf.c +0 -102
  227. data/ext/clarfb.c +0 -123
  228. data/ext/clarfg.c +0 -84
  229. data/ext/clarfgp.c +0 -84
  230. data/ext/clarft.c +0 -105
  231. data/ext/clarfx.c +0 -94
  232. data/ext/clargv.c +0 -114
  233. data/ext/clarnv.c +0 -83
  234. data/ext/clarrv.c +0 -271
  235. data/ext/clarscl2.c +0 -82
  236. data/ext/clartg.c +0 -63
  237. data/ext/clartv.c +0 -130
  238. data/ext/clarz.c +0 -106
  239. data/ext/clarzb.c +0 -127
  240. data/ext/clarzt.c +0 -105
  241. data/ext/clascl.c +0 -97
  242. data/ext/clascl2.c +0 -82
  243. data/ext/claset.c +0 -88
  244. data/ext/clasr.c +0 -110
  245. data/ext/classq.c +0 -70
  246. data/ext/claswp.c +0 -94
  247. data/ext/clasyf.c +0 -97
  248. data/ext/clatbs.c +0 -130
  249. data/ext/clatdf.c +0 -119
  250. data/ext/clatps.c +0 -124
  251. data/ext/clatrd.c +0 -105
  252. data/ext/clatrs.c +0 -126
  253. data/ext/clatrz.c +0 -87
  254. data/ext/clatzm.c +0 -132
  255. data/ext/clauu2.c +0 -77
  256. data/ext/clauum.c +0 -77
  257. data/ext/cpbcon.c +0 -82
  258. data/ext/cpbequ.c +0 -83
  259. data/ext/cpbrfs.c +0 -145
  260. data/ext/cpbstf.c +0 -81
  261. data/ext/cpbsv.c +0 -107
  262. data/ext/cpbsvx.c +0 -201
  263. data/ext/cpbtf2.c +0 -81
  264. data/ext/cpbtrf.c +0 -81
  265. data/ext/cpbtrs.c +0 -95
  266. data/ext/cpftrf.c +0 -82
  267. data/ext/cpftri.c +0 -82
  268. data/ext/cpftrs.c +0 -97
  269. data/ext/cpocon.c +0 -78
  270. data/ext/cpoequ.c +0 -75
  271. data/ext/cpoequb.c +0 -75
  272. data/ext/cporfs.c +0 -141
  273. data/ext/cporfsx.c +0 -206
  274. data/ext/cposv.c +0 -103
  275. data/ext/cposvx.c +0 -197
  276. data/ext/cposvxx.c +0 -235
  277. data/ext/cpotf2.c +0 -77
  278. data/ext/cpotrf.c +0 -77
  279. data/ext/cpotri.c +0 -77
  280. data/ext/cpotrs.c +0 -91
  281. data/ext/cppcon.c +0 -78
  282. data/ext/cppequ.c +0 -79
  283. data/ext/cpprfs.c +0 -139
  284. data/ext/cppsv.c +0 -104
  285. data/ext/cppsvx.c +0 -191
  286. data/ext/cpptrf.c +0 -78
  287. data/ext/cpptri.c +0 -78
  288. data/ext/cpptrs.c +0 -93
  289. data/ext/cpstf2.c +0 -95
  290. data/ext/cpstrf.c +0 -95
  291. data/ext/cptcon.c +0 -81
  292. data/ext/cpteqr.c +0 -126
  293. data/ext/cptrfs.c +0 -161
  294. data/ext/cptsv.c +0 -119
  295. data/ext/cptsvx.c +0 -171
  296. data/ext/cpttrf.c +0 -93
  297. data/ext/cpttrs.c +0 -101
  298. data/ext/cptts2.c +0 -98
  299. data/ext/crot.c +0 -107
  300. data/ext/cspcon.c +0 -85
  301. data/ext/cspmv.c +0 -115
  302. data/ext/cspr.c +0 -96
  303. data/ext/csprfs.c +0 -149
  304. data/ext/cspsv.c +0 -110
  305. data/ext/cspsvx.c +0 -163
  306. data/ext/csptrf.c +0 -84
  307. data/ext/csptri.c +0 -89
  308. data/ext/csptrs.c +0 -101
  309. data/ext/csrscl.c +0 -79
  310. data/ext/cstedc.c +0 -177
  311. data/ext/cstegr.c +0 -188
  312. data/ext/cstein.c +0 -134
  313. data/ext/cstemr.c +0 -193
  314. data/ext/csteqr.c +0 -126
  315. data/ext/csycon.c +0 -87
  316. data/ext/csyconv.c +0 -84
  317. data/ext/csyequb.c +0 -82
  318. data/ext/csymv.c +0 -115
  319. data/ext/csyr.c +0 -95
  320. data/ext/csyrfs.c +0 -153
  321. data/ext/csyrfsx.c +0 -218
  322. data/ext/csysv.c +0 -129
  323. data/ext/csysvx.c +0 -183
  324. data/ext/csysvxx.c +0 -258
  325. data/ext/csyswapr.c +0 -82
  326. data/ext/csytf2.c +0 -85
  327. data/ext/csytrf.c +0 -97
  328. data/ext/csytri.c +0 -92
  329. data/ext/csytri2.c +0 -108
  330. data/ext/csytri2x.c +0 -96
  331. data/ext/csytrs.c +0 -103
  332. data/ext/csytrs2.c +0 -106
  333. data/ext/ctbcon.c +0 -86
  334. data/ext/ctbrfs.c +0 -127
  335. data/ext/ctbtrs.c +0 -103
  336. data/ext/ctfsm.c +0 -111
  337. data/ext/ctftri.c +0 -86
  338. data/ext/ctfttp.c +0 -79
  339. data/ext/ctfttr.c +0 -80
  340. data/ext/ctgevc.c +0 -156
  341. data/ext/ctgex2.c +0 -171
  342. data/ext/ctgexc.c +0 -172
  343. data/ext/ctgsen.c +0 -244
  344. data/ext/ctgsja.c +0 -227
  345. data/ext/ctgsna.c +0 -164
  346. data/ext/ctgsy2.c +0 -176
  347. data/ext/ctgsyl.c +0 -190
  348. data/ext/ctpcon.c +0 -82
  349. data/ext/ctprfs.c +0 -123
  350. data/ext/ctptri.c +0 -82
  351. data/ext/ctptrs.c +0 -101
  352. data/ext/ctpttf.c +0 -79
  353. data/ext/ctpttr.c +0 -76
  354. data/ext/ctrcon.c +0 -82
  355. data/ext/ctrevc.c +0 -154
  356. data/ext/ctrexc.c +0 -111
  357. data/ext/ctrrfs.c +0 -123
  358. data/ext/ctrsen.c +0 -154
  359. data/ext/ctrsna.c +0 -137
  360. data/ext/ctrsyl.c +0 -116
  361. data/ext/ctrti2.c +0 -81
  362. data/ext/ctrtri.c +0 -81
  363. data/ext/ctrtrs.c +0 -99
  364. data/ext/ctrttf.c +0 -77
  365. data/ext/ctrttp.c +0 -73
  366. data/ext/ctzrqf.c +0 -83
  367. data/ext/ctzrzf.c +0 -101
  368. data/ext/cunbdb.c +0 -232
  369. data/ext/cuncsd.c +0 -204
  370. data/ext/cung2l.c +0 -92
  371. data/ext/cung2r.c +0 -92
  372. data/ext/cungbr.c +0 -115
  373. data/ext/cunghr.c +0 -111
  374. data/ext/cungl2.c +0 -90
  375. data/ext/cunglq.c +0 -107
  376. data/ext/cungql.c +0 -107
  377. data/ext/cungqr.c +0 -107
  378. data/ext/cungr2.c +0 -90
  379. data/ext/cungrq.c +0 -107
  380. data/ext/cungtr.c +0 -107
  381. data/ext/cunm2l.c +0 -114
  382. data/ext/cunm2r.c +0 -114
  383. data/ext/cunmbr.c +0 -139
  384. data/ext/cunmhr.c +0 -133
  385. data/ext/cunml2.c +0 -110
  386. data/ext/cunmlq.c +0 -125
  387. data/ext/cunmql.c +0 -129
  388. data/ext/cunmqr.c +0 -129
  389. data/ext/cunmr2.c +0 -110
  390. data/ext/cunmr3.c +0 -114
  391. data/ext/cunmrq.c +0 -125
  392. data/ext/cunmrz.c +0 -129
  393. data/ext/cunmtr.c +0 -129
  394. data/ext/cupgtr.c +0 -91
  395. data/ext/cupmtr.c +0 -116
  396. data/ext/dbbcsd.c +0 -287
  397. data/ext/dbdsdc.c +0 -151
  398. data/ext/dbdsqr.c +0 -182
  399. data/ext/ddisna.c +0 -75
  400. data/ext/dgbbrd.c +0 -154
  401. data/ext/dgbcon.c +0 -98
  402. data/ext/dgbequ.c +0 -98
  403. data/ext/dgbequb.c +0 -96
  404. data/ext/dgbrfs.c +0 -161
  405. data/ext/dgbrfsx.c +0 -249
  406. data/ext/dgbsv.c +0 -115
  407. data/ext/dgbsvx.c +0 -286
  408. data/ext/dgbsvxx.c +0 -289
  409. data/ext/dgbtf2.c +0 -93
  410. data/ext/dgbtrf.c +0 -93
  411. data/ext/dgbtrs.c +0 -111
  412. data/ext/dgebak.c +0 -101
  413. data/ext/dgebal.c +0 -91
  414. data/ext/dgebd2.c +0 -112
  415. data/ext/dgebrd.c +0 -127
  416. data/ext/dgecon.c +0 -78
  417. data/ext/dgeequ.c +0 -88
  418. data/ext/dgeequb.c +0 -88
  419. data/ext/dgees.c +0 -148
  420. data/ext/dgeesx.c +0 -170
  421. data/ext/dgeev.c +0 -137
  422. data/ext/dgeevx.c +0 -181
  423. data/ext/dgegs.c +0 -171
  424. data/ext/dgegv.c +0 -171
  425. data/ext/dgehd2.c +0 -92
  426. data/ext/dgehrd.c +0 -107
  427. data/ext/dgejsv.c +0 -159
  428. data/ext/dgelq2.c +0 -86
  429. data/ext/dgelqf.c +0 -103
  430. data/ext/dgels.c +0 -137
  431. data/ext/dgelsd.c +0 -149
  432. data/ext/dgelss.c +0 -148
  433. data/ext/dgelsx.c +0 -136
  434. data/ext/dgelsy.c +0 -163
  435. data/ext/dgeql2.c +0 -88
  436. data/ext/dgeqlf.c +0 -103
  437. data/ext/dgeqp3.c +0 -126
  438. data/ext/dgeqpf.c +0 -111
  439. data/ext/dgeqr2.c +0 -88
  440. data/ext/dgeqr2p.c +0 -88
  441. data/ext/dgeqrf.c +0 -103
  442. data/ext/dgeqrfp.c +0 -103
  443. data/ext/dgerfs.c +0 -153
  444. data/ext/dgerfsx.c +0 -219
  445. data/ext/dgerq2.c +0 -86
  446. data/ext/dgerqf.c +0 -103
  447. data/ext/dgesc2.c +0 -108
  448. data/ext/dgesdd.c +0 -132
  449. data/ext/dgesv.c +0 -107
  450. data/ext/dgesvd.c +0 -143
  451. data/ext/dgesvj.c +0 -156
  452. data/ext/dgesvx.c +0 -278
  453. data/ext/dgesvxx.c +0 -281
  454. data/ext/dgetc2.c +0 -89
  455. data/ext/dgetf2.c +0 -85
  456. data/ext/dgetrf.c +0 -85
  457. data/ext/dgetri.c +0 -103
  458. data/ext/dgetrs.c +0 -103
  459. data/ext/dggbak.c +0 -113
  460. data/ext/dggbal.c +0 -128
  461. data/ext/dgges.c +0 -198
  462. data/ext/dggesx.c +0 -231
  463. data/ext/dggev.c +0 -171
  464. data/ext/dggevx.c +0 -229
  465. data/ext/dggglm.c +0 -156
  466. data/ext/dgghrd.c +0 -167
  467. data/ext/dgglse.c +0 -171
  468. data/ext/dggqrf.c +0 -137
  469. data/ext/dggrqf.c +0 -141
  470. data/ext/dggsvd.c +0 -181
  471. data/ext/dggsvp.c +0 -171
  472. data/ext/dgsvj0.c +0 -182
  473. data/ext/dgsvj1.c +0 -186
  474. data/ext/dgtcon.c +0 -124
  475. data/ext/dgtrfs.c +0 -209
  476. data/ext/dgtsv.c +0 -142
  477. data/ext/dgtsvx.c +0 -256
  478. data/ext/dgttrf.c +0 -132
  479. data/ext/dgttrs.c +0 -137
  480. data/ext/dgtts2.c +0 -134
  481. data/ext/dhgeqz.c +0 -213
  482. data/ext/dhsein.c +0 -205
  483. data/ext/dhseqr.c +0 -153
  484. data/ext/disnan.c +0 -51
  485. data/ext/dla_gbamv.c +0 -129
  486. data/ext/dla_gbrcond.c +0 -142
  487. data/ext/dla_gbrfsx_extended.c +0 -293
  488. data/ext/dla_gbrpvgrw.c +0 -87
  489. data/ext/dla_geamv.c +0 -119
  490. data/ext/dla_gercond.c +0 -134
  491. data/ext/dla_gerfsx_extended.c +0 -281
  492. data/ext/dla_lin_berr.c +0 -84
  493. data/ext/dla_porcond.c +0 -122
  494. data/ext/dla_porfsx_extended.c +0 -271
  495. data/ext/dla_porpvgrw.c +0 -95
  496. data/ext/dla_rpvgrw.c +0 -79
  497. data/ext/dla_syamv.c +0 -113
  498. data/ext/dla_syrcond.c +0 -134
  499. data/ext/dla_syrfsx_extended.c +0 -283
  500. data/ext/dla_syrpvgrw.c +0 -107
  501. data/ext/dla_wwaddw.c +0 -102
  502. data/ext/dlabad.c +0 -54
  503. data/ext/dlabrd.c +0 -132
  504. data/ext/dlacn2.c +0 -106
  505. data/ext/dlacon.c +0 -83
  506. data/ext/dlacpy.c +0 -77
  507. data/ext/dladiv.c +0 -66
  508. data/ext/dlae2.c +0 -62
  509. data/ext/dlaebz.c +0 -218
  510. data/ext/dlaed0.c +0 -127
  511. data/ext/dlaed1.c +0 -133
  512. data/ext/dlaed2.c +0 -189
  513. data/ext/dlaed3.c +0 -161
  514. data/ext/dlaed4.c +0 -90
  515. data/ext/dlaed5.c +0 -87
  516. data/ext/dlaed6.c +0 -90
  517. data/ext/dlaed7.c +0 -248
  518. data/ext/dlaed8.c +0 -206
  519. data/ext/dlaed9.c +0 -111
  520. data/ext/dlaeda.c +0 -160
  521. data/ext/dlaein.c +0 -143
  522. data/ext/dlaev2.c +0 -68
  523. data/ext/dlaexc.c +0 -118
  524. data/ext/dlag2.c +0 -91
  525. data/ext/dlag2s.c +0 -76
  526. data/ext/dlags2.c +0 -90
  527. data/ext/dlagtf.c +0 -140
  528. data/ext/dlagtm.c +0 -132
  529. data/ext/dlagts.c +0 -139
  530. data/ext/dlagv2.c +0 -132
  531. data/ext/dlahqr.c +0 -143
  532. data/ext/dlahr2.c +0 -112
  533. data/ext/dlahrd.c +0 -112
  534. data/ext/dlaic1.c +0 -89
  535. data/ext/dlaln2.c +0 -120
  536. data/ext/dlals0.c +0 -201
  537. data/ext/dlalsa.c +0 -270
  538. data/ext/dlalsd.c +0 -142
  539. data/ext/dlamrg.c +0 -80
  540. data/ext/dlaneg.c +0 -83
  541. data/ext/dlangb.c +0 -78
  542. data/ext/dlange.c +0 -74
  543. data/ext/dlangt.c +0 -87
  544. data/ext/dlanhs.c +0 -70
  545. data/ext/dlansb.c +0 -78
  546. data/ext/dlansf.c +0 -80
  547. data/ext/dlansp.c +0 -76
  548. data/ext/dlanst.c +0 -75
  549. data/ext/dlansy.c +0 -74
  550. data/ext/dlantb.c +0 -82
  551. data/ext/dlantp.c +0 -80
  552. data/ext/dlantr.c +0 -82
  553. data/ext/dlanv2.c +0 -82
  554. data/ext/dlapll.c +0 -105
  555. data/ext/dlapmr.c +0 -97
  556. data/ext/dlapmt.c +0 -101
  557. data/ext/dlapy2.c +0 -55
  558. data/ext/dlapy3.c +0 -59
  559. data/ext/dlaqgb.c +0 -117
  560. data/ext/dlaqge.c +0 -109
  561. data/ext/dlaqp2.c +0 -158
  562. data/ext/dlaqps.c +0 -208
  563. data/ext/dlaqr0.c +0 -153
  564. data/ext/dlaqr1.c +0 -82
  565. data/ext/dlaqr2.c +0 -182
  566. data/ext/dlaqr3.c +0 -182
  567. data/ext/dlaqr4.c +0 -153
  568. data/ext/dlaqr5.c +0 -200
  569. data/ext/dlaqsb.c +0 -101
  570. data/ext/dlaqsp.c +0 -94
  571. data/ext/dlaqsy.c +0 -97
  572. data/ext/dlaqtr.c +0 -114
  573. data/ext/dlar1v.c +0 -173
  574. data/ext/dlar2v.c +0 -149
  575. data/ext/dlarf.c +0 -101
  576. data/ext/dlarfb.c +0 -123
  577. data/ext/dlarfg.c +0 -83
  578. data/ext/dlarfgp.c +0 -83
  579. data/ext/dlarft.c +0 -105
  580. data/ext/dlarfx.c +0 -93
  581. data/ext/dlargv.c +0 -114
  582. data/ext/dlarnv.c +0 -83
  583. data/ext/dlarra.c +0 -124
  584. data/ext/dlarrb.c +0 -178
  585. data/ext/dlarrc.c +0 -96
  586. data/ext/dlarrd.c +0 -190
  587. data/ext/dlarre.c +0 -221
  588. data/ext/dlarrf.c +0 -176
  589. data/ext/dlarrj.c +0 -147
  590. data/ext/dlarrk.c +0 -97
  591. data/ext/dlarrr.c +0 -82
  592. data/ext/dlarrv.c +0 -271
  593. data/ext/dlarscl2.c +0 -82
  594. data/ext/dlartg.c +0 -61
  595. data/ext/dlartgp.c +0 -61
  596. data/ext/dlartgs.c +0 -62
  597. data/ext/dlartv.c +0 -130
  598. data/ext/dlaruv.c +0 -79
  599. data/ext/dlarz.c +0 -105
  600. data/ext/dlarzb.c +0 -127
  601. data/ext/dlarzt.c +0 -105
  602. data/ext/dlas2.c +0 -62
  603. data/ext/dlascl.c +0 -97
  604. data/ext/dlascl2.c +0 -82
  605. data/ext/dlasd0.c +0 -120
  606. data/ext/dlasd1.c +0 -162
  607. data/ext/dlasd2.c +0 -228
  608. data/ext/dlasd3.c +0 -202
  609. data/ext/dlasd4.c +0 -93
  610. data/ext/dlasd5.c +0 -90
  611. data/ext/dlasd6.c +0 -236
  612. data/ext/dlasd7.c +0 -225
  613. data/ext/dlasd8.c +0 -173
  614. data/ext/dlasda.c +0 -221
  615. data/ext/dlasdq.c +0 -186
  616. data/ext/dlasdt.c +0 -82
  617. data/ext/dlaset.c +0 -86
  618. data/ext/dlasq1.c +0 -96
  619. data/ext/dlasq2.c +0 -74
  620. data/ext/dlasq3.c +0 -138
  621. data/ext/dlasq4.c +0 -107
  622. data/ext/dlasq5.c +0 -94
  623. data/ext/dlasq6.c +0 -86
  624. data/ext/dlasr.c +0 -110
  625. data/ext/dlasrt.c +0 -74
  626. data/ext/dlassq.c +0 -70
  627. data/ext/dlasv2.c +0 -74
  628. data/ext/dlaswp.c +0 -94
  629. data/ext/dlasy2.c +0 -126
  630. data/ext/dlasyf.c +0 -97
  631. data/ext/dlat2s.c +0 -76
  632. data/ext/dlatbs.c +0 -130
  633. data/ext/dlatdf.c +0 -119
  634. data/ext/dlatps.c +0 -124
  635. data/ext/dlatrd.c +0 -105
  636. data/ext/dlatrs.c +0 -126
  637. data/ext/dlatrz.c +0 -87
  638. data/ext/dlatzm.c +0 -131
  639. data/ext/dlauu2.c +0 -77
  640. data/ext/dlauum.c +0 -77
  641. data/ext/dopgtr.c +0 -91
  642. data/ext/dopmtr.c +0 -116
  643. data/ext/dorbdb.c +0 -232
  644. data/ext/dorcsd.c +0 -197
  645. data/ext/dorg2l.c +0 -92
  646. data/ext/dorg2r.c +0 -92
  647. data/ext/dorgbr.c +0 -115
  648. data/ext/dorghr.c +0 -111
  649. data/ext/dorgl2.c +0 -90
  650. data/ext/dorglq.c +0 -107
  651. data/ext/dorgql.c +0 -107
  652. data/ext/dorgqr.c +0 -107
  653. data/ext/dorgr2.c +0 -90
  654. data/ext/dorgrq.c +0 -107
  655. data/ext/dorgtr.c +0 -107
  656. data/ext/dorm2l.c +0 -114
  657. data/ext/dorm2r.c +0 -114
  658. data/ext/dormbr.c +0 -139
  659. data/ext/dormhr.c +0 -133
  660. data/ext/dorml2.c +0 -110
  661. data/ext/dormlq.c +0 -125
  662. data/ext/dormql.c +0 -129
  663. data/ext/dormqr.c +0 -129
  664. data/ext/dormr2.c +0 -110
  665. data/ext/dormr3.c +0 -114
  666. data/ext/dormrq.c +0 -125
  667. data/ext/dormrz.c +0 -129
  668. data/ext/dormtr.c +0 -129
  669. data/ext/dpbcon.c +0 -82
  670. data/ext/dpbequ.c +0 -83
  671. data/ext/dpbrfs.c +0 -145
  672. data/ext/dpbstf.c +0 -81
  673. data/ext/dpbsv.c +0 -107
  674. data/ext/dpbsvx.c +0 -201
  675. data/ext/dpbtf2.c +0 -81
  676. data/ext/dpbtrf.c +0 -81
  677. data/ext/dpbtrs.c +0 -95
  678. data/ext/dpftrf.c +0 -82
  679. data/ext/dpftri.c +0 -82
  680. data/ext/dpftrs.c +0 -97
  681. data/ext/dpocon.c +0 -78
  682. data/ext/dpoequ.c +0 -75
  683. data/ext/dpoequb.c +0 -75
  684. data/ext/dporfs.c +0 -141
  685. data/ext/dporfsx.c +0 -206
  686. data/ext/dposv.c +0 -103
  687. data/ext/dposvx.c +0 -197
  688. data/ext/dposvxx.c +0 -235
  689. data/ext/dpotf2.c +0 -77
  690. data/ext/dpotrf.c +0 -77
  691. data/ext/dpotri.c +0 -77
  692. data/ext/dpotrs.c +0 -91
  693. data/ext/dppcon.c +0 -78
  694. data/ext/dppequ.c +0 -79
  695. data/ext/dpprfs.c +0 -139
  696. data/ext/dppsv.c +0 -104
  697. data/ext/dppsvx.c +0 -191
  698. data/ext/dpptrf.c +0 -78
  699. data/ext/dpptri.c +0 -78
  700. data/ext/dpptrs.c +0 -93
  701. data/ext/dpstf2.c +0 -95
  702. data/ext/dpstrf.c +0 -95
  703. data/ext/dptcon.c +0 -81
  704. data/ext/dpteqr.c +0 -126
  705. data/ext/dptrfs.c +0 -154
  706. data/ext/dptsv.c +0 -119
  707. data/ext/dptsvx.c +0 -168
  708. data/ext/dpttrf.c +0 -93
  709. data/ext/dpttrs.c +0 -97
  710. data/ext/dptts2.c +0 -94
  711. data/ext/drscl.c +0 -79
  712. data/ext/dsbev.c +0 -107
  713. data/ext/dsbevd.c +0 -140
  714. data/ext/dsbevx.c +0 -157
  715. data/ext/dsbgst.c +0 -117
  716. data/ext/dsbgv.c +0 -137
  717. data/ext/dsbgvd.c +0 -170
  718. data/ext/dsbgvx.c +0 -197
  719. data/ext/dsbtrd.c +0 -130
  720. data/ext/dsfrk.c +0 -109
  721. data/ext/dsgesv.c +0 -115
  722. data/ext/dspcon.c +0 -88
  723. data/ext/dspev.c +0 -102
  724. data/ext/dspevd.c +0 -135
  725. data/ext/dspevx.c +0 -141
  726. data/ext/dspgst.c +0 -94
  727. data/ext/dspgv.c +0 -129
  728. data/ext/dspgvd.c +0 -162
  729. data/ext/dspgvx.c +0 -168
  730. data/ext/dsposv.c +0 -111
  731. data/ext/dsprfs.c +0 -149
  732. data/ext/dspsv.c +0 -110
  733. data/ext/dspsvx.c +0 -163
  734. data/ext/dsptrd.c +0 -100
  735. data/ext/dsptrf.c +0 -84
  736. data/ext/dsptri.c +0 -89
  737. data/ext/dsptrs.c +0 -101
  738. data/ext/dstebz.c +0 -135
  739. data/ext/dstedc.c +0 -159
  740. data/ext/dstegr.c +0 -188
  741. data/ext/dstein.c +0 -134
  742. data/ext/dstemr.c +0 -193
  743. data/ext/dsteqr.c +0 -126
  744. data/ext/dsterf.c +0 -93
  745. data/ext/dstev.c +0 -111
  746. data/ext/dstevd.c +0 -144
  747. data/ext/dstevr.c +0 -188
  748. data/ext/dstevx.c +0 -158
  749. data/ext/dsycon.c +0 -90
  750. data/ext/dsyconv.c +0 -84
  751. data/ext/dsyequb.c +0 -82
  752. data/ext/dsyev.c +0 -107
  753. data/ext/dsyevd.c +0 -125
  754. data/ext/dsyevr.c +0 -172
  755. data/ext/dsyevx.c +0 -157
  756. data/ext/dsygs2.c +0 -95
  757. data/ext/dsygst.c +0 -95
  758. data/ext/dsygv.c +0 -137
  759. data/ext/dsygvd.c +0 -155
  760. data/ext/dsygvx.c +0 -187
  761. data/ext/dsyrfs.c +0 -153
  762. data/ext/dsyrfsx.c +0 -218
  763. data/ext/dsysv.c +0 -129
  764. data/ext/dsysvx.c +0 -183
  765. data/ext/dsysvxx.c +0 -258
  766. data/ext/dsyswapr.c +0 -82
  767. data/ext/dsytd2.c +0 -101
  768. data/ext/dsytf2.c +0 -85
  769. data/ext/dsytrd.c +0 -113
  770. data/ext/dsytrf.c +0 -97
  771. data/ext/dsytri.c +0 -92
  772. data/ext/dsytri2.c +0 -108
  773. data/ext/dsytri2x.c +0 -96
  774. data/ext/dsytrs.c +0 -103
  775. data/ext/dsytrs2.c +0 -106
  776. data/ext/dtbcon.c +0 -86
  777. data/ext/dtbrfs.c +0 -127
  778. data/ext/dtbtrs.c +0 -103
  779. data/ext/dtfsm.c +0 -110
  780. data/ext/dtftri.c +0 -86
  781. data/ext/dtfttp.c +0 -79
  782. data/ext/dtfttr.c +0 -80
  783. data/ext/dtgevc.c +0 -153
  784. data/ext/dtgex2.c +0 -180
  785. data/ext/dtgexc.c +0 -187
  786. data/ext/dtgsen.c +0 -252
  787. data/ext/dtgsja.c +0 -227
  788. data/ext/dtgsna.c +0 -164
  789. data/ext/dtgsy2.c +0 -182
  790. data/ext/dtgsyl.c +0 -190
  791. data/ext/dtpcon.c +0 -82
  792. data/ext/dtprfs.c +0 -123
  793. data/ext/dtptri.c +0 -82
  794. data/ext/dtptrs.c +0 -101
  795. data/ext/dtpttf.c +0 -79
  796. data/ext/dtpttr.c +0 -76
  797. data/ext/dtrcon.c +0 -82
  798. data/ext/dtrevc.c +0 -150
  799. data/ext/dtrexc.c +0 -116
  800. data/ext/dtrrfs.c +0 -123
  801. data/ext/dtrsen.c +0 -169
  802. data/ext/dtrsna.c +0 -137
  803. data/ext/dtrsyl.c +0 -116
  804. data/ext/dtrti2.c +0 -81
  805. data/ext/dtrtri.c +0 -81
  806. data/ext/dtrtrs.c +0 -99
  807. data/ext/dtrttf.c +0 -77
  808. data/ext/dtrttp.c +0 -73
  809. data/ext/dtzrqf.c +0 -83
  810. data/ext/dtzrzf.c +0 -101
  811. data/ext/dzsum1.c +0 -63
  812. data/ext/icmax1.c +0 -63
  813. data/ext/ieeeck.c +0 -59
  814. data/ext/ilaclc.c +0 -65
  815. data/ext/ilaclr.c +0 -65
  816. data/ext/iladiag.c +0 -51
  817. data/ext/iladlc.c +0 -65
  818. data/ext/iladlr.c +0 -65
  819. data/ext/ilaenv.c +0 -75
  820. data/ext/ilaprec.c +0 -51
  821. data/ext/ilaslc.c +0 -65
  822. data/ext/ilaslr.c +0 -65
  823. data/ext/ilatrans.c +0 -51
  824. data/ext/ilauplo.c +0 -51
  825. data/ext/ilaver.c +0 -53
  826. data/ext/ilazlc.c +0 -65
  827. data/ext/ilazlr.c +0 -65
  828. data/ext/iparmq.c +0 -75
  829. data/ext/izmax1.c +0 -63
  830. data/ext/lsamen.c +0 -59
  831. data/ext/rb_lapack.c +0 -3279
  832. data/ext/sbbcsd.c +0 -287
  833. data/ext/sbdsdc.c +0 -157
  834. data/ext/sbdsqr.c +0 -182
  835. data/ext/scsum1.c +0 -63
  836. data/ext/sdisna.c +0 -75
  837. data/ext/sgbbrd.c +0 -154
  838. data/ext/sgbcon.c +0 -98
  839. data/ext/sgbequ.c +0 -98
  840. data/ext/sgbequb.c +0 -96
  841. data/ext/sgbrfs.c +0 -161
  842. data/ext/sgbrfsx.c +0 -249
  843. data/ext/sgbsv.c +0 -115
  844. data/ext/sgbsvx.c +0 -286
  845. data/ext/sgbsvxx.c +0 -289
  846. data/ext/sgbtf2.c +0 -93
  847. data/ext/sgbtrf.c +0 -93
  848. data/ext/sgbtrs.c +0 -111
  849. data/ext/sgebak.c +0 -101
  850. data/ext/sgebal.c +0 -91
  851. data/ext/sgebd2.c +0 -112
  852. data/ext/sgebrd.c +0 -127
  853. data/ext/sgecon.c +0 -78
  854. data/ext/sgeequ.c +0 -88
  855. data/ext/sgeequb.c +0 -88
  856. data/ext/sgees.c +0 -148
  857. data/ext/sgeesx.c +0 -170
  858. data/ext/sgeev.c +0 -137
  859. data/ext/sgeevx.c +0 -181
  860. data/ext/sgegs.c +0 -171
  861. data/ext/sgegv.c +0 -171
  862. data/ext/sgehd2.c +0 -92
  863. data/ext/sgehrd.c +0 -107
  864. data/ext/sgejsv.c +0 -159
  865. data/ext/sgelq2.c +0 -86
  866. data/ext/sgelqf.c +0 -103
  867. data/ext/sgels.c +0 -137
  868. data/ext/sgelsd.c +0 -149
  869. data/ext/sgelss.c +0 -148
  870. data/ext/sgelsx.c +0 -136
  871. data/ext/sgelsy.c +0 -163
  872. data/ext/sgeql2.c +0 -88
  873. data/ext/sgeqlf.c +0 -103
  874. data/ext/sgeqp3.c +0 -126
  875. data/ext/sgeqpf.c +0 -111
  876. data/ext/sgeqr2.c +0 -88
  877. data/ext/sgeqr2p.c +0 -88
  878. data/ext/sgeqrf.c +0 -103
  879. data/ext/sgeqrfp.c +0 -103
  880. data/ext/sgerfs.c +0 -153
  881. data/ext/sgerfsx.c +0 -219
  882. data/ext/sgerq2.c +0 -86
  883. data/ext/sgerqf.c +0 -103
  884. data/ext/sgesc2.c +0 -108
  885. data/ext/sgesdd.c +0 -132
  886. data/ext/sgesv.c +0 -107
  887. data/ext/sgesvd.c +0 -143
  888. data/ext/sgesvj.c +0 -156
  889. data/ext/sgesvx.c +0 -278
  890. data/ext/sgesvxx.c +0 -281
  891. data/ext/sgetc2.c +0 -89
  892. data/ext/sgetf2.c +0 -85
  893. data/ext/sgetrf.c +0 -85
  894. data/ext/sgetri.c +0 -103
  895. data/ext/sgetrs.c +0 -103
  896. data/ext/sggbak.c +0 -113
  897. data/ext/sggbal.c +0 -128
  898. data/ext/sgges.c +0 -198
  899. data/ext/sggesx.c +0 -231
  900. data/ext/sggev.c +0 -171
  901. data/ext/sggevx.c +0 -229
  902. data/ext/sggglm.c +0 -156
  903. data/ext/sgghrd.c +0 -167
  904. data/ext/sgglse.c +0 -171
  905. data/ext/sggqrf.c +0 -137
  906. data/ext/sggrqf.c +0 -141
  907. data/ext/sggsvd.c +0 -181
  908. data/ext/sggsvp.c +0 -171
  909. data/ext/sgsvj0.c +0 -182
  910. data/ext/sgsvj1.c +0 -186
  911. data/ext/sgtcon.c +0 -124
  912. data/ext/sgtrfs.c +0 -209
  913. data/ext/sgtsv.c +0 -142
  914. data/ext/sgtsvx.c +0 -256
  915. data/ext/sgttrf.c +0 -132
  916. data/ext/sgttrs.c +0 -137
  917. data/ext/sgtts2.c +0 -134
  918. data/ext/shgeqz.c +0 -213
  919. data/ext/shsein.c +0 -205
  920. data/ext/shseqr.c +0 -153
  921. data/ext/sisnan.c +0 -51
  922. data/ext/sla_gbamv.c +0 -129
  923. data/ext/sla_gbrcond.c +0 -142
  924. data/ext/sla_gbrfsx_extended.c +0 -291
  925. data/ext/sla_gbrpvgrw.c +0 -87
  926. data/ext/sla_geamv.c +0 -119
  927. data/ext/sla_gercond.c +0 -134
  928. data/ext/sla_gerfsx_extended.c +0 -283
  929. data/ext/sla_lin_berr.c +0 -84
  930. data/ext/sla_porcond.c +0 -122
  931. data/ext/sla_porfsx_extended.c +0 -271
  932. data/ext/sla_porpvgrw.c +0 -95
  933. data/ext/sla_rpvgrw.c +0 -79
  934. data/ext/sla_syamv.c +0 -116
  935. data/ext/sla_syrcond.c +0 -134
  936. data/ext/sla_syrfsx_extended.c +0 -283
  937. data/ext/sla_syrpvgrw.c +0 -107
  938. data/ext/sla_wwaddw.c +0 -102
  939. data/ext/slabad.c +0 -54
  940. data/ext/slabrd.c +0 -132
  941. data/ext/slacn2.c +0 -106
  942. data/ext/slacon.c +0 -83
  943. data/ext/slacpy.c +0 -77
  944. data/ext/sladiv.c +0 -66
  945. data/ext/slae2.c +0 -62
  946. data/ext/slaebz.c +0 -218
  947. data/ext/slaed0.c +0 -127
  948. data/ext/slaed1.c +0 -133
  949. data/ext/slaed2.c +0 -189
  950. data/ext/slaed3.c +0 -161
  951. data/ext/slaed4.c +0 -90
  952. data/ext/slaed5.c +0 -87
  953. data/ext/slaed6.c +0 -90
  954. data/ext/slaed7.c +0 -248
  955. data/ext/slaed8.c +0 -206
  956. data/ext/slaed9.c +0 -111
  957. data/ext/slaeda.c +0 -160
  958. data/ext/slaein.c +0 -143
  959. data/ext/slaev2.c +0 -68
  960. data/ext/slaexc.c +0 -118
  961. data/ext/slag2.c +0 -91
  962. data/ext/slag2d.c +0 -76
  963. data/ext/slags2.c +0 -90
  964. data/ext/slagtf.c +0 -140
  965. data/ext/slagtm.c +0 -132
  966. data/ext/slagts.c +0 -139
  967. data/ext/slagv2.c +0 -132
  968. data/ext/slahqr.c +0 -143
  969. data/ext/slahr2.c +0 -112
  970. data/ext/slahrd.c +0 -114
  971. data/ext/slaic1.c +0 -89
  972. data/ext/slaln2.c +0 -120
  973. data/ext/slals0.c +0 -201
  974. data/ext/slalsa.c +0 -270
  975. data/ext/slalsd.c +0 -142
  976. data/ext/slamrg.c +0 -80
  977. data/ext/slaneg.c +0 -83
  978. data/ext/slangb.c +0 -78
  979. data/ext/slange.c +0 -74
  980. data/ext/slangt.c +0 -87
  981. data/ext/slanhs.c +0 -70
  982. data/ext/slansb.c +0 -78
  983. data/ext/slansf.c +0 -78
  984. data/ext/slansp.c +0 -76
  985. data/ext/slanst.c +0 -75
  986. data/ext/slansy.c +0 -74
  987. data/ext/slantb.c +0 -82
  988. data/ext/slantp.c +0 -80
  989. data/ext/slantr.c +0 -82
  990. data/ext/slanv2.c +0 -82
  991. data/ext/slapll.c +0 -105
  992. data/ext/slapmr.c +0 -97
  993. data/ext/slapmt.c +0 -101
  994. data/ext/slapy2.c +0 -55
  995. data/ext/slapy3.c +0 -59
  996. data/ext/slaqgb.c +0 -117
  997. data/ext/slaqge.c +0 -109
  998. data/ext/slaqp2.c +0 -158
  999. data/ext/slaqps.c +0 -208
  1000. data/ext/slaqr0.c +0 -153
  1001. data/ext/slaqr1.c +0 -82
  1002. data/ext/slaqr2.c +0 -182
  1003. data/ext/slaqr3.c +0 -182
  1004. data/ext/slaqr4.c +0 -153
  1005. data/ext/slaqr5.c +0 -200
  1006. data/ext/slaqsb.c +0 -101
  1007. data/ext/slaqsp.c +0 -94
  1008. data/ext/slaqsy.c +0 -97
  1009. data/ext/slaqtr.c +0 -114
  1010. data/ext/slar1v.c +0 -173
  1011. data/ext/slar2v.c +0 -149
  1012. data/ext/slarf.c +0 -101
  1013. data/ext/slarfb.c +0 -123
  1014. data/ext/slarfg.c +0 -83
  1015. data/ext/slarfgp.c +0 -83
  1016. data/ext/slarft.c +0 -105
  1017. data/ext/slarfx.c +0 -93
  1018. data/ext/slargv.c +0 -114
  1019. data/ext/slarnv.c +0 -83
  1020. data/ext/slarra.c +0 -124
  1021. data/ext/slarrb.c +0 -178
  1022. data/ext/slarrc.c +0 -96
  1023. data/ext/slarrd.c +0 -190
  1024. data/ext/slarre.c +0 -221
  1025. data/ext/slarrf.c +0 -176
  1026. data/ext/slarrj.c +0 -147
  1027. data/ext/slarrk.c +0 -97
  1028. data/ext/slarrr.c +0 -82
  1029. data/ext/slarrv.c +0 -271
  1030. data/ext/slarscl2.c +0 -82
  1031. data/ext/slartg.c +0 -61
  1032. data/ext/slartgp.c +0 -61
  1033. data/ext/slartgs.c +0 -62
  1034. data/ext/slartv.c +0 -130
  1035. data/ext/slaruv.c +0 -79
  1036. data/ext/slarz.c +0 -105
  1037. data/ext/slarzb.c +0 -127
  1038. data/ext/slarzt.c +0 -105
  1039. data/ext/slas2.c +0 -62
  1040. data/ext/slascl.c +0 -97
  1041. data/ext/slascl2.c +0 -82
  1042. data/ext/slasd0.c +0 -120
  1043. data/ext/slasd1.c +0 -160
  1044. data/ext/slasd2.c +0 -228
  1045. data/ext/slasd3.c +0 -212
  1046. data/ext/slasd4.c +0 -93
  1047. data/ext/slasd5.c +0 -90
  1048. data/ext/slasd6.c +0 -236
  1049. data/ext/slasd7.c +0 -225
  1050. data/ext/slasd8.c +0 -173
  1051. data/ext/slasda.c +0 -221
  1052. data/ext/slasdq.c +0 -186
  1053. data/ext/slasdt.c +0 -82
  1054. data/ext/slaset.c +0 -86
  1055. data/ext/slasq1.c +0 -96
  1056. data/ext/slasq2.c +0 -74
  1057. data/ext/slasq3.c +0 -138
  1058. data/ext/slasq4.c +0 -107
  1059. data/ext/slasq5.c +0 -94
  1060. data/ext/slasq6.c +0 -86
  1061. data/ext/slasr.c +0 -110
  1062. data/ext/slasrt.c +0 -74
  1063. data/ext/slassq.c +0 -70
  1064. data/ext/slasv2.c +0 -74
  1065. data/ext/slaswp.c +0 -94
  1066. data/ext/slasy2.c +0 -126
  1067. data/ext/slasyf.c +0 -97
  1068. data/ext/slatbs.c +0 -130
  1069. data/ext/slatdf.c +0 -119
  1070. data/ext/slatps.c +0 -124
  1071. data/ext/slatrd.c +0 -105
  1072. data/ext/slatrs.c +0 -126
  1073. data/ext/slatrz.c +0 -87
  1074. data/ext/slatzm.c +0 -131
  1075. data/ext/slauu2.c +0 -77
  1076. data/ext/slauum.c +0 -77
  1077. data/ext/sopgtr.c +0 -91
  1078. data/ext/sopmtr.c +0 -116
  1079. data/ext/sorbdb.c +0 -232
  1080. data/ext/sorcsd.c +0 -197
  1081. data/ext/sorg2l.c +0 -92
  1082. data/ext/sorg2r.c +0 -92
  1083. data/ext/sorgbr.c +0 -115
  1084. data/ext/sorghr.c +0 -111
  1085. data/ext/sorgl2.c +0 -90
  1086. data/ext/sorglq.c +0 -107
  1087. data/ext/sorgql.c +0 -107
  1088. data/ext/sorgqr.c +0 -107
  1089. data/ext/sorgr2.c +0 -90
  1090. data/ext/sorgrq.c +0 -107
  1091. data/ext/sorgtr.c +0 -107
  1092. data/ext/sorm2l.c +0 -114
  1093. data/ext/sorm2r.c +0 -114
  1094. data/ext/sormbr.c +0 -139
  1095. data/ext/sormhr.c +0 -133
  1096. data/ext/sorml2.c +0 -110
  1097. data/ext/sormlq.c +0 -125
  1098. data/ext/sormql.c +0 -129
  1099. data/ext/sormqr.c +0 -129
  1100. data/ext/sormr2.c +0 -110
  1101. data/ext/sormr3.c +0 -114
  1102. data/ext/sormrq.c +0 -125
  1103. data/ext/sormrz.c +0 -129
  1104. data/ext/sormtr.c +0 -129
  1105. data/ext/spbcon.c +0 -82
  1106. data/ext/spbequ.c +0 -83
  1107. data/ext/spbrfs.c +0 -145
  1108. data/ext/spbstf.c +0 -81
  1109. data/ext/spbsv.c +0 -107
  1110. data/ext/spbsvx.c +0 -201
  1111. data/ext/spbtf2.c +0 -81
  1112. data/ext/spbtrf.c +0 -81
  1113. data/ext/spbtrs.c +0 -95
  1114. data/ext/spftrf.c +0 -82
  1115. data/ext/spftri.c +0 -82
  1116. data/ext/spftrs.c +0 -97
  1117. data/ext/spocon.c +0 -78
  1118. data/ext/spoequ.c +0 -75
  1119. data/ext/spoequb.c +0 -75
  1120. data/ext/sporfs.c +0 -141
  1121. data/ext/sporfsx.c +0 -206
  1122. data/ext/sposv.c +0 -103
  1123. data/ext/sposvx.c +0 -197
  1124. data/ext/sposvxx.c +0 -235
  1125. data/ext/spotf2.c +0 -77
  1126. data/ext/spotrf.c +0 -77
  1127. data/ext/spotri.c +0 -77
  1128. data/ext/spotrs.c +0 -91
  1129. data/ext/sppcon.c +0 -78
  1130. data/ext/sppequ.c +0 -79
  1131. data/ext/spprfs.c +0 -139
  1132. data/ext/sppsv.c +0 -104
  1133. data/ext/sppsvx.c +0 -191
  1134. data/ext/spptrf.c +0 -78
  1135. data/ext/spptri.c +0 -78
  1136. data/ext/spptrs.c +0 -93
  1137. data/ext/spstf2.c +0 -95
  1138. data/ext/spstrf.c +0 -95
  1139. data/ext/sptcon.c +0 -81
  1140. data/ext/spteqr.c +0 -126
  1141. data/ext/sptrfs.c +0 -154
  1142. data/ext/sptsv.c +0 -119
  1143. data/ext/sptsvx.c +0 -168
  1144. data/ext/spttrf.c +0 -93
  1145. data/ext/spttrs.c +0 -97
  1146. data/ext/sptts2.c +0 -94
  1147. data/ext/srscl.c +0 -79
  1148. data/ext/ssbev.c +0 -107
  1149. data/ext/ssbevd.c +0 -140
  1150. data/ext/ssbevx.c +0 -157
  1151. data/ext/ssbgst.c +0 -117
  1152. data/ext/ssbgv.c +0 -137
  1153. data/ext/ssbgvd.c +0 -170
  1154. data/ext/ssbgvx.c +0 -197
  1155. data/ext/ssbtrd.c +0 -130
  1156. data/ext/ssfrk.c +0 -109
  1157. data/ext/sspcon.c +0 -88
  1158. data/ext/sspev.c +0 -102
  1159. data/ext/sspevd.c +0 -135
  1160. data/ext/sspevx.c +0 -141
  1161. data/ext/sspgst.c +0 -94
  1162. data/ext/sspgv.c +0 -129
  1163. data/ext/sspgvd.c +0 -162
  1164. data/ext/sspgvx.c +0 -168
  1165. data/ext/ssprfs.c +0 -149
  1166. data/ext/sspsv.c +0 -110
  1167. data/ext/sspsvx.c +0 -163
  1168. data/ext/ssptrd.c +0 -100
  1169. data/ext/ssptrf.c +0 -84
  1170. data/ext/ssptri.c +0 -89
  1171. data/ext/ssptrs.c +0 -101
  1172. data/ext/sstebz.c +0 -135
  1173. data/ext/sstedc.c +0 -159
  1174. data/ext/sstegr.c +0 -188
  1175. data/ext/sstein.c +0 -134
  1176. data/ext/sstemr.c +0 -193
  1177. data/ext/ssteqr.c +0 -126
  1178. data/ext/ssterf.c +0 -93
  1179. data/ext/sstev.c +0 -111
  1180. data/ext/sstevd.c +0 -144
  1181. data/ext/sstevr.c +0 -188
  1182. data/ext/sstevx.c +0 -158
  1183. data/ext/ssycon.c +0 -90
  1184. data/ext/ssyconv.c +0 -84
  1185. data/ext/ssyequb.c +0 -82
  1186. data/ext/ssyev.c +0 -107
  1187. data/ext/ssyevd.c +0 -125
  1188. data/ext/ssyevr.c +0 -172
  1189. data/ext/ssyevx.c +0 -157
  1190. data/ext/ssygs2.c +0 -95
  1191. data/ext/ssygst.c +0 -95
  1192. data/ext/ssygv.c +0 -137
  1193. data/ext/ssygvd.c +0 -155
  1194. data/ext/ssygvx.c +0 -191
  1195. data/ext/ssyrfs.c +0 -153
  1196. data/ext/ssyrfsx.c +0 -218
  1197. data/ext/ssysv.c +0 -129
  1198. data/ext/ssysvx.c +0 -183
  1199. data/ext/ssysvxx.c +0 -258
  1200. data/ext/ssyswapr.c +0 -82
  1201. data/ext/ssytd2.c +0 -101
  1202. data/ext/ssytf2.c +0 -85
  1203. data/ext/ssytrd.c +0 -113
  1204. data/ext/ssytrf.c +0 -97
  1205. data/ext/ssytri.c +0 -92
  1206. data/ext/ssytri2.c +0 -127
  1207. data/ext/ssytri2x.c +0 -96
  1208. data/ext/ssytrs.c +0 -103
  1209. data/ext/ssytrs2.c +0 -106
  1210. data/ext/stbcon.c +0 -86
  1211. data/ext/stbrfs.c +0 -127
  1212. data/ext/stbtrs.c +0 -103
  1213. data/ext/stfsm.c +0 -112
  1214. data/ext/stftri.c +0 -86
  1215. data/ext/stfttp.c +0 -79
  1216. data/ext/stfttr.c +0 -80
  1217. data/ext/stgevc.c +0 -153
  1218. data/ext/stgex2.c +0 -184
  1219. data/ext/stgexc.c +0 -191
  1220. data/ext/stgsen.c +0 -252
  1221. data/ext/stgsja.c +0 -227
  1222. data/ext/stgsna.c +0 -164
  1223. data/ext/stgsy2.c +0 -182
  1224. data/ext/stgsyl.c +0 -190
  1225. data/ext/stpcon.c +0 -82
  1226. data/ext/stprfs.c +0 -123
  1227. data/ext/stptri.c +0 -82
  1228. data/ext/stptrs.c +0 -101
  1229. data/ext/stpttf.c +0 -79
  1230. data/ext/stpttr.c +0 -76
  1231. data/ext/strcon.c +0 -82
  1232. data/ext/strevc.c +0 -150
  1233. data/ext/strexc.c +0 -116
  1234. data/ext/strrfs.c +0 -123
  1235. data/ext/strsen.c +0 -169
  1236. data/ext/strsna.c +0 -137
  1237. data/ext/strsyl.c +0 -116
  1238. data/ext/strti2.c +0 -81
  1239. data/ext/strtri.c +0 -81
  1240. data/ext/strtrs.c +0 -99
  1241. data/ext/strttf.c +0 -77
  1242. data/ext/strttp.c +0 -73
  1243. data/ext/stzrqf.c +0 -83
  1244. data/ext/stzrzf.c +0 -101
  1245. data/ext/xerbla.c +0 -52
  1246. data/ext/xerbla_array.c +0 -53
  1247. data/ext/zbbcsd.c +0 -283
  1248. data/ext/zbdsqr.c +0 -182
  1249. data/ext/zcgesv.c +0 -118
  1250. data/ext/zcposv.c +0 -114
  1251. data/ext/zdrscl.c +0 -79
  1252. data/ext/zgbbrd.c +0 -157
  1253. data/ext/zgbcon.c +0 -98
  1254. data/ext/zgbequ.c +0 -98
  1255. data/ext/zgbequb.c +0 -96
  1256. data/ext/zgbrfs.c +0 -161
  1257. data/ext/zgbrfsx.c +0 -249
  1258. data/ext/zgbsv.c +0 -115
  1259. data/ext/zgbsvx.c +0 -286
  1260. data/ext/zgbsvxx.c +0 -289
  1261. data/ext/zgbtf2.c +0 -93
  1262. data/ext/zgbtrf.c +0 -93
  1263. data/ext/zgbtrs.c +0 -111
  1264. data/ext/zgebak.c +0 -101
  1265. data/ext/zgebal.c +0 -91
  1266. data/ext/zgebd2.c +0 -112
  1267. data/ext/zgebrd.c +0 -127
  1268. data/ext/zgecon.c +0 -78
  1269. data/ext/zgeequ.c +0 -88
  1270. data/ext/zgeequb.c +0 -88
  1271. data/ext/zgees.c +0 -142
  1272. data/ext/zgeesx.c +0 -152
  1273. data/ext/zgeev.c +0 -132
  1274. data/ext/zgeevx.c +0 -173
  1275. data/ext/zgegs.c +0 -166
  1276. data/ext/zgegv.c +0 -171
  1277. data/ext/zgehd2.c +0 -92
  1278. data/ext/zgehrd.c +0 -107
  1279. data/ext/zgelq2.c +0 -86
  1280. data/ext/zgelqf.c +0 -103
  1281. data/ext/zgels.c +0 -137
  1282. data/ext/zgelsd.c +0 -154
  1283. data/ext/zgelss.c +0 -151
  1284. data/ext/zgelsx.c +0 -139
  1285. data/ext/zgelsy.c +0 -166
  1286. data/ext/zgeql2.c +0 -88
  1287. data/ext/zgeqlf.c +0 -103
  1288. data/ext/zgeqp3.c +0 -129
  1289. data/ext/zgeqpf.c +0 -114
  1290. data/ext/zgeqr2.c +0 -88
  1291. data/ext/zgeqr2p.c +0 -88
  1292. data/ext/zgeqrf.c +0 -103
  1293. data/ext/zgeqrfp.c +0 -103
  1294. data/ext/zgerfs.c +0 -153
  1295. data/ext/zgerfsx.c +0 -219
  1296. data/ext/zgerq2.c +0 -86
  1297. data/ext/zgerqf.c +0 -103
  1298. data/ext/zgesc2.c +0 -108
  1299. data/ext/zgesdd.c +0 -135
  1300. data/ext/zgesv.c +0 -107
  1301. data/ext/zgesvd.c +0 -146
  1302. data/ext/zgesvx.c +0 -278
  1303. data/ext/zgesvxx.c +0 -281
  1304. data/ext/zgetc2.c +0 -89
  1305. data/ext/zgetf2.c +0 -85
  1306. data/ext/zgetrf.c +0 -85
  1307. data/ext/zgetri.c +0 -103
  1308. data/ext/zgetrs.c +0 -103
  1309. data/ext/zggbak.c +0 -113
  1310. data/ext/zggbal.c +0 -128
  1311. data/ext/zgges.c +0 -192
  1312. data/ext/zggesx.c +0 -230
  1313. data/ext/zggev.c +0 -171
  1314. data/ext/zggevx.c +0 -226
  1315. data/ext/zggglm.c +0 -156
  1316. data/ext/zgghrd.c +0 -167
  1317. data/ext/zgglse.c +0 -171
  1318. data/ext/zggqrf.c +0 -137
  1319. data/ext/zggrqf.c +0 -141
  1320. data/ext/zggsvd.c +0 -184
  1321. data/ext/zggsvp.c +0 -174
  1322. data/ext/zgtcon.c +0 -121
  1323. data/ext/zgtrfs.c +0 -209
  1324. data/ext/zgtsv.c +0 -142
  1325. data/ext/zgtsvx.c +0 -256
  1326. data/ext/zgttrf.c +0 -132
  1327. data/ext/zgttrs.c +0 -137
  1328. data/ext/zgtts2.c +0 -134
  1329. data/ext/zhbev.c +0 -110
  1330. data/ext/zhbevd.c +0 -158
  1331. data/ext/zhbevx.c +0 -160
  1332. data/ext/zhbgst.c +0 -120
  1333. data/ext/zhbgv.c +0 -140
  1334. data/ext/zhbgvd.c +0 -188
  1335. data/ext/zhbgvx.c +0 -189
  1336. data/ext/zhbtrd.c +0 -130
  1337. data/ext/zhecon.c +0 -87
  1338. data/ext/zheequb.c +0 -82
  1339. data/ext/zheev.c +0 -110
  1340. data/ext/zheevd.c +0 -143
  1341. data/ext/zheevr.c +0 -190
  1342. data/ext/zheevx.c +0 -160
  1343. data/ext/zhegs2.c +0 -95
  1344. data/ext/zhegst.c +0 -95
  1345. data/ext/zhegv.c +0 -140
  1346. data/ext/zhegvd.c +0 -173
  1347. data/ext/zhegvx.c +0 -190
  1348. data/ext/zherfs.c +0 -153
  1349. data/ext/zherfsx.c +0 -218
  1350. data/ext/zhesv.c +0 -123
  1351. data/ext/zhesvx.c +0 -183
  1352. data/ext/zhesvxx.c +0 -258
  1353. data/ext/zhetd2.c +0 -101
  1354. data/ext/zhetf2.c +0 -85
  1355. data/ext/zhetrd.c +0 -113
  1356. data/ext/zhetrf.c +0 -97
  1357. data/ext/zhetri.c +0 -92
  1358. data/ext/zhetrs.c +0 -103
  1359. data/ext/zhetrs2.c +0 -106
  1360. data/ext/zhfrk.c +0 -109
  1361. data/ext/zhgeqz.c +0 -208
  1362. data/ext/zhpcon.c +0 -85
  1363. data/ext/zhpev.c +0 -105
  1364. data/ext/zhpevd.c +0 -153
  1365. data/ext/zhpevx.c +0 -144
  1366. data/ext/zhpgst.c +0 -94
  1367. data/ext/zhpgv.c +0 -132
  1368. data/ext/zhpgvd.c +0 -170
  1369. data/ext/zhpgvx.c +0 -170
  1370. data/ext/zhprfs.c +0 -149
  1371. data/ext/zhpsv.c +0 -110
  1372. data/ext/zhpsvx.c +0 -163
  1373. data/ext/zhptrd.c +0 -100
  1374. data/ext/zhptrf.c +0 -84
  1375. data/ext/zhptri.c +0 -89
  1376. data/ext/zhptrs.c +0 -101
  1377. data/ext/zhsein.c +0 -185
  1378. data/ext/zhseqr.c +0 -145
  1379. data/ext/zla_gbamv.c +0 -127
  1380. data/ext/zla_gbrcond_c.c +0 -142
  1381. data/ext/zla_gbrcond_x.c +0 -138
  1382. data/ext/zla_gbrfsx_extended.c +0 -295
  1383. data/ext/zla_gbrpvgrw.c +0 -87
  1384. data/ext/zla_geamv.c +0 -119
  1385. data/ext/zla_gercond_c.c +0 -134
  1386. data/ext/zla_gercond_x.c +0 -130
  1387. data/ext/zla_gerfsx_extended.c +0 -281
  1388. data/ext/zla_heamv.c +0 -116
  1389. data/ext/zla_hercond_c.c +0 -134
  1390. data/ext/zla_hercond_x.c +0 -130
  1391. data/ext/zla_herfsx_extended.c +0 -283
  1392. data/ext/zla_herpvgrw.c +0 -107
  1393. data/ext/zla_lin_berr.c +0 -84
  1394. data/ext/zla_porcond_c.c +0 -122
  1395. data/ext/zla_porcond_x.c +0 -118
  1396. data/ext/zla_porfsx_extended.c +0 -271
  1397. data/ext/zla_porpvgrw.c +0 -95
  1398. data/ext/zla_rpvgrw.c +0 -79
  1399. data/ext/zla_syamv.c +0 -116
  1400. data/ext/zla_syrcond_c.c +0 -134
  1401. data/ext/zla_syrcond_x.c +0 -130
  1402. data/ext/zla_syrfsx_extended.c +0 -283
  1403. data/ext/zla_syrpvgrw.c +0 -107
  1404. data/ext/zla_wwaddw.c +0 -102
  1405. data/ext/zlabrd.c +0 -132
  1406. data/ext/zlacgv.c +0 -75
  1407. data/ext/zlacn2.c +0 -103
  1408. data/ext/zlacon.c +0 -80
  1409. data/ext/zlacp2.c +0 -77
  1410. data/ext/zlacpy.c +0 -77
  1411. data/ext/zlacrm.c +0 -90
  1412. data/ext/zlacrt.c +0 -108
  1413. data/ext/zladiv.c +0 -57
  1414. data/ext/zlaed0.c +0 -134
  1415. data/ext/zlaed7.c +0 -247
  1416. data/ext/zlaed8.c +0 -198
  1417. data/ext/zlaein.c +0 -113
  1418. data/ext/zlaesy.c +0 -74
  1419. data/ext/zlaev2.c +0 -71
  1420. data/ext/zlag2c.c +0 -76
  1421. data/ext/zlags2.c +0 -92
  1422. data/ext/zlagtm.c +0 -132
  1423. data/ext/zlahef.c +0 -97
  1424. data/ext/zlahqr.c +0 -135
  1425. data/ext/zlahr2.c +0 -112
  1426. data/ext/zlahrd.c +0 -112
  1427. data/ext/zlaic1.c +0 -90
  1428. data/ext/zlals0.c +0 -201
  1429. data/ext/zlalsa.c +0 -270
  1430. data/ext/zlalsd.c +0 -145
  1431. data/ext/zlangb.c +0 -76
  1432. data/ext/zlange.c +0 -74
  1433. data/ext/zlangt.c +0 -87
  1434. data/ext/zlanhb.c +0 -78
  1435. data/ext/zlanhe.c +0 -74
  1436. data/ext/zlanhf.c +0 -80
  1437. data/ext/zlanhp.c +0 -76
  1438. data/ext/zlanhs.c +0 -70
  1439. data/ext/zlanht.c +0 -75
  1440. data/ext/zlansb.c +0 -78
  1441. data/ext/zlansp.c +0 -76
  1442. data/ext/zlansy.c +0 -74
  1443. data/ext/zlantb.c +0 -82
  1444. data/ext/zlantp.c +0 -80
  1445. data/ext/zlantr.c +0 -82
  1446. data/ext/zlapll.c +0 -105
  1447. data/ext/zlapmr.c +0 -97
  1448. data/ext/zlapmt.c +0 -101
  1449. data/ext/zlaqgb.c +0 -117
  1450. data/ext/zlaqge.c +0 -109
  1451. data/ext/zlaqhb.c +0 -97
  1452. data/ext/zlaqhe.c +0 -97
  1453. data/ext/zlaqhp.c +0 -94
  1454. data/ext/zlaqp2.c +0 -158
  1455. data/ext/zlaqps.c +0 -208
  1456. data/ext/zlaqr0.c +0 -153
  1457. data/ext/zlaqr1.c +0 -76
  1458. data/ext/zlaqr2.c +0 -174
  1459. data/ext/zlaqr3.c +0 -174
  1460. data/ext/zlaqr4.c +0 -147
  1461. data/ext/zlaqr5.c +0 -179
  1462. data/ext/zlaqsb.c +0 -101
  1463. data/ext/zlaqsp.c +0 -94
  1464. data/ext/zlaqsy.c +0 -97
  1465. data/ext/zlar1v.c +0 -173
  1466. data/ext/zlar2v.c +0 -149
  1467. data/ext/zlarcm.c +0 -86
  1468. data/ext/zlarf.c +0 -102
  1469. data/ext/zlarfb.c +0 -123
  1470. data/ext/zlarfg.c +0 -84
  1471. data/ext/zlarfgp.c +0 -84
  1472. data/ext/zlarft.c +0 -105
  1473. data/ext/zlarfx.c +0 -94
  1474. data/ext/zlargv.c +0 -114
  1475. data/ext/zlarnv.c +0 -83
  1476. data/ext/zlarrv.c +0 -271
  1477. data/ext/zlarscl2.c +0 -82
  1478. data/ext/zlartg.c +0 -63
  1479. data/ext/zlartv.c +0 -130
  1480. data/ext/zlarz.c +0 -106
  1481. data/ext/zlarzb.c +0 -127
  1482. data/ext/zlarzt.c +0 -105
  1483. data/ext/zlascl.c +0 -97
  1484. data/ext/zlascl2.c +0 -82
  1485. data/ext/zlaset.c +0 -88
  1486. data/ext/zlasr.c +0 -110
  1487. data/ext/zlassq.c +0 -70
  1488. data/ext/zlaswp.c +0 -94
  1489. data/ext/zlasyf.c +0 -97
  1490. data/ext/zlat2c.c +0 -76
  1491. data/ext/zlatbs.c +0 -130
  1492. data/ext/zlatdf.c +0 -119
  1493. data/ext/zlatps.c +0 -124
  1494. data/ext/zlatrd.c +0 -105
  1495. data/ext/zlatrs.c +0 -126
  1496. data/ext/zlatrz.c +0 -87
  1497. data/ext/zlatzm.c +0 -132
  1498. data/ext/zlauu2.c +0 -77
  1499. data/ext/zlauum.c +0 -77
  1500. data/ext/zpbcon.c +0 -82
  1501. data/ext/zpbequ.c +0 -83
  1502. data/ext/zpbrfs.c +0 -145
  1503. data/ext/zpbstf.c +0 -81
  1504. data/ext/zpbsv.c +0 -107
  1505. data/ext/zpbsvx.c +0 -201
  1506. data/ext/zpbtf2.c +0 -81
  1507. data/ext/zpbtrf.c +0 -81
  1508. data/ext/zpbtrs.c +0 -95
  1509. data/ext/zpftrf.c +0 -82
  1510. data/ext/zpftri.c +0 -82
  1511. data/ext/zpftrs.c +0 -97
  1512. data/ext/zpocon.c +0 -78
  1513. data/ext/zpoequ.c +0 -75
  1514. data/ext/zpoequb.c +0 -75
  1515. data/ext/zporfs.c +0 -141
  1516. data/ext/zporfsx.c +0 -206
  1517. data/ext/zposv.c +0 -103
  1518. data/ext/zposvx.c +0 -197
  1519. data/ext/zposvxx.c +0 -235
  1520. data/ext/zpotf2.c +0 -77
  1521. data/ext/zpotrf.c +0 -77
  1522. data/ext/zpotri.c +0 -77
  1523. data/ext/zpotrs.c +0 -91
  1524. data/ext/zppcon.c +0 -78
  1525. data/ext/zppequ.c +0 -79
  1526. data/ext/zpprfs.c +0 -139
  1527. data/ext/zppsv.c +0 -104
  1528. data/ext/zppsvx.c +0 -191
  1529. data/ext/zpptrf.c +0 -78
  1530. data/ext/zpptri.c +0 -78
  1531. data/ext/zpptrs.c +0 -93
  1532. data/ext/zpstf2.c +0 -95
  1533. data/ext/zpstrf.c +0 -95
  1534. data/ext/zptcon.c +0 -81
  1535. data/ext/zpteqr.c +0 -126
  1536. data/ext/zptrfs.c +0 -161
  1537. data/ext/zptsv.c +0 -123
  1538. data/ext/zptsvx.c +0 -171
  1539. data/ext/zpttrf.c +0 -93
  1540. data/ext/zpttrs.c +0 -101
  1541. data/ext/zptts2.c +0 -98
  1542. data/ext/zrot.c +0 -107
  1543. data/ext/zspcon.c +0 -85
  1544. data/ext/zspmv.c +0 -117
  1545. data/ext/zspr.c +0 -96
  1546. data/ext/zsprfs.c +0 -149
  1547. data/ext/zspsv.c +0 -110
  1548. data/ext/zspsvx.c +0 -163
  1549. data/ext/zsptrf.c +0 -84
  1550. data/ext/zsptri.c +0 -89
  1551. data/ext/zsptrs.c +0 -101
  1552. data/ext/zstedc.c +0 -177
  1553. data/ext/zstegr.c +0 -188
  1554. data/ext/zstein.c +0 -134
  1555. data/ext/zstemr.c +0 -193
  1556. data/ext/zsteqr.c +0 -126
  1557. data/ext/zsycon.c +0 -87
  1558. data/ext/zsyconv.c +0 -84
  1559. data/ext/zsyequb.c +0 -82
  1560. data/ext/zsymv.c +0 -115
  1561. data/ext/zsyr.c +0 -95
  1562. data/ext/zsyrfs.c +0 -153
  1563. data/ext/zsyrfsx.c +0 -218
  1564. data/ext/zsysv.c +0 -129
  1565. data/ext/zsysvx.c +0 -183
  1566. data/ext/zsysvxx.c +0 -258
  1567. data/ext/zsyswapr.c +0 -82
  1568. data/ext/zsytf2.c +0 -85
  1569. data/ext/zsytrf.c +0 -97
  1570. data/ext/zsytri.c +0 -92
  1571. data/ext/zsytri2.c +0 -104
  1572. data/ext/zsytri2x.c +0 -96
  1573. data/ext/zsytrs.c +0 -103
  1574. data/ext/zsytrs2.c +0 -106
  1575. data/ext/ztbcon.c +0 -86
  1576. data/ext/ztbrfs.c +0 -127
  1577. data/ext/ztbtrs.c +0 -103
  1578. data/ext/ztfsm.c +0 -111
  1579. data/ext/ztftri.c +0 -86
  1580. data/ext/ztfttp.c +0 -79
  1581. data/ext/ztfttr.c +0 -80
  1582. data/ext/ztgevc.c +0 -156
  1583. data/ext/ztgex2.c +0 -171
  1584. data/ext/ztgexc.c +0 -172
  1585. data/ext/ztgsen.c +0 -244
  1586. data/ext/ztgsja.c +0 -227
  1587. data/ext/ztgsna.c +0 -164
  1588. data/ext/ztgsy2.c +0 -176
  1589. data/ext/ztgsyl.c +0 -190
  1590. data/ext/ztpcon.c +0 -82
  1591. data/ext/ztprfs.c +0 -123
  1592. data/ext/ztptri.c +0 -82
  1593. data/ext/ztptrs.c +0 -101
  1594. data/ext/ztpttf.c +0 -79
  1595. data/ext/ztpttr.c +0 -76
  1596. data/ext/ztrcon.c +0 -82
  1597. data/ext/ztrevc.c +0 -154
  1598. data/ext/ztrexc.c +0 -111
  1599. data/ext/ztrrfs.c +0 -123
  1600. data/ext/ztrsen.c +0 -154
  1601. data/ext/ztrsna.c +0 -137
  1602. data/ext/ztrsyl.c +0 -116
  1603. data/ext/ztrti2.c +0 -81
  1604. data/ext/ztrtri.c +0 -81
  1605. data/ext/ztrtrs.c +0 -99
  1606. data/ext/ztrttf.c +0 -77
  1607. data/ext/ztrttp.c +0 -73
  1608. data/ext/ztzrqf.c +0 -83
  1609. data/ext/ztzrzf.c +0 -101
  1610. data/ext/zunbdb.c +0 -232
  1611. data/ext/zuncsd.c +0 -204
  1612. data/ext/zung2l.c +0 -92
  1613. data/ext/zung2r.c +0 -92
  1614. data/ext/zungbr.c +0 -115
  1615. data/ext/zunghr.c +0 -111
  1616. data/ext/zungl2.c +0 -90
  1617. data/ext/zunglq.c +0 -107
  1618. data/ext/zungql.c +0 -107
  1619. data/ext/zungqr.c +0 -107
  1620. data/ext/zungr2.c +0 -90
  1621. data/ext/zungrq.c +0 -107
  1622. data/ext/zungtr.c +0 -107
  1623. data/ext/zunm2l.c +0 -114
  1624. data/ext/zunm2r.c +0 -114
  1625. data/ext/zunmbr.c +0 -139
  1626. data/ext/zunmhr.c +0 -133
  1627. data/ext/zunml2.c +0 -110
  1628. data/ext/zunmlq.c +0 -125
  1629. data/ext/zunmql.c +0 -129
  1630. data/ext/zunmqr.c +0 -129
  1631. data/ext/zunmr2.c +0 -110
  1632. data/ext/zunmr3.c +0 -114
  1633. data/ext/zunmrq.c +0 -125
  1634. data/ext/zunmrz.c +0 -129
  1635. data/ext/zunmtr.c +0 -129
  1636. data/ext/zupgtr.c +0 -91
  1637. data/ext/zupmtr.c +0 -116
@@ -1,171 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID dgegv_(char* jobvl, char* jobvr, integer* n, doublereal* a, integer* lda, doublereal* b, integer* ldb, doublereal* alphar, doublereal* alphai, doublereal* beta, doublereal* vl, integer* ldvl, doublereal* vr, integer* ldvr, doublereal* work, integer* lwork, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_dgegv(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_jobvl;
9
- char jobvl;
10
- VALUE rblapack_jobvr;
11
- char jobvr;
12
- VALUE rblapack_a;
13
- doublereal *a;
14
- VALUE rblapack_b;
15
- doublereal *b;
16
- VALUE rblapack_lwork;
17
- integer lwork;
18
- VALUE rblapack_alphar;
19
- doublereal *alphar;
20
- VALUE rblapack_alphai;
21
- doublereal *alphai;
22
- VALUE rblapack_beta;
23
- doublereal *beta;
24
- VALUE rblapack_vl;
25
- doublereal *vl;
26
- VALUE rblapack_vr;
27
- doublereal *vr;
28
- VALUE rblapack_work;
29
- doublereal *work;
30
- VALUE rblapack_info;
31
- integer info;
32
- VALUE rblapack_a_out__;
33
- doublereal *a_out__;
34
- VALUE rblapack_b_out__;
35
- doublereal *b_out__;
36
-
37
- integer lda;
38
- integer n;
39
- integer ldb;
40
- integer ldvl;
41
- integer ldvr;
42
-
43
- VALUE rblapack_options;
44
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
45
- argc--;
46
- rblapack_options = argv[argc];
47
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
48
- printf("%s\n", "USAGE:\n alphar, alphai, beta, vl, vr, work, info, a, b = NumRu::Lapack.dgegv( jobvl, jobvr, a, b, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* This routine is deprecated and has been replaced by routine DGGEV.\n*\n* DGEGV computes the eigenvalues and, optionally, the left and/or right\n* eigenvectors of a real matrix pair (A,B).\n* Given two square matrices A and B,\n* the generalized nonsymmetric eigenvalue problem (GNEP) is to find the\n* eigenvalues lambda and corresponding (non-zero) eigenvectors x such\n* that\n*\n* A*x = lambda*B*x.\n*\n* An alternate form is to find the eigenvalues mu and corresponding\n* eigenvectors y such that\n*\n* mu*A*y = B*y.\n*\n* These two forms are equivalent with mu = 1/lambda and x = y if\n* neither lambda nor mu is zero. In order to deal with the case that\n* lambda or mu is zero or small, two values alpha and beta are returned\n* for each eigenvalue, such that lambda = alpha/beta and\n* mu = beta/alpha.\n*\n* The vectors x and y in the above equations are right eigenvectors of\n* the matrix pair (A,B). Vectors u and v satisfying\n*\n* u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B\n*\n* are left eigenvectors of (A,B).\n*\n* Note: this routine performs \"full balancing\" on A and B -- see\n* \"Further Details\", below.\n*\n\n* Arguments\n* =========\n*\n* JOBVL (input) CHARACTER*1\n* = 'N': do not compute the left generalized eigenvectors;\n* = 'V': compute the left generalized eigenvectors (returned\n* in VL).\n*\n* JOBVR (input) CHARACTER*1\n* = 'N': do not compute the right generalized eigenvectors;\n* = 'V': compute the right generalized eigenvectors (returned\n* in VR).\n*\n* N (input) INTEGER\n* The order of the matrices A, B, VL, and VR. N >= 0.\n*\n* A (input/output) DOUBLE PRECISION array, dimension (LDA, N)\n* On entry, the matrix A.\n* If JOBVL = 'V' or JOBVR = 'V', then on exit A\n* contains the real Schur form of A from the generalized Schur\n* factorization of the pair (A,B) after balancing.\n* If no eigenvectors were computed, then only the diagonal\n* blocks from the Schur form will be correct. See DGGHRD and\n* DHGEQZ for details.\n*\n* LDA (input) INTEGER\n* The leading dimension of A. LDA >= max(1,N).\n*\n* B (input/output) DOUBLE PRECISION array, dimension (LDB, N)\n* On entry, the matrix B.\n* If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the\n* upper triangular matrix obtained from B in the generalized\n* Schur factorization of the pair (A,B) after balancing.\n* If no eigenvectors were computed, then only those elements of\n* B corresponding to the diagonal blocks from the Schur form of\n* A will be correct. See DGGHRD and DHGEQZ for details.\n*\n* LDB (input) INTEGER\n* The leading dimension of B. LDB >= max(1,N).\n*\n* ALPHAR (output) DOUBLE PRECISION array, dimension (N)\n* The real parts of each scalar alpha defining an eigenvalue of\n* GNEP.\n*\n* ALPHAI (output) DOUBLE PRECISION array, dimension (N)\n* The imaginary parts of each scalar alpha defining an\n* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th\n* eigenvalue is real; if positive, then the j-th and\n* (j+1)-st eigenvalues are a complex conjugate pair, with\n* ALPHAI(j+1) = -ALPHAI(j).\n*\n* BETA (output) DOUBLE PRECISION array, dimension (N)\n* The scalars beta that define the eigenvalues of GNEP.\n* \n* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and\n* beta = BETA(j) represent the j-th eigenvalue of the matrix\n* pair (A,B), in one of the forms lambda = alpha/beta or\n* mu = beta/alpha. Since either lambda or mu may overflow,\n* they should not, in general, be computed.\n*\n* VL (output) DOUBLE PRECISION array, dimension (LDVL,N)\n* If JOBVL = 'V', the left eigenvectors u(j) are stored\n* in the columns of VL, in the same order as their eigenvalues.\n* If the j-th eigenvalue is real, then u(j) = VL(:,j).\n* If the j-th and (j+1)-st eigenvalues form a complex conjugate\n* pair, then\n* u(j) = VL(:,j) + i*VL(:,j+1)\n* and\n* u(j+1) = VL(:,j) - i*VL(:,j+1).\n*\n* Each eigenvector is scaled so that its largest component has\n* abs(real part) + abs(imag. part) = 1, except for eigenvectors\n* corresponding to an eigenvalue with alpha = beta = 0, which\n* are set to zero.\n* Not referenced if JOBVL = 'N'.\n*\n* LDVL (input) INTEGER\n* The leading dimension of the matrix VL. LDVL >= 1, and\n* if JOBVL = 'V', LDVL >= N.\n*\n* VR (output) DOUBLE PRECISION array, dimension (LDVR,N)\n* If JOBVR = 'V', the right eigenvectors x(j) are stored\n* in the columns of VR, in the same order as their eigenvalues.\n* If the j-th eigenvalue is real, then x(j) = VR(:,j).\n* If the j-th and (j+1)-st eigenvalues form a complex conjugate\n* pair, then\n* x(j) = VR(:,j) + i*VR(:,j+1)\n* and\n* x(j+1) = VR(:,j) - i*VR(:,j+1).\n*\n* Each eigenvector is scaled so that its largest component has\n* abs(real part) + abs(imag. part) = 1, except for eigenvalues\n* corresponding to an eigenvalue with alpha = beta = 0, which\n* are set to zero.\n* Not referenced if JOBVR = 'N'.\n*\n* LDVR (input) INTEGER\n* The leading dimension of the matrix VR. LDVR >= 1, and\n* if JOBVR = 'V', LDVR >= N.\n*\n* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The dimension of the array WORK. LWORK >= max(1,8*N).\n* For good performance, LWORK must generally be larger.\n* To compute the optimal value of LWORK, call ILAENV to get\n* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute:\n* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;\n* The optimal LWORK is:\n* 2*N + MAX( 6*N, N*(NB+1) ).\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n* = 1,...,N:\n* The QZ iteration failed. No eigenvectors have been\n* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)\n* should be correct for j=INFO+1,...,N.\n* > N: errors that usually indicate LAPACK problems:\n* =N+1: error return from DGGBAL\n* =N+2: error return from DGEQRF\n* =N+3: error return from DORMQR\n* =N+4: error return from DORGQR\n* =N+5: error return from DGGHRD\n* =N+6: error return from DHGEQZ (other than failed\n* iteration)\n* =N+7: error return from DTGEVC\n* =N+8: error return from DGGBAK (computing VL)\n* =N+9: error return from DGGBAK (computing VR)\n* =N+10: error return from DLASCL (various calls)\n*\n\n* Further Details\n* ===============\n*\n* Balancing\n* ---------\n*\n* This driver calls DGGBAL to both permute and scale rows and columns\n* of A and B. The permutations PL and PR are chosen so that PL*A*PR\n* and PL*B*R will be upper triangular except for the diagonal blocks\n* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as\n* possible. The diagonal scaling matrices DL and DR are chosen so\n* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to\n* one (except for the elements that start out zero.)\n*\n* After the eigenvalues and eigenvectors of the balanced matrices\n* have been computed, DGGBAK transforms the eigenvectors back to what\n* they would have been (in perfect arithmetic) if they had not been\n* balanced.\n*\n* Contents of A and B on Exit\n* -------- -- - --- - -- ----\n*\n* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or\n* both), then on exit the arrays A and B will contain the real Schur\n* form[*] of the \"balanced\" versions of A and B. If no eigenvectors\n* are computed, then only the diagonal blocks will be correct.\n*\n* [*] See DHGEQZ, DGEGS, or read the book \"Matrix Computations\",\n* by Golub & van Loan, pub. by Johns Hopkins U. Press.\n*\n* =====================================================================\n*\n\n");
49
- return Qnil;
50
- }
51
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
52
- printf("%s\n", "USAGE:\n alphar, alphai, beta, vl, vr, work, info, a, b = NumRu::Lapack.dgegv( jobvl, jobvr, a, b, [:lwork => lwork, :usage => usage, :help => help])\n");
53
- return Qnil;
54
- }
55
- } else
56
- rblapack_options = Qnil;
57
- if (argc != 4 && argc != 5)
58
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 4)", argc);
59
- rblapack_jobvl = argv[0];
60
- rblapack_jobvr = argv[1];
61
- rblapack_a = argv[2];
62
- rblapack_b = argv[3];
63
- if (argc == 5) {
64
- rblapack_lwork = argv[4];
65
- } else if (rblapack_options != Qnil) {
66
- rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
67
- } else {
68
- rblapack_lwork = Qnil;
69
- }
70
-
71
- jobvl = StringValueCStr(rblapack_jobvl)[0];
72
- if (!NA_IsNArray(rblapack_a))
73
- rb_raise(rb_eArgError, "a (3th argument) must be NArray");
74
- if (NA_RANK(rblapack_a) != 2)
75
- rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
76
- lda = NA_SHAPE0(rblapack_a);
77
- n = NA_SHAPE1(rblapack_a);
78
- if (NA_TYPE(rblapack_a) != NA_DFLOAT)
79
- rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
80
- a = NA_PTR_TYPE(rblapack_a, doublereal*);
81
- jobvr = StringValueCStr(rblapack_jobvr)[0];
82
- if (!NA_IsNArray(rblapack_b))
83
- rb_raise(rb_eArgError, "b (4th argument) must be NArray");
84
- if (NA_RANK(rblapack_b) != 2)
85
- rb_raise(rb_eArgError, "rank of b (4th argument) must be %d", 2);
86
- ldb = NA_SHAPE0(rblapack_b);
87
- if (NA_SHAPE1(rblapack_b) != n)
88
- rb_raise(rb_eRuntimeError, "shape 1 of b must be the same as shape 1 of a");
89
- if (NA_TYPE(rblapack_b) != NA_DFLOAT)
90
- rblapack_b = na_change_type(rblapack_b, NA_DFLOAT);
91
- b = NA_PTR_TYPE(rblapack_b, doublereal*);
92
- ldvr = lsame_(&jobvr,"V") ? n : 1;
93
- if (rblapack_lwork == Qnil)
94
- lwork = 8*n;
95
- else {
96
- lwork = NUM2INT(rblapack_lwork);
97
- }
98
- ldvl = lsame_(&jobvl,"V") ? n : 1;
99
- {
100
- int shape[1];
101
- shape[0] = n;
102
- rblapack_alphar = na_make_object(NA_DFLOAT, 1, shape, cNArray);
103
- }
104
- alphar = NA_PTR_TYPE(rblapack_alphar, doublereal*);
105
- {
106
- int shape[1];
107
- shape[0] = n;
108
- rblapack_alphai = na_make_object(NA_DFLOAT, 1, shape, cNArray);
109
- }
110
- alphai = NA_PTR_TYPE(rblapack_alphai, doublereal*);
111
- {
112
- int shape[1];
113
- shape[0] = n;
114
- rblapack_beta = na_make_object(NA_DFLOAT, 1, shape, cNArray);
115
- }
116
- beta = NA_PTR_TYPE(rblapack_beta, doublereal*);
117
- {
118
- int shape[2];
119
- shape[0] = ldvl;
120
- shape[1] = n;
121
- rblapack_vl = na_make_object(NA_DFLOAT, 2, shape, cNArray);
122
- }
123
- vl = NA_PTR_TYPE(rblapack_vl, doublereal*);
124
- {
125
- int shape[2];
126
- shape[0] = ldvr;
127
- shape[1] = n;
128
- rblapack_vr = na_make_object(NA_DFLOAT, 2, shape, cNArray);
129
- }
130
- vr = NA_PTR_TYPE(rblapack_vr, doublereal*);
131
- {
132
- int shape[1];
133
- shape[0] = MAX(1,lwork);
134
- rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
135
- }
136
- work = NA_PTR_TYPE(rblapack_work, doublereal*);
137
- {
138
- int shape[2];
139
- shape[0] = lda;
140
- shape[1] = n;
141
- rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
142
- }
143
- a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
144
- MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
145
- rblapack_a = rblapack_a_out__;
146
- a = a_out__;
147
- {
148
- int shape[2];
149
- shape[0] = ldb;
150
- shape[1] = n;
151
- rblapack_b_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
152
- }
153
- b_out__ = NA_PTR_TYPE(rblapack_b_out__, doublereal*);
154
- MEMCPY(b_out__, b, doublereal, NA_TOTAL(rblapack_b));
155
- rblapack_b = rblapack_b_out__;
156
- b = b_out__;
157
-
158
- dgegv_(&jobvl, &jobvr, &n, a, &lda, b, &ldb, alphar, alphai, beta, vl, &ldvl, vr, &ldvr, work, &lwork, &info);
159
-
160
- rblapack_info = INT2NUM(info);
161
- return rb_ary_new3(9, rblapack_alphar, rblapack_alphai, rblapack_beta, rblapack_vl, rblapack_vr, rblapack_work, rblapack_info, rblapack_a, rblapack_b);
162
- }
163
-
164
- void
165
- init_lapack_dgegv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
166
- sHelp = sH;
167
- sUsage = sU;
168
- rblapack_ZERO = zero;
169
-
170
- rb_define_module_function(mLapack, "dgegv", rblapack_dgegv, -1);
171
- }
@@ -1,92 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID dgehd2_(integer* n, integer* ilo, integer* ihi, doublereal* a, integer* lda, doublereal* tau, doublereal* work, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_dgehd2(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_ilo;
9
- integer ilo;
10
- VALUE rblapack_ihi;
11
- integer ihi;
12
- VALUE rblapack_a;
13
- doublereal *a;
14
- VALUE rblapack_tau;
15
- doublereal *tau;
16
- VALUE rblapack_info;
17
- integer info;
18
- VALUE rblapack_a_out__;
19
- doublereal *a_out__;
20
- doublereal *work;
21
-
22
- integer lda;
23
- integer n;
24
-
25
- VALUE rblapack_options;
26
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
27
- argc--;
28
- rblapack_options = argv[argc];
29
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
30
- printf("%s\n", "USAGE:\n tau, info, a = NumRu::Lapack.dgehd2( ilo, ihi, a, [:usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )\n\n* Purpose\n* =======\n*\n* DGEHD2 reduces a real general matrix A to upper Hessenberg form H by\n* an orthogonal similarity transformation: Q' * A * Q = H .\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* ILO (input) INTEGER\n* IHI (input) INTEGER\n* It is assumed that A is already upper triangular in rows\n* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally\n* set by a previous call to DGEBAL; otherwise they should be\n* set to 1 and N respectively. See Further Details.\n* 1 <= ILO <= IHI <= max(1,N).\n*\n* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, the n by n general matrix to be reduced.\n* On exit, the upper triangle and the first subdiagonal of A\n* are overwritten with the upper Hessenberg matrix H, and the\n* elements below the first subdiagonal, with the array TAU,\n* represent the orthogonal matrix Q as a product of elementary\n* reflectors. See Further Details.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* TAU (output) DOUBLE PRECISION array, dimension (N-1)\n* The scalar factors of the elementary reflectors (see Further\n* Details).\n*\n* WORK (workspace) DOUBLE PRECISION array, dimension (N)\n*\n* INFO (output) INTEGER\n* = 0: successful exit.\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of (ihi-ilo) elementary\n* reflectors\n*\n* Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real scalar, and v is a real vector with\n* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on\n* exit in A(i+2:ihi,i), and tau in TAU(i).\n*\n* The contents of A are illustrated by the following example, with\n* n = 7, ilo = 2 and ihi = 6:\n*\n* on entry, on exit,\n*\n* ( a a a a a a a ) ( a a h h h h a )\n* ( a a a a a a ) ( a h h h h a )\n* ( a a a a a a ) ( h h h h h h )\n* ( a a a a a a ) ( v2 h h h h h )\n* ( a a a a a a ) ( v2 v3 h h h h )\n* ( a a a a a a ) ( v2 v3 v4 h h h )\n* ( a ) ( a )\n*\n* where a denotes an element of the original matrix A, h denotes a\n* modified element of the upper Hessenberg matrix H, and vi denotes an\n* element of the vector defining H(i).\n*\n* =====================================================================\n*\n\n");
31
- return Qnil;
32
- }
33
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
34
- printf("%s\n", "USAGE:\n tau, info, a = NumRu::Lapack.dgehd2( ilo, ihi, a, [:usage => usage, :help => help])\n");
35
- return Qnil;
36
- }
37
- } else
38
- rblapack_options = Qnil;
39
- if (argc != 3 && argc != 3)
40
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
41
- rblapack_ilo = argv[0];
42
- rblapack_ihi = argv[1];
43
- rblapack_a = argv[2];
44
- if (argc == 3) {
45
- } else if (rblapack_options != Qnil) {
46
- } else {
47
- }
48
-
49
- ilo = NUM2INT(rblapack_ilo);
50
- if (!NA_IsNArray(rblapack_a))
51
- rb_raise(rb_eArgError, "a (3th argument) must be NArray");
52
- if (NA_RANK(rblapack_a) != 2)
53
- rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
54
- lda = NA_SHAPE0(rblapack_a);
55
- n = NA_SHAPE1(rblapack_a);
56
- if (NA_TYPE(rblapack_a) != NA_DFLOAT)
57
- rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
58
- a = NA_PTR_TYPE(rblapack_a, doublereal*);
59
- ihi = NUM2INT(rblapack_ihi);
60
- {
61
- int shape[1];
62
- shape[0] = n-1;
63
- rblapack_tau = na_make_object(NA_DFLOAT, 1, shape, cNArray);
64
- }
65
- tau = NA_PTR_TYPE(rblapack_tau, doublereal*);
66
- {
67
- int shape[2];
68
- shape[0] = lda;
69
- shape[1] = n;
70
- rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
71
- }
72
- a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
73
- MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
74
- rblapack_a = rblapack_a_out__;
75
- a = a_out__;
76
- work = ALLOC_N(doublereal, (n));
77
-
78
- dgehd2_(&n, &ilo, &ihi, a, &lda, tau, work, &info);
79
-
80
- free(work);
81
- rblapack_info = INT2NUM(info);
82
- return rb_ary_new3(3, rblapack_tau, rblapack_info, rblapack_a);
83
- }
84
-
85
- void
86
- init_lapack_dgehd2(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
87
- sHelp = sH;
88
- sUsage = sU;
89
- rblapack_ZERO = zero;
90
-
91
- rb_define_module_function(mLapack, "dgehd2", rblapack_dgehd2, -1);
92
- }
@@ -1,107 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID dgehrd_(integer* n, integer* ilo, integer* ihi, doublereal* a, integer* lda, doublereal* tau, doublereal* work, integer* lwork, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_dgehrd(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_ilo;
9
- integer ilo;
10
- VALUE rblapack_ihi;
11
- integer ihi;
12
- VALUE rblapack_a;
13
- doublereal *a;
14
- VALUE rblapack_lwork;
15
- integer lwork;
16
- VALUE rblapack_tau;
17
- doublereal *tau;
18
- VALUE rblapack_work;
19
- doublereal *work;
20
- VALUE rblapack_info;
21
- integer info;
22
- VALUE rblapack_a_out__;
23
- doublereal *a_out__;
24
-
25
- integer lda;
26
- integer n;
27
-
28
- VALUE rblapack_options;
29
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
30
- argc--;
31
- rblapack_options = argv[argc];
32
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
33
- printf("%s\n", "USAGE:\n tau, work, info, a = NumRu::Lapack.dgehrd( ilo, ihi, a, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )\n\n* Purpose\n* =======\n*\n* DGEHRD reduces a real general matrix A to upper Hessenberg form H by\n* an orthogonal similarity transformation: Q' * A * Q = H .\n*\n\n* Arguments\n* =========\n*\n* N (input) INTEGER\n* The order of the matrix A. N >= 0.\n*\n* ILO (input) INTEGER\n* IHI (input) INTEGER\n* It is assumed that A is already upper triangular in rows\n* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally\n* set by a previous call to DGEBAL; otherwise they should be\n* set to 1 and N respectively. See Further Details.\n* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.\n*\n* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, the N-by-N general matrix to be reduced.\n* On exit, the upper triangle and the first subdiagonal of A\n* are overwritten with the upper Hessenberg matrix H, and the\n* elements below the first subdiagonal, with the array TAU,\n* represent the orthogonal matrix Q as a product of elementary\n* reflectors. See Further Details.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,N).\n*\n* TAU (output) DOUBLE PRECISION array, dimension (N-1)\n* The scalar factors of the elementary reflectors (see Further\n* Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to\n* zero.\n*\n* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)\n* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.\n*\n* LWORK (input) INTEGER\n* The length of the array WORK. LWORK >= max(1,N).\n* For optimum performance LWORK >= N*NB, where NB is the\n* optimal blocksize.\n*\n* If LWORK = -1, then a workspace query is assumed; the routine\n* only calculates the optimal size of the WORK array, returns\n* this value as the first entry of the WORK array, and no error\n* message related to LWORK is issued by XERBLA.\n*\n* INFO (output) INTEGER\n* = 0: successful exit\n* < 0: if INFO = -i, the i-th argument had an illegal value.\n*\n\n* Further Details\n* ===============\n*\n* The matrix Q is represented as a product of (ihi-ilo) elementary\n* reflectors\n*\n* Q = H(ilo) H(ilo+1) . . . H(ihi-1).\n*\n* Each H(i) has the form\n*\n* H(i) = I - tau * v * v'\n*\n* where tau is a real scalar, and v is a real vector with\n* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on\n* exit in A(i+2:ihi,i), and tau in TAU(i).\n*\n* The contents of A are illustrated by the following example, with\n* n = 7, ilo = 2 and ihi = 6:\n*\n* on entry, on exit,\n*\n* ( a a a a a a a ) ( a a h h h h a )\n* ( a a a a a a ) ( a h h h h a )\n* ( a a a a a a ) ( h h h h h h )\n* ( a a a a a a ) ( v2 h h h h h )\n* ( a a a a a a ) ( v2 v3 h h h h )\n* ( a a a a a a ) ( v2 v3 v4 h h h )\n* ( a ) ( a )\n*\n* where a denotes an element of the original matrix A, h denotes a\n* modified element of the upper Hessenberg matrix H, and vi denotes an\n* element of the vector defining H(i).\n*\n* This file is a slight modification of LAPACK-3.0's DGEHRD\n* subroutine incorporating improvements proposed by Quintana-Orti and\n* Van de Geijn (2006). (See DLAHR2.)\n*\n* =====================================================================\n*\n\n");
34
- return Qnil;
35
- }
36
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
37
- printf("%s\n", "USAGE:\n tau, work, info, a = NumRu::Lapack.dgehrd( ilo, ihi, a, [:lwork => lwork, :usage => usage, :help => help])\n");
38
- return Qnil;
39
- }
40
- } else
41
- rblapack_options = Qnil;
42
- if (argc != 3 && argc != 4)
43
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 3)", argc);
44
- rblapack_ilo = argv[0];
45
- rblapack_ihi = argv[1];
46
- rblapack_a = argv[2];
47
- if (argc == 4) {
48
- rblapack_lwork = argv[3];
49
- } else if (rblapack_options != Qnil) {
50
- rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
51
- } else {
52
- rblapack_lwork = Qnil;
53
- }
54
-
55
- ilo = NUM2INT(rblapack_ilo);
56
- if (!NA_IsNArray(rblapack_a))
57
- rb_raise(rb_eArgError, "a (3th argument) must be NArray");
58
- if (NA_RANK(rblapack_a) != 2)
59
- rb_raise(rb_eArgError, "rank of a (3th argument) must be %d", 2);
60
- lda = NA_SHAPE0(rblapack_a);
61
- n = NA_SHAPE1(rblapack_a);
62
- if (NA_TYPE(rblapack_a) != NA_DFLOAT)
63
- rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
64
- a = NA_PTR_TYPE(rblapack_a, doublereal*);
65
- ihi = NUM2INT(rblapack_ihi);
66
- if (rblapack_lwork == Qnil)
67
- lwork = n;
68
- else {
69
- lwork = NUM2INT(rblapack_lwork);
70
- }
71
- {
72
- int shape[1];
73
- shape[0] = n-1;
74
- rblapack_tau = na_make_object(NA_DFLOAT, 1, shape, cNArray);
75
- }
76
- tau = NA_PTR_TYPE(rblapack_tau, doublereal*);
77
- {
78
- int shape[1];
79
- shape[0] = MAX(1,lwork);
80
- rblapack_work = na_make_object(NA_DFLOAT, 1, shape, cNArray);
81
- }
82
- work = NA_PTR_TYPE(rblapack_work, doublereal*);
83
- {
84
- int shape[2];
85
- shape[0] = lda;
86
- shape[1] = n;
87
- rblapack_a_out__ = na_make_object(NA_DFLOAT, 2, shape, cNArray);
88
- }
89
- a_out__ = NA_PTR_TYPE(rblapack_a_out__, doublereal*);
90
- MEMCPY(a_out__, a, doublereal, NA_TOTAL(rblapack_a));
91
- rblapack_a = rblapack_a_out__;
92
- a = a_out__;
93
-
94
- dgehrd_(&n, &ilo, &ihi, a, &lda, tau, work, &lwork, &info);
95
-
96
- rblapack_info = INT2NUM(info);
97
- return rb_ary_new3(4, rblapack_tau, rblapack_work, rblapack_info, rblapack_a);
98
- }
99
-
100
- void
101
- init_lapack_dgehrd(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
102
- sHelp = sH;
103
- sUsage = sU;
104
- rblapack_ZERO = zero;
105
-
106
- rb_define_module_function(mLapack, "dgehrd", rblapack_dgehrd, -1);
107
- }
@@ -1,159 +0,0 @@
1
- #include "rb_lapack.h"
2
-
3
- extern VOID dgejsv_(char* joba, char* jobu, char* jobv, char* jobr, char* jobt, char* jobp, integer* m, integer* n, doublereal* a, integer* lda, doublereal* sva, doublereal* u, integer* ldu, doublereal* v, integer* ldv, doublereal* work, integer* lwork, integer* iwork, integer* info);
4
-
5
-
6
- static VALUE
7
- rblapack_dgejsv(int argc, VALUE *argv, VALUE self){
8
- VALUE rblapack_joba;
9
- char joba;
10
- VALUE rblapack_jobu;
11
- char jobu;
12
- VALUE rblapack_jobv;
13
- char jobv;
14
- VALUE rblapack_jobr;
15
- char jobr;
16
- VALUE rblapack_jobt;
17
- char jobt;
18
- VALUE rblapack_jobp;
19
- char jobp;
20
- VALUE rblapack_m;
21
- integer m;
22
- VALUE rblapack_a;
23
- doublereal *a;
24
- VALUE rblapack_work;
25
- doublereal *work;
26
- VALUE rblapack_lwork;
27
- integer lwork;
28
- VALUE rblapack_sva;
29
- doublereal *sva;
30
- VALUE rblapack_u;
31
- doublereal *u;
32
- VALUE rblapack_v;
33
- doublereal *v;
34
- VALUE rblapack_iwork;
35
- integer *iwork;
36
- VALUE rblapack_info;
37
- integer info;
38
- VALUE rblapack_work_out__;
39
- doublereal *work_out__;
40
-
41
- integer lda;
42
- integer n;
43
- integer ldu;
44
- integer ldv;
45
-
46
- VALUE rblapack_options;
47
- if (argc > 0 && TYPE(argv[argc-1]) == T_HASH) {
48
- argc--;
49
- rblapack_options = argv[argc];
50
- if (rb_hash_aref(rblapack_options, sHelp) == Qtrue) {
51
- printf("%s\n", "USAGE:\n sva, u, v, iwork, info, work = NumRu::Lapack.dgejsv( joba, jobu, jobv, jobr, jobt, jobp, m, a, work, [:lwork => lwork, :usage => usage, :help => help])\n\n\nFORTRAN MANUAL\n SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, M, N, A, LDA, SVA, U, LDU, V, LDV, WORK, LWORK, IWORK, INFO )\n\n* Purpose\n* =======\n*\n* DGEJSV computes the singular value decomposition (SVD) of a real M-by-N\n* matrix [A], where M >= N. The SVD of [A] is written as\n*\n* [A] = [U] * [SIGMA] * [V]^t,\n*\n* where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N\n* diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and\n* [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are\n* the singular values of [A]. The columns of [U] and [V] are the left and\n* the right singular vectors of [A], respectively. The matrices [U] and [V]\n* are computed and stored in the arrays U and V, respectively. The diagonal\n* of [SIGMA] is computed and stored in the array SVA.\n*\n\n* Arguments\n* =========\n*\n* JOBA (input) CHARACTER*1\n* Specifies the level of accuracy:\n* = 'C': This option works well (high relative accuracy) if A = B * D,\n* with well-conditioned B and arbitrary diagonal matrix D.\n* The accuracy cannot be spoiled by COLUMN scaling. The\n* accuracy of the computed output depends on the condition of\n* B, and the procedure aims at the best theoretical accuracy.\n* The relative error max_{i=1:N}|d sigma_i| / sigma_i is\n* bounded by f(M,N)*epsilon* cond(B), independent of D.\n* The input matrix is preprocessed with the QRF with column\n* pivoting. This initial preprocessing and preconditioning by\n* a rank revealing QR factorization is common for all values of\n* JOBA. Additional actions are specified as follows:\n* = 'E': Computation as with 'C' with an additional estimate of the\n* condition number of B. It provides a realistic error bound.\n* = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings\n* D1, D2, and well-conditioned matrix C, this option gives\n* higher accuracy than the 'C' option. If the structure of the\n* input matrix is not known, and relative accuracy is\n* desirable, then this option is advisable. The input matrix A\n* is preprocessed with QR factorization with FULL (row and\n* column) pivoting.\n* = 'G' Computation as with 'F' with an additional estimate of the\n* condition number of B, where A=D*B. If A has heavily weighted\n* rows, then using this condition number gives too pessimistic\n* error bound.\n* = 'A': Small singular values are the noise and the matrix is treated\n* as numerically rank defficient. The error in the computed\n* singular values is bounded by f(m,n)*epsilon*||A||.\n* The computed SVD A = U * S * V^t restores A up to\n* f(m,n)*epsilon*||A||.\n* This gives the procedure the licence to discard (set to zero)\n* all singular values below N*epsilon*||A||.\n* = 'R': Similar as in 'A'. Rank revealing property of the initial\n* QR factorization is used do reveal (using triangular factor)\n* a gap sigma_{r+1} < epsilon * sigma_r in which case the\n* numerical RANK is declared to be r. The SVD is computed with\n* absolute error bounds, but more accurately than with 'A'.\n*\n* JOBU (input) CHARACTER*1\n* Specifies whether to compute the columns of U:\n* = 'U': N columns of U are returned in the array U.\n* = 'F': full set of M left sing. vectors is returned in the array U.\n* = 'W': U may be used as workspace of length M*N. See the description\n* of U.\n* = 'N': U is not computed.\n*\n* JOBV (input) CHARACTER*1\n* Specifies whether to compute the matrix V:\n* = 'V': N columns of V are returned in the array V; Jacobi rotations\n* are not explicitly accumulated.\n* = 'J': N columns of V are returned in the array V, but they are\n* computed as the product of Jacobi rotations. This option is\n* allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.\n* = 'W': V may be used as workspace of length N*N. See the description\n* of V.\n* = 'N': V is not computed.\n*\n* JOBR (input) CHARACTER*1\n* Specifies the RANGE for the singular values. Issues the licence to\n* set to zero small positive singular values if they are outside\n* specified range. If A .NE. 0 is scaled so that the largest singular\n* value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues\n* the licence to kill columns of A whose norm in c*A is less than\n* DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,\n* where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').\n* = 'N': Do not kill small columns of c*A. This option assumes that\n* BLAS and QR factorizations and triangular solvers are\n* implemented to work in that range. If the condition of A\n* is greater than BIG, use DGESVJ.\n* = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]\n* (roughly, as described above). This option is recommended.\n* ~~~~~~~~~~~~~~~~~~~~~~~~~~~\n* For computing the singular values in the FULL range [SFMIN,BIG]\n* use DGESVJ.\n*\n* JOBT (input) CHARACTER*1\n* If the matrix is square then the procedure may determine to use\n* transposed A if A^t seems to be better with respect to convergence.\n* If the matrix is not square, JOBT is ignored. This is subject to\n* changes in the future.\n* The decision is based on two values of entropy over the adjoint\n* orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).\n* = 'T': transpose if entropy test indicates possibly faster\n* convergence of Jacobi process if A^t is taken as input. If A is\n* replaced with A^t, then the row pivoting is included automatically.\n* = 'N': do not speculate.\n* This option can be used to compute only the singular values, or the\n* full SVD (U, SIGMA and V). For only one set of singular vectors\n* (U or V), the caller should provide both U and V, as one of the\n* matrices is used as workspace if the matrix A is transposed.\n* The implementer can easily remove this constraint and make the\n* code more complicated. See the descriptions of U and V.\n*\n* JOBP (input) CHARACTER*1\n* Issues the licence to introduce structured perturbations to drown\n* denormalized numbers. This licence should be active if the\n* denormals are poorly implemented, causing slow computation,\n* especially in cases of fast convergence (!). For details see [1,2].\n* For the sake of simplicity, this perturbations are included only\n* when the full SVD or only the singular values are requested. The\n* implementer/user can easily add the perturbation for the cases of\n* computing one set of singular vectors.\n* = 'P': introduce perturbation\n* = 'N': do not perturb\n*\n* M (input) INTEGER\n* The number of rows of the input matrix A. M >= 0.\n*\n* N (input) INTEGER\n* The number of columns of the input matrix A. M >= N >= 0.\n*\n* A (input/workspace) DOUBLE PRECISION array, dimension (LDA,N)\n* On entry, the M-by-N matrix A.\n*\n* LDA (input) INTEGER\n* The leading dimension of the array A. LDA >= max(1,M).\n*\n* SVA (workspace/output) DOUBLE PRECISION array, dimension (N)\n* On exit,\n* - For WORK(1)/WORK(2) = ONE: The singular values of A. During the\n* computation SVA contains Euclidean column norms of the\n* iterated matrices in the array A.\n* - For WORK(1) .NE. WORK(2): The singular values of A are\n* (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if\n* sigma_max(A) overflows or if small singular values have been\n* saved from underflow by scaling the input matrix A.\n* - If JOBR='R' then some of the singular values may be returned\n* as exact zeros obtained by \"set to zero\" because they are\n* below the numerical rank threshold or are denormalized numbers.\n*\n* U (workspace/output) DOUBLE PRECISION array, dimension ( LDU, N )\n* If JOBU = 'U', then U contains on exit the M-by-N matrix of\n* the left singular vectors.\n* If JOBU = 'F', then U contains on exit the M-by-M matrix of\n* the left singular vectors, including an ONB\n* of the orthogonal complement of the Range(A).\n* If JOBU = 'W' .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),\n* then U is used as workspace if the procedure\n* replaces A with A^t. In that case, [V] is computed\n* in U as left singular vectors of A^t and then\n* copied back to the V array. This 'W' option is just\n* a reminder to the caller that in this case U is\n* reserved as workspace of length N*N.\n* If JOBU = 'N' U is not referenced.\n*\n* LDU (input) INTEGER\n* The leading dimension of the array U, LDU >= 1.\n* IF JOBU = 'U' or 'F' or 'W', then LDU >= M.\n*\n* V (workspace/output) DOUBLE PRECISION array, dimension ( LDV, N )\n* If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of\n* the right singular vectors;\n* If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),\n* then V is used as workspace if the pprocedure\n* replaces A with A^t. In that case, [U] is computed\n* in V as right singular vectors of A^t and then\n* copied back to the U array. This 'W' option is just\n* a reminder to the caller that in this case V is\n* reserved as workspace of length N*N.\n* If JOBV = 'N' V is not referenced.\n*\n* LDV (input) INTEGER\n* The leading dimension of the array V, LDV >= 1.\n* If JOBV = 'V' or 'J' or 'W', then LDV >= N.\n*\n* WORK (workspace/output) DOUBLE PRECISION array, dimension at least LWORK.\n* On exit,\n* WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such\n* that SCALE*SVA(1:N) are the computed singular values\n* of A. (See the description of SVA().)\n* WORK(2) = See the description of WORK(1).\n* WORK(3) = SCONDA is an estimate for the condition number of\n* column equilibrated A. (If JOBA .EQ. 'E' or 'G')\n* SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).\n* It is computed using DPOCON. It holds\n* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA\n* where R is the triangular factor from the QRF of A.\n* However, if R is truncated and the numerical rank is\n* determined to be strictly smaller than N, SCONDA is\n* returned as -1, thus indicating that the smallest\n* singular values might be lost.\n*\n* If full SVD is needed, the following two condition numbers are\n* useful for the analysis of the algorithm. They are provied for\n* a developer/implementer who is familiar with the details of\n* the method.\n*\n* WORK(4) = an estimate of the scaled condition number of the\n* triangular factor in the first QR factorization.\n* WORK(5) = an estimate of the scaled condition number of the\n* triangular factor in the second QR factorization.\n* The following two parameters are computed if JOBT .EQ. 'T'.\n* They are provided for a developer/implementer who is familiar\n* with the details of the method.\n*\n* WORK(6) = the entropy of A^t*A :: this is the Shannon entropy\n* of diag(A^t*A) / Trace(A^t*A) taken as point in the\n* probability simplex.\n* WORK(7) = the entropy of A*A^t.\n*\n* LWORK (input) INTEGER\n* Length of WORK to confirm proper allocation of work space.\n* LWORK depends on the job:\n*\n* If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and\n* -> .. no scaled condition estimate required ( JOBE.EQ.'N'):\n* LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.\n* For optimal performance (blocked code) the optimal value\n* is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal\n* block size for xGEQP3/xGEQRF.\n* -> .. an estimate of the scaled condition number of A is\n* required (JOBA='E', 'G'). In this case, LWORK is the maximum\n* of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4N,7).\n*\n* If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),\n* -> the minimal requirement is LWORK >= max(2*N+M,7).\n* -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7),\n* where NB is the optimal block size.\n*\n* If SIGMA and the left singular vectors are needed\n* -> the minimal requirement is LWORK >= max(2*N+M,7).\n* -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7),\n* where NB is the optimal block size.\n*\n* If full SVD is needed ( JOBU.EQ.'U' or 'F', JOBV.EQ.'V' ) and\n* -> .. the singular vectors are computed without explicit\n* accumulation of the Jacobi rotations, LWORK >= 6*N+2*N*N\n* -> .. in the iterative part, the Jacobi rotations are\n* explicitly accumulated (option, see the description of JOBV),\n* then the minimal requirement is LWORK >= max(M+3*N+N*N,7).\n* For better performance, if NB is the optimal block size,\n* LWORK >= max(3*N+N*N+M,3*N+N*N+N*NB,7).\n*\n* IWORK (workspace/output) INTEGER array, dimension M+3*N.\n* On exit,\n* IWORK(1) = the numerical rank determined after the initial\n* QR factorization with pivoting. See the descriptions\n* of JOBA and JOBR.\n* IWORK(2) = the number of the computed nonzero singular values\n* IWORK(3) = if nonzero, a warning message:\n* If IWORK(3).EQ.1 then some of the column norms of A\n* were denormalized floats. The requested high accuracy\n* is not warranted by the data.\n*\n* INFO (output) INTEGER\n* < 0 : if INFO = -i, then the i-th argument had an illegal value.\n* = 0 : successfull exit;\n* > 0 : DGEJSV did not converge in the maximal allowed number\n* of sweeps. The computed values may be inaccurate.\n*\n\n* Further Details\n* ===============\n*\n* DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses SGEQP3,\n* SGEQRF, and SGELQF as preprocessors and preconditioners. Optionally, an\n* additional row pivoting can be used as a preprocessor, which in some\n* cases results in much higher accuracy. An example is matrix A with the\n* structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned\n* diagonal matrices and C is well-conditioned matrix. In that case, complete\n* pivoting in the first QR factorizations provides accuracy dependent on the\n* condition number of C, and independent of D1, D2. Such higher accuracy is\n* not completely understood theoretically, but it works well in practice.\n* Further, if A can be written as A = B*D, with well-conditioned B and some\n* diagonal D, then the high accuracy is guaranteed, both theoretically and\n* in software, independent of D. For more details see [1], [2].\n* The computational range for the singular values can be the full range\n* ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS\n* & LAPACK routines called by DGEJSV are implemented to work in that range.\n* If that is not the case, then the restriction for safe computation with\n* the singular values in the range of normalized IEEE numbers is that the\n* spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not\n* overflow. This code (DGEJSV) is best used in this restricted range,\n* meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are\n* returned as zeros. See JOBR for details on this.\n* Further, this implementation is somewhat slower than the one described\n* in [1,2] due to replacement of some non-LAPACK components, and because\n* the choice of some tuning parameters in the iterative part (DGESVJ) is\n* left to the implementer on a particular machine.\n* The rank revealing QR factorization (in this code: SGEQP3) should be\n* implemented as in [3]. We have a new version of SGEQP3 under development\n* that is more robust than the current one in LAPACK, with a cleaner cut in\n* rank defficient cases. It will be available in the SIGMA library [4].\n* If M is much larger than N, it is obvious that the inital QRF with\n* column pivoting can be preprocessed by the QRF without pivoting. That\n* well known trick is not used in DGEJSV because in some cases heavy row\n* weighting can be treated with complete pivoting. The overhead in cases\n* M much larger than N is then only due to pivoting, but the benefits in\n* terms of accuracy have prevailed. The implementer/user can incorporate\n* this extra QRF step easily. The implementer can also improve data movement\n* (matrix transpose, matrix copy, matrix transposed copy) - this\n* implementation of DGEJSV uses only the simplest, naive data movement.\n*\n* Contributors\n*\n* Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)\n*\n* References\n*\n* [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.\n* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.\n* LAPACK Working note 169.\n* [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.\n* SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.\n* LAPACK Working note 170.\n* [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR\n* factorization software - a case study.\n* ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.\n* LAPACK Working note 176.\n* [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,\n* QSVD, (H,K)-SVD computations.\n* Department of Mathematics, University of Zagreb, 2008.\n*\n* Bugs, examples and comments\n* \n* Please report all bugs and send interesting examples and/or comments to\n* drmac@math.hr. Thank you.\n*\n* ==========================================================================\n*\n* .. Local Parameters ..\n DOUBLE PRECISION ZERO, ONE\n PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )\n* ..\n* .. Local Scalars ..\n DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,\n & CONDR1, CONDR2, ENTRA, ENTRAT, EPSLN, MAXPRJ, SCALEM,\n & SCONDA, SFMIN, SMALL, TEMP1, USCAL1, USCAL2, XSC\n INTEGER IERR, N1, NR, NUMRANK, p, q, WARNING\n LOGICAL ALMORT, DEFR, ERREST, GOSCAL, JRACC, KILL, LSVEC,\n & L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,\n & NOSCAL, ROWPIV, RSVEC, TRANSP\n* ..\n* .. Intrinsic Functions ..\n INTRINSIC DABS, DLOG, DMAX1, DMIN1, DBLE,\n & MAX0, MIN0, IDNINT, DSIGN, DSQRT\n* ..\n* .. External Functions ..\n DOUBLE PRECISION DLAMCH, DNRM2\n INTEGER IDAMAX\n LOGICAL LSAME\n EXTERNAL IDAMAX, LSAME, DLAMCH, DNRM2\n* ..\n* .. External Subroutines ..\n EXTERNAL DCOPY, DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,\n & DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,\n & DORMQR, DPOCON, DSCAL, DSWAP, DTRSM, XERBLA\n*\n EXTERNAL DGESVJ\n* ..\n*\n* Test the input arguments\n*\n LSVEC = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )\n JRACC = LSAME( JOBV, 'J' )\n RSVEC = LSAME( JOBV, 'V' ) .OR. JRACC\n ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )\n L2RANK = LSAME( JOBA, 'R' )\n L2ABER = LSAME( JOBA, 'A' )\n ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )\n L2TRAN = LSAME( JOBT, 'T' )\n L2KILL = LSAME( JOBR, 'R' )\n DEFR = LSAME( JOBR, 'N' )\n L2PERT = LSAME( JOBP, 'P' )\n*\n IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.\n & ERREST .OR. LSAME( JOBA, 'C' ) )) THEN\n INFO = - 1\n ELSE IF ( .NOT.( LSVEC .OR. LSAME( JOBU, 'N' ) .OR.\n & LSAME( JOBU, 'W' )) ) THEN\n INFO = - 2\n ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.\n & LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN\n INFO = - 3\n ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) ) THEN\n INFO = - 4\n ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN\n INFO = - 5\n ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN\n INFO = - 6\n ELSE IF ( M .LT. 0 ) THEN\n INFO = - 7\n ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN\n INFO = - 8\n ELSE IF ( LDA .LT. M ) THEN\n INFO = - 10\n ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN\n INFO = - 13\n ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN\n INFO = - 14\n ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.\n & (LWORK .LT. MAX0(7,4*N+1,2*M+N))) .OR.\n & (.NOT.(LSVEC .OR. LSVEC) .AND. ERREST .AND.\n & (LWORK .LT. MAX0(7,4*N+N*N,2*M+N))) .OR.\n & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX0(7,2*N+M))) .OR.\n & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX0(7,2*N+M))) .OR.\n & (LSVEC .AND. RSVEC .AND. .NOT.JRACC .AND. (LWORK.LT.6*N+2*N*N))\n & .OR. (LSVEC.AND.RSVEC.AND.JRACC.AND.LWORK.LT.MAX0(7,M+3*N+N*N)))\n & THEN\n INFO = - 17\n ELSE\n* #:)\n INFO = 0\n END IF\n*\n IF ( INFO .NE. 0 ) THEN\n* #:(\n CALL XERBLA( 'DGEJSV', - INFO )\n END IF\n*\n* Quick return for void matrix (Y3K safe)\n* #:)\n IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) RETURN\n*\n* Determine whether the matrix U should be M x N or M x M\n*\n IF ( LSVEC ) THEN\n N1 = N\n IF ( LSAME( JOBU, 'F' ) ) N1 = M\n END IF\n*\n* Set numerical parameters\n*\n*! NOTE: Make sure DLAMCH() does not fail on the target architecture.\n*\n\n EPSLN = DLAMCH('Epsilon')\n SFMIN = DLAMCH('SafeMinimum')\n SMALL = SFMIN / EPSLN\n BIG = DLAMCH('O')\n* BIG = ONE / SFMIN\n*\n* Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N\n*\n*(!) If necessary, scale SVA() to protect the largest norm from\n* overflow. It is possible that this scaling pushes the smallest\n* column norm left from the underflow threshold (extreme case).\n*\n SCALEM = ONE / DSQRT(DBLE(M)*DBLE(N))\n NOSCAL = .TRUE.\n GOSCAL = .TRUE.\n DO 1874 p = 1, N\n AAPP = ZERO\n AAQQ = ONE\n CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )\n IF ( AAPP .GT. BIG ) THEN\n INFO = - 9\n CALL XERBLA( 'DGEJSV', -INFO )\n RETURN\n END IF\n AAQQ = DSQRT(AAQQ)\n IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL ) THEN\n SVA(p) = AAPP * AAQQ\n ELSE\n NOSCAL = .FALSE.\n SVA(p) = AAPP * ( AAQQ * SCALEM )\n IF ( GOSCAL ) THEN\n GOSCAL = .FALSE.\n CALL DSCAL( p-1, SCALEM, SVA, 1 )\n END IF\n END IF\n 1874 CONTINUE\n*\n IF ( NOSCAL ) SCALEM = ONE\n*\n AAPP = ZERO\n AAQQ = BIG\n DO 4781 p = 1, N\n AAPP = DMAX1( AAPP, SVA(p) )\n IF ( SVA(p) .NE. ZERO ) AAQQ = DMIN1( AAQQ, SVA(p) )\n 4781 CONTINUE\n*\n* Quick return for zero M x N matrix\n* #:)\n IF ( AAPP .EQ. ZERO ) THEN\n IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )\n IF ( RSVEC ) CALL DLASET( 'G', N, N, ZERO, ONE, V, LDV )\n WORK(1) = ONE\n WORK(2) = ONE\n IF ( ERREST ) WORK(3) = ONE\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = ONE\n WORK(5) = ONE\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ZERO\n WORK(7) = ZERO\n END IF\n IWORK(1) = 0\n IWORK(2) = 0\n RETURN\n END IF\n*\n* Issue warning if denormalized column norms detected. Override the\n* high relative accuracy request. Issue licence to kill columns\n* (set them to zero) whose norm is less than sigma_max / BIG (roughly).\n* #:(\n WARNING = 0\n IF ( AAQQ .LE. SFMIN ) THEN\n L2RANK = .TRUE.\n L2KILL = .TRUE.\n WARNING = 1\n END IF\n*\n* Quick return for one-column matrix\n* #:)\n IF ( N .EQ. 1 ) THEN\n*\n IF ( LSVEC ) THEN\n CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )\n CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )\n* computing all M left singular vectors of the M x 1 matrix\n IF ( N1 .NE. N ) THEN\n CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )\n CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )\n CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )\n END IF\n END IF\n IF ( RSVEC ) THEN\n V(1,1) = ONE\n END IF\n IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN\n SVA(1) = SVA(1) / SCALEM\n SCALEM = ONE\n END IF\n WORK(1) = ONE / SCALEM\n WORK(2) = ONE\n IF ( SVA(1) .NE. ZERO ) THEN\n IWORK(1) = 1\n IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN\n IWORK(2) = 1\n ELSE\n IWORK(2) = 0\n END IF\n ELSE\n IWORK(1) = 0\n IWORK(2) = 0\n END IF\n IF ( ERREST ) WORK(3) = ONE\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = ONE\n WORK(5) = ONE\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ZERO\n WORK(7) = ZERO\n END IF\n RETURN\n*\n END IF\n*\n TRANSP = .FALSE.\n L2TRAN = L2TRAN .AND. ( M .EQ. N )\n*\n AATMAX = -ONE\n AATMIN = BIG\n IF ( ROWPIV .OR. L2TRAN ) THEN\n*\n* Compute the row norms, needed to determine row pivoting sequence\n* (in the case of heavily row weighted A, row pivoting is strongly\n* advised) and to collect information needed to compare the\n* structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).\n*\n IF ( L2TRAN ) THEN\n DO 1950 p = 1, M\n XSC = ZERO\n TEMP1 = ONE\n CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )\n* DLASSQ gets both the ell_2 and the ell_infinity norm\n* in one pass through the vector\n WORK(M+N+p) = XSC * SCALEM\n WORK(N+p) = XSC * (SCALEM*DSQRT(TEMP1))\n AATMAX = DMAX1( AATMAX, WORK(N+p) )\n IF (WORK(N+p) .NE. ZERO) AATMIN = DMIN1(AATMIN,WORK(N+p))\n 1950 CONTINUE\n ELSE\n DO 1904 p = 1, M\n WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )\n AATMAX = DMAX1( AATMAX, WORK(M+N+p) )\n AATMIN = DMIN1( AATMIN, WORK(M+N+p) )\n 1904 CONTINUE\n END IF\n*\n END IF\n*\n* For square matrix A try to determine whether A^t would be better\n* input for the preconditioned Jacobi SVD, with faster convergence.\n* The decision is based on an O(N) function of the vector of column\n* and row norms of A, based on the Shannon entropy. This should give\n* the right choice in most cases when the difference actually matters.\n* It may fail and pick the slower converging side.\n*\n ENTRA = ZERO\n ENTRAT = ZERO\n IF ( L2TRAN ) THEN\n*\n XSC = ZERO\n TEMP1 = ONE\n CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )\n TEMP1 = ONE / TEMP1\n*\n ENTRA = ZERO\n DO 1113 p = 1, N\n BIG1 = ( ( SVA(p) / XSC )**2 ) * TEMP1\n IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)\n 1113 CONTINUE\n ENTRA = - ENTRA / DLOG(DBLE(N))\n*\n* Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.\n* It is derived from the diagonal of A^t * A. Do the same with the\n* diagonal of A * A^t, compute the entropy of the corresponding\n* probability distribution. Note that A * A^t and A^t * A have the\n* same trace.\n*\n ENTRAT = ZERO\n DO 1114 p = N+1, N+M\n BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1\n IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)\n 1114 CONTINUE\n ENTRAT = - ENTRAT / DLOG(DBLE(M))\n*\n* Analyze the entropies and decide A or A^t. Smaller entropy\n* usually means better input for the algorithm.\n*\n TRANSP = ( ENTRAT .LT. ENTRA )\n*\n* If A^t is better than A, transpose A.\n*\n IF ( TRANSP ) THEN\n* In an optimal implementation, this trivial transpose\n* should be replaced with faster transpose.\n DO 1115 p = 1, N - 1\n DO 1116 q = p + 1, N\n TEMP1 = A(q,p)\n A(q,p) = A(p,q)\n A(p,q) = TEMP1\n 1116 CONTINUE\n 1115 CONTINUE\n DO 1117 p = 1, N\n WORK(M+N+p) = SVA(p)\n SVA(p) = WORK(N+p)\n 1117 CONTINUE\n TEMP1 = AAPP\n AAPP = AATMAX\n AATMAX = TEMP1\n TEMP1 = AAQQ\n AAQQ = AATMIN\n AATMIN = TEMP1\n KILL = LSVEC\n LSVEC = RSVEC\n RSVEC = KILL\n IF ( LSVEC ) N1 = N\n*\n ROWPIV = .TRUE.\n END IF\n*\n END IF\n* END IF L2TRAN\n*\n* Scale the matrix so that its maximal singular value remains less\n* than DSQRT(BIG) -- the matrix is scaled so that its maximal column\n* has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep\n* DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and\n* BLAS routines that, in some implementations, are not capable of\n* working in the full interval [SFMIN,BIG] and that they may provoke\n* overflows in the intermediate results. If the singular values spread\n* from SFMIN to BIG, then DGESVJ will compute them. So, in that case,\n* one should use DGESVJ instead of DGEJSV.\n*\n BIG1 = DSQRT( BIG )\n TEMP1 = DSQRT( BIG / DBLE(N) )\n*\n CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )\n IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN\n AAQQ = ( AAQQ / AAPP ) * TEMP1\n ELSE\n AAQQ = ( AAQQ * TEMP1 ) / AAPP\n END IF\n TEMP1 = TEMP1 * SCALEM\n CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )\n*\n* To undo scaling at the end of this procedure, multiply the\n* computed singular values with USCAL2 / USCAL1.\n*\n USCAL1 = TEMP1\n USCAL2 = AAPP\n*\n IF ( L2KILL ) THEN\n* L2KILL enforces computation of nonzero singular values in\n* the restricted range of condition number of the initial A,\n* sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).\n XSC = DSQRT( SFMIN )\n ELSE\n XSC = SMALL\n*\n* Now, if the condition number of A is too big,\n* sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,\n* as a precaution measure, the full SVD is computed using DGESVJ\n* with accumulated Jacobi rotations. This provides numerically\n* more robust computation, at the cost of slightly increased run\n* time. Depending on the concrete implementation of BLAS and LAPACK\n* (i.e. how they behave in presence of extreme ill-conditioning) the\n* implementor may decide to remove this switch.\n IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN\n JRACC = .TRUE.\n END IF\n*\n END IF\n IF ( AAQQ .LT. XSC ) THEN\n DO 700 p = 1, N\n IF ( SVA(p) .LT. XSC ) THEN\n CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )\n SVA(p) = ZERO\n END IF\n 700 CONTINUE\n END IF\n*\n* Preconditioning using QR factorization with pivoting\n*\n IF ( ROWPIV ) THEN\n* Optional row permutation (Bjoerck row pivoting):\n* A result by Cox and Higham shows that the Bjoerck's\n* row pivoting combined with standard column pivoting\n* has similar effect as Powell-Reid complete pivoting.\n* The ell-infinity norms of A are made nonincreasing.\n DO 1952 p = 1, M - 1\n q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1\n IWORK(2*N+p) = q\n IF ( p .NE. q ) THEN\n TEMP1 = WORK(M+N+p)\n WORK(M+N+p) = WORK(M+N+q)\n WORK(M+N+q) = TEMP1\n END IF\n 1952 CONTINUE\n CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )\n END IF\n*\n* End of the preparation phase (scaling, optional sorting and\n* transposing, optional flushing of small columns).\n*\n* Preconditioning\n*\n* If the full SVD is needed, the right singular vectors are computed\n* from a matrix equation, and for that we need theoretical analysis\n* of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.\n* In all other cases the first RR QRF can be chosen by other criteria\n* (eg speed by replacing global with restricted window pivoting, such\n* as in SGEQPX from TOMS # 782). Good results will be obtained using\n* SGEQPX with properly (!) chosen numerical parameters.\n* Any improvement of DGEQP3 improves overal performance of DGEJSV.\n*\n* A * P1 = Q1 * [ R1^t 0]^t:\n DO 1963 p = 1, N\n* .. all columns are free columns\n IWORK(p) = 0\n 1963 CONTINUE\n CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )\n*\n* The upper triangular matrix R1 from the first QRF is inspected for\n* rank deficiency and possibilities for deflation, or possible\n* ill-conditioning. Depending on the user specified flag L2RANK,\n* the procedure explores possibilities to reduce the numerical\n* rank by inspecting the computed upper triangular factor. If\n* L2RANK or L2ABER are up, then DGEJSV will compute the SVD of\n* A + dA, where ||dA|| <= f(M,N)*EPSLN.\n*\n NR = 1\n IF ( L2ABER ) THEN\n* Standard absolute error bound suffices. All sigma_i with\n* sigma_i < N*EPSLN*||A|| are flushed to zero. This is an\n* agressive enforcement of lower numerical rank by introducing a\n* backward error of the order of N*EPSLN*||A||.\n TEMP1 = DSQRT(DBLE(N))*EPSLN\n DO 3001 p = 2, N\n IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN\n NR = NR + 1\n ELSE\n GO TO 3002\n END IF\n 3001 CONTINUE\n 3002 CONTINUE\n ELSE IF ( L2RANK ) THEN\n* .. similarly as above, only slightly more gentle (less agressive).\n* Sudden drop on the diagonal of R1 is used as the criterion for\n* close-to-rank-defficient.\n TEMP1 = DSQRT(SFMIN)\n DO 3401 p = 2, N\n IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.\n & ( DABS(A(p,p)) .LT. SMALL ) .OR.\n & ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402\n NR = NR + 1\n 3401 CONTINUE\n 3402 CONTINUE\n*\n ELSE\n* The goal is high relative accuracy. However, if the matrix\n* has high scaled condition number the relative accuracy is in\n* general not feasible. Later on, a condition number estimator\n* will be deployed to estimate the scaled condition number.\n* Here we just remove the underflowed part of the triangular\n* factor. This prevents the situation in which the code is\n* working hard to get the accuracy not warranted by the data.\n TEMP1 = DSQRT(SFMIN)\n DO 3301 p = 2, N\n IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.\n & ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302\n NR = NR + 1\n 3301 CONTINUE\n 3302 CONTINUE\n*\n END IF\n*\n ALMORT = .FALSE.\n IF ( NR .EQ. N ) THEN\n MAXPRJ = ONE\n DO 3051 p = 2, N\n TEMP1 = DABS(A(p,p)) / SVA(IWORK(p))\n MAXPRJ = DMIN1( MAXPRJ, TEMP1 )\n 3051 CONTINUE\n IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.\n END IF\n*\n*\n SCONDA = - ONE\n CONDR1 = - ONE\n CONDR2 = - ONE\n*\n IF ( ERREST ) THEN\n IF ( N .EQ. NR ) THEN\n IF ( RSVEC ) THEN\n* .. V is available as workspace\n CALL DLACPY( 'U', N, N, A, LDA, V, LDV )\n DO 3053 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )\n 3053 CONTINUE\n CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,\n & WORK(N+1), IWORK(2*N+M+1), IERR )\n ELSE IF ( LSVEC ) THEN\n* .. U is available as workspace\n CALL DLACPY( 'U', N, N, A, LDA, U, LDU )\n DO 3054 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )\n 3054 CONTINUE\n CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,\n & WORK(N+1), IWORK(2*N+M+1), IERR )\n ELSE\n CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )\n DO 3052 p = 1, N\n TEMP1 = SVA(IWORK(p))\n CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )\n 3052 CONTINUE\n* .. the columns of R are scaled to have unit Euclidean lengths.\n CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,\n & WORK(N+N*N+1), IWORK(2*N+M+1), IERR )\n END IF\n SCONDA = ONE / DSQRT(TEMP1)\n* SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).\n* N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA\n ELSE\n SCONDA = - ONE\n END IF\n END IF\n*\n L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )\n* If there is no violent scaling, artificial perturbation is not needed.\n*\n* Phase 3:\n*\n\n IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN\n*\n* Singular Values only\n*\n* .. transpose A(1:NR,1:N)\n DO 1946 p = 1, MIN0( N-1, NR )\n CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )\n 1946 CONTINUE\n*\n* The following two DO-loops introduce small relative perturbation\n* into the strict upper triangle of the lower triangular matrix.\n* Small entries below the main diagonal are also changed.\n* This modification is useful if the computing environment does not\n* provide/allow FLUSH TO ZERO underflow, for it prevents many\n* annoying denormalized numbers in case of strongly scaled matrices.\n* The perturbation is structured so that it does not introduce any\n* new perturbation of the singular values, and it does not destroy\n* the job done by the preconditioner.\n* The licence for this perturbation is in the variable L2PERT, which\n* should be .FALSE. if FLUSH TO ZERO underflow is active.\n*\n IF ( .NOT. ALMORT ) THEN\n*\n IF ( L2PERT ) THEN\n* XSC = DSQRT(SMALL)\n XSC = EPSLN / DBLE(N)\n DO 4947 q = 1, NR\n TEMP1 = XSC*DABS(A(q,q))\n DO 4949 p = 1, N\n IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )\n & .OR. ( p .LT. q ) )\n & A(p,q) = DSIGN( TEMP1, A(p,q) )\n 4949 CONTINUE\n 4947 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )\n END IF\n*\n* .. second preconditioning using the QR factorization\n*\n CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )\n*\n* .. and transpose upper to lower triangular\n DO 1948 p = 1, NR - 1\n CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )\n 1948 CONTINUE\n*\n END IF\n*\n* Row-cyclic Jacobi SVD algorithm with column pivoting\n*\n* .. again some perturbation (a \"background noise\") is added\n* to drown denormals\n IF ( L2PERT ) THEN\n* XSC = DSQRT(SMALL)\n XSC = EPSLN / DBLE(N)\n DO 1947 q = 1, NR\n TEMP1 = XSC*DABS(A(q,q))\n DO 1949 p = 1, NR\n IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )\n & .OR. ( p .LT. q ) )\n & A(p,q) = DSIGN( TEMP1, A(p,q) )\n 1949 CONTINUE\n 1947 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )\n END IF\n*\n* .. and one-sided Jacobi rotations are started on a lower\n* triangular matrix (plus perturbation which is ignored in\n* the part which destroys triangular form (confusing?!))\n*\n CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,\n & N, V, LDV, WORK, LWORK, INFO )\n*\n SCALEM = WORK(1)\n NUMRANK = IDNINT(WORK(2))\n*\n*\n ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN\n*\n* -> Singular Values and Right Singular Vectors <-\n*\n IF ( ALMORT ) THEN\n*\n* .. in this case NR equals N\n DO 1998 p = 1, NR\n CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 1998 CONTINUE\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n*\n CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,\n & WORK, LWORK, INFO )\n SCALEM = WORK(1)\n NUMRANK = IDNINT(WORK(2))\n\n ELSE\n*\n* .. two more QR factorizations ( one QRF is not enough, two require\n* accumulated product of Jacobi rotations, three are perfect )\n*\n CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )\n CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)\n CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n DO 8998 p = 1, NR\n CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )\n 8998 CONTINUE\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n*\n CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,\n & LDU, WORK(N+1), LWORK, INFO )\n SCALEM = WORK(N+1)\n NUMRANK = IDNINT(WORK(N+2))\n IF ( NR .LT. N ) THEN\n CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1), LDV )\n CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1), LDV )\n CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )\n END IF\n*\n CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,\n & V, LDV, WORK(N+1), LWORK-N, IERR )\n*\n END IF\n*\n DO 8991 p = 1, N\n CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )\n 8991 CONTINUE\n CALL DLACPY( 'All', N, N, A, LDA, V, LDV )\n*\n IF ( TRANSP ) THEN\n CALL DLACPY( 'All', N, N, V, LDV, U, LDU )\n END IF\n*\n ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN\n*\n* .. Singular Values and Left Singular Vectors ..\n*\n* .. second preconditioning step to avoid need to accumulate\n* Jacobi rotations in the Jacobi iterations.\n DO 1965 p = 1, NR\n CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )\n 1965 CONTINUE\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n*\n CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n*\n DO 1967 p = 1, NR - 1\n CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )\n 1967 CONTINUE\n CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n*\n CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,\n & LDA, WORK(N+1), LWORK-N, INFO )\n SCALEM = WORK(N+1)\n NUMRANK = IDNINT(WORK(N+2))\n*\n IF ( NR .LT. M ) THEN\n CALL DLASET( 'A', M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )\n CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )\n END IF\n END IF\n*\n CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n*\n IF ( ROWPIV )\n & CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n*\n DO 1974 p = 1, N1\n XSC = ONE / DNRM2( M, U(1,p), 1 )\n CALL DSCAL( M, XSC, U(1,p), 1 )\n 1974 CONTINUE\n*\n IF ( TRANSP ) THEN\n CALL DLACPY( 'All', N, N, U, LDU, V, LDV )\n END IF\n*\n ELSE\n*\n* .. Full SVD ..\n*\n IF ( .NOT. JRACC ) THEN\n*\n IF ( .NOT. ALMORT ) THEN\n*\n* Second Preconditioning Step (QRF [with pivoting])\n* Note that the composition of TRANSPOSE, QRF and TRANSPOSE is\n* equivalent to an LQF CALL. Since in many libraries the QRF\n* seems to be better optimized than the LQF, we do explicit\n* transpose and use the QRF. This is subject to changes in an\n* optimized implementation of DGEJSV.\n*\n DO 1968 p = 1, NR\n CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 1968 CONTINUE\n*\n* .. the following two loops perturb small entries to avoid\n* denormals in the second QR factorization, where they are\n* as good as zeros. This is done to avoid painfully slow\n* computation with denormals. The relative size of the perturbation\n* is a parameter that can be changed by the implementer.\n* This perturbation device will be obsolete on machines with\n* properly implemented arithmetic.\n* To switch it off, set L2PERT=.FALSE. To remove it from the\n* code, remove the action under L2PERT=.TRUE., leave the ELSE part.\n* The following two loops should be blocked and fused with the\n* transposed copy above.\n*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 2969 q = 1, NR\n TEMP1 = XSC*DABS( V(q,q) )\n DO 2968 p = 1, N\n IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )\n & .OR. ( p .LT. q ) )\n & V(p,q) = DSIGN( TEMP1, V(p,q) )\n IF ( p. LT. q ) V(p,q) = - V(p,q)\n 2968 CONTINUE\n 2969 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n END IF\n*\n* Estimate the row scaled condition number of R1\n* (If R1 is rectangular, N > NR, then the condition number\n* of the leading NR x NR submatrix is estimated.)\n*\n CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )\n DO 3950 p = 1, NR\n TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)\n CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)\n 3950 CONTINUE\n CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,\n & WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)\n CONDR1 = ONE / DSQRT(TEMP1)\n* .. here need a second oppinion on the condition number\n* .. then assume worst case scenario\n* R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)\n* more conservative <=> CONDR1 .LT. DSQRT(DBLE(N))\n*\n COND_OK = DSQRT(DBLE(NR))\n*[TP] COND_OK is a tuning parameter.\n\n IF ( CONDR1 .LT. COND_OK ) THEN\n* .. the second QRF without pivoting. Note: in an optimized\n* implementation, this QRF should be implemented as the QRF\n* of a lower triangular matrix.\n* R1^t = Q2 * R2\n CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)/EPSLN\n DO 3959 p = 2, NR\n DO 3958 q = 1, p - 1\n TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))\n IF ( DABS(V(q,p)) .LE. TEMP1 )\n & V(q,p) = DSIGN( TEMP1, V(q,p) )\n 3958 CONTINUE\n 3959 CONTINUE\n END IF\n*\n IF ( NR .NE. N )\n* .. save ...\n & CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )\n*\n* .. this transposed copy should be better than naive\n DO 1969 p = 1, NR - 1\n CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )\n 1969 CONTINUE\n*\n CONDR2 = CONDR1\n*\n ELSE\n*\n* .. ill-conditioned case: second QRF with pivoting\n* Note that windowed pivoting would be equaly good\n* numerically, and more run-time efficient. So, in\n* an optimal implementation, the next call to DGEQP3\n* should be replaced with eg. CALL SGEQPX (ACM TOMS #782)\n* with properly (carefully) chosen parameters.\n*\n* R1^t * P2 = Q2 * R2\n DO 3003 p = 1, NR\n IWORK(N+p) = 0\n 3003 CONTINUE\n CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),\n & WORK(2*N+1), LWORK-2*N, IERR )\n** CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n** & LWORK-2*N, IERR )\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 3969 p = 2, NR\n DO 3968 q = 1, p - 1\n TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))\n IF ( DABS(V(q,p)) .LE. TEMP1 )\n & V(q,p) = DSIGN( TEMP1, V(q,p) )\n 3968 CONTINUE\n 3969 CONTINUE\n END IF\n*\n CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )\n*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 8970 p = 2, NR\n DO 8971 q = 1, p - 1\n TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))\n V(p,q) = - DSIGN( TEMP1, V(q,p) )\n 8971 CONTINUE\n 8970 CONTINUE\n ELSE\n CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )\n END IF\n* Now, compute R2 = L3 * Q3, the LQ factorization.\n CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),\n & WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )\n* .. and estimate the condition number\n CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )\n DO 4950 p = 1, NR\n TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )\n CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )\n 4950 CONTINUE\n CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,\n & WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )\n CONDR2 = ONE / DSQRT(TEMP1)\n*\n IF ( CONDR2 .GE. COND_OK ) THEN\n* .. save the Householder vectors used for Q3\n* (this overwrittes the copy of R2, as it will not be\n* needed in this branch, but it does not overwritte the\n* Huseholder vectors of Q2.).\n CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )\n* .. and the rest of the information on Q3 is in\n* WORK(2*N+N*NR+1:2*N+N*NR+N)\n END IF\n*\n END IF\n*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 4968 q = 2, NR\n TEMP1 = XSC * V(q,q)\n DO 4969 p = 1, q - 1\n* V(p,q) = - DSIGN( TEMP1, V(q,p) )\n V(p,q) = - DSIGN( TEMP1, V(p,q) )\n 4969 CONTINUE\n 4968 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )\n END IF\n*\n* Second preconditioning finished; continue with Jacobi SVD\n* The input matrix is lower trinagular.\n*\n* Recover the right singular vectors as solution of a well\n* conditioned triangular matrix equation.\n*\n IF ( CONDR1 .LT. COND_OK ) THEN\n*\n CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,\n & LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))\n DO 3970 p = 1, NR\n CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )\n CALL DSCAL( NR, SVA(p), V(1,p), 1 )\n 3970 CONTINUE\n\n* .. pick the right matrix equation and solve it\n*\n IF ( NR. EQ. N ) THEN\n* :)) .. best case, R1 is inverted. The solution of this matrix\n* equation is Q2*V2 = the product of the Jacobi rotations\n* used in DGESVJ, premultiplied with the orthogonal matrix\n* from the second QR factorization.\n CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )\n ELSE\n* .. R1 is well conditioned, but non-square. Transpose(R2)\n* is inverted to get the product of the Jacobi rotations\n* used in DGESVJ. The Q-factor from the second QR\n* factorization is then built in explicitly.\n CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),\n & N,V,LDV)\n IF ( NR .LT. N ) THEN\n CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)\n CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)\n CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)\n END IF\n CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)\n END IF\n*\n ELSE IF ( CONDR2 .LT. COND_OK ) THEN\n*\n* :) .. the input matrix A is very likely a relative of\n* the Kahan matrix :)\n* The matrix R2 is inverted. The solution of the matrix equation\n* is Q3^T*V3 = the product of the Jacobi rotations (appplied to\n* the lower triangular L3 from the LQ factorization of\n* R2=L3*Q3), pre-multiplied with the transposed Q3.\n CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,\n & LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))\n DO 3870 p = 1, NR\n CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )\n CALL DSCAL( NR, SVA(p), U(1,p), 1 )\n 3870 CONTINUE\n CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)\n* .. apply the permutation from the second QR factorization\n DO 873 q = 1, NR\n DO 872 p = 1, NR\n WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)\n 872 CONTINUE\n DO 874 p = 1, NR\n U(p,q) = WORK(2*N+N*NR+NR+p)\n 874 CONTINUE\n 873 CONTINUE\n IF ( NR .LT. N ) THEN\n CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n ELSE\n* Last line of defense.\n* #:( This is a rather pathological case: no scaled condition\n* improvement after two pivoted QR factorizations. Other\n* possibility is that the rank revealing QR factorization\n* or the condition estimator has failed, or the COND_OK\n* is set very close to ONE (which is unnecessary). Normally,\n* this branch should never be executed, but in rare cases of\n* failure of the RRQR or condition estimator, the last line of\n* defense ensures that DGEJSV completes the task.\n* Compute the full SVD of L3 using DGESVJ with explicit\n* accumulation of Jacobi rotations.\n CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,\n & LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )\n SCALEM = WORK(2*N+N*NR+NR+1)\n NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))\n IF ( NR .LT. N ) THEN\n CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n*\n CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,\n & WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),\n & LWORK-2*N-N*NR-NR, IERR )\n DO 773 q = 1, NR\n DO 772 p = 1, NR\n WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)\n 772 CONTINUE\n DO 774 p = 1, NR\n U(p,q) = WORK(2*N+N*NR+NR+p)\n 774 CONTINUE\n 773 CONTINUE\n*\n END IF\n*\n* Permute the rows of V using the (column) permutation from the\n* first QRF. Also, scale the columns to make them unit in\n* Euclidean norm. This applies to all cases.\n*\n TEMP1 = DSQRT(DBLE(N)) * EPSLN\n DO 1972 q = 1, N\n DO 972 p = 1, N\n WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)\n 972 CONTINUE\n DO 973 p = 1, N\n V(p,q) = WORK(2*N+N*NR+NR+p)\n 973 CONTINUE\n XSC = ONE / DNRM2( N, V(1,q), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( N, XSC, V(1,q), 1 )\n 1972 CONTINUE\n* At this moment, V contains the right singular vectors of A.\n* Next, assemble the left singular vector matrix U (M x N).\n IF ( NR .LT. M ) THEN\n CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)\n CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)\n END IF\n END IF\n*\n* The Q matrix from the first QRF is built into the left singular\n* matrix U. This applies to all cases.\n*\n CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n\n* The columns of U are normalized. The cost is O(M*N) flops.\n TEMP1 = DSQRT(DBLE(M)) * EPSLN\n DO 1973 p = 1, NR\n XSC = ONE / DNRM2( M, U(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( M, XSC, U(1,p), 1 )\n 1973 CONTINUE\n*\n* If the initial QRF is computed with row pivoting, the left\n* singular vectors must be adjusted.\n*\n IF ( ROWPIV )\n & CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n*\n ELSE\n*\n* .. the initial matrix A has almost orthogonal columns and\n* the second QRF is not needed\n*\n CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL)\n DO 5970 p = 2, N\n TEMP1 = XSC * WORK( N + (p-1)*N + p )\n DO 5971 q = 1, p - 1\n WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))\n 5971 CONTINUE\n 5970 CONTINUE\n ELSE\n CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )\n END IF\n*\n CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,\n & N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )\n*\n SCALEM = WORK(N+N*N+1)\n NUMRANK = IDNINT(WORK(N+N*N+2))\n DO 6970 p = 1, N\n CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )\n CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )\n 6970 CONTINUE\n*\n CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,\n & ONE, A, LDA, WORK(N+1), N )\n DO 6972 p = 1, N\n CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )\n 6972 CONTINUE\n TEMP1 = DSQRT(DBLE(N))*EPSLN\n DO 6971 p = 1, N\n XSC = ONE / DNRM2( N, V(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( N, XSC, V(1,p), 1 )\n 6971 CONTINUE\n*\n* Assemble the left singular vector matrix U (M x N).\n*\n IF ( N .LT. M ) THEN\n CALL DLASET( 'A', M-N, N, ZERO, ZERO, U(N+1,1), LDU )\n IF ( N .LT. N1 ) THEN\n CALL DLASET( 'A',N, N1-N, ZERO, ZERO, U(1,N+1),LDU )\n CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )\n END IF\n END IF\n CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n TEMP1 = DSQRT(DBLE(M))*EPSLN\n DO 6973 p = 1, N1\n XSC = ONE / DNRM2( M, U(1,p), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( M, XSC, U(1,p), 1 )\n 6973 CONTINUE\n*\n IF ( ROWPIV )\n & CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n*\n END IF\n*\n* end of the >> almost orthogonal case << in the full SVD\n*\n ELSE\n*\n* This branch deploys a preconditioned Jacobi SVD with explicitly\n* accumulated rotations. It is included as optional, mainly for\n* experimental purposes. It does perfom well, and can also be used.\n* In this implementation, this branch will be automatically activated\n* if the condition number sigma_max(A) / sigma_min(A) is predicted\n* to be greater than the overflow threshold. This is because the\n* a posteriori computation of the singular vectors assumes robust\n* implementation of BLAS and some LAPACK procedures, capable of working\n* in presence of extreme values. Since that is not always the case, ...\n*\n DO 7968 p = 1, NR\n CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )\n 7968 CONTINUE\n*\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL/EPSLN)\n DO 5969 q = 1, NR\n TEMP1 = XSC*DABS( V(q,q) )\n DO 5968 p = 1, N\n IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )\n & .OR. ( p .LT. q ) )\n & V(p,q) = DSIGN( TEMP1, V(p,q) )\n IF ( p. LT. q ) V(p,q) = - V(p,q)\n 5968 CONTINUE\n 5969 CONTINUE\n ELSE\n CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )\n END IF\n\n CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),\n & LWORK-2*N, IERR )\n CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )\n*\n DO 7969 p = 1, NR\n CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )\n 7969 CONTINUE\n\n IF ( L2PERT ) THEN\n XSC = DSQRT(SMALL/EPSLN)\n DO 9970 q = 2, NR\n DO 9971 p = 1, q - 1\n TEMP1 = XSC * DMIN1(DABS(U(p,p)),DABS(U(q,q)))\n U(p,q) = - DSIGN( TEMP1, U(q,p) )\n 9971 CONTINUE\n 9970 CONTINUE\n ELSE\n CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )\n END IF\n\n CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,\n & N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )\n SCALEM = WORK(2*N+N*NR+1)\n NUMRANK = IDNINT(WORK(2*N+N*NR+2))\n\n IF ( NR .LT. N ) THEN\n CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )\n CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )\n CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )\n END IF\n\n CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),\n & V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )\n*\n* Permute the rows of V using the (column) permutation from the\n* first QRF. Also, scale the columns to make them unit in\n* Euclidean norm. This applies to all cases.\n*\n TEMP1 = DSQRT(DBLE(N)) * EPSLN\n DO 7972 q = 1, N\n DO 8972 p = 1, N\n WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)\n 8972 CONTINUE\n DO 8973 p = 1, N\n V(p,q) = WORK(2*N+N*NR+NR+p)\n 8973 CONTINUE\n XSC = ONE / DNRM2( N, V(1,q), 1 )\n IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )\n & CALL DSCAL( N, XSC, V(1,q), 1 )\n 7972 CONTINUE\n*\n* At this moment, V contains the right singular vectors of A.\n* Next, assemble the left singular vector matrix U (M x N).\n*\n IF ( NR .LT. M ) THEN\n CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )\n IF ( NR .LT. N1 ) THEN\n CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1),LDU )\n CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )\n END IF\n END IF\n*\n CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,\n & LDU, WORK(N+1), LWORK-N, IERR )\n*\n IF ( ROWPIV )\n & CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )\n*\n*\n END IF\n IF ( TRANSP ) THEN\n* .. swap U and V because the procedure worked on A^t\n DO 6974 p = 1, N\n CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )\n 6974 CONTINUE\n END IF\n*\n END IF\n* end of the full SVD\n*\n* Undo scaling, if necessary (and possible)\n*\n IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN\n CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )\n USCAL1 = ONE\n USCAL2 = ONE\n END IF\n*\n IF ( NR .LT. N ) THEN\n DO 3004 p = NR+1, N\n SVA(p) = ZERO\n 3004 CONTINUE\n END IF\n*\n WORK(1) = USCAL2 * SCALEM\n WORK(2) = USCAL1\n IF ( ERREST ) WORK(3) = SCONDA\n IF ( LSVEC .AND. RSVEC ) THEN\n WORK(4) = CONDR1\n WORK(5) = CONDR2\n END IF\n IF ( L2TRAN ) THEN\n WORK(6) = ENTRA\n WORK(7) = ENTRAT\n END IF\n*\n IWORK(1) = NR\n IWORK(2) = NUMRANK\n IWORK(3) = WARNING\n*\n RETURN\n* ..\n* .. END OF DGEJSV\n* ..\n END\n*\n\n");
52
- return Qnil;
53
- }
54
- if (rb_hash_aref(rblapack_options, sUsage) == Qtrue) {
55
- printf("%s\n", "USAGE:\n sva, u, v, iwork, info, work = NumRu::Lapack.dgejsv( joba, jobu, jobv, jobr, jobt, jobp, m, a, work, [:lwork => lwork, :usage => usage, :help => help])\n");
56
- return Qnil;
57
- }
58
- } else
59
- rblapack_options = Qnil;
60
- if (argc != 9 && argc != 10)
61
- rb_raise(rb_eArgError,"wrong number of arguments (%d for 9)", argc);
62
- rblapack_joba = argv[0];
63
- rblapack_jobu = argv[1];
64
- rblapack_jobv = argv[2];
65
- rblapack_jobr = argv[3];
66
- rblapack_jobt = argv[4];
67
- rblapack_jobp = argv[5];
68
- rblapack_m = argv[6];
69
- rblapack_a = argv[7];
70
- rblapack_work = argv[8];
71
- if (argc == 10) {
72
- rblapack_lwork = argv[9];
73
- } else if (rblapack_options != Qnil) {
74
- rblapack_lwork = rb_hash_aref(rblapack_options, ID2SYM(rb_intern("lwork")));
75
- } else {
76
- rblapack_lwork = Qnil;
77
- }
78
-
79
- joba = StringValueCStr(rblapack_joba)[0];
80
- jobv = StringValueCStr(rblapack_jobv)[0];
81
- jobt = StringValueCStr(rblapack_jobt)[0];
82
- m = NUM2INT(rblapack_m);
83
- if (!NA_IsNArray(rblapack_work))
84
- rb_raise(rb_eArgError, "work (9th argument) must be NArray");
85
- if (NA_RANK(rblapack_work) != 1)
86
- rb_raise(rb_eArgError, "rank of work (9th argument) must be %d", 1);
87
- lwork = NA_SHAPE0(rblapack_work);
88
- if (NA_TYPE(rblapack_work) != NA_DFLOAT)
89
- rblapack_work = na_change_type(rblapack_work, NA_DFLOAT);
90
- work = NA_PTR_TYPE(rblapack_work, doublereal*);
91
- jobu = StringValueCStr(rblapack_jobu)[0];
92
- jobp = StringValueCStr(rblapack_jobp)[0];
93
- ldu = (lsame_(&jobu,"U")||lsame_(&jobu,"F")||lsame_(&jobu,"W")) ? m : 1;
94
- jobr = StringValueCStr(rblapack_jobr)[0];
95
- if (!NA_IsNArray(rblapack_a))
96
- rb_raise(rb_eArgError, "a (8th argument) must be NArray");
97
- if (NA_RANK(rblapack_a) != 2)
98
- rb_raise(rb_eArgError, "rank of a (8th argument) must be %d", 2);
99
- lda = NA_SHAPE0(rblapack_a);
100
- n = NA_SHAPE1(rblapack_a);
101
- if (NA_TYPE(rblapack_a) != NA_DFLOAT)
102
- rblapack_a = na_change_type(rblapack_a, NA_DFLOAT);
103
- a = NA_PTR_TYPE(rblapack_a, doublereal*);
104
- ldv = (lsame_(&jobu,"U")||lsame_(&jobu,"F")||lsame_(&jobu,"W")) ? n : 1;
105
- if (rblapack_lwork == Qnil)
106
- lwork = (lsame_(&jobu,"N")&&lsame_(&jobv,"N")) ? MAX(MAX(2*m+n,4*n+n*n),7) : lsame_(&jobv,"V") ? MAX(2*n+m,7) : ((lsame_(&jobu,"U")||lsame_(&jobu,"F"))&&lsame_(&jobv,"V")) ? MAX(MAX(6*n+2*n*n,m+3*n+n*n),7) : MAX(2*n+m,7);
107
- else {
108
- lwork = NUM2INT(rblapack_lwork);
109
- }
110
- {
111
- int shape[1];
112
- shape[0] = n;
113
- rblapack_sva = na_make_object(NA_DFLOAT, 1, shape, cNArray);
114
- }
115
- sva = NA_PTR_TYPE(rblapack_sva, doublereal*);
116
- {
117
- int shape[2];
118
- shape[0] = ldu;
119
- shape[1] = n;
120
- rblapack_u = na_make_object(NA_DFLOAT, 2, shape, cNArray);
121
- }
122
- u = NA_PTR_TYPE(rblapack_u, doublereal*);
123
- {
124
- int shape[2];
125
- shape[0] = ldv;
126
- shape[1] = n;
127
- rblapack_v = na_make_object(NA_DFLOAT, 2, shape, cNArray);
128
- }
129
- v = NA_PTR_TYPE(rblapack_v, doublereal*);
130
- {
131
- int shape[1];
132
- shape[0] = m+3*n;
133
- rblapack_iwork = na_make_object(NA_LINT, 1, shape, cNArray);
134
- }
135
- iwork = NA_PTR_TYPE(rblapack_iwork, integer*);
136
- {
137
- int shape[1];
138
- shape[0] = lwork;
139
- rblapack_work_out__ = na_make_object(NA_DFLOAT, 1, shape, cNArray);
140
- }
141
- work_out__ = NA_PTR_TYPE(rblapack_work_out__, doublereal*);
142
- MEMCPY(work_out__, work, doublereal, NA_TOTAL(rblapack_work));
143
- rblapack_work = rblapack_work_out__;
144
- work = work_out__;
145
-
146
- dgejsv_(&joba, &jobu, &jobv, &jobr, &jobt, &jobp, &m, &n, a, &lda, sva, u, &ldu, v, &ldv, work, &lwork, iwork, &info);
147
-
148
- rblapack_info = INT2NUM(info);
149
- return rb_ary_new3(6, rblapack_sva, rblapack_u, rblapack_v, rblapack_iwork, rblapack_info, rblapack_work);
150
- }
151
-
152
- void
153
- init_lapack_dgejsv(VALUE mLapack, VALUE sH, VALUE sU, VALUE zero){
154
- sHelp = sH;
155
- sUsage = sU;
156
- rblapack_ZERO = zero;
157
-
158
- rb_define_module_function(mLapack, "dgejsv", rblapack_dgejsv, -1);
159
- }