ruby-dnn 0.13.4 → 0.14.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -32,7 +32,7 @@ module DNN
32
32
  if DNN.learning_phase
33
33
  mean = x.mean(axis: @axis, keepdims: true)
34
34
  @xc = x - mean
35
- var = (@xc ** 2).mean(axis: @axis, keepdims: true)
35
+ var = (@xc**2).mean(axis: @axis, keepdims: true)
36
36
  @std = Xumo::NMath.sqrt(var + @eps)
37
37
  xn = @xc / @std
38
38
  @xn = xn
@@ -53,7 +53,7 @@ module DNN
53
53
  end
54
54
  dxn = @gamma.data * dy
55
55
  dxc = dxn / @std
56
- dstd = -((dxn * @xc) / (@std ** 2)).sum(axis: @axis, keepdims: true)
56
+ dstd = -((dxn * @xc) / (@std**2)).sum(axis: @axis, keepdims: true)
57
57
  dvar = 0.5 * dstd / @std
58
58
  dxc += (2.0 / batch_size) * @xc * dvar
59
59
  dmean = dxc.sum(axis: @axis, keepdims: true)
@@ -10,13 +10,14 @@ module DNN
10
10
  return nil unless hash
11
11
  optimizer_class = DNN.const_get(hash[:class])
12
12
  optimizer = optimizer_class.allocate
13
- raise DNN_Error.new("#{optimizer.class} is not an instance of #{self} class.") unless optimizer.is_a?(self)
13
+ raise DNN_Error, "#{optimizer.class} is not an instance of #{self} class." unless optimizer.is_a?(self)
14
14
  optimizer.load_hash(hash)
15
15
  optimizer
16
16
  end
17
17
 
18
18
  def self.load(dumped)
19
19
  opt = from_hash(dumped[:hash])
20
+ return opt unless dumped[:status]
20
21
  dumped[:status].each do |key, state|
21
22
  state = state.clone
22
23
  opt.status[key] = state
@@ -34,7 +35,7 @@ module DNN
34
35
  def update(layers)
35
36
  target_params = layers.select { |layer| layer.is_a?(Layers::HasParamLayer) && layer.trainable }
36
37
  .map { |layer| layer.get_params.values }.flatten.compact
37
- .select { |param| param.grad }
38
+ .select(&:grad)
38
39
  clip_grads(target_params) if @clip_norm
39
40
  update_params(target_params)
40
41
  target_params.each do |param|
@@ -42,8 +43,9 @@ module DNN
42
43
  end
43
44
  end
44
45
 
45
- def dump
46
- { hash: to_hash, status: @status }
46
+ def dump(require_status = true)
47
+ status = require_status ? @status : nil
48
+ { hash: to_hash, status: status }
47
49
  end
48
50
 
49
51
  def to_hash(merge_hash = nil)
@@ -54,12 +56,13 @@ module DNN
54
56
 
55
57
  # Update params.
56
58
  private def update_params(params)
57
- raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'update_params'")
59
+ raise NotImplementedError, "Class '#{self.class.name}' has implement method 'update_params'"
58
60
  end
59
61
 
60
62
  private def clip_grads(params)
61
- norm = Math.sqrt(params.reduce(0) { |total, param| total + (param.grad ** 2).sum })
63
+ norm = Math.sqrt(params.reduce(0) { |total, param| total + (param.grad**2).sum })
62
64
  return if norm <= @clip_norm
65
+
63
66
  rate = @clip_norm / (norm + 1e-7)
64
67
  params.each do |param|
65
68
  param.grad *= rate
@@ -71,7 +74,6 @@ module DNN
71
74
  end
72
75
  end
73
76
 
74
-
75
77
  class SGD < Optimizer
76
78
  attr_accessor :lr
77
79
  attr_accessor :momentum
@@ -107,7 +109,6 @@ module DNN
107
109
  end
108
110
  end
109
111
 
110
-
111
112
  class Nesterov < SGD
112
113
  def initialize(lr = 0.01, momentum: 0.9, clip_norm: nil)
113
114
  super(lr, momentum: momentum, clip_norm: clip_norm)
@@ -118,12 +119,11 @@ module DNN
118
119
  @v[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
119
120
  amount = param.grad * @lr
120
121
  @v[param.name] = @v[param.name] * @momentum - amount
121
- param.data = (param.data + @momentum ** 2 * @v[param.name]) - (1 + @momentum) * amount
122
+ param.data = (param.data + @momentum**2 * @v[param.name]) - (1 + @momentum) * amount
122
123
  end
123
124
  end
124
125
  end
125
126
 
126
-
127
127
  class AdaGrad < Optimizer
128
128
  attr_accessor :lr
129
129
  attr_accessor :eps
@@ -141,7 +141,7 @@ module DNN
141
141
  private def update_params(params)
142
142
  params.each do |param|
143
143
  @g[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
144
- @g[param.name] += param.grad ** 2
144
+ @g[param.name] += param.grad**2
145
145
  param.data -= (@lr / Xumo::NMath.sqrt(@g[param.name] + @eps)) * param.grad
146
146
  end
147
147
  end
@@ -155,7 +155,6 @@ module DNN
155
155
  end
156
156
  end
157
157
 
158
-
159
158
  class RMSProp < Optimizer
160
159
  attr_accessor :lr
161
160
  attr_accessor :alpha
@@ -180,7 +179,7 @@ module DNN
180
179
  private def update_params(params)
181
180
  params.each do |param|
182
181
  @g[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
183
- @g[param.name] = @alpha * @g[param.name] + (1 - @alpha) * param.grad ** 2
182
+ @g[param.name] = @alpha * @g[param.name] + (1 - @alpha) * param.grad**2
184
183
  param.data -= (@lr / Xumo::NMath.sqrt(@g[param.name] + @eps)) * param.grad
185
184
  end
186
185
  end
@@ -190,7 +189,6 @@ module DNN
190
189
  end
191
190
  end
192
191
 
193
-
194
192
  class AdaDelta < Optimizer
195
193
  attr_accessor :rho
196
194
  attr_accessor :eps
@@ -214,9 +212,9 @@ module DNN
214
212
  params.each do |param|
215
213
  @h[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
216
214
  @s[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
217
- @h[param.name] = @rho * @h[param.name] + (1 - @rho) * param.grad ** 2
215
+ @h[param.name] = @rho * @h[param.name] + (1 - @rho) * param.grad**2
218
216
  v = (Xumo::NMath.sqrt(@s[param.name] + @eps) / Xumo::NMath.sqrt(@h[param.name] + @eps)) * param.grad
219
- @s[param.name] = @rho * @s[param.name] + (1 - @rho) * v ** 2
217
+ @s[param.name] = @rho * @s[param.name] + (1 - @rho) * v**2
220
218
  param.data -= v
221
219
  end
222
220
  end
@@ -226,7 +224,6 @@ module DNN
226
224
  end
227
225
  end
228
226
 
229
-
230
227
  class RMSPropGraves < Optimizer
231
228
  attr_accessor :lr
232
229
  attr_accessor :alpha
@@ -254,8 +251,8 @@ module DNN
254
251
  @m[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
255
252
  @v[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
256
253
  @m[param.name] = @alpha * @m[param.name] + (1 - @alpha) * param.grad
257
- @v[param.name] = @alpha * @v[param.name] + (1 - @alpha) * param.grad ** 2
258
- param.data -= (@lr / Xumo::NMath.sqrt(@v[param.name] - @m[param.name] ** 2 + @eps)) * param.grad
254
+ @v[param.name] = @alpha * @v[param.name] + (1 - @alpha) * param.grad**2
255
+ param.data -= (@lr / Xumo::NMath.sqrt(@v[param.name] - @m[param.name]**2 + @eps)) * param.grad
259
256
  end
260
257
  end
261
258
 
@@ -264,7 +261,6 @@ module DNN
264
261
  end
265
262
  end
266
263
 
267
-
268
264
  class Adam < Optimizer
269
265
  attr_accessor :alpha
270
266
  attr_accessor :beta1
@@ -300,12 +296,12 @@ module DNN
300
296
 
301
297
  private def update_params(params)
302
298
  @t += 1
303
- lr = @alpha * Math.sqrt(1 - @beta2 ** @t) / (1 - @beta1 ** @t)
299
+ lr = @alpha * Math.sqrt(1 - @beta2**@t) / (1 - @beta1**@t)
304
300
  params.each do |param|
305
301
  @m[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
306
302
  @v[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
307
303
  @m[param.name] += (1 - @beta1) * (param.grad - @m[param.name])
308
- @v[param.name] += (1 - @beta2) * (param.grad ** 2 - @v[param.name])
304
+ @v[param.name] += (1 - @beta2) * (param.grad**2 - @v[param.name])
309
305
  if @amsgrad
310
306
  @s[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
311
307
  @s[param.name] = Xumo::SFloat.maximum(@s[param.name], @v[param.name])
@@ -322,7 +318,6 @@ module DNN
322
318
  end
323
319
  end
324
320
 
325
-
326
321
  class AdaBound < Adam
327
322
  attr_accessor :final_lr
328
323
  attr_accessor :gamma
@@ -344,7 +339,7 @@ module DNN
344
339
 
345
340
  private def update_params(params)
346
341
  @t += 1
347
- lr = @alpha * Math.sqrt(1 - @beta2 ** @t) / (1 - @beta1 ** @t)
342
+ lr = @alpha * Math.sqrt(1 - @beta2**@t) / (1 - @beta1**@t)
348
343
  final_lr = @final_lr * lr / @alpha
349
344
  lower_bound = final_lr * (1 - 1 / (@gamma * @t + 1))
350
345
  upper_bound = final_lr * (1 + 1 / (@gamma * @t))
@@ -352,7 +347,7 @@ module DNN
352
347
  @m[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
353
348
  @v[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
354
349
  @m[param.name] += (1 - @beta1) * (param.grad - @m[param.name])
355
- @v[param.name] += (1 - @beta2) * (param.grad ** 2 - @v[param.name])
350
+ @v[param.name] += (1 - @beta2) * (param.grad**2 - @v[param.name])
356
351
  if @amsgrad
357
352
  @s[param.name] ||= Xumo::SFloat.zeros(*param.data.shape)
358
353
  @s[param.name] = Xumo::SFloat.maximum(@s[param.name], @v[param.name])
@@ -8,17 +8,17 @@ module DNN
8
8
  return nil unless hash
9
9
  regularizer_class = DNN.const_get(hash[:class])
10
10
  regularizer = regularizer_class.allocate
11
- raise DNN_Error.new("#{regularizer.class} is not an instance of #{self} class.") unless regularizer.is_a?(self)
11
+ raise DNN_Error, "#{regularizer.class} is not an instance of #{self} class." unless regularizer.is_a?(self)
12
12
  regularizer.load_hash(hash)
13
13
  regularizer
14
14
  end
15
15
 
16
16
  def forward(x)
17
- raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'")
17
+ raise NotImplementedError, "Class '#{self.class.name}' has implement method 'forward'"
18
18
  end
19
19
 
20
20
  def backward
21
- raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'backward'")
21
+ raise NotImplementedError, "Class '#{self.class.name}' has implement method 'backward'"
22
22
  end
23
23
 
24
24
  def to_hash(merge_hash)
@@ -28,7 +28,7 @@ module DNN
28
28
  end
29
29
 
30
30
  def load_hash(hash)
31
- raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'load_hash'")
31
+ raise NotImplementedError, "Class '#{self.class.name}' has implement method 'load_hash'"
32
32
  end
33
33
  end
34
34
 
@@ -59,7 +59,6 @@ module DNN
59
59
  end
60
60
  end
61
61
 
62
-
63
62
  class L2 < Regularizer
64
63
  attr_accessor :l2_lambda
65
64
 
@@ -69,7 +68,7 @@ module DNN
69
68
  end
70
69
 
71
70
  def forward(x)
72
- x + 0.5 * @l2_lambda * (@param.data ** 2).sum
71
+ x + 0.5 * @l2_lambda * (@param.data**2).sum
73
72
  end
74
73
 
75
74
  def backward
@@ -98,7 +97,7 @@ module DNN
98
97
 
99
98
  def forward(x)
100
99
  l1 = @l1_lambda * @param.data.abs.sum
101
- l2 = 0.5 * @l2_lambda * (@param.data ** 2).sum
100
+ l2 = 0.5 * @l2_lambda * (@param.data**2).sum
102
101
  x + l1 + l2
103
102
  end
104
103
 
@@ -40,7 +40,7 @@ module DNN
40
40
 
41
41
  def build(input_shape)
42
42
  unless input_shape.length == 2
43
- raise DNN_ShapeError.new("Input shape is #{input_shape}. But input shape must be 2 dimensional.")
43
+ raise DNN_ShapeError, "Input shape is #{input_shape}. But input shape must be 2 dimensional."
44
44
  end
45
45
  super
46
46
  @time_length = @input_shape[0]
@@ -129,7 +129,6 @@ module DNN
129
129
  end
130
130
  end
131
131
 
132
-
133
132
  class SimpleRNNDense
134
133
  attr_accessor :trainable
135
134
 
@@ -162,7 +161,6 @@ module DNN
162
161
  end
163
162
  end
164
163
 
165
-
166
164
  class SimpleRNN < RNN
167
165
  attr_reader :activation
168
166
 
@@ -170,7 +168,7 @@ module DNN
170
168
  def initialize(num_nodes,
171
169
  stateful: false,
172
170
  return_sequences: true,
173
- activation: Activations::Tanh.new,
171
+ activation: Layers::Tanh.new,
174
172
  weight_initializer: Initializers::RandomNormal.new,
175
173
  recurrent_weight_initializer: Initializers::RandomNormal.new,
176
174
  bias_initializer: Initializers::Zeros.new,
@@ -222,7 +220,6 @@ module DNN
222
220
  end
223
221
  end
224
222
 
225
-
226
223
  class LSTMDense
227
224
  attr_accessor :trainable
228
225
 
@@ -230,11 +227,11 @@ module DNN
230
227
  @weight = weight
231
228
  @recurrent_weight = recurrent_weight
232
229
  @bias = bias
233
- @tanh = Activations::Tanh.new
234
- @g_tanh = Activations::Tanh.new
235
- @forget_sigmoid = Activations::Sigmoid.new
236
- @in_sigmoid = Activations::Sigmoid.new
237
- @out_sigmoid = Activations::Sigmoid.new
230
+ @tanh = Layers::Tanh.new
231
+ @g_tanh = Layers::Tanh.new
232
+ @forget_sigmoid = Layers::Sigmoid.new
233
+ @in_sigmoid = Layers::Sigmoid.new
234
+ @out_sigmoid = Layers::Sigmoid.new
238
235
  @trainable = true
239
236
  end
240
237
 
@@ -280,7 +277,6 @@ module DNN
280
277
  end
281
278
  end
282
279
 
283
-
284
280
  class LSTM < RNN
285
281
  attr_reader :cell
286
282
 
@@ -359,7 +355,6 @@ module DNN
359
355
  end
360
356
  end
361
357
 
362
-
363
358
  class GRUDense
364
359
  attr_accessor :trainable
365
360
 
@@ -367,9 +362,9 @@ module DNN
367
362
  @weight = weight
368
363
  @recurrent_weight = recurrent_weight
369
364
  @bias = bias
370
- @update_sigmoid = Activations::Sigmoid.new
371
- @reset_sigmoid = Activations::Sigmoid.new
372
- @tanh = Activations::Tanh.new
365
+ @update_sigmoid = Layers::Sigmoid.new
366
+ @reset_sigmoid = Layers::Sigmoid.new
367
+ @tanh = Layers::Tanh.new
373
368
  @trainable = true
374
369
  end
375
370
 
@@ -387,11 +382,11 @@ module DNN
387
382
  @weight_h = @weight.data[true, (num_nodes * 2)..-1]
388
383
  @weight2_h = @recurrent_weight.data[true, (num_nodes * 2)..-1]
389
384
  @tanh_h = if @bias
390
- bias_h = @bias.data[(num_nodes * 2)..-1]
391
- @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h)
392
- else
393
- @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h))
394
- end
385
+ bias_h = @bias.data[(num_nodes * 2)..-1]
386
+ @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h)
387
+ else
388
+ @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h))
389
+ end
395
390
  h2 = (1 - @update) * @tanh_h + @update * h
396
391
  h2
397
392
  end
@@ -428,7 +423,6 @@ module DNN
428
423
  end
429
424
  end
430
425
 
431
-
432
426
  class GRU < RNN
433
427
  def initialize(num_nodes,
434
428
  stateful: false,
@@ -17,7 +17,7 @@ module DNN
17
17
  private
18
18
 
19
19
  def load_bin(bin)
20
- raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'load_bin'")
20
+ raise NotImplementedError, "Class '#{self.class.name}' has implement method 'load_bin'"
21
21
  end
22
22
 
23
23
  def set_all_params_data(params_data)
@@ -30,13 +30,16 @@ module DNN
30
30
  end
31
31
  end
32
32
 
33
-
34
33
  class MarshalLoader < Loader
35
34
  private def load_bin(bin)
36
35
  data = Marshal.load(Zlib::Inflate.inflate(bin))
36
+ unless @model.class.name == data[:class]
37
+ raise DNN_Error, "Class name is not mismatch. Target model is #{@model.class.name}. But loading model is #{data[:class]}."
38
+ end
37
39
  opt = Optimizers::Optimizer.load(data[:optimizer])
38
40
  loss_func = Losses::Loss.from_hash(data[:loss_func])
39
41
  @model.setup(opt, loss_func)
42
+ @model.instance_variable_set(:@built, false)
40
43
  @model.predict1(Xumo::SFloat.zeros(*data[:input_shape]))
41
44
  set_all_params_data(data[:params])
42
45
  end
@@ -50,6 +53,7 @@ module DNN
50
53
  opt = Optimizers::Optimizer.from_hash(data[:optimizer])
51
54
  loss_func = Losses::Loss.from_hash(data[:loss_func])
52
55
  @model.setup(opt, loss_func)
56
+ @model.instance_variable_set(:@built, false)
53
57
  @model.predict1(Xumo::SFloat.zeros(*data[:input_shape]))
54
58
  base64_to_params_data(data[:params])
55
59
  end
@@ -65,7 +69,6 @@ module DNN
65
69
 
66
70
  end
67
71
 
68
-
69
72
  module Savers
70
73
 
71
74
  class Saver
@@ -87,7 +90,7 @@ module DNN
87
90
  private
88
91
 
89
92
  def dump_bin
90
- raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'dump_bin'")
93
+ raise NotImplementedError, "Class '#{self.class.name}' has implement method 'dump_bin'"
91
94
  end
92
95
 
93
96
  def get_all_params_data
@@ -98,7 +101,6 @@ module DNN
98
101
  end
99
102
  end
100
103
 
101
-
102
104
  class MarshalSaver < Saver
103
105
  def initialize(model, include_optimizer: true)
104
106
  super(model)
@@ -106,10 +108,10 @@ module DNN
106
108
  end
107
109
 
108
110
  private def dump_bin
109
- opt = @include_optimizer ? @model.optimizer.dump : @model.optimizer.class.new.dump
111
+ require_status = @include_optimizer ? true : false
110
112
  data = {
111
113
  version: VERSION, class: @model.class.name, input_shape: @model.layers.first.input_shape, params: get_all_params_data,
112
- optimizer: opt, loss_func: @model.loss_func.to_hash
114
+ optimizer: @model.optimizer.dump(require_status), loss_func: @model.loss_func.to_hash
113
115
  }
114
116
  Zlib::Deflate.deflate(Marshal.dump(data))
115
117
  end
@@ -0,0 +1,11 @@
1
+ module DNN
2
+ class Tensor
3
+ attr_reader :data
4
+ attr_accessor :link
5
+
6
+ def initialize(data, link = nil)
7
+ @data = data
8
+ @link = link
9
+ end
10
+ end
11
+ end