ruby-dnn 0.13.4 → 0.14.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/examples/cifar100_example.rb +1 -2
- data/examples/cifar10_example.rb +1 -2
- data/examples/dcgan/dcgan.rb +19 -9
- data/examples/dcgan/imgen.rb +9 -2
- data/examples/dcgan/train.rb +7 -22
- data/examples/iris_example.rb +1 -2
- data/examples/mnist_conv2d_example.rb +1 -2
- data/examples/mnist_define_by_run.rb +1 -2
- data/examples/mnist_example.rb +1 -2
- data/examples/mnist_lstm_example.rb +1 -2
- data/examples/xor_example.rb +2 -3
- data/lib/dnn.rb +2 -0
- data/lib/dnn/core/activations.rb +11 -18
- data/lib/dnn/core/callbacks.rb +136 -0
- data/lib/dnn/core/cnn_layers.rb +26 -33
- data/lib/dnn/core/embedding.rb +20 -2
- data/lib/dnn/core/error.rb +0 -2
- data/lib/dnn/core/initializers.rb +2 -8
- data/lib/dnn/core/iterator.rb +17 -13
- data/lib/dnn/core/layers.rb +38 -34
- data/lib/dnn/core/link.rb +1 -2
- data/lib/dnn/core/losses.rb +21 -14
- data/lib/dnn/core/merge_layers.rb +7 -8
- data/lib/dnn/core/models.rb +134 -125
- data/lib/dnn/core/normalizations.rb +2 -2
- data/lib/dnn/core/optimizers.rb +20 -25
- data/lib/dnn/core/regularizers.rb +6 -7
- data/lib/dnn/core/rnn_layers.rb +15 -21
- data/lib/dnn/core/savers.rb +9 -7
- data/lib/dnn/core/tensor.rb +11 -0
- data/lib/dnn/core/utils.rb +1 -1
- data/lib/dnn/image.rb +22 -1
- data/lib/dnn/version.rb +1 -1
- metadata +4 -2
data/lib/dnn/core/link.rb
CHANGED
@@ -14,7 +14,6 @@ module DNN
|
|
14
14
|
end
|
15
15
|
end
|
16
16
|
|
17
|
-
|
18
17
|
class TwoInputLink
|
19
18
|
attr_accessor :prev1
|
20
19
|
attr_accessor :prev2
|
@@ -27,7 +26,7 @@ module DNN
|
|
27
26
|
end
|
28
27
|
|
29
28
|
def backward(dy)
|
30
|
-
dy1, dy2
|
29
|
+
dy1, dy2 = *@layer.backward(dy)
|
31
30
|
@prev1&.backward(dy1)
|
32
31
|
@prev2&.backward(dy2)
|
33
32
|
end
|
data/lib/dnn/core/losses.rb
CHANGED
@@ -6,14 +6,14 @@ module DNN
|
|
6
6
|
return nil unless hash
|
7
7
|
loss_class = DNN.const_get(hash[:class])
|
8
8
|
loss = loss_class.allocate
|
9
|
-
raise DNN_Error
|
9
|
+
raise DNN_Error, "#{loss.class} is not an instance of #{self} class." unless loss.is_a?(self)
|
10
10
|
loss.load_hash(hash)
|
11
11
|
loss
|
12
12
|
end
|
13
13
|
|
14
14
|
def loss(y, t, layers = nil)
|
15
15
|
unless y.shape == t.shape
|
16
|
-
raise DNN_ShapeError
|
16
|
+
raise DNN_ShapeError, "The shape of y does not match the t shape. y shape is #{y.shape}, but t shape is #{t.shape}."
|
17
17
|
end
|
18
18
|
loss_value = forward(y, t)
|
19
19
|
loss_value += regularizers_forward(layers) if layers
|
@@ -21,11 +21,11 @@ module DNN
|
|
21
21
|
end
|
22
22
|
|
23
23
|
def forward(y, t)
|
24
|
-
raise NotImplementedError
|
24
|
+
raise NotImplementedError, "Class '#{self.class.name}' has implement method 'forward'"
|
25
25
|
end
|
26
26
|
|
27
27
|
def backward(y, t)
|
28
|
-
raise NotImplementedError
|
28
|
+
raise NotImplementedError, "Class '#{self.class.name}' has implement method 'backward'"
|
29
29
|
end
|
30
30
|
|
31
31
|
def regularizers_forward(layers)
|
@@ -58,7 +58,7 @@ module DNN
|
|
58
58
|
class MeanSquaredError < Loss
|
59
59
|
def forward(y, t)
|
60
60
|
batch_size = t.shape[0]
|
61
|
-
0.5 * ((y - t)
|
61
|
+
0.5 * ((y - t)**2).sum / batch_size
|
62
62
|
end
|
63
63
|
|
64
64
|
def backward(y, t)
|
@@ -66,7 +66,6 @@ module DNN
|
|
66
66
|
end
|
67
67
|
end
|
68
68
|
|
69
|
-
|
70
69
|
class MeanAbsoluteError < Loss
|
71
70
|
def forward(y, t)
|
72
71
|
batch_size = t.shape[0]
|
@@ -81,7 +80,6 @@ module DNN
|
|
81
80
|
end
|
82
81
|
end
|
83
82
|
|
84
|
-
|
85
83
|
class Hinge < Loss
|
86
84
|
def forward(y, t)
|
87
85
|
@a = 1 - y * t
|
@@ -95,7 +93,6 @@ module DNN
|
|
95
93
|
end
|
96
94
|
end
|
97
95
|
|
98
|
-
|
99
96
|
class HuberLoss < Loss
|
100
97
|
def forward(y, t)
|
101
98
|
loss_l1_value = loss_l1(y, t)
|
@@ -120,16 +117,19 @@ module DNN
|
|
120
117
|
|
121
118
|
def loss_l2(y, t)
|
122
119
|
batch_size = t.shape[0]
|
123
|
-
0.5 * ((y - t)
|
120
|
+
0.5 * ((y - t)**2).sum / batch_size
|
124
121
|
end
|
125
122
|
end
|
126
123
|
|
127
|
-
|
128
124
|
class SoftmaxCrossEntropy < Loss
|
129
125
|
attr_accessor :eps
|
130
126
|
|
131
|
-
|
132
|
-
|
127
|
+
class << self
|
128
|
+
def softmax(y)
|
129
|
+
Xumo::NMath.exp(y) / Xumo::NMath.exp(y).sum(1, keepdims: true)
|
130
|
+
end
|
131
|
+
|
132
|
+
alias activation softmax
|
133
133
|
end
|
134
134
|
|
135
135
|
# @param [Float] eps Value to avoid nan.
|
@@ -156,17 +156,24 @@ module DNN
|
|
156
156
|
end
|
157
157
|
end
|
158
158
|
|
159
|
-
|
160
159
|
class SigmoidCrossEntropy < Loss
|
161
160
|
attr_accessor :eps
|
162
161
|
|
162
|
+
class << self
|
163
|
+
def sigmoid(y)
|
164
|
+
Layers::Sigmoid.new.forward(y)
|
165
|
+
end
|
166
|
+
|
167
|
+
alias activation sigmoid
|
168
|
+
end
|
169
|
+
|
163
170
|
# @param [Float] eps Value to avoid nan.
|
164
171
|
def initialize(eps: 1e-7)
|
165
172
|
@eps = eps
|
166
173
|
end
|
167
174
|
|
168
175
|
def forward(y, t)
|
169
|
-
@x =
|
176
|
+
@x = SigmoidCrossEntropy.sigmoid(y)
|
170
177
|
-(t * Xumo::NMath.log(@x) + (1 - t) * Xumo::NMath.log(1 - @x))
|
171
178
|
end
|
172
179
|
|
@@ -3,20 +3,21 @@ module DNN
|
|
3
3
|
|
4
4
|
class MergeLayer < Layers::Layer
|
5
5
|
def self.call(x1, x2, *args)
|
6
|
-
|
6
|
+
new(*args).call(x1, x2)
|
7
7
|
end
|
8
8
|
|
9
|
-
def call(
|
10
|
-
x1
|
11
|
-
x2
|
9
|
+
def call(input_tensor1, input_tensor2)
|
10
|
+
x1 = input_tensor1.data
|
11
|
+
x2 = input_tensor2.data
|
12
|
+
prev_link1 = input_tensor1.link
|
13
|
+
prev_link2 = input_tensor2.link
|
12
14
|
build(x1.shape[1..-1]) unless built?
|
13
15
|
y = forward(x1, x2)
|
14
16
|
link = TwoInputLink.new(prev_link1, prev_link2, self)
|
15
|
-
|
17
|
+
Tensor.new(y, link)
|
16
18
|
end
|
17
19
|
end
|
18
20
|
|
19
|
-
|
20
21
|
class Add < MergeLayer
|
21
22
|
def forward(x1, x2)
|
22
23
|
x1 + x2
|
@@ -27,7 +28,6 @@ module DNN
|
|
27
28
|
end
|
28
29
|
end
|
29
30
|
|
30
|
-
|
31
31
|
class Mul < MergeLayer
|
32
32
|
def forward(x1, x2)
|
33
33
|
@x1, @x2 = x1, x2
|
@@ -39,7 +39,6 @@ module DNN
|
|
39
39
|
end
|
40
40
|
end
|
41
41
|
|
42
|
-
|
43
42
|
class Concatenate < MergeLayer
|
44
43
|
attr_reader :axis
|
45
44
|
|
data/lib/dnn/core/models.rb
CHANGED
@@ -1,16 +1,16 @@
|
|
1
1
|
module DNN
|
2
2
|
module Models
|
3
|
-
|
4
3
|
# This class deals with the model of the network.
|
5
4
|
class Model
|
6
5
|
attr_accessor :optimizer
|
7
6
|
attr_accessor :loss_func
|
7
|
+
attr_reader :last_log
|
8
8
|
|
9
9
|
# Load marshal model.
|
10
10
|
# @param [String] file_name File name of marshal model to load.
|
11
11
|
# @return [DNN::Models::Model] Return the loaded model.
|
12
12
|
def self.load(file_name)
|
13
|
-
model =
|
13
|
+
model = new
|
14
14
|
loader = Loaders::MarshalLoader.new(model)
|
15
15
|
loader.load(file_name)
|
16
16
|
model
|
@@ -21,49 +21,9 @@ module DNN
|
|
21
21
|
@loss_func = nil
|
22
22
|
@last_link = nil
|
23
23
|
@built = false
|
24
|
-
@callbacks =
|
25
|
-
before_epoch: [],
|
26
|
-
after_epoch: [],
|
27
|
-
before_train_on_batch: [],
|
28
|
-
after_train_on_batch: [],
|
29
|
-
before_test_on_batch: [],
|
30
|
-
after_test_on_batch: [],
|
31
|
-
}
|
24
|
+
@callbacks = []
|
32
25
|
@layers_cache = nil
|
33
|
-
|
34
|
-
|
35
|
-
# This method is provided for compatibility with v0.12.4.
|
36
|
-
# Load hash model parameters.
|
37
|
-
# @param [Hash] hash Hash to load model parameters.
|
38
|
-
def load_hash_params(hash)
|
39
|
-
has_param_layers_params = hash[:params]
|
40
|
-
has_param_layers_index = 0
|
41
|
-
has_param_layers.uniq.each do |layer|
|
42
|
-
hash_params = has_param_layers_params[has_param_layers_index]
|
43
|
-
hash_params.each do |key, (shape, bin)|
|
44
|
-
data = Xumo::SFloat.from_binary(bin).reshape(*shape)
|
45
|
-
layer.get_params[key].data = data
|
46
|
-
end
|
47
|
-
has_param_layers_index += 1
|
48
|
-
end
|
49
|
-
end
|
50
|
-
|
51
|
-
# This method is provided for compatibility with v0.12.4.
|
52
|
-
# Load json model parameters.
|
53
|
-
# @param [String] json_str JSON string to load model parameters.
|
54
|
-
def load_json_params(json_str)
|
55
|
-
hash = JSON.parse(json_str, symbolize_names: true)
|
56
|
-
has_param_layers_params = hash[:params]
|
57
|
-
has_param_layers_index = 0
|
58
|
-
has_param_layers.uniq.each do |layer|
|
59
|
-
hash_params = has_param_layers_params[has_param_layers_index]
|
60
|
-
hash_params.each do |key, (shape, base64_param)|
|
61
|
-
bin = Base64.decode64(base64_param)
|
62
|
-
data = Xumo::SFloat.from_binary(bin).reshape(*shape)
|
63
|
-
layer.get_params[key].data = data
|
64
|
-
end
|
65
|
-
has_param_layers_index += 1
|
66
|
-
end
|
26
|
+
@last_log = {}
|
67
27
|
end
|
68
28
|
|
69
29
|
# Set optimizer and loss_func to model.
|
@@ -71,10 +31,10 @@ module DNN
|
|
71
31
|
# @param [DNN::Losses::Loss] loss_func Loss function to use for learning.
|
72
32
|
def setup(optimizer, loss_func)
|
73
33
|
unless optimizer.is_a?(Optimizers::Optimizer)
|
74
|
-
raise TypeError
|
34
|
+
raise TypeError, "optimizer:#{optimizer.class} is not an instance of DNN::Optimizers::Optimizer class."
|
75
35
|
end
|
76
36
|
unless loss_func.is_a?(Losses::Loss)
|
77
|
-
raise TypeError
|
37
|
+
raise TypeError, "loss_func:#{loss_func.class} is not an instance of DNN::Losses::Loss class."
|
78
38
|
end
|
79
39
|
@optimizer = optimizer
|
80
40
|
@loss_func = loss_func
|
@@ -85,8 +45,8 @@ module DNN
|
|
85
45
|
# @param [Numo::SFloat] x Input training data.
|
86
46
|
# @param [Numo::SFloat] y Output training data.
|
87
47
|
# @param [Integer] epochs Number of training.
|
88
|
-
# @param [Integer] initial_epoch Initial epoch.
|
89
48
|
# @param [Integer] batch_size Batch size used for one training.
|
49
|
+
# @param [Integer] initial_epoch Initial epoch.
|
90
50
|
# @param [Array | NilClass] test If you to test the model for every 1 epoch,
|
91
51
|
# specify [x_test, y_test]. Don't test to the model, specify nil.
|
92
52
|
# @param [Boolean] verbose Set true to display the log. If false is set, the log is not displayed.
|
@@ -95,57 +55,107 @@ module DNN
|
|
95
55
|
initial_epoch: 1,
|
96
56
|
test: nil,
|
97
57
|
verbose: true)
|
98
|
-
raise DNN_Error.new("The model is not optimizer setup complete.") unless @optimizer
|
99
|
-
raise DNN_Error.new("The model is not loss_func setup complete.") unless @loss_func
|
100
58
|
check_xy_type(x, y)
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
59
|
+
train_iterator = Iterator.new(x, y)
|
60
|
+
train_by_iterator(train_iterator, epochs,
|
61
|
+
batch_size: batch_size,
|
62
|
+
initial_epoch: initial_epoch,
|
63
|
+
test: test,
|
64
|
+
verbose: verbose)
|
65
|
+
end
|
66
|
+
|
67
|
+
alias fit train
|
68
|
+
|
69
|
+
# Start training by iterator.
|
70
|
+
# Setup the model before use this method.
|
71
|
+
# @param [Iterator] train_iterator Iterator used for training.
|
72
|
+
# @param [Integer] epochs Number of training.
|
73
|
+
# @param [Integer] batch_size Batch size used for one training.
|
74
|
+
# @param [Integer] initial_epoch Initial epoch.
|
75
|
+
# @param [Array | NilClass] test If you to test the model for every 1 epoch,
|
76
|
+
# specify [x_test, y_test]. Don't test to the model, specify nil.
|
77
|
+
# @param [Boolean] verbose Set true to display the log. If false is set, the log is not displayed.
|
78
|
+
def train_by_iterator(train_iterator, epochs,
|
79
|
+
batch_size: 1,
|
80
|
+
initial_epoch: 1,
|
81
|
+
test: nil,
|
82
|
+
verbose: true)
|
83
|
+
raise DNN_Error, "The model is not optimizer setup complete." unless @optimizer
|
84
|
+
raise DNN_Error, "The model is not loss_func setup complete." unless @loss_func
|
85
|
+
|
86
|
+
num_train_datas = train_iterator.num_datas
|
87
|
+
num_train_datas = num_train_datas / batch_size * batch_size if train_iterator.last_round_down
|
88
|
+
|
89
|
+
stopped = catch(:stop) do
|
90
|
+
(initial_epoch..epochs).each do |epoch|
|
91
|
+
@last_log[:epoch] = epoch
|
92
|
+
call_callbacks(:before_epoch)
|
93
|
+
puts "【 epoch #{epoch}/#{epochs} 】" if verbose
|
94
|
+
|
95
|
+
train_iterator.foreach(batch_size) do |x_batch, y_batch, index|
|
96
|
+
train_step_met = train_step(x_batch, y_batch)
|
97
|
+
num_trained_datas = (index + 1) * batch_size
|
98
|
+
num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas
|
99
|
+
log = "\r"
|
100
|
+
40.times do |i|
|
101
|
+
if i < num_trained_datas * 40 / num_train_datas
|
102
|
+
log << "="
|
103
|
+
elsif i == num_trained_datas * 40 / num_train_datas
|
104
|
+
log << ">"
|
105
|
+
else
|
106
|
+
log << "_"
|
107
|
+
end
|
124
108
|
end
|
109
|
+
|
110
|
+
log << " #{num_trained_datas}/#{num_train_datas} "
|
111
|
+
log << metrics_to_str(train_step_met)
|
112
|
+
print log if verbose
|
125
113
|
end
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
114
|
+
|
115
|
+
if test
|
116
|
+
test_met = test(test[0], test[1], batch_size: batch_size)
|
117
|
+
print " " + metrics_to_str(test_met) if verbose
|
118
|
+
end
|
119
|
+
puts "" if verbose
|
120
|
+
call_callbacks(:after_epoch)
|
132
121
|
end
|
133
|
-
|
134
|
-
|
122
|
+
nil
|
123
|
+
end
|
124
|
+
|
125
|
+
if stopped
|
126
|
+
puts "\n#{stopped}" if verbose
|
135
127
|
end
|
136
128
|
end
|
137
129
|
|
138
|
-
alias
|
130
|
+
alias fit_by_iterator train_by_iterator
|
131
|
+
|
132
|
+
# Implement the training process to be performed in one step.
|
133
|
+
# @param [Numo::SFloat] x Input training data.
|
134
|
+
# @param [Numo::SFloat] y Output training data.
|
135
|
+
# @return [Hash] Hash of contents to be output to log.
|
136
|
+
private def train_step(x, y)
|
137
|
+
loss_value = train_on_batch(x, y)
|
138
|
+
{ loss: loss_value.mean }
|
139
|
+
end
|
140
|
+
|
141
|
+
# Implement the test process to be performed.
|
142
|
+
# @param [Numo::SFloat] x Input training data.
|
143
|
+
# @param [Numo::SFloat] y Output training data.
|
144
|
+
# @param [Integer] batch_size Batch size used for one test.
|
145
|
+
# @return [Hash] Hash of contents to be output to log.
|
146
|
+
private def test(x, y, batch_size: 100)
|
147
|
+
acc, test_loss = accuracy(x, y, batch_size: batch_size)
|
148
|
+
{ accuracy: acc, test_loss: test_loss.mean }
|
149
|
+
end
|
139
150
|
|
140
151
|
# Training once.
|
141
152
|
# Setup the model before use this method.
|
142
153
|
# @param [Numo::SFloat] x Input training data.
|
143
154
|
# @param [Numo::SFloat] y Output training data.
|
144
|
-
# @param [Integer] batch_size Batch size used for one test.
|
145
155
|
# @return [Float | Numo::SFloat] Return loss value in the form of Float or Numo::SFloat.
|
146
156
|
def train_on_batch(x, y)
|
147
|
-
raise DNN_Error
|
148
|
-
raise DNN_Error
|
157
|
+
raise DNN_Error, "The model is not optimizer setup complete." unless @optimizer
|
158
|
+
raise DNN_Error, "The model is not loss_func setup complete." unless @loss_func
|
149
159
|
check_xy_type(x, y)
|
150
160
|
call_callbacks(:before_train_on_batch)
|
151
161
|
x = forward(x, true)
|
@@ -154,7 +164,8 @@ module DNN
|
|
154
164
|
backward(dy)
|
155
165
|
@optimizer.update(layers)
|
156
166
|
@loss_func.regularizers_backward(layers)
|
157
|
-
|
167
|
+
@last_log[:train_loss] = loss_value
|
168
|
+
call_callbacks(:after_train_on_batch)
|
158
169
|
loss_value
|
159
170
|
end
|
160
171
|
|
@@ -169,15 +180,18 @@ module DNN
|
|
169
180
|
batch_size = batch_size >= num_test_datas[0] ? num_test_datas : batch_size
|
170
181
|
iter = Iterator.new(x, y, random: false)
|
171
182
|
total_correct = 0
|
172
|
-
sum_loss = 0
|
183
|
+
sum_loss = Xumo::SFloat[0]
|
173
184
|
max_steps = (num_test_datas.to_f / batch_size).ceil
|
174
185
|
iter.foreach(batch_size) do |x_batch, y_batch|
|
175
186
|
correct, loss_value = test_on_batch(x_batch, y_batch)
|
176
187
|
total_correct += correct
|
177
|
-
sum_loss += loss_value.
|
188
|
+
sum_loss += loss_value.mean
|
178
189
|
end
|
179
190
|
mean_loss = sum_loss / max_steps
|
180
|
-
|
191
|
+
acc = total_correct.to_f / num_test_datas
|
192
|
+
@last_log[:test_loss] = mean_loss
|
193
|
+
@last_log[:test_accuracy] = acc
|
194
|
+
[acc, mean_loss]
|
181
195
|
end
|
182
196
|
|
183
197
|
# Evaluate once.
|
@@ -189,7 +203,7 @@ module DNN
|
|
189
203
|
x = forward(x, false)
|
190
204
|
correct = evaluate(x, y)
|
191
205
|
loss_value = @loss_func.loss(x, y, layers)
|
192
|
-
call_callbacks(:after_test_on_batch
|
206
|
+
call_callbacks(:after_test_on_batch)
|
193
207
|
[correct, loss_value]
|
194
208
|
end
|
195
209
|
|
@@ -214,42 +228,33 @@ module DNN
|
|
214
228
|
|
215
229
|
# Predict data.
|
216
230
|
# @param [Numo::SFloat] x Input data.
|
217
|
-
|
231
|
+
# @param [Boolean] use_loss_activation Use loss activation when loss has an activation.
|
232
|
+
def predict(x, use_loss_activation: true)
|
218
233
|
check_xy_type(x)
|
219
|
-
forward(x, false)
|
234
|
+
y = forward(x, false)
|
235
|
+
if use_loss_activation && @loss_func.class.respond_to?(:activation)
|
236
|
+
y = @loss_func.class.activation(y)
|
237
|
+
end
|
238
|
+
y
|
220
239
|
end
|
221
240
|
|
222
241
|
# Predict one data.
|
223
242
|
# @param [Numo::SFloat] x Input data. However, x is single data.
|
224
|
-
def predict1(x)
|
243
|
+
def predict1(x, use_loss_activation: true)
|
225
244
|
check_xy_type(x)
|
226
|
-
predict(x.reshape(1, *x.shape))[0, false]
|
245
|
+
predict(x.reshape(1, *x.shape), use_loss_activation: use_loss_activation)[0, false]
|
227
246
|
end
|
228
247
|
|
229
248
|
# Add callback function.
|
230
|
-
# @param [
|
231
|
-
|
232
|
-
|
233
|
-
|
234
|
-
# after_train_on_batch: Set the proc to be performed after train on batch processing.
|
235
|
-
# before_test_on_batch: Set the proc to be performed before test on batch processing.
|
236
|
-
# after_test_on_batch: Set the proc to be performed after test on batch processing.
|
237
|
-
def add_callback(event, callback)
|
238
|
-
raise DNN_UnknownEventError.new("Unknown event #{event}.") unless @callbacks.has_key?(event)
|
239
|
-
@callbacks[event] << callback
|
249
|
+
# @param [Callback] callback Callback object.
|
250
|
+
def add_callback(callback)
|
251
|
+
callback.model = self
|
252
|
+
@callbacks << callback
|
240
253
|
end
|
241
254
|
|
242
255
|
# Clear the callback function registered for each event.
|
243
|
-
|
244
|
-
|
245
|
-
# after_epoch: Process: performed after one training.
|
246
|
-
# before_train_on_batch: Set the proc to be performed before train on batch processing.
|
247
|
-
# after_train_on_batch: Set the proc to be performed after train on batch processing.
|
248
|
-
# before_test_on_batch: Set the proc to be performed before test on batch processing.
|
249
|
-
# after_test_on_batch: Set the proc to be performed after test on batch processing.
|
250
|
-
def clear_callbacks(event)
|
251
|
-
raise DNN_UnknownEventError.new("Unknown event #{event}.") unless @callbacks.has_key?(event)
|
252
|
-
@callbacks[event] = []
|
256
|
+
def clear_callbacks
|
257
|
+
@callbacks = []
|
253
258
|
end
|
254
259
|
|
255
260
|
# Save the model in marshal format.
|
@@ -267,7 +272,7 @@ module DNN
|
|
267
272
|
# Get the all layers.
|
268
273
|
# @return [Array] All layers array.
|
269
274
|
def layers
|
270
|
-
raise DNN_Error
|
275
|
+
raise DNN_Error, "This model is not built. You need build this model using predict or train." unless built?
|
271
276
|
return @layers_cache if @layers_cache
|
272
277
|
layers = []
|
273
278
|
get_layers = -> link do
|
@@ -291,7 +296,7 @@ module DNN
|
|
291
296
|
end
|
292
297
|
|
293
298
|
# Get the layer that the model has.
|
294
|
-
# @param [Symbol] The name of the layer to get.
|
299
|
+
# @param [Symbol] name The name of the layer to get.
|
295
300
|
# @return [DNN::Layers::Layer] Return the layer.
|
296
301
|
def get_layer(name)
|
297
302
|
layers.find { |layer| layer.name == name }
|
@@ -307,21 +312,22 @@ module DNN
|
|
307
312
|
def forward(x, learning_phase)
|
308
313
|
DNN.learning_phase = learning_phase
|
309
314
|
@layers_cache = nil
|
310
|
-
|
315
|
+
output_tensor = call(Tensor.new(x, nil))
|
316
|
+
@last_link = output_tensor.link
|
311
317
|
unless @built
|
312
318
|
@built = true
|
313
319
|
naming
|
314
320
|
end
|
315
|
-
|
321
|
+
output_tensor.data
|
316
322
|
end
|
317
323
|
|
318
324
|
def backward(dy)
|
319
325
|
@last_link.backward(dy)
|
320
326
|
end
|
321
327
|
|
322
|
-
def call_callbacks(event
|
323
|
-
@callbacks
|
324
|
-
callback.
|
328
|
+
def call_callbacks(event)
|
329
|
+
@callbacks.each do |callback|
|
330
|
+
callback.send(event) if callback.respond_to?(event)
|
325
331
|
end
|
326
332
|
end
|
327
333
|
|
@@ -338,17 +344,20 @@ module DNN
|
|
338
344
|
end
|
339
345
|
end
|
340
346
|
|
347
|
+
def metrics_to_str(mertics)
|
348
|
+
mertics.map { |key, num| "#{key}: #{sprintf('%.4f', num)}" }.join(", ")
|
349
|
+
end
|
350
|
+
|
341
351
|
def check_xy_type(x, y = nil)
|
342
352
|
if !x.is_a?(Xumo::SFloat) && !x.is_a?(Array)
|
343
|
-
raise TypeError
|
353
|
+
raise TypeError, "x:#{x.class.name} is not an instance of #{Xumo::SFloat.name} class or Array class."
|
344
354
|
end
|
345
355
|
if y && !y.is_a?(Xumo::SFloat) && !x.is_a?(Array)
|
346
|
-
raise TypeError
|
356
|
+
raise TypeError, "y:#{y.class.name} is not an instance of #{Xumo::SFloat.name} class or Array class."
|
347
357
|
end
|
348
358
|
end
|
349
359
|
end
|
350
360
|
|
351
|
-
|
352
361
|
class Sequential < Model
|
353
362
|
attr_reader :stack
|
354
363
|
|
@@ -363,7 +372,7 @@ module DNN
|
|
363
372
|
# @return [DNN::Models::Model] Return self.
|
364
373
|
def add(layer)
|
365
374
|
unless layer.is_a?(Layers::Layer) || layer.is_a?(Model)
|
366
|
-
raise TypeError
|
375
|
+
raise TypeError, "layer: #{layer.class.name} is not an instance of the DNN::Layers::Layer class or DNN::Models::Model class."
|
367
376
|
end
|
368
377
|
@stack << layer
|
369
378
|
self
|
@@ -376,7 +385,7 @@ module DNN
|
|
376
385
|
# @return [Boolean] Return true if success for remove layer.
|
377
386
|
def remove(layer)
|
378
387
|
unless layer.is_a?(Layers::Layer) || layer.is_a?(Model)
|
379
|
-
raise TypeError
|
388
|
+
raise TypeError, "layer: #{layer.class.name} is not an instance of the DNN::Layers::Layer class or DNN::Models::Model class."
|
380
389
|
end
|
381
390
|
@stack.delete(layer) ? true : false
|
382
391
|
end
|