ruby-dnn 0.13.4 → 0.14.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/examples/cifar100_example.rb +1 -2
- data/examples/cifar10_example.rb +1 -2
- data/examples/dcgan/dcgan.rb +19 -9
- data/examples/dcgan/imgen.rb +9 -2
- data/examples/dcgan/train.rb +7 -22
- data/examples/iris_example.rb +1 -2
- data/examples/mnist_conv2d_example.rb +1 -2
- data/examples/mnist_define_by_run.rb +1 -2
- data/examples/mnist_example.rb +1 -2
- data/examples/mnist_lstm_example.rb +1 -2
- data/examples/xor_example.rb +2 -3
- data/lib/dnn.rb +2 -0
- data/lib/dnn/core/activations.rb +11 -18
- data/lib/dnn/core/callbacks.rb +136 -0
- data/lib/dnn/core/cnn_layers.rb +26 -33
- data/lib/dnn/core/embedding.rb +20 -2
- data/lib/dnn/core/error.rb +0 -2
- data/lib/dnn/core/initializers.rb +2 -8
- data/lib/dnn/core/iterator.rb +17 -13
- data/lib/dnn/core/layers.rb +38 -34
- data/lib/dnn/core/link.rb +1 -2
- data/lib/dnn/core/losses.rb +21 -14
- data/lib/dnn/core/merge_layers.rb +7 -8
- data/lib/dnn/core/models.rb +134 -125
- data/lib/dnn/core/normalizations.rb +2 -2
- data/lib/dnn/core/optimizers.rb +20 -25
- data/lib/dnn/core/regularizers.rb +6 -7
- data/lib/dnn/core/rnn_layers.rb +15 -21
- data/lib/dnn/core/savers.rb +9 -7
- data/lib/dnn/core/tensor.rb +11 -0
- data/lib/dnn/core/utils.rb +1 -1
- data/lib/dnn/image.rb +22 -1
- data/lib/dnn/version.rb +1 -1
- metadata +4 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: '08960a5015b086d49e27dc44ea1076cb56c6548cf2945698dd81ae30a1f738e7'
|
4
|
+
data.tar.gz: 2b78bfa3f91b224226fa2f268f0fb0cc94c2d711bc1d7324dddf32d7e50be409
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: ccdc09a73a918fd8eb206283d9d2db396a528f737d9981d49ecb90affcfa1d417429c3fb0a7070d57563a3168c3283a6aa762e04271df58d9b57bb2232a96545
|
7
|
+
data.tar.gz: 5e01577078cfee549f2f5b963fa3565a59ea1fc805eca9bebea5a368b95e32f5c248db0e42d28c883eb71b138ce70372abb7f799acc3e2fde72550b3db0996f3
|
@@ -3,11 +3,10 @@ require "dnn/datasets/cifar100"
|
|
3
3
|
# If you use numo/linalg then please uncomment out.
|
4
4
|
# require "numo/linalg/autoloader"
|
5
5
|
|
6
|
+
include DNN::Models
|
6
7
|
include DNN::Layers
|
7
|
-
include DNN::Activations
|
8
8
|
include DNN::Optimizers
|
9
9
|
include DNN::Losses
|
10
|
-
include DNN::Models
|
11
10
|
CIFAR100 = DNN::CIFAR100
|
12
11
|
|
13
12
|
x_train, y_train = CIFAR100.load_train
|
data/examples/cifar10_example.rb
CHANGED
@@ -3,11 +3,10 @@ require "dnn/datasets/cifar10"
|
|
3
3
|
# If you use numo/linalg then please uncomment out.
|
4
4
|
# require "numo/linalg/autoloader"
|
5
5
|
|
6
|
+
include DNN::Models
|
6
7
|
include DNN::Layers
|
7
|
-
include DNN::Activations
|
8
8
|
include DNN::Optimizers
|
9
9
|
include DNN::Losses
|
10
|
-
include DNN::Models
|
11
10
|
CIFAR10 = DNN::CIFAR10
|
12
11
|
|
13
12
|
x_train, y_train = CIFAR10.load_train
|
data/examples/dcgan/dcgan.rb
CHANGED
@@ -1,8 +1,5 @@
|
|
1
|
-
include DNN::Layers
|
2
|
-
include DNN::Activations
|
3
|
-
include DNN::Optimizers
|
4
|
-
include DNN::Losses
|
5
1
|
include DNN::Models
|
2
|
+
include DNN::Layers
|
6
3
|
|
7
4
|
class Generator < Model
|
8
5
|
def initialize
|
@@ -55,7 +52,6 @@ class Generator < Model
|
|
55
52
|
end
|
56
53
|
end
|
57
54
|
|
58
|
-
|
59
55
|
class Discriminator < Model
|
60
56
|
def initialize
|
61
57
|
super
|
@@ -97,12 +93,11 @@ class Discriminator < Model
|
|
97
93
|
end
|
98
94
|
end
|
99
95
|
|
100
|
-
|
101
96
|
class DCGAN < Model
|
102
|
-
|
103
|
-
|
97
|
+
attr_accessor :gen
|
98
|
+
attr_accessor :dis
|
104
99
|
|
105
|
-
def initialize(gen, dis)
|
100
|
+
def initialize(gen = nil, dis = nil)
|
106
101
|
super()
|
107
102
|
@gen = gen
|
108
103
|
@dis = dis
|
@@ -113,4 +108,19 @@ class DCGAN < Model
|
|
113
108
|
x = @dis.(x, false)
|
114
109
|
x
|
115
110
|
end
|
111
|
+
|
112
|
+
def train_step(x_batch, y_batch)
|
113
|
+
batch_size = x_batch.shape[0]
|
114
|
+
noise = Numo::SFloat.new(batch_size, 20).rand(-1, 1)
|
115
|
+
images = @gen.predict(noise)
|
116
|
+
x = x_batch.concatenate(images)
|
117
|
+
y = Numo::SFloat.cast([1] * batch_size + [0] * batch_size).reshape(batch_size * 2, 1)
|
118
|
+
dis_loss = @dis.train_on_batch(x, y)
|
119
|
+
|
120
|
+
noise = Numo::SFloat.new(batch_size, 20).rand(-1, 1)
|
121
|
+
label = Numo::SFloat.cast([1] * batch_size).reshape(batch_size, 1)
|
122
|
+
dcgan_loss = train_on_batch(noise, label)
|
123
|
+
|
124
|
+
{ dis_loss: dis_loss.mean, dcgan_loss: dcgan_loss.mean }
|
125
|
+
end
|
116
126
|
end
|
data/examples/dcgan/imgen.rb
CHANGED
@@ -3,15 +3,22 @@ require "dnn/image"
|
|
3
3
|
require "numo/linalg/autoloader"
|
4
4
|
require_relative "dcgan"
|
5
5
|
|
6
|
+
include DNN::Loaders
|
6
7
|
Image = DNN::Image
|
7
8
|
|
8
9
|
batch_size = 100
|
9
10
|
|
10
|
-
|
11
|
-
|
11
|
+
gen = Generator.new
|
12
|
+
dis = Discriminator.new
|
13
|
+
dcgan = DCGAN.new(gen, dis)
|
14
|
+
dcgan.predict1(Numo::SFloat.zeros(20))
|
15
|
+
|
16
|
+
loader = MarshalLoader.new(dcgan)
|
17
|
+
loader.load("trained/dcgan_model_epoch20.marshal")
|
12
18
|
|
13
19
|
Numo::SFloat.srand(rand(1 << 31))
|
14
20
|
noise = Numo::SFloat.new(batch_size, 20).rand(-1, 1)
|
21
|
+
|
15
22
|
images = gen.predict(noise)
|
16
23
|
|
17
24
|
batch_size.times do |i|
|
data/examples/dcgan/train.rb
CHANGED
@@ -3,6 +3,9 @@ require "dnn/datasets/mnist"
|
|
3
3
|
require "numo/linalg/autoloader"
|
4
4
|
require_relative "dcgan"
|
5
5
|
|
6
|
+
include DNN::Optimizers
|
7
|
+
include DNN::Losses
|
8
|
+
include DNN::Callbacks
|
6
9
|
MNIST = DNN::MNIST
|
7
10
|
|
8
11
|
Numo::SFloat.srand(rand(1 << 31))
|
@@ -17,28 +20,10 @@ dcgan = DCGAN.new(gen, dis)
|
|
17
20
|
dis.setup(Adam.new(alpha: 0.00001, beta1: 0.1), SigmoidCrossEntropy.new)
|
18
21
|
dcgan.setup(Adam.new(alpha: 0.0002, beta1: 0.5), SigmoidCrossEntropy.new)
|
19
22
|
|
20
|
-
x_train,
|
23
|
+
x_train, * = MNIST.load_train
|
21
24
|
x_train = Numo::SFloat.cast(x_train)
|
22
25
|
x_train = x_train / 127.5 - 1
|
23
26
|
|
24
|
-
|
25
|
-
|
26
|
-
(
|
27
|
-
puts "epoch: #{epoch}"
|
28
|
-
num_batchs.times do |index|
|
29
|
-
x_batch, y_batch = iter.next_batch(batch_size)
|
30
|
-
noise = Numo::SFloat.new(batch_size, 20).rand(-1, 1)
|
31
|
-
images = gen.predict(noise)
|
32
|
-
x = x_batch.concatenate(images)
|
33
|
-
y = Numo::SFloat.cast([1] * batch_size + [0] * batch_size).reshape(batch_size * 2, 1)
|
34
|
-
dis_loss = dis.train_on_batch(x, y)
|
35
|
-
|
36
|
-
noise = Numo::SFloat.new(batch_size, 20).rand(-1, 1)
|
37
|
-
label = Numo::SFloat.cast([1] * batch_size).reshape(batch_size, 1)
|
38
|
-
dcgan_loss = dcgan.train_on_batch(noise, label)
|
39
|
-
|
40
|
-
puts "index: #{index}, dis_loss: #{dis_loss.mean}, dcgan_loss: #{dcgan_loss.mean}"
|
41
|
-
end
|
42
|
-
iter.reset
|
43
|
-
dcgan.save("trained/dcgan_model_epoch#{epoch}.marshal")
|
44
|
-
end
|
27
|
+
dcgan.add_callback(CheckPoint.new("trained/dcgan_model"))
|
28
|
+
dcgan.predict1(Numo::SFloat.zeros(20))
|
29
|
+
dcgan.train(x_train, x_train, epochs, batch_size: batch_size, last_round_down: true)
|
data/examples/iris_example.rb
CHANGED
@@ -3,11 +3,10 @@ require "dnn/datasets/iris"
|
|
3
3
|
# If you use numo/linalg then please uncomment out.
|
4
4
|
# require "numo/linalg/autoloader"
|
5
5
|
|
6
|
+
include DNN::Models
|
6
7
|
include DNN::Layers
|
7
|
-
include DNN::Activations
|
8
8
|
include DNN::Optimizers
|
9
9
|
include DNN::Losses
|
10
|
-
include DNN::Models
|
11
10
|
Iris = DNN::Iris
|
12
11
|
|
13
12
|
x, y = Iris.load(true)
|
@@ -3,11 +3,10 @@ require "dnn/datasets/mnist"
|
|
3
3
|
# If you use numo/linalg then please uncomment out.
|
4
4
|
# require "numo/linalg/autoloader"
|
5
5
|
|
6
|
+
include DNN::Models
|
6
7
|
include DNN::Layers
|
7
|
-
include DNN::Activations
|
8
8
|
include DNN::Optimizers
|
9
9
|
include DNN::Losses
|
10
|
-
include DNN::Models
|
11
10
|
MNIST = DNN::MNIST
|
12
11
|
|
13
12
|
x_train, y_train = MNIST.load_train
|
@@ -3,11 +3,10 @@ require "dnn/datasets/mnist"
|
|
3
3
|
# If you use numo/linalg then please uncomment out.
|
4
4
|
# require "numo/linalg/autoloader"
|
5
5
|
|
6
|
+
include DNN::Models
|
6
7
|
include DNN::Layers
|
7
|
-
include DNN::Activations
|
8
8
|
include DNN::Optimizers
|
9
9
|
include DNN::Losses
|
10
|
-
include DNN::Models
|
11
10
|
MNIST = DNN::MNIST
|
12
11
|
|
13
12
|
x_train, y_train = MNIST.load_train
|
data/examples/mnist_example.rb
CHANGED
@@ -3,11 +3,10 @@ require "dnn/datasets/mnist"
|
|
3
3
|
# If you use numo/linalg then please uncomment out.
|
4
4
|
# require "numo/linalg/autoloader"
|
5
5
|
|
6
|
+
include DNN::Models
|
6
7
|
include DNN::Layers
|
7
|
-
include DNN::Activations
|
8
8
|
include DNN::Optimizers
|
9
9
|
include DNN::Losses
|
10
|
-
include DNN::Models
|
11
10
|
MNIST = DNN::MNIST
|
12
11
|
|
13
12
|
x_train, y_train = MNIST.load_train
|
@@ -3,11 +3,10 @@ require "dnn/datasets/mnist"
|
|
3
3
|
# If you use numo/linalg then please uncomment out.
|
4
4
|
# require "numo/linalg/autoloader"
|
5
5
|
|
6
|
+
include DNN::Models
|
6
7
|
include DNN::Layers
|
7
|
-
include DNN::Activations
|
8
8
|
include DNN::Optimizers
|
9
9
|
include DNN::Losses
|
10
|
-
include DNN::Models
|
11
10
|
MNIST = DNN::MNIST
|
12
11
|
|
13
12
|
x_train, y_train = MNIST.load_train
|
data/examples/xor_example.rb
CHANGED
@@ -1,10 +1,9 @@
|
|
1
1
|
require "dnn"
|
2
2
|
|
3
|
+
include DNN::Models
|
3
4
|
include DNN::Layers
|
4
|
-
include DNN::Activations
|
5
5
|
include DNN::Optimizers
|
6
6
|
include DNN::Losses
|
7
|
-
include DNN::Models
|
8
7
|
|
9
8
|
x = Numo::SFloat[[0, 0], [1, 0], [0, 1], [1, 1]]
|
10
9
|
y = Numo::SFloat[[0], [1], [1], [0]]
|
@@ -20,4 +19,4 @@ model.setup(SGD.new, SigmoidCrossEntropy.new)
|
|
20
19
|
|
21
20
|
model.train(x, y, 20000, batch_size: 4, verbose: false)
|
22
21
|
|
23
|
-
p
|
22
|
+
p model.predict(x)
|
data/lib/dnn.rb
CHANGED
@@ -10,6 +10,7 @@ end
|
|
10
10
|
require_relative "dnn/version"
|
11
11
|
require_relative "dnn/core/error"
|
12
12
|
require_relative "dnn/core/global"
|
13
|
+
require_relative "dnn/core/tensor"
|
13
14
|
require_relative "dnn/core/models"
|
14
15
|
require_relative "dnn/core/param"
|
15
16
|
require_relative "dnn/core/link"
|
@@ -25,5 +26,6 @@ require_relative "dnn/core/cnn_layers"
|
|
25
26
|
require_relative "dnn/core/embedding"
|
26
27
|
require_relative "dnn/core/rnn_layers"
|
27
28
|
require_relative "dnn/core/optimizers"
|
29
|
+
require_relative "dnn/core/callbacks"
|
28
30
|
require_relative "dnn/core/savers"
|
29
31
|
require_relative "dnn/core/utils"
|
data/lib/dnn/core/activations.rb
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
module DNN
|
2
|
-
module
|
2
|
+
module Layers
|
3
3
|
|
4
|
-
class Sigmoid <
|
4
|
+
class Sigmoid < Layer
|
5
5
|
def forward(x)
|
6
6
|
@y = 1 / (1 + Xumo::NMath.exp(-x))
|
7
7
|
end
|
@@ -11,31 +11,28 @@ module DNN
|
|
11
11
|
end
|
12
12
|
end
|
13
13
|
|
14
|
-
|
15
|
-
class Tanh < Layers::Layer
|
14
|
+
class Tanh < Layer
|
16
15
|
def forward(x)
|
17
16
|
@y = Xumo::NMath.tanh(x)
|
18
17
|
end
|
19
18
|
|
20
19
|
def backward(dy)
|
21
|
-
dy * (1 - @y
|
20
|
+
dy * (1 - @y**2)
|
22
21
|
end
|
23
22
|
end
|
24
23
|
|
25
|
-
|
26
|
-
class Softsign < Layers::Layer
|
24
|
+
class Softsign < Layer
|
27
25
|
def forward(x)
|
28
26
|
@x = x
|
29
27
|
x / (1 + x.abs)
|
30
28
|
end
|
31
29
|
|
32
30
|
def backward(dy)
|
33
|
-
dy * (1 / (1 + @x.abs)
|
31
|
+
dy * (1 / (1 + @x.abs)**2)
|
34
32
|
end
|
35
33
|
end
|
36
34
|
|
37
|
-
|
38
|
-
class Softplus < Layers::Layer
|
35
|
+
class Softplus < Layer
|
39
36
|
def forward(x)
|
40
37
|
@x = x
|
41
38
|
Xumo::NMath.log(1 + Xumo::NMath.exp(x))
|
@@ -46,8 +43,7 @@ module DNN
|
|
46
43
|
end
|
47
44
|
end
|
48
45
|
|
49
|
-
|
50
|
-
class Swish < Layers::Layer
|
46
|
+
class Swish < Layer
|
51
47
|
def forward(x)
|
52
48
|
@x = x
|
53
49
|
@y = x * (1 / (1 + Xumo::NMath.exp(-x)))
|
@@ -58,8 +54,7 @@ module DNN
|
|
58
54
|
end
|
59
55
|
end
|
60
56
|
|
61
|
-
|
62
|
-
class ReLU < Layers::Layer
|
57
|
+
class ReLU < Layer
|
63
58
|
def forward(x)
|
64
59
|
@x = x
|
65
60
|
Xumo::SFloat.maximum(0, x)
|
@@ -70,8 +65,7 @@ module DNN
|
|
70
65
|
end
|
71
66
|
end
|
72
67
|
|
73
|
-
|
74
|
-
class LeakyReLU < Layers::Layer
|
68
|
+
class LeakyReLU < Layer
|
75
69
|
attr_reader :alpha
|
76
70
|
|
77
71
|
# @param [Float] alpha The slope when the output value is negative.
|
@@ -102,8 +96,7 @@ module DNN
|
|
102
96
|
end
|
103
97
|
end
|
104
98
|
|
105
|
-
|
106
|
-
class ELU < Layers::Layer
|
99
|
+
class ELU < Layer
|
107
100
|
attr_reader :alpha
|
108
101
|
|
109
102
|
# @param [Float] alpha The slope when the output value is negative.
|
@@ -0,0 +1,136 @@
|
|
1
|
+
module DNN
|
2
|
+
module Callbacks
|
3
|
+
|
4
|
+
class Callback
|
5
|
+
attr_accessor :model
|
6
|
+
|
7
|
+
# Please implement the method used for callback event.
|
8
|
+
|
9
|
+
# Process performed before one training.
|
10
|
+
# def before_epoch; end
|
11
|
+
|
12
|
+
# Process performed after one training.
|
13
|
+
# def after_epoch; end
|
14
|
+
|
15
|
+
# Set the proc to be performed before train on batch processing.
|
16
|
+
# def before_train_on_batch; end
|
17
|
+
|
18
|
+
# Set the proc to be performed after train on batch processing.
|
19
|
+
# def after_train_on_batch; end
|
20
|
+
|
21
|
+
# Set the proc to be performed before test on batch processing.
|
22
|
+
# def before_test_on_batch; end
|
23
|
+
|
24
|
+
# Set the proc to be performed after test on batch processing.
|
25
|
+
# def after_test_on_batch; end
|
26
|
+
end
|
27
|
+
|
28
|
+
# This callback wrap the lambda function.
|
29
|
+
class LambdaCallback < Callback
|
30
|
+
def initialize(event, lambda)
|
31
|
+
instance_eval do
|
32
|
+
define_singleton_method(event) { lambda.call }
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
36
|
+
|
37
|
+
# A callback that save the model at the after of the epoch.
|
38
|
+
class CheckPoint < Callback
|
39
|
+
def initialize(base_file_name)
|
40
|
+
@base_file_name = base_file_name
|
41
|
+
end
|
42
|
+
|
43
|
+
def after_epoch
|
44
|
+
model.save(@base_file_name + "_epoch#{model.last_log[:epoch]}.marshal")
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
# A callback to stop training the model early after test on batch.
|
49
|
+
class EarlyStopping < Callback
|
50
|
+
def initialize(trigger, tolerance)
|
51
|
+
@trigger = trigger
|
52
|
+
@tolerance = tolerance
|
53
|
+
end
|
54
|
+
|
55
|
+
def after_train_on_batch
|
56
|
+
throw :stop, "Early stopped." if judge_early_stopping_train
|
57
|
+
end
|
58
|
+
|
59
|
+
def after_epoch
|
60
|
+
throw :stop, "Early stopped." if judge_early_stopping_test
|
61
|
+
end
|
62
|
+
|
63
|
+
private
|
64
|
+
|
65
|
+
def judge_early_stopping_train
|
66
|
+
case @trigger
|
67
|
+
when :train_loss
|
68
|
+
return true if model.last_log[@trigger].mean <= @tolerance
|
69
|
+
end
|
70
|
+
false
|
71
|
+
end
|
72
|
+
|
73
|
+
def judge_early_stopping_test
|
74
|
+
case @trigger
|
75
|
+
when :test_loss
|
76
|
+
return true if model.last_log[@trigger].mean <= @tolerance
|
77
|
+
when :test_accuracy
|
78
|
+
return true if model.last_log[@trigger] >= @tolerance
|
79
|
+
end
|
80
|
+
false
|
81
|
+
end
|
82
|
+
end
|
83
|
+
|
84
|
+
# A callback to stop training the model if loss is NaN by after train on batch.
|
85
|
+
class NaNStopping < Callback
|
86
|
+
def after_train_on_batch
|
87
|
+
throw :stop, "loss is NaN." if model.last_log[:train_loss].nan?
|
88
|
+
end
|
89
|
+
end
|
90
|
+
|
91
|
+
# A callback that save the log.
|
92
|
+
# The following logs will be recorded.
|
93
|
+
# epoch: Current epoch.
|
94
|
+
# train_loss: Batch training loss.
|
95
|
+
# test_loss: Mean test loss.
|
96
|
+
# test_accuracy: Test accuracy.
|
97
|
+
class Logger < Callback
|
98
|
+
def initialize
|
99
|
+
@log = {
|
100
|
+
epoch: [],
|
101
|
+
train_loss: [],
|
102
|
+
test_loss: [],
|
103
|
+
test_accuracy: [],
|
104
|
+
}
|
105
|
+
end
|
106
|
+
|
107
|
+
def after_epoch
|
108
|
+
logging(:epoch, :test_loss, :test_accuracy)
|
109
|
+
end
|
110
|
+
|
111
|
+
def after_train_on_batch
|
112
|
+
logging(:train_loss)
|
113
|
+
end
|
114
|
+
|
115
|
+
# Get a log.
|
116
|
+
# @param [Symbol] tag Tag indicating the type of Log.
|
117
|
+
# @return [Numo::NArray] Return the recorded log.
|
118
|
+
def get_log(tag)
|
119
|
+
case tag
|
120
|
+
when :epoch
|
121
|
+
Numo::UInt32.cast(@log[tag])
|
122
|
+
else
|
123
|
+
Numo::SFloat.cast(@log[tag])
|
124
|
+
end
|
125
|
+
end
|
126
|
+
|
127
|
+
private def logging(*tags)
|
128
|
+
tags.each do |tag|
|
129
|
+
@log[tag] ||= []
|
130
|
+
@log[tag] << model.last_log[tag]
|
131
|
+
end
|
132
|
+
end
|
133
|
+
end
|
134
|
+
|
135
|
+
end
|
136
|
+
end
|