rsvm 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +6 -0
- data/Gemfile +6 -0
- data/README.md +89 -0
- data/Rakefile +41 -0
- data/ext/libsvm/COPYRIGHT +31 -0
- data/ext/libsvm/FAQ.html +1837 -0
- data/ext/libsvm/README +748 -0
- data/ext/libsvm/extconf.rb +3 -0
- data/ext/libsvm/svm.cpp +3213 -0
- data/ext/libsvm/svm.h +102 -0
- data/lib/svm.rb +119 -0
- data/lib/svm/cross_validation.rb +39 -0
- data/lib/svm/debug.rb +12 -0
- data/lib/svm/model.rb +68 -0
- data/lib/svm/options.rb +69 -0
- data/lib/svm/problem.rb +151 -0
- data/lib/svm/scaler.rb +82 -0
- data/lib/svm/version.rb +3 -0
- data/rsvm.gemspec +25 -0
- data/test/fixtures/heart_scale.csv +270 -0
- data/test/fixtures/unbalanced.csv +164 -0
- data/test/lib/cross_validation_test.rb +35 -0
- data/test/lib/model_test.rb +84 -0
- data/test/lib/problem_test.rb +39 -0
- data/test/lib/scaler_test.rb +57 -0
- data/test/test_helper.rb +3 -0
- metadata +101 -0
data/.gitignore
ADDED
data/Gemfile
ADDED
data/README.md
ADDED
@@ -0,0 +1,89 @@
|
|
1
|
+
# RSVM
|
2
|
+
|
3
|
+
RSVM is a Ruby gem to perform Support Vector Machine classification and regresion
|
4
|
+
in Ruby. It is FFI wrapper of libsvm.
|
5
|
+
|
6
|
+
## Usage
|
7
|
+
|
8
|
+
```ruby
|
9
|
+
problem = Svm::Problem.new
|
10
|
+
|
11
|
+
# These are the training samples. The first element in each array is the label
|
12
|
+
# for the sample, the rest is the sample coordinates.
|
13
|
+
|
14
|
+
problem.data = [
|
15
|
+
[1, 1, 0, 1],
|
16
|
+
[-1, -1, 0, -1]
|
17
|
+
]
|
18
|
+
|
19
|
+
# Generate a model from this problem
|
20
|
+
|
21
|
+
model = problem.generate_model(:kernel_type => :linear, :c => 10)
|
22
|
+
|
23
|
+
# And make predictions
|
24
|
+
|
25
|
+
model.predict([-1, 0, -1]) # - 1
|
26
|
+
model.predict([1, 0, 1]) # 1
|
27
|
+
|
28
|
+
# Models can be saved to a file
|
29
|
+
|
30
|
+
model.save(file.path)
|
31
|
+
|
32
|
+
loaded_model = Svm::Model.load(file.path)
|
33
|
+
|
34
|
+
loaded_model.predict([-1, 0, -1]) # -1
|
35
|
+
loaded_model.predict([1, 0, 1]) # 1
|
36
|
+
|
37
|
+
## Load data from csv
|
38
|
+
|
39
|
+
```ruby
|
40
|
+
csv_path = File.join(File.dirname(__FILE__), '..', 'fixtures', 'heart_scale.csv')
|
41
|
+
problem = Svm::Problem.load_from_csv(csv_path)
|
42
|
+
```
|
43
|
+
|
44
|
+
For the Support Vector Machine to perform well the features in the samples data must
|
45
|
+
be of the same order of magnitude. RSVM can scale your data linearly to the [-1, 1] range.
|
46
|
+
|
47
|
+
## Scaling data
|
48
|
+
|
49
|
+
```ruby
|
50
|
+
data = [
|
51
|
+
[1, 12.0, -7.6, 100_000, 0],
|
52
|
+
[2, 30.0, 0, -100_000, 0],
|
53
|
+
[3, 36.0, 7.6, 0, 0]
|
54
|
+
]
|
55
|
+
|
56
|
+
problem = Svm::Problem.new(data, scale: true)
|
57
|
+
```
|
58
|
+
|
59
|
+
## Estimate probabilities
|
60
|
+
|
61
|
+
```ruby
|
62
|
+
|
63
|
+
problem.estimate_probabilities = true
|
64
|
+
model = problem.generate_model
|
65
|
+
|
66
|
+
sample = [60.0, 1.0, 3.0, 140.0, 185.0, 0.0, 2.0, 155.0, 0.0, 3.0, 2.0, 0.0, 3.0]
|
67
|
+
probs = model.predict_probabilities(sample)
|
68
|
+
|
69
|
+
# Return a hash with the probabilities associated with the sample
|
70
|
+
# {1=>0.4443737921739047, -1=>0.5556262078260953}
|
71
|
+
```
|
72
|
+
|
73
|
+
## Find parameters doing grid search
|
74
|
+
|
75
|
+
```ruby
|
76
|
+
problem = Svm::Problem.load_from_csv(UNBALANCED_CSV)
|
77
|
+
n_folds = 3
|
78
|
+
|
79
|
+
# This will perform a grid search using each combination with c from 2^1 up to 2^14
|
80
|
+
# and gamma from 2^-13 up to 2^-1. For each combination it will use crossvalidation
|
81
|
+
# using 3 folds.
|
82
|
+
|
83
|
+
options = problem.find_best_parameters(n_folds)
|
84
|
+
|
85
|
+
# Result:
|
86
|
+
# {:c=>64, :gamma=>(1/128)}
|
87
|
+
```
|
88
|
+
|
89
|
+
|
data/Rakefile
ADDED
@@ -0,0 +1,41 @@
|
|
1
|
+
require "bundler/gem_tasks"
|
2
|
+
require 'rake'
|
3
|
+
require 'rake/testtask'
|
4
|
+
require 'rake/clean'
|
5
|
+
|
6
|
+
task :default => :test
|
7
|
+
|
8
|
+
LIB_EXT = RbConfig::CONFIG['DLEXT']
|
9
|
+
|
10
|
+
desc "Run unit tests"
|
11
|
+
Rake::TestTask.new do |test|
|
12
|
+
test.libs << "test"
|
13
|
+
test.test_files = Dir[ "test/**/*_test.rb"]
|
14
|
+
test.verbose = false
|
15
|
+
end
|
16
|
+
|
17
|
+
# rule to build the extension: this says
|
18
|
+
# that the extension should be rebuilt
|
19
|
+
# after any change to the files in ext
|
20
|
+
file "lib/libsvm/libsvm.#{LIB_EXT}" =>
|
21
|
+
Dir.glob("ext/libsvm/*{.rb,.c}") do
|
22
|
+
Dir.chdir("ext/libsvm") do
|
23
|
+
# this does essentially the same thing
|
24
|
+
# as what rubygems does
|
25
|
+
ruby "extconf.rb"
|
26
|
+
sh "make"
|
27
|
+
end
|
28
|
+
|
29
|
+
cp "ext/libsvm/libsvm.#{LIB_EXT}", "lib/libsvm/libsvm.#{LIB_EXT}"
|
30
|
+
end
|
31
|
+
|
32
|
+
# make the :test task depend on the shared
|
33
|
+
# object, so it will be built automatically
|
34
|
+
# before running the tests
|
35
|
+
task :test => "lib/libsvm/libsvm.#{LIB_EXT}"
|
36
|
+
|
37
|
+
# use 'rake clean' and 'rake clobber' to
|
38
|
+
# easily delete generated files
|
39
|
+
CLEAN.include("ext/**/*{.o,.log,.#{LIB_EXT}}")
|
40
|
+
CLEAN.include('ext/**/Makefile')
|
41
|
+
CLOBBER.include("lib/**/*.#{LIB_EXT}")
|
@@ -0,0 +1,31 @@
|
|
1
|
+
|
2
|
+
Copyright (c) 2000-2011 Chih-Chung Chang and Chih-Jen Lin
|
3
|
+
All rights reserved.
|
4
|
+
|
5
|
+
Redistribution and use in source and binary forms, with or without
|
6
|
+
modification, are permitted provided that the following conditions
|
7
|
+
are met:
|
8
|
+
|
9
|
+
1. Redistributions of source code must retain the above copyright
|
10
|
+
notice, this list of conditions and the following disclaimer.
|
11
|
+
|
12
|
+
2. Redistributions in binary form must reproduce the above copyright
|
13
|
+
notice, this list of conditions and the following disclaimer in the
|
14
|
+
documentation and/or other materials provided with the distribution.
|
15
|
+
|
16
|
+
3. Neither name of copyright holders nor the names of its contributors
|
17
|
+
may be used to endorse or promote products derived from this software
|
18
|
+
without specific prior written permission.
|
19
|
+
|
20
|
+
|
21
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
22
|
+
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
23
|
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
24
|
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
|
25
|
+
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
26
|
+
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
27
|
+
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
28
|
+
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
29
|
+
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
30
|
+
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
31
|
+
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
data/ext/libsvm/FAQ.html
ADDED
@@ -0,0 +1,1837 @@
|
|
1
|
+
<html>
|
2
|
+
<head>
|
3
|
+
<title>LIBSVM FAQ</title>
|
4
|
+
</head>
|
5
|
+
<body bgcolor="#ffffcc">
|
6
|
+
|
7
|
+
<a name="_TOP"><b><h1><a
|
8
|
+
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a> FAQ </h1></b></a>
|
9
|
+
<b>last modified : </b>
|
10
|
+
Tue, 11 Oct 2011 13:35:12 GMT
|
11
|
+
<class="categories">
|
12
|
+
<li><a
|
13
|
+
href="#_TOP">All Questions</a>(75)</li>
|
14
|
+
<ul><b>
|
15
|
+
<li><a
|
16
|
+
href="#/Q1:_Some_sample_uses_of_libsvm">Q1:_Some_sample_uses_of_libsvm</a>(2)</li>
|
17
|
+
<li><a
|
18
|
+
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(12)</li>
|
19
|
+
<li><a
|
20
|
+
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(7)</li>
|
21
|
+
<li><a
|
22
|
+
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(33)</li>
|
23
|
+
<li><a
|
24
|
+
href="#/Q5:_Probability_outputs">Q5:_Probability_outputs</a>(3)</li>
|
25
|
+
<li><a
|
26
|
+
href="#/Q6:_Graphic_interface">Q6:_Graphic_interface</a>(3)</li>
|
27
|
+
<li><a
|
28
|
+
href="#/Q7:_Java_version_of_libsvm">Q7:_Java_version_of_libsvm</a>(4)</li>
|
29
|
+
<li><a
|
30
|
+
href="#/Q8:_Python_interface">Q8:_Python_interface</a>(1)</li>
|
31
|
+
<li><a
|
32
|
+
href="#/Q9:_MATLAB_interface">Q9:_MATLAB_interface</a>(10)</li>
|
33
|
+
</b></ul>
|
34
|
+
</li>
|
35
|
+
|
36
|
+
<ul><ul class="headlines">
|
37
|
+
<li class="headlines_item"><a href="#faq101">Some courses which have used libsvm as a tool</a></li>
|
38
|
+
<li class="headlines_item"><a href="#faq102">Some applications/tools which have used libsvm </a></li>
|
39
|
+
<li class="headlines_item"><a href="#f201">Where can I find documents/videos of libsvm ?</a></li>
|
40
|
+
<li class="headlines_item"><a href="#f202">Where are change log and earlier versions?</a></li>
|
41
|
+
<li class="headlines_item"><a href="#f203">How to cite LIBSVM?</a></li>
|
42
|
+
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
|
43
|
+
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
|
44
|
+
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
|
45
|
+
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
|
46
|
+
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ? </a></li>
|
47
|
+
<li class="headlines_item"><a href="#f209">What is the difference between "." and "*" outputed during training? </a></li>
|
48
|
+
<li class="headlines_item"><a href="#f210">Why occasionally the program (including MATLAB or other interfaces) crashes and gives a segmentation fault?</a></li>
|
49
|
+
<li class="headlines_item"><a href="#f211">How to build a dynamic library (.dll file) on MS windows?</a></li>
|
50
|
+
<li class="headlines_item"><a href="#f212">On some systems (e.g., Ubuntu), compiling LIBSVM gives many warning messages. Is this a problem and how to disable the warning message?</a></li>
|
51
|
+
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
|
52
|
+
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
|
53
|
+
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
|
54
|
+
<li class="headlines_item"><a href="#f304">Why sometimes the last line of my data is not read by svm-train?</a></li>
|
55
|
+
<li class="headlines_item"><a href="#f305">Is there a program to check if my data are in the correct format?</a></li>
|
56
|
+
<li class="headlines_item"><a href="#f306">May I put comments in data files?</a></li>
|
57
|
+
<li class="headlines_item"><a href="#f307">How to convert other data formats to LIBSVM format?</a></li>
|
58
|
+
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
|
59
|
+
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
|
60
|
+
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
|
61
|
+
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
|
62
|
+
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
|
63
|
+
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
|
64
|
+
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
|
65
|
+
<li class="headlines_item"><a href="#f408">Does it make a big difference if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
|
66
|
+
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
|
67
|
+
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
|
68
|
+
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
|
69
|
+
<li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
|
70
|
+
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
|
71
|
+
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
|
72
|
+
<li class="headlines_item"><a href="#f4141">Does shrinking always help?</a></li>
|
73
|
+
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
|
74
|
+
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
|
75
|
+
<li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
|
76
|
+
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train?</a></li>
|
77
|
+
<li class="headlines_item"><a href="#f418">I would like to use my own kernel. Any example? In svm.cpp, there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
|
78
|
+
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
|
79
|
+
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
|
80
|
+
<li class="headlines_item"><a href="#f4201">Why my cross-validation results are different from those in the Practical Guide?</a></li>
|
81
|
+
<li class="headlines_item"><a href="#f421">On some systems CV accuracy is the same in several runs. How could I use different data partitions? In other words, how do I set random seed in LIBSVM?</a></li>
|
82
|
+
<li class="headlines_item"><a href="#f422">I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
|
83
|
+
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
|
84
|
+
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
|
85
|
+
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
|
86
|
+
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
|
87
|
+
<li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
|
88
|
+
<li class="headlines_item"><a href="#f431">I don't know class labels of test data. What should I put in the first column of the test file?</a></li>
|
89
|
+
<li class="headlines_item"><a href="#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a></li>
|
90
|
+
<li class="headlines_item"><a href="#f433">How could I know which training instances are support vectors?</a></li>
|
91
|
+
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes a longer time?</a></li>
|
92
|
+
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
|
93
|
+
<li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
|
94
|
+
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
|
95
|
+
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
|
96
|
+
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
|
97
|
+
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
|
98
|
+
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
|
99
|
+
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
|
100
|
+
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
|
101
|
+
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
|
102
|
+
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
|
103
|
+
<li class="headlines_item"><a href="#f8011">On 64bit Windows I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
|
104
|
+
<li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
|
105
|
+
<li class="headlines_item"><a href="#f803">How could I use MATLAB interface for parameter selection?</a></li>
|
106
|
+
<li class="headlines_item"><a href="#f8031">I use MATLAB parallel programming toolbox on a multi-core environment for parameter selection. Why the program is even slower?</a></li>
|
107
|
+
<li class="headlines_item"><a href="#f8032">How do I use LIBSVM with OpenMP under MATLAB?</a></li>
|
108
|
+
<li class="headlines_item"><a href="#f804">How could I generate the primal variable w of linear SVM?</a></li>
|
109
|
+
<li class="headlines_item"><a href="#f805">Is there an OCTAVE interface for libsvm?</a></li>
|
110
|
+
<li class="headlines_item"><a href="#f806">How to handle the name conflict between svmtrain in the libsvm matlab interface and that in MATLAB bioinformatics toolbox?</a></li>
|
111
|
+
<li class="headlines_item"><a href="#f807">On Windows I got an error message "Invalid MEX-file: Specific module not found" when running the pre-built MATLAB interface in the windows sub-directory. What should I do?</a></li>
|
112
|
+
</ul></ul>
|
113
|
+
|
114
|
+
|
115
|
+
<hr size="5" noshade />
|
116
|
+
<p/>
|
117
|
+
|
118
|
+
<a name="/Q1:_Some_sample_uses_of_libsvm"></a>
|
119
|
+
<a name="faq101"><b>Q: Some courses which have used libsvm as a tool</b></a>
|
120
|
+
<br/>
|
121
|
+
<ul>
|
122
|
+
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,
|
123
|
+
Faculty of Applied Science, University of Freiburg, Germany
|
124
|
+
</a>
|
125
|
+
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
|
126
|
+
Division of Mathematics and Computer Science.
|
127
|
+
Faculteit der Exacte Wetenschappen
|
128
|
+
Vrije Universiteit, The Netherlands. </a>
|
129
|
+
<li>
|
130
|
+
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
|
131
|
+
Electrical and Computer Engineering Department,
|
132
|
+
University of Wisconsin-Madison
|
133
|
+
</a>
|
134
|
+
<li>
|
135
|
+
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
|
136
|
+
Technion (Israel Institute of Technology), Israel.
|
137
|
+
<li>
|
138
|
+
<a href=http://www.cise.ufl.edu/~fu/learn.html>
|
139
|
+
Computer and Information Sciences Dept., University of Florida</a>
|
140
|
+
<li>
|
141
|
+
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
|
142
|
+
The Institute of Computer Science,
|
143
|
+
University of Nairobi, Kenya.</a>
|
144
|
+
<li>
|
145
|
+
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
|
146
|
+
Applied Mathematics and Computer Science, University of Iceland.
|
147
|
+
<li>
|
148
|
+
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
|
149
|
+
SVM tutorial in machine learning
|
150
|
+
summer school, University of Chicago, 2005.
|
151
|
+
</a>
|
152
|
+
</ul>
|
153
|
+
<p align="right">
|
154
|
+
<a href="#_TOP">[Go Top]</a>
|
155
|
+
<hr/>
|
156
|
+
<a name="/Q1:_Some_sample_uses_of_libsvm"></a>
|
157
|
+
<a name="faq102"><b>Q: Some applications/tools which have used libsvm </b></a>
|
158
|
+
<br/>
|
159
|
+
(and maybe liblinear).
|
160
|
+
<ul>
|
161
|
+
<li>
|
162
|
+
<a href=http://people.csail.mit.edu/jjl/libpmk/>LIBPMK: A Pyramid Match Toolkit</a>
|
163
|
+
</li>
|
164
|
+
<li><a href=http://maltparser.org/>Maltparser</a>:
|
165
|
+
a system for data-driven dependency parsing
|
166
|
+
</li>
|
167
|
+
<li>
|
168
|
+
<a href=http://www.pymvpa.org/>PyMVPA: python tool for classifying neuroimages</a>
|
169
|
+
</li>
|
170
|
+
<li>
|
171
|
+
<a href=http://solpro.proteomics.ics.uci.edu/>
|
172
|
+
SOLpro: protein solubility predictor
|
173
|
+
</a>
|
174
|
+
</li>
|
175
|
+
<li>
|
176
|
+
<a href=http://bdval.campagnelab.org>
|
177
|
+
BDVal</a>: biomarker discovery in high-throughput datasets.
|
178
|
+
</li>
|
179
|
+
<li><a href=http://johel.m.free.fr/demo_045.htm>
|
180
|
+
Realtime object recognition</a>
|
181
|
+
</li>
|
182
|
+
<li><a href=http://scikit-learn.sourceforge.net/>
|
183
|
+
scikits.learn: machine learning in Python</a>
|
184
|
+
</li>
|
185
|
+
</ul>
|
186
|
+
<p align="right">
|
187
|
+
<a href="#_TOP">[Go Top]</a>
|
188
|
+
<hr/>
|
189
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
190
|
+
<a name="f201"><b>Q: Where can I find documents/videos of libsvm ?</b></a>
|
191
|
+
<br/>
|
192
|
+
<p>
|
193
|
+
|
194
|
+
<ul>
|
195
|
+
<li>
|
196
|
+
Official implementation document:
|
197
|
+
<br>
|
198
|
+
C.-C. Chang and
|
199
|
+
C.-J. Lin.
|
200
|
+
LIBSVM
|
201
|
+
: a library for support vector machines.
|
202
|
+
ACM Transactions on Intelligent
|
203
|
+
Systems and Technology, 2:27:1--27:27, 2011.
|
204
|
+
<a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">pdf</a>, <a href=http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz>ps.gz</a>,
|
205
|
+
<a href=http://portal.acm.org/citation.cfm?id=1961199&CFID=29950432&CFTOKEN=30974232>ACM digital lib</a>.
|
206
|
+
|
207
|
+
|
208
|
+
<li> Instructions for using LIBSVM are in the README files in the main directory and some sub-directories.
|
209
|
+
<br>
|
210
|
+
README in the main directory: details all options, data format, and library calls.
|
211
|
+
<br>
|
212
|
+
tools/README: parameter selection and other tools
|
213
|
+
<li>
|
214
|
+
A guide for beginners:
|
215
|
+
<br>
|
216
|
+
C.-W. Hsu, C.-C. Chang, and
|
217
|
+
C.-J. Lin.
|
218
|
+
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
|
219
|
+
A practical guide to support vector classification
|
220
|
+
</A>
|
221
|
+
<li> An <a href=http://www.youtube.com/watch?v=gePWtNAQcK8>introductory video</a>
|
222
|
+
for windows users.
|
223
|
+
|
224
|
+
</ul>
|
225
|
+
<p align="right">
|
226
|
+
<a href="#_TOP">[Go Top]</a>
|
227
|
+
<hr/>
|
228
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
229
|
+
<a name="f202"><b>Q: Where are change log and earlier versions?</b></a>
|
230
|
+
<br/>
|
231
|
+
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.
|
232
|
+
|
233
|
+
<p> You can download earlier versions
|
234
|
+
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
|
235
|
+
<p align="right">
|
236
|
+
<a href="#_TOP">[Go Top]</a>
|
237
|
+
<hr/>
|
238
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
239
|
+
<a name="f203"><b>Q: How to cite LIBSVM?</b></a>
|
240
|
+
<br/>
|
241
|
+
<p>
|
242
|
+
Please cite the following paper:
|
243
|
+
<p>
|
244
|
+
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
|
245
|
+
: a library for support vector machines.
|
246
|
+
ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.
|
247
|
+
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
|
248
|
+
<p>
|
249
|
+
The bibtex format is
|
250
|
+
<pre>
|
251
|
+
@article{CC01a,
|
252
|
+
author = {Chang, Chih-Chung and Lin, Chih-Jen},
|
253
|
+
title = {{LIBSVM}: A library for support vector machines},
|
254
|
+
journal = {ACM Transactions on Intelligent Systems and Technology},
|
255
|
+
volume = {2},
|
256
|
+
issue = {3},
|
257
|
+
year = {2011},
|
258
|
+
pages = {27:1--27:27},
|
259
|
+
note = {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
|
260
|
+
}
|
261
|
+
</pre>
|
262
|
+
<p align="right">
|
263
|
+
<a href="#_TOP">[Go Top]</a>
|
264
|
+
<hr/>
|
265
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
266
|
+
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
|
267
|
+
<br/>
|
268
|
+
<p>
|
269
|
+
The libsvm license ("the modified BSD license")
|
270
|
+
is compatible with many
|
271
|
+
free software licenses such as GPL. Hence, it is very easy to
|
272
|
+
use libsvm in your software.
|
273
|
+
Please check the COPYRIGHT file in detail. Basically
|
274
|
+
you need to
|
275
|
+
<ol>
|
276
|
+
<li>
|
277
|
+
Clearly indicate that LIBSVM is used.
|
278
|
+
</li>
|
279
|
+
<li>
|
280
|
+
Retain the LIBSVM COPYRIGHT file in your software.
|
281
|
+
</li>
|
282
|
+
</ol>
|
283
|
+
It can also be used in commercial products.
|
284
|
+
<p align="right">
|
285
|
+
<a href="#_TOP">[Go Top]</a>
|
286
|
+
<hr/>
|
287
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
288
|
+
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
|
289
|
+
<br/>
|
290
|
+
<p>
|
291
|
+
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm
|
292
|
+
tools</a>
|
293
|
+
<p align="right">
|
294
|
+
<a href="#_TOP">[Go Top]</a>
|
295
|
+
<hr/>
|
296
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
297
|
+
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
|
298
|
+
<br/>
|
299
|
+
|
300
|
+
<p>
|
301
|
+
This usually happens if you compile the code
|
302
|
+
on one machine and run it on another which has incompatible
|
303
|
+
libraries.
|
304
|
+
Try to recompile the program on that machine or use static linking.
|
305
|
+
<p align="right">
|
306
|
+
<a href="#_TOP">[Go Top]</a>
|
307
|
+
<hr/>
|
308
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
309
|
+
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
|
310
|
+
<br/>
|
311
|
+
|
312
|
+
<p>
|
313
|
+
Build it as a project by choosing "Win32 Project."
|
314
|
+
On the other hand, for "svm-train" and "svm-predict"
|
315
|
+
you want to choose "Win32 Console Project."
|
316
|
+
After libsvm 2.5, you can also use the file Makefile.win.
|
317
|
+
See details in README.
|
318
|
+
|
319
|
+
|
320
|
+
<p>
|
321
|
+
If you are not using Makefile.win and see the following
|
322
|
+
link error
|
323
|
+
<pre>
|
324
|
+
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
|
325
|
+
_wWinMain@16
|
326
|
+
</pre>
|
327
|
+
you may have selected a wrong project type.
|
328
|
+
<p align="right">
|
329
|
+
<a href="#_TOP">[Go Top]</a>
|
330
|
+
<hr/>
|
331
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
332
|
+
<a name="f208"><b>Q: I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ? </b></a>
|
333
|
+
<br/>
|
334
|
+
|
335
|
+
<p>
|
336
|
+
You need to open a command window
|
337
|
+
and type svmtrain.exe to see all options.
|
338
|
+
Some examples are in README file.
|
339
|
+
<p align="right">
|
340
|
+
<a href="#_TOP">[Go Top]</a>
|
341
|
+
<hr/>
|
342
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
343
|
+
<a name="f209"><b>Q: What is the difference between "." and "*" outputed during training? </b></a>
|
344
|
+
<br/>
|
345
|
+
|
346
|
+
<p>
|
347
|
+
"." means every 1,000 iterations (or every #data
|
348
|
+
iterations is your #data is less than 1,000).
|
349
|
+
"*" means that after iterations of using
|
350
|
+
a smaller shrunk problem,
|
351
|
+
we reset to use the whole set. See the
|
352
|
+
<a href=../papers/libsvm.pdf>implementation document</a> for details.
|
353
|
+
<p align="right">
|
354
|
+
<a href="#_TOP">[Go Top]</a>
|
355
|
+
<hr/>
|
356
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
357
|
+
<a name="f210"><b>Q: Why occasionally the program (including MATLAB or other interfaces) crashes and gives a segmentation fault?</b></a>
|
358
|
+
<br/>
|
359
|
+
|
360
|
+
<p>
|
361
|
+
Very likely the program consumes too much memory than what the
|
362
|
+
operating system can provide. Try a smaller data and see if the
|
363
|
+
program still crashes.
|
364
|
+
<p align="right">
|
365
|
+
<a href="#_TOP">[Go Top]</a>
|
366
|
+
<hr/>
|
367
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
368
|
+
<a name="f211"><b>Q: How to build a dynamic library (.dll file) on MS windows?</b></a>
|
369
|
+
<br/>
|
370
|
+
<p>
|
371
|
+
|
372
|
+
The easiest way is to use Makefile.win.
|
373
|
+
See details in README.
|
374
|
+
|
375
|
+
Alternatively, you can use Visual C++. Here is
|
376
|
+
the example using Visual Studio .Net 2008:
|
377
|
+
<ol>
|
378
|
+
<li>Create a Win32 empty DLL project and set (in Project->$Project_Name
|
379
|
+
Properties...->Configuration) to "Release."
|
380
|
+
About how to create a new dynamic link library, please refer to
|
381
|
+
<a href=http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx>http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx</a>
|
382
|
+
|
383
|
+
<li> Add svm.cpp, svm.h to your project.
|
384
|
+
<li> Add __WIN32__ and _CRT_SECURE_NO_DEPRECATE to Preprocessor definitions (in
|
385
|
+
Project->$Project_Name Properties...->C/C++->Preprocessor)
|
386
|
+
<li> Set Create/Use Precompiled Header to Not Using Precompiled Headers
|
387
|
+
(in Project->$Project_Name Properties...->C/C++->Precompiled Headers)
|
388
|
+
<li> Set the path for the Modulation Definition File svm.def (in
|
389
|
+
Project->$Project_Name Properties...->Linker->input
|
390
|
+
<li> Build the DLL.
|
391
|
+
<li> Rename the dll file to libsvm.dll and move it to the correct path.
|
392
|
+
</ol>
|
393
|
+
|
394
|
+
|
395
|
+
<p align="right">
|
396
|
+
<a href="#_TOP">[Go Top]</a>
|
397
|
+
<hr/>
|
398
|
+
<a name="/Q2:_Installation_and_running_the_program"></a>
|
399
|
+
<a name="f212"><b>Q: On some systems (e.g., Ubuntu), compiling LIBSVM gives many warning messages. Is this a problem and how to disable the warning message?</b></a>
|
400
|
+
<br/>
|
401
|
+
|
402
|
+
<p>
|
403
|
+
The warning message is like
|
404
|
+
<pre>
|
405
|
+
svm.cpp:2730: warning: ignoring return value of int fscanf(FILE*, const char*, ...), declared with attribute warn_unused_result
|
406
|
+
</pre>
|
407
|
+
but this is not a problem. In the future we may modify the code
|
408
|
+
so that these messages do not appear.
|
409
|
+
At this moment, to disable the warning message you can replace
|
410
|
+
<pre>
|
411
|
+
CFLAGS = -Wall -Wconversion -O3 -fPIC
|
412
|
+
</pre>
|
413
|
+
with
|
414
|
+
<pre>
|
415
|
+
CFLAGS = -Wall -Wconversion -O3 -fPIC -U_FORTIFY_SOURCE
|
416
|
+
</pre>
|
417
|
+
in Makefile.
|
418
|
+
<p align="right">
|
419
|
+
<a href="#_TOP">[Go Top]</a>
|
420
|
+
<hr/>
|
421
|
+
<a name="/Q3:_Data_preparation"></a>
|
422
|
+
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
|
423
|
+
<br/>
|
424
|
+
<p>
|
425
|
+
libsvm uses the so called "sparse" format where zero
|
426
|
+
values do not need to be stored. Hence a data with attributes
|
427
|
+
<pre>
|
428
|
+
1 0 2 0
|
429
|
+
</pre>
|
430
|
+
is represented as
|
431
|
+
<pre>
|
432
|
+
1:1 3:2
|
433
|
+
</pre>
|
434
|
+
<p align="right">
|
435
|
+
<a href="#_TOP">[Go Top]</a>
|
436
|
+
<hr/>
|
437
|
+
<a name="/Q3:_Data_preparation"></a>
|
438
|
+
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
|
439
|
+
<br/>
|
440
|
+
<p>
|
441
|
+
Currently libsvm supports only numerical data.
|
442
|
+
You may have to change non-numerical data to
|
443
|
+
numerical. For example, you can use several
|
444
|
+
binary attributes to represent a categorical
|
445
|
+
attribute.
|
446
|
+
<p align="right">
|
447
|
+
<a href="#_TOP">[Go Top]</a>
|
448
|
+
<hr/>
|
449
|
+
<a name="/Q3:_Data_preparation"></a>
|
450
|
+
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
|
451
|
+
<br/>
|
452
|
+
<p>
|
453
|
+
This is a controversial issue. The kernel
|
454
|
+
evaluation (i.e. inner product) of sparse vectors is slower
|
455
|
+
so the total training time can be at least twice or three times
|
456
|
+
of that using the dense format.
|
457
|
+
However, we cannot support only dense format as then we CANNOT
|
458
|
+
handle extremely sparse cases. Simplicity of the code is another
|
459
|
+
concern. Right now we decide to support
|
460
|
+
the sparse format only.
|
461
|
+
<p align="right">
|
462
|
+
<a href="#_TOP">[Go Top]</a>
|
463
|
+
<hr/>
|
464
|
+
<a name="/Q3:_Data_preparation"></a>
|
465
|
+
<a name="f304"><b>Q: Why sometimes the last line of my data is not read by svm-train?</b></a>
|
466
|
+
<br/>
|
467
|
+
|
468
|
+
<p>
|
469
|
+
We assume that you have '\n' in the end of
|
470
|
+
each line. So please press enter in the end
|
471
|
+
of your last line.
|
472
|
+
<p align="right">
|
473
|
+
<a href="#_TOP">[Go Top]</a>
|
474
|
+
<hr/>
|
475
|
+
<a name="/Q3:_Data_preparation"></a>
|
476
|
+
<a name="f305"><b>Q: Is there a program to check if my data are in the correct format?</b></a>
|
477
|
+
<br/>
|
478
|
+
|
479
|
+
<p>
|
480
|
+
The svm-train program in libsvm conducts only a simple check of the input data. To do a
|
481
|
+
detailed check, after libsvm 2.85, you can use the python script tools/checkdata.py. See tools/README for details.
|
482
|
+
<p align="right">
|
483
|
+
<a href="#_TOP">[Go Top]</a>
|
484
|
+
<hr/>
|
485
|
+
<a name="/Q3:_Data_preparation"></a>
|
486
|
+
<a name="f306"><b>Q: May I put comments in data files?</b></a>
|
487
|
+
<br/>
|
488
|
+
|
489
|
+
<p>
|
490
|
+
We don't officially support this. But, cureently LIBSVM
|
491
|
+
is able to process data in the following
|
492
|
+
format:
|
493
|
+
<pre>
|
494
|
+
1 1:2 2:1 # your comments
|
495
|
+
</pre>
|
496
|
+
Note that the character ":" should not appear in your
|
497
|
+
comments.
|
498
|
+
<!--
|
499
|
+
No, for simplicity we don't support that.
|
500
|
+
However, you can easily preprocess your data before
|
501
|
+
using libsvm. For example,
|
502
|
+
if you have the following data
|
503
|
+
<pre>
|
504
|
+
test.txt
|
505
|
+
1 1:2 2:1 # proten A
|
506
|
+
</pre>
|
507
|
+
then on unix machines you can do
|
508
|
+
<pre>
|
509
|
+
cut -d '#' -f 1 < test.txt > test.features
|
510
|
+
cut -d '#' -f 2 < test.txt > test.comments
|
511
|
+
svm-predict test.feature train.model test.predicts
|
512
|
+
paste -d '#' test.predicts test.comments | sed 's/#/ #/' > test.results
|
513
|
+
</pre>
|
514
|
+
-->
|
515
|
+
<p align="right">
|
516
|
+
<a href="#_TOP">[Go Top]</a>
|
517
|
+
<hr/>
|
518
|
+
<a name="/Q3:_Data_preparation"></a>
|
519
|
+
<a name="f307"><b>Q: How to convert other data formats to LIBSVM format?</b></a>
|
520
|
+
<br/>
|
521
|
+
|
522
|
+
<p>
|
523
|
+
It depends on your data format. A simple way is to use
|
524
|
+
libsvmwrite in the libsvm matlab/octave interface.
|
525
|
+
|
526
|
+
Take a CSV (comma-separated values) file
|
527
|
+
in UCI machine learning repository as an example.
|
528
|
+
We download <a href=http://archive.ics.uci.edu/ml/machine-learning-databases/spect/SPECTF.train>SPECTF.train</a>.
|
529
|
+
Labels are in the first column. The following steps produce
|
530
|
+
a file in the libsvm format.
|
531
|
+
<pre>
|
532
|
+
matlab> SPECTF = csvread('SPECTF.train'); % read a csv file
|
533
|
+
matlab> labels = SPECTF(:, 1); % labels from the 1st column
|
534
|
+
matlab> features = SPECTF(:, 2:end);
|
535
|
+
matlab> features_sparse = sparse(features); % features must be in a sparse matrix
|
536
|
+
matlab> libsvmwrite('SPECTFlibsvm.train', labels, features_sparse);
|
537
|
+
</pre>
|
538
|
+
The tranformed data are stored in SPECTFlibsvm.train.
|
539
|
+
|
540
|
+
<p>
|
541
|
+
Alternatively, you can use <a href="./faqfiles/convert.c">convert.c</a>
|
542
|
+
to convert CSV format to libsvm format.
|
543
|
+
<p align="right">
|
544
|
+
<a href="#_TOP">[Go Top]</a>
|
545
|
+
<hr/>
|
546
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
547
|
+
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
|
548
|
+
<br/>
|
549
|
+
<br>optimization finished, #iter = 219
|
550
|
+
<br>nu = 0.431030
|
551
|
+
<br>obj = -100.877286, rho = 0.424632
|
552
|
+
<br>nSV = 132, nBSV = 107
|
553
|
+
<br>Total nSV = 132
|
554
|
+
<p>
|
555
|
+
obj is the optimal objective value of the dual SVM problem.
|
556
|
+
rho is the bias term in the decision function
|
557
|
+
sgn(w^Tx - rho).
|
558
|
+
nSV and nBSV are number of support vectors and bounded support
|
559
|
+
vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
|
560
|
+
form of C-SVM where C is replaced by nu. nu simply shows the
|
561
|
+
corresponding parameter. More details are in
|
562
|
+
<a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">
|
563
|
+
libsvm document</a>.
|
564
|
+
<p align="right">
|
565
|
+
<a href="#_TOP">[Go Top]</a>
|
566
|
+
<hr/>
|
567
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
568
|
+
<a name="f402"><b>Q: Can you explain more about the model file?</b></a>
|
569
|
+
<br/>
|
570
|
+
|
571
|
+
<p>
|
572
|
+
After the parameters, each line represents a support vector.
|
573
|
+
Support vectors are listed in the order of "labels" listed earlier.
|
574
|
+
(i.e., those from the first class in the "labels" list are
|
575
|
+
grouped first, and so on.)
|
576
|
+
If k is the total number of classes,
|
577
|
+
in front of a support vector in class j, there are
|
578
|
+
k-1 coefficients
|
579
|
+
y*alpha where alpha are dual solution of the
|
580
|
+
following two class problems:
|
581
|
+
<br>
|
582
|
+
1 vs j, 2 vs j, ..., j-1 vs j, j vs j+1, j vs j+2, ..., j vs k
|
583
|
+
<br>
|
584
|
+
and y=1 in first j-1 coefficients, y=-1 in the remaining
|
585
|
+
k-j coefficients.
|
586
|
+
|
587
|
+
For example, if there are 4 classes, the file looks like:
|
588
|
+
|
589
|
+
<pre>
|
590
|
+
+-+-+-+--------------------+
|
591
|
+
|1|1|1| |
|
592
|
+
|v|v|v| SVs from class 1 |
|
593
|
+
|2|3|4| |
|
594
|
+
+-+-+-+--------------------+
|
595
|
+
|1|2|2| |
|
596
|
+
|v|v|v| SVs from class 2 |
|
597
|
+
|2|3|4| |
|
598
|
+
+-+-+-+--------------------+
|
599
|
+
|1|2|3| |
|
600
|
+
|v|v|v| SVs from class 3 |
|
601
|
+
|3|3|4| |
|
602
|
+
+-+-+-+--------------------+
|
603
|
+
|1|2|3| |
|
604
|
+
|v|v|v| SVs from class 4 |
|
605
|
+
|4|4|4| |
|
606
|
+
+-+-+-+--------------------+
|
607
|
+
</pre>
|
608
|
+
See also
|
609
|
+
<a href="#f804"> an illustration using
|
610
|
+
MATLAB/OCTAVE.</a>
|
611
|
+
<p align="right">
|
612
|
+
<a href="#_TOP">[Go Top]</a>
|
613
|
+
<hr/>
|
614
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
615
|
+
<a name="f403"><b>Q: Should I use float or double to store numbers in the cache ?</b></a>
|
616
|
+
<br/>
|
617
|
+
|
618
|
+
<p>
|
619
|
+
We have float as the default as you can store more numbers
|
620
|
+
in the cache.
|
621
|
+
In general this is good enough but for few difficult
|
622
|
+
cases (e.g. C very very large) where solutions are huge
|
623
|
+
numbers, it might be possible that the numerical precision is not
|
624
|
+
enough using only float.
|
625
|
+
<p align="right">
|
626
|
+
<a href="#_TOP">[Go Top]</a>
|
627
|
+
<hr/>
|
628
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
629
|
+
<a name="f404"><b>Q: How do I choose the kernel?</b></a>
|
630
|
+
<br/>
|
631
|
+
|
632
|
+
<p>
|
633
|
+
In general we suggest you to try the RBF kernel first.
|
634
|
+
A recent result by Keerthi and Lin
|
635
|
+
(<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/limit.pdf>
|
636
|
+
download paper here</a>)
|
637
|
+
shows that if RBF is used with model selection,
|
638
|
+
then there is no need to consider the linear kernel.
|
639
|
+
The kernel matrix using sigmoid may not be positive definite
|
640
|
+
and in general it's accuracy is not better than RBF.
|
641
|
+
(see the paper by Lin and Lin
|
642
|
+
(<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf>
|
643
|
+
download paper here</a>).
|
644
|
+
Polynomial kernels are ok but if a high degree is used,
|
645
|
+
numerical difficulties tend to happen
|
646
|
+
(thinking about dth power of (<1) goes to 0
|
647
|
+
and (>1) goes to infinity).
|
648
|
+
<p align="right">
|
649
|
+
<a href="#_TOP">[Go Top]</a>
|
650
|
+
<hr/>
|
651
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
652
|
+
<a name="f405"><b>Q: Does libsvm have special treatments for linear SVM?</b></a>
|
653
|
+
<br/>
|
654
|
+
|
655
|
+
<p>
|
656
|
+
|
657
|
+
No, libsvm solves linear/nonlinear SVMs by the
|
658
|
+
same way.
|
659
|
+
Some tricks may save training/testing time if the
|
660
|
+
linear kernel is used,
|
661
|
+
so libsvm is <b>NOT</b> particularly efficient for linear SVM,
|
662
|
+
especially when
|
663
|
+
C is large and
|
664
|
+
the number of data is much larger
|
665
|
+
than the number of attributes.
|
666
|
+
You can either
|
667
|
+
<ul>
|
668
|
+
<li>
|
669
|
+
Use small C only. We have shown in the following paper
|
670
|
+
that after C is larger than a certain threshold,
|
671
|
+
the decision function is the same.
|
672
|
+
<p>
|
673
|
+
<a href="http://guppy.mpe.nus.edu.sg/~mpessk/">S. S. Keerthi</a>
|
674
|
+
and
|
675
|
+
<B>C.-J. Lin</B>.
|
676
|
+
<A HREF="papers/limit.pdf">
|
677
|
+
Asymptotic behaviors of support vector machines with
|
678
|
+
Gaussian kernel
|
679
|
+
</A>
|
680
|
+
.
|
681
|
+
<I><A HREF="http://mitpress.mit.edu/journal-home.tcl?issn=08997667">Neural Computation</A></I>, 15(2003), 1667-1689.
|
682
|
+
|
683
|
+
|
684
|
+
<li>
|
685
|
+
Check <a href=http://www.csie.ntu.edu.tw/~cjlin/liblinear>liblinear</a>,
|
686
|
+
which is designed for large-scale linear classification.
|
687
|
+
</ul>
|
688
|
+
|
689
|
+
<p> Please also see our <a href=../papers/guide/guide.pdf>SVM guide</a>
|
690
|
+
on the discussion of using RBF and linear
|
691
|
+
kernels.
|
692
|
+
<p align="right">
|
693
|
+
<a href="#_TOP">[Go Top]</a>
|
694
|
+
<hr/>
|
695
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
696
|
+
<a name="f406"><b>Q: The number of free support vectors is large. What should I do?</b></a>
|
697
|
+
<br/>
|
698
|
+
<p>
|
699
|
+
This usually happens when the data are overfitted.
|
700
|
+
If attributes of your data are in large ranges,
|
701
|
+
try to scale them. Then the region
|
702
|
+
of appropriate parameters may be larger.
|
703
|
+
Note that there is a scale program
|
704
|
+
in libsvm.
|
705
|
+
<p align="right">
|
706
|
+
<a href="#_TOP">[Go Top]</a>
|
707
|
+
<hr/>
|
708
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
709
|
+
<a name="f407"><b>Q: Should I scale training and testing data in a similar way?</b></a>
|
710
|
+
<br/>
|
711
|
+
<p>
|
712
|
+
Yes, you can do the following:
|
713
|
+
<pre>
|
714
|
+
> svm-scale -s scaling_parameters train_data > scaled_train_data
|
715
|
+
> svm-scale -r scaling_parameters test_data > scaled_test_data
|
716
|
+
</pre>
|
717
|
+
<p align="right">
|
718
|
+
<a href="#_TOP">[Go Top]</a>
|
719
|
+
<hr/>
|
720
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
721
|
+
<a name="f408"><b>Q: Does it make a big difference if I scale each attribute to [0,1] instead of [-1,1]?</b></a>
|
722
|
+
<br/>
|
723
|
+
|
724
|
+
<p>
|
725
|
+
For the linear scaling method, if the RBF kernel is
|
726
|
+
used and parameter selection is conducted, there
|
727
|
+
is no difference. Assume Mi and mi are
|
728
|
+
respectively the maximal and minimal values of the
|
729
|
+
ith attribute. Scaling to [0,1] means
|
730
|
+
<pre>
|
731
|
+
x'=(x-mi)/(Mi-mi)
|
732
|
+
</pre>
|
733
|
+
For [-1,1],
|
734
|
+
<pre>
|
735
|
+
x''=2(x-mi)/(Mi-mi)-1.
|
736
|
+
</pre>
|
737
|
+
In the RBF kernel,
|
738
|
+
<pre>
|
739
|
+
x'-y'=(x-y)/(Mi-mi), x''-y''=2(x-y)/(Mi-mi).
|
740
|
+
</pre>
|
741
|
+
Hence, using (C,g) on the [0,1]-scaled data is the
|
742
|
+
same as (C,g/2) on the [-1,1]-scaled data.
|
743
|
+
|
744
|
+
<p> Though the performance is the same, the computational
|
745
|
+
time may be different. For data with many zero entries,
|
746
|
+
[0,1]-scaling keeps the sparsity of input data and hence
|
747
|
+
may save the time.
|
748
|
+
<p align="right">
|
749
|
+
<a href="#_TOP">[Go Top]</a>
|
750
|
+
<hr/>
|
751
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
752
|
+
<a name="f409"><b>Q: The prediction rate is low. How could I improve it?</b></a>
|
753
|
+
<br/>
|
754
|
+
<p>
|
755
|
+
Try to use the model selection tool grid.py in the python
|
756
|
+
directory find
|
757
|
+
out good parameters. To see the importance of model selection,
|
758
|
+
please
|
759
|
+
see my talk:
|
760
|
+
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/talks/freiburg.pdf">
|
761
|
+
A practical guide to support vector
|
762
|
+
classification
|
763
|
+
</A>
|
764
|
+
<p align="right">
|
765
|
+
<a href="#_TOP">[Go Top]</a>
|
766
|
+
<hr/>
|
767
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
768
|
+
<a name="f410"><b>Q: My data are unbalanced. Could libsvm handle such problems?</b></a>
|
769
|
+
<br/>
|
770
|
+
<p>
|
771
|
+
Yes, there is a -wi options. For example, if you use
|
772
|
+
<pre>
|
773
|
+
> svm-train -s 0 -c 10 -w1 1 -w-1 5 data_file
|
774
|
+
</pre>
|
775
|
+
<p>
|
776
|
+
the penalty for class "-1" is larger.
|
777
|
+
Note that this -w option is for C-SVC only.
|
778
|
+
<p align="right">
|
779
|
+
<a href="#_TOP">[Go Top]</a>
|
780
|
+
<hr/>
|
781
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
782
|
+
<a name="f411"><b>Q: What is the difference between nu-SVC and C-SVC?</b></a>
|
783
|
+
<br/>
|
784
|
+
<p>
|
785
|
+
Basically they are the same thing but with different
|
786
|
+
parameters. The range of C is from zero to infinity
|
787
|
+
but nu is always between [0,1]. A nice property
|
788
|
+
of nu is that it is related to the ratio of
|
789
|
+
support vectors and the ratio of the training
|
790
|
+
error.
|
791
|
+
<p align="right">
|
792
|
+
<a href="#_TOP">[Go Top]</a>
|
793
|
+
<hr/>
|
794
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
795
|
+
<a name="f412"><b>Q: The program keeps running (without showing any output). What should I do?</b></a>
|
796
|
+
<br/>
|
797
|
+
<p>
|
798
|
+
You may want to check your data. Each training/testing
|
799
|
+
data must be in one line. It cannot be separated.
|
800
|
+
In addition, you have to remove empty lines.
|
801
|
+
<p align="right">
|
802
|
+
<a href="#_TOP">[Go Top]</a>
|
803
|
+
<hr/>
|
804
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
805
|
+
<a name="f413"><b>Q: The program keeps running (with output, i.e. many dots). What should I do?</b></a>
|
806
|
+
<br/>
|
807
|
+
<p>
|
808
|
+
In theory libsvm guarantees to converge.
|
809
|
+
Therefore, this means you are
|
810
|
+
handling ill-conditioned situations
|
811
|
+
(e.g. too large/small parameters) so numerical
|
812
|
+
difficulties occur.
|
813
|
+
<p>
|
814
|
+
You may get better numerical stability by replacing
|
815
|
+
<pre>
|
816
|
+
typedef float Qfloat;
|
817
|
+
</pre>
|
818
|
+
in svm.cpp with
|
819
|
+
<pre>
|
820
|
+
typedef double Qfloat;
|
821
|
+
</pre>
|
822
|
+
That is, elements in the kernel cache are stored
|
823
|
+
in double instead of single. However, this means fewer elements
|
824
|
+
can be put in the kernel cache.
|
825
|
+
<p align="right">
|
826
|
+
<a href="#_TOP">[Go Top]</a>
|
827
|
+
<hr/>
|
828
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
829
|
+
<a name="f414"><b>Q: The training time is too long. What should I do?</b></a>
|
830
|
+
<br/>
|
831
|
+
<p>
|
832
|
+
For large problems, please specify enough cache size (i.e.,
|
833
|
+
-m).
|
834
|
+
Slow convergence may happen for some difficult cases (e.g. -c is large).
|
835
|
+
You can try to use a looser stopping tolerance with -e.
|
836
|
+
If that still doesn't work, you may train only a subset of the data.
|
837
|
+
You can use the program subset.py in the directory "tools"
|
838
|
+
to obtain a random subset.
|
839
|
+
|
840
|
+
<p>
|
841
|
+
If you have extremely large data and face this difficulty, please
|
842
|
+
contact us. We will be happy to discuss possible solutions.
|
843
|
+
|
844
|
+
<p> When using large -e, you may want to check if -h 0 (no shrinking) or -h 1 (shrinking) is faster.
|
845
|
+
See a related question below.
|
846
|
+
|
847
|
+
<p align="right">
|
848
|
+
<a href="#_TOP">[Go Top]</a>
|
849
|
+
<hr/>
|
850
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
851
|
+
<a name="f4141"><b>Q: Does shrinking always help?</b></a>
|
852
|
+
<br/>
|
853
|
+
<p>
|
854
|
+
If the number of iterations is high, then shrinking
|
855
|
+
often helps.
|
856
|
+
However, if the number of iterations is small
|
857
|
+
(e.g., you specify a large -e), then
|
858
|
+
probably using -h 0 (no shrinking) is better.
|
859
|
+
See the
|
860
|
+
<a href=../papers/libsvm.pdf>implementation document</a> for details.
|
861
|
+
<p align="right">
|
862
|
+
<a href="#_TOP">[Go Top]</a>
|
863
|
+
<hr/>
|
864
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
865
|
+
<a name="f415"><b>Q: How do I get the decision value(s)?</b></a>
|
866
|
+
<br/>
|
867
|
+
<p>
|
868
|
+
We print out decision values for regression. For classification,
|
869
|
+
we solve several binary SVMs for multi-class cases. You
|
870
|
+
can obtain values by easily calling the subroutine
|
871
|
+
svm_predict_values. Their corresponding labels
|
872
|
+
can be obtained from svm_get_labels.
|
873
|
+
Details are in
|
874
|
+
README of libsvm package.
|
875
|
+
|
876
|
+
<p>
|
877
|
+
We do not recommend the following. But if you would
|
878
|
+
like to get values for
|
879
|
+
TWO-class classification with labels +1 and -1
|
880
|
+
(note: +1 and -1 but not things like 5 and 10)
|
881
|
+
in the easiest way, simply add
|
882
|
+
<pre>
|
883
|
+
printf("%f\n", dec_values[0]*model->label[0]);
|
884
|
+
</pre>
|
885
|
+
after the line
|
886
|
+
<pre>
|
887
|
+
svm_predict_values(model, x, dec_values);
|
888
|
+
</pre>
|
889
|
+
of the file svm.cpp.
|
890
|
+
Positive (negative)
|
891
|
+
decision values correspond to data predicted as +1 (-1).
|
892
|
+
|
893
|
+
|
894
|
+
<p align="right">
|
895
|
+
<a href="#_TOP">[Go Top]</a>
|
896
|
+
<hr/>
|
897
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
898
|
+
<a name="f4151"><b>Q: How do I get the distance between a point and the hyperplane?</b></a>
|
899
|
+
<br/>
|
900
|
+
<p>
|
901
|
+
The distance is |decision_value| / |w|.
|
902
|
+
We have |w|^2 = w^Tw = alpha^T Q alpha = 2*(dual_obj + sum alpha_i).
|
903
|
+
Thus in svm.cpp please find the place
|
904
|
+
where we calculate the dual objective value
|
905
|
+
(i.e., the subroutine Solve())
|
906
|
+
and add a statement to print w^Tw.
|
907
|
+
|
908
|
+
<p align="right">
|
909
|
+
<a href="#_TOP">[Go Top]</a>
|
910
|
+
<hr/>
|
911
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
912
|
+
<a name="f416"><b>Q: On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</b></a>
|
913
|
+
<br/>
|
914
|
+
<p>
|
915
|
+
|
916
|
+
On 32-bit machines, the maximum addressable
|
917
|
+
memory is 4GB. The Linux kernel uses 3:1
|
918
|
+
split which means user space is 3G and
|
919
|
+
kernel space is 1G. Although there are
|
920
|
+
3G user space, the maximum dynamic allocation
|
921
|
+
memory is 2G. So, if you specify -m near 2G,
|
922
|
+
the memory will be exhausted. And svm-train
|
923
|
+
will fail when it asks more memory.
|
924
|
+
For more details, please read
|
925
|
+
<a href=http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&selm=3BA164F6.BAFA4FB%40daimi.au.dk>
|
926
|
+
this article</a>.
|
927
|
+
<p>
|
928
|
+
The easiest solution is to switch to a
|
929
|
+
64-bit machine.
|
930
|
+
Otherwise, there are two ways to solve this. If your
|
931
|
+
machine supports Intel's PAE (Physical Address
|
932
|
+
Extension), you can turn on the option HIGHMEM64G
|
933
|
+
in Linux kernel which uses 4G:4G split for
|
934
|
+
kernel and user space. If you don't, you can
|
935
|
+
try a software `tub' which can eliminate the 2G
|
936
|
+
boundary for dynamic allocated memory. The `tub'
|
937
|
+
is available at
|
938
|
+
<a href=http://www.bitwagon.com/tub.html>http://www.bitwagon.com/tub.html</a>.
|
939
|
+
|
940
|
+
|
941
|
+
<!--
|
942
|
+
|
943
|
+
This may happen only when the cache is large, but each cached row is
|
944
|
+
not large enough. <b>Note:</b> This problem is specific to
|
945
|
+
gnu C library which is used in linux.
|
946
|
+
The solution is as follows:
|
947
|
+
|
948
|
+
<p>
|
949
|
+
In our program we have malloc() which uses two methods
|
950
|
+
to allocate memory from kernel. One is
|
951
|
+
sbrk() and another is mmap(). sbrk is faster, but mmap
|
952
|
+
has a larger address
|
953
|
+
space. So malloc uses mmap only if the wanted memory size is larger
|
954
|
+
than some threshold (default 128k).
|
955
|
+
In the case where each row is not large enough (#elements < 128k/sizeof(float)) but we need a large cache ,
|
956
|
+
the address space for sbrk can be exhausted. The solution is to
|
957
|
+
lower the threshold to force malloc to use mmap
|
958
|
+
and increase the maximum number of chunks to allocate
|
959
|
+
with mmap.
|
960
|
+
|
961
|
+
<p>
|
962
|
+
Therefore, in the main program (i.e. svm-train.c) you want
|
963
|
+
to have
|
964
|
+
<pre>
|
965
|
+
#include <malloc.h>
|
966
|
+
</pre>
|
967
|
+
and then in main():
|
968
|
+
<pre>
|
969
|
+
mallopt(M_MMAP_THRESHOLD, 32768);
|
970
|
+
mallopt(M_MMAP_MAX,1000000);
|
971
|
+
</pre>
|
972
|
+
You can also set the environment variables instead
|
973
|
+
of writing them in the program:
|
974
|
+
<pre>
|
975
|
+
$ M_MMAP_MAX=1000000 M_MMAP_THRESHOLD=32768 ./svm-train .....
|
976
|
+
</pre>
|
977
|
+
More information can be found by
|
978
|
+
<pre>
|
979
|
+
$ info libc "Malloc Tunable Parameters"
|
980
|
+
</pre>
|
981
|
+
-->
|
982
|
+
<p align="right">
|
983
|
+
<a href="#_TOP">[Go Top]</a>
|
984
|
+
<hr/>
|
985
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
986
|
+
<a name="f417"><b>Q: How do I disable screen output of svm-train?</b></a>
|
987
|
+
<br/>
|
988
|
+
<p>
|
989
|
+
For commend-line users, use the -q option:
|
990
|
+
<pre>
|
991
|
+
> ./svm-train -q heart_scale
|
992
|
+
</pre>
|
993
|
+
<p>
|
994
|
+
For library users, set the global variable
|
995
|
+
<pre>
|
996
|
+
extern void (*svm_print_string) (const char *);
|
997
|
+
</pre>
|
998
|
+
to specify the output format. You can disable the output by the following steps:
|
999
|
+
<ol>
|
1000
|
+
<li>
|
1001
|
+
Declare a function to output nothing:
|
1002
|
+
<pre>
|
1003
|
+
void print_null(const char *s) {}
|
1004
|
+
</pre>
|
1005
|
+
</li>
|
1006
|
+
<li>
|
1007
|
+
Assign the output function of libsvm by
|
1008
|
+
<pre>
|
1009
|
+
svm_print_string = &print_null;
|
1010
|
+
</pre>
|
1011
|
+
</li>
|
1012
|
+
</ol>
|
1013
|
+
Finally, a way used in earlier libsvm
|
1014
|
+
is by updating svm.cpp from
|
1015
|
+
<pre>
|
1016
|
+
#if 1
|
1017
|
+
void info(const char *fmt,...)
|
1018
|
+
</pre>
|
1019
|
+
to
|
1020
|
+
<pre>
|
1021
|
+
#if 0
|
1022
|
+
void info(const char *fmt,...)
|
1023
|
+
</pre>
|
1024
|
+
<p align="right">
|
1025
|
+
<a href="#_TOP">[Go Top]</a>
|
1026
|
+
<hr/>
|
1027
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1028
|
+
<a name="f418"><b>Q: I would like to use my own kernel. Any example? In svm.cpp, there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</b></a>
|
1029
|
+
<br/>
|
1030
|
+
<p>
|
1031
|
+
An example is "LIBSVM for string data" in LIBSVM Tools.
|
1032
|
+
<p>
|
1033
|
+
The reason why we have two functions is as follows.
|
1034
|
+
For the RBF kernel exp(-g |xi - xj|^2), if we calculate
|
1035
|
+
xi - xj first and then the norm square, there are 3n operations.
|
1036
|
+
Thus we consider exp(-g (|xi|^2 - 2dot(xi,xj) +|xj|^2))
|
1037
|
+
and by calculating all |xi|^2 in the beginning,
|
1038
|
+
the number of operations is reduced to 2n.
|
1039
|
+
This is for the training. For prediction we cannot
|
1040
|
+
do this so a regular subroutine using that 3n operations is
|
1041
|
+
needed.
|
1042
|
+
|
1043
|
+
The easiest way to have your own kernel is
|
1044
|
+
to put the same code in these two
|
1045
|
+
subroutines by replacing any kernel.
|
1046
|
+
<p align="right">
|
1047
|
+
<a href="#_TOP">[Go Top]</a>
|
1048
|
+
<hr/>
|
1049
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1050
|
+
<a name="f419"><b>Q: What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</b></a>
|
1051
|
+
<br/>
|
1052
|
+
<p>
|
1053
|
+
It is one-against-one. We chose it after doing the following
|
1054
|
+
comparison:
|
1055
|
+
C.-W. Hsu and C.-J. Lin.
|
1056
|
+
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf">
|
1057
|
+
A comparison of methods
|
1058
|
+
for multi-class support vector machines
|
1059
|
+
</A>,
|
1060
|
+
<I>IEEE Transactions on Neural Networks</A></I>, 13(2002), 415-425.
|
1061
|
+
|
1062
|
+
<p>
|
1063
|
+
"1-against-the rest" is a good method whose performance
|
1064
|
+
is comparable to "1-against-1." We do the latter
|
1065
|
+
simply because its training time is shorter.
|
1066
|
+
<p align="right">
|
1067
|
+
<a href="#_TOP">[Go Top]</a>
|
1068
|
+
<hr/>
|
1069
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1070
|
+
<a name="f420"><b>Q: After doing cross validation, why there is no model file outputted ?</b></a>
|
1071
|
+
<br/>
|
1072
|
+
<p>
|
1073
|
+
Cross validation is used for selecting good parameters.
|
1074
|
+
After finding them, you want to re-train the whole
|
1075
|
+
data without the -v option.
|
1076
|
+
<p align="right">
|
1077
|
+
<a href="#_TOP">[Go Top]</a>
|
1078
|
+
<hr/>
|
1079
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1080
|
+
<a name="f4201"><b>Q: Why my cross-validation results are different from those in the Practical Guide?</b></a>
|
1081
|
+
<br/>
|
1082
|
+
<p>
|
1083
|
+
|
1084
|
+
Due to random partitions of
|
1085
|
+
the data, on different systems CV accuracy values
|
1086
|
+
may be different.
|
1087
|
+
<p align="right">
|
1088
|
+
<a href="#_TOP">[Go Top]</a>
|
1089
|
+
<hr/>
|
1090
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1091
|
+
<a name="f421"><b>Q: On some systems CV accuracy is the same in several runs. How could I use different data partitions? In other words, how do I set random seed in LIBSVM?</b></a>
|
1092
|
+
<br/>
|
1093
|
+
<p>
|
1094
|
+
If you use GNU C library,
|
1095
|
+
the default seed 1 is considered. Thus you always
|
1096
|
+
get the same result of running svm-train -v.
|
1097
|
+
To have different seeds, you can add the following code
|
1098
|
+
in svm-train.c:
|
1099
|
+
<pre>
|
1100
|
+
#include <time.h>
|
1101
|
+
</pre>
|
1102
|
+
and in the beginning of main(),
|
1103
|
+
<pre>
|
1104
|
+
srand(time(0));
|
1105
|
+
</pre>
|
1106
|
+
Alternatively, if you are not using GNU C library
|
1107
|
+
and would like to use a fixed seed, you can have
|
1108
|
+
<pre>
|
1109
|
+
srand(1);
|
1110
|
+
</pre>
|
1111
|
+
|
1112
|
+
<p>
|
1113
|
+
For Java, the random number generator
|
1114
|
+
is initialized using the time information.
|
1115
|
+
So results of two CV runs are different.
|
1116
|
+
To fix the seed, after version 3.1 (released
|
1117
|
+
in mid 2011), you can add
|
1118
|
+
<pre>
|
1119
|
+
svm.rand.setSeed(0);
|
1120
|
+
</pre>
|
1121
|
+
in the main() function of svm_train.java.
|
1122
|
+
<p align="right">
|
1123
|
+
<a href="#_TOP">[Go Top]</a>
|
1124
|
+
<hr/>
|
1125
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1126
|
+
<a name="f422"><b>Q: I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</b></a>
|
1127
|
+
<br/>
|
1128
|
+
<p>
|
1129
|
+
It is extremely easy. Taking c-svc for example, to solve
|
1130
|
+
<p>
|
1131
|
+
min_w w^Tw/2 + C \sum max(0, 1- (y_i w^Tx_i+b))^2,
|
1132
|
+
<p>
|
1133
|
+
only two
|
1134
|
+
places of svm.cpp have to be changed.
|
1135
|
+
First, modify the following line of
|
1136
|
+
solve_c_svc from
|
1137
|
+
<pre>
|
1138
|
+
s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
|
1139
|
+
alpha, Cp, Cn, param->eps, si, param->shrinking);
|
1140
|
+
</pre>
|
1141
|
+
to
|
1142
|
+
<pre>
|
1143
|
+
s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
|
1144
|
+
alpha, INF, INF, param->eps, si, param->shrinking);
|
1145
|
+
</pre>
|
1146
|
+
Second, in the class of SVC_Q, declare C as
|
1147
|
+
a private variable:
|
1148
|
+
<pre>
|
1149
|
+
double C;
|
1150
|
+
</pre>
|
1151
|
+
In the constructor replace
|
1152
|
+
<pre>
|
1153
|
+
for(int i=0;i<prob.l;i++)
|
1154
|
+
QD[i]= (Qfloat)(this->*kernel_function)(i,i);
|
1155
|
+
</pre>
|
1156
|
+
with
|
1157
|
+
<pre>
|
1158
|
+
this->C = param.C;
|
1159
|
+
for(int i=0;i<prob.l;i++)
|
1160
|
+
QD[i]= (Qfloat)(this->*kernel_function)(i,i)+0.5/C;
|
1161
|
+
</pre>
|
1162
|
+
Then in the subroutine get_Q, after the for loop, add
|
1163
|
+
<pre>
|
1164
|
+
if(i >= start && i < len)
|
1165
|
+
data[i] += 0.5/C;
|
1166
|
+
</pre>
|
1167
|
+
|
1168
|
+
<p>
|
1169
|
+
For one-class svm, the modification is exactly the same. For SVR, you don't need an if statement like the above. Instead, you only need a simple assignment:
|
1170
|
+
<pre>
|
1171
|
+
data[real_i] += 0.5/C;
|
1172
|
+
</pre>
|
1173
|
+
|
1174
|
+
|
1175
|
+
<p>
|
1176
|
+
For large linear L2-loss SVM, please use
|
1177
|
+
<a href=../liblinear>LIBLINEAR</a>.
|
1178
|
+
<p align="right">
|
1179
|
+
<a href="#_TOP">[Go Top]</a>
|
1180
|
+
<hr/>
|
1181
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1182
|
+
<a name="f424"><b>Q: How do I choose parameters for one-class svm as training data are in only one class?</b></a>
|
1183
|
+
<br/>
|
1184
|
+
<p>
|
1185
|
+
You have pre-specified true positive rate in mind and then search for
|
1186
|
+
parameters which achieve similar cross-validation accuracy.
|
1187
|
+
<p align="right">
|
1188
|
+
<a href="#_TOP">[Go Top]</a>
|
1189
|
+
<hr/>
|
1190
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1191
|
+
<a name="f427"><b>Q: Why the code gives NaN (not a number) results?</b></a>
|
1192
|
+
<br/>
|
1193
|
+
<p>
|
1194
|
+
This rarely happens, but few users reported the problem.
|
1195
|
+
It seems that their
|
1196
|
+
computers for training libsvm have the VPN client
|
1197
|
+
running. The VPN software has some bugs and causes this
|
1198
|
+
problem. Please try to close or disconnect the VPN client.
|
1199
|
+
<p align="right">
|
1200
|
+
<a href="#_TOP">[Go Top]</a>
|
1201
|
+
<hr/>
|
1202
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1203
|
+
<a name="f428"><b>Q: Why on windows sometimes grid.py fails?</b></a>
|
1204
|
+
<br/>
|
1205
|
+
<p>
|
1206
|
+
|
1207
|
+
This problem shouldn't happen after version
|
1208
|
+
2.85. If you are using earlier versions,
|
1209
|
+
please download the latest one.
|
1210
|
+
|
1211
|
+
<!--
|
1212
|
+
<p>
|
1213
|
+
If you are using earlier
|
1214
|
+
versions, the error message is probably
|
1215
|
+
<pre>
|
1216
|
+
Traceback (most recent call last):
|
1217
|
+
File "grid.py", line 349, in ?
|
1218
|
+
main()
|
1219
|
+
File "grid.py", line 344, in main
|
1220
|
+
redraw(db)
|
1221
|
+
File "grid.py", line 132, in redraw
|
1222
|
+
gnuplot.write("set term windows\n")
|
1223
|
+
IOError: [Errno 22] Invalid argument
|
1224
|
+
</pre>
|
1225
|
+
|
1226
|
+
<p>Please try to close gnuplot windows and rerun.
|
1227
|
+
If the problem still occurs, comment the following
|
1228
|
+
two lines in grid.py by inserting "#" in the beginning:
|
1229
|
+
<pre>
|
1230
|
+
redraw(db)
|
1231
|
+
redraw(db,1)
|
1232
|
+
</pre>
|
1233
|
+
Then you get accuracy only but not cross validation contours.
|
1234
|
+
-->
|
1235
|
+
<p align="right">
|
1236
|
+
<a href="#_TOP">[Go Top]</a>
|
1237
|
+
<hr/>
|
1238
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1239
|
+
<a name="f429"><b>Q: Why grid.py/easy.py sometimes generates the following warning message?</b></a>
|
1240
|
+
<br/>
|
1241
|
+
<pre>
|
1242
|
+
Warning: empty z range [62.5:62.5], adjusting to [61.875:63.125]
|
1243
|
+
Notice: cannot contour non grid data!
|
1244
|
+
</pre>
|
1245
|
+
<p>Nothing is wrong and please disregard the
|
1246
|
+
message. It is from gnuplot when drawing
|
1247
|
+
the contour.
|
1248
|
+
<p align="right">
|
1249
|
+
<a href="#_TOP">[Go Top]</a>
|
1250
|
+
<hr/>
|
1251
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1252
|
+
<a name="f430"><b>Q: Why the sign of predicted labels and decision values are sometimes reversed?</b></a>
|
1253
|
+
<br/>
|
1254
|
+
<p>Nothing is wrong. Very likely you have two labels +1/-1 and the first instance in your data
|
1255
|
+
has -1.
|
1256
|
+
Think about the case of labels +5/+10. Since
|
1257
|
+
SVM needs to use +1/-1, internally
|
1258
|
+
we map +5/+10 to +1/-1 according to which
|
1259
|
+
label appears first.
|
1260
|
+
Hence a positive decision value implies
|
1261
|
+
that we should predict the "internal" +1,
|
1262
|
+
which may not be the +1 in the input file.
|
1263
|
+
|
1264
|
+
<p align="right">
|
1265
|
+
<a href="#_TOP">[Go Top]</a>
|
1266
|
+
<hr/>
|
1267
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1268
|
+
<a name="f431"><b>Q: I don't know class labels of test data. What should I put in the first column of the test file?</b></a>
|
1269
|
+
<br/>
|
1270
|
+
<p>Any value is ok. In this situation, what you will use is the output file of svm-predict, which gives predicted class labels.
|
1271
|
+
|
1272
|
+
|
1273
|
+
<p align="right">
|
1274
|
+
<a href="#_TOP">[Go Top]</a>
|
1275
|
+
<hr/>
|
1276
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1277
|
+
<a name="f432"><b>Q: How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</b></a>
|
1278
|
+
<br/>
|
1279
|
+
|
1280
|
+
<p>It is very easy if you are using GCC 4.2
|
1281
|
+
or after.
|
1282
|
+
|
1283
|
+
<p> In Makefile, add -fopenmp to CFLAGS.
|
1284
|
+
|
1285
|
+
<p> In class SVC_Q of svm.cpp, modify the for loop
|
1286
|
+
of get_Q to:
|
1287
|
+
<pre>
|
1288
|
+
#pragma omp parallel for private(j)
|
1289
|
+
for(j=start;j<len;j++)
|
1290
|
+
</pre>
|
1291
|
+
<p> In the subroutine svm_predict_values of svm.cpp, add one line to the for loop:
|
1292
|
+
<pre>
|
1293
|
+
#pragma omp parallel for private(i)
|
1294
|
+
for(i=0;i<l;i++)
|
1295
|
+
kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
|
1296
|
+
</pre>
|
1297
|
+
For regression, you need a reduction clause for the variable sum:
|
1298
|
+
<pre>
|
1299
|
+
#pragma omp parallel for private(i) reduction(+:sum)
|
1300
|
+
for(i=0;i<model->l;i++)
|
1301
|
+
sum += sv_coef[i] * Kernel::k_function(x,model>SV[i],model>param);
|
1302
|
+
</pre>
|
1303
|
+
|
1304
|
+
<p> Then rebuild the package. Kernel evaluations in training/testing will be parallelized. An example of running this modification on
|
1305
|
+
an 8-core machine using the data set
|
1306
|
+
<a href=../libsvmtools/datasets/binary/ijcnn1.bz2>ijcnn1</a>:
|
1307
|
+
|
1308
|
+
<p> 8 cores:
|
1309
|
+
<pre>
|
1310
|
+
%setenv OMP_NUM_THREADS 8
|
1311
|
+
%time svm-train -c 16 -g 4 -m 400 ijcnn1
|
1312
|
+
27.1sec
|
1313
|
+
</pre>
|
1314
|
+
1 core:
|
1315
|
+
<pre>
|
1316
|
+
%setenv OMP_NUM_THREADS 1
|
1317
|
+
%time svm-train -c 16 -g 4 -m 400 ijcnn1
|
1318
|
+
79.8sec
|
1319
|
+
</pre>
|
1320
|
+
For this data, kernel evaluations take 80% of training time. In the above example, we assume you use csh. For bash, use
|
1321
|
+
<pre>
|
1322
|
+
export OMP_NUM_THREADS=8
|
1323
|
+
</pre>
|
1324
|
+
instead.
|
1325
|
+
|
1326
|
+
<p> For Python interface, you need to add the -lgomp link option:
|
1327
|
+
<pre>
|
1328
|
+
$(CXX) -lgomp -shared -dynamiclib svm.o -o libsvm.so.$(SHVER)
|
1329
|
+
</pre>
|
1330
|
+
<p align="right">
|
1331
|
+
<a href="#_TOP">[Go Top]</a>
|
1332
|
+
<hr/>
|
1333
|
+
<a name="/Q4:_Training_and_prediction"></a>
|
1334
|
+
<a name="f433"><b>Q: How could I know which training instances are support vectors?</b></a>
|
1335
|
+
<br/>
|
1336
|
+
|
1337
|
+
<p>
|
1338
|
+
It's very simple. Please replace
|
1339
|
+
<pre>
|
1340
|
+
if(nonzero[i]) model->SV[p++] = x[i];
|
1341
|
+
</pre>
|
1342
|
+
in svm_train() of svm.cpp with
|
1343
|
+
<pre>
|
1344
|
+
if(nonzero[i])
|
1345
|
+
{
|
1346
|
+
model->SV[p++] = x[i];
|
1347
|
+
info("%d\n", perm[i]);
|
1348
|
+
}
|
1349
|
+
</pre>
|
1350
|
+
If there are many requests, we may
|
1351
|
+
provide a function to return indices
|
1352
|
+
of support vectors. In the mean time,
|
1353
|
+
if you need such information in your code,
|
1354
|
+
you can add the array nonzero to the model
|
1355
|
+
structure. This array has the same size as
|
1356
|
+
the number of data, so alternatively you can
|
1357
|
+
store only indices of support vectors.
|
1358
|
+
|
1359
|
+
<p> If you use matlab interface, you can easily
|
1360
|
+
compare support vectors and training data to know
|
1361
|
+
the indices:
|
1362
|
+
<pre>
|
1363
|
+
[tmp index]=ismember(model.SVs, training_data,'rows');
|
1364
|
+
</pre>
|
1365
|
+
<p align="right">
|
1366
|
+
<a href="#_TOP">[Go Top]</a>
|
1367
|
+
<hr/>
|
1368
|
+
<a name="/Q5:_Probability_outputs"></a>
|
1369
|
+
<a name="f425"><b>Q: Why training a probability model (i.e., -b 1) takes a longer time?</b></a>
|
1370
|
+
<br/>
|
1371
|
+
<p>
|
1372
|
+
To construct this probability model, we internally conduct a
|
1373
|
+
cross validation, which is more time consuming than
|
1374
|
+
a regular training.
|
1375
|
+
Hence, in general you do parameter selection first without
|
1376
|
+
-b 1. You only use -b 1 when good parameters have been
|
1377
|
+
selected. In other words, you avoid using -b 1 and -v
|
1378
|
+
together.
|
1379
|
+
<p align="right">
|
1380
|
+
<a href="#_TOP">[Go Top]</a>
|
1381
|
+
<hr/>
|
1382
|
+
<a name="/Q5:_Probability_outputs"></a>
|
1383
|
+
<a name="f426"><b>Q: Why using the -b option does not give me better accuracy?</b></a>
|
1384
|
+
<br/>
|
1385
|
+
<p>
|
1386
|
+
There is absolutely no reason the probability outputs guarantee
|
1387
|
+
you better accuracy. The main purpose of this option is
|
1388
|
+
to provide you the probability estimates, but not to boost
|
1389
|
+
prediction accuracy. From our experience,
|
1390
|
+
after proper parameter selections, in general with
|
1391
|
+
and without -b have similar accuracy. Occasionally there
|
1392
|
+
are some differences.
|
1393
|
+
It is not recommended to compare the two under
|
1394
|
+
just a fixed parameter
|
1395
|
+
set as more differences will be observed.
|
1396
|
+
<p align="right">
|
1397
|
+
<a href="#_TOP">[Go Top]</a>
|
1398
|
+
<hr/>
|
1399
|
+
<a name="/Q5:_Probability_outputs"></a>
|
1400
|
+
<a name="f427"><b>Q: Why using svm-predict -b 0 and -b 1 gives different accuracy values?</b></a>
|
1401
|
+
<br/>
|
1402
|
+
<p>
|
1403
|
+
Let's just consider two-class classification here. After probability information is obtained in training,
|
1404
|
+
we do not have
|
1405
|
+
<p>
|
1406
|
+
prob > = 0.5 if and only if decision value >= 0.
|
1407
|
+
<p>
|
1408
|
+
So predictions may be different with -b 0 and 1.
|
1409
|
+
<p align="right">
|
1410
|
+
<a href="#_TOP">[Go Top]</a>
|
1411
|
+
<hr/>
|
1412
|
+
<a name="/Q6:_Graphic_interface"></a>
|
1413
|
+
<a name="f501"><b>Q: How can I save images drawn by svm-toy?</b></a>
|
1414
|
+
<br/>
|
1415
|
+
<p>
|
1416
|
+
For Microsoft windows, first press the "print screen" key on the keyboard.
|
1417
|
+
Open "Microsoft Paint"
|
1418
|
+
(included in Windows)
|
1419
|
+
and press "ctrl-v." Then you can clip
|
1420
|
+
the part of picture which you want.
|
1421
|
+
For X windows, you can
|
1422
|
+
use the program "xv" or "import" to grab the picture of the svm-toy window.
|
1423
|
+
<p align="right">
|
1424
|
+
<a href="#_TOP">[Go Top]</a>
|
1425
|
+
<hr/>
|
1426
|
+
<a name="/Q6:_Graphic_interface"></a>
|
1427
|
+
<a name="f502"><b>Q: I press the "load" button to load data points but why svm-toy does not draw them ?</b></a>
|
1428
|
+
<br/>
|
1429
|
+
<p>
|
1430
|
+
The program svm-toy assumes both attributes (i.e. x-axis and y-axis
|
1431
|
+
values) are in (0,1). Hence you want to scale your
|
1432
|
+
data to between a small positive number and
|
1433
|
+
a number less than but very close to 1.
|
1434
|
+
Moreover, class labels must be 1, 2, or 3
|
1435
|
+
(not 1.0, 2.0 or anything else).
|
1436
|
+
<p align="right">
|
1437
|
+
<a href="#_TOP">[Go Top]</a>
|
1438
|
+
<hr/>
|
1439
|
+
<a name="/Q6:_Graphic_interface"></a>
|
1440
|
+
<a name="f503"><b>Q: I would like svm-toy to handle more than three classes of data, what should I do ?</b></a>
|
1441
|
+
<br/>
|
1442
|
+
<p>
|
1443
|
+
Taking windows/svm-toy.cpp as an example, you need to
|
1444
|
+
modify it and the difference
|
1445
|
+
from the original file is as the following: (for five classes of
|
1446
|
+
data)
|
1447
|
+
<pre>
|
1448
|
+
30,32c30
|
1449
|
+
< RGB(200,0,200),
|
1450
|
+
< RGB(0,160,0),
|
1451
|
+
< RGB(160,0,0)
|
1452
|
+
---
|
1453
|
+
> RGB(200,0,200)
|
1454
|
+
39c37
|
1455
|
+
< HBRUSH brush1, brush2, brush3, brush4, brush5;
|
1456
|
+
---
|
1457
|
+
> HBRUSH brush1, brush2, brush3;
|
1458
|
+
113,114d110
|
1459
|
+
< brush4 = CreateSolidBrush(colors[7]);
|
1460
|
+
< brush5 = CreateSolidBrush(colors[8]);
|
1461
|
+
155,157c151
|
1462
|
+
< else if(v==3) return brush3;
|
1463
|
+
< else if(v==4) return brush4;
|
1464
|
+
< else return brush5;
|
1465
|
+
---
|
1466
|
+
> else return brush3;
|
1467
|
+
325d318
|
1468
|
+
< int colornum = 5;
|
1469
|
+
327c320
|
1470
|
+
< svm_node *x_space = new svm_node[colornum * prob.l];
|
1471
|
+
---
|
1472
|
+
> svm_node *x_space = new svm_node[3 * prob.l];
|
1473
|
+
333,338c326,331
|
1474
|
+
< x_space[colornum * i].index = 1;
|
1475
|
+
< x_space[colornum * i].value = q->x;
|
1476
|
+
< x_space[colornum * i + 1].index = 2;
|
1477
|
+
< x_space[colornum * i + 1].value = q->y;
|
1478
|
+
< x_space[colornum * i + 2].index = -1;
|
1479
|
+
< prob.x[i] = &x_space[colornum * i];
|
1480
|
+
---
|
1481
|
+
> x_space[3 * i].index = 1;
|
1482
|
+
> x_space[3 * i].value = q->x;
|
1483
|
+
> x_space[3 * i + 1].index = 2;
|
1484
|
+
> x_space[3 * i + 1].value = q->y;
|
1485
|
+
> x_space[3 * i + 2].index = -1;
|
1486
|
+
> prob.x[i] = &x_space[3 * i];
|
1487
|
+
397c390
|
1488
|
+
< if(current_value > 5) current_value = 1;
|
1489
|
+
---
|
1490
|
+
> if(current_value > 3) current_value = 1;
|
1491
|
+
</pre>
|
1492
|
+
<p align="right">
|
1493
|
+
<a href="#_TOP">[Go Top]</a>
|
1494
|
+
<hr/>
|
1495
|
+
<a name="/Q7:_Java_version_of_libsvm"></a>
|
1496
|
+
<a name="f601"><b>Q: What is the difference between Java version and C++ version of libsvm?</b></a>
|
1497
|
+
<br/>
|
1498
|
+
<p>
|
1499
|
+
They are the same thing. We just rewrote the C++ code
|
1500
|
+
in Java.
|
1501
|
+
<p align="right">
|
1502
|
+
<a href="#_TOP">[Go Top]</a>
|
1503
|
+
<hr/>
|
1504
|
+
<a name="/Q7:_Java_version_of_libsvm"></a>
|
1505
|
+
<a name="f602"><b>Q: Is the Java version significantly slower than the C++ version?</b></a>
|
1506
|
+
<br/>
|
1507
|
+
<p>
|
1508
|
+
This depends on the VM you used. We have seen good
|
1509
|
+
VM which leads the Java version to be quite competitive with
|
1510
|
+
the C++ code. (though still slower)
|
1511
|
+
<p align="right">
|
1512
|
+
<a href="#_TOP">[Go Top]</a>
|
1513
|
+
<hr/>
|
1514
|
+
<a name="/Q7:_Java_version_of_libsvm"></a>
|
1515
|
+
<a name="f603"><b>Q: While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</b></a>
|
1516
|
+
<br/>
|
1517
|
+
<p>
|
1518
|
+
You should try to increase the maximum Java heap size.
|
1519
|
+
For example,
|
1520
|
+
<pre>
|
1521
|
+
java -Xmx2048m -classpath libsvm.jar svm_train ...
|
1522
|
+
</pre>
|
1523
|
+
sets the maximum heap size to 2048M.
|
1524
|
+
<p align="right">
|
1525
|
+
<a href="#_TOP">[Go Top]</a>
|
1526
|
+
<hr/>
|
1527
|
+
<a name="/Q7:_Java_version_of_libsvm"></a>
|
1528
|
+
<a name="f604"><b>Q: Why you have the main source file svm.m4 and then transform it to svm.java?</b></a>
|
1529
|
+
<br/>
|
1530
|
+
<p>
|
1531
|
+
Unlike C, Java does not have a preprocessor built-in.
|
1532
|
+
However, we need some macros (see first 3 lines of svm.m4).
|
1533
|
+
|
1534
|
+
</ul>
|
1535
|
+
<p align="right">
|
1536
|
+
<a href="#_TOP">[Go Top]</a>
|
1537
|
+
<hr/>
|
1538
|
+
<a name="/Q8:_Python_interface"></a>
|
1539
|
+
<a name="f704"><b>Q: Except the python-C++ interface provided, could I use Jython to call libsvm ?</b></a>
|
1540
|
+
<br/>
|
1541
|
+
<p> Yes, here are some examples:
|
1542
|
+
|
1543
|
+
<pre>
|
1544
|
+
$ export CLASSPATH=$CLASSPATH:~/libsvm-2.91/java/libsvm.jar
|
1545
|
+
$ ./jython
|
1546
|
+
Jython 2.1a3 on java1.3.0 (JIT: jitc)
|
1547
|
+
Type "copyright", "credits" or "license" for more information.
|
1548
|
+
>>> from libsvm import *
|
1549
|
+
>>> dir()
|
1550
|
+
['__doc__', '__name__', 'svm', 'svm_model', 'svm_node', 'svm_parameter',
|
1551
|
+
'svm_problem']
|
1552
|
+
>>> x1 = [svm_node(index=1,value=1)]
|
1553
|
+
>>> x2 = [svm_node(index=1,value=-1)]
|
1554
|
+
>>> param = svm_parameter(svm_type=0,kernel_type=2,gamma=1,cache_size=40,eps=0.001,C=1,nr_weight=0,shrinking=1)
|
1555
|
+
>>> prob = svm_problem(l=2,y=[1,-1],x=[x1,x2])
|
1556
|
+
>>> model = svm.svm_train(prob,param)
|
1557
|
+
*
|
1558
|
+
optimization finished, #iter = 1
|
1559
|
+
nu = 1.0
|
1560
|
+
obj = -1.018315639346838, rho = 0.0
|
1561
|
+
nSV = 2, nBSV = 2
|
1562
|
+
Total nSV = 2
|
1563
|
+
>>> svm.svm_predict(model,x1)
|
1564
|
+
1.0
|
1565
|
+
>>> svm.svm_predict(model,x2)
|
1566
|
+
-1.0
|
1567
|
+
>>> svm.svm_save_model("test.model",model)
|
1568
|
+
|
1569
|
+
</pre>
|
1570
|
+
|
1571
|
+
<p align="right">
|
1572
|
+
<a href="#_TOP">[Go Top]</a>
|
1573
|
+
<hr/>
|
1574
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1575
|
+
<a name="f801"><b>Q: I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
|
1576
|
+
<br/>
|
1577
|
+
<p>
|
1578
|
+
Your compiler version may not be supported/compatible for MATLAB.
|
1579
|
+
Please check <a href=http://www.mathworks.com/support/compilers/current_release>this MATLAB page</a> first and then specify the version
|
1580
|
+
number. For example, if g++ X.Y is supported, replace
|
1581
|
+
<pre>
|
1582
|
+
CXX = g++
|
1583
|
+
</pre>
|
1584
|
+
in the Makefile with
|
1585
|
+
<pre>
|
1586
|
+
CXX = g++-X.Y
|
1587
|
+
</pre>
|
1588
|
+
<p align="right">
|
1589
|
+
<a href="#_TOP">[Go Top]</a>
|
1590
|
+
<hr/>
|
1591
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1592
|
+
<a name="f8011"><b>Q: On 64bit Windows I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
|
1593
|
+
<br/>
|
1594
|
+
<p>
|
1595
|
+
|
1596
|
+
|
1597
|
+
Please make sure that you use
|
1598
|
+
the -largeArrayDims option in make.m. For example,
|
1599
|
+
<pre>
|
1600
|
+
mex -largeArrayDims -O -c svm.cpp
|
1601
|
+
</pre>
|
1602
|
+
|
1603
|
+
Moreover, if you use Microsoft Visual Studio,
|
1604
|
+
probabally it is not properly installed.
|
1605
|
+
See the explanation
|
1606
|
+
<a href=http://www.mathworks.com/support/compilers/current_release/win64.html#n7>here</a>.
|
1607
|
+
<p align="right">
|
1608
|
+
<a href="#_TOP">[Go Top]</a>
|
1609
|
+
<hr/>
|
1610
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1611
|
+
<a name="f802"><b>Q: Does the MATLAB interface provide a function to do scaling?</b></a>
|
1612
|
+
<br/>
|
1613
|
+
<p>
|
1614
|
+
It is extremely easy to do scaling under MATLAB.
|
1615
|
+
The following one-line code scale each feature to the range
|
1616
|
+
of [0,1]:
|
1617
|
+
<pre>
|
1618
|
+
(data - repmat(min(data,[],1),size(data,1),1))*spdiags(1./(max(data,[],1)-min(data,[],1))',0,size(data,2),size(data,2))
|
1619
|
+
</pre>
|
1620
|
+
<p align="right">
|
1621
|
+
<a href="#_TOP">[Go Top]</a>
|
1622
|
+
<hr/>
|
1623
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1624
|
+
<a name="f803"><b>Q: How could I use MATLAB interface for parameter selection?</b></a>
|
1625
|
+
<br/>
|
1626
|
+
<p>
|
1627
|
+
One can do this by a simple loop.
|
1628
|
+
See the following example:
|
1629
|
+
<pre>
|
1630
|
+
bestcv = 0;
|
1631
|
+
for log2c = -1:3,
|
1632
|
+
for log2g = -4:1,
|
1633
|
+
cmd = ['-v 5 -c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];
|
1634
|
+
cv = svmtrain(heart_scale_label, heart_scale_inst, cmd);
|
1635
|
+
if (cv >= bestcv),
|
1636
|
+
bestcv = cv; bestc = 2^log2c; bestg = 2^log2g;
|
1637
|
+
end
|
1638
|
+
fprintf('%g %g %g (best c=%g, g=%g, rate=%g)\n', log2c, log2g, cv, bestc, bestg, bestcv);
|
1639
|
+
end
|
1640
|
+
end
|
1641
|
+
</pre>
|
1642
|
+
You may adjust the parameter range in the above loops.
|
1643
|
+
<p align="right">
|
1644
|
+
<a href="#_TOP">[Go Top]</a>
|
1645
|
+
<hr/>
|
1646
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1647
|
+
<a name="f8031"><b>Q: I use MATLAB parallel programming toolbox on a multi-core environment for parameter selection. Why the program is even slower?</b></a>
|
1648
|
+
<br/>
|
1649
|
+
<p>
|
1650
|
+
Fabrizio Lacalandra of University of Pisa reported this issue.
|
1651
|
+
It seems the problem is caused by the screen output.
|
1652
|
+
If you disable the <b>info</b> function
|
1653
|
+
using <pre>#if 0,</pre> then the problem
|
1654
|
+
may be solved.
|
1655
|
+
<p align="right">
|
1656
|
+
<a href="#_TOP">[Go Top]</a>
|
1657
|
+
<hr/>
|
1658
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1659
|
+
<a name="f8032"><b>Q: How do I use LIBSVM with OpenMP under MATLAB?</b></a>
|
1660
|
+
<br/>
|
1661
|
+
<p>
|
1662
|
+
In Makefile,
|
1663
|
+
you need to add -fopenmp to CFLAGS and -lgomp to MEX_OPTION. For Octave, you need the same modification.
|
1664
|
+
|
1665
|
+
<p> However, a minor problem is that
|
1666
|
+
the number of threads cannot
|
1667
|
+
be specified in MATLAB. We tried Version 7.12 (R2011a) and gcc-4.6.1.
|
1668
|
+
|
1669
|
+
<pre>
|
1670
|
+
% export OMP_NUM_THREADS=4; matlab
|
1671
|
+
>> setenv('OMP_NUM_THREADS', '1');
|
1672
|
+
</pre>
|
1673
|
+
|
1674
|
+
Then OMP_NUM_THREADS is still 4 while running the program. Please contact us if you
|
1675
|
+
see how to solve this problem. You can, however,
|
1676
|
+
specify the number in the source code (thanks
|
1677
|
+
to comments from Ricardo Santiago-mozos):
|
1678
|
+
<pre>
|
1679
|
+
#pragma omp parallel for private(i) num_threads(4)
|
1680
|
+
</pre>
|
1681
|
+
<p align="right">
|
1682
|
+
<a href="#_TOP">[Go Top]</a>
|
1683
|
+
<hr/>
|
1684
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1685
|
+
<a name="f804"><b>Q: How could I generate the primal variable w of linear SVM?</b></a>
|
1686
|
+
<br/>
|
1687
|
+
<p>
|
1688
|
+
Let's start from the binary class and
|
1689
|
+
assume you have two labels -1 and +1.
|
1690
|
+
After obtaining the model from calling svmtrain,
|
1691
|
+
do the following to have w and b:
|
1692
|
+
<pre>
|
1693
|
+
w = model.SVs' * model.sv_coef;
|
1694
|
+
b = -model.rho;
|
1695
|
+
|
1696
|
+
if model.Label(1) == -1
|
1697
|
+
w = -w;
|
1698
|
+
b = -b;
|
1699
|
+
end
|
1700
|
+
</pre>
|
1701
|
+
If you do regression or one-class SVM, then the if statement is not needed.
|
1702
|
+
|
1703
|
+
<p> For multi-class SVM, we illustrate the setting
|
1704
|
+
in the following example of running the iris
|
1705
|
+
data, which have 3 classes
|
1706
|
+
<pre>
|
1707
|
+
> [y, x] = libsvmread('../../htdocs/libsvmtools/datasets/multiclass/iris.scale');
|
1708
|
+
> m = svmtrain(y, x, '-t 0')
|
1709
|
+
|
1710
|
+
m =
|
1711
|
+
|
1712
|
+
Parameters: [5x1 double]
|
1713
|
+
nr_class: 3
|
1714
|
+
totalSV: 42
|
1715
|
+
rho: [3x1 double]
|
1716
|
+
Label: [3x1 double]
|
1717
|
+
ProbA: []
|
1718
|
+
ProbB: []
|
1719
|
+
nSV: [3x1 double]
|
1720
|
+
sv_coef: [42x2 double]
|
1721
|
+
SVs: [42x4 double]
|
1722
|
+
</pre>
|
1723
|
+
sv_coef is like:
|
1724
|
+
<pre>
|
1725
|
+
+-+-+--------------------+
|
1726
|
+
|1|1| |
|
1727
|
+
|v|v| SVs from class 1 |
|
1728
|
+
|2|3| |
|
1729
|
+
+-+-+--------------------+
|
1730
|
+
|1|2| |
|
1731
|
+
|v|v| SVs from class 2 |
|
1732
|
+
|2|3| |
|
1733
|
+
+-+-+--------------------+
|
1734
|
+
|1|2| |
|
1735
|
+
|v|v| SVs from class 3 |
|
1736
|
+
|3|3| |
|
1737
|
+
+-+-+--------------------+
|
1738
|
+
</pre>
|
1739
|
+
so we need to see nSV of each classes.
|
1740
|
+
<pre>
|
1741
|
+
> m.nSV
|
1742
|
+
|
1743
|
+
ans =
|
1744
|
+
|
1745
|
+
3
|
1746
|
+
21
|
1747
|
+
18
|
1748
|
+
</pre>
|
1749
|
+
Suppose the goal is to find the vector w of classes
|
1750
|
+
1 vs 3. Then
|
1751
|
+
y_i alpha_i of training 1 vs 3 are
|
1752
|
+
<pre>
|
1753
|
+
> coef = [m.sv_coef(1:3,2); m.sv_coef(25:42,1)];
|
1754
|
+
</pre>
|
1755
|
+
and SVs are:
|
1756
|
+
<pre>
|
1757
|
+
> SVs = [m.SVs(1:3,:); m.SVs(25:42,:)];
|
1758
|
+
</pre>
|
1759
|
+
Hence, w is
|
1760
|
+
<pre>
|
1761
|
+
> w = SVs'*coef;
|
1762
|
+
</pre>
|
1763
|
+
For rho,
|
1764
|
+
<pre>
|
1765
|
+
> m.rho
|
1766
|
+
|
1767
|
+
ans =
|
1768
|
+
|
1769
|
+
1.1465
|
1770
|
+
0.3682
|
1771
|
+
-1.9969
|
1772
|
+
> b = -m.rho(2);
|
1773
|
+
</pre>
|
1774
|
+
because rho is arranged by 1vs2 1vs3 2vs3.
|
1775
|
+
|
1776
|
+
|
1777
|
+
|
1778
|
+
<p align="right">
|
1779
|
+
<a href="#_TOP">[Go Top]</a>
|
1780
|
+
<hr/>
|
1781
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1782
|
+
<a name="f805"><b>Q: Is there an OCTAVE interface for libsvm?</b></a>
|
1783
|
+
<br/>
|
1784
|
+
<p>
|
1785
|
+
Yes, after libsvm 2.86, the matlab interface
|
1786
|
+
works on OCTAVE as well. Please type
|
1787
|
+
<pre>
|
1788
|
+
make octave
|
1789
|
+
</pre>
|
1790
|
+
for installation.
|
1791
|
+
<p align="right">
|
1792
|
+
<a href="#_TOP">[Go Top]</a>
|
1793
|
+
<hr/>
|
1794
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1795
|
+
<a name="f806"><b>Q: How to handle the name conflict between svmtrain in the libsvm matlab interface and that in MATLAB bioinformatics toolbox?</b></a>
|
1796
|
+
<br/>
|
1797
|
+
<p>
|
1798
|
+
The easiest way is to rename the svmtrain binary
|
1799
|
+
file (e.g., svmtrain.mexw32 on 32-bit windows)
|
1800
|
+
to a different
|
1801
|
+
name (e.g., svmtrain2.mexw32).
|
1802
|
+
<p align="right">
|
1803
|
+
<a href="#_TOP">[Go Top]</a>
|
1804
|
+
<hr/>
|
1805
|
+
<a name="/Q9:_MATLAB_interface"></a>
|
1806
|
+
<a name="f807"><b>Q: On Windows I got an error message "Invalid MEX-file: Specific module not found" when running the pre-built MATLAB interface in the windows sub-directory. What should I do?</b></a>
|
1807
|
+
<br/>
|
1808
|
+
<p>
|
1809
|
+
|
1810
|
+
The error usually happens
|
1811
|
+
when there are missing runtime components
|
1812
|
+
such as MSVCR100.dll on your Windows platform.
|
1813
|
+
You can use tools such as
|
1814
|
+
<a href=http://www.dependencywalker.com/>Dependency
|
1815
|
+
Walker</a> to find missing library files.
|
1816
|
+
|
1817
|
+
<p>
|
1818
|
+
Because the pre-built MEX files are compiled by
|
1819
|
+
Visual C++ 2010,
|
1820
|
+
please make sure that you have installed
|
1821
|
+
Microsoft Visual C++ Redistributable Package 2010
|
1822
|
+
(vcredist_x86.exe). You can easily find the freely
|
1823
|
+
available file from Microsoft's web site.
|
1824
|
+
|
1825
|
+
<p>
|
1826
|
+
For 64bit Windows, the pre-built files are by
|
1827
|
+
Visual C++ 2008, so please install
|
1828
|
+
Microsoft Visual C++ Redistributable Package 2008
|
1829
|
+
(vcredist_x64.exe).
|
1830
|
+
<p align="right">
|
1831
|
+
<a href="#_TOP">[Go Top]</a>
|
1832
|
+
<hr/>
|
1833
|
+
<p align="middle">
|
1834
|
+
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">LIBSVM home page</a>
|
1835
|
+
</p>
|
1836
|
+
</body>
|
1837
|
+
</html>
|