rsvm 0.0.1

Sign up to get free protection for your applications and to get access to all the features.
@@ -0,0 +1,3 @@
1
+ require 'mkmf'
2
+
3
+ create_makefile('libsvm/libsvm')
@@ -0,0 +1,3213 @@
1
+ #include <math.h>
2
+ #include <stdio.h>
3
+ #include <stdlib.h>
4
+ #include <ctype.h>
5
+ #include <float.h>
6
+ #include <string.h>
7
+ #include <stdarg.h>
8
+ #include <limits.h>
9
+ #include <locale.h>
10
+ #include "svm.h"
11
+ int libsvm_version = LIBSVM_VERSION;
12
+ typedef float Qfloat;
13
+ typedef signed char schar;
14
+ #ifndef min
15
+ template <class T> static inline T min(T x,T y) { return (x<y)?x:y; }
16
+ #endif
17
+ #ifndef max
18
+ template <class T> static inline T max(T x,T y) { return (x>y)?x:y; }
19
+ #endif
20
+ template <class T> static inline void swap(T& x, T& y) { T t=x; x=y; y=t; }
21
+ template <class S, class T> static inline void clone(T*& dst, S* src, int n)
22
+ {
23
+ dst = new T[n];
24
+ memcpy((void *)dst,(void *)src,sizeof(T)*n);
25
+ }
26
+ static inline double powi(double base, int times)
27
+ {
28
+ double tmp = base, ret = 1.0;
29
+
30
+ for(int t=times; t>0; t/=2)
31
+ {
32
+ if(t%2==1) ret*=tmp;
33
+ tmp = tmp * tmp;
34
+ }
35
+ return ret;
36
+ }
37
+ #define INF HUGE_VAL
38
+ #define TAU 1e-12
39
+ #define Malloc(type,n) (type *)malloc((n)*sizeof(type))
40
+
41
+ static void print_string_stdout(const char *s)
42
+ {
43
+ fputs(s,stdout);
44
+ fflush(stdout);
45
+ }
46
+ static void (*svm_print_string) (const char *) = &print_string_stdout;
47
+ #if 1
48
+ static void info(const char *fmt,...)
49
+ {
50
+ char buf[BUFSIZ];
51
+ va_list ap;
52
+ va_start(ap,fmt);
53
+ vsprintf(buf,fmt,ap);
54
+ va_end(ap);
55
+ (*svm_print_string)(buf);
56
+ }
57
+ #else
58
+ static void info(const char *fmt,...) {}
59
+ #endif
60
+
61
+ //
62
+ // Kernel Cache
63
+ //
64
+ // l is the number of total data items
65
+ // size is the cache size limit in bytes
66
+ //
67
+ class Cache
68
+ {
69
+ public:
70
+ Cache(int l,long int size);
71
+ ~Cache();
72
+
73
+ // request data [0,len)
74
+ // return some position p where [p,len) need to be filled
75
+ // (p >= len if nothing needs to be filled)
76
+ int get_data(const int index, Qfloat **data, int len);
77
+ void swap_index(int i, int j);
78
+ private:
79
+ int l;
80
+ long int size;
81
+ struct head_t
82
+ {
83
+ head_t *prev, *next; // a circular list
84
+ Qfloat *data;
85
+ int len; // data[0,len) is cached in this entry
86
+ };
87
+
88
+ head_t *head;
89
+ head_t lru_head;
90
+ void lru_delete(head_t *h);
91
+ void lru_insert(head_t *h);
92
+ };
93
+
94
+ Cache::Cache(int l_,long int size_):l(l_),size(size_)
95
+ {
96
+ head = (head_t *)calloc(l,sizeof(head_t)); // initialized to 0
97
+ size /= sizeof(Qfloat);
98
+ size -= l * sizeof(head_t) / sizeof(Qfloat);
99
+ size = max(size, 2 * (long int) l); // cache must be large enough for two columns
100
+ lru_head.next = lru_head.prev = &lru_head;
101
+ }
102
+
103
+ Cache::~Cache()
104
+ {
105
+ for(head_t *h = lru_head.next; h != &lru_head; h=h->next)
106
+ free(h->data);
107
+ free(head);
108
+ }
109
+
110
+ void Cache::lru_delete(head_t *h)
111
+ {
112
+ // delete from current location
113
+ h->prev->next = h->next;
114
+ h->next->prev = h->prev;
115
+ }
116
+
117
+ void Cache::lru_insert(head_t *h)
118
+ {
119
+ // insert to last position
120
+ h->next = &lru_head;
121
+ h->prev = lru_head.prev;
122
+ h->prev->next = h;
123
+ h->next->prev = h;
124
+ }
125
+
126
+ int Cache::get_data(const int index, Qfloat **data, int len)
127
+ {
128
+ head_t *h = &head[index];
129
+ if(h->len) lru_delete(h);
130
+ int more = len - h->len;
131
+
132
+ if(more > 0)
133
+ {
134
+ // free old space
135
+ while(size < more)
136
+ {
137
+ head_t *old = lru_head.next;
138
+ lru_delete(old);
139
+ free(old->data);
140
+ size += old->len;
141
+ old->data = 0;
142
+ old->len = 0;
143
+ }
144
+
145
+ // allocate new space
146
+ h->data = (Qfloat *)realloc(h->data,sizeof(Qfloat)*len);
147
+ size -= more;
148
+ swap(h->len,len);
149
+ }
150
+
151
+ lru_insert(h);
152
+ *data = h->data;
153
+ return len;
154
+ }
155
+
156
+ void Cache::swap_index(int i, int j)
157
+ {
158
+ if(i==j) return;
159
+
160
+ if(head[i].len) lru_delete(&head[i]);
161
+ if(head[j].len) lru_delete(&head[j]);
162
+ swap(head[i].data,head[j].data);
163
+ swap(head[i].len,head[j].len);
164
+ if(head[i].len) lru_insert(&head[i]);
165
+ if(head[j].len) lru_insert(&head[j]);
166
+
167
+ if(i>j) swap(i,j);
168
+ for(head_t *h = lru_head.next; h!=&lru_head; h=h->next)
169
+ {
170
+ if(h->len > i)
171
+ {
172
+ if(h->len > j)
173
+ swap(h->data[i],h->data[j]);
174
+ else
175
+ {
176
+ // give up
177
+ lru_delete(h);
178
+ free(h->data);
179
+ size += h->len;
180
+ h->data = 0;
181
+ h->len = 0;
182
+ }
183
+ }
184
+ }
185
+ }
186
+
187
+ //
188
+ // Kernel evaluation
189
+ //
190
+ // the static method k_function is for doing single kernel evaluation
191
+ // the constructor of Kernel prepares to calculate the l*l kernel matrix
192
+ // the member function get_Q is for getting one column from the Q Matrix
193
+ //
194
+ class QMatrix {
195
+ public:
196
+ virtual Qfloat *get_Q(int column, int len) const = 0;
197
+ virtual double *get_QD() const = 0;
198
+ virtual void swap_index(int i, int j) const = 0;
199
+ virtual ~QMatrix() {}
200
+ };
201
+
202
+ class Kernel: public QMatrix {
203
+ public:
204
+ Kernel(int l, svm_node * const * x, const svm_parameter& param);
205
+ virtual ~Kernel();
206
+
207
+ static double k_function(const svm_node *x, const svm_node *y,
208
+ const svm_parameter& param);
209
+ virtual Qfloat *get_Q(int column, int len) const = 0;
210
+ virtual double *get_QD() const = 0;
211
+ virtual void swap_index(int i, int j) const // no so const...
212
+ {
213
+ swap(x[i],x[j]);
214
+ if(x_square) swap(x_square[i],x_square[j]);
215
+ }
216
+ protected:
217
+
218
+ double (Kernel::*kernel_function)(int i, int j) const;
219
+
220
+ private:
221
+ const svm_node **x;
222
+ double *x_square;
223
+
224
+ // svm_parameter
225
+ const int kernel_type;
226
+ const int degree;
227
+ const double gamma;
228
+ const double coef0;
229
+
230
+ static double dot(const svm_node *px, const svm_node *py);
231
+ double kernel_linear(int i, int j) const
232
+ {
233
+ return dot(x[i],x[j]);
234
+ }
235
+ double kernel_poly(int i, int j) const
236
+ {
237
+ return powi(gamma*dot(x[i],x[j])+coef0,degree);
238
+ }
239
+ double kernel_rbf(int i, int j) const
240
+ {
241
+ return exp(-gamma*(x_square[i]+x_square[j]-2*dot(x[i],x[j])));
242
+ }
243
+ double kernel_sigmoid(int i, int j) const
244
+ {
245
+ return tanh(gamma*dot(x[i],x[j])+coef0);
246
+ }
247
+ double kernel_precomputed(int i, int j) const
248
+ {
249
+ return x[i][(int)(x[j][0].value)].value;
250
+ }
251
+ };
252
+
253
+ Kernel::Kernel(int l, svm_node * const * x_, const svm_parameter& param)
254
+ :kernel_type(param.kernel_type), degree(param.degree),
255
+ gamma(param.gamma), coef0(param.coef0)
256
+ {
257
+ switch(kernel_type)
258
+ {
259
+ case LINEAR:
260
+ kernel_function = &Kernel::kernel_linear;
261
+ break;
262
+ case POLY:
263
+ kernel_function = &Kernel::kernel_poly;
264
+ break;
265
+ case RBF:
266
+ kernel_function = &Kernel::kernel_rbf;
267
+ break;
268
+ case SIGMOID:
269
+ kernel_function = &Kernel::kernel_sigmoid;
270
+ break;
271
+ case PRECOMPUTED:
272
+ kernel_function = &Kernel::kernel_precomputed;
273
+ break;
274
+ }
275
+
276
+ clone(x,x_,l);
277
+
278
+ if(kernel_type == RBF)
279
+ {
280
+ x_square = new double[l];
281
+ for(int i=0;i<l;i++)
282
+ x_square[i] = dot(x[i],x[i]);
283
+ }
284
+ else
285
+ x_square = 0;
286
+ }
287
+
288
+ Kernel::~Kernel()
289
+ {
290
+ delete[] x;
291
+ delete[] x_square;
292
+ }
293
+
294
+ double Kernel::dot(const svm_node *px, const svm_node *py)
295
+ {
296
+ double sum = 0;
297
+ while(px->index != -1 && py->index != -1)
298
+ {
299
+ if(px->index == py->index)
300
+ {
301
+ sum += px->value * py->value;
302
+ ++px;
303
+ ++py;
304
+ }
305
+ else
306
+ {
307
+ if(px->index > py->index)
308
+ ++py;
309
+ else
310
+ ++px;
311
+ }
312
+ }
313
+ return sum;
314
+ }
315
+
316
+ double Kernel::k_function(const svm_node *x, const svm_node *y,
317
+ const svm_parameter& param)
318
+ {
319
+ switch(param.kernel_type)
320
+ {
321
+ case LINEAR:
322
+ return dot(x,y);
323
+ case POLY:
324
+ return powi(param.gamma*dot(x,y)+param.coef0,param.degree);
325
+ case RBF:
326
+ {
327
+ double sum = 0;
328
+ while(x->index != -1 && y->index !=-1)
329
+ {
330
+ if(x->index == y->index)
331
+ {
332
+ double d = x->value - y->value;
333
+ sum += d*d;
334
+ ++x;
335
+ ++y;
336
+ }
337
+ else
338
+ {
339
+ if(x->index > y->index)
340
+ {
341
+ sum += y->value * y->value;
342
+ ++y;
343
+ }
344
+ else
345
+ {
346
+ sum += x->value * x->value;
347
+ ++x;
348
+ }
349
+ }
350
+ }
351
+
352
+ while(x->index != -1)
353
+ {
354
+ sum += x->value * x->value;
355
+ ++x;
356
+ }
357
+
358
+ while(y->index != -1)
359
+ {
360
+ sum += y->value * y->value;
361
+ ++y;
362
+ }
363
+
364
+ return exp(-param.gamma*sum);
365
+ }
366
+ case SIGMOID:
367
+ return tanh(param.gamma*dot(x,y)+param.coef0);
368
+ case PRECOMPUTED: //x: test (validation), y: SV
369
+ return x[(int)(y->value)].value;
370
+ default:
371
+ return 0; // Unreachable
372
+ }
373
+ }
374
+
375
+ // An SMO algorithm in Fan et al., JMLR 6(2005), p. 1889--1918
376
+ // Solves:
377
+ //
378
+ // min 0.5(\alpha^T Q \alpha) + p^T \alpha
379
+ //
380
+ // y^T \alpha = \delta
381
+ // y_i = +1 or -1
382
+ // 0 <= alpha_i <= Cp for y_i = 1
383
+ // 0 <= alpha_i <= Cn for y_i = -1
384
+ //
385
+ // Given:
386
+ //
387
+ // Q, p, y, Cp, Cn, and an initial feasible point \alpha
388
+ // l is the size of vectors and matrices
389
+ // eps is the stopping tolerance
390
+ //
391
+ // solution will be put in \alpha, objective value will be put in obj
392
+ //
393
+ class Solver {
394
+ public:
395
+ Solver() {};
396
+ virtual ~Solver() {};
397
+
398
+ struct SolutionInfo {
399
+ double obj;
400
+ double rho;
401
+ double *upper_bound;
402
+ double r; // for Solver_NU
403
+ };
404
+
405
+ void Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
406
+ double *alpha_, const double* C_, double eps,
407
+ SolutionInfo* si, int shrinking);
408
+ protected:
409
+ int active_size;
410
+ schar *y;
411
+ double *G; // gradient of objective function
412
+ enum { LOWER_BOUND, UPPER_BOUND, FREE };
413
+ char *alpha_status; // LOWER_BOUND, UPPER_BOUND, FREE
414
+ double *alpha;
415
+ const QMatrix *Q;
416
+ const double *QD;
417
+ double eps;
418
+ double Cp,Cn;
419
+ double *C;
420
+ double *p;
421
+ int *active_set;
422
+ double *G_bar; // gradient, if we treat free variables as 0
423
+ int l;
424
+ bool unshrink; // XXX
425
+
426
+ double get_C(int i)
427
+ {
428
+ return C[i];
429
+ }
430
+ void update_alpha_status(int i)
431
+ {
432
+ if(alpha[i] >= get_C(i))
433
+ alpha_status[i] = UPPER_BOUND;
434
+ else if(alpha[i] <= 0)
435
+ alpha_status[i] = LOWER_BOUND;
436
+ else alpha_status[i] = FREE;
437
+ }
438
+ bool is_upper_bound(int i) { return alpha_status[i] == UPPER_BOUND; }
439
+ bool is_lower_bound(int i) { return alpha_status[i] == LOWER_BOUND; }
440
+ bool is_free(int i) { return alpha_status[i] == FREE; }
441
+ void swap_index(int i, int j);
442
+ void reconstruct_gradient();
443
+ virtual int select_working_set(int &i, int &j);
444
+ virtual double calculate_rho();
445
+ virtual void do_shrinking();
446
+ private:
447
+ bool be_shrunk(int i, double Gmax1, double Gmax2);
448
+ };
449
+
450
+ void Solver::swap_index(int i, int j)
451
+ {
452
+ Q->swap_index(i,j);
453
+ swap(y[i],y[j]);
454
+ swap(G[i],G[j]);
455
+ swap(alpha_status[i],alpha_status[j]);
456
+ swap(alpha[i],alpha[j]);
457
+ swap(p[i],p[j]);
458
+ swap(active_set[i],active_set[j]);
459
+ swap(G_bar[i],G_bar[j]);
460
+ swap(C[i],C[j]);
461
+ }
462
+
463
+ void Solver::reconstruct_gradient()
464
+ {
465
+ // reconstruct inactive elements of G from G_bar and free variables
466
+
467
+ if(active_size == l) return;
468
+
469
+ int i,j;
470
+ int nr_free = 0;
471
+
472
+ for(j=active_size;j<l;j++)
473
+ G[j] = G_bar[j] + p[j];
474
+
475
+ for(j=0;j<active_size;j++)
476
+ if(is_free(j))
477
+ nr_free++;
478
+
479
+ if(2*nr_free < active_size)
480
+ info("\nWARNING: using -h 0 may be faster\n");
481
+
482
+ if (nr_free*l > 2*active_size*(l-active_size))
483
+ {
484
+ for(i=active_size;i<l;i++)
485
+ {
486
+ const Qfloat *Q_i = Q->get_Q(i,active_size);
487
+ for(j=0;j<active_size;j++)
488
+ if(is_free(j))
489
+ G[i] += alpha[j] * Q_i[j];
490
+ }
491
+ }
492
+ else
493
+ {
494
+ for(i=0;i<active_size;i++)
495
+ if(is_free(i))
496
+ {
497
+ const Qfloat *Q_i = Q->get_Q(i,l);
498
+ double alpha_i = alpha[i];
499
+ for(j=active_size;j<l;j++)
500
+ G[j] += alpha_i * Q_i[j];
501
+ }
502
+ }
503
+ }
504
+
505
+ void Solver::Solve(int l, const QMatrix& Q, const double *p_, const schar *y_,
506
+ double *alpha_, const double* C_, double eps,
507
+ SolutionInfo* si, int shrinking)
508
+ {
509
+ this->l = l;
510
+ this->Q = &Q;
511
+ QD=Q.get_QD();
512
+ clone(p, p_,l);
513
+ clone(y, y_,l);
514
+ clone(alpha,alpha_,l);
515
+ clone(C,C_,l);
516
+ this->eps = eps;
517
+ unshrink = false;
518
+
519
+ // initialize alpha_status
520
+ {
521
+ alpha_status = new char[l];
522
+ for(int i=0;i<l;i++)
523
+ update_alpha_status(i);
524
+ }
525
+
526
+ // initialize active set (for shrinking)
527
+ {
528
+ active_set = new int[l];
529
+ for(int i=0;i<l;i++)
530
+ active_set[i] = i;
531
+ active_size = l;
532
+ }
533
+
534
+ // initialize gradient
535
+ {
536
+ G = new double[l];
537
+ G_bar = new double[l];
538
+ int i;
539
+ for(i=0;i<l;i++)
540
+ {
541
+ G[i] = p[i];
542
+ G_bar[i] = 0;
543
+ }
544
+ for(i=0;i<l;i++)
545
+ if(!is_lower_bound(i))
546
+ {
547
+ const Qfloat *Q_i = Q.get_Q(i,l);
548
+ double alpha_i = alpha[i];
549
+ int j;
550
+ for(j=0;j<l;j++)
551
+ G[j] += alpha_i*Q_i[j];
552
+ if(is_upper_bound(i))
553
+ for(j=0;j<l;j++)
554
+ G_bar[j] += get_C(i) * Q_i[j];
555
+ }
556
+ }
557
+
558
+ // optimization step
559
+
560
+ int iter = 0;
561
+ int max_iter = max(10000000, l>INT_MAX/100 ? INT_MAX : 100*l);
562
+ int counter = min(l,1000)+1;
563
+
564
+ while(iter < max_iter)
565
+ {
566
+ // show progress and do shrinking
567
+
568
+ if(--counter == 0)
569
+ {
570
+ counter = min(l,1000);
571
+ if(shrinking) do_shrinking();
572
+ info(".");
573
+ }
574
+
575
+ int i,j;
576
+ if(select_working_set(i,j)!=0)
577
+ {
578
+ // reconstruct the whole gradient
579
+ reconstruct_gradient();
580
+ // reset active set size and check
581
+ active_size = l;
582
+ info("*");
583
+ if(select_working_set(i,j)!=0)
584
+ break;
585
+ else
586
+ counter = 1; // do shrinking next iteration
587
+ }
588
+
589
+ ++iter;
590
+
591
+ // update alpha[i] and alpha[j], handle bounds carefully
592
+
593
+ const Qfloat *Q_i = Q.get_Q(i,active_size);
594
+ const Qfloat *Q_j = Q.get_Q(j,active_size);
595
+
596
+ double C_i = get_C(i);
597
+ double C_j = get_C(j);
598
+
599
+ double old_alpha_i = alpha[i];
600
+ double old_alpha_j = alpha[j];
601
+
602
+ if(y[i]!=y[j])
603
+ {
604
+ double quad_coef = QD[i]+QD[j]+2*Q_i[j];
605
+ if (quad_coef <= 0)
606
+ quad_coef = TAU;
607
+ double delta = (-G[i]-G[j])/quad_coef;
608
+ double diff = alpha[i] - alpha[j];
609
+ alpha[i] += delta;
610
+ alpha[j] += delta;
611
+
612
+ if(diff > 0)
613
+ {
614
+ if(alpha[j] < 0)
615
+ {
616
+ alpha[j] = 0;
617
+ alpha[i] = diff;
618
+ }
619
+ }
620
+ else
621
+ {
622
+ if(alpha[i] < 0)
623
+ {
624
+ alpha[i] = 0;
625
+ alpha[j] = -diff;
626
+ }
627
+ }
628
+ if(diff > C_i - C_j)
629
+ {
630
+ if(alpha[i] > C_i)
631
+ {
632
+ alpha[i] = C_i;
633
+ alpha[j] = C_i - diff;
634
+ }
635
+ }
636
+ else
637
+ {
638
+ if(alpha[j] > C_j)
639
+ {
640
+ alpha[j] = C_j;
641
+ alpha[i] = C_j + diff;
642
+ }
643
+ }
644
+ }
645
+ else
646
+ {
647
+ double quad_coef = QD[i]+QD[j]-2*Q_i[j];
648
+ if (quad_coef <= 0)
649
+ quad_coef = TAU;
650
+ double delta = (G[i]-G[j])/quad_coef;
651
+ double sum = alpha[i] + alpha[j];
652
+ alpha[i] -= delta;
653
+ alpha[j] += delta;
654
+
655
+ if(sum > C_i)
656
+ {
657
+ if(alpha[i] > C_i)
658
+ {
659
+ alpha[i] = C_i;
660
+ alpha[j] = sum - C_i;
661
+ }
662
+ }
663
+ else
664
+ {
665
+ if(alpha[j] < 0)
666
+ {
667
+ alpha[j] = 0;
668
+ alpha[i] = sum;
669
+ }
670
+ }
671
+ if(sum > C_j)
672
+ {
673
+ if(alpha[j] > C_j)
674
+ {
675
+ alpha[j] = C_j;
676
+ alpha[i] = sum - C_j;
677
+ }
678
+ }
679
+ else
680
+ {
681
+ if(alpha[i] < 0)
682
+ {
683
+ alpha[i] = 0;
684
+ alpha[j] = sum;
685
+ }
686
+ }
687
+ }
688
+
689
+ // update G
690
+
691
+ double delta_alpha_i = alpha[i] - old_alpha_i;
692
+ double delta_alpha_j = alpha[j] - old_alpha_j;
693
+
694
+ for(int k=0;k<active_size;k++)
695
+ {
696
+ G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
697
+ }
698
+
699
+ // update alpha_status and G_bar
700
+
701
+ {
702
+ bool ui = is_upper_bound(i);
703
+ bool uj = is_upper_bound(j);
704
+ update_alpha_status(i);
705
+ update_alpha_status(j);
706
+ int k;
707
+ if(ui != is_upper_bound(i))
708
+ {
709
+ Q_i = Q.get_Q(i,l);
710
+ if(ui)
711
+ for(k=0;k<l;k++)
712
+ G_bar[k] -= C_i * Q_i[k];
713
+ else
714
+ for(k=0;k<l;k++)
715
+ G_bar[k] += C_i * Q_i[k];
716
+ }
717
+
718
+ if(uj != is_upper_bound(j))
719
+ {
720
+ Q_j = Q.get_Q(j,l);
721
+ if(uj)
722
+ for(k=0;k<l;k++)
723
+ G_bar[k] -= C_j * Q_j[k];
724
+ else
725
+ for(k=0;k<l;k++)
726
+ G_bar[k] += C_j * Q_j[k];
727
+ }
728
+ }
729
+ }
730
+
731
+ if(iter >= max_iter)
732
+ {
733
+ if(active_size < l)
734
+ {
735
+ // reconstruct the whole gradient to calculate objective value
736
+ reconstruct_gradient();
737
+ active_size = l;
738
+ info("*");
739
+ }
740
+ info("\nWARNING: reaching max number of iterations");
741
+ }
742
+
743
+ // calculate rho
744
+
745
+ si->rho = calculate_rho();
746
+
747
+ // calculate objective value
748
+ {
749
+ double v = 0;
750
+ int i;
751
+ for(i=0;i<l;i++)
752
+ v += alpha[i] * (G[i] + p[i]);
753
+
754
+ si->obj = v/2;
755
+ }
756
+
757
+ // put back the solution
758
+ {
759
+ for(int i=0;i<l;i++)
760
+ alpha_[active_set[i]] = alpha[i];
761
+ }
762
+
763
+ // juggle everything back
764
+ /*{
765
+ for(int i=0;i<l;i++)
766
+ while(active_set[i] != i)
767
+ swap_index(i,active_set[i]);
768
+ // or Q.swap_index(i,active_set[i]);
769
+ }*/
770
+
771
+ for(int i=0;i<l;i++)
772
+ si->upper_bound[i] = C[i];
773
+
774
+ info("\noptimization finished, #iter = %d\n",iter);
775
+
776
+ delete[] p;
777
+ delete[] y;
778
+ delete[] C;
779
+ delete[] alpha;
780
+ delete[] alpha_status;
781
+ delete[] active_set;
782
+ delete[] G;
783
+ delete[] G_bar;
784
+ }
785
+
786
+ // return 1 if already optimal, return 0 otherwise
787
+ int Solver::select_working_set(int &out_i, int &out_j)
788
+ {
789
+ // return i,j such that
790
+ // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
791
+ // j: minimizes the decrease of obj value
792
+ // (if quadratic coefficeint <= 0, replace it with tau)
793
+ // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
794
+
795
+ double Gmax = -INF;
796
+ double Gmax2 = -INF;
797
+ int Gmax_idx = -1;
798
+ int Gmin_idx = -1;
799
+ double obj_diff_min = INF;
800
+
801
+ for(int t=0;t<active_size;t++)
802
+ if(y[t]==+1)
803
+ {
804
+ if(!is_upper_bound(t))
805
+ if(-G[t] >= Gmax)
806
+ {
807
+ Gmax = -G[t];
808
+ Gmax_idx = t;
809
+ }
810
+ }
811
+ else
812
+ {
813
+ if(!is_lower_bound(t))
814
+ if(G[t] >= Gmax)
815
+ {
816
+ Gmax = G[t];
817
+ Gmax_idx = t;
818
+ }
819
+ }
820
+
821
+ int i = Gmax_idx;
822
+ const Qfloat *Q_i = NULL;
823
+ if(i != -1) // NULL Q_i not accessed: Gmax=-INF if i=-1
824
+ Q_i = Q->get_Q(i,active_size);
825
+
826
+ for(int j=0;j<active_size;j++)
827
+ {
828
+ if(y[j]==+1)
829
+ {
830
+ if (!is_lower_bound(j))
831
+ {
832
+ double grad_diff=Gmax+G[j];
833
+ if (G[j] >= Gmax2)
834
+ Gmax2 = G[j];
835
+ if (grad_diff > 0)
836
+ {
837
+ double obj_diff;
838
+ double quad_coef = QD[i]+QD[j]-2.0*y[i]*Q_i[j];
839
+ if (quad_coef > 0)
840
+ obj_diff = -(grad_diff*grad_diff)/quad_coef;
841
+ else
842
+ obj_diff = -(grad_diff*grad_diff)/TAU;
843
+
844
+ if (obj_diff <= obj_diff_min)
845
+ {
846
+ Gmin_idx=j;
847
+ obj_diff_min = obj_diff;
848
+ }
849
+ }
850
+ }
851
+ }
852
+ else
853
+ {
854
+ if (!is_upper_bound(j))
855
+ {
856
+ double grad_diff= Gmax-G[j];
857
+ if (-G[j] >= Gmax2)
858
+ Gmax2 = -G[j];
859
+ if (grad_diff > 0)
860
+ {
861
+ double obj_diff;
862
+ double quad_coef = QD[i]+QD[j]+2.0*y[i]*Q_i[j];
863
+ if (quad_coef > 0)
864
+ obj_diff = -(grad_diff*grad_diff)/quad_coef;
865
+ else
866
+ obj_diff = -(grad_diff*grad_diff)/TAU;
867
+
868
+ if (obj_diff <= obj_diff_min)
869
+ {
870
+ Gmin_idx=j;
871
+ obj_diff_min = obj_diff;
872
+ }
873
+ }
874
+ }
875
+ }
876
+ }
877
+
878
+ if(Gmax+Gmax2 < eps)
879
+ return 1;
880
+
881
+ out_i = Gmax_idx;
882
+ out_j = Gmin_idx;
883
+ return 0;
884
+ }
885
+
886
+ bool Solver::be_shrunk(int i, double Gmax1, double Gmax2)
887
+ {
888
+ if(is_upper_bound(i))
889
+ {
890
+ if(y[i]==+1)
891
+ return(-G[i] > Gmax1);
892
+ else
893
+ return(-G[i] > Gmax2);
894
+ }
895
+ else if(is_lower_bound(i))
896
+ {
897
+ if(y[i]==+1)
898
+ return(G[i] > Gmax2);
899
+ else
900
+ return(G[i] > Gmax1);
901
+ }
902
+ else
903
+ return(false);
904
+ }
905
+
906
+ void Solver::do_shrinking()
907
+ {
908
+ int i;
909
+ double Gmax1 = -INF; // max { -y_i * grad(f)_i | i in I_up(\alpha) }
910
+ double Gmax2 = -INF; // max { y_i * grad(f)_i | i in I_low(\alpha) }
911
+
912
+ // find maximal violating pair first
913
+ for(i=0;i<active_size;i++)
914
+ {
915
+ if(y[i]==+1)
916
+ {
917
+ if(!is_upper_bound(i))
918
+ {
919
+ if(-G[i] >= Gmax1)
920
+ Gmax1 = -G[i];
921
+ }
922
+ if(!is_lower_bound(i))
923
+ {
924
+ if(G[i] >= Gmax2)
925
+ Gmax2 = G[i];
926
+ }
927
+ }
928
+ else
929
+ {
930
+ if(!is_upper_bound(i))
931
+ {
932
+ if(-G[i] >= Gmax2)
933
+ Gmax2 = -G[i];
934
+ }
935
+ if(!is_lower_bound(i))
936
+ {
937
+ if(G[i] >= Gmax1)
938
+ Gmax1 = G[i];
939
+ }
940
+ }
941
+ }
942
+
943
+ if(unshrink == false && Gmax1 + Gmax2 <= eps*10)
944
+ {
945
+ unshrink = true;
946
+ reconstruct_gradient();
947
+ active_size = l;
948
+ info("*");
949
+ }
950
+
951
+ for(i=0;i<active_size;i++)
952
+ if (be_shrunk(i, Gmax1, Gmax2))
953
+ {
954
+ active_size--;
955
+ while (active_size > i)
956
+ {
957
+ if (!be_shrunk(active_size, Gmax1, Gmax2))
958
+ {
959
+ swap_index(i,active_size);
960
+ break;
961
+ }
962
+ active_size--;
963
+ }
964
+ }
965
+ }
966
+
967
+ double Solver::calculate_rho()
968
+ {
969
+ double r;
970
+ int nr_free = 0;
971
+ double ub = INF, lb = -INF, sum_free = 0;
972
+ for(int i=0;i<active_size;i++)
973
+ {
974
+ double yG = y[i]*G[i];
975
+
976
+ if(is_upper_bound(i))
977
+ {
978
+ if(y[i]==-1)
979
+ ub = min(ub,yG);
980
+ else
981
+ lb = max(lb,yG);
982
+ }
983
+ else if(is_lower_bound(i))
984
+ {
985
+ if(y[i]==+1)
986
+ ub = min(ub,yG);
987
+ else
988
+ lb = max(lb,yG);
989
+ }
990
+ else
991
+ {
992
+ ++nr_free;
993
+ sum_free += yG;
994
+ }
995
+ }
996
+
997
+ if(nr_free>0)
998
+ r = sum_free/nr_free;
999
+ else
1000
+ r = (ub+lb)/2;
1001
+
1002
+ return r;
1003
+ }
1004
+
1005
+ //
1006
+ // Solver for nu-svm classification and regression
1007
+ //
1008
+ // additional constraint: e^T \alpha = constant
1009
+ //
1010
+ class Solver_NU : public Solver
1011
+ {
1012
+ public:
1013
+ Solver_NU() {}
1014
+ void Solve(int l, const QMatrix& Q, const double *p, const schar *y,
1015
+ double *alpha, double* C_, double eps,
1016
+ SolutionInfo* si, int shrinking)
1017
+ {
1018
+ this->si = si;
1019
+ Solver::Solve(l,Q,p,y,alpha,C_,eps,si,shrinking);
1020
+ }
1021
+ private:
1022
+ SolutionInfo *si;
1023
+ int select_working_set(int &i, int &j);
1024
+ double calculate_rho();
1025
+ bool be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4);
1026
+ void do_shrinking();
1027
+ };
1028
+
1029
+ // return 1 if already optimal, return 0 otherwise
1030
+ int Solver_NU::select_working_set(int &out_i, int &out_j)
1031
+ {
1032
+ // return i,j such that y_i = y_j and
1033
+ // i: maximizes -y_i * grad(f)_i, i in I_up(\alpha)
1034
+ // j: minimizes the decrease of obj value
1035
+ // (if quadratic coefficeint <= 0, replace it with tau)
1036
+ // -y_j*grad(f)_j < -y_i*grad(f)_i, j in I_low(\alpha)
1037
+
1038
+ double Gmaxp = -INF;
1039
+ double Gmaxp2 = -INF;
1040
+ int Gmaxp_idx = -1;
1041
+
1042
+ double Gmaxn = -INF;
1043
+ double Gmaxn2 = -INF;
1044
+ int Gmaxn_idx = -1;
1045
+
1046
+ int Gmin_idx = -1;
1047
+ double obj_diff_min = INF;
1048
+
1049
+ for(int t=0;t<active_size;t++)
1050
+ if(y[t]==+1)
1051
+ {
1052
+ if(!is_upper_bound(t))
1053
+ if(-G[t] >= Gmaxp)
1054
+ {
1055
+ Gmaxp = -G[t];
1056
+ Gmaxp_idx = t;
1057
+ }
1058
+ }
1059
+ else
1060
+ {
1061
+ if(!is_lower_bound(t))
1062
+ if(G[t] >= Gmaxn)
1063
+ {
1064
+ Gmaxn = G[t];
1065
+ Gmaxn_idx = t;
1066
+ }
1067
+ }
1068
+
1069
+ int ip = Gmaxp_idx;
1070
+ int in = Gmaxn_idx;
1071
+ const Qfloat *Q_ip = NULL;
1072
+ const Qfloat *Q_in = NULL;
1073
+ if(ip != -1) // NULL Q_ip not accessed: Gmaxp=-INF if ip=-1
1074
+ Q_ip = Q->get_Q(ip,active_size);
1075
+ if(in != -1)
1076
+ Q_in = Q->get_Q(in,active_size);
1077
+
1078
+ for(int j=0;j<active_size;j++)
1079
+ {
1080
+ if(y[j]==+1)
1081
+ {
1082
+ if (!is_lower_bound(j))
1083
+ {
1084
+ double grad_diff=Gmaxp+G[j];
1085
+ if (G[j] >= Gmaxp2)
1086
+ Gmaxp2 = G[j];
1087
+ if (grad_diff > 0)
1088
+ {
1089
+ double obj_diff;
1090
+ double quad_coef = QD[ip]+QD[j]-2*Q_ip[j];
1091
+ if (quad_coef > 0)
1092
+ obj_diff = -(grad_diff*grad_diff)/quad_coef;
1093
+ else
1094
+ obj_diff = -(grad_diff*grad_diff)/TAU;
1095
+
1096
+ if (obj_diff <= obj_diff_min)
1097
+ {
1098
+ Gmin_idx=j;
1099
+ obj_diff_min = obj_diff;
1100
+ }
1101
+ }
1102
+ }
1103
+ }
1104
+ else
1105
+ {
1106
+ if (!is_upper_bound(j))
1107
+ {
1108
+ double grad_diff=Gmaxn-G[j];
1109
+ if (-G[j] >= Gmaxn2)
1110
+ Gmaxn2 = -G[j];
1111
+ if (grad_diff > 0)
1112
+ {
1113
+ double obj_diff;
1114
+ double quad_coef = QD[in]+QD[j]-2*Q_in[j];
1115
+ if (quad_coef > 0)
1116
+ obj_diff = -(grad_diff*grad_diff)/quad_coef;
1117
+ else
1118
+ obj_diff = -(grad_diff*grad_diff)/TAU;
1119
+
1120
+ if (obj_diff <= obj_diff_min)
1121
+ {
1122
+ Gmin_idx=j;
1123
+ obj_diff_min = obj_diff;
1124
+ }
1125
+ }
1126
+ }
1127
+ }
1128
+ }
1129
+
1130
+ if(max(Gmaxp+Gmaxp2,Gmaxn+Gmaxn2) < eps)
1131
+ return 1;
1132
+
1133
+ if (y[Gmin_idx] == +1)
1134
+ out_i = Gmaxp_idx;
1135
+ else
1136
+ out_i = Gmaxn_idx;
1137
+ out_j = Gmin_idx;
1138
+
1139
+ return 0;
1140
+ }
1141
+
1142
+ bool Solver_NU::be_shrunk(int i, double Gmax1, double Gmax2, double Gmax3, double Gmax4)
1143
+ {
1144
+ if(is_upper_bound(i))
1145
+ {
1146
+ if(y[i]==+1)
1147
+ return(-G[i] > Gmax1);
1148
+ else
1149
+ return(-G[i] > Gmax4);
1150
+ }
1151
+ else if(is_lower_bound(i))
1152
+ {
1153
+ if(y[i]==+1)
1154
+ return(G[i] > Gmax2);
1155
+ else
1156
+ return(G[i] > Gmax3);
1157
+ }
1158
+ else
1159
+ return(false);
1160
+ }
1161
+
1162
+ void Solver_NU::do_shrinking()
1163
+ {
1164
+ double Gmax1 = -INF; // max { -y_i * grad(f)_i | y_i = +1, i in I_up(\alpha) }
1165
+ double Gmax2 = -INF; // max { y_i * grad(f)_i | y_i = +1, i in I_low(\alpha) }
1166
+ double Gmax3 = -INF; // max { -y_i * grad(f)_i | y_i = -1, i in I_up(\alpha) }
1167
+ double Gmax4 = -INF; // max { y_i * grad(f)_i | y_i = -1, i in I_low(\alpha) }
1168
+
1169
+ // find maximal violating pair first
1170
+ int i;
1171
+ for(i=0;i<active_size;i++)
1172
+ {
1173
+ if(!is_upper_bound(i))
1174
+ {
1175
+ if(y[i]==+1)
1176
+ {
1177
+ if(-G[i] > Gmax1) Gmax1 = -G[i];
1178
+ }
1179
+ else if(-G[i] > Gmax4) Gmax4 = -G[i];
1180
+ }
1181
+ if(!is_lower_bound(i))
1182
+ {
1183
+ if(y[i]==+1)
1184
+ {
1185
+ if(G[i] > Gmax2) Gmax2 = G[i];
1186
+ }
1187
+ else if(G[i] > Gmax3) Gmax3 = G[i];
1188
+ }
1189
+ }
1190
+
1191
+ if(unshrink == false && max(Gmax1+Gmax2,Gmax3+Gmax4) <= eps*10)
1192
+ {
1193
+ unshrink = true;
1194
+ reconstruct_gradient();
1195
+ active_size = l;
1196
+ }
1197
+
1198
+ for(i=0;i<active_size;i++)
1199
+ if (be_shrunk(i, Gmax1, Gmax2, Gmax3, Gmax4))
1200
+ {
1201
+ active_size--;
1202
+ while (active_size > i)
1203
+ {
1204
+ if (!be_shrunk(active_size, Gmax1, Gmax2, Gmax3, Gmax4))
1205
+ {
1206
+ swap_index(i,active_size);
1207
+ break;
1208
+ }
1209
+ active_size--;
1210
+ }
1211
+ }
1212
+ }
1213
+
1214
+ double Solver_NU::calculate_rho()
1215
+ {
1216
+ int nr_free1 = 0,nr_free2 = 0;
1217
+ double ub1 = INF, ub2 = INF;
1218
+ double lb1 = -INF, lb2 = -INF;
1219
+ double sum_free1 = 0, sum_free2 = 0;
1220
+
1221
+ for(int i=0;i<active_size;i++)
1222
+ {
1223
+ if(y[i]==+1)
1224
+ {
1225
+ if(is_upper_bound(i))
1226
+ lb1 = max(lb1,G[i]);
1227
+ else if(is_lower_bound(i))
1228
+ ub1 = min(ub1,G[i]);
1229
+ else
1230
+ {
1231
+ ++nr_free1;
1232
+ sum_free1 += G[i];
1233
+ }
1234
+ }
1235
+ else
1236
+ {
1237
+ if(is_upper_bound(i))
1238
+ lb2 = max(lb2,G[i]);
1239
+ else if(is_lower_bound(i))
1240
+ ub2 = min(ub2,G[i]);
1241
+ else
1242
+ {
1243
+ ++nr_free2;
1244
+ sum_free2 += G[i];
1245
+ }
1246
+ }
1247
+ }
1248
+
1249
+ double r1,r2;
1250
+ if(nr_free1 > 0)
1251
+ r1 = sum_free1/nr_free1;
1252
+ else
1253
+ r1 = (ub1+lb1)/2;
1254
+
1255
+ if(nr_free2 > 0)
1256
+ r2 = sum_free2/nr_free2;
1257
+ else
1258
+ r2 = (ub2+lb2)/2;
1259
+
1260
+ si->r = (r1+r2)/2;
1261
+ return (r1-r2)/2;
1262
+ }
1263
+
1264
+ //
1265
+ // Q matrices for various formulations
1266
+ //
1267
+ class SVC_Q: public Kernel
1268
+ {
1269
+ public:
1270
+ SVC_Q(const svm_problem& prob, const svm_parameter& param, const schar *y_)
1271
+ :Kernel(prob.l, prob.x, param)
1272
+ {
1273
+ clone(y,y_,prob.l);
1274
+ cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
1275
+ QD = new double[prob.l];
1276
+ for(int i=0;i<prob.l;i++)
1277
+ QD[i] = (this->*kernel_function)(i,i);
1278
+ }
1279
+
1280
+ Qfloat *get_Q(int i, int len) const
1281
+ {
1282
+ Qfloat *data;
1283
+ int start, j;
1284
+ if((start = cache->get_data(i,&data,len)) < len)
1285
+ {
1286
+ for(j=start;j<len;j++)
1287
+ data[j] = (Qfloat)(y[i]*y[j]*(this->*kernel_function)(i,j));
1288
+ }
1289
+ return data;
1290
+ }
1291
+
1292
+ double *get_QD() const
1293
+ {
1294
+ return QD;
1295
+ }
1296
+
1297
+ void swap_index(int i, int j) const
1298
+ {
1299
+ cache->swap_index(i,j);
1300
+ Kernel::swap_index(i,j);
1301
+ swap(y[i],y[j]);
1302
+ swap(QD[i],QD[j]);
1303
+ }
1304
+
1305
+ ~SVC_Q()
1306
+ {
1307
+ delete[] y;
1308
+ delete cache;
1309
+ delete[] QD;
1310
+ }
1311
+ private:
1312
+ schar *y;
1313
+ Cache *cache;
1314
+ double *QD;
1315
+ };
1316
+
1317
+ class ONE_CLASS_Q: public Kernel
1318
+ {
1319
+ public:
1320
+ ONE_CLASS_Q(const svm_problem& prob, const svm_parameter& param)
1321
+ :Kernel(prob.l, prob.x, param)
1322
+ {
1323
+ cache = new Cache(prob.l,(long int)(param.cache_size*(1<<20)));
1324
+ QD = new double[prob.l];
1325
+ for(int i=0;i<prob.l;i++)
1326
+ QD[i] = (this->*kernel_function)(i,i);
1327
+ }
1328
+
1329
+ Qfloat *get_Q(int i, int len) const
1330
+ {
1331
+ Qfloat *data;
1332
+ int start, j;
1333
+ if((start = cache->get_data(i,&data,len)) < len)
1334
+ {
1335
+ for(j=start;j<len;j++)
1336
+ data[j] = (Qfloat)(this->*kernel_function)(i,j);
1337
+ }
1338
+ return data;
1339
+ }
1340
+
1341
+ double *get_QD() const
1342
+ {
1343
+ return QD;
1344
+ }
1345
+
1346
+ void swap_index(int i, int j) const
1347
+ {
1348
+ cache->swap_index(i,j);
1349
+ Kernel::swap_index(i,j);
1350
+ swap(QD[i],QD[j]);
1351
+ }
1352
+
1353
+ ~ONE_CLASS_Q()
1354
+ {
1355
+ delete cache;
1356
+ delete[] QD;
1357
+ }
1358
+ private:
1359
+ Cache *cache;
1360
+ double *QD;
1361
+ };
1362
+
1363
+ class SVR_Q: public Kernel
1364
+ {
1365
+ public:
1366
+ SVR_Q(const svm_problem& prob, const svm_parameter& param)
1367
+ :Kernel(prob.l, prob.x, param)
1368
+ {
1369
+ l = prob.l;
1370
+ cache = new Cache(l,(long int)(param.cache_size*(1<<20)));
1371
+ QD = new double[2*l];
1372
+ sign = new schar[2*l];
1373
+ index = new int[2*l];
1374
+ for(int k=0;k<l;k++)
1375
+ {
1376
+ sign[k] = 1;
1377
+ sign[k+l] = -1;
1378
+ index[k] = k;
1379
+ index[k+l] = k;
1380
+ QD[k] = (this->*kernel_function)(k,k);
1381
+ QD[k+l] = QD[k];
1382
+ }
1383
+ buffer[0] = new Qfloat[2*l];
1384
+ buffer[1] = new Qfloat[2*l];
1385
+ next_buffer = 0;
1386
+ }
1387
+
1388
+ void swap_index(int i, int j) const
1389
+ {
1390
+ swap(sign[i],sign[j]);
1391
+ swap(index[i],index[j]);
1392
+ swap(QD[i],QD[j]);
1393
+ }
1394
+
1395
+ Qfloat *get_Q(int i, int len) const
1396
+ {
1397
+ Qfloat *data;
1398
+ int j, real_i = index[i];
1399
+ if(cache->get_data(real_i,&data,l) < l)
1400
+ {
1401
+ for(j=0;j<l;j++)
1402
+ data[j] = (Qfloat)(this->*kernel_function)(real_i,j);
1403
+ }
1404
+
1405
+ // reorder and copy
1406
+ Qfloat *buf = buffer[next_buffer];
1407
+ next_buffer = 1 - next_buffer;
1408
+ schar si = sign[i];
1409
+ for(j=0;j<len;j++)
1410
+ buf[j] = (Qfloat) si * (Qfloat) sign[j] * data[index[j]];
1411
+ return buf;
1412
+ }
1413
+
1414
+ double *get_QD() const
1415
+ {
1416
+ return QD;
1417
+ }
1418
+
1419
+ ~SVR_Q()
1420
+ {
1421
+ delete cache;
1422
+ delete[] sign;
1423
+ delete[] index;
1424
+ delete[] buffer[0];
1425
+ delete[] buffer[1];
1426
+ delete[] QD;
1427
+ }
1428
+ private:
1429
+ int l;
1430
+ Cache *cache;
1431
+ schar *sign;
1432
+ int *index;
1433
+ mutable int next_buffer;
1434
+ Qfloat *buffer[2];
1435
+ double *QD;
1436
+ };
1437
+
1438
+ //
1439
+ // construct and solve various formulations
1440
+ //
1441
+ static void solve_c_svc(
1442
+ const svm_problem *prob, const svm_parameter* param,
1443
+ double *alpha, Solver::SolutionInfo* si, double Cp, double Cn)
1444
+ {
1445
+ int l = prob->l;
1446
+ double *minus_ones = new double[l];
1447
+ schar *y = new schar[l];
1448
+ double *C = new double[l];
1449
+
1450
+ int i;
1451
+
1452
+ for(i=0;i<l;i++)
1453
+ {
1454
+ alpha[i] = 0;
1455
+ minus_ones[i] = -1;
1456
+ if(prob->y[i] > 0)
1457
+ {
1458
+ y[i] = +1;
1459
+ C[i] = prob->W[i]*Cp;
1460
+ }
1461
+ else
1462
+ {
1463
+ y[i] = -1;
1464
+ C[i] = prob->W[i]*Cn;
1465
+ }
1466
+ }
1467
+
1468
+ Solver s;
1469
+ s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
1470
+ alpha, C, param->eps, si, param->shrinking);
1471
+
1472
+ /*
1473
+ double sum_alpha=0;
1474
+ for(i=0;i<l;i++)
1475
+ sum_alpha += alpha[i];
1476
+ if (Cp==Cn)
1477
+ info("nu = %f\n", sum_alpha/(Cp*prob->l));
1478
+ */
1479
+
1480
+ for(i=0;i<l;i++)
1481
+ alpha[i] *= y[i];
1482
+
1483
+ delete[] C;
1484
+ delete[] minus_ones;
1485
+ delete[] y;
1486
+ }
1487
+
1488
+ static void solve_nu_svc(
1489
+ const svm_problem *prob, const svm_parameter *param,
1490
+ double *alpha, Solver::SolutionInfo* si)
1491
+ {
1492
+ int i;
1493
+ int l = prob->l;
1494
+ double nu = param->nu;
1495
+
1496
+ schar *y = new schar[l];
1497
+ double *C = new double[l];
1498
+
1499
+ for(i=0;i<l;i++)
1500
+ {
1501
+ if(prob->y[i]>0)
1502
+ y[i] = +1;
1503
+ else
1504
+ y[i] = -1;
1505
+ C[i] = prob->W[i];
1506
+ }
1507
+
1508
+ double nu_l = 0;
1509
+ for(i=0;i<l;i++) nu_l += nu*C[i];
1510
+ double sum_pos = nu_l/2;
1511
+ double sum_neg = nu_l/2;
1512
+
1513
+ for(i=0;i<l;i++)
1514
+ if(y[i] == +1)
1515
+ {
1516
+ alpha[i] = min(C[i],sum_pos);
1517
+ sum_pos -= alpha[i];
1518
+ }
1519
+ else
1520
+ {
1521
+ alpha[i] = min(C[i],sum_neg);
1522
+ sum_neg -= alpha[i];
1523
+ }
1524
+
1525
+ double *zeros = new double[l];
1526
+
1527
+ for(i=0;i<l;i++)
1528
+ zeros[i] = 0;
1529
+
1530
+ Solver_NU s;
1531
+ s.Solve(l, SVC_Q(*prob,*param,y), zeros, y,
1532
+ alpha, C, param->eps, si, param->shrinking);
1533
+ double r = si->r;
1534
+
1535
+ info("C = %f\n",1/r);
1536
+
1537
+ for(i=0;i<l;i++)
1538
+ {
1539
+ alpha[i] *= y[i]/r;
1540
+ si->upper_bound[i] /= r;
1541
+ }
1542
+
1543
+ si->rho /= r;
1544
+ si->obj /= (r*r);
1545
+
1546
+ delete[] C;
1547
+ delete[] y;
1548
+ delete[] zeros;
1549
+ }
1550
+
1551
+ static void solve_one_class(
1552
+ const svm_problem *prob, const svm_parameter *param,
1553
+ double *alpha, Solver::SolutionInfo* si)
1554
+ {
1555
+ int l = prob->l;
1556
+ double *zeros = new double[l];
1557
+ schar *ones = new schar[l];
1558
+ double *C = new double[l];
1559
+ int i;
1560
+
1561
+ double nu_l = 0;
1562
+
1563
+ for(i=0;i<l;i++)
1564
+ {
1565
+ C[i] = prob->W[i];
1566
+ nu_l += C[i] * param->nu;
1567
+ }
1568
+
1569
+ i = 0;
1570
+ while(nu_l > 0)
1571
+ {
1572
+ alpha[i] = min(C[i],nu_l);
1573
+ nu_l -= alpha[i];
1574
+ ++i;
1575
+ }
1576
+ for(;i<l;i++)
1577
+ alpha[i] = 0;
1578
+
1579
+ for(i=0;i<l;i++)
1580
+ {
1581
+ zeros[i] = 0;
1582
+ ones[i] = 1;
1583
+ }
1584
+
1585
+ Solver s;
1586
+ s.Solve(l, ONE_CLASS_Q(*prob,*param), zeros, ones,
1587
+ alpha, C, param->eps, si, param->shrinking);
1588
+
1589
+ delete[] C;
1590
+ delete[] zeros;
1591
+ delete[] ones;
1592
+ }
1593
+
1594
+ static void solve_epsilon_svr(
1595
+ const svm_problem *prob, const svm_parameter *param,
1596
+ double *alpha, Solver::SolutionInfo* si)
1597
+ {
1598
+ int l = prob->l;
1599
+ double *alpha2 = new double[2*l];
1600
+ double *linear_term = new double[2*l];
1601
+ double *C = new double[2*l];
1602
+ schar *y = new schar[2*l];
1603
+ int i;
1604
+
1605
+ for(i=0;i<l;i++)
1606
+ {
1607
+ alpha2[i] = 0;
1608
+ linear_term[i] = param->p - prob->y[i];
1609
+ y[i] = 1;
1610
+ C[i] = prob->W[i]*param->C;
1611
+
1612
+ alpha2[i+l] = 0;
1613
+ linear_term[i+l] = param->p + prob->y[i];
1614
+ y[i+l] = -1;
1615
+ C[i+l] = prob->W[i]*param->C;
1616
+ }
1617
+
1618
+ Solver s;
1619
+ s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
1620
+ alpha2, C, param->eps, si, param->shrinking);
1621
+ double sum_alpha = 0;
1622
+ for(i=0;i<l;i++)
1623
+ {
1624
+ alpha[i] = alpha2[i] - alpha2[i+l];
1625
+ sum_alpha += fabs(alpha[i]);
1626
+ }
1627
+ //info("nu = %f\n",sum_alpha/(param->C*l));
1628
+ delete[] alpha2;
1629
+ delete[] linear_term;
1630
+ delete[] C;
1631
+ delete[] y;
1632
+ }
1633
+
1634
+ static void solve_nu_svr(
1635
+ const svm_problem *prob, const svm_parameter *param,
1636
+ double *alpha, Solver::SolutionInfo* si)
1637
+ {
1638
+ int l = prob->l;
1639
+ double *C = new double[2*l];
1640
+ double *alpha2 = new double[2*l];
1641
+ double *linear_term = new double[2*l];
1642
+ schar *y = new schar[2*l];
1643
+ int i;
1644
+
1645
+ double sum = 0;
1646
+ for(i=0;i<l;i++)
1647
+ {
1648
+ C[i] = C[i+l] = prob->W[i]*param->C;
1649
+ sum += C[i] * param->nu;
1650
+ }
1651
+ sum /= 2;
1652
+
1653
+ for(i=0;i<l;i++)
1654
+ {
1655
+ alpha2[i] = alpha2[i+l] = min(sum,C[i]);
1656
+ sum -= alpha2[i];
1657
+
1658
+ linear_term[i] = - prob->y[i];
1659
+ y[i] = 1;
1660
+
1661
+ linear_term[i+l] = prob->y[i];
1662
+ y[i+l] = -1;
1663
+ }
1664
+
1665
+ Solver_NU s;
1666
+ s.Solve(2*l, SVR_Q(*prob,*param), linear_term, y,
1667
+ alpha2, C, param->eps, si, param->shrinking);
1668
+
1669
+ info("epsilon = %f\n",-si->r);
1670
+
1671
+ for(i=0;i<l;i++)
1672
+ alpha[i] = alpha2[i] - alpha2[i+l];
1673
+
1674
+ delete[] alpha2;
1675
+ delete[] linear_term;
1676
+ delete[] C;
1677
+ delete[] y;
1678
+ }
1679
+
1680
+ //
1681
+ // decision_function
1682
+ //
1683
+ struct decision_function
1684
+ {
1685
+ double *alpha;
1686
+ double rho;
1687
+ };
1688
+
1689
+ static decision_function svm_train_one(
1690
+ const svm_problem *prob, const svm_parameter *param,
1691
+ double Cp, double Cn)
1692
+ {
1693
+ double *alpha = Malloc(double,prob->l);
1694
+ Solver::SolutionInfo si;
1695
+ switch(param->svm_type)
1696
+ {
1697
+ case C_SVC:
1698
+ si.upper_bound = Malloc(double,prob->l);
1699
+ solve_c_svc(prob,param,alpha,&si,Cp,Cn);
1700
+ break;
1701
+ case NU_SVC:
1702
+ si.upper_bound = Malloc(double,prob->l);
1703
+ solve_nu_svc(prob,param,alpha,&si);
1704
+ break;
1705
+ case ONE_CLASS:
1706
+ si.upper_bound = Malloc(double,prob->l);
1707
+ solve_one_class(prob,param,alpha,&si);
1708
+ break;
1709
+ case EPSILON_SVR:
1710
+ si.upper_bound = Malloc(double,2*prob->l);
1711
+ solve_epsilon_svr(prob,param,alpha,&si);
1712
+ break;
1713
+ case NU_SVR:
1714
+ si.upper_bound = Malloc(double,2*prob->l);
1715
+ solve_nu_svr(prob,param,alpha,&si);
1716
+ break;
1717
+ }
1718
+
1719
+ info("obj = %f, rho = %f\n",si.obj,si.rho);
1720
+
1721
+ // output SVs
1722
+
1723
+ int nSV = 0;
1724
+ int nBSV = 0;
1725
+ for(int i=0;i<prob->l;i++)
1726
+ {
1727
+ if(fabs(alpha[i]) > 0)
1728
+ {
1729
+ ++nSV;
1730
+ if(prob->y[i] > 0)
1731
+ {
1732
+ if(fabs(alpha[i]) >= si.upper_bound[i])
1733
+ ++nBSV;
1734
+ }
1735
+ else
1736
+ {
1737
+ if(fabs(alpha[i]) >= si.upper_bound[i])
1738
+ ++nBSV;
1739
+ }
1740
+ }
1741
+ }
1742
+
1743
+ free(si.upper_bound);
1744
+
1745
+ info("nSV = %d, nBSV = %d\n",nSV,nBSV);
1746
+
1747
+ decision_function f;
1748
+ f.alpha = alpha;
1749
+ f.rho = si.rho;
1750
+ return f;
1751
+ }
1752
+
1753
+ // Platt's binary SVM Probablistic Output: an improvement from Lin et al.
1754
+ static void sigmoid_train(
1755
+ int l, const double *dec_values, const double *labels,
1756
+ double& A, double& B)
1757
+ {
1758
+ double prior1=0, prior0 = 0;
1759
+ int i;
1760
+
1761
+ for (i=0;i<l;i++)
1762
+ if (labels[i] > 0) prior1+=1;
1763
+ else prior0+=1;
1764
+
1765
+ int max_iter=100; // Maximal number of iterations
1766
+ double min_step=1e-10; // Minimal step taken in line search
1767
+ double sigma=1e-12; // For numerically strict PD of Hessian
1768
+ double eps=1e-5;
1769
+ double hiTarget=(prior1+1.0)/(prior1+2.0);
1770
+ double loTarget=1/(prior0+2.0);
1771
+ double *t=Malloc(double,l);
1772
+ double fApB,p,q,h11,h22,h21,g1,g2,det,dA,dB,gd,stepsize;
1773
+ double newA,newB,newf,d1,d2;
1774
+ int iter;
1775
+
1776
+ // Initial Point and Initial Fun Value
1777
+ A=0.0; B=log((prior0+1.0)/(prior1+1.0));
1778
+ double fval = 0.0;
1779
+
1780
+ for (i=0;i<l;i++)
1781
+ {
1782
+ if (labels[i]>0) t[i]=hiTarget;
1783
+ else t[i]=loTarget;
1784
+ fApB = dec_values[i]*A+B;
1785
+ if (fApB>=0)
1786
+ fval += t[i]*fApB + log(1+exp(-fApB));
1787
+ else
1788
+ fval += (t[i] - 1)*fApB +log(1+exp(fApB));
1789
+ }
1790
+ for (iter=0;iter<max_iter;iter++)
1791
+ {
1792
+ // Update Gradient and Hessian (use H' = H + sigma I)
1793
+ h11=sigma; // numerically ensures strict PD
1794
+ h22=sigma;
1795
+ h21=0.0;g1=0.0;g2=0.0;
1796
+ for (i=0;i<l;i++)
1797
+ {
1798
+ fApB = dec_values[i]*A+B;
1799
+ if (fApB >= 0)
1800
+ {
1801
+ p=exp(-fApB)/(1.0+exp(-fApB));
1802
+ q=1.0/(1.0+exp(-fApB));
1803
+ }
1804
+ else
1805
+ {
1806
+ p=1.0/(1.0+exp(fApB));
1807
+ q=exp(fApB)/(1.0+exp(fApB));
1808
+ }
1809
+ d2=p*q;
1810
+ h11+=dec_values[i]*dec_values[i]*d2;
1811
+ h22+=d2;
1812
+ h21+=dec_values[i]*d2;
1813
+ d1=t[i]-p;
1814
+ g1+=dec_values[i]*d1;
1815
+ g2+=d1;
1816
+ }
1817
+
1818
+ // Stopping Criteria
1819
+ if (fabs(g1)<eps && fabs(g2)<eps)
1820
+ break;
1821
+
1822
+ // Finding Newton direction: -inv(H') * g
1823
+ det=h11*h22-h21*h21;
1824
+ dA=-(h22*g1 - h21 * g2) / det;
1825
+ dB=-(-h21*g1+ h11 * g2) / det;
1826
+ gd=g1*dA+g2*dB;
1827
+
1828
+
1829
+ stepsize = 1; // Line Search
1830
+ while (stepsize >= min_step)
1831
+ {
1832
+ newA = A + stepsize * dA;
1833
+ newB = B + stepsize * dB;
1834
+
1835
+ // New function value
1836
+ newf = 0.0;
1837
+ for (i=0;i<l;i++)
1838
+ {
1839
+ fApB = dec_values[i]*newA+newB;
1840
+ if (fApB >= 0)
1841
+ newf += t[i]*fApB + log(1+exp(-fApB));
1842
+ else
1843
+ newf += (t[i] - 1)*fApB +log(1+exp(fApB));
1844
+ }
1845
+ // Check sufficient decrease
1846
+ if (newf<fval+0.0001*stepsize*gd)
1847
+ {
1848
+ A=newA;B=newB;fval=newf;
1849
+ break;
1850
+ }
1851
+ else
1852
+ stepsize = stepsize / 2.0;
1853
+ }
1854
+
1855
+ if (stepsize < min_step)
1856
+ {
1857
+ info("Line search fails in two-class probability estimates\n");
1858
+ break;
1859
+ }
1860
+ }
1861
+
1862
+ if (iter>=max_iter)
1863
+ info("Reaching maximal iterations in two-class probability estimates\n");
1864
+ free(t);
1865
+ }
1866
+
1867
+ static double sigmoid_predict(double decision_value, double A, double B)
1868
+ {
1869
+ double fApB = decision_value*A+B;
1870
+ // 1-p used later; avoid catastrophic cancellation
1871
+ if (fApB >= 0)
1872
+ return exp(-fApB)/(1.0+exp(-fApB));
1873
+ else
1874
+ return 1.0/(1+exp(fApB)) ;
1875
+ }
1876
+
1877
+ // Method 2 from the multiclass_prob paper by Wu, Lin, and Weng
1878
+ static void multiclass_probability(int k, double **r, double *p)
1879
+ {
1880
+ int t,j;
1881
+ int iter = 0, max_iter=max(100,k);
1882
+ double **Q=Malloc(double *,k);
1883
+ double *Qp=Malloc(double,k);
1884
+ double pQp, eps=0.005/k;
1885
+
1886
+ for (t=0;t<k;t++)
1887
+ {
1888
+ p[t]=1.0/k; // Valid if k = 1
1889
+ Q[t]=Malloc(double,k);
1890
+ Q[t][t]=0;
1891
+ for (j=0;j<t;j++)
1892
+ {
1893
+ Q[t][t]+=r[j][t]*r[j][t];
1894
+ Q[t][j]=Q[j][t];
1895
+ }
1896
+ for (j=t+1;j<k;j++)
1897
+ {
1898
+ Q[t][t]+=r[j][t]*r[j][t];
1899
+ Q[t][j]=-r[j][t]*r[t][j];
1900
+ }
1901
+ }
1902
+ for (iter=0;iter<max_iter;iter++)
1903
+ {
1904
+ // stopping condition, recalculate QP,pQP for numerical accuracy
1905
+ pQp=0;
1906
+ for (t=0;t<k;t++)
1907
+ {
1908
+ Qp[t]=0;
1909
+ for (j=0;j<k;j++)
1910
+ Qp[t]+=Q[t][j]*p[j];
1911
+ pQp+=p[t]*Qp[t];
1912
+ }
1913
+ double max_error=0;
1914
+ for (t=0;t<k;t++)
1915
+ {
1916
+ double error=fabs(Qp[t]-pQp);
1917
+ if (error>max_error)
1918
+ max_error=error;
1919
+ }
1920
+ if (max_error<eps) break;
1921
+
1922
+ for (t=0;t<k;t++)
1923
+ {
1924
+ double diff=(-Qp[t]+pQp)/Q[t][t];
1925
+ p[t]+=diff;
1926
+ pQp=(pQp+diff*(diff*Q[t][t]+2*Qp[t]))/(1+diff)/(1+diff);
1927
+ for (j=0;j<k;j++)
1928
+ {
1929
+ Qp[j]=(Qp[j]+diff*Q[t][j])/(1+diff);
1930
+ p[j]/=(1+diff);
1931
+ }
1932
+ }
1933
+ }
1934
+ if (iter>=max_iter)
1935
+ info("Exceeds max_iter in multiclass_prob\n");
1936
+ for(t=0;t<k;t++) free(Q[t]);
1937
+ free(Q);
1938
+ free(Qp);
1939
+ }
1940
+
1941
+ // Cross-validation decision values for probability estimates
1942
+ static void svm_binary_svc_probability(
1943
+ const svm_problem *prob, const svm_parameter *param,
1944
+ double Cp, double Cn, double& probA, double& probB)
1945
+ {
1946
+ int i;
1947
+ int nr_fold = 5;
1948
+ int *perm = Malloc(int,prob->l);
1949
+ double *dec_values = Malloc(double,prob->l);
1950
+
1951
+ // random shuffle
1952
+ for(i=0;i<prob->l;i++) perm[i]=i;
1953
+ for(i=0;i<prob->l;i++)
1954
+ {
1955
+ int j = i+rand()%(prob->l-i);
1956
+ swap(perm[i],perm[j]);
1957
+ }
1958
+ for(i=0;i<nr_fold;i++)
1959
+ {
1960
+ int begin = i*prob->l/nr_fold;
1961
+ int end = (i+1)*prob->l/nr_fold;
1962
+ int j,k;
1963
+ struct svm_problem subprob;
1964
+
1965
+ subprob.l = prob->l-(end-begin);
1966
+ subprob.x = Malloc(struct svm_node*,subprob.l);
1967
+ subprob.y = Malloc(double,subprob.l);
1968
+ subprob.W = Malloc(double,subprob.l);
1969
+
1970
+ k=0;
1971
+ for(j=0;j<begin;j++)
1972
+ {
1973
+ subprob.x[k] = prob->x[perm[j]];
1974
+ subprob.y[k] = prob->y[perm[j]];
1975
+ subprob.W[k] = prob->W[perm[j]];
1976
+ ++k;
1977
+ }
1978
+ for(j=end;j<prob->l;j++)
1979
+ {
1980
+ subprob.x[k] = prob->x[perm[j]];
1981
+ subprob.y[k] = prob->y[perm[j]];
1982
+ subprob.W[k] = prob->W[perm[j]];
1983
+ ++k;
1984
+ }
1985
+ int p_count=0,n_count=0;
1986
+ for(j=0;j<k;j++)
1987
+ if(subprob.y[j]>0)
1988
+ p_count++;
1989
+ else
1990
+ n_count++;
1991
+
1992
+ if(p_count==0 && n_count==0)
1993
+ for(j=begin;j<end;j++)
1994
+ dec_values[perm[j]] = 0;
1995
+ else if(p_count > 0 && n_count == 0)
1996
+ for(j=begin;j<end;j++)
1997
+ dec_values[perm[j]] = 1;
1998
+ else if(p_count == 0 && n_count > 0)
1999
+ for(j=begin;j<end;j++)
2000
+ dec_values[perm[j]] = -1;
2001
+ else
2002
+ {
2003
+ svm_parameter subparam = *param;
2004
+ subparam.probability=0;
2005
+ subparam.C=1.0;
2006
+ subparam.nr_weight=2;
2007
+ subparam.weight_label = Malloc(int,2);
2008
+ subparam.weight = Malloc(double,2);
2009
+ subparam.weight_label[0]=+1;
2010
+ subparam.weight_label[1]=-1;
2011
+ subparam.weight[0]=Cp;
2012
+ subparam.weight[1]=Cn;
2013
+ struct svm_model *submodel = svm_train(&subprob,&subparam);
2014
+ for(j=begin;j<end;j++)
2015
+ {
2016
+ svm_predict_values(submodel,prob->x[perm[j]],&(dec_values[perm[j]]));
2017
+ // ensure +1 -1 order; reason not using CV subroutine
2018
+ dec_values[perm[j]] *= submodel->label[0];
2019
+ }
2020
+ svm_free_and_destroy_model(&submodel);
2021
+ svm_destroy_param(&subparam);
2022
+ }
2023
+ free(subprob.x);
2024
+ free(subprob.y);
2025
+ free(subprob.W);
2026
+ }
2027
+ sigmoid_train(prob->l,dec_values,prob->y,probA,probB);
2028
+ free(dec_values);
2029
+ free(perm);
2030
+ }
2031
+
2032
+ // Return parameter of a Laplace distribution
2033
+ static double svm_svr_probability(
2034
+ const svm_problem *prob, const svm_parameter *param)
2035
+ {
2036
+ int i;
2037
+ int nr_fold = 5;
2038
+ double *ymv = Malloc(double,prob->l);
2039
+ double mae = 0;
2040
+
2041
+ svm_parameter newparam = *param;
2042
+ newparam.probability = 0;
2043
+ svm_cross_validation(prob,&newparam,nr_fold,ymv);
2044
+ for(i=0;i<prob->l;i++)
2045
+ {
2046
+ ymv[i]=prob->y[i]-ymv[i];
2047
+ mae += fabs(ymv[i]);
2048
+ }
2049
+ mae /= prob->l;
2050
+ double std=sqrt(2*mae*mae);
2051
+ int count=0;
2052
+ mae=0;
2053
+ for(i=0;i<prob->l;i++)
2054
+ if (fabs(ymv[i]) > 5*std)
2055
+ count=count+1;
2056
+ else
2057
+ mae+=fabs(ymv[i]);
2058
+ mae /= (prob->l-count);
2059
+ info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma= %g\n",mae);
2060
+ free(ymv);
2061
+ return mae;
2062
+ }
2063
+
2064
+
2065
+ // label: label name, start: begin of each class, count: #data of classes, perm: indices to the original data
2066
+ // perm, length l, must be allocated before calling this subroutine
2067
+ static void svm_group_classes(const svm_problem *prob, int *nr_class_ret, int **label_ret, int **start_ret, int **count_ret, int *perm)
2068
+ {
2069
+ int l = prob->l;
2070
+ int max_nr_class = 16;
2071
+ int nr_class = 0;
2072
+ int *label = Malloc(int,max_nr_class);
2073
+ int *count = Malloc(int,max_nr_class);
2074
+ int *data_label = Malloc(int,l);
2075
+ int i;
2076
+
2077
+ for(i=0;i<l;i++)
2078
+ {
2079
+ int this_label = (int)prob->y[i];
2080
+ int j;
2081
+ for(j=0;j<nr_class;j++)
2082
+ {
2083
+ if(this_label == label[j])
2084
+ {
2085
+ ++count[j];
2086
+ break;
2087
+ }
2088
+ }
2089
+ data_label[i] = j;
2090
+ if(j == nr_class)
2091
+ {
2092
+ if(nr_class == max_nr_class)
2093
+ {
2094
+ max_nr_class *= 2;
2095
+ label = (int *)realloc(label,max_nr_class*sizeof(int));
2096
+ count = (int *)realloc(count,max_nr_class*sizeof(int));
2097
+ }
2098
+ label[nr_class] = this_label;
2099
+ count[nr_class] = 1;
2100
+ ++nr_class;
2101
+ }
2102
+ }
2103
+
2104
+ int *start = Malloc(int,nr_class);
2105
+ start[0] = 0;
2106
+ for(i=1;i<nr_class;i++)
2107
+ start[i] = start[i-1]+count[i-1];
2108
+ for(i=0;i<l;i++)
2109
+ {
2110
+ perm[start[data_label[i]]] = i;
2111
+ ++start[data_label[i]];
2112
+ }
2113
+ start[0] = 0;
2114
+ for(i=1;i<nr_class;i++)
2115
+ start[i] = start[i-1]+count[i-1];
2116
+
2117
+ *nr_class_ret = nr_class;
2118
+ *label_ret = label;
2119
+ *start_ret = start;
2120
+ *count_ret = count;
2121
+ free(data_label);
2122
+ }
2123
+
2124
+ //
2125
+ // Remove zero weighed data as libsvm and some liblinear solvers require C > 0.
2126
+ //
2127
+ static void remove_zero_weight(svm_problem *newprob, const svm_problem *prob)
2128
+ {
2129
+ int i;
2130
+ int l = 0;
2131
+ for(i=0;i<prob->l;i++)
2132
+ if(prob->W[i] > 0) l++;
2133
+ *newprob = *prob;
2134
+ newprob->l = l;
2135
+ newprob->x = Malloc(svm_node*,l);
2136
+ newprob->y = Malloc(double,l);
2137
+ newprob->W = Malloc(double,l);
2138
+
2139
+ int j = 0;
2140
+ for(i=0;i<prob->l;i++)
2141
+ if(prob->W[i] > 0)
2142
+ {
2143
+ newprob->x[j] = prob->x[i];
2144
+ newprob->y[j] = prob->y[i];
2145
+ newprob->W[j] = prob->W[i];
2146
+ j++;
2147
+ }
2148
+ }
2149
+
2150
+ //
2151
+ // Interface functions
2152
+ //
2153
+ svm_model *svm_train(const svm_problem *prob, const svm_parameter *param)
2154
+ {
2155
+ svm_problem newprob;
2156
+ remove_zero_weight(&newprob, prob);
2157
+ prob = &newprob;
2158
+
2159
+ svm_model *model = Malloc(svm_model,1);
2160
+ model->param = *param;
2161
+ model->free_sv = 0; // XXX
2162
+
2163
+ if(param->svm_type == ONE_CLASS ||
2164
+ param->svm_type == EPSILON_SVR ||
2165
+ param->svm_type == NU_SVR)
2166
+ {
2167
+ // regression or one-class-svm
2168
+ model->nr_class = 2;
2169
+ model->label = NULL;
2170
+ model->nSV = NULL;
2171
+ model->probA = NULL; model->probB = NULL;
2172
+ model->sv_coef = Malloc(double *,1);
2173
+
2174
+ if(param->probability &&
2175
+ (param->svm_type == EPSILON_SVR ||
2176
+ param->svm_type == NU_SVR))
2177
+ {
2178
+ model->probA = Malloc(double,1);
2179
+ model->probA[0] = svm_svr_probability(prob,param);
2180
+ }
2181
+
2182
+ decision_function f = svm_train_one(prob,param,0,0);
2183
+ model->rho = Malloc(double,1);
2184
+ model->rho[0] = f.rho;
2185
+
2186
+ int nSV = 0;
2187
+ int i;
2188
+ for(i=0;i<prob->l;i++)
2189
+ if(fabs(f.alpha[i]) > 0) ++nSV;
2190
+ model->l = nSV;
2191
+ model->SV = Malloc(svm_node *,nSV);
2192
+ model->sv_coef[0] = Malloc(double,nSV);
2193
+ int j = 0;
2194
+ for(i=0;i<prob->l;i++)
2195
+ if(fabs(f.alpha[i]) > 0)
2196
+ {
2197
+ model->SV[j] = prob->x[i];
2198
+ model->sv_coef[0][j] = f.alpha[i];
2199
+ ++j;
2200
+ }
2201
+
2202
+ free(f.alpha);
2203
+ }
2204
+ else
2205
+ {
2206
+ // classification
2207
+ int l = prob->l;
2208
+ int nr_class;
2209
+ int *label = NULL;
2210
+ int *start = NULL;
2211
+ int *count = NULL;
2212
+ int *perm = Malloc(int,l);
2213
+
2214
+ // group training data of the same class
2215
+ svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
2216
+ if(nr_class == 1)
2217
+ info("WARNING: training data in only one class. See README for details.\n");
2218
+
2219
+ svm_node **x = Malloc(svm_node *,l);
2220
+ double *W;
2221
+ W = Malloc(double,l);
2222
+
2223
+ int i;
2224
+ for(i=0;i<l;i++)
2225
+ {
2226
+ x[i] = prob->x[perm[i]];
2227
+ W[i] = prob->W[perm[i]];
2228
+ }
2229
+
2230
+ // calculate weighted C
2231
+
2232
+ double *weighted_C = Malloc(double, nr_class);
2233
+ for(i=0;i<nr_class;i++)
2234
+ weighted_C[i] = param->C;
2235
+ for(i=0;i<param->nr_weight;i++)
2236
+ {
2237
+ int j;
2238
+ for(j=0;j<nr_class;j++)
2239
+ if(param->weight_label[i] == label[j])
2240
+ break;
2241
+ if(j == nr_class)
2242
+ fprintf(stderr,"WARNING: class label %d specified in weight is not found\n", param->weight_label[i]);
2243
+ else
2244
+ weighted_C[j] *= param->weight[i];
2245
+ }
2246
+
2247
+ // train k*(k-1)/2 models
2248
+
2249
+ bool *nonzero = Malloc(bool,l);
2250
+ for(i=0;i<l;i++)
2251
+ nonzero[i] = false;
2252
+ decision_function *f = Malloc(decision_function,nr_class*(nr_class-1)/2);
2253
+
2254
+ double *probA=NULL,*probB=NULL;
2255
+ if (param->probability)
2256
+ {
2257
+ probA=Malloc(double,nr_class*(nr_class-1)/2);
2258
+ probB=Malloc(double,nr_class*(nr_class-1)/2);
2259
+ }
2260
+
2261
+ int p = 0;
2262
+ for(i=0;i<nr_class;i++)
2263
+ for(int j=i+1;j<nr_class;j++)
2264
+ {
2265
+ svm_problem sub_prob;
2266
+ int si = start[i], sj = start[j];
2267
+ int ci = count[i], cj = count[j];
2268
+ sub_prob.l = ci+cj;
2269
+ sub_prob.x = Malloc(svm_node *,sub_prob.l);
2270
+ sub_prob.y = Malloc(double,sub_prob.l);
2271
+ sub_prob.W = Malloc(double,sub_prob.l);
2272
+ int k;
2273
+ for(k=0;k<ci;k++)
2274
+ {
2275
+ sub_prob.x[k] = x[si+k];
2276
+ sub_prob.y[k] = +1;
2277
+ sub_prob.W[k] = W[si+k];
2278
+ }
2279
+ for(k=0;k<cj;k++)
2280
+ {
2281
+ sub_prob.x[ci+k] = x[sj+k];
2282
+ sub_prob.y[ci+k] = -1;
2283
+ sub_prob.W[ci+k] = W[sj+k];
2284
+ }
2285
+
2286
+ if(param->probability)
2287
+ svm_binary_svc_probability(&sub_prob,param,weighted_C[i],weighted_C[j],probA[p],probB[p]);
2288
+
2289
+ f[p] = svm_train_one(&sub_prob,param,weighted_C[i],weighted_C[j]);
2290
+ for(k=0;k<ci;k++)
2291
+ if(!nonzero[si+k] && fabs(f[p].alpha[k]) > 0)
2292
+ nonzero[si+k] = true;
2293
+ for(k=0;k<cj;k++)
2294
+ if(!nonzero[sj+k] && fabs(f[p].alpha[ci+k]) > 0)
2295
+ nonzero[sj+k] = true;
2296
+ free(sub_prob.x);
2297
+ free(sub_prob.y);
2298
+ free(sub_prob.W);
2299
+ ++p;
2300
+ }
2301
+
2302
+ // build output
2303
+
2304
+ model->nr_class = nr_class;
2305
+
2306
+ model->label = Malloc(int,nr_class);
2307
+ for(i=0;i<nr_class;i++)
2308
+ model->label[i] = label[i];
2309
+
2310
+ model->rho = Malloc(double,nr_class*(nr_class-1)/2);
2311
+ for(i=0;i<nr_class*(nr_class-1)/2;i++)
2312
+ model->rho[i] = f[i].rho;
2313
+
2314
+ if(param->probability)
2315
+ {
2316
+ model->probA = Malloc(double,nr_class*(nr_class-1)/2);
2317
+ model->probB = Malloc(double,nr_class*(nr_class-1)/2);
2318
+ for(i=0;i<nr_class*(nr_class-1)/2;i++)
2319
+ {
2320
+ model->probA[i] = probA[i];
2321
+ model->probB[i] = probB[i];
2322
+ }
2323
+ }
2324
+ else
2325
+ {
2326
+ model->probA=NULL;
2327
+ model->probB=NULL;
2328
+ }
2329
+
2330
+ int total_sv = 0;
2331
+ int *nz_count = Malloc(int,nr_class);
2332
+ model->nSV = Malloc(int,nr_class);
2333
+ for(i=0;i<nr_class;i++)
2334
+ {
2335
+ int nSV = 0;
2336
+ for(int j=0;j<count[i];j++)
2337
+ if(nonzero[start[i]+j])
2338
+ {
2339
+ ++nSV;
2340
+ ++total_sv;
2341
+ }
2342
+ model->nSV[i] = nSV;
2343
+ nz_count[i] = nSV;
2344
+ }
2345
+
2346
+ info("Total nSV = %d\n",total_sv);
2347
+
2348
+ model->l = total_sv;
2349
+ model->SV = Malloc(svm_node *,total_sv);
2350
+ p = 0;
2351
+ for(i=0;i<l;i++)
2352
+ if(nonzero[i]) model->SV[p++] = x[i];
2353
+
2354
+ int *nz_start = Malloc(int,nr_class);
2355
+ nz_start[0] = 0;
2356
+ for(i=1;i<nr_class;i++)
2357
+ nz_start[i] = nz_start[i-1]+nz_count[i-1];
2358
+
2359
+ model->sv_coef = Malloc(double *,nr_class-1);
2360
+ for(i=0;i<nr_class-1;i++)
2361
+ model->sv_coef[i] = Malloc(double,total_sv);
2362
+
2363
+ p = 0;
2364
+ for(i=0;i<nr_class;i++)
2365
+ for(int j=i+1;j<nr_class;j++)
2366
+ {
2367
+ // classifier (i,j): coefficients with
2368
+ // i are in sv_coef[j-1][nz_start[i]...],
2369
+ // j are in sv_coef[i][nz_start[j]...]
2370
+
2371
+ int si = start[i];
2372
+ int sj = start[j];
2373
+ int ci = count[i];
2374
+ int cj = count[j];
2375
+
2376
+ int q = nz_start[i];
2377
+ int k;
2378
+ for(k=0;k<ci;k++)
2379
+ if(nonzero[si+k])
2380
+ model->sv_coef[j-1][q++] = f[p].alpha[k];
2381
+ q = nz_start[j];
2382
+ for(k=0;k<cj;k++)
2383
+ if(nonzero[sj+k])
2384
+ model->sv_coef[i][q++] = f[p].alpha[ci+k];
2385
+ ++p;
2386
+ }
2387
+
2388
+ free(label);
2389
+ free(probA);
2390
+ free(probB);
2391
+ free(count);
2392
+ free(perm);
2393
+ free(start);
2394
+ free(W);
2395
+ free(x);
2396
+ free(weighted_C);
2397
+ free(nonzero);
2398
+ for(i=0;i<nr_class*(nr_class-1)/2;i++)
2399
+ free(f[i].alpha);
2400
+ free(f);
2401
+ free(nz_count);
2402
+ free(nz_start);
2403
+ }
2404
+ free(newprob.x);
2405
+ free(newprob.y);
2406
+ free(newprob.W);
2407
+ return model;
2408
+ }
2409
+
2410
+ // Stratified cross validation
2411
+ void svm_cross_validation(const svm_problem *prob, const svm_parameter *param, int nr_fold, double *target)
2412
+ {
2413
+ int i;
2414
+ int *fold_start = Malloc(int,nr_fold+1);
2415
+ int l = prob->l;
2416
+ int *perm = Malloc(int,l);
2417
+ int nr_class;
2418
+
2419
+ // stratified cv may not give leave-one-out rate
2420
+ // Each class to l folds -> some folds may have zero elements
2421
+ if((param->svm_type == C_SVC ||
2422
+ param->svm_type == NU_SVC) && nr_fold < l)
2423
+ {
2424
+ int *start = NULL;
2425
+ int *label = NULL;
2426
+ int *count = NULL;
2427
+ svm_group_classes(prob,&nr_class,&label,&start,&count,perm);
2428
+
2429
+ // random shuffle and then data grouped by fold using the array perm
2430
+ int *fold_count = Malloc(int,nr_fold);
2431
+ int c;
2432
+ int *index = Malloc(int,l);
2433
+ for(i=0;i<l;i++)
2434
+ index[i]=perm[i];
2435
+ for (c=0; c<nr_class; c++)
2436
+ for(i=0;i<count[c];i++)
2437
+ {
2438
+ int j = i+rand()%(count[c]-i);
2439
+ swap(index[start[c]+j],index[start[c]+i]);
2440
+ }
2441
+ for(i=0;i<nr_fold;i++)
2442
+ {
2443
+ fold_count[i] = 0;
2444
+ for (c=0; c<nr_class;c++)
2445
+ fold_count[i]+=(i+1)*count[c]/nr_fold-i*count[c]/nr_fold;
2446
+ }
2447
+ fold_start[0]=0;
2448
+ for (i=1;i<=nr_fold;i++)
2449
+ fold_start[i] = fold_start[i-1]+fold_count[i-1];
2450
+ for (c=0; c<nr_class;c++)
2451
+ for(i=0;i<nr_fold;i++)
2452
+ {
2453
+ int begin = start[c]+i*count[c]/nr_fold;
2454
+ int end = start[c]+(i+1)*count[c]/nr_fold;
2455
+ for(int j=begin;j<end;j++)
2456
+ {
2457
+ perm[fold_start[i]] = index[j];
2458
+ fold_start[i]++;
2459
+ }
2460
+ }
2461
+ fold_start[0]=0;
2462
+ for (i=1;i<=nr_fold;i++)
2463
+ fold_start[i] = fold_start[i-1]+fold_count[i-1];
2464
+ free(start);
2465
+ free(label);
2466
+ free(count);
2467
+ free(index);
2468
+ free(fold_count);
2469
+ }
2470
+ else
2471
+ {
2472
+ for(i=0;i<l;i++) perm[i]=i;
2473
+ for(i=0;i<l;i++)
2474
+ {
2475
+ int j = i+rand()%(l-i);
2476
+ swap(perm[i],perm[j]);
2477
+ }
2478
+ for(i=0;i<=nr_fold;i++)
2479
+ fold_start[i]=i*l/nr_fold;
2480
+ }
2481
+
2482
+ for(i=0;i<nr_fold;i++)
2483
+ {
2484
+ int begin = fold_start[i];
2485
+ int end = fold_start[i+1];
2486
+ int j,k;
2487
+ struct svm_problem subprob;
2488
+
2489
+ subprob.l = l-(end-begin);
2490
+ subprob.x = Malloc(struct svm_node*,subprob.l);
2491
+ subprob.y = Malloc(double,subprob.l);
2492
+
2493
+ subprob.W = Malloc(double,subprob.l);
2494
+ k=0;
2495
+ for(j=0;j<begin;j++)
2496
+ {
2497
+ subprob.x[k] = prob->x[perm[j]];
2498
+ subprob.y[k] = prob->y[perm[j]];
2499
+ subprob.W[k] = prob->W[perm[j]];
2500
+ ++k;
2501
+ }
2502
+ for(j=end;j<l;j++)
2503
+ {
2504
+ subprob.x[k] = prob->x[perm[j]];
2505
+ subprob.y[k] = prob->y[perm[j]];
2506
+ subprob.W[k] = prob->W[perm[j]];
2507
+ ++k;
2508
+ }
2509
+ struct svm_model *submodel = svm_train(&subprob,param);
2510
+ if(param->probability &&
2511
+ (param->svm_type == C_SVC || param->svm_type == NU_SVC))
2512
+ {
2513
+ double *prob_estimates=Malloc(double,svm_get_nr_class(submodel));
2514
+ for(j=begin;j<end;j++)
2515
+ target[perm[j]] = svm_predict_probability(submodel,prob->x[perm[j]],prob_estimates);
2516
+ free(prob_estimates);
2517
+ }
2518
+ else
2519
+ for(j=begin;j<end;j++)
2520
+ target[perm[j]] = svm_predict(submodel,prob->x[perm[j]]);
2521
+ svm_free_and_destroy_model(&submodel);
2522
+ free(subprob.x);
2523
+ free(subprob.y);
2524
+ free(subprob.W);
2525
+ }
2526
+ free(fold_start);
2527
+ free(perm);
2528
+ }
2529
+
2530
+
2531
+ int svm_get_svm_type(const svm_model *model)
2532
+ {
2533
+ return model->param.svm_type;
2534
+ }
2535
+
2536
+ int svm_get_nr_class(const svm_model *model)
2537
+ {
2538
+ return model->nr_class;
2539
+ }
2540
+
2541
+ void svm_get_labels(const svm_model *model, int* label)
2542
+ {
2543
+ if (model->label != NULL)
2544
+ for(int i=0;i<model->nr_class;i++)
2545
+ label[i] = model->label[i];
2546
+ }
2547
+
2548
+ double svm_get_svr_probability(const svm_model *model)
2549
+ {
2550
+ if ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
2551
+ model->probA!=NULL)
2552
+ return model->probA[0];
2553
+ else
2554
+ {
2555
+ fprintf(stderr,"Model doesn't contain information for SVR probability inference\n");
2556
+ return 0;
2557
+ }
2558
+ }
2559
+
2560
+ double svm_predict_values(const svm_model *model, const svm_node *x, double* dec_values)
2561
+ {
2562
+ int i;
2563
+ if(model->param.svm_type == ONE_CLASS ||
2564
+ model->param.svm_type == EPSILON_SVR ||
2565
+ model->param.svm_type == NU_SVR)
2566
+ {
2567
+ double *sv_coef = model->sv_coef[0];
2568
+ double sum = 0;
2569
+ for(i=0;i<model->l;i++)
2570
+ sum += sv_coef[i] * Kernel::k_function(x,model->SV[i],model->param);
2571
+ sum -= model->rho[0];
2572
+ *dec_values = sum;
2573
+
2574
+ if(model->param.svm_type == ONE_CLASS)
2575
+ return (sum>0)?1:-1;
2576
+ else
2577
+ return sum;
2578
+ }
2579
+ else
2580
+ {
2581
+ int nr_class = model->nr_class;
2582
+ int l = model->l;
2583
+
2584
+ double *kvalue = Malloc(double,l);
2585
+ for(i=0;i<l;i++)
2586
+ kvalue[i] = Kernel::k_function(x,model->SV[i],model->param);
2587
+
2588
+ int *start = Malloc(int,nr_class);
2589
+ start[0] = 0;
2590
+ for(i=1;i<nr_class;i++)
2591
+ start[i] = start[i-1]+model->nSV[i-1];
2592
+
2593
+ int *vote = Malloc(int,nr_class);
2594
+ for(i=0;i<nr_class;i++)
2595
+ vote[i] = 0;
2596
+
2597
+ int p=0;
2598
+ for(i=0;i<nr_class;i++)
2599
+ for(int j=i+1;j<nr_class;j++)
2600
+ {
2601
+ double sum = 0;
2602
+ int si = start[i];
2603
+ int sj = start[j];
2604
+ int ci = model->nSV[i];
2605
+ int cj = model->nSV[j];
2606
+
2607
+ int k;
2608
+ double *coef1 = model->sv_coef[j-1];
2609
+ double *coef2 = model->sv_coef[i];
2610
+ for(k=0;k<ci;k++)
2611
+ sum += coef1[si+k] * kvalue[si+k];
2612
+ for(k=0;k<cj;k++)
2613
+ sum += coef2[sj+k] * kvalue[sj+k];
2614
+ sum -= model->rho[p];
2615
+ dec_values[p] = sum;
2616
+
2617
+ if(dec_values[p] > 0)
2618
+ ++vote[i];
2619
+ else
2620
+ ++vote[j];
2621
+ p++;
2622
+ }
2623
+
2624
+ int vote_max_idx = 0;
2625
+ for(i=1;i<nr_class;i++)
2626
+ if(vote[i] > vote[vote_max_idx])
2627
+ vote_max_idx = i;
2628
+
2629
+ free(kvalue);
2630
+ free(start);
2631
+ free(vote);
2632
+ return model->label[vote_max_idx];
2633
+ }
2634
+ }
2635
+
2636
+ double svm_predict(const svm_model *model, const svm_node *x)
2637
+ {
2638
+ int nr_class = model->nr_class;
2639
+ double *dec_values;
2640
+ if(model->param.svm_type == ONE_CLASS ||
2641
+ model->param.svm_type == EPSILON_SVR ||
2642
+ model->param.svm_type == NU_SVR)
2643
+ dec_values = Malloc(double, 1);
2644
+ else
2645
+ dec_values = Malloc(double, nr_class*(nr_class-1)/2);
2646
+ double pred_result = svm_predict_values(model, x, dec_values);
2647
+ free(dec_values);
2648
+ return pred_result;
2649
+ }
2650
+
2651
+ double svm_predict_probability(
2652
+ const svm_model *model, const svm_node *x, double *prob_estimates)
2653
+ {
2654
+ if ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
2655
+ model->probA!=NULL && model->probB!=NULL)
2656
+ {
2657
+ int i;
2658
+ int nr_class = model->nr_class;
2659
+ double *dec_values = Malloc(double, nr_class*(nr_class-1)/2);
2660
+ svm_predict_values(model, x, dec_values);
2661
+
2662
+ double min_prob=1e-7;
2663
+ double **pairwise_prob=Malloc(double *,nr_class);
2664
+ for(i=0;i<nr_class;i++)
2665
+ pairwise_prob[i]=Malloc(double,nr_class);
2666
+ int k=0;
2667
+ for(i=0;i<nr_class;i++)
2668
+ for(int j=i+1;j<nr_class;j++)
2669
+ {
2670
+ pairwise_prob[i][j]=min(max(sigmoid_predict(dec_values[k],model->probA[k],model->probB[k]),min_prob),1-min_prob);
2671
+ pairwise_prob[j][i]=1-pairwise_prob[i][j];
2672
+ k++;
2673
+ }
2674
+ multiclass_probability(nr_class,pairwise_prob,prob_estimates);
2675
+
2676
+ int prob_max_idx = 0;
2677
+ for(i=1;i<nr_class;i++)
2678
+ if(prob_estimates[i] > prob_estimates[prob_max_idx])
2679
+ prob_max_idx = i;
2680
+ for(i=0;i<nr_class;i++)
2681
+ free(pairwise_prob[i]);
2682
+ free(dec_values);
2683
+ free(pairwise_prob);
2684
+ return model->label[prob_max_idx];
2685
+ }
2686
+ else
2687
+ return svm_predict(model, x);
2688
+ }
2689
+
2690
+ static const char *svm_type_table[] =
2691
+ {
2692
+ "c_svc","nu_svc","one_class","epsilon_svr","nu_svr",NULL
2693
+ };
2694
+
2695
+ static const char *kernel_type_table[]=
2696
+ {
2697
+ "linear","polynomial","rbf","sigmoid","precomputed",NULL
2698
+ };
2699
+
2700
+ int svm_save_model(const char *model_file_name, const svm_model *model)
2701
+ {
2702
+ FILE *fp = fopen(model_file_name,"w");
2703
+ if(fp==NULL) return -1;
2704
+
2705
+ char *old_locale = strdup(setlocale(LC_ALL, NULL));
2706
+ setlocale(LC_ALL, "C");
2707
+
2708
+ const svm_parameter& param = model->param;
2709
+
2710
+ fprintf(fp,"svm_type %s\n", svm_type_table[param.svm_type]);
2711
+ fprintf(fp,"kernel_type %s\n", kernel_type_table[param.kernel_type]);
2712
+
2713
+ if(param.kernel_type == POLY)
2714
+ fprintf(fp,"degree %d\n", param.degree);
2715
+
2716
+ if(param.kernel_type == POLY || param.kernel_type == RBF || param.kernel_type == SIGMOID)
2717
+ fprintf(fp,"gamma %g\n", param.gamma);
2718
+
2719
+ if(param.kernel_type == POLY || param.kernel_type == SIGMOID)
2720
+ fprintf(fp,"coef0 %g\n", param.coef0);
2721
+
2722
+ int nr_class = model->nr_class;
2723
+ int l = model->l;
2724
+ fprintf(fp, "nr_class %d\n", nr_class);
2725
+ fprintf(fp, "total_sv %d\n",l);
2726
+
2727
+ {
2728
+ fprintf(fp, "rho");
2729
+ for(int i=0;i<nr_class*(nr_class-1)/2;i++)
2730
+ fprintf(fp," %g",model->rho[i]);
2731
+ fprintf(fp, "\n");
2732
+ }
2733
+
2734
+ if(model->label)
2735
+ {
2736
+ fprintf(fp, "label");
2737
+ for(int i=0;i<nr_class;i++)
2738
+ fprintf(fp," %d",model->label[i]);
2739
+ fprintf(fp, "\n");
2740
+ }
2741
+
2742
+ if(model->probA) // regression has probA only
2743
+ {
2744
+ fprintf(fp, "probA");
2745
+ for(int i=0;i<nr_class*(nr_class-1)/2;i++)
2746
+ fprintf(fp," %g",model->probA[i]);
2747
+ fprintf(fp, "\n");
2748
+ }
2749
+ if(model->probB)
2750
+ {
2751
+ fprintf(fp, "probB");
2752
+ for(int i=0;i<nr_class*(nr_class-1)/2;i++)
2753
+ fprintf(fp," %g",model->probB[i]);
2754
+ fprintf(fp, "\n");
2755
+ }
2756
+
2757
+ if(model->nSV)
2758
+ {
2759
+ fprintf(fp, "nr_sv");
2760
+ for(int i=0;i<nr_class;i++)
2761
+ fprintf(fp," %d",model->nSV[i]);
2762
+ fprintf(fp, "\n");
2763
+ }
2764
+
2765
+ fprintf(fp, "SV\n");
2766
+ const double * const *sv_coef = model->sv_coef;
2767
+ const svm_node * const *SV = model->SV;
2768
+
2769
+ for(int i=0;i<l;i++)
2770
+ {
2771
+ for(int j=0;j<nr_class-1;j++)
2772
+ fprintf(fp, "%.16g ",sv_coef[j][i]);
2773
+
2774
+ const svm_node *p = SV[i];
2775
+
2776
+ if(param.kernel_type == PRECOMPUTED)
2777
+ fprintf(fp,"0:%d ",(int)(p->value));
2778
+ else
2779
+ while(p->index != -1)
2780
+ {
2781
+ fprintf(fp,"%d:%.8g ",p->index,p->value);
2782
+ p++;
2783
+ }
2784
+ fprintf(fp, "\n");
2785
+ }
2786
+
2787
+ setlocale(LC_ALL, old_locale);
2788
+ free(old_locale);
2789
+
2790
+ if (ferror(fp) != 0 || fclose(fp) != 0) return -1;
2791
+ else return 0;
2792
+ }
2793
+
2794
+ static char *line = NULL;
2795
+ static int max_line_len;
2796
+
2797
+ static char* readline(FILE *input)
2798
+ {
2799
+ int len;
2800
+
2801
+ if(fgets(line,max_line_len,input) == NULL)
2802
+ return NULL;
2803
+
2804
+ while(strrchr(line,'\n') == NULL)
2805
+ {
2806
+ max_line_len *= 2;
2807
+ line = (char *) realloc(line,max_line_len);
2808
+ len = (int) strlen(line);
2809
+ if(fgets(line+len,max_line_len-len,input) == NULL)
2810
+ break;
2811
+ }
2812
+ return line;
2813
+ }
2814
+
2815
+ svm_model *svm_load_model(const char *model_file_name)
2816
+ {
2817
+ FILE *fp = fopen(model_file_name,"rb");
2818
+ if(fp==NULL) return NULL;
2819
+
2820
+ char *old_locale = strdup(setlocale(LC_ALL, NULL));
2821
+ setlocale(LC_ALL, "C");
2822
+
2823
+ // read parameters
2824
+
2825
+ svm_model *model = Malloc(svm_model,1);
2826
+ svm_parameter& param = model->param;
2827
+ model->rho = NULL;
2828
+ model->probA = NULL;
2829
+ model->probB = NULL;
2830
+ model->label = NULL;
2831
+ model->nSV = NULL;
2832
+
2833
+ char cmd[81];
2834
+ while(1)
2835
+ {
2836
+ fscanf(fp,"%80s",cmd);
2837
+
2838
+ if(strcmp(cmd,"svm_type")==0)
2839
+ {
2840
+ fscanf(fp,"%80s",cmd);
2841
+ int i;
2842
+ for(i=0;svm_type_table[i];i++)
2843
+ {
2844
+ if(strcmp(svm_type_table[i],cmd)==0)
2845
+ {
2846
+ param.svm_type=i;
2847
+ break;
2848
+ }
2849
+ }
2850
+ if(svm_type_table[i] == NULL)
2851
+ {
2852
+ fprintf(stderr,"unknown svm type.\n");
2853
+
2854
+ setlocale(LC_ALL, old_locale);
2855
+ free(old_locale);
2856
+ free(model->rho);
2857
+ free(model->label);
2858
+ free(model->nSV);
2859
+ free(model);
2860
+ return NULL;
2861
+ }
2862
+ }
2863
+ else if(strcmp(cmd,"kernel_type")==0)
2864
+ {
2865
+ fscanf(fp,"%80s",cmd);
2866
+ int i;
2867
+ for(i=0;kernel_type_table[i];i++)
2868
+ {
2869
+ if(strcmp(kernel_type_table[i],cmd)==0)
2870
+ {
2871
+ param.kernel_type=i;
2872
+ break;
2873
+ }
2874
+ }
2875
+ if(kernel_type_table[i] == NULL)
2876
+ {
2877
+ fprintf(stderr,"unknown kernel function.\n");
2878
+
2879
+ setlocale(LC_ALL, old_locale);
2880
+ free(old_locale);
2881
+ free(model->rho);
2882
+ free(model->label);
2883
+ free(model->nSV);
2884
+ free(model);
2885
+ return NULL;
2886
+ }
2887
+ }
2888
+ else if(strcmp(cmd,"degree")==0)
2889
+ fscanf(fp,"%d",&param.degree);
2890
+ else if(strcmp(cmd,"gamma")==0)
2891
+ fscanf(fp,"%lf",&param.gamma);
2892
+ else if(strcmp(cmd,"coef0")==0)
2893
+ fscanf(fp,"%lf",&param.coef0);
2894
+ else if(strcmp(cmd,"nr_class")==0)
2895
+ fscanf(fp,"%d",&model->nr_class);
2896
+ else if(strcmp(cmd,"total_sv")==0)
2897
+ fscanf(fp,"%d",&model->l);
2898
+ else if(strcmp(cmd,"rho")==0)
2899
+ {
2900
+ int n = model->nr_class * (model->nr_class-1)/2;
2901
+ model->rho = Malloc(double,n);
2902
+ for(int i=0;i<n;i++)
2903
+ fscanf(fp,"%lf",&model->rho[i]);
2904
+ }
2905
+ else if(strcmp(cmd,"label")==0)
2906
+ {
2907
+ int n = model->nr_class;
2908
+ model->label = Malloc(int,n);
2909
+ for(int i=0;i<n;i++)
2910
+ fscanf(fp,"%d",&model->label[i]);
2911
+ }
2912
+ else if(strcmp(cmd,"probA")==0)
2913
+ {
2914
+ int n = model->nr_class * (model->nr_class-1)/2;
2915
+ model->probA = Malloc(double,n);
2916
+ for(int i=0;i<n;i++)
2917
+ fscanf(fp,"%lf",&model->probA[i]);
2918
+ }
2919
+ else if(strcmp(cmd,"probB")==0)
2920
+ {
2921
+ int n = model->nr_class * (model->nr_class-1)/2;
2922
+ model->probB = Malloc(double,n);
2923
+ for(int i=0;i<n;i++)
2924
+ fscanf(fp,"%lf",&model->probB[i]);
2925
+ }
2926
+ else if(strcmp(cmd,"nr_sv")==0)
2927
+ {
2928
+ int n = model->nr_class;
2929
+ model->nSV = Malloc(int,n);
2930
+ for(int i=0;i<n;i++)
2931
+ fscanf(fp,"%d",&model->nSV[i]);
2932
+ }
2933
+ else if(strcmp(cmd,"SV")==0)
2934
+ {
2935
+ while(1)
2936
+ {
2937
+ int c = getc(fp);
2938
+ if(c==EOF || c=='\n') break;
2939
+ }
2940
+ break;
2941
+ }
2942
+ else
2943
+ {
2944
+ fprintf(stderr,"unknown text in model file: [%s]\n",cmd);
2945
+
2946
+ setlocale(LC_ALL, old_locale);
2947
+ free(old_locale);
2948
+ free(model->rho);
2949
+ free(model->label);
2950
+ free(model->nSV);
2951
+ free(model);
2952
+ return NULL;
2953
+ }
2954
+ }
2955
+
2956
+ // read sv_coef and SV
2957
+
2958
+ int elements = 0;
2959
+ long pos = ftell(fp);
2960
+
2961
+ max_line_len = 1024;
2962
+ line = Malloc(char,max_line_len);
2963
+ char *p,*endptr,*idx,*val;
2964
+
2965
+ while(readline(fp)!=NULL)
2966
+ {
2967
+ p = strtok(line,":");
2968
+ while(1)
2969
+ {
2970
+ p = strtok(NULL,":");
2971
+ if(p == NULL)
2972
+ break;
2973
+ ++elements;
2974
+ }
2975
+ }
2976
+ elements += model->l;
2977
+
2978
+ fseek(fp,pos,SEEK_SET);
2979
+
2980
+ int m = model->nr_class - 1;
2981
+ int l = model->l;
2982
+ model->sv_coef = Malloc(double *,m);
2983
+ int i;
2984
+ for(i=0;i<m;i++)
2985
+ model->sv_coef[i] = Malloc(double,l);
2986
+ model->SV = Malloc(svm_node*,l);
2987
+ svm_node *x_space = NULL;
2988
+ if(l>0) x_space = Malloc(svm_node,elements);
2989
+
2990
+ int j=0;
2991
+ for(i=0;i<l;i++)
2992
+ {
2993
+ readline(fp);
2994
+ model->SV[i] = &x_space[j];
2995
+
2996
+ p = strtok(line, " \t");
2997
+ model->sv_coef[0][i] = strtod(p,&endptr);
2998
+ for(int k=1;k<m;k++)
2999
+ {
3000
+ p = strtok(NULL, " \t");
3001
+ model->sv_coef[k][i] = strtod(p,&endptr);
3002
+ }
3003
+
3004
+ while(1)
3005
+ {
3006
+ idx = strtok(NULL, ":");
3007
+ val = strtok(NULL, " \t");
3008
+
3009
+ if(val == NULL)
3010
+ break;
3011
+ x_space[j].index = (int) strtol(idx,&endptr,10);
3012
+ x_space[j].value = strtod(val,&endptr);
3013
+
3014
+ ++j;
3015
+ }
3016
+ x_space[j++].index = -1;
3017
+ }
3018
+ free(line);
3019
+
3020
+ setlocale(LC_ALL, old_locale);
3021
+ free(old_locale);
3022
+
3023
+ if (ferror(fp) != 0 || fclose(fp) != 0)
3024
+ return NULL;
3025
+
3026
+ model->free_sv = 1; // XXX
3027
+ return model;
3028
+ }
3029
+
3030
+ void svm_free_model_content(svm_model* model_ptr)
3031
+ {
3032
+ if(model_ptr->free_sv && model_ptr->l > 0 && model_ptr->SV != NULL)
3033
+ free((void *)(model_ptr->SV[0]));
3034
+ if(model_ptr->sv_coef)
3035
+ {
3036
+ for(int i=0;i<model_ptr->nr_class-1;i++)
3037
+ free(model_ptr->sv_coef[i]);
3038
+ }
3039
+
3040
+ free(model_ptr->SV);
3041
+ model_ptr->SV = NULL;
3042
+
3043
+ free(model_ptr->sv_coef);
3044
+ model_ptr->sv_coef = NULL;
3045
+
3046
+ free(model_ptr->rho);
3047
+ model_ptr->rho = NULL;
3048
+
3049
+ free(model_ptr->label);
3050
+ model_ptr->label= NULL;
3051
+
3052
+ free(model_ptr->probA);
3053
+ model_ptr->probA = NULL;
3054
+
3055
+ free(model_ptr->probB);
3056
+ model_ptr->probB= NULL;
3057
+
3058
+ free(model_ptr->nSV);
3059
+ model_ptr->nSV = NULL;
3060
+ }
3061
+
3062
+ void svm_free_and_destroy_model(svm_model** model_ptr_ptr)
3063
+ {
3064
+ if(model_ptr_ptr != NULL && *model_ptr_ptr != NULL)
3065
+ {
3066
+ svm_free_model_content(*model_ptr_ptr);
3067
+ free(*model_ptr_ptr);
3068
+ *model_ptr_ptr = NULL;
3069
+ }
3070
+ }
3071
+
3072
+ void svm_destroy_param(svm_parameter* param)
3073
+ {
3074
+ free(param->weight_label);
3075
+ free(param->weight);
3076
+ }
3077
+
3078
+ const char *svm_check_parameter(const svm_problem *prob, const svm_parameter *param)
3079
+ {
3080
+ // svm_type
3081
+
3082
+ int svm_type = param->svm_type;
3083
+ if(svm_type != C_SVC &&
3084
+ svm_type != NU_SVC &&
3085
+ svm_type != ONE_CLASS &&
3086
+ svm_type != EPSILON_SVR &&
3087
+ svm_type != NU_SVR)
3088
+ return "unknown svm type";
3089
+
3090
+ // kernel_type, degree
3091
+
3092
+ int kernel_type = param->kernel_type;
3093
+ if(kernel_type != LINEAR &&
3094
+ kernel_type != POLY &&
3095
+ kernel_type != RBF &&
3096
+ kernel_type != SIGMOID &&
3097
+ kernel_type != PRECOMPUTED)
3098
+ return "unknown kernel type";
3099
+
3100
+ if(param->gamma < 0)
3101
+ return "gamma < 0";
3102
+
3103
+ if(param->degree < 0)
3104
+ return "degree of polynomial kernel < 0";
3105
+
3106
+ // cache_size,eps,C,nu,p,shrinking
3107
+
3108
+ if(param->cache_size <= 0)
3109
+ return "cache_size <= 0";
3110
+
3111
+ if(param->eps <= 0)
3112
+ return "eps <= 0";
3113
+
3114
+ if(svm_type == C_SVC ||
3115
+ svm_type == EPSILON_SVR ||
3116
+ svm_type == NU_SVR)
3117
+ if(param->C <= 0)
3118
+ return "C <= 0";
3119
+
3120
+ if(svm_type == NU_SVC ||
3121
+ svm_type == ONE_CLASS ||
3122
+ svm_type == NU_SVR)
3123
+ if(param->nu <= 0 || param->nu > 1)
3124
+ return "nu <= 0 or nu > 1";
3125
+
3126
+ if(svm_type == EPSILON_SVR)
3127
+ if(param->p < 0)
3128
+ return "p < 0";
3129
+
3130
+ if(param->shrinking != 0 &&
3131
+ param->shrinking != 1)
3132
+ return "shrinking != 0 and shrinking != 1";
3133
+
3134
+ if(param->probability != 0 &&
3135
+ param->probability != 1)
3136
+ return "probability != 0 and probability != 1";
3137
+
3138
+ if(param->probability == 1 &&
3139
+ svm_type == ONE_CLASS)
3140
+ return "one-class SVM probability output not supported yet";
3141
+
3142
+
3143
+ // check whether nu-svc is feasible
3144
+
3145
+ if(svm_type == NU_SVC)
3146
+ {
3147
+ int l = prob->l;
3148
+ int max_nr_class = 16;
3149
+ int nr_class = 0;
3150
+ int *label = Malloc(int,max_nr_class);
3151
+ double *count = Malloc(double,max_nr_class);
3152
+
3153
+ int i;
3154
+ for(i=0;i<l;i++)
3155
+ {
3156
+ int this_label = (int)prob->y[i];
3157
+ int j;
3158
+ for(j=0;j<nr_class;j++)
3159
+ if(this_label == label[j])
3160
+ {
3161
+ count[j] += prob->W[i];
3162
+ break;
3163
+ }
3164
+ if(j == nr_class)
3165
+ {
3166
+ if(nr_class == max_nr_class)
3167
+ {
3168
+ max_nr_class *= 2;
3169
+ label = (int *)realloc(label,max_nr_class*sizeof(int));
3170
+ count = (double *)realloc(count,max_nr_class*sizeof(double));
3171
+ }
3172
+ label[nr_class] = this_label;
3173
+ count[nr_class] = prob->W[i];
3174
+ ++nr_class;
3175
+ }
3176
+ }
3177
+
3178
+ for(i=0;i<nr_class;i++)
3179
+ {
3180
+ double n1 = count[i];
3181
+ for(int j=i+1;j<nr_class;j++)
3182
+ {
3183
+ double n2 = count[j];
3184
+ if(param->nu*(n1+n2)/2 > min(n1,n2))
3185
+ {
3186
+ free(label);
3187
+ free(count);
3188
+ return "specified nu is infeasible";
3189
+ }
3190
+ }
3191
+ }
3192
+ free(label);
3193
+ free(count);
3194
+ }
3195
+
3196
+ return NULL;
3197
+ }
3198
+
3199
+ int svm_check_probability_model(const svm_model *model)
3200
+ {
3201
+ return ((model->param.svm_type == C_SVC || model->param.svm_type == NU_SVC) &&
3202
+ model->probA!=NULL && model->probB!=NULL) ||
3203
+ ((model->param.svm_type == EPSILON_SVR || model->param.svm_type == NU_SVR) &&
3204
+ model->probA!=NULL);
3205
+ }
3206
+
3207
+ void svm_set_print_string_function(void (*print_func)(const char *))
3208
+ {
3209
+ if(print_func == NULL)
3210
+ svm_print_string = &print_string_stdout;
3211
+ else
3212
+ svm_print_string = print_func;
3213
+ }