rsvm 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,6 @@
1
+ *.gem
2
+ .bundle
3
+ Gemfile.lock
4
+ .DS_Store
5
+ lib/libsvm/*
6
+ pkg/*
data/Gemfile ADDED
@@ -0,0 +1,6 @@
1
+ source "http://rubygems.org"
2
+
3
+ # Specify your gem's dependencies in rsvm.gemspec
4
+ gemspec
5
+
6
+ gem 'rake'
@@ -0,0 +1,89 @@
1
+ # RSVM
2
+
3
+ RSVM is a Ruby gem to perform Support Vector Machine classification and regresion
4
+ in Ruby. It is FFI wrapper of libsvm.
5
+
6
+ ## Usage
7
+
8
+ ```ruby
9
+ problem = Svm::Problem.new
10
+
11
+ # These are the training samples. The first element in each array is the label
12
+ # for the sample, the rest is the sample coordinates.
13
+
14
+ problem.data = [
15
+ [1, 1, 0, 1],
16
+ [-1, -1, 0, -1]
17
+ ]
18
+
19
+ # Generate a model from this problem
20
+
21
+ model = problem.generate_model(:kernel_type => :linear, :c => 10)
22
+
23
+ # And make predictions
24
+
25
+ model.predict([-1, 0, -1]) # - 1
26
+ model.predict([1, 0, 1]) # 1
27
+
28
+ # Models can be saved to a file
29
+
30
+ model.save(file.path)
31
+
32
+ loaded_model = Svm::Model.load(file.path)
33
+
34
+ loaded_model.predict([-1, 0, -1]) # -1
35
+ loaded_model.predict([1, 0, 1]) # 1
36
+
37
+ ## Load data from csv
38
+
39
+ ```ruby
40
+ csv_path = File.join(File.dirname(__FILE__), '..', 'fixtures', 'heart_scale.csv')
41
+ problem = Svm::Problem.load_from_csv(csv_path)
42
+ ```
43
+
44
+ For the Support Vector Machine to perform well the features in the samples data must
45
+ be of the same order of magnitude. RSVM can scale your data linearly to the [-1, 1] range.
46
+
47
+ ## Scaling data
48
+
49
+ ```ruby
50
+ data = [
51
+ [1, 12.0, -7.6, 100_000, 0],
52
+ [2, 30.0, 0, -100_000, 0],
53
+ [3, 36.0, 7.6, 0, 0]
54
+ ]
55
+
56
+ problem = Svm::Problem.new(data, scale: true)
57
+ ```
58
+
59
+ ## Estimate probabilities
60
+
61
+ ```ruby
62
+
63
+ problem.estimate_probabilities = true
64
+ model = problem.generate_model
65
+
66
+ sample = [60.0, 1.0, 3.0, 140.0, 185.0, 0.0, 2.0, 155.0, 0.0, 3.0, 2.0, 0.0, 3.0]
67
+ probs = model.predict_probabilities(sample)
68
+
69
+ # Return a hash with the probabilities associated with the sample
70
+ # {1=>0.4443737921739047, -1=>0.5556262078260953}
71
+ ```
72
+
73
+ ## Find parameters doing grid search
74
+
75
+ ```ruby
76
+ problem = Svm::Problem.load_from_csv(UNBALANCED_CSV)
77
+ n_folds = 3
78
+
79
+ # This will perform a grid search using each combination with c from 2^1 up to 2^14
80
+ # and gamma from 2^-13 up to 2^-1. For each combination it will use crossvalidation
81
+ # using 3 folds.
82
+
83
+ options = problem.find_best_parameters(n_folds)
84
+
85
+ # Result:
86
+ # {:c=>64, :gamma=>(1/128)}
87
+ ```
88
+
89
+
@@ -0,0 +1,41 @@
1
+ require "bundler/gem_tasks"
2
+ require 'rake'
3
+ require 'rake/testtask'
4
+ require 'rake/clean'
5
+
6
+ task :default => :test
7
+
8
+ LIB_EXT = RbConfig::CONFIG['DLEXT']
9
+
10
+ desc "Run unit tests"
11
+ Rake::TestTask.new do |test|
12
+ test.libs << "test"
13
+ test.test_files = Dir[ "test/**/*_test.rb"]
14
+ test.verbose = false
15
+ end
16
+
17
+ # rule to build the extension: this says
18
+ # that the extension should be rebuilt
19
+ # after any change to the files in ext
20
+ file "lib/libsvm/libsvm.#{LIB_EXT}" =>
21
+ Dir.glob("ext/libsvm/*{.rb,.c}") do
22
+ Dir.chdir("ext/libsvm") do
23
+ # this does essentially the same thing
24
+ # as what rubygems does
25
+ ruby "extconf.rb"
26
+ sh "make"
27
+ end
28
+
29
+ cp "ext/libsvm/libsvm.#{LIB_EXT}", "lib/libsvm/libsvm.#{LIB_EXT}"
30
+ end
31
+
32
+ # make the :test task depend on the shared
33
+ # object, so it will be built automatically
34
+ # before running the tests
35
+ task :test => "lib/libsvm/libsvm.#{LIB_EXT}"
36
+
37
+ # use 'rake clean' and 'rake clobber' to
38
+ # easily delete generated files
39
+ CLEAN.include("ext/**/*{.o,.log,.#{LIB_EXT}}")
40
+ CLEAN.include('ext/**/Makefile')
41
+ CLOBBER.include("lib/**/*.#{LIB_EXT}")
@@ -0,0 +1,31 @@
1
+
2
+ Copyright (c) 2000-2011 Chih-Chung Chang and Chih-Jen Lin
3
+ All rights reserved.
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions
7
+ are met:
8
+
9
+ 1. Redistributions of source code must retain the above copyright
10
+ notice, this list of conditions and the following disclaimer.
11
+
12
+ 2. Redistributions in binary form must reproduce the above copyright
13
+ notice, this list of conditions and the following disclaimer in the
14
+ documentation and/or other materials provided with the distribution.
15
+
16
+ 3. Neither name of copyright holders nor the names of its contributors
17
+ may be used to endorse or promote products derived from this software
18
+ without specific prior written permission.
19
+
20
+
21
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
25
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@@ -0,0 +1,1837 @@
1
+ <html>
2
+ <head>
3
+ <title>LIBSVM FAQ</title>
4
+ </head>
5
+ <body bgcolor="#ffffcc">
6
+
7
+ <a name="_TOP"><b><h1><a
8
+ href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a> FAQ </h1></b></a>
9
+ <b>last modified : </b>
10
+ Tue, 11 Oct 2011 13:35:12 GMT
11
+ <class="categories">
12
+ <li><a
13
+ href="#_TOP">All Questions</a>(75)</li>
14
+ <ul><b>
15
+ <li><a
16
+ href="#/Q1:_Some_sample_uses_of_libsvm">Q1:_Some_sample_uses_of_libsvm</a>(2)</li>
17
+ <li><a
18
+ href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(12)</li>
19
+ <li><a
20
+ href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(7)</li>
21
+ <li><a
22
+ href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(33)</li>
23
+ <li><a
24
+ href="#/Q5:_Probability_outputs">Q5:_Probability_outputs</a>(3)</li>
25
+ <li><a
26
+ href="#/Q6:_Graphic_interface">Q6:_Graphic_interface</a>(3)</li>
27
+ <li><a
28
+ href="#/Q7:_Java_version_of_libsvm">Q7:_Java_version_of_libsvm</a>(4)</li>
29
+ <li><a
30
+ href="#/Q8:_Python_interface">Q8:_Python_interface</a>(1)</li>
31
+ <li><a
32
+ href="#/Q9:_MATLAB_interface">Q9:_MATLAB_interface</a>(10)</li>
33
+ </b></ul>
34
+ </li>
35
+
36
+ <ul><ul class="headlines">
37
+ <li class="headlines_item"><a href="#faq101">Some courses which have used libsvm as a tool</a></li>
38
+ <li class="headlines_item"><a href="#faq102">Some applications/tools which have used libsvm </a></li>
39
+ <li class="headlines_item"><a href="#f201">Where can I find documents/videos of libsvm ?</a></li>
40
+ <li class="headlines_item"><a href="#f202">Where are change log and earlier versions?</a></li>
41
+ <li class="headlines_item"><a href="#f203">How to cite LIBSVM?</a></li>
42
+ <li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
43
+ <li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
44
+ <li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
45
+ <li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
46
+ <li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ? </a></li>
47
+ <li class="headlines_item"><a href="#f209">What is the difference between "." and "*" outputed during training? </a></li>
48
+ <li class="headlines_item"><a href="#f210">Why occasionally the program (including MATLAB or other interfaces) crashes and gives a segmentation fault?</a></li>
49
+ <li class="headlines_item"><a href="#f211">How to build a dynamic library (.dll file) on MS windows?</a></li>
50
+ <li class="headlines_item"><a href="#f212">On some systems (e.g., Ubuntu), compiling LIBSVM gives many warning messages. Is this a problem and how to disable the warning message?</a></li>
51
+ <li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
52
+ <li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
53
+ <li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
54
+ <li class="headlines_item"><a href="#f304">Why sometimes the last line of my data is not read by svm-train?</a></li>
55
+ <li class="headlines_item"><a href="#f305">Is there a program to check if my data are in the correct format?</a></li>
56
+ <li class="headlines_item"><a href="#f306">May I put comments in data files?</a></li>
57
+ <li class="headlines_item"><a href="#f307">How to convert other data formats to LIBSVM format?</a></li>
58
+ <li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
59
+ <li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
60
+ <li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
61
+ <li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
62
+ <li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
63
+ <li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
64
+ <li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
65
+ <li class="headlines_item"><a href="#f408">Does it make a big difference if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
66
+ <li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
67
+ <li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
68
+ <li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
69
+ <li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
70
+ <li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
71
+ <li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
72
+ <li class="headlines_item"><a href="#f4141">Does shrinking always help?</a></li>
73
+ <li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
74
+ <li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
75
+ <li class="headlines_item"><a href="#f416">On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
76
+ <li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train?</a></li>
77
+ <li class="headlines_item"><a href="#f418">I would like to use my own kernel. Any example? In svm.cpp, there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
78
+ <li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
79
+ <li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
80
+ <li class="headlines_item"><a href="#f4201">Why my cross-validation results are different from those in the Practical Guide?</a></li>
81
+ <li class="headlines_item"><a href="#f421">On some systems CV accuracy is the same in several runs. How could I use different data partitions? In other words, how do I set random seed in LIBSVM?</a></li>
82
+ <li class="headlines_item"><a href="#f422">I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
83
+ <li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
84
+ <li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
85
+ <li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
86
+ <li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
87
+ <li class="headlines_item"><a href="#f430">Why the sign of predicted labels and decision values are sometimes reversed?</a></li>
88
+ <li class="headlines_item"><a href="#f431">I don't know class labels of test data. What should I put in the first column of the test file?</a></li>
89
+ <li class="headlines_item"><a href="#f432">How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</a></li>
90
+ <li class="headlines_item"><a href="#f433">How could I know which training instances are support vectors?</a></li>
91
+ <li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes a longer time?</a></li>
92
+ <li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
93
+ <li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
94
+ <li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
95
+ <li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
96
+ <li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
97
+ <li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
98
+ <li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
99
+ <li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
100
+ <li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
101
+ <li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
102
+ <li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
103
+ <li class="headlines_item"><a href="#f8011">On 64bit Windows I compile the MATLAB interface without problem, but why errors occur while running it?</a></li>
104
+ <li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
105
+ <li class="headlines_item"><a href="#f803">How could I use MATLAB interface for parameter selection?</a></li>
106
+ <li class="headlines_item"><a href="#f8031">I use MATLAB parallel programming toolbox on a multi-core environment for parameter selection. Why the program is even slower?</a></li>
107
+ <li class="headlines_item"><a href="#f8032">How do I use LIBSVM with OpenMP under MATLAB?</a></li>
108
+ <li class="headlines_item"><a href="#f804">How could I generate the primal variable w of linear SVM?</a></li>
109
+ <li class="headlines_item"><a href="#f805">Is there an OCTAVE interface for libsvm?</a></li>
110
+ <li class="headlines_item"><a href="#f806">How to handle the name conflict between svmtrain in the libsvm matlab interface and that in MATLAB bioinformatics toolbox?</a></li>
111
+ <li class="headlines_item"><a href="#f807">On Windows I got an error message "Invalid MEX-file: Specific module not found" when running the pre-built MATLAB interface in the windows sub-directory. What should I do?</a></li>
112
+ </ul></ul>
113
+
114
+
115
+ <hr size="5" noshade />
116
+ <p/>
117
+
118
+ <a name="/Q1:_Some_sample_uses_of_libsvm"></a>
119
+ <a name="faq101"><b>Q: Some courses which have used libsvm as a tool</b></a>
120
+ <br/>
121
+ <ul>
122
+ <li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,
123
+ Faculty of Applied Science, University of Freiburg, Germany
124
+ </a>
125
+ <li> <a href=http://www.cs.vu.nl/~elena/ml.html>
126
+ Division of Mathematics and Computer Science.
127
+ Faculteit der Exacte Wetenschappen
128
+ Vrije Universiteit, The Netherlands. </a>
129
+ <li>
130
+ <a href=http://www.cae.wisc.edu/~ece539/matlab/>
131
+ Electrical and Computer Engineering Department,
132
+ University of Wisconsin-Madison
133
+ </a>
134
+ <li>
135
+ <a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
136
+ Technion (Israel Institute of Technology), Israel.
137
+ <li>
138
+ <a href=http://www.cise.ufl.edu/~fu/learn.html>
139
+ Computer and Information Sciences Dept., University of Florida</a>
140
+ <li>
141
+ <a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
142
+ The Institute of Computer Science,
143
+ University of Nairobi, Kenya.</a>
144
+ <li>
145
+ <a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
146
+ Applied Mathematics and Computer Science, University of Iceland.
147
+ <li>
148
+ <a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
149
+ SVM tutorial in machine learning
150
+ summer school, University of Chicago, 2005.
151
+ </a>
152
+ </ul>
153
+ <p align="right">
154
+ <a href="#_TOP">[Go Top]</a>
155
+ <hr/>
156
+ <a name="/Q1:_Some_sample_uses_of_libsvm"></a>
157
+ <a name="faq102"><b>Q: Some applications/tools which have used libsvm </b></a>
158
+ <br/>
159
+ (and maybe liblinear).
160
+ <ul>
161
+ <li>
162
+ <a href=http://people.csail.mit.edu/jjl/libpmk/>LIBPMK: A Pyramid Match Toolkit</a>
163
+ </li>
164
+ <li><a href=http://maltparser.org/>Maltparser</a>:
165
+ a system for data-driven dependency parsing
166
+ </li>
167
+ <li>
168
+ <a href=http://www.pymvpa.org/>PyMVPA: python tool for classifying neuroimages</a>
169
+ </li>
170
+ <li>
171
+ <a href=http://solpro.proteomics.ics.uci.edu/>
172
+ SOLpro: protein solubility predictor
173
+ </a>
174
+ </li>
175
+ <li>
176
+ <a href=http://bdval.campagnelab.org>
177
+ BDVal</a>: biomarker discovery in high-throughput datasets.
178
+ </li>
179
+ <li><a href=http://johel.m.free.fr/demo_045.htm>
180
+ Realtime object recognition</a>
181
+ </li>
182
+ <li><a href=http://scikit-learn.sourceforge.net/>
183
+ scikits.learn: machine learning in Python</a>
184
+ </li>
185
+ </ul>
186
+ <p align="right">
187
+ <a href="#_TOP">[Go Top]</a>
188
+ <hr/>
189
+ <a name="/Q2:_Installation_and_running_the_program"></a>
190
+ <a name="f201"><b>Q: Where can I find documents/videos of libsvm ?</b></a>
191
+ <br/>
192
+ <p>
193
+
194
+ <ul>
195
+ <li>
196
+ Official implementation document:
197
+ <br>
198
+ C.-C. Chang and
199
+ C.-J. Lin.
200
+ LIBSVM
201
+ : a library for support vector machines.
202
+ ACM Transactions on Intelligent
203
+ Systems and Technology, 2:27:1--27:27, 2011.
204
+ <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">pdf</a>, <a href=http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gz>ps.gz</a>,
205
+ <a href=http://portal.acm.org/citation.cfm?id=1961199&CFID=29950432&CFTOKEN=30974232>ACM digital lib</a>.
206
+
207
+
208
+ <li> Instructions for using LIBSVM are in the README files in the main directory and some sub-directories.
209
+ <br>
210
+ README in the main directory: details all options, data format, and library calls.
211
+ <br>
212
+ tools/README: parameter selection and other tools
213
+ <li>
214
+ A guide for beginners:
215
+ <br>
216
+ C.-W. Hsu, C.-C. Chang, and
217
+ C.-J. Lin.
218
+ <A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
219
+ A practical guide to support vector classification
220
+ </A>
221
+ <li> An <a href=http://www.youtube.com/watch?v=gePWtNAQcK8>introductory video</a>
222
+ for windows users.
223
+
224
+ </ul>
225
+ <p align="right">
226
+ <a href="#_TOP">[Go Top]</a>
227
+ <hr/>
228
+ <a name="/Q2:_Installation_and_running_the_program"></a>
229
+ <a name="f202"><b>Q: Where are change log and earlier versions?</b></a>
230
+ <br/>
231
+ <p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.
232
+
233
+ <p> You can download earlier versions
234
+ <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
235
+ <p align="right">
236
+ <a href="#_TOP">[Go Top]</a>
237
+ <hr/>
238
+ <a name="/Q2:_Installation_and_running_the_program"></a>
239
+ <a name="f203"><b>Q: How to cite LIBSVM?</b></a>
240
+ <br/>
241
+ <p>
242
+ Please cite the following paper:
243
+ <p>
244
+ Chih-Chung Chang and Chih-Jen Lin, LIBSVM
245
+ : a library for support vector machines.
246
+ ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.
247
+ Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
248
+ <p>
249
+ The bibtex format is
250
+ <pre>
251
+ @article{CC01a,
252
+ author = {Chang, Chih-Chung and Lin, Chih-Jen},
253
+ title = {{LIBSVM}: A library for support vector machines},
254
+ journal = {ACM Transactions on Intelligent Systems and Technology},
255
+ volume = {2},
256
+ issue = {3},
257
+ year = {2011},
258
+ pages = {27:1--27:27},
259
+ note = {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
260
+ }
261
+ </pre>
262
+ <p align="right">
263
+ <a href="#_TOP">[Go Top]</a>
264
+ <hr/>
265
+ <a name="/Q2:_Installation_and_running_the_program"></a>
266
+ <a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
267
+ <br/>
268
+ <p>
269
+ The libsvm license ("the modified BSD license")
270
+ is compatible with many
271
+ free software licenses such as GPL. Hence, it is very easy to
272
+ use libsvm in your software.
273
+ Please check the COPYRIGHT file in detail. Basically
274
+ you need to
275
+ <ol>
276
+ <li>
277
+ Clearly indicate that LIBSVM is used.
278
+ </li>
279
+ <li>
280
+ Retain the LIBSVM COPYRIGHT file in your software.
281
+ </li>
282
+ </ol>
283
+ It can also be used in commercial products.
284
+ <p align="right">
285
+ <a href="#_TOP">[Go Top]</a>
286
+ <hr/>
287
+ <a name="/Q2:_Installation_and_running_the_program"></a>
288
+ <a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
289
+ <br/>
290
+ <p>
291
+ Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm
292
+ tools</a>
293
+ <p align="right">
294
+ <a href="#_TOP">[Go Top]</a>
295
+ <hr/>
296
+ <a name="/Q2:_Installation_and_running_the_program"></a>
297
+ <a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
298
+ <br/>
299
+
300
+ <p>
301
+ This usually happens if you compile the code
302
+ on one machine and run it on another which has incompatible
303
+ libraries.
304
+ Try to recompile the program on that machine or use static linking.
305
+ <p align="right">
306
+ <a href="#_TOP">[Go Top]</a>
307
+ <hr/>
308
+ <a name="/Q2:_Installation_and_running_the_program"></a>
309
+ <a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
310
+ <br/>
311
+
312
+ <p>
313
+ Build it as a project by choosing "Win32 Project."
314
+ On the other hand, for "svm-train" and "svm-predict"
315
+ you want to choose "Win32 Console Project."
316
+ After libsvm 2.5, you can also use the file Makefile.win.
317
+ See details in README.
318
+
319
+
320
+ <p>
321
+ If you are not using Makefile.win and see the following
322
+ link error
323
+ <pre>
324
+ LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
325
+ _wWinMain@16
326
+ </pre>
327
+ you may have selected a wrong project type.
328
+ <p align="right">
329
+ <a href="#_TOP">[Go Top]</a>
330
+ <hr/>
331
+ <a name="/Q2:_Installation_and_running_the_program"></a>
332
+ <a name="f208"><b>Q: I am an MS windows user but why only one (svm-toy) of those precompiled .exe actually runs ? </b></a>
333
+ <br/>
334
+
335
+ <p>
336
+ You need to open a command window
337
+ and type svmtrain.exe to see all options.
338
+ Some examples are in README file.
339
+ <p align="right">
340
+ <a href="#_TOP">[Go Top]</a>
341
+ <hr/>
342
+ <a name="/Q2:_Installation_and_running_the_program"></a>
343
+ <a name="f209"><b>Q: What is the difference between "." and "*" outputed during training? </b></a>
344
+ <br/>
345
+
346
+ <p>
347
+ "." means every 1,000 iterations (or every #data
348
+ iterations is your #data is less than 1,000).
349
+ "*" means that after iterations of using
350
+ a smaller shrunk problem,
351
+ we reset to use the whole set. See the
352
+ <a href=../papers/libsvm.pdf>implementation document</a> for details.
353
+ <p align="right">
354
+ <a href="#_TOP">[Go Top]</a>
355
+ <hr/>
356
+ <a name="/Q2:_Installation_and_running_the_program"></a>
357
+ <a name="f210"><b>Q: Why occasionally the program (including MATLAB or other interfaces) crashes and gives a segmentation fault?</b></a>
358
+ <br/>
359
+
360
+ <p>
361
+ Very likely the program consumes too much memory than what the
362
+ operating system can provide. Try a smaller data and see if the
363
+ program still crashes.
364
+ <p align="right">
365
+ <a href="#_TOP">[Go Top]</a>
366
+ <hr/>
367
+ <a name="/Q2:_Installation_and_running_the_program"></a>
368
+ <a name="f211"><b>Q: How to build a dynamic library (.dll file) on MS windows?</b></a>
369
+ <br/>
370
+ <p>
371
+
372
+ The easiest way is to use Makefile.win.
373
+ See details in README.
374
+
375
+ Alternatively, you can use Visual C++. Here is
376
+ the example using Visual Studio .Net 2008:
377
+ <ol>
378
+ <li>Create a Win32 empty DLL project and set (in Project->$Project_Name
379
+ Properties...->Configuration) to "Release."
380
+ About how to create a new dynamic link library, please refer to
381
+ <a href=http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx>http://msdn2.microsoft.com/en-us/library/ms235636(VS.80).aspx</a>
382
+
383
+ <li> Add svm.cpp, svm.h to your project.
384
+ <li> Add __WIN32__ and _CRT_SECURE_NO_DEPRECATE to Preprocessor definitions (in
385
+ Project->$Project_Name Properties...->C/C++->Preprocessor)
386
+ <li> Set Create/Use Precompiled Header to Not Using Precompiled Headers
387
+ (in Project->$Project_Name Properties...->C/C++->Precompiled Headers)
388
+ <li> Set the path for the Modulation Definition File svm.def (in
389
+ Project->$Project_Name Properties...->Linker->input
390
+ <li> Build the DLL.
391
+ <li> Rename the dll file to libsvm.dll and move it to the correct path.
392
+ </ol>
393
+
394
+
395
+ <p align="right">
396
+ <a href="#_TOP">[Go Top]</a>
397
+ <hr/>
398
+ <a name="/Q2:_Installation_and_running_the_program"></a>
399
+ <a name="f212"><b>Q: On some systems (e.g., Ubuntu), compiling LIBSVM gives many warning messages. Is this a problem and how to disable the warning message?</b></a>
400
+ <br/>
401
+
402
+ <p>
403
+ The warning message is like
404
+ <pre>
405
+ svm.cpp:2730: warning: ignoring return value of int fscanf(FILE*, const char*, ...), declared with attribute warn_unused_result
406
+ </pre>
407
+ but this is not a problem. In the future we may modify the code
408
+ so that these messages do not appear.
409
+ At this moment, to disable the warning message you can replace
410
+ <pre>
411
+ CFLAGS = -Wall -Wconversion -O3 -fPIC
412
+ </pre>
413
+ with
414
+ <pre>
415
+ CFLAGS = -Wall -Wconversion -O3 -fPIC -U_FORTIFY_SOURCE
416
+ </pre>
417
+ in Makefile.
418
+ <p align="right">
419
+ <a href="#_TOP">[Go Top]</a>
420
+ <hr/>
421
+ <a name="/Q3:_Data_preparation"></a>
422
+ <a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
423
+ <br/>
424
+ <p>
425
+ libsvm uses the so called "sparse" format where zero
426
+ values do not need to be stored. Hence a data with attributes
427
+ <pre>
428
+ 1 0 2 0
429
+ </pre>
430
+ is represented as
431
+ <pre>
432
+ 1:1 3:2
433
+ </pre>
434
+ <p align="right">
435
+ <a href="#_TOP">[Go Top]</a>
436
+ <hr/>
437
+ <a name="/Q3:_Data_preparation"></a>
438
+ <a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
439
+ <br/>
440
+ <p>
441
+ Currently libsvm supports only numerical data.
442
+ You may have to change non-numerical data to
443
+ numerical. For example, you can use several
444
+ binary attributes to represent a categorical
445
+ attribute.
446
+ <p align="right">
447
+ <a href="#_TOP">[Go Top]</a>
448
+ <hr/>
449
+ <a name="/Q3:_Data_preparation"></a>
450
+ <a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
451
+ <br/>
452
+ <p>
453
+ This is a controversial issue. The kernel
454
+ evaluation (i.e. inner product) of sparse vectors is slower
455
+ so the total training time can be at least twice or three times
456
+ of that using the dense format.
457
+ However, we cannot support only dense format as then we CANNOT
458
+ handle extremely sparse cases. Simplicity of the code is another
459
+ concern. Right now we decide to support
460
+ the sparse format only.
461
+ <p align="right">
462
+ <a href="#_TOP">[Go Top]</a>
463
+ <hr/>
464
+ <a name="/Q3:_Data_preparation"></a>
465
+ <a name="f304"><b>Q: Why sometimes the last line of my data is not read by svm-train?</b></a>
466
+ <br/>
467
+
468
+ <p>
469
+ We assume that you have '\n' in the end of
470
+ each line. So please press enter in the end
471
+ of your last line.
472
+ <p align="right">
473
+ <a href="#_TOP">[Go Top]</a>
474
+ <hr/>
475
+ <a name="/Q3:_Data_preparation"></a>
476
+ <a name="f305"><b>Q: Is there a program to check if my data are in the correct format?</b></a>
477
+ <br/>
478
+
479
+ <p>
480
+ The svm-train program in libsvm conducts only a simple check of the input data. To do a
481
+ detailed check, after libsvm 2.85, you can use the python script tools/checkdata.py. See tools/README for details.
482
+ <p align="right">
483
+ <a href="#_TOP">[Go Top]</a>
484
+ <hr/>
485
+ <a name="/Q3:_Data_preparation"></a>
486
+ <a name="f306"><b>Q: May I put comments in data files?</b></a>
487
+ <br/>
488
+
489
+ <p>
490
+ We don't officially support this. But, cureently LIBSVM
491
+ is able to process data in the following
492
+ format:
493
+ <pre>
494
+ 1 1:2 2:1 # your comments
495
+ </pre>
496
+ Note that the character ":" should not appear in your
497
+ comments.
498
+ <!--
499
+ No, for simplicity we don't support that.
500
+ However, you can easily preprocess your data before
501
+ using libsvm. For example,
502
+ if you have the following data
503
+ <pre>
504
+ test.txt
505
+ 1 1:2 2:1 # proten A
506
+ </pre>
507
+ then on unix machines you can do
508
+ <pre>
509
+ cut -d '#' -f 1 < test.txt > test.features
510
+ cut -d '#' -f 2 < test.txt > test.comments
511
+ svm-predict test.feature train.model test.predicts
512
+ paste -d '#' test.predicts test.comments | sed 's/#/ #/' > test.results
513
+ </pre>
514
+ -->
515
+ <p align="right">
516
+ <a href="#_TOP">[Go Top]</a>
517
+ <hr/>
518
+ <a name="/Q3:_Data_preparation"></a>
519
+ <a name="f307"><b>Q: How to convert other data formats to LIBSVM format?</b></a>
520
+ <br/>
521
+
522
+ <p>
523
+ It depends on your data format. A simple way is to use
524
+ libsvmwrite in the libsvm matlab/octave interface.
525
+
526
+ Take a CSV (comma-separated values) file
527
+ in UCI machine learning repository as an example.
528
+ We download <a href=http://archive.ics.uci.edu/ml/machine-learning-databases/spect/SPECTF.train>SPECTF.train</a>.
529
+ Labels are in the first column. The following steps produce
530
+ a file in the libsvm format.
531
+ <pre>
532
+ matlab> SPECTF = csvread('SPECTF.train'); % read a csv file
533
+ matlab> labels = SPECTF(:, 1); % labels from the 1st column
534
+ matlab> features = SPECTF(:, 2:end);
535
+ matlab> features_sparse = sparse(features); % features must be in a sparse matrix
536
+ matlab> libsvmwrite('SPECTFlibsvm.train', labels, features_sparse);
537
+ </pre>
538
+ The tranformed data are stored in SPECTFlibsvm.train.
539
+
540
+ <p>
541
+ Alternatively, you can use <a href="./faqfiles/convert.c">convert.c</a>
542
+ to convert CSV format to libsvm format.
543
+ <p align="right">
544
+ <a href="#_TOP">[Go Top]</a>
545
+ <hr/>
546
+ <a name="/Q4:_Training_and_prediction"></a>
547
+ <a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
548
+ <br/>
549
+ <br>optimization finished, #iter = 219
550
+ <br>nu = 0.431030
551
+ <br>obj = -100.877286, rho = 0.424632
552
+ <br>nSV = 132, nBSV = 107
553
+ <br>Total nSV = 132
554
+ <p>
555
+ obj is the optimal objective value of the dual SVM problem.
556
+ rho is the bias term in the decision function
557
+ sgn(w^Tx - rho).
558
+ nSV and nBSV are number of support vectors and bounded support
559
+ vectors (i.e., alpha_i = C). nu-svm is a somewhat equivalent
560
+ form of C-SVM where C is replaced by nu. nu simply shows the
561
+ corresponding parameter. More details are in
562
+ <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">
563
+ libsvm document</a>.
564
+ <p align="right">
565
+ <a href="#_TOP">[Go Top]</a>
566
+ <hr/>
567
+ <a name="/Q4:_Training_and_prediction"></a>
568
+ <a name="f402"><b>Q: Can you explain more about the model file?</b></a>
569
+ <br/>
570
+
571
+ <p>
572
+ After the parameters, each line represents a support vector.
573
+ Support vectors are listed in the order of "labels" listed earlier.
574
+ (i.e., those from the first class in the "labels" list are
575
+ grouped first, and so on.)
576
+ If k is the total number of classes,
577
+ in front of a support vector in class j, there are
578
+ k-1 coefficients
579
+ y*alpha where alpha are dual solution of the
580
+ following two class problems:
581
+ <br>
582
+ 1 vs j, 2 vs j, ..., j-1 vs j, j vs j+1, j vs j+2, ..., j vs k
583
+ <br>
584
+ and y=1 in first j-1 coefficients, y=-1 in the remaining
585
+ k-j coefficients.
586
+
587
+ For example, if there are 4 classes, the file looks like:
588
+
589
+ <pre>
590
+ +-+-+-+--------------------+
591
+ |1|1|1| |
592
+ |v|v|v| SVs from class 1 |
593
+ |2|3|4| |
594
+ +-+-+-+--------------------+
595
+ |1|2|2| |
596
+ |v|v|v| SVs from class 2 |
597
+ |2|3|4| |
598
+ +-+-+-+--------------------+
599
+ |1|2|3| |
600
+ |v|v|v| SVs from class 3 |
601
+ |3|3|4| |
602
+ +-+-+-+--------------------+
603
+ |1|2|3| |
604
+ |v|v|v| SVs from class 4 |
605
+ |4|4|4| |
606
+ +-+-+-+--------------------+
607
+ </pre>
608
+ See also
609
+ <a href="#f804"> an illustration using
610
+ MATLAB/OCTAVE.</a>
611
+ <p align="right">
612
+ <a href="#_TOP">[Go Top]</a>
613
+ <hr/>
614
+ <a name="/Q4:_Training_and_prediction"></a>
615
+ <a name="f403"><b>Q: Should I use float or double to store numbers in the cache ?</b></a>
616
+ <br/>
617
+
618
+ <p>
619
+ We have float as the default as you can store more numbers
620
+ in the cache.
621
+ In general this is good enough but for few difficult
622
+ cases (e.g. C very very large) where solutions are huge
623
+ numbers, it might be possible that the numerical precision is not
624
+ enough using only float.
625
+ <p align="right">
626
+ <a href="#_TOP">[Go Top]</a>
627
+ <hr/>
628
+ <a name="/Q4:_Training_and_prediction"></a>
629
+ <a name="f404"><b>Q: How do I choose the kernel?</b></a>
630
+ <br/>
631
+
632
+ <p>
633
+ In general we suggest you to try the RBF kernel first.
634
+ A recent result by Keerthi and Lin
635
+ (<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/limit.pdf>
636
+ download paper here</a>)
637
+ shows that if RBF is used with model selection,
638
+ then there is no need to consider the linear kernel.
639
+ The kernel matrix using sigmoid may not be positive definite
640
+ and in general it's accuracy is not better than RBF.
641
+ (see the paper by Lin and Lin
642
+ (<a href=http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf>
643
+ download paper here</a>).
644
+ Polynomial kernels are ok but if a high degree is used,
645
+ numerical difficulties tend to happen
646
+ (thinking about dth power of (<1) goes to 0
647
+ and (>1) goes to infinity).
648
+ <p align="right">
649
+ <a href="#_TOP">[Go Top]</a>
650
+ <hr/>
651
+ <a name="/Q4:_Training_and_prediction"></a>
652
+ <a name="f405"><b>Q: Does libsvm have special treatments for linear SVM?</b></a>
653
+ <br/>
654
+
655
+ <p>
656
+
657
+ No, libsvm solves linear/nonlinear SVMs by the
658
+ same way.
659
+ Some tricks may save training/testing time if the
660
+ linear kernel is used,
661
+ so libsvm is <b>NOT</b> particularly efficient for linear SVM,
662
+ especially when
663
+ C is large and
664
+ the number of data is much larger
665
+ than the number of attributes.
666
+ You can either
667
+ <ul>
668
+ <li>
669
+ Use small C only. We have shown in the following paper
670
+ that after C is larger than a certain threshold,
671
+ the decision function is the same.
672
+ <p>
673
+ <a href="http://guppy.mpe.nus.edu.sg/~mpessk/">S. S. Keerthi</a>
674
+ and
675
+ <B>C.-J. Lin</B>.
676
+ <A HREF="papers/limit.pdf">
677
+ Asymptotic behaviors of support vector machines with
678
+ Gaussian kernel
679
+ </A>
680
+ .
681
+ <I><A HREF="http://mitpress.mit.edu/journal-home.tcl?issn=08997667">Neural Computation</A></I>, 15(2003), 1667-1689.
682
+
683
+
684
+ <li>
685
+ Check <a href=http://www.csie.ntu.edu.tw/~cjlin/liblinear>liblinear</a>,
686
+ which is designed for large-scale linear classification.
687
+ </ul>
688
+
689
+ <p> Please also see our <a href=../papers/guide/guide.pdf>SVM guide</a>
690
+ on the discussion of using RBF and linear
691
+ kernels.
692
+ <p align="right">
693
+ <a href="#_TOP">[Go Top]</a>
694
+ <hr/>
695
+ <a name="/Q4:_Training_and_prediction"></a>
696
+ <a name="f406"><b>Q: The number of free support vectors is large. What should I do?</b></a>
697
+ <br/>
698
+ <p>
699
+ This usually happens when the data are overfitted.
700
+ If attributes of your data are in large ranges,
701
+ try to scale them. Then the region
702
+ of appropriate parameters may be larger.
703
+ Note that there is a scale program
704
+ in libsvm.
705
+ <p align="right">
706
+ <a href="#_TOP">[Go Top]</a>
707
+ <hr/>
708
+ <a name="/Q4:_Training_and_prediction"></a>
709
+ <a name="f407"><b>Q: Should I scale training and testing data in a similar way?</b></a>
710
+ <br/>
711
+ <p>
712
+ Yes, you can do the following:
713
+ <pre>
714
+ > svm-scale -s scaling_parameters train_data > scaled_train_data
715
+ > svm-scale -r scaling_parameters test_data > scaled_test_data
716
+ </pre>
717
+ <p align="right">
718
+ <a href="#_TOP">[Go Top]</a>
719
+ <hr/>
720
+ <a name="/Q4:_Training_and_prediction"></a>
721
+ <a name="f408"><b>Q: Does it make a big difference if I scale each attribute to [0,1] instead of [-1,1]?</b></a>
722
+ <br/>
723
+
724
+ <p>
725
+ For the linear scaling method, if the RBF kernel is
726
+ used and parameter selection is conducted, there
727
+ is no difference. Assume Mi and mi are
728
+ respectively the maximal and minimal values of the
729
+ ith attribute. Scaling to [0,1] means
730
+ <pre>
731
+ x'=(x-mi)/(Mi-mi)
732
+ </pre>
733
+ For [-1,1],
734
+ <pre>
735
+ x''=2(x-mi)/(Mi-mi)-1.
736
+ </pre>
737
+ In the RBF kernel,
738
+ <pre>
739
+ x'-y'=(x-y)/(Mi-mi), x''-y''=2(x-y)/(Mi-mi).
740
+ </pre>
741
+ Hence, using (C,g) on the [0,1]-scaled data is the
742
+ same as (C,g/2) on the [-1,1]-scaled data.
743
+
744
+ <p> Though the performance is the same, the computational
745
+ time may be different. For data with many zero entries,
746
+ [0,1]-scaling keeps the sparsity of input data and hence
747
+ may save the time.
748
+ <p align="right">
749
+ <a href="#_TOP">[Go Top]</a>
750
+ <hr/>
751
+ <a name="/Q4:_Training_and_prediction"></a>
752
+ <a name="f409"><b>Q: The prediction rate is low. How could I improve it?</b></a>
753
+ <br/>
754
+ <p>
755
+ Try to use the model selection tool grid.py in the python
756
+ directory find
757
+ out good parameters. To see the importance of model selection,
758
+ please
759
+ see my talk:
760
+ <A HREF="http://www.csie.ntu.edu.tw/~cjlin/talks/freiburg.pdf">
761
+ A practical guide to support vector
762
+ classification
763
+ </A>
764
+ <p align="right">
765
+ <a href="#_TOP">[Go Top]</a>
766
+ <hr/>
767
+ <a name="/Q4:_Training_and_prediction"></a>
768
+ <a name="f410"><b>Q: My data are unbalanced. Could libsvm handle such problems?</b></a>
769
+ <br/>
770
+ <p>
771
+ Yes, there is a -wi options. For example, if you use
772
+ <pre>
773
+ > svm-train -s 0 -c 10 -w1 1 -w-1 5 data_file
774
+ </pre>
775
+ <p>
776
+ the penalty for class "-1" is larger.
777
+ Note that this -w option is for C-SVC only.
778
+ <p align="right">
779
+ <a href="#_TOP">[Go Top]</a>
780
+ <hr/>
781
+ <a name="/Q4:_Training_and_prediction"></a>
782
+ <a name="f411"><b>Q: What is the difference between nu-SVC and C-SVC?</b></a>
783
+ <br/>
784
+ <p>
785
+ Basically they are the same thing but with different
786
+ parameters. The range of C is from zero to infinity
787
+ but nu is always between [0,1]. A nice property
788
+ of nu is that it is related to the ratio of
789
+ support vectors and the ratio of the training
790
+ error.
791
+ <p align="right">
792
+ <a href="#_TOP">[Go Top]</a>
793
+ <hr/>
794
+ <a name="/Q4:_Training_and_prediction"></a>
795
+ <a name="f412"><b>Q: The program keeps running (without showing any output). What should I do?</b></a>
796
+ <br/>
797
+ <p>
798
+ You may want to check your data. Each training/testing
799
+ data must be in one line. It cannot be separated.
800
+ In addition, you have to remove empty lines.
801
+ <p align="right">
802
+ <a href="#_TOP">[Go Top]</a>
803
+ <hr/>
804
+ <a name="/Q4:_Training_and_prediction"></a>
805
+ <a name="f413"><b>Q: The program keeps running (with output, i.e. many dots). What should I do?</b></a>
806
+ <br/>
807
+ <p>
808
+ In theory libsvm guarantees to converge.
809
+ Therefore, this means you are
810
+ handling ill-conditioned situations
811
+ (e.g. too large/small parameters) so numerical
812
+ difficulties occur.
813
+ <p>
814
+ You may get better numerical stability by replacing
815
+ <pre>
816
+ typedef float Qfloat;
817
+ </pre>
818
+ in svm.cpp with
819
+ <pre>
820
+ typedef double Qfloat;
821
+ </pre>
822
+ That is, elements in the kernel cache are stored
823
+ in double instead of single. However, this means fewer elements
824
+ can be put in the kernel cache.
825
+ <p align="right">
826
+ <a href="#_TOP">[Go Top]</a>
827
+ <hr/>
828
+ <a name="/Q4:_Training_and_prediction"></a>
829
+ <a name="f414"><b>Q: The training time is too long. What should I do?</b></a>
830
+ <br/>
831
+ <p>
832
+ For large problems, please specify enough cache size (i.e.,
833
+ -m).
834
+ Slow convergence may happen for some difficult cases (e.g. -c is large).
835
+ You can try to use a looser stopping tolerance with -e.
836
+ If that still doesn't work, you may train only a subset of the data.
837
+ You can use the program subset.py in the directory "tools"
838
+ to obtain a random subset.
839
+
840
+ <p>
841
+ If you have extremely large data and face this difficulty, please
842
+ contact us. We will be happy to discuss possible solutions.
843
+
844
+ <p> When using large -e, you may want to check if -h 0 (no shrinking) or -h 1 (shrinking) is faster.
845
+ See a related question below.
846
+
847
+ <p align="right">
848
+ <a href="#_TOP">[Go Top]</a>
849
+ <hr/>
850
+ <a name="/Q4:_Training_and_prediction"></a>
851
+ <a name="f4141"><b>Q: Does shrinking always help?</b></a>
852
+ <br/>
853
+ <p>
854
+ If the number of iterations is high, then shrinking
855
+ often helps.
856
+ However, if the number of iterations is small
857
+ (e.g., you specify a large -e), then
858
+ probably using -h 0 (no shrinking) is better.
859
+ See the
860
+ <a href=../papers/libsvm.pdf>implementation document</a> for details.
861
+ <p align="right">
862
+ <a href="#_TOP">[Go Top]</a>
863
+ <hr/>
864
+ <a name="/Q4:_Training_and_prediction"></a>
865
+ <a name="f415"><b>Q: How do I get the decision value(s)?</b></a>
866
+ <br/>
867
+ <p>
868
+ We print out decision values for regression. For classification,
869
+ we solve several binary SVMs for multi-class cases. You
870
+ can obtain values by easily calling the subroutine
871
+ svm_predict_values. Their corresponding labels
872
+ can be obtained from svm_get_labels.
873
+ Details are in
874
+ README of libsvm package.
875
+
876
+ <p>
877
+ We do not recommend the following. But if you would
878
+ like to get values for
879
+ TWO-class classification with labels +1 and -1
880
+ (note: +1 and -1 but not things like 5 and 10)
881
+ in the easiest way, simply add
882
+ <pre>
883
+ printf("%f\n", dec_values[0]*model->label[0]);
884
+ </pre>
885
+ after the line
886
+ <pre>
887
+ svm_predict_values(model, x, dec_values);
888
+ </pre>
889
+ of the file svm.cpp.
890
+ Positive (negative)
891
+ decision values correspond to data predicted as +1 (-1).
892
+
893
+
894
+ <p align="right">
895
+ <a href="#_TOP">[Go Top]</a>
896
+ <hr/>
897
+ <a name="/Q4:_Training_and_prediction"></a>
898
+ <a name="f4151"><b>Q: How do I get the distance between a point and the hyperplane?</b></a>
899
+ <br/>
900
+ <p>
901
+ The distance is |decision_value| / |w|.
902
+ We have |w|^2 = w^Tw = alpha^T Q alpha = 2*(dual_obj + sum alpha_i).
903
+ Thus in svm.cpp please find the place
904
+ where we calculate the dual objective value
905
+ (i.e., the subroutine Solve())
906
+ and add a statement to print w^Tw.
907
+
908
+ <p align="right">
909
+ <a href="#_TOP">[Go Top]</a>
910
+ <hr/>
911
+ <a name="/Q4:_Training_and_prediction"></a>
912
+ <a name="f416"><b>Q: On 32-bit machines, if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</b></a>
913
+ <br/>
914
+ <p>
915
+
916
+ On 32-bit machines, the maximum addressable
917
+ memory is 4GB. The Linux kernel uses 3:1
918
+ split which means user space is 3G and
919
+ kernel space is 1G. Although there are
920
+ 3G user space, the maximum dynamic allocation
921
+ memory is 2G. So, if you specify -m near 2G,
922
+ the memory will be exhausted. And svm-train
923
+ will fail when it asks more memory.
924
+ For more details, please read
925
+ <a href=http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&selm=3BA164F6.BAFA4FB%40daimi.au.dk>
926
+ this article</a>.
927
+ <p>
928
+ The easiest solution is to switch to a
929
+ 64-bit machine.
930
+ Otherwise, there are two ways to solve this. If your
931
+ machine supports Intel's PAE (Physical Address
932
+ Extension), you can turn on the option HIGHMEM64G
933
+ in Linux kernel which uses 4G:4G split for
934
+ kernel and user space. If you don't, you can
935
+ try a software `tub' which can eliminate the 2G
936
+ boundary for dynamic allocated memory. The `tub'
937
+ is available at
938
+ <a href=http://www.bitwagon.com/tub.html>http://www.bitwagon.com/tub.html</a>.
939
+
940
+
941
+ <!--
942
+
943
+ This may happen only when the cache is large, but each cached row is
944
+ not large enough. <b>Note:</b> This problem is specific to
945
+ gnu C library which is used in linux.
946
+ The solution is as follows:
947
+
948
+ <p>
949
+ In our program we have malloc() which uses two methods
950
+ to allocate memory from kernel. One is
951
+ sbrk() and another is mmap(). sbrk is faster, but mmap
952
+ has a larger address
953
+ space. So malloc uses mmap only if the wanted memory size is larger
954
+ than some threshold (default 128k).
955
+ In the case where each row is not large enough (#elements < 128k/sizeof(float)) but we need a large cache ,
956
+ the address space for sbrk can be exhausted. The solution is to
957
+ lower the threshold to force malloc to use mmap
958
+ and increase the maximum number of chunks to allocate
959
+ with mmap.
960
+
961
+ <p>
962
+ Therefore, in the main program (i.e. svm-train.c) you want
963
+ to have
964
+ <pre>
965
+ #include &lt;malloc.h&gt;
966
+ </pre>
967
+ and then in main():
968
+ <pre>
969
+ mallopt(M_MMAP_THRESHOLD, 32768);
970
+ mallopt(M_MMAP_MAX,1000000);
971
+ </pre>
972
+ You can also set the environment variables instead
973
+ of writing them in the program:
974
+ <pre>
975
+ $ M_MMAP_MAX=1000000 M_MMAP_THRESHOLD=32768 ./svm-train .....
976
+ </pre>
977
+ More information can be found by
978
+ <pre>
979
+ $ info libc "Malloc Tunable Parameters"
980
+ </pre>
981
+ -->
982
+ <p align="right">
983
+ <a href="#_TOP">[Go Top]</a>
984
+ <hr/>
985
+ <a name="/Q4:_Training_and_prediction"></a>
986
+ <a name="f417"><b>Q: How do I disable screen output of svm-train?</b></a>
987
+ <br/>
988
+ <p>
989
+ For commend-line users, use the -q option:
990
+ <pre>
991
+ > ./svm-train -q heart_scale
992
+ </pre>
993
+ <p>
994
+ For library users, set the global variable
995
+ <pre>
996
+ extern void (*svm_print_string) (const char *);
997
+ </pre>
998
+ to specify the output format. You can disable the output by the following steps:
999
+ <ol>
1000
+ <li>
1001
+ Declare a function to output nothing:
1002
+ <pre>
1003
+ void print_null(const char *s) {}
1004
+ </pre>
1005
+ </li>
1006
+ <li>
1007
+ Assign the output function of libsvm by
1008
+ <pre>
1009
+ svm_print_string = &print_null;
1010
+ </pre>
1011
+ </li>
1012
+ </ol>
1013
+ Finally, a way used in earlier libsvm
1014
+ is by updating svm.cpp from
1015
+ <pre>
1016
+ #if 1
1017
+ void info(const char *fmt,...)
1018
+ </pre>
1019
+ to
1020
+ <pre>
1021
+ #if 0
1022
+ void info(const char *fmt,...)
1023
+ </pre>
1024
+ <p align="right">
1025
+ <a href="#_TOP">[Go Top]</a>
1026
+ <hr/>
1027
+ <a name="/Q4:_Training_and_prediction"></a>
1028
+ <a name="f418"><b>Q: I would like to use my own kernel. Any example? In svm.cpp, there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</b></a>
1029
+ <br/>
1030
+ <p>
1031
+ An example is "LIBSVM for string data" in LIBSVM Tools.
1032
+ <p>
1033
+ The reason why we have two functions is as follows.
1034
+ For the RBF kernel exp(-g |xi - xj|^2), if we calculate
1035
+ xi - xj first and then the norm square, there are 3n operations.
1036
+ Thus we consider exp(-g (|xi|^2 - 2dot(xi,xj) +|xj|^2))
1037
+ and by calculating all |xi|^2 in the beginning,
1038
+ the number of operations is reduced to 2n.
1039
+ This is for the training. For prediction we cannot
1040
+ do this so a regular subroutine using that 3n operations is
1041
+ needed.
1042
+
1043
+ The easiest way to have your own kernel is
1044
+ to put the same code in these two
1045
+ subroutines by replacing any kernel.
1046
+ <p align="right">
1047
+ <a href="#_TOP">[Go Top]</a>
1048
+ <hr/>
1049
+ <a name="/Q4:_Training_and_prediction"></a>
1050
+ <a name="f419"><b>Q: What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</b></a>
1051
+ <br/>
1052
+ <p>
1053
+ It is one-against-one. We chose it after doing the following
1054
+ comparison:
1055
+ C.-W. Hsu and C.-J. Lin.
1056
+ <A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/multisvm.pdf">
1057
+ A comparison of methods
1058
+ for multi-class support vector machines
1059
+ </A>,
1060
+ <I>IEEE Transactions on Neural Networks</A></I>, 13(2002), 415-425.
1061
+
1062
+ <p>
1063
+ "1-against-the rest" is a good method whose performance
1064
+ is comparable to "1-against-1." We do the latter
1065
+ simply because its training time is shorter.
1066
+ <p align="right">
1067
+ <a href="#_TOP">[Go Top]</a>
1068
+ <hr/>
1069
+ <a name="/Q4:_Training_and_prediction"></a>
1070
+ <a name="f420"><b>Q: After doing cross validation, why there is no model file outputted ?</b></a>
1071
+ <br/>
1072
+ <p>
1073
+ Cross validation is used for selecting good parameters.
1074
+ After finding them, you want to re-train the whole
1075
+ data without the -v option.
1076
+ <p align="right">
1077
+ <a href="#_TOP">[Go Top]</a>
1078
+ <hr/>
1079
+ <a name="/Q4:_Training_and_prediction"></a>
1080
+ <a name="f4201"><b>Q: Why my cross-validation results are different from those in the Practical Guide?</b></a>
1081
+ <br/>
1082
+ <p>
1083
+
1084
+ Due to random partitions of
1085
+ the data, on different systems CV accuracy values
1086
+ may be different.
1087
+ <p align="right">
1088
+ <a href="#_TOP">[Go Top]</a>
1089
+ <hr/>
1090
+ <a name="/Q4:_Training_and_prediction"></a>
1091
+ <a name="f421"><b>Q: On some systems CV accuracy is the same in several runs. How could I use different data partitions? In other words, how do I set random seed in LIBSVM?</b></a>
1092
+ <br/>
1093
+ <p>
1094
+ If you use GNU C library,
1095
+ the default seed 1 is considered. Thus you always
1096
+ get the same result of running svm-train -v.
1097
+ To have different seeds, you can add the following code
1098
+ in svm-train.c:
1099
+ <pre>
1100
+ #include &lt;time.h&gt;
1101
+ </pre>
1102
+ and in the beginning of main(),
1103
+ <pre>
1104
+ srand(time(0));
1105
+ </pre>
1106
+ Alternatively, if you are not using GNU C library
1107
+ and would like to use a fixed seed, you can have
1108
+ <pre>
1109
+ srand(1);
1110
+ </pre>
1111
+
1112
+ <p>
1113
+ For Java, the random number generator
1114
+ is initialized using the time information.
1115
+ So results of two CV runs are different.
1116
+ To fix the seed, after version 3.1 (released
1117
+ in mid 2011), you can add
1118
+ <pre>
1119
+ svm.rand.setSeed(0);
1120
+ </pre>
1121
+ in the main() function of svm_train.java.
1122
+ <p align="right">
1123
+ <a href="#_TOP">[Go Top]</a>
1124
+ <hr/>
1125
+ <a name="/Q4:_Training_and_prediction"></a>
1126
+ <a name="f422"><b>Q: I would like to solve L2-loss SVM (i.e., error term is quadratic). How should I modify the code ?</b></a>
1127
+ <br/>
1128
+ <p>
1129
+ It is extremely easy. Taking c-svc for example, to solve
1130
+ <p>
1131
+ min_w w^Tw/2 + C \sum max(0, 1- (y_i w^Tx_i+b))^2,
1132
+ <p>
1133
+ only two
1134
+ places of svm.cpp have to be changed.
1135
+ First, modify the following line of
1136
+ solve_c_svc from
1137
+ <pre>
1138
+ s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
1139
+ alpha, Cp, Cn, param->eps, si, param->shrinking);
1140
+ </pre>
1141
+ to
1142
+ <pre>
1143
+ s.Solve(l, SVC_Q(*prob,*param,y), minus_ones, y,
1144
+ alpha, INF, INF, param->eps, si, param->shrinking);
1145
+ </pre>
1146
+ Second, in the class of SVC_Q, declare C as
1147
+ a private variable:
1148
+ <pre>
1149
+ double C;
1150
+ </pre>
1151
+ In the constructor replace
1152
+ <pre>
1153
+ for(int i=0;i&lt;prob.l;i++)
1154
+ QD[i]= (Qfloat)(this->*kernel_function)(i,i);
1155
+ </pre>
1156
+ with
1157
+ <pre>
1158
+ this->C = param.C;
1159
+ for(int i=0;i&lt;prob.l;i++)
1160
+ QD[i]= (Qfloat)(this->*kernel_function)(i,i)+0.5/C;
1161
+ </pre>
1162
+ Then in the subroutine get_Q, after the for loop, add
1163
+ <pre>
1164
+ if(i >= start && i < len)
1165
+ data[i] += 0.5/C;
1166
+ </pre>
1167
+
1168
+ <p>
1169
+ For one-class svm, the modification is exactly the same. For SVR, you don't need an if statement like the above. Instead, you only need a simple assignment:
1170
+ <pre>
1171
+ data[real_i] += 0.5/C;
1172
+ </pre>
1173
+
1174
+
1175
+ <p>
1176
+ For large linear L2-loss SVM, please use
1177
+ <a href=../liblinear>LIBLINEAR</a>.
1178
+ <p align="right">
1179
+ <a href="#_TOP">[Go Top]</a>
1180
+ <hr/>
1181
+ <a name="/Q4:_Training_and_prediction"></a>
1182
+ <a name="f424"><b>Q: How do I choose parameters for one-class svm as training data are in only one class?</b></a>
1183
+ <br/>
1184
+ <p>
1185
+ You have pre-specified true positive rate in mind and then search for
1186
+ parameters which achieve similar cross-validation accuracy.
1187
+ <p align="right">
1188
+ <a href="#_TOP">[Go Top]</a>
1189
+ <hr/>
1190
+ <a name="/Q4:_Training_and_prediction"></a>
1191
+ <a name="f427"><b>Q: Why the code gives NaN (not a number) results?</b></a>
1192
+ <br/>
1193
+ <p>
1194
+ This rarely happens, but few users reported the problem.
1195
+ It seems that their
1196
+ computers for training libsvm have the VPN client
1197
+ running. The VPN software has some bugs and causes this
1198
+ problem. Please try to close or disconnect the VPN client.
1199
+ <p align="right">
1200
+ <a href="#_TOP">[Go Top]</a>
1201
+ <hr/>
1202
+ <a name="/Q4:_Training_and_prediction"></a>
1203
+ <a name="f428"><b>Q: Why on windows sometimes grid.py fails?</b></a>
1204
+ <br/>
1205
+ <p>
1206
+
1207
+ This problem shouldn't happen after version
1208
+ 2.85. If you are using earlier versions,
1209
+ please download the latest one.
1210
+
1211
+ <!--
1212
+ <p>
1213
+ If you are using earlier
1214
+ versions, the error message is probably
1215
+ <pre>
1216
+ Traceback (most recent call last):
1217
+ File "grid.py", line 349, in ?
1218
+ main()
1219
+ File "grid.py", line 344, in main
1220
+ redraw(db)
1221
+ File "grid.py", line 132, in redraw
1222
+ gnuplot.write("set term windows\n")
1223
+ IOError: [Errno 22] Invalid argument
1224
+ </pre>
1225
+
1226
+ <p>Please try to close gnuplot windows and rerun.
1227
+ If the problem still occurs, comment the following
1228
+ two lines in grid.py by inserting "#" in the beginning:
1229
+ <pre>
1230
+ redraw(db)
1231
+ redraw(db,1)
1232
+ </pre>
1233
+ Then you get accuracy only but not cross validation contours.
1234
+ -->
1235
+ <p align="right">
1236
+ <a href="#_TOP">[Go Top]</a>
1237
+ <hr/>
1238
+ <a name="/Q4:_Training_and_prediction"></a>
1239
+ <a name="f429"><b>Q: Why grid.py/easy.py sometimes generates the following warning message?</b></a>
1240
+ <br/>
1241
+ <pre>
1242
+ Warning: empty z range [62.5:62.5], adjusting to [61.875:63.125]
1243
+ Notice: cannot contour non grid data!
1244
+ </pre>
1245
+ <p>Nothing is wrong and please disregard the
1246
+ message. It is from gnuplot when drawing
1247
+ the contour.
1248
+ <p align="right">
1249
+ <a href="#_TOP">[Go Top]</a>
1250
+ <hr/>
1251
+ <a name="/Q4:_Training_and_prediction"></a>
1252
+ <a name="f430"><b>Q: Why the sign of predicted labels and decision values are sometimes reversed?</b></a>
1253
+ <br/>
1254
+ <p>Nothing is wrong. Very likely you have two labels +1/-1 and the first instance in your data
1255
+ has -1.
1256
+ Think about the case of labels +5/+10. Since
1257
+ SVM needs to use +1/-1, internally
1258
+ we map +5/+10 to +1/-1 according to which
1259
+ label appears first.
1260
+ Hence a positive decision value implies
1261
+ that we should predict the "internal" +1,
1262
+ which may not be the +1 in the input file.
1263
+
1264
+ <p align="right">
1265
+ <a href="#_TOP">[Go Top]</a>
1266
+ <hr/>
1267
+ <a name="/Q4:_Training_and_prediction"></a>
1268
+ <a name="f431"><b>Q: I don't know class labels of test data. What should I put in the first column of the test file?</b></a>
1269
+ <br/>
1270
+ <p>Any value is ok. In this situation, what you will use is the output file of svm-predict, which gives predicted class labels.
1271
+
1272
+
1273
+ <p align="right">
1274
+ <a href="#_TOP">[Go Top]</a>
1275
+ <hr/>
1276
+ <a name="/Q4:_Training_and_prediction"></a>
1277
+ <a name="f432"><b>Q: How can I use OpenMP to parallelize LIBSVM on a multicore/shared-memory computer?</b></a>
1278
+ <br/>
1279
+
1280
+ <p>It is very easy if you are using GCC 4.2
1281
+ or after.
1282
+
1283
+ <p> In Makefile, add -fopenmp to CFLAGS.
1284
+
1285
+ <p> In class SVC_Q of svm.cpp, modify the for loop
1286
+ of get_Q to:
1287
+ <pre>
1288
+ #pragma omp parallel for private(j)
1289
+ for(j=start;j&lt;len;j++)
1290
+ </pre>
1291
+ <p> In the subroutine svm_predict_values of svm.cpp, add one line to the for loop:
1292
+ <pre>
1293
+ #pragma omp parallel for private(i)
1294
+ for(i=0;i&lt;l;i++)
1295
+ kvalue[i] = Kernel::k_function(x,model-&gt;SV[i],model-&gt;param);
1296
+ </pre>
1297
+ For regression, you need a reduction clause for the variable sum:
1298
+ <pre>
1299
+ #pragma omp parallel for private(i) reduction(+:sum)
1300
+ for(i=0;i&lt;model->l;i++)
1301
+ sum += sv_coef[i] * Kernel::k_function(x,model&gt;SV[i],model&gt;param);
1302
+ </pre>
1303
+
1304
+ <p> Then rebuild the package. Kernel evaluations in training/testing will be parallelized. An example of running this modification on
1305
+ an 8-core machine using the data set
1306
+ <a href=../libsvmtools/datasets/binary/ijcnn1.bz2>ijcnn1</a>:
1307
+
1308
+ <p> 8 cores:
1309
+ <pre>
1310
+ %setenv OMP_NUM_THREADS 8
1311
+ %time svm-train -c 16 -g 4 -m 400 ijcnn1
1312
+ 27.1sec
1313
+ </pre>
1314
+ 1 core:
1315
+ <pre>
1316
+ %setenv OMP_NUM_THREADS 1
1317
+ %time svm-train -c 16 -g 4 -m 400 ijcnn1
1318
+ 79.8sec
1319
+ </pre>
1320
+ For this data, kernel evaluations take 80% of training time. In the above example, we assume you use csh. For bash, use
1321
+ <pre>
1322
+ export OMP_NUM_THREADS=8
1323
+ </pre>
1324
+ instead.
1325
+
1326
+ <p> For Python interface, you need to add the -lgomp link option:
1327
+ <pre>
1328
+ $(CXX) -lgomp -shared -dynamiclib svm.o -o libsvm.so.$(SHVER)
1329
+ </pre>
1330
+ <p align="right">
1331
+ <a href="#_TOP">[Go Top]</a>
1332
+ <hr/>
1333
+ <a name="/Q4:_Training_and_prediction"></a>
1334
+ <a name="f433"><b>Q: How could I know which training instances are support vectors?</b></a>
1335
+ <br/>
1336
+
1337
+ <p>
1338
+ It's very simple. Please replace
1339
+ <pre>
1340
+ if(nonzero[i]) model->SV[p++] = x[i];
1341
+ </pre>
1342
+ in svm_train() of svm.cpp with
1343
+ <pre>
1344
+ if(nonzero[i])
1345
+ {
1346
+ model->SV[p++] = x[i];
1347
+ info("%d\n", perm[i]);
1348
+ }
1349
+ </pre>
1350
+ If there are many requests, we may
1351
+ provide a function to return indices
1352
+ of support vectors. In the mean time,
1353
+ if you need such information in your code,
1354
+ you can add the array nonzero to the model
1355
+ structure. This array has the same size as
1356
+ the number of data, so alternatively you can
1357
+ store only indices of support vectors.
1358
+
1359
+ <p> If you use matlab interface, you can easily
1360
+ compare support vectors and training data to know
1361
+ the indices:
1362
+ <pre>
1363
+ [tmp index]=ismember(model.SVs, training_data,'rows');
1364
+ </pre>
1365
+ <p align="right">
1366
+ <a href="#_TOP">[Go Top]</a>
1367
+ <hr/>
1368
+ <a name="/Q5:_Probability_outputs"></a>
1369
+ <a name="f425"><b>Q: Why training a probability model (i.e., -b 1) takes a longer time?</b></a>
1370
+ <br/>
1371
+ <p>
1372
+ To construct this probability model, we internally conduct a
1373
+ cross validation, which is more time consuming than
1374
+ a regular training.
1375
+ Hence, in general you do parameter selection first without
1376
+ -b 1. You only use -b 1 when good parameters have been
1377
+ selected. In other words, you avoid using -b 1 and -v
1378
+ together.
1379
+ <p align="right">
1380
+ <a href="#_TOP">[Go Top]</a>
1381
+ <hr/>
1382
+ <a name="/Q5:_Probability_outputs"></a>
1383
+ <a name="f426"><b>Q: Why using the -b option does not give me better accuracy?</b></a>
1384
+ <br/>
1385
+ <p>
1386
+ There is absolutely no reason the probability outputs guarantee
1387
+ you better accuracy. The main purpose of this option is
1388
+ to provide you the probability estimates, but not to boost
1389
+ prediction accuracy. From our experience,
1390
+ after proper parameter selections, in general with
1391
+ and without -b have similar accuracy. Occasionally there
1392
+ are some differences.
1393
+ It is not recommended to compare the two under
1394
+ just a fixed parameter
1395
+ set as more differences will be observed.
1396
+ <p align="right">
1397
+ <a href="#_TOP">[Go Top]</a>
1398
+ <hr/>
1399
+ <a name="/Q5:_Probability_outputs"></a>
1400
+ <a name="f427"><b>Q: Why using svm-predict -b 0 and -b 1 gives different accuracy values?</b></a>
1401
+ <br/>
1402
+ <p>
1403
+ Let's just consider two-class classification here. After probability information is obtained in training,
1404
+ we do not have
1405
+ <p>
1406
+ prob > = 0.5 if and only if decision value >= 0.
1407
+ <p>
1408
+ So predictions may be different with -b 0 and 1.
1409
+ <p align="right">
1410
+ <a href="#_TOP">[Go Top]</a>
1411
+ <hr/>
1412
+ <a name="/Q6:_Graphic_interface"></a>
1413
+ <a name="f501"><b>Q: How can I save images drawn by svm-toy?</b></a>
1414
+ <br/>
1415
+ <p>
1416
+ For Microsoft windows, first press the "print screen" key on the keyboard.
1417
+ Open "Microsoft Paint"
1418
+ (included in Windows)
1419
+ and press "ctrl-v." Then you can clip
1420
+ the part of picture which you want.
1421
+ For X windows, you can
1422
+ use the program "xv" or "import" to grab the picture of the svm-toy window.
1423
+ <p align="right">
1424
+ <a href="#_TOP">[Go Top]</a>
1425
+ <hr/>
1426
+ <a name="/Q6:_Graphic_interface"></a>
1427
+ <a name="f502"><b>Q: I press the "load" button to load data points but why svm-toy does not draw them ?</b></a>
1428
+ <br/>
1429
+ <p>
1430
+ The program svm-toy assumes both attributes (i.e. x-axis and y-axis
1431
+ values) are in (0,1). Hence you want to scale your
1432
+ data to between a small positive number and
1433
+ a number less than but very close to 1.
1434
+ Moreover, class labels must be 1, 2, or 3
1435
+ (not 1.0, 2.0 or anything else).
1436
+ <p align="right">
1437
+ <a href="#_TOP">[Go Top]</a>
1438
+ <hr/>
1439
+ <a name="/Q6:_Graphic_interface"></a>
1440
+ <a name="f503"><b>Q: I would like svm-toy to handle more than three classes of data, what should I do ?</b></a>
1441
+ <br/>
1442
+ <p>
1443
+ Taking windows/svm-toy.cpp as an example, you need to
1444
+ modify it and the difference
1445
+ from the original file is as the following: (for five classes of
1446
+ data)
1447
+ <pre>
1448
+ 30,32c30
1449
+ < RGB(200,0,200),
1450
+ < RGB(0,160,0),
1451
+ < RGB(160,0,0)
1452
+ ---
1453
+ > RGB(200,0,200)
1454
+ 39c37
1455
+ < HBRUSH brush1, brush2, brush3, brush4, brush5;
1456
+ ---
1457
+ > HBRUSH brush1, brush2, brush3;
1458
+ 113,114d110
1459
+ < brush4 = CreateSolidBrush(colors[7]);
1460
+ < brush5 = CreateSolidBrush(colors[8]);
1461
+ 155,157c151
1462
+ < else if(v==3) return brush3;
1463
+ < else if(v==4) return brush4;
1464
+ < else return brush5;
1465
+ ---
1466
+ > else return brush3;
1467
+ 325d318
1468
+ < int colornum = 5;
1469
+ 327c320
1470
+ < svm_node *x_space = new svm_node[colornum * prob.l];
1471
+ ---
1472
+ > svm_node *x_space = new svm_node[3 * prob.l];
1473
+ 333,338c326,331
1474
+ < x_space[colornum * i].index = 1;
1475
+ < x_space[colornum * i].value = q->x;
1476
+ < x_space[colornum * i + 1].index = 2;
1477
+ < x_space[colornum * i + 1].value = q->y;
1478
+ < x_space[colornum * i + 2].index = -1;
1479
+ < prob.x[i] = &x_space[colornum * i];
1480
+ ---
1481
+ > x_space[3 * i].index = 1;
1482
+ > x_space[3 * i].value = q->x;
1483
+ > x_space[3 * i + 1].index = 2;
1484
+ > x_space[3 * i + 1].value = q->y;
1485
+ > x_space[3 * i + 2].index = -1;
1486
+ > prob.x[i] = &x_space[3 * i];
1487
+ 397c390
1488
+ < if(current_value > 5) current_value = 1;
1489
+ ---
1490
+ > if(current_value > 3) current_value = 1;
1491
+ </pre>
1492
+ <p align="right">
1493
+ <a href="#_TOP">[Go Top]</a>
1494
+ <hr/>
1495
+ <a name="/Q7:_Java_version_of_libsvm"></a>
1496
+ <a name="f601"><b>Q: What is the difference between Java version and C++ version of libsvm?</b></a>
1497
+ <br/>
1498
+ <p>
1499
+ They are the same thing. We just rewrote the C++ code
1500
+ in Java.
1501
+ <p align="right">
1502
+ <a href="#_TOP">[Go Top]</a>
1503
+ <hr/>
1504
+ <a name="/Q7:_Java_version_of_libsvm"></a>
1505
+ <a name="f602"><b>Q: Is the Java version significantly slower than the C++ version?</b></a>
1506
+ <br/>
1507
+ <p>
1508
+ This depends on the VM you used. We have seen good
1509
+ VM which leads the Java version to be quite competitive with
1510
+ the C++ code. (though still slower)
1511
+ <p align="right">
1512
+ <a href="#_TOP">[Go Top]</a>
1513
+ <hr/>
1514
+ <a name="/Q7:_Java_version_of_libsvm"></a>
1515
+ <a name="f603"><b>Q: While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</b></a>
1516
+ <br/>
1517
+ <p>
1518
+ You should try to increase the maximum Java heap size.
1519
+ For example,
1520
+ <pre>
1521
+ java -Xmx2048m -classpath libsvm.jar svm_train ...
1522
+ </pre>
1523
+ sets the maximum heap size to 2048M.
1524
+ <p align="right">
1525
+ <a href="#_TOP">[Go Top]</a>
1526
+ <hr/>
1527
+ <a name="/Q7:_Java_version_of_libsvm"></a>
1528
+ <a name="f604"><b>Q: Why you have the main source file svm.m4 and then transform it to svm.java?</b></a>
1529
+ <br/>
1530
+ <p>
1531
+ Unlike C, Java does not have a preprocessor built-in.
1532
+ However, we need some macros (see first 3 lines of svm.m4).
1533
+
1534
+ </ul>
1535
+ <p align="right">
1536
+ <a href="#_TOP">[Go Top]</a>
1537
+ <hr/>
1538
+ <a name="/Q8:_Python_interface"></a>
1539
+ <a name="f704"><b>Q: Except the python-C++ interface provided, could I use Jython to call libsvm ?</b></a>
1540
+ <br/>
1541
+ <p> Yes, here are some examples:
1542
+
1543
+ <pre>
1544
+ $ export CLASSPATH=$CLASSPATH:~/libsvm-2.91/java/libsvm.jar
1545
+ $ ./jython
1546
+ Jython 2.1a3 on java1.3.0 (JIT: jitc)
1547
+ Type "copyright", "credits" or "license" for more information.
1548
+ >>> from libsvm import *
1549
+ >>> dir()
1550
+ ['__doc__', '__name__', 'svm', 'svm_model', 'svm_node', 'svm_parameter',
1551
+ 'svm_problem']
1552
+ >>> x1 = [svm_node(index=1,value=1)]
1553
+ >>> x2 = [svm_node(index=1,value=-1)]
1554
+ >>> param = svm_parameter(svm_type=0,kernel_type=2,gamma=1,cache_size=40,eps=0.001,C=1,nr_weight=0,shrinking=1)
1555
+ >>> prob = svm_problem(l=2,y=[1,-1],x=[x1,x2])
1556
+ >>> model = svm.svm_train(prob,param)
1557
+ *
1558
+ optimization finished, #iter = 1
1559
+ nu = 1.0
1560
+ obj = -1.018315639346838, rho = 0.0
1561
+ nSV = 2, nBSV = 2
1562
+ Total nSV = 2
1563
+ >>> svm.svm_predict(model,x1)
1564
+ 1.0
1565
+ >>> svm.svm_predict(model,x2)
1566
+ -1.0
1567
+ >>> svm.svm_save_model("test.model",model)
1568
+
1569
+ </pre>
1570
+
1571
+ <p align="right">
1572
+ <a href="#_TOP">[Go Top]</a>
1573
+ <hr/>
1574
+ <a name="/Q9:_MATLAB_interface"></a>
1575
+ <a name="f801"><b>Q: I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
1576
+ <br/>
1577
+ <p>
1578
+ Your compiler version may not be supported/compatible for MATLAB.
1579
+ Please check <a href=http://www.mathworks.com/support/compilers/current_release>this MATLAB page</a> first and then specify the version
1580
+ number. For example, if g++ X.Y is supported, replace
1581
+ <pre>
1582
+ CXX = g++
1583
+ </pre>
1584
+ in the Makefile with
1585
+ <pre>
1586
+ CXX = g++-X.Y
1587
+ </pre>
1588
+ <p align="right">
1589
+ <a href="#_TOP">[Go Top]</a>
1590
+ <hr/>
1591
+ <a name="/Q9:_MATLAB_interface"></a>
1592
+ <a name="f8011"><b>Q: On 64bit Windows I compile the MATLAB interface without problem, but why errors occur while running it?</b></a>
1593
+ <br/>
1594
+ <p>
1595
+
1596
+
1597
+ Please make sure that you use
1598
+ the -largeArrayDims option in make.m. For example,
1599
+ <pre>
1600
+ mex -largeArrayDims -O -c svm.cpp
1601
+ </pre>
1602
+
1603
+ Moreover, if you use Microsoft Visual Studio,
1604
+ probabally it is not properly installed.
1605
+ See the explanation
1606
+ <a href=http://www.mathworks.com/support/compilers/current_release/win64.html#n7>here</a>.
1607
+ <p align="right">
1608
+ <a href="#_TOP">[Go Top]</a>
1609
+ <hr/>
1610
+ <a name="/Q9:_MATLAB_interface"></a>
1611
+ <a name="f802"><b>Q: Does the MATLAB interface provide a function to do scaling?</b></a>
1612
+ <br/>
1613
+ <p>
1614
+ It is extremely easy to do scaling under MATLAB.
1615
+ The following one-line code scale each feature to the range
1616
+ of [0,1]:
1617
+ <pre>
1618
+ (data - repmat(min(data,[],1),size(data,1),1))*spdiags(1./(max(data,[],1)-min(data,[],1))',0,size(data,2),size(data,2))
1619
+ </pre>
1620
+ <p align="right">
1621
+ <a href="#_TOP">[Go Top]</a>
1622
+ <hr/>
1623
+ <a name="/Q9:_MATLAB_interface"></a>
1624
+ <a name="f803"><b>Q: How could I use MATLAB interface for parameter selection?</b></a>
1625
+ <br/>
1626
+ <p>
1627
+ One can do this by a simple loop.
1628
+ See the following example:
1629
+ <pre>
1630
+ bestcv = 0;
1631
+ for log2c = -1:3,
1632
+ for log2g = -4:1,
1633
+ cmd = ['-v 5 -c ', num2str(2^log2c), ' -g ', num2str(2^log2g)];
1634
+ cv = svmtrain(heart_scale_label, heart_scale_inst, cmd);
1635
+ if (cv >= bestcv),
1636
+ bestcv = cv; bestc = 2^log2c; bestg = 2^log2g;
1637
+ end
1638
+ fprintf('%g %g %g (best c=%g, g=%g, rate=%g)\n', log2c, log2g, cv, bestc, bestg, bestcv);
1639
+ end
1640
+ end
1641
+ </pre>
1642
+ You may adjust the parameter range in the above loops.
1643
+ <p align="right">
1644
+ <a href="#_TOP">[Go Top]</a>
1645
+ <hr/>
1646
+ <a name="/Q9:_MATLAB_interface"></a>
1647
+ <a name="f8031"><b>Q: I use MATLAB parallel programming toolbox on a multi-core environment for parameter selection. Why the program is even slower?</b></a>
1648
+ <br/>
1649
+ <p>
1650
+ Fabrizio Lacalandra of University of Pisa reported this issue.
1651
+ It seems the problem is caused by the screen output.
1652
+ If you disable the <b>info</b> function
1653
+ using <pre>#if 0,</pre> then the problem
1654
+ may be solved.
1655
+ <p align="right">
1656
+ <a href="#_TOP">[Go Top]</a>
1657
+ <hr/>
1658
+ <a name="/Q9:_MATLAB_interface"></a>
1659
+ <a name="f8032"><b>Q: How do I use LIBSVM with OpenMP under MATLAB?</b></a>
1660
+ <br/>
1661
+ <p>
1662
+ In Makefile,
1663
+ you need to add -fopenmp to CFLAGS and -lgomp to MEX_OPTION. For Octave, you need the same modification.
1664
+
1665
+ <p> However, a minor problem is that
1666
+ the number of threads cannot
1667
+ be specified in MATLAB. We tried Version 7.12 (R2011a) and gcc-4.6.1.
1668
+
1669
+ <pre>
1670
+ % export OMP_NUM_THREADS=4; matlab
1671
+ >> setenv('OMP_NUM_THREADS', '1');
1672
+ </pre>
1673
+
1674
+ Then OMP_NUM_THREADS is still 4 while running the program. Please contact us if you
1675
+ see how to solve this problem. You can, however,
1676
+ specify the number in the source code (thanks
1677
+ to comments from Ricardo Santiago-mozos):
1678
+ <pre>
1679
+ #pragma omp parallel for private(i) num_threads(4)
1680
+ </pre>
1681
+ <p align="right">
1682
+ <a href="#_TOP">[Go Top]</a>
1683
+ <hr/>
1684
+ <a name="/Q9:_MATLAB_interface"></a>
1685
+ <a name="f804"><b>Q: How could I generate the primal variable w of linear SVM?</b></a>
1686
+ <br/>
1687
+ <p>
1688
+ Let's start from the binary class and
1689
+ assume you have two labels -1 and +1.
1690
+ After obtaining the model from calling svmtrain,
1691
+ do the following to have w and b:
1692
+ <pre>
1693
+ w = model.SVs' * model.sv_coef;
1694
+ b = -model.rho;
1695
+
1696
+ if model.Label(1) == -1
1697
+ w = -w;
1698
+ b = -b;
1699
+ end
1700
+ </pre>
1701
+ If you do regression or one-class SVM, then the if statement is not needed.
1702
+
1703
+ <p> For multi-class SVM, we illustrate the setting
1704
+ in the following example of running the iris
1705
+ data, which have 3 classes
1706
+ <pre>
1707
+ > [y, x] = libsvmread('../../htdocs/libsvmtools/datasets/multiclass/iris.scale');
1708
+ > m = svmtrain(y, x, '-t 0')
1709
+
1710
+ m =
1711
+
1712
+ Parameters: [5x1 double]
1713
+ nr_class: 3
1714
+ totalSV: 42
1715
+ rho: [3x1 double]
1716
+ Label: [3x1 double]
1717
+ ProbA: []
1718
+ ProbB: []
1719
+ nSV: [3x1 double]
1720
+ sv_coef: [42x2 double]
1721
+ SVs: [42x4 double]
1722
+ </pre>
1723
+ sv_coef is like:
1724
+ <pre>
1725
+ +-+-+--------------------+
1726
+ |1|1| |
1727
+ |v|v| SVs from class 1 |
1728
+ |2|3| |
1729
+ +-+-+--------------------+
1730
+ |1|2| |
1731
+ |v|v| SVs from class 2 |
1732
+ |2|3| |
1733
+ +-+-+--------------------+
1734
+ |1|2| |
1735
+ |v|v| SVs from class 3 |
1736
+ |3|3| |
1737
+ +-+-+--------------------+
1738
+ </pre>
1739
+ so we need to see nSV of each classes.
1740
+ <pre>
1741
+ > m.nSV
1742
+
1743
+ ans =
1744
+
1745
+ 3
1746
+ 21
1747
+ 18
1748
+ </pre>
1749
+ Suppose the goal is to find the vector w of classes
1750
+ 1 vs 3. Then
1751
+ y_i alpha_i of training 1 vs 3 are
1752
+ <pre>
1753
+ > coef = [m.sv_coef(1:3,2); m.sv_coef(25:42,1)];
1754
+ </pre>
1755
+ and SVs are:
1756
+ <pre>
1757
+ > SVs = [m.SVs(1:3,:); m.SVs(25:42,:)];
1758
+ </pre>
1759
+ Hence, w is
1760
+ <pre>
1761
+ > w = SVs'*coef;
1762
+ </pre>
1763
+ For rho,
1764
+ <pre>
1765
+ > m.rho
1766
+
1767
+ ans =
1768
+
1769
+ 1.1465
1770
+ 0.3682
1771
+ -1.9969
1772
+ > b = -m.rho(2);
1773
+ </pre>
1774
+ because rho is arranged by 1vs2 1vs3 2vs3.
1775
+
1776
+
1777
+
1778
+ <p align="right">
1779
+ <a href="#_TOP">[Go Top]</a>
1780
+ <hr/>
1781
+ <a name="/Q9:_MATLAB_interface"></a>
1782
+ <a name="f805"><b>Q: Is there an OCTAVE interface for libsvm?</b></a>
1783
+ <br/>
1784
+ <p>
1785
+ Yes, after libsvm 2.86, the matlab interface
1786
+ works on OCTAVE as well. Please type
1787
+ <pre>
1788
+ make octave
1789
+ </pre>
1790
+ for installation.
1791
+ <p align="right">
1792
+ <a href="#_TOP">[Go Top]</a>
1793
+ <hr/>
1794
+ <a name="/Q9:_MATLAB_interface"></a>
1795
+ <a name="f806"><b>Q: How to handle the name conflict between svmtrain in the libsvm matlab interface and that in MATLAB bioinformatics toolbox?</b></a>
1796
+ <br/>
1797
+ <p>
1798
+ The easiest way is to rename the svmtrain binary
1799
+ file (e.g., svmtrain.mexw32 on 32-bit windows)
1800
+ to a different
1801
+ name (e.g., svmtrain2.mexw32).
1802
+ <p align="right">
1803
+ <a href="#_TOP">[Go Top]</a>
1804
+ <hr/>
1805
+ <a name="/Q9:_MATLAB_interface"></a>
1806
+ <a name="f807"><b>Q: On Windows I got an error message "Invalid MEX-file: Specific module not found" when running the pre-built MATLAB interface in the windows sub-directory. What should I do?</b></a>
1807
+ <br/>
1808
+ <p>
1809
+
1810
+ The error usually happens
1811
+ when there are missing runtime components
1812
+ such as MSVCR100.dll on your Windows platform.
1813
+ You can use tools such as
1814
+ <a href=http://www.dependencywalker.com/>Dependency
1815
+ Walker</a> to find missing library files.
1816
+
1817
+ <p>
1818
+ Because the pre-built MEX files are compiled by
1819
+ Visual C++ 2010,
1820
+ please make sure that you have installed
1821
+ Microsoft Visual C++ Redistributable Package 2010
1822
+ (vcredist_x86.exe). You can easily find the freely
1823
+ available file from Microsoft's web site.
1824
+
1825
+ <p>
1826
+ For 64bit Windows, the pre-built files are by
1827
+ Visual C++ 2008, so please install
1828
+ Microsoft Visual C++ Redistributable Package 2008
1829
+ (vcredist_x64.exe).
1830
+ <p align="right">
1831
+ <a href="#_TOP">[Go Top]</a>
1832
+ <hr/>
1833
+ <p align="middle">
1834
+ <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm">LIBSVM home page</a>
1835
+ </p>
1836
+ </body>
1837
+ </html>