red_amber 0.5.0 → 0.5.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.devcontainer/Dockerfile +75 -0
- data/.devcontainer/devcontainer.json +38 -0
- data/.devcontainer/onCreateCommand.sh +26 -0
- data/.rubocop.yml +3 -3
- data/CHANGELOG.md +102 -18
- data/Gemfile +1 -1
- data/README.ja.md +51 -32
- data/README.md +46 -30
- data/Rakefile +55 -0
- data/doc/DataFrame_Comparison.md +9 -13
- data/doc/DataFrame_Comparison_ja.md +61 -0
- data/doc/Dev_Containers.ja.md +290 -0
- data/doc/Dev_Containers.md +292 -0
- data/doc/qmd/examples_of_red_amber.qmd +4596 -0
- data/doc/qmd/red-amber.qmd +90 -0
- data/docker/Dockerfile +2 -2
- data/docker/Gemfile +1 -1
- data/docker/docker-compose.yml +1 -1
- data/docker/readme.md +5 -5
- data/lib/red_amber/data_frame_displayable.rb +1 -1
- data/lib/red_amber/data_frame_loadsave.rb +1 -1
- data/lib/red_amber/data_frame_selectable.rb +2 -2
- data/lib/red_amber/data_frame_variable_operation.rb +6 -6
- data/lib/red_amber/group.rb +287 -39
- data/lib/red_amber/subframes.rb +6 -6
- data/lib/red_amber/vector.rb +2 -1
- data/lib/red_amber/vector_selectable.rb +68 -35
- data/lib/red_amber/vector_string_function.rb +81 -13
- data/lib/red_amber/version.rb +1 -1
- data/red_amber.gemspec +3 -3
- metadata +15 -11
- data/docker/Gemfile.lock +0 -118
- data/docker/example +0 -86
- data/docker/notebook/examples_of_red_amber.ipynb +0 -8562
- data/docker/notebook/red-amber.ipynb +0 -188
| @@ -1,188 +0,0 @@ | |
| 1 | 
            -
            {
         | 
| 2 | 
            -
             "cells": [
         | 
| 3 | 
            -
              {
         | 
| 4 | 
            -
               "cell_type": "markdown",
         | 
| 5 | 
            -
               "metadata": {},
         | 
| 6 | 
            -
               "source": [
         | 
| 7 | 
            -
                "# RedAmber Examples\n",
         | 
| 8 | 
            -
                "\n",
         | 
| 9 | 
            -
                "This notebook walks through the [README of RedAmber](https://github.com/heronshoes/red_amber#readme)."
         | 
| 10 | 
            -
               ]
         | 
| 11 | 
            -
              },
         | 
| 12 | 
            -
              {
         | 
| 13 | 
            -
               "cell_type": "markdown",
         | 
| 14 | 
            -
               "metadata": {},
         | 
| 15 | 
            -
               "source": [
         | 
| 16 | 
            -
                "## `RedAmber::DataFrame`"
         | 
| 17 | 
            -
               ]
         | 
| 18 | 
            -
              },
         | 
| 19 | 
            -
              {
         | 
| 20 | 
            -
               "cell_type": "code",
         | 
| 21 | 
            -
               "execution_count": null,
         | 
| 22 | 
            -
               "metadata": {
         | 
| 23 | 
            -
                "tags": []
         | 
| 24 | 
            -
               },
         | 
| 25 | 
            -
               "outputs": [],
         | 
| 26 | 
            -
               "source": [
         | 
| 27 | 
            -
                "require 'red_amber'\n",
         | 
| 28 | 
            -
                "include RedAmber\n",
         | 
| 29 | 
            -
                "require 'datasets-arrow'\n",
         | 
| 30 | 
            -
                "\n",
         | 
| 31 | 
            -
                "{RedAmber: VERSION, Datasets: Datasets::VERSION}"
         | 
| 32 | 
            -
               ]
         | 
| 33 | 
            -
              },
         | 
| 34 | 
            -
              {
         | 
| 35 | 
            -
               "cell_type": "markdown",
         | 
| 36 | 
            -
               "metadata": {},
         | 
| 37 | 
            -
               "source": [
         | 
| 38 | 
            -
                "## Example: diamonds dataset\n",
         | 
| 39 | 
            -
                "\n",
         | 
| 40 | 
            -
                "For the first loading of Datasets::Diamonds, it will take some time to download."
         | 
| 41 | 
            -
               ]
         | 
| 42 | 
            -
              },
         | 
| 43 | 
            -
              {
         | 
| 44 | 
            -
               "cell_type": "code",
         | 
| 45 | 
            -
               "execution_count": null,
         | 
| 46 | 
            -
               "metadata": {
         | 
| 47 | 
            -
                "tags": []
         | 
| 48 | 
            -
               },
         | 
| 49 | 
            -
               "outputs": [],
         | 
| 50 | 
            -
               "source": [
         | 
| 51 | 
            -
                "dataset = Datasets::Diamonds.new\n",
         | 
| 52 | 
            -
                "diamonds = DataFrame.new(dataset)"
         | 
| 53 | 
            -
               ]
         | 
| 54 | 
            -
              },
         | 
| 55 | 
            -
              {
         | 
| 56 | 
            -
               "cell_type": "code",
         | 
| 57 | 
            -
               "execution_count": null,
         | 
| 58 | 
            -
               "metadata": {
         | 
| 59 | 
            -
                "tags": []
         | 
| 60 | 
            -
               },
         | 
| 61 | 
            -
               "outputs": [],
         | 
| 62 | 
            -
               "source": [
         | 
| 63 | 
            -
                "df = diamonds\n",
         | 
| 64 | 
            -
                "  .slice { carat > 1 } # or use #filter instead of #slice\n",
         | 
| 65 | 
            -
                "  .group(:cut)\n",
         | 
| 66 | 
            -
                "  .mean(:price) # `pick` prior to `group` is not required if `:price` is specified here.\n",
         | 
| 67 | 
            -
                "  .sort('-mean(price)')"
         | 
| 68 | 
            -
               ]
         | 
| 69 | 
            -
              },
         | 
| 70 | 
            -
              {
         | 
| 71 | 
            -
               "cell_type": "code",
         | 
| 72 | 
            -
               "execution_count": null,
         | 
| 73 | 
            -
               "metadata": {
         | 
| 74 | 
            -
                "tags": []
         | 
| 75 | 
            -
               },
         | 
| 76 | 
            -
               "outputs": [],
         | 
| 77 | 
            -
               "source": [
         | 
| 78 | 
            -
                "usdjpy = 110.0 # when the yen was stronger\n",
         | 
| 79 | 
            -
                "\n",
         | 
| 80 | 
            -
                "df.rename('mean(price)': :mean_price_USD)\n",
         | 
| 81 | 
            -
                "  .assign(:mean_price_JPY) { mean_price_USD * usdjpy }"
         | 
| 82 | 
            -
               ]
         | 
| 83 | 
            -
              },
         | 
| 84 | 
            -
              {
         | 
| 85 | 
            -
               "cell_type": "markdown",
         | 
| 86 | 
            -
               "metadata": {
         | 
| 87 | 
            -
                "tags": []
         | 
| 88 | 
            -
               },
         | 
| 89 | 
            -
               "source": [
         | 
| 90 | 
            -
                "## Example: starwars dataset"
         | 
| 91 | 
            -
               ]
         | 
| 92 | 
            -
              },
         | 
| 93 | 
            -
              {
         | 
| 94 | 
            -
               "cell_type": "code",
         | 
| 95 | 
            -
               "execution_count": null,
         | 
| 96 | 
            -
               "metadata": {
         | 
| 97 | 
            -
                "tags": []
         | 
| 98 | 
            -
               },
         | 
| 99 | 
            -
               "outputs": [],
         | 
| 100 | 
            -
               "source": [
         | 
| 101 | 
            -
                "uri = URI('https://vincentarelbundock.github.io/Rdatasets/csv/dplyr/starwars.csv')\n",
         | 
| 102 | 
            -
                "\n",
         | 
| 103 | 
            -
                "starwars = DataFrame.load(uri)"
         | 
| 104 | 
            -
               ]
         | 
| 105 | 
            -
              },
         | 
| 106 | 
            -
              {
         | 
| 107 | 
            -
               "cell_type": "code",
         | 
| 108 | 
            -
               "execution_count": null,
         | 
| 109 | 
            -
               "metadata": {
         | 
| 110 | 
            -
                "tags": []
         | 
| 111 | 
            -
               },
         | 
| 112 | 
            -
               "outputs": [],
         | 
| 113 | 
            -
               "source": [
         | 
| 114 | 
            -
                "starwars\n",
         | 
| 115 | 
            -
                "  .drop(0) # delete unnecessary index column\n",
         | 
| 116 | 
            -
                "  .remove { species == \"NA\" } # delete unnecessary rows\n",
         | 
| 117 | 
            -
                "  .group(:species) { [count(:species), mean(:height, :mass)] }\n",
         | 
| 118 | 
            -
                "  .slice { count > 1 } # or use #filter instead of slice"
         | 
| 119 | 
            -
               ]
         | 
| 120 | 
            -
              },
         | 
| 121 | 
            -
              {
         | 
| 122 | 
            -
               "cell_type": "markdown",
         | 
| 123 | 
            -
               "metadata": {},
         | 
| 124 | 
            -
               "source": [
         | 
| 125 | 
            -
                "## `RedAmber::Vector`"
         | 
| 126 | 
            -
               ]
         | 
| 127 | 
            -
              },
         | 
| 128 | 
            -
              {
         | 
| 129 | 
            -
               "cell_type": "code",
         | 
| 130 | 
            -
               "execution_count": null,
         | 
| 131 | 
            -
               "metadata": {
         | 
| 132 | 
            -
                "tags": []
         | 
| 133 | 
            -
               },
         | 
| 134 | 
            -
               "outputs": [],
         | 
| 135 | 
            -
               "source": [
         | 
| 136 | 
            -
                "penguins = DataFrame.new(Datasets::Penguins.new)"
         | 
| 137 | 
            -
               ]
         | 
| 138 | 
            -
              },
         | 
| 139 | 
            -
              {
         | 
| 140 | 
            -
               "cell_type": "code",
         | 
| 141 | 
            -
               "execution_count": null,
         | 
| 142 | 
            -
               "metadata": {
         | 
| 143 | 
            -
                "tags": []
         | 
| 144 | 
            -
               },
         | 
| 145 | 
            -
               "outputs": [],
         | 
| 146 | 
            -
               "source": [
         | 
| 147 | 
            -
                "penguins[:bill_length_mm]"
         | 
| 148 | 
            -
               ]
         | 
| 149 | 
            -
              },
         | 
| 150 | 
            -
              {
         | 
| 151 | 
            -
               "cell_type": "code",
         | 
| 152 | 
            -
               "execution_count": null,
         | 
| 153 | 
            -
               "metadata": {
         | 
| 154 | 
            -
                "tags": []
         | 
| 155 | 
            -
               },
         | 
| 156 | 
            -
               "outputs": [],
         | 
| 157 | 
            -
               "source": [
         | 
| 158 | 
            -
                "penguins[:bill_length_mm] < 40"
         | 
| 159 | 
            -
               ]
         | 
| 160 | 
            -
              },
         | 
| 161 | 
            -
              {
         | 
| 162 | 
            -
               "cell_type": "code",
         | 
| 163 | 
            -
               "execution_count": null,
         | 
| 164 | 
            -
               "metadata": {
         | 
| 165 | 
            -
                "tags": []
         | 
| 166 | 
            -
               },
         | 
| 167 | 
            -
               "outputs": [],
         | 
| 168 | 
            -
               "source": [
         | 
| 169 | 
            -
                "penguins[:bill_length_mm].mean"
         | 
| 170 | 
            -
               ]
         | 
| 171 | 
            -
              }
         | 
| 172 | 
            -
             ],
         | 
| 173 | 
            -
             "metadata": {
         | 
| 174 | 
            -
              "kernelspec": {
         | 
| 175 | 
            -
               "display_name": "Ruby 3.0.2",
         | 
| 176 | 
            -
               "language": "ruby",
         | 
| 177 | 
            -
               "name": "ruby"
         | 
| 178 | 
            -
              },
         | 
| 179 | 
            -
              "language_info": {
         | 
| 180 | 
            -
               "file_extension": ".rb",
         | 
| 181 | 
            -
               "mimetype": "application/x-ruby",
         | 
| 182 | 
            -
               "name": "ruby",
         | 
| 183 | 
            -
               "version": "3.0.2"
         | 
| 184 | 
            -
              }
         | 
| 185 | 
            -
             },
         | 
| 186 | 
            -
             "nbformat": 4,
         | 
| 187 | 
            -
             "nbformat_minor": 4
         | 
| 188 | 
            -
            }
         |