red_amber 0.5.0 → 0.5.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.devcontainer/Dockerfile +75 -0
- data/.devcontainer/devcontainer.json +38 -0
- data/.devcontainer/onCreateCommand.sh +26 -0
- data/.rubocop.yml +3 -3
- data/CHANGELOG.md +102 -18
- data/Gemfile +1 -1
- data/README.ja.md +51 -32
- data/README.md +46 -30
- data/Rakefile +55 -0
- data/doc/DataFrame_Comparison.md +9 -13
- data/doc/DataFrame_Comparison_ja.md +61 -0
- data/doc/Dev_Containers.ja.md +290 -0
- data/doc/Dev_Containers.md +292 -0
- data/doc/qmd/examples_of_red_amber.qmd +4596 -0
- data/doc/qmd/red-amber.qmd +90 -0
- data/docker/Dockerfile +2 -2
- data/docker/Gemfile +1 -1
- data/docker/docker-compose.yml +1 -1
- data/docker/readme.md +5 -5
- data/lib/red_amber/data_frame_displayable.rb +1 -1
- data/lib/red_amber/data_frame_loadsave.rb +1 -1
- data/lib/red_amber/data_frame_selectable.rb +2 -2
- data/lib/red_amber/data_frame_variable_operation.rb +6 -6
- data/lib/red_amber/group.rb +287 -39
- data/lib/red_amber/subframes.rb +6 -6
- data/lib/red_amber/vector.rb +2 -1
- data/lib/red_amber/vector_selectable.rb +68 -35
- data/lib/red_amber/vector_string_function.rb +81 -13
- data/lib/red_amber/version.rb +1 -1
- data/red_amber.gemspec +3 -3
- metadata +15 -11
- data/docker/Gemfile.lock +0 -118
- data/docker/example +0 -86
- data/docker/notebook/examples_of_red_amber.ipynb +0 -8562
- data/docker/notebook/red-amber.ipynb +0 -188
| @@ -0,0 +1,4596 @@ | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            title: 127 examples of Red Amber
         | 
| 3 | 
            +
            author: heronshoes
         | 
| 4 | 
            +
            date: '2023-08-11'
         | 
| 5 | 
            +
            format:
         | 
| 6 | 
            +
              pdf:
         | 
| 7 | 
            +
                code-fold: false
         | 
| 8 | 
            +
            jupyter: ruby
         | 
| 9 | 
            +
            format:
         | 
| 10 | 
            +
              pdf:
         | 
| 11 | 
            +
                toc: true
         | 
| 12 | 
            +
                fontfamily: libertinus
         | 
| 13 | 
            +
                colorlinks: true
         | 
| 14 | 
            +
            ---
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            For RedAmber Version 0.5.1, 0.5.2 and Arrow version 12.0.1, 13.0.0 .
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            ## 1. Install
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            Install requirements before you install RedAmber.
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            - Ruby (>= 3.0)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            - Apache Arrow (>= 12.0.0)
         | 
| 25 | 
            +
            - Apache Arrow GLib (>= 12.0.0)
         | 
| 26 | 
            +
            - Apache Parquet GLib (>= 12.0.0)  # if you need IO from/to Parquet resource.
         | 
| 27 | 
            +
             | 
| 28 | 
            +
              See [Apache Arrow install document](https://arrow.apache.org/install/).
         | 
| 29 | 
            +
             | 
| 30 | 
            +
              - Minimum installation example for the latest Ubuntu:
         | 
| 31 | 
            +
                ```shell
         | 
| 32 | 
            +
                sudo apt update
         | 
| 33 | 
            +
                sudo apt install -y -V ca-certificates lsb-release wget
         | 
| 34 | 
            +
                wget https://apache.jfrog.io/artifactory/arrow/$(lsb_release --id --short | tr 'A-Z' 'a-z')/apache-arrow-apt-source-latest-$(lsb_release --codename --short).deb
         | 
| 35 | 
            +
                sudo apt install -y -V ./apache-arrow-apt-source-latest-$(lsb_release --codename --short).deb
         | 
| 36 | 
            +
                sudo apt update
         | 
| 37 | 
            +
                sudo apt install -y -V libarrow-dev
         | 
| 38 | 
            +
                sudo apt install -y -V libarrow-glib-dev
         | 
| 39 | 
            +
                ```
         | 
| 40 | 
            +
              - On Fedora 38 (Rawhide):
         | 
| 41 | 
            +
                ```shell
         | 
| 42 | 
            +
                sudo dnf update
         | 
| 43 | 
            +
                sudo dnf -y install gcc-c++ libarrow-devel libarrow-glib-devel ruby-devel libyaml-devel
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
              - On macOS, you can install Apache Arrow C++ library using Homebrew:
         | 
| 47 | 
            +
                ```shell
         | 
| 48 | 
            +
                brew install apache-arrow
         | 
| 49 | 
            +
                ```
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                and GLib (C) package with:
         | 
| 52 | 
            +
                ```shell
         | 
| 53 | 
            +
                brew install apache-arrow-glib
         | 
| 54 | 
            +
                ```
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            If you prepared Apache Arrow, add these lines to your Gemfile:
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            ```ruby
         | 
| 59 | 
            +
            gem 'red-arrow',   '>= 12.0.0'
         | 
| 60 | 
            +
            gem 'red_amber'
         | 
| 61 | 
            +
            gem 'red-arrow-numo-narray'    # Optional, recommended if you use inputs from Numo::NArray
         | 
| 62 | 
            +
                                           # or use random sampling feature.
         | 
| 63 | 
            +
            gem 'red-parquet', '>= 12.0.0' # Optional, if you use IO from/to parquet
         | 
| 64 | 
            +
            gem 'red-datasets-arrow'       # Optional, recommended if you use Red Datasets
         | 
| 65 | 
            +
            gem 'red-arrow-activerecord'   # Optional, if you use Active Record
         | 
| 66 | 
            +
            gem 'rover-df',                # Optional, if you use IO from/to Rover::DataFrame.
         | 
| 67 | 
            +
            ```
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            And then execute `bundle install` or install it yourself as `gem install red_amber`.
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            ## 2. Require
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            ```{ruby}
         | 
| 74 | 
            +
            #| tags: []
         | 
| 75 | 
            +
            require 'red_amber' # require 'red-amber' is also OK
         | 
| 76 | 
            +
            include RedAmber
         | 
| 77 | 
            +
            {RedAmber: VERSION, Arrow: Arrow::VERSION}
         | 
| 78 | 
            +
            ```
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            ## 3. Initialize
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            There are several ways to initialize a DataFrame.
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            ```{ruby}
         | 
| 85 | 
            +
            #| tags: []
         | 
| 86 | 
            +
            # From a Hash
         | 
| 87 | 
            +
            DataFrame.new(x: [1, 2, 3], y: %w[A B C])
         | 
| 88 | 
            +
            ```
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            ```{ruby}
         | 
| 91 | 
            +
            #| tags: []
         | 
| 92 | 
            +
            # From a schema and a row-oriented array
         | 
| 93 | 
            +
            DataFrame.new({ x: :uint8, y: :string }, [[1, 'A'], [2, 'B'], [3, 'C']])
         | 
| 94 | 
            +
            ```
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            ```{ruby}
         | 
| 97 | 
            +
            #| tags: []
         | 
| 98 | 
            +
            # From an Arrow::Table
         | 
| 99 | 
            +
            table = Arrow::Table.new(x: [1, 2, 3], y: %w[A B C])
         | 
| 100 | 
            +
            DataFrame.new(table)
         | 
| 101 | 
            +
            ```
         | 
| 102 | 
            +
             | 
| 103 | 
            +
            ```{ruby}
         | 
| 104 | 
            +
            #| tags: []
         | 
| 105 | 
            +
            # From a Rover::DataFrame
         | 
| 106 | 
            +
            require 'rover'
         | 
| 107 | 
            +
            rover = Rover::DataFrame.new(x: [1, 2, 3], y: %w[A B C])
         | 
| 108 | 
            +
            DataFrame.new(rover)
         | 
| 109 | 
            +
            ```
         | 
| 110 | 
            +
             | 
| 111 | 
            +
            ```{ruby}
         | 
| 112 | 
            +
            #| tags: []
         | 
| 113 | 
            +
            # from a datasets in Red Datasets
         | 
| 114 | 
            +
            require 'datasets-arrow'
         | 
| 115 | 
            +
            dataset = Datasets::Penguins.new
         | 
| 116 | 
            +
            penguins = DataFrame.new(dataset) # Since 0.2.2 . If it is older, it must be `dataset.to_arrow`.
         | 
| 117 | 
            +
            ```
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            ```{ruby}
         | 
| 120 | 
            +
            #| tags: []
         | 
| 121 | 
            +
            dataset = Datasets::Rdatasets.new('datasets', 'mtcars')
         | 
| 122 | 
            +
            mtcars = DataFrame.new(dataset)
         | 
| 123 | 
            +
            ```
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            (New from 0.2.3 with Arrow 10.0.0) It is possible to initialize by objects responsible to `to_arrow` since 0.2.3 . Arrays in Numo::NArray is responsible to `to_arrow` with `red-arrow-numo-narray` gem. This feature is proposed by the Red Data Tools member @kojix2 and implemented by @kou in Arrow 10.0.0 and Red Arrow Numo::NArray 0.0.6. Thanks!
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            ```{ruby}
         | 
| 128 | 
            +
            #| tags: []
         | 
| 129 | 
            +
            require 'arrow-numo-narray'
         | 
| 130 | 
            +
             | 
| 131 | 
            +
            DataFrame.new(numo: Numo::DFloat.new(3).rand)
         | 
| 132 | 
            +
            ```
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            Another example by Numo::NArray is [#77. Introduce columns from numo/narray](#77.-Introduce-columns-from-numo/narray).
         | 
| 135 | 
            +
             | 
| 136 | 
            +
            ## 4. Load
         | 
| 137 | 
            +
             | 
| 138 | 
            +
            `RedAmber::DataFrame` delegates `#load` to `Arrow::Table#load`. We can load from `[.arrow, .arrows, .csv, .csv.gz, .tsv]` files.
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            `load` accepts following options:
         | 
| 141 | 
            +
             | 
| 142 | 
            +
            `load(input, format: nil, compression: nil, schema: nil, skip_lines: nil)`
         | 
| 143 | 
            +
             | 
| 144 | 
            +
            - `format` [:arrow_file, :batch, :arrows, :arrow_stream, :stream, :csv, :tsv]
         | 
| 145 | 
            +
            - `compression` [:gzip, nil]
         | 
| 146 | 
            +
            - `schema` [Arrow::Schema]
         | 
| 147 | 
            +
            - `skip_lines` [Regexp]
         | 
| 148 | 
            +
             | 
| 149 | 
            +
            Load from a file 'comecome.csv';
         | 
| 150 | 
            +
             | 
| 151 | 
            +
            ```{ruby}
         | 
| 152 | 
            +
            #| tags: []
         | 
| 153 | 
            +
            file = Tempfile.open(['comecome', '.csv']) do |f|
         | 
| 154 | 
            +
              f.puts(<<~CSV)
         | 
| 155 | 
            +
                name,age
         | 
| 156 | 
            +
                Yasuko,68
         | 
| 157 | 
            +
                Rui,49
         | 
| 158 | 
            +
                Hinata,28
         | 
| 159 | 
            +
              CSV
         | 
| 160 | 
            +
              f
         | 
| 161 | 
            +
            end
         | 
| 162 | 
            +
             | 
| 163 | 
            +
            DataFrame.load(file)
         | 
| 164 | 
            +
            ```
         | 
| 165 | 
            +
             | 
| 166 | 
            +
            Load from a Buffer;
         | 
| 167 | 
            +
             | 
| 168 | 
            +
            ```{ruby}
         | 
| 169 | 
            +
            #| tags: []
         | 
| 170 | 
            +
            DataFrame.load(Arrow::Buffer.new(<<~BUFFER), format: :csv)
         | 
| 171 | 
            +
              name,age
         | 
| 172 | 
            +
              Yasuko,68
         | 
| 173 | 
            +
              Rui,49
         | 
| 174 | 
            +
              Hinata,28
         | 
| 175 | 
            +
            BUFFER
         | 
| 176 | 
            +
            ```
         | 
| 177 | 
            +
             | 
| 178 | 
            +
            Load from a Buffer skipping comment line;
         | 
| 179 | 
            +
             | 
| 180 | 
            +
            ```{ruby}
         | 
| 181 | 
            +
            #| tags: []
         | 
| 182 | 
            +
            DataFrame.load(Arrow::Buffer.new(<<~BUFFER), format: :csv, skip_lines: /^#/)
         | 
| 183 | 
            +
              # comment
         | 
| 184 | 
            +
              name,age
         | 
| 185 | 
            +
              Yasuko,68
         | 
| 186 | 
            +
              Rui,49
         | 
| 187 | 
            +
              Hinata,28
         | 
| 188 | 
            +
            BUFFER
         | 
| 189 | 
            +
            ```
         | 
| 190 | 
            +
             | 
| 191 | 
            +
            ## 5. Load from a URI
         | 
| 192 | 
            +
             | 
| 193 | 
            +
            ```{ruby}
         | 
| 194 | 
            +
            #| tags: []
         | 
| 195 | 
            +
            uri = URI("https://raw.githubusercontent.com/mwaskom/seaborn-data/master/penguins.csv")
         | 
| 196 | 
            +
            DataFrame.load(uri)
         | 
| 197 | 
            +
            ```
         | 
| 198 | 
            +
             | 
| 199 | 
            +
            ## 6. Save
         | 
| 200 | 
            +
             | 
| 201 | 
            +
            `#save` accepts same options as `#load`. See [#4. Load](#4.-Load).
         | 
| 202 | 
            +
             | 
| 203 | 
            +
            ```{ruby}
         | 
| 204 | 
            +
            #| tags: []
         | 
| 205 | 
            +
            penguins.save("penguins.arrow")
         | 
| 206 | 
            +
            penguins.save("penguins.arrows")
         | 
| 207 | 
            +
            penguins.save("penguins.csv")
         | 
| 208 | 
            +
            penguins.save("penguins.csv.gz")
         | 
| 209 | 
            +
            penguins.save("penguins.tsv")
         | 
| 210 | 
            +
            penguins.save("penguins.feather")
         | 
| 211 | 
            +
            ```
         | 
| 212 | 
            +
             | 
| 213 | 
            +
            (Since 0.3.0) `DataFrame#save` returns self.
         | 
| 214 | 
            +
             | 
| 215 | 
            +
            ## 7. to_s/inspect
         | 
| 216 | 
            +
             | 
| 217 | 
            +
            `to_s` or `inspect` (it uses to_s inside) shows a preview of the dataframe.
         | 
| 218 | 
            +
             | 
| 219 | 
            +
            It shows first 5 and last 3 rows if it has many rows. Columns are also omitted if line is exceeded 80 letters.
         | 
| 220 | 
            +
             | 
| 221 | 
            +
            ```{ruby}
         | 
| 222 | 
            +
            #| tags: []
         | 
| 223 | 
            +
            df = DataFrame.new(
         | 
| 224 | 
            +
              x: [1, 2, 3, 4, 5],
         | 
| 225 | 
            +
              y: [1, 2, 3, 0/0.0, nil],
         | 
| 226 | 
            +
              s: %w[A B C D] << nil,
         | 
| 227 | 
            +
              b: [true, false, true, false, nil]
         | 
| 228 | 
            +
            )
         | 
| 229 | 
            +
            ```
         | 
| 230 | 
            +
             | 
| 231 | 
            +
            ```{ruby}
         | 
| 232 | 
            +
            #| tags: []
         | 
| 233 | 
            +
            p penguins; nil
         | 
| 234 | 
            +
            ```
         | 
| 235 | 
            +
             | 
| 236 | 
            +
            ## 8. Show table
         | 
| 237 | 
            +
             | 
| 238 | 
            +
            `#table` shows Arrow::Table object. The alias is `#to_arrow`.
         | 
| 239 | 
            +
             | 
| 240 | 
            +
            ```{ruby}
         | 
| 241 | 
            +
            #| tags: []
         | 
| 242 | 
            +
            df.table
         | 
| 243 | 
            +
            ```
         | 
| 244 | 
            +
             | 
| 245 | 
            +
            ```{ruby}
         | 
| 246 | 
            +
            #| tags: []
         | 
| 247 | 
            +
            penguins.to_arrow
         | 
| 248 | 
            +
            ```
         | 
| 249 | 
            +
             | 
| 250 | 
            +
            ```{ruby}
         | 
| 251 | 
            +
            #| tags: []
         | 
| 252 | 
            +
            # This is a Red Arrow's feature
         | 
| 253 | 
            +
            puts df.table.to_s(format: :column)
         | 
| 254 | 
            +
            ```
         | 
| 255 | 
            +
             | 
| 256 | 
            +
            ```{ruby}
         | 
| 257 | 
            +
            #| tags: []
         | 
| 258 | 
            +
            # This is also a Red Arrow's feature
         | 
| 259 | 
            +
            puts df.table.to_s(format: :list)
         | 
| 260 | 
            +
            ```
         | 
| 261 | 
            +
             | 
| 262 | 
            +
            ## 9. TDR
         | 
| 263 | 
            +
             | 
| 264 | 
            +
            TDR means 'Transposed Dataframe Representation'. It shows columns in lateral just the same shape as initializing by a Hash. TDR has some information which is useful for the exploratory data processing.
         | 
| 265 | 
            +
             | 
| 266 | 
            +
            - DataFrame shape: n_rows x n_columns
         | 
| 267 | 
            +
            - Data types
         | 
| 268 | 
            +
            - Levels: number of unique elements
         | 
| 269 | 
            +
            - Data preview: same data is aggregated if level is smaller (tally mode)
         | 
| 270 | 
            +
            - Show counts of abnormal element: NaN and nil
         | 
| 271 | 
            +
             | 
| 272 | 
            +
            It is similar to dplyr's (or Polars's) `glimpse()` so we have an alias `#glimpse` (since 0.4.0).
         | 
| 273 | 
            +
             | 
| 274 | 
            +
            ```{ruby}
         | 
| 275 | 
            +
            #| tags: []
         | 
| 276 | 
            +
            df.tdr
         | 
| 277 | 
            +
            ```
         | 
| 278 | 
            +
             | 
| 279 | 
            +
            ```{ruby}
         | 
| 280 | 
            +
            #| tags: []
         | 
| 281 | 
            +
            penguins.tdr
         | 
| 282 | 
            +
            ```
         | 
| 283 | 
            +
             | 
| 284 | 
            +
            `#tdr` has some options:
         | 
| 285 | 
            +
             | 
| 286 | 
            +
            `limit` : to limit a number of variables to show. Default value is `limit=10`.
         | 
| 287 | 
            +
             | 
| 288 | 
            +
            ```{ruby}
         | 
| 289 | 
            +
            #| tags: []
         | 
| 290 | 
            +
            penguins.tdr(3)
         | 
| 291 | 
            +
            ```
         | 
| 292 | 
            +
             | 
| 293 | 
            +
            By default `#tdr` shows 9 variables at maximum. `#tdr(:all)` will show all variables.
         | 
| 294 | 
            +
             | 
| 295 | 
            +
            ```{ruby}
         | 
| 296 | 
            +
            #| tags: []
         | 
| 297 | 
            +
            mtcars.tdr(:all)
         | 
| 298 | 
            +
            ```
         | 
| 299 | 
            +
             | 
| 300 | 
            +
            (Since 0.4.0) `#tdra` method is short cut for `#tdr(:all)`
         | 
| 301 | 
            +
             | 
| 302 | 
            +
            ```{ruby}
         | 
| 303 | 
            +
            #| tags: []
         | 
| 304 | 
            +
            mtcars.tdra
         | 
| 305 | 
            +
            ```
         | 
| 306 | 
            +
             | 
| 307 | 
            +
            `elements` : max number of elements to show in observations. Default value is `elements: 5`.
         | 
| 308 | 
            +
             | 
| 309 | 
            +
            ```{ruby}
         | 
| 310 | 
            +
            #| tags: []
         | 
| 311 | 
            +
            penguins.tdr(elements: 3) # Show first 3 items in data
         | 
| 312 | 
            +
            ```
         | 
| 313 | 
            +
             | 
| 314 | 
            +
            `tally` : max level to use tally mode. Level means size of `tally`ed hash. Default value is `tally: 5`.
         | 
| 315 | 
            +
             | 
| 316 | 
            +
            ```{ruby}
         | 
| 317 | 
            +
            #| tags: []
         | 
| 318 | 
            +
            penguins.tdr(tally: 0) # Don't use tally mode
         | 
| 319 | 
            +
            ```
         | 
| 320 | 
            +
             | 
| 321 | 
            +
            `#tdr_str` returns a String. `#tdr` do the same thing as `puts #tdr_str`
         | 
| 322 | 
            +
             | 
| 323 | 
            +
            ```{ruby}
         | 
| 324 | 
            +
            #| tags: []
         | 
| 325 | 
            +
            puts penguins.tdr_str
         | 
| 326 | 
            +
            ```
         | 
| 327 | 
            +
             | 
| 328 | 
            +
            (Since 0.4.0) `#glimpse` is an alias for `#tdr`.
         | 
| 329 | 
            +
             | 
| 330 | 
            +
            ```{ruby}
         | 
| 331 | 
            +
            #| tags: []
         | 
| 332 | 
            +
            mtcars.glimpse(:all, elements: 10)
         | 
| 333 | 
            +
            ```
         | 
| 334 | 
            +
             | 
| 335 | 
            +
            ## 10. Size and shape
         | 
| 336 | 
            +
             | 
| 337 | 
            +
            ```{ruby}
         | 
| 338 | 
            +
            #| tags: []
         | 
| 339 | 
            +
            # same as n_rows, n_obs
         | 
| 340 | 
            +
            df.size
         | 
| 341 | 
            +
            ```
         | 
| 342 | 
            +
             | 
| 343 | 
            +
            ```{ruby}
         | 
| 344 | 
            +
            #| tags: []
         | 
| 345 | 
            +
            # same as n_cols, n_vars
         | 
| 346 | 
            +
            df.n_keys
         | 
| 347 | 
            +
            ```
         | 
| 348 | 
            +
             | 
| 349 | 
            +
            ```{ruby}
         | 
| 350 | 
            +
            #| tags: []
         | 
| 351 | 
            +
            # [df.size, df.n_keys], [df.n_rows, df.n_cols]
         | 
| 352 | 
            +
            df.shape
         | 
| 353 | 
            +
            ```
         | 
| 354 | 
            +
             | 
| 355 | 
            +
            ## 11. Keys
         | 
| 356 | 
            +
             | 
| 357 | 
            +
            ```{ruby}
         | 
| 358 | 
            +
            #| tags: []
         | 
| 359 | 
            +
            df.keys
         | 
| 360 | 
            +
            ```
         | 
| 361 | 
            +
             | 
| 362 | 
            +
            ```{ruby}
         | 
| 363 | 
            +
            #| tags: []
         | 
| 364 | 
            +
            penguins.keys
         | 
| 365 | 
            +
            ```
         | 
| 366 | 
            +
             | 
| 367 | 
            +
            ## 12. Types
         | 
| 368 | 
            +
             | 
| 369 | 
            +
            ```{ruby}
         | 
| 370 | 
            +
            #| tags: []
         | 
| 371 | 
            +
            df.types
         | 
| 372 | 
            +
            ```
         | 
| 373 | 
            +
             | 
| 374 | 
            +
            ```{ruby}
         | 
| 375 | 
            +
            #| tags: []
         | 
| 376 | 
            +
            penguins.types
         | 
| 377 | 
            +
            ```
         | 
| 378 | 
            +
             | 
| 379 | 
            +
            ## 13. Data type classes
         | 
| 380 | 
            +
             | 
| 381 | 
            +
            ```{ruby}
         | 
| 382 | 
            +
            #| tags: []
         | 
| 383 | 
            +
            df.type_classes
         | 
| 384 | 
            +
            ```
         | 
| 385 | 
            +
             | 
| 386 | 
            +
            ```{ruby}
         | 
| 387 | 
            +
            #| tags: []
         | 
| 388 | 
            +
            penguins.type_classes
         | 
| 389 | 
            +
            ```
         | 
| 390 | 
            +
             | 
| 391 | 
            +
            ## 14. Indices
         | 
| 392 | 
            +
             | 
| 393 | 
            +
            Another example of `indices` is in [66. Custom index](#66.-Custom-index).
         | 
| 394 | 
            +
             | 
| 395 | 
            +
            ```{ruby}
         | 
| 396 | 
            +
            #| tags: []
         | 
| 397 | 
            +
            df.indexes
         | 
| 398 | 
            +
            # or
         | 
| 399 | 
            +
            df.indices
         | 
| 400 | 
            +
            ```
         | 
| 401 | 
            +
             | 
| 402 | 
            +
            (Since 0.2.3) `#indices` returns Vector.
         | 
| 403 | 
            +
             | 
| 404 | 
            +
            ## 15. To an Array or a Hash
         | 
| 405 | 
            +
             | 
| 406 | 
            +
            DataFrame#to_a returns an array of row-oriented data without a header.
         | 
| 407 | 
            +
             | 
| 408 | 
            +
            ```{ruby}
         | 
| 409 | 
            +
            #| tags: []
         | 
| 410 | 
            +
            df.to_a
         | 
| 411 | 
            +
            ```
         | 
| 412 | 
            +
             | 
| 413 | 
            +
            If you need a column-oriented array with keys, use `.to_h.to_a`
         | 
| 414 | 
            +
             | 
| 415 | 
            +
            ```{ruby}
         | 
| 416 | 
            +
            #| tags: []
         | 
| 417 | 
            +
            df.to_h
         | 
| 418 | 
            +
            ```
         | 
| 419 | 
            +
             | 
| 420 | 
            +
            ```{ruby}
         | 
| 421 | 
            +
            #| tags: []
         | 
| 422 | 
            +
            df.to_h.to_a
         | 
| 423 | 
            +
            ```
         | 
| 424 | 
            +
             | 
| 425 | 
            +
            ## 16. Schema
         | 
| 426 | 
            +
             | 
| 427 | 
            +
            Schema is keys and value types pairs as a Hash.
         | 
| 428 | 
            +
             | 
| 429 | 
            +
            ```{ruby}
         | 
| 430 | 
            +
            #| tags: []
         | 
| 431 | 
            +
            df.schema
         | 
| 432 | 
            +
            ```
         | 
| 433 | 
            +
             | 
| 434 | 
            +
            ## 17. Vector
         | 
| 435 | 
            +
             | 
| 436 | 
            +
            Each variable (column in the table) is represented by a Vector object.
         | 
| 437 | 
            +
             | 
| 438 | 
            +
            ```{ruby}
         | 
| 439 | 
            +
            #| tags: []
         | 
| 440 | 
            +
            df[:x] # This syntax will come later
         | 
| 441 | 
            +
            ```
         | 
| 442 | 
            +
             | 
| 443 | 
            +
            Or create new Vector by the constructor.
         | 
| 444 | 
            +
             | 
| 445 | 
            +
            ```{ruby}
         | 
| 446 | 
            +
            #| tags: []
         | 
| 447 | 
            +
            Vector.new(1, 2, 3, 4, 5)
         | 
| 448 | 
            +
            ```
         | 
| 449 | 
            +
             | 
| 450 | 
            +
            ```{ruby}
         | 
| 451 | 
            +
            #| tags: []
         | 
| 452 | 
            +
            Vector.new(1..5)
         | 
| 453 | 
            +
            ```
         | 
| 454 | 
            +
             | 
| 455 | 
            +
            ```{ruby}
         | 
| 456 | 
            +
            #| tags: []
         | 
| 457 | 
            +
            Vector.new([1, 2, 3], [4, 5])
         | 
| 458 | 
            +
            ```
         | 
| 459 | 
            +
             | 
| 460 | 
            +
            ```{ruby}
         | 
| 461 | 
            +
            #| tags: []
         | 
| 462 | 
            +
            array = Arrow::Array.new([1, 2, 3, 4, 5])
         | 
| 463 | 
            +
            Vector.new(array)
         | 
| 464 | 
            +
            ```
         | 
| 465 | 
            +
             | 
| 466 | 
            +
            (Since 0.4.2) New constructor Vector[*array_like] has introduced.
         | 
| 467 | 
            +
             | 
| 468 | 
            +
            ```{ruby}
         | 
| 469 | 
            +
            #| tags: []
         | 
| 470 | 
            +
            Vector[1, 2, 3, 4, 5]
         | 
| 471 | 
            +
            ```
         | 
| 472 | 
            +
             | 
| 473 | 
            +
            ## 18. Vectors
         | 
| 474 | 
            +
             | 
| 475 | 
            +
            Returns an Array of Vectors as a DataFrame.
         | 
| 476 | 
            +
             | 
| 477 | 
            +
            ```{ruby}
         | 
| 478 | 
            +
            #| tags: []
         | 
| 479 | 
            +
            df.vectors
         | 
| 480 | 
            +
            ```
         | 
| 481 | 
            +
             | 
| 482 | 
            +
            ## 19. Variables
         | 
| 483 | 
            +
             | 
| 484 | 
            +
            Returns key and Vector pairs as a Hash.
         | 
| 485 | 
            +
             | 
| 486 | 
            +
            ```{ruby}
         | 
| 487 | 
            +
            #| tags: []
         | 
| 488 | 
            +
            df.variables
         | 
| 489 | 
            +
            ```
         | 
| 490 | 
            +
             | 
| 491 | 
            +
            ## 20. Select columns by #[ ]
         | 
| 492 | 
            +
             | 
| 493 | 
            +
            `DataFrame#[]` is overloading column operations and row operations.
         | 
| 494 | 
            +
             | 
| 495 | 
            +
            - For columns (variables)
         | 
| 496 | 
            +
              - Key in a Symbol: `df[:symbol]`
         | 
| 497 | 
            +
              - Key in a String: `df["string"]`
         | 
| 498 | 
            +
              - Keys in an Array: `df[:symbol1, "string", :symbol2]`
         | 
| 499 | 
            +
              - Keys by indeces: `df[df.keys[0]`, `df[df.keys[1,2]]`, `df[df.keys[1..]]`
         | 
| 500 | 
            +
             | 
| 501 | 
            +
            ```{ruby}
         | 
| 502 | 
            +
            #| tags: []
         | 
| 503 | 
            +
            # Keys in a Symbol and a String
         | 
| 504 | 
            +
            df[:x, 'y']
         | 
| 505 | 
            +
            ```
         | 
| 506 | 
            +
             | 
| 507 | 
            +
            ```{ruby}
         | 
| 508 | 
            +
            #| tags: []
         | 
| 509 | 
            +
            # Keys in a Range
         | 
| 510 | 
            +
            df[:x..:y]
         | 
| 511 | 
            +
            ```
         | 
| 512 | 
            +
             | 
| 513 | 
            +
            ```{ruby}
         | 
| 514 | 
            +
            #| tags: []
         | 
| 515 | 
            +
            # Keys with a index Range, and a symbol
         | 
| 516 | 
            +
            df[df.keys[2..], :x]
         | 
| 517 | 
            +
            ```
         | 
| 518 | 
            +
             | 
| 519 | 
            +
            ## 21. Select rows by #[ ]
         | 
| 520 | 
            +
            `DataFrame#[]` is overloading column operations and row operations.
         | 
| 521 | 
            +
             | 
| 522 | 
            +
            - For rows (observations)
         | 
| 523 | 
            +
              - Select rows by a Index: `df[index]`
         | 
| 524 | 
            +
              - Select rows by Indices: `df[indices]` # Array, Arrow::Array, Vectors are acceptable for indices
         | 
| 525 | 
            +
              - Select rows by Ranges: `df[range]`
         | 
| 526 | 
            +
              - Select rows by Booleans: `df[booleans]` # Array, Arrow::Array, Vectors are acceptable for booleans
         | 
| 527 | 
            +
             | 
| 528 | 
            +
            ```{ruby}
         | 
| 529 | 
            +
            #| tags: []
         | 
| 530 | 
            +
            # indices
         | 
| 531 | 
            +
            df[0, 2, 1]
         | 
| 532 | 
            +
            ```
         | 
| 533 | 
            +
             | 
| 534 | 
            +
            ```{ruby}
         | 
| 535 | 
            +
            #| tags: []
         | 
| 536 | 
            +
            # including a Range
         | 
| 537 | 
            +
            # negative indices are also acceptable
         | 
| 538 | 
            +
            df[1..2, -1]
         | 
| 539 | 
            +
            ```
         | 
| 540 | 
            +
             | 
| 541 | 
            +
            ```{ruby}
         | 
| 542 | 
            +
            #| tags: []
         | 
| 543 | 
            +
            # booleans
         | 
| 544 | 
            +
            # length of boolean should be the same as self
         | 
| 545 | 
            +
            df[false, true, true, false, true]
         | 
| 546 | 
            +
            ```
         | 
| 547 | 
            +
             | 
| 548 | 
            +
            ```{ruby}
         | 
| 549 | 
            +
            #| tags: []
         | 
| 550 | 
            +
            # Arrow::Array
         | 
| 551 | 
            +
            indices = Arrow::UInt8Array.new([0,2,4])
         | 
| 552 | 
            +
            df[indices]
         | 
| 553 | 
            +
            ```
         | 
| 554 | 
            +
             | 
| 555 | 
            +
            ```{ruby}
         | 
| 556 | 
            +
            #| tags: []
         | 
| 557 | 
            +
            # By a Vector as indices
         | 
| 558 | 
            +
            indices = Vector.new(df.indices)
         | 
| 559 | 
            +
            # indices > 1 returns a boolean Vector
         | 
| 560 | 
            +
            df[indices > 1]
         | 
| 561 | 
            +
            ```
         | 
| 562 | 
            +
             | 
| 563 | 
            +
            ```{ruby}
         | 
| 564 | 
            +
            #| tags: []
         | 
| 565 | 
            +
            # By a Vector as booleans
         | 
| 566 | 
            +
            booleans = df[:b]
         | 
| 567 | 
            +
            ```
         | 
| 568 | 
            +
             | 
| 569 | 
            +
            ```{ruby}
         | 
| 570 | 
            +
            #| tags: []
         | 
| 571 | 
            +
            df[booleans]
         | 
| 572 | 
            +
            ```
         | 
| 573 | 
            +
             | 
| 574 | 
            +
            ## 22. empty?
         | 
| 575 | 
            +
             | 
| 576 | 
            +
            ```{ruby}
         | 
| 577 | 
            +
            #| tags: []
         | 
| 578 | 
            +
            df.empty?
         | 
| 579 | 
            +
            ```
         | 
| 580 | 
            +
             | 
| 581 | 
            +
            ```{ruby}
         | 
| 582 | 
            +
            #| tags: []
         | 
| 583 | 
            +
            DataFrame.new
         | 
| 584 | 
            +
            ```
         | 
| 585 | 
            +
             | 
| 586 | 
            +
            ```{ruby}
         | 
| 587 | 
            +
            #| tags: []
         | 
| 588 | 
            +
            DataFrame.new.empty?
         | 
| 589 | 
            +
            ```
         | 
| 590 | 
            +
             | 
| 591 | 
            +
            ## 23. Select columns by pick
         | 
| 592 | 
            +
             | 
| 593 | 
            +
            `DataFrame#pick` accepts an Array of keys to pick up columns (variables) and creates a new DataFrame. You can change the order of columns at a same time.
         | 
| 594 | 
            +
             | 
| 595 | 
            +
            The name `pick` comes from the action to pick variables(columns) according to the label keys.
         | 
| 596 | 
            +
             | 
| 597 | 
            +
            ```{ruby}
         | 
| 598 | 
            +
            #| tags: []
         | 
| 599 | 
            +
            df.pick(:s, :y)
         | 
| 600 | 
            +
            # or
         | 
| 601 | 
            +
            df.pick([:s, :y]) # OK too.
         | 
| 602 | 
            +
            ```
         | 
| 603 | 
            +
             | 
| 604 | 
            +
            Or use a boolean Array of lengeh `n_key` to `pick`. This style preserves the order of variables.
         | 
| 605 | 
            +
             | 
| 606 | 
            +
            ```{ruby}
         | 
| 607 | 
            +
            #| tags: []
         | 
| 608 | 
            +
            df.pick(false, true, true, false)
         | 
| 609 | 
            +
            # or
         | 
| 610 | 
            +
            df.pick([false, true, true, false])
         | 
| 611 | 
            +
            # or
         | 
| 612 | 
            +
            df.pick(Vector.new([false, true, true, false]))
         | 
| 613 | 
            +
            ```
         | 
| 614 | 
            +
             | 
| 615 | 
            +
            `#pick` also accepts a block in the context of self.
         | 
| 616 | 
            +
             | 
| 617 | 
            +
            Next example is picking up numeric variables.
         | 
| 618 | 
            +
             | 
| 619 | 
            +
            ```{ruby}
         | 
| 620 | 
            +
            #| tags: []
         | 
| 621 | 
            +
            # reciever is required with the argument style
         | 
| 622 | 
            +
            df.pick(df.vectors.map(&:numeric?))
         | 
| 623 | 
            +
             | 
| 624 | 
            +
            # with a block
         | 
| 625 | 
            +
            df.pick { vectors.map(&:numeric?) }
         | 
| 626 | 
            +
            ```
         | 
| 627 | 
            +
             | 
| 628 | 
            +
            `pick` also accepts numeric indexes.
         | 
| 629 | 
            +
             | 
| 630 | 
            +
            (Since 0.2.1)
         | 
| 631 | 
            +
             | 
| 632 | 
            +
            ```{ruby}
         | 
| 633 | 
            +
            #| tags: []
         | 
| 634 | 
            +
            df.pick(0, 3)
         | 
| 635 | 
            +
            ```
         | 
| 636 | 
            +
             | 
| 637 | 
            +
            ## 24. Reject columns by drop
         | 
| 638 | 
            +
             | 
| 639 | 
            +
            `DataFrame#drop` accepts an Array keys to drop columns (variables) to create a remainer DataFrame.
         | 
| 640 | 
            +
             | 
| 641 | 
            +
            The name `drop` comes from the pair word of `pick`.
         | 
| 642 | 
            +
             | 
| 643 | 
            +
            ```{ruby}
         | 
| 644 | 
            +
            #| tags: []
         | 
| 645 | 
            +
            df.drop(:x, :b)
         | 
| 646 | 
            +
            # df.drop([:x, :b]) #is OK too.
         | 
| 647 | 
            +
            ```
         | 
| 648 | 
            +
             | 
| 649 | 
            +
            Or use a boolean Array of lengeh `n_key` to `drop`.
         | 
| 650 | 
            +
             | 
| 651 | 
            +
            ```{ruby}
         | 
| 652 | 
            +
            #| tags: []
         | 
| 653 | 
            +
            df.drop(true, false, false, true)
         | 
| 654 | 
            +
            # df.drop([true, false, false, true]) # is OK too
         | 
| 655 | 
            +
            ```
         | 
| 656 | 
            +
             | 
| 657 | 
            +
            `#drop` also accepts a block in the context of self.
         | 
| 658 | 
            +
             | 
| 659 | 
            +
            Next example will drop variables which have nil or NaN values.
         | 
| 660 | 
            +
             | 
| 661 | 
            +
            ```{ruby}
         | 
| 662 | 
            +
            #| tags: []
         | 
| 663 | 
            +
            df.drop { vectors.map { |v| v.is_na.any } }
         | 
| 664 | 
            +
            ```
         | 
| 665 | 
            +
             | 
| 666 | 
            +
            Argument style is also acceptable but it requires the reciever 'df'.
         | 
| 667 | 
            +
             | 
| 668 | 
            +
            ```{ruby}
         | 
| 669 | 
            +
            #| tags: []
         | 
| 670 | 
            +
            df.drop(df.vectors.map { |v| v.is_na.any })
         | 
| 671 | 
            +
            ```
         | 
| 672 | 
            +
             | 
| 673 | 
            +
            `drop` also accepts numeric indexes.
         | 
| 674 | 
            +
             | 
| 675 | 
            +
            (Since 0.2.1)
         | 
| 676 | 
            +
             | 
| 677 | 
            +
            ```{ruby}
         | 
| 678 | 
            +
            #| tags: []
         | 
| 679 | 
            +
            df.drop(0, 3)
         | 
| 680 | 
            +
            ```
         | 
| 681 | 
            +
             | 
| 682 | 
            +
            ## 25. Pick/drop and nil
         | 
| 683 | 
            +
             | 
| 684 | 
            +
            When `pick` or `drop` is used with booleans, nil in the booleans is treated as false. This behavior is aligned with Ruby's `BasicObject#!`.
         | 
| 685 | 
            +
             | 
| 686 | 
            +
            ```{ruby}
         | 
| 687 | 
            +
            #| tags: []
         | 
| 688 | 
            +
            booleans = [true, true, false, nil]
         | 
| 689 | 
            +
            booleans_invert = booleans.map(&:!) # => [false, false, true, true] because nil.! is true
         | 
| 690 | 
            +
            df.pick(booleans) == df.drop(booleans_invert)
         | 
| 691 | 
            +
            ```
         | 
| 692 | 
            +
             | 
| 693 | 
            +
            ## 26. Vector#invert, #primitive_invert
         | 
| 694 | 
            +
             | 
| 695 | 
            +
            For the boolean Vector;
         | 
| 696 | 
            +
             | 
| 697 | 
            +
            ```{ruby}
         | 
| 698 | 
            +
            #| tags: []
         | 
| 699 | 
            +
            vector = Vector.new(booleans)
         | 
| 700 | 
            +
            ```
         | 
| 701 | 
            +
             | 
| 702 | 
            +
            nil is converted to nil by `Vector#invert`.
         | 
| 703 | 
            +
             | 
| 704 | 
            +
            ```{ruby}
         | 
| 705 | 
            +
            #| tags: []
         | 
| 706 | 
            +
            vector.invert
         | 
| 707 | 
            +
            # or
         | 
| 708 | 
            +
            !vector
         | 
| 709 | 
            +
            ```
         | 
| 710 | 
            +
             | 
| 711 | 
            +
            So `df.pick(booleans) != df.drop(booleans.invert)` when booleans have any nils.
         | 
| 712 | 
            +
             | 
| 713 | 
            +
            On the other hand, `Vector#primitive_invert` follows Ruby's `BasicObject#!`'s behavior. Then pick and drop keep 'MECE' behavior.
         | 
| 714 | 
            +
             | 
| 715 | 
            +
            ```{ruby}
         | 
| 716 | 
            +
            #| tags: []
         | 
| 717 | 
            +
            vector.primitive_invert
         | 
| 718 | 
            +
            ```
         | 
| 719 | 
            +
             | 
| 720 | 
            +
            ```{ruby}
         | 
| 721 | 
            +
            #| tags: []
         | 
| 722 | 
            +
            df.pick(vector) == df.drop(vector.primitive_invert)
         | 
| 723 | 
            +
            ```
         | 
| 724 | 
            +
             | 
| 725 | 
            +
            ## 27. Pick/drop, #[] and #v
         | 
| 726 | 
            +
             | 
| 727 | 
            +
            When `pick` or `drop` select a single column (variable), it returns a `DataFrame` with one column (variable).
         | 
| 728 | 
            +
             | 
| 729 | 
            +
            ```{ruby}
         | 
| 730 | 
            +
            #| tags: []
         | 
| 731 | 
            +
            df.pick(:x) # or
         | 
| 732 | 
            +
            df.drop(:y, :s, :b)
         | 
| 733 | 
            +
            ```
         | 
| 734 | 
            +
             | 
| 735 | 
            +
            In contrast, when `[]` selects a single column (variable), it returns a `Vector`.
         | 
| 736 | 
            +
             | 
| 737 | 
            +
            ```{ruby}
         | 
| 738 | 
            +
            #| tags: []
         | 
| 739 | 
            +
            df[:x]
         | 
| 740 | 
            +
            ```
         | 
| 741 | 
            +
             | 
| 742 | 
            +
            This behavior may be useful to use with DataFrame manipulation verbs (like pick, drop, slice, remove, assign, rename).
         | 
| 743 | 
            +
             | 
| 744 | 
            +
            ```{ruby}
         | 
| 745 | 
            +
            #| tags: []
         | 
| 746 | 
            +
            df.pick { keys.select { |key| df[key].numeric? } }
         | 
| 747 | 
            +
            ```
         | 
| 748 | 
            +
             | 
| 749 | 
            +
            `df#v` method is same as `df#[]` to pick a Vector. But a little bit faster and easy to use in the block.
         | 
| 750 | 
            +
             | 
| 751 | 
            +
            ```{ruby}
         | 
| 752 | 
            +
            #| tags: []
         | 
| 753 | 
            +
            df.v(:x)
         | 
| 754 | 
            +
            ```
         | 
| 755 | 
            +
             | 
| 756 | 
            +
            ## 28. Slice
         | 
| 757 | 
            +
             | 
| 758 | 
            +
            Another example of `slice` is [#70. Row index label by slice_by](#70.-Row-index-label-by-slice_by).
         | 
| 759 | 
            +
             | 
| 760 | 
            +
            `slice` selects rows (records) to create a subset of a DataFrame.
         | 
| 761 | 
            +
             | 
| 762 | 
            +
            `slice(indeces)` accepts indices as arguments. Indices should be Integers, Floats or Ranges of Integers. Negative index from the tail like Ruby's Array is also acceptable.
         | 
| 763 | 
            +
             | 
| 764 | 
            +
            ```{ruby}
         | 
| 765 | 
            +
            #| tags: []
         | 
| 766 | 
            +
            # returns 5 rows from the start and 5 rows from the end
         | 
| 767 | 
            +
            penguins.slice(0...5, -5..-1)
         | 
| 768 | 
            +
            ```
         | 
| 769 | 
            +
             | 
| 770 | 
            +
            ```{ruby}
         | 
| 771 | 
            +
            #| tags: []
         | 
| 772 | 
            +
            # slice accepts Float index
         | 
| 773 | 
            +
            # 33% of 344 observations in index => 113.52 th data ??
         | 
| 774 | 
            +
            indexed_penguins = penguins.assign_left { [:index, indexes] } # #assign_left and assigner by Array is 0.2.0 feature
         | 
| 775 | 
            +
            indexed_penguins.slice(penguins.size * 0.33)
         | 
| 776 | 
            +
            ```
         | 
| 777 | 
            +
             | 
| 778 | 
            +
            Indices in Vectors or Arrow::Arrays are also acceptable.
         | 
| 779 | 
            +
             | 
| 780 | 
            +
            Another way to select in `slice` is to use booleans. An alias for this feature is `filter`.
         | 
| 781 | 
            +
            - Booleans is an Array, Arrow::Array, Vector or their Array.
         | 
| 782 | 
            +
            - Each data type must be boolean.
         | 
| 783 | 
            +
            - Size of booleans must be same as the size of self.
         | 
| 784 | 
            +
             | 
| 785 | 
            +
            ```{ruby}
         | 
| 786 | 
            +
            #| tags: []
         | 
| 787 | 
            +
            # make boolean Vector to check over 40
         | 
| 788 | 
            +
            booleans = penguins[:bill_length_mm] > 40
         | 
| 789 | 
            +
            ```
         | 
| 790 | 
            +
             | 
| 791 | 
            +
            ```{ruby}
         | 
| 792 | 
            +
            #| tags: []
         | 
| 793 | 
            +
            penguins.slice(booleans)
         | 
| 794 | 
            +
            ```
         | 
| 795 | 
            +
             | 
| 796 | 
            +
            `slice` accepts a block.
         | 
| 797 | 
            +
            - We can't use both arguments and a block at a same time.
         | 
| 798 | 
            +
            - The block should return indeces in any length or a boolean Array with a same length as `size`.
         | 
| 799 | 
            +
            - Block is called in the context of self. So reciever 'self' can be omitted in the block.
         | 
| 800 | 
            +
             | 
| 801 | 
            +
            ```{ruby}
         | 
| 802 | 
            +
            #| tags: []
         | 
| 803 | 
            +
            # return a DataFrame with bill_length_mm is in 2*std range around mean
         | 
| 804 | 
            +
            penguins.slice do
         | 
| 805 | 
            +
              min = bill_length_mm.mean - bill_length_mm.std
         | 
| 806 | 
            +
              max = bill_length_mm.mean + bill_length_mm.std
         | 
| 807 | 
            +
              bill_length_mm.to_a.map { |e| (min..max).include? e }
         | 
| 808 | 
            +
            end
         | 
| 809 | 
            +
            ```
         | 
| 810 | 
            +
             | 
| 811 | 
            +
            ## 29. Slice and nil option
         | 
| 812 | 
            +
             | 
| 813 | 
            +
            `Arrow::Table#slice` uses `#filter` method with a option `Arrow::FilterOptions.null_selection_behavior = :emit_null`. This will propagate nil at the same row.
         | 
| 814 | 
            +
             | 
| 815 | 
            +
            ```{ruby}
         | 
| 816 | 
            +
            #| tags: []
         | 
| 817 | 
            +
            hash = { a: [1, 2, 3], b: %w[A B C], c: [1.0, 2, 3] }
         | 
| 818 | 
            +
            table = Arrow::Table.new(hash)
         | 
| 819 | 
            +
            table.slice([true, false, nil])
         | 
| 820 | 
            +
            ```
         | 
| 821 | 
            +
             | 
| 822 | 
            +
            Whereas in RedAmber, `DataFrame#slice` with booleans containing nil is treated as false. This behavior comes from `Allow::FilterOptions.null_selection_behavior = :drop`. This is a default value for `Arrow::Table.filter` method.
         | 
| 823 | 
            +
             | 
| 824 | 
            +
            ```{ruby}
         | 
| 825 | 
            +
            #| tags: []
         | 
| 826 | 
            +
            RedAmber::DataFrame.new(table).slice([true, false, nil]).table
         | 
| 827 | 
            +
            ```
         | 
| 828 | 
            +
             | 
| 829 | 
            +
            ## 30. Remove
         | 
| 830 | 
            +
             | 
| 831 | 
            +
            Slice and reject rows (observations) to create a remainer DataFrame.
         | 
| 832 | 
            +
             | 
| 833 | 
            +
            `#remove(indeces)` accepts indeces as arguments. Indeces should be an Integer or a Range of Integer.
         | 
| 834 | 
            +
             | 
| 835 | 
            +
            ```{ruby}
         | 
| 836 | 
            +
            #| tags: []
         | 
| 837 | 
            +
            # returns 6th to 339th obs. Remainer of penguins.slice(0...5, -5..-1)
         | 
| 838 | 
            +
            penguins.remove(0...5, -5..-1)
         | 
| 839 | 
            +
            ```
         | 
| 840 | 
            +
             | 
| 841 | 
            +
            `remove(booleans)` accepts booleans as a argument in an Array, a Vector or an Arrow::BooleanArray . Booleans must be same length as `#size`.
         | 
| 842 | 
            +
             | 
| 843 | 
            +
            ```{ruby}
         | 
| 844 | 
            +
            #| tags: []
         | 
| 845 | 
            +
            # remove all observation contains nil
         | 
| 846 | 
            +
            removed = penguins.remove { vectors.map(&:is_nil).reduce(&:|) }
         | 
| 847 | 
            +
            ```
         | 
| 848 | 
            +
             | 
| 849 | 
            +
            `remove {block}` is also acceptable. We can't use both arguments and a block at a same time. The block should return indeces or a boolean Array with a same length as size. Block is called in the context of self.
         | 
| 850 | 
            +
             | 
| 851 | 
            +
            ```{ruby}
         | 
| 852 | 
            +
            #| tags: []
         | 
| 853 | 
            +
            # Remove data in 2*std range around mean
         | 
| 854 | 
            +
            penguins.remove do
         | 
| 855 | 
            +
              vector = self[:bill_length_mm]
         | 
| 856 | 
            +
              min = vector.mean - vector.std
         | 
| 857 | 
            +
              max = vector.mean + vector.std
         | 
| 858 | 
            +
              vector.to_a.map { |e| (min..max).include? e }
         | 
| 859 | 
            +
            end
         | 
| 860 | 
            +
            ```
         | 
| 861 | 
            +
             | 
| 862 | 
            +
            ## 31. Remove and nil
         | 
| 863 | 
            +
             | 
| 864 | 
            +
            When `remove` used with booleans, nil in booleans is treated as false. This behavior is aligned with Ruby's `nil#!`.
         | 
| 865 | 
            +
             | 
| 866 | 
            +
            ```{ruby}
         | 
| 867 | 
            +
            #| tags: []
         | 
| 868 | 
            +
            df = RedAmber::DataFrame.new(a: [1, 2, nil], b: %w[A B C], c: [1.0, 2, 3])
         | 
| 869 | 
            +
            ```
         | 
| 870 | 
            +
             | 
| 871 | 
            +
            ```{ruby}
         | 
| 872 | 
            +
            #| tags: []
         | 
| 873 | 
            +
            booleans = df[:a] < 2
         | 
| 874 | 
            +
            ```
         | 
| 875 | 
            +
             | 
| 876 | 
            +
            ```{ruby}
         | 
| 877 | 
            +
            #| tags: []
         | 
| 878 | 
            +
            booleans_invert = booleans.to_a.map(&:!)
         | 
| 879 | 
            +
            ```
         | 
| 880 | 
            +
             | 
| 881 | 
            +
            ```{ruby}
         | 
| 882 | 
            +
            #| tags: []
         | 
| 883 | 
            +
            df.slice(booleans) == df.remove(booleans_invert)
         | 
| 884 | 
            +
            ```
         | 
| 885 | 
            +
             | 
| 886 | 
            +
            Whereas `Vector#invert` returns nil for elements nil. This will bring different result. (See #26)
         | 
| 887 | 
            +
             | 
| 888 | 
            +
            ```{ruby}
         | 
| 889 | 
            +
            #| tags: []
         | 
| 890 | 
            +
            booleans.invert
         | 
| 891 | 
            +
            ```
         | 
| 892 | 
            +
             | 
| 893 | 
            +
            ```{ruby}
         | 
| 894 | 
            +
            #| tags: []
         | 
| 895 | 
            +
            df.remove(booleans.invert)
         | 
| 896 | 
            +
            ```
         | 
| 897 | 
            +
             | 
| 898 | 
            +
            We have `#primitive_invert` method in Vector. This method returns the same result as `.to_a.map(&:!)` above.
         | 
| 899 | 
            +
             | 
| 900 | 
            +
            ```{ruby}
         | 
| 901 | 
            +
            #| tags: []
         | 
| 902 | 
            +
            booleans.primitive_invert
         | 
| 903 | 
            +
            ```
         | 
| 904 | 
            +
             | 
| 905 | 
            +
            ```{ruby}
         | 
| 906 | 
            +
            #| tags: []
         | 
| 907 | 
            +
            df.remove(booleans.primitive_invert)
         | 
| 908 | 
            +
            ```
         | 
| 909 | 
            +
             | 
| 910 | 
            +
            ```{ruby}
         | 
| 911 | 
            +
            #| tags: []
         | 
| 912 | 
            +
            df.slice(booleans) == df.remove(booleans.primitive_invert)
         | 
| 913 | 
            +
            ```
         | 
| 914 | 
            +
             | 
| 915 | 
            +
            ## 32. Remove nil
         | 
| 916 | 
            +
             | 
| 917 | 
            +
            Remove any observations containing nil.
         | 
| 918 | 
            +
             | 
| 919 | 
            +
            ```{ruby}
         | 
| 920 | 
            +
            #| tags: []
         | 
| 921 | 
            +
            penguins.remove_nil
         | 
| 922 | 
            +
            ```
         | 
| 923 | 
            +
             | 
| 924 | 
            +
            The roundabout way for this is to use `#remove`.
         | 
| 925 | 
            +
             | 
| 926 | 
            +
            ```{ruby}
         | 
| 927 | 
            +
            #| tags: []
         | 
| 928 | 
            +
            penguins.remove { vectors.map(&:is_nil).reduce(&:|) }
         | 
| 929 | 
            +
            ```
         | 
| 930 | 
            +
             | 
| 931 | 
            +
            ## 33. Rename
         | 
| 932 | 
            +
             | 
| 933 | 
            +
            Rename keys (column names) to create a updated DataFrame.
         | 
| 934 | 
            +
             | 
| 935 | 
            +
            `#rename(key_pairs)` accepts key_pairs as arguments. key_pairs should be a Hash of `{existing_key => new_key}` or an Array of Array `[[existing_key, new_key], ...]` .
         | 
| 936 | 
            +
             | 
| 937 | 
            +
            ```{ruby}
         | 
| 938 | 
            +
            #| tags: []
         | 
| 939 | 
            +
            h = { name: %w[Yasuko Rui Hinata], age: [68, 49, 28] }
         | 
| 940 | 
            +
            comecome = RedAmber::DataFrame.new(h)
         | 
| 941 | 
            +
            ```
         | 
| 942 | 
            +
             | 
| 943 | 
            +
            ```{ruby}
         | 
| 944 | 
            +
            #| tags: []
         | 
| 945 | 
            +
            comecome.rename(age: :age_in_1993)
         | 
| 946 | 
            +
            # comecome.rename(:age, :age_in_1993) # is also OK
         | 
| 947 | 
            +
            # comecome.rename([:age, :age_in_1993]) # is also OK
         | 
| 948 | 
            +
            ```
         | 
| 949 | 
            +
             | 
| 950 | 
            +
            `#rename {block}` is also acceptable. We can't use both arguments and a block at a same time. The block should return key_pairs as a Hash of `{existing_key => new_key}` or an Array of Array `[[existing_key, new_key], ...]`. Block is called in the context of self.
         | 
| 951 | 
            +
             | 
| 952 | 
            +
            Symbol key and String key are distinguished.
         | 
| 953 | 
            +
             | 
| 954 | 
            +
            ## 34. Assign
         | 
| 955 | 
            +
             | 
| 956 | 
            +
            Another example of `assign` is [68. Assign revised](#68.-Assign-revised), [#69. Variations of assign](#69.-Variations-of-assign) .
         | 
| 957 | 
            +
             | 
| 958 | 
            +
            Assign new or updated columns (variables) and create a updated DataFrame.
         | 
| 959 | 
            +
             | 
| 960 | 
            +
            - Columns with new keys will append new variables at right (bottom in TDR).
         | 
| 961 | 
            +
            - Columns with exisiting keys will update corresponding vectors.
         | 
| 962 | 
            +
             | 
| 963 | 
            +
            `#assign(key_pairs)` accepts pairs of key and array_like values as arguments. The pairs should be a Hash of `{key => array_like}` or an Array of Array `[[key, array_like], ... ]`. `array_like` is one of `Vector`, `Array` or `Arrow::Array`.
         | 
| 964 | 
            +
             | 
| 965 | 
            +
            ```{ruby}
         | 
| 966 | 
            +
            #| tags: []
         | 
| 967 | 
            +
            comecome = RedAmber::DataFrame.new( name: %w[Yasuko Rui Hinata], age: [68, 49, 28] )
         | 
| 968 | 
            +
            ```
         | 
| 969 | 
            +
             | 
| 970 | 
            +
            ```{ruby}
         | 
| 971 | 
            +
            #| tags: []
         | 
| 972 | 
            +
            # update :age and add :brother
         | 
| 973 | 
            +
            assigner = { age: [97, 78, 57], brother: ['Santa', nil, 'Momotaro'] }
         | 
| 974 | 
            +
            comecome.assign(assigner)
         | 
| 975 | 
            +
            ```
         | 
| 976 | 
            +
             | 
| 977 | 
            +
            `#assign {block}` is also acceptable. We can't use both arguments and a block at a same time. The block should return pairs of key and array_like values as a Hash of `{key => array_like}` or an Array of Array `[[key, array_like], ... ]`. `array_like` is one of `Vector`, `Array` or `Arrow::Array`. Block is called in the context of self.
         | 
| 978 | 
            +
             | 
| 979 | 
            +
            ```{ruby}
         | 
| 980 | 
            +
            #| tags: []
         | 
| 981 | 
            +
            df = RedAmber::DataFrame.new(
         | 
| 982 | 
            +
              index: [0, 1, 2, 3, nil],
         | 
| 983 | 
            +
              float: [0.0, 1.1,  2.2, Float::NAN, nil],
         | 
| 984 | 
            +
              string: ['A', 'B', 'C', 'D', nil])
         | 
| 985 | 
            +
            ```
         | 
| 986 | 
            +
             | 
| 987 | 
            +
            ```{ruby}
         | 
| 988 | 
            +
            #| tags: []
         | 
| 989 | 
            +
            # update numeric variables
         | 
| 990 | 
            +
            df.assign do
         | 
| 991 | 
            +
              vectors.select(&:numeric?).map { |v| [v.key, -v] }
         | 
| 992 | 
            +
            end
         | 
| 993 | 
            +
            ```
         | 
| 994 | 
            +
             | 
| 995 | 
            +
            In this example, columns :x and :y are updated. Column :x returns complements for #negate method because :x is :uint8 type.
         | 
| 996 | 
            +
             | 
| 997 | 
            +
            ```{ruby}
         | 
| 998 | 
            +
            #| tags: []
         | 
| 999 | 
            +
            df.types
         | 
| 1000 | 
            +
            ```
         | 
| 1001 | 
            +
             | 
| 1002 | 
            +
            ## 35. Coerce in Vector
         | 
| 1003 | 
            +
             | 
| 1004 | 
            +
            Vector has coerce method.
         | 
| 1005 | 
            +
             | 
| 1006 | 
            +
            ```{ruby}
         | 
| 1007 | 
            +
            #| tags: []
         | 
| 1008 | 
            +
            vector = RedAmber::Vector.new(1,2,3)
         | 
| 1009 | 
            +
            ```
         | 
| 1010 | 
            +
             | 
| 1011 | 
            +
            ```{ruby}
         | 
| 1012 | 
            +
            #| tags: []
         | 
| 1013 | 
            +
            # Vector's `#*` method
         | 
| 1014 | 
            +
            vector * -1
         | 
| 1015 | 
            +
            ```
         | 
| 1016 | 
            +
             | 
| 1017 | 
            +
            ```{ruby}
         | 
| 1018 | 
            +
            #| tags: []
         | 
| 1019 | 
            +
            # coerced calculation
         | 
| 1020 | 
            +
            -1 * vector
         | 
| 1021 | 
            +
            ```
         | 
| 1022 | 
            +
             | 
| 1023 | 
            +
            ```{ruby}
         | 
| 1024 | 
            +
            #| tags: []
         | 
| 1025 | 
            +
            # `@-` operator
         | 
| 1026 | 
            +
            -vector
         | 
| 1027 | 
            +
            ```
         | 
| 1028 | 
            +
             | 
| 1029 | 
            +
            ## 36. Vector#to_ary
         | 
| 1030 | 
            +
             | 
| 1031 | 
            +
            `Vector#to_ary` will enable implicit conversion to an Array.
         | 
| 1032 | 
            +
             | 
| 1033 | 
            +
            ```{ruby}
         | 
| 1034 | 
            +
            #| tags: []
         | 
| 1035 | 
            +
            Array(Vector.new([3, 4, 5]))
         | 
| 1036 | 
            +
            ```
         | 
| 1037 | 
            +
             | 
| 1038 | 
            +
            ```{ruby}
         | 
| 1039 | 
            +
            #| tags: []
         | 
| 1040 | 
            +
            [1, 2] + Vector.new([3, 4, 5])
         | 
| 1041 | 
            +
            ```
         | 
| 1042 | 
            +
             | 
| 1043 | 
            +
            ```{ruby}
         | 
| 1044 | 
            +
            #| tags: []
         | 
| 1045 | 
            +
            [1, 2, Vector.new([3, 4, 5])].flatten
         | 
| 1046 | 
            +
            ```
         | 
| 1047 | 
            +
             | 
| 1048 | 
            +
            ## 37. Vector#fill_nil
         | 
| 1049 | 
            +
             | 
| 1050 | 
            +
            `Vector#fill_nil_forward` or `Vector#fill_nil_backward` will
         | 
| 1051 | 
            +
            propagate the last valid observation forward (or backward).
         | 
| 1052 | 
            +
            Or preserve nil if all previous values are nil or at the end.
         | 
| 1053 | 
            +
             | 
| 1054 | 
            +
            ```{ruby}
         | 
| 1055 | 
            +
            #| tags: []
         | 
| 1056 | 
            +
            integer = Vector.new([0, 1, nil, 3, nil])
         | 
| 1057 | 
            +
            integer.fill_nil_forward
         | 
| 1058 | 
            +
            ```
         | 
| 1059 | 
            +
             | 
| 1060 | 
            +
            ```{ruby}
         | 
| 1061 | 
            +
            #| tags: []
         | 
| 1062 | 
            +
            integer.fill_nil_backward
         | 
| 1063 | 
            +
            ```
         | 
| 1064 | 
            +
             | 
| 1065 | 
            +
            (Since 0.4.2) `Vector#fill_nil(value)` will fill `value` to `nil` in self.
         | 
| 1066 | 
            +
             | 
| 1067 | 
            +
            ```{ruby}
         | 
| 1068 | 
            +
            #| tags: []
         | 
| 1069 | 
            +
            integer.fill_nil(-1)
         | 
| 1070 | 
            +
            ```
         | 
| 1071 | 
            +
             | 
| 1072 | 
            +
            If value has upper type, self will automatically upcasted.
         | 
| 1073 | 
            +
            Int16 will casted into double in next example.
         | 
| 1074 | 
            +
             | 
| 1075 | 
            +
            ```{ruby}
         | 
| 1076 | 
            +
            #| tags: []
         | 
| 1077 | 
            +
            integer.fill_nil(0.1)
         | 
| 1078 | 
            +
            ```
         | 
| 1079 | 
            +
             | 
| 1080 | 
            +
            ## 38. Vector#all?/any?
         | 
| 1081 | 
            +
             | 
| 1082 | 
            +
            `Vector#all?` returns true if all elements is true.
         | 
| 1083 | 
            +
             | 
| 1084 | 
            +
            `Vector#any?` returns true if exists any true.
         | 
| 1085 | 
            +
             | 
| 1086 | 
            +
            These are unary aggregation function.
         | 
| 1087 | 
            +
             | 
| 1088 | 
            +
            ```{ruby}
         | 
| 1089 | 
            +
            #| tags: []
         | 
| 1090 | 
            +
            booleans = Vector.new([true, true, nil])
         | 
| 1091 | 
            +
            booleans.all?
         | 
| 1092 | 
            +
            ```
         | 
| 1093 | 
            +
             | 
| 1094 | 
            +
            ```{ruby}
         | 
| 1095 | 
            +
            #| tags: []
         | 
| 1096 | 
            +
            booleans.any?
         | 
| 1097 | 
            +
            ```
         | 
| 1098 | 
            +
             | 
| 1099 | 
            +
            If these methods are used with option `skip_nulls: false` nil is considered.
         | 
| 1100 | 
            +
             | 
| 1101 | 
            +
            ```{ruby}
         | 
| 1102 | 
            +
            #| tags: []
         | 
| 1103 | 
            +
            booleans.all?(skip_nulls: false)
         | 
| 1104 | 
            +
            ```
         | 
| 1105 | 
            +
             | 
| 1106 | 
            +
            ```{ruby}
         | 
| 1107 | 
            +
            #| tags: []
         | 
| 1108 | 
            +
            booleans.any?(skip_nulls: false)
         | 
| 1109 | 
            +
            ```
         | 
| 1110 | 
            +
             | 
| 1111 | 
            +
            ## 39. Vector#count/count_uniq
         | 
| 1112 | 
            +
             | 
| 1113 | 
            +
            `Vector#count` counts element.
         | 
| 1114 | 
            +
             | 
| 1115 | 
            +
            `Vector#count_uniq` counts unique element. `#count_distinct` is an alias (Arrow's name).
         | 
| 1116 | 
            +
             | 
| 1117 | 
            +
            These are unary aggregation function.
         | 
| 1118 | 
            +
             | 
| 1119 | 
            +
            ```{ruby}
         | 
| 1120 | 
            +
            #| tags: []
         | 
| 1121 | 
            +
            string = Vector.new(%w[A B A])
         | 
| 1122 | 
            +
            string.count
         | 
| 1123 | 
            +
            ```
         | 
| 1124 | 
            +
             | 
| 1125 | 
            +
            ```{ruby}
         | 
| 1126 | 
            +
            #| tags: []
         | 
| 1127 | 
            +
            string.count_uniq # count_distinct is also OK
         | 
| 1128 | 
            +
            ```
         | 
| 1129 | 
            +
             | 
| 1130 | 
            +
            ## 40. Vector#stddev/variance
         | 
| 1131 | 
            +
             | 
| 1132 | 
            +
            These are unary element-wise function.
         | 
| 1133 | 
            +
             | 
| 1134 | 
            +
            For biased standard deviation;
         | 
| 1135 | 
            +
             | 
| 1136 | 
            +
            ```{ruby}
         | 
| 1137 | 
            +
            #| tags: []
         | 
| 1138 | 
            +
            integers = Vector.new([1, 2, 3, nil])
         | 
| 1139 | 
            +
            integers.stddev
         | 
| 1140 | 
            +
            ```
         | 
| 1141 | 
            +
             | 
| 1142 | 
            +
            For unbiased standard deviation;
         | 
| 1143 | 
            +
             | 
| 1144 | 
            +
            ```{ruby}
         | 
| 1145 | 
            +
            #| tags: []
         | 
| 1146 | 
            +
            integers.sd
         | 
| 1147 | 
            +
            ```
         | 
| 1148 | 
            +
             | 
| 1149 | 
            +
            For biased variance;
         | 
| 1150 | 
            +
             | 
| 1151 | 
            +
            ```{ruby}
         | 
| 1152 | 
            +
            #| tags: []
         | 
| 1153 | 
            +
            integers.variance
         | 
| 1154 | 
            +
            ```
         | 
| 1155 | 
            +
             | 
| 1156 | 
            +
            For unbiased variance;
         | 
| 1157 | 
            +
             | 
| 1158 | 
            +
            ```{ruby}
         | 
| 1159 | 
            +
            #| tags: []
         | 
| 1160 | 
            +
            integers.var
         | 
| 1161 | 
            +
            ```
         | 
| 1162 | 
            +
             | 
| 1163 | 
            +
            ## 41. Vector#negate
         | 
| 1164 | 
            +
             | 
| 1165 | 
            +
            These are unary element-wise function.
         | 
| 1166 | 
            +
             | 
| 1167 | 
            +
            ```{ruby}
         | 
| 1168 | 
            +
            #| tags: []
         | 
| 1169 | 
            +
            double = Vector.new([1.0, -2, 3])
         | 
| 1170 | 
            +
            double.negate
         | 
| 1171 | 
            +
            ```
         | 
| 1172 | 
            +
             | 
| 1173 | 
            +
            Same as #negate;
         | 
| 1174 | 
            +
             | 
| 1175 | 
            +
            ```{ruby}
         | 
| 1176 | 
            +
            #| tags: []
         | 
| 1177 | 
            +
            -double
         | 
| 1178 | 
            +
            ```
         | 
| 1179 | 
            +
             | 
| 1180 | 
            +
            ## 42. Vector#round
         | 
| 1181 | 
            +
             | 
| 1182 | 
            +
            Otions for `#round`;
         | 
| 1183 | 
            +
             | 
| 1184 | 
            +
            - `:n-digits` The number of digits to show.
         | 
| 1185 | 
            +
            - `round_mode` Specify rounding mode.
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
            This is a unary element-wise function.
         | 
| 1188 | 
            +
             | 
| 1189 | 
            +
            ```{ruby}
         | 
| 1190 | 
            +
            #| tags: []
         | 
| 1191 | 
            +
            double = RedAmber::Vector.new([15.15, 2.5, 3.5, -4.5, -5.5])
         | 
| 1192 | 
            +
            ```
         | 
| 1193 | 
            +
             | 
| 1194 | 
            +
            ```{ruby}
         | 
| 1195 | 
            +
            #| tags: []
         | 
| 1196 | 
            +
            double.round
         | 
| 1197 | 
            +
            ```
         | 
| 1198 | 
            +
             | 
| 1199 | 
            +
            ```{ruby}
         | 
| 1200 | 
            +
            #| tags: []
         | 
| 1201 | 
            +
            double.round(mode: :half_to_even)
         | 
| 1202 | 
            +
            ```
         | 
| 1203 | 
            +
             | 
| 1204 | 
            +
            ```{ruby}
         | 
| 1205 | 
            +
            #| tags: []
         | 
| 1206 | 
            +
            double.round(mode: :towards_infinity)
         | 
| 1207 | 
            +
            ```
         | 
| 1208 | 
            +
             | 
| 1209 | 
            +
            ```{ruby}
         | 
| 1210 | 
            +
            #| tags: []
         | 
| 1211 | 
            +
            double.round(mode: :half_up)
         | 
| 1212 | 
            +
            ```
         | 
| 1213 | 
            +
             | 
| 1214 | 
            +
            ```{ruby}
         | 
| 1215 | 
            +
            #| tags: []
         | 
| 1216 | 
            +
            double.round(mode: :half_towards_zero)
         | 
| 1217 | 
            +
            ```
         | 
| 1218 | 
            +
             | 
| 1219 | 
            +
            ```{ruby}
         | 
| 1220 | 
            +
            #| tags: []
         | 
| 1221 | 
            +
            double.round(mode: :half_towards_infinity)
         | 
| 1222 | 
            +
            ```
         | 
| 1223 | 
            +
             | 
| 1224 | 
            +
            ```{ruby}
         | 
| 1225 | 
            +
            #| tags: []
         | 
| 1226 | 
            +
            double.round(mode: :half_to_odd)
         | 
| 1227 | 
            +
            ```
         | 
| 1228 | 
            +
             | 
| 1229 | 
            +
            ```{ruby}
         | 
| 1230 | 
            +
            #| tags: []
         | 
| 1231 | 
            +
            double.round(n_digits: 0)
         | 
| 1232 | 
            +
            ```
         | 
| 1233 | 
            +
             | 
| 1234 | 
            +
            ```{ruby}
         | 
| 1235 | 
            +
            #| tags: []
         | 
| 1236 | 
            +
            double.round(n_digits: 1)
         | 
| 1237 | 
            +
            ```
         | 
| 1238 | 
            +
             | 
| 1239 | 
            +
            ```{ruby}
         | 
| 1240 | 
            +
            #| tags: []
         | 
| 1241 | 
            +
            double.round(n_digits: -1)
         | 
| 1242 | 
            +
            ```
         | 
| 1243 | 
            +
             | 
| 1244 | 
            +
            ## 43. Vector#and/or
         | 
| 1245 | 
            +
             | 
| 1246 | 
            +
            RedAmber select `and_kleene`/`or_kleene` as default `&`/`|` method.
         | 
| 1247 | 
            +
             | 
| 1248 | 
            +
            These are unary element-wise function.
         | 
| 1249 | 
            +
             | 
| 1250 | 
            +
            ```{ruby}
         | 
| 1251 | 
            +
            #| tags: []
         | 
| 1252 | 
            +
            bool_self  = Vector.new([true, true, true, false, false, false, nil, nil, nil])
         | 
| 1253 | 
            +
            bool_other = Vector.new([true, false, nil, true, false, nil, true, false, nil])
         | 
| 1254 | 
            +
             | 
| 1255 | 
            +
            bool_self & bool_other  # same as bool_self.and_kleene(bool_other)
         | 
| 1256 | 
            +
            ```
         | 
| 1257 | 
            +
             | 
| 1258 | 
            +
            ```{ruby}
         | 
| 1259 | 
            +
            #| tags: []
         | 
| 1260 | 
            +
            # Ruby's primitive `&&`
         | 
| 1261 | 
            +
            bool_self && bool_other
         | 
| 1262 | 
            +
            ```
         | 
| 1263 | 
            +
             | 
| 1264 | 
            +
            ```{ruby}
         | 
| 1265 | 
            +
            #| tags: []
         | 
| 1266 | 
            +
            # Arrow's default `and`
         | 
| 1267 | 
            +
            bool_self.and_org(bool_other)
         | 
| 1268 | 
            +
            ```
         | 
| 1269 | 
            +
             | 
| 1270 | 
            +
            ```{ruby}
         | 
| 1271 | 
            +
            #| tags: []
         | 
| 1272 | 
            +
            bool_self | bool_other  # same as bool_self.or_kleene(bool_other)
         | 
| 1273 | 
            +
            ```
         | 
| 1274 | 
            +
             | 
| 1275 | 
            +
            ```{ruby}
         | 
| 1276 | 
            +
            #| tags: []
         | 
| 1277 | 
            +
            # Ruby's primitive `||`
         | 
| 1278 | 
            +
            bool_self || bool_other
         | 
| 1279 | 
            +
            ```
         | 
| 1280 | 
            +
             | 
| 1281 | 
            +
            ```{ruby}
         | 
| 1282 | 
            +
            #| tags: []
         | 
| 1283 | 
            +
            # Arrow's default `or`
         | 
| 1284 | 
            +
            bool_self.or_org(bool_other)
         | 
| 1285 | 
            +
            ```
         | 
| 1286 | 
            +
             | 
| 1287 | 
            +
            ## 44. Vector#is_finite/is_nan/is_nil/is_na
         | 
| 1288 | 
            +
             | 
| 1289 | 
            +
            These are unary element-wise function.
         | 
| 1290 | 
            +
             | 
| 1291 | 
            +
            ```{ruby}
         | 
| 1292 | 
            +
            #| tags: []
         | 
| 1293 | 
            +
            double = Vector.new([Math::PI, Float::INFINITY, -Float::INFINITY, Float::NAN, nil])
         | 
| 1294 | 
            +
            ```
         | 
| 1295 | 
            +
             | 
| 1296 | 
            +
            ```{ruby}
         | 
| 1297 | 
            +
            #| tags: []
         | 
| 1298 | 
            +
            double.is_finite
         | 
| 1299 | 
            +
            ```
         | 
| 1300 | 
            +
             | 
| 1301 | 
            +
            ```{ruby}
         | 
| 1302 | 
            +
            #| tags: []
         | 
| 1303 | 
            +
            double.is_inf
         | 
| 1304 | 
            +
            ```
         | 
| 1305 | 
            +
             | 
| 1306 | 
            +
            ```{ruby}
         | 
| 1307 | 
            +
            #| tags: []
         | 
| 1308 | 
            +
            double.is_na
         | 
| 1309 | 
            +
            ```
         | 
| 1310 | 
            +
             | 
| 1311 | 
            +
            ```{ruby}
         | 
| 1312 | 
            +
            #| tags: []
         | 
| 1313 | 
            +
            double.is_nil
         | 
| 1314 | 
            +
            ```
         | 
| 1315 | 
            +
             | 
| 1316 | 
            +
            ```{ruby}
         | 
| 1317 | 
            +
            #| tags: []
         | 
| 1318 | 
            +
            double.is_valid
         | 
| 1319 | 
            +
            ```
         | 
| 1320 | 
            +
             | 
| 1321 | 
            +
            ## 45. Prime-th rows
         | 
| 1322 | 
            +
             | 
| 1323 | 
            +
            ```{ruby}
         | 
| 1324 | 
            +
            #| tags: []
         | 
| 1325 | 
            +
            # prime-th rows ... Don't ask me what it means.
         | 
| 1326 | 
            +
            require 'prime'
         | 
| 1327 | 
            +
            penguins.assign_left(:index, penguins.indices + 1) # since 0.2.0
         | 
| 1328 | 
            +
                    .slice { Vector.new(Prime.each(size).to_a) - 1 }
         | 
| 1329 | 
            +
            ```
         | 
| 1330 | 
            +
             | 
| 1331 | 
            +
            ## 46. Slice by Enumerator
         | 
| 1332 | 
            +
             | 
| 1333 | 
            +
            Slice accepts Enumerator.
         | 
| 1334 | 
            +
             | 
| 1335 | 
            +
            ```{ruby}
         | 
| 1336 | 
            +
            #| tags: []
         | 
| 1337 | 
            +
            # Select every 10 samples
         | 
| 1338 | 
            +
            penguins.assign_left(index: penguins.indices) # 0.2.0 feature
         | 
| 1339 | 
            +
                    .slice(0.step(by: 10, to: 340))
         | 
| 1340 | 
            +
            ```
         | 
| 1341 | 
            +
             | 
| 1342 | 
            +
            ```{ruby}
         | 
| 1343 | 
            +
            #| tags: []
         | 
| 1344 | 
            +
            # Select every 2 samples by step 100
         | 
| 1345 | 
            +
            penguins.assign_left(index: penguins.indices) # 0.2.0 feature
         | 
| 1346 | 
            +
                    .slice { 0.step(by: 100, to: 300).map { |i| i..(i+1) } }
         | 
| 1347 | 
            +
            ```
         | 
| 1348 | 
            +
             | 
| 1349 | 
            +
            ## 47. Output mode
         | 
| 1350 | 
            +
             | 
| 1351 | 
            +
            Output mode of `DataFrame#inspect` and `DataFrame#to_iruby` is Table mode by default. If you prefer other mode set the environment variable `RED_AMBER_OUTPUT_MODE` .
         | 
| 1352 | 
            +
             | 
| 1353 | 
            +
            ```{ruby}
         | 
| 1354 | 
            +
            #| tags: []
         | 
| 1355 | 
            +
            ENV['RED_AMBER_OUTPUT_MODE'] = 'Table' # or nil (default)
         | 
| 1356 | 
            +
            penguins  # Almost same as `puts penguins.to_s` in any mode
         | 
| 1357 | 
            +
            ```
         | 
| 1358 | 
            +
             | 
| 1359 | 
            +
            ```{ruby}
         | 
| 1360 | 
            +
            #| tags: []
         | 
| 1361 | 
            +
            penguins[:species]
         | 
| 1362 | 
            +
            ```
         | 
| 1363 | 
            +
             | 
| 1364 | 
            +
            ```{ruby}
         | 
| 1365 | 
            +
            #| tags: []
         | 
| 1366 | 
            +
            ENV['RED_AMBER_OUTPUT_MODE'] = 'Plain' # Since 0.2.2
         | 
| 1367 | 
            +
            penguins
         | 
| 1368 | 
            +
            ```
         | 
| 1369 | 
            +
             | 
| 1370 | 
            +
            ```{ruby}
         | 
| 1371 | 
            +
            #| tags: []
         | 
| 1372 | 
            +
            penguins[:species]
         | 
| 1373 | 
            +
            ```
         | 
| 1374 | 
            +
             | 
| 1375 | 
            +
            ```{ruby}
         | 
| 1376 | 
            +
            #| tags: []
         | 
| 1377 | 
            +
            ENV['RED_AMBER_OUTPUT_MODE'] = 'Minimum'  # Since 0.2.2
         | 
| 1378 | 
            +
            penguins
         | 
| 1379 | 
            +
            ```
         | 
| 1380 | 
            +
             | 
| 1381 | 
            +
            ```{ruby}
         | 
| 1382 | 
            +
            #| tags: []
         | 
| 1383 | 
            +
            penguins[:species]
         | 
| 1384 | 
            +
            ```
         | 
| 1385 | 
            +
             | 
| 1386 | 
            +
            ```{ruby}
         | 
| 1387 | 
            +
            #| tags: []
         | 
| 1388 | 
            +
            ENV['RED_AMBER_OUTPUT_MODE'] = 'TDR'
         | 
| 1389 | 
            +
            penguins
         | 
| 1390 | 
            +
            ```
         | 
| 1391 | 
            +
             | 
| 1392 | 
            +
            ```{ruby}
         | 
| 1393 | 
            +
            #| tags: []
         | 
| 1394 | 
            +
            penguins[:species]
         | 
| 1395 | 
            +
            ```
         | 
| 1396 | 
            +
             | 
| 1397 | 
            +
            ```{ruby}
         | 
| 1398 | 
            +
            #| tags: []
         | 
| 1399 | 
            +
            ENV['RED_AMBER_OUTPUT_MODE'] = nil
         | 
| 1400 | 
            +
            ```
         | 
| 1401 | 
            +
             | 
| 1402 | 
            +
            ## 48. Empty key
         | 
| 1403 | 
            +
             | 
| 1404 | 
            +
            Empty key `:""` will be automatically renamed to `:unnamed1`.
         | 
| 1405 | 
            +
             | 
| 1406 | 
            +
            If `:unnamed1` was used, `:unnamed1.succ` will be used.
         | 
| 1407 | 
            +
             | 
| 1408 | 
            +
            (Since 0.1.8)
         | 
| 1409 | 
            +
             | 
| 1410 | 
            +
            ```{ruby}
         | 
| 1411 | 
            +
            #| tags: []
         | 
| 1412 | 
            +
            df = DataFrame.new("": [1, 2], unnamed1: [3, 4])
         | 
| 1413 | 
            +
            ```
         | 
| 1414 | 
            +
             | 
| 1415 | 
            +
            ## 49. Grouping
         | 
| 1416 | 
            +
             | 
| 1417 | 
            +
            `DataFrame#group` takes group_keys as arguments, and creates `Group` class.
         | 
| 1418 | 
            +
             | 
| 1419 | 
            +
            Group class inspects counts of each unique elements.
         | 
| 1420 | 
            +
             | 
| 1421 | 
            +
            (Since 0.1.7)
         | 
| 1422 | 
            +
             | 
| 1423 | 
            +
            ```{ruby}
         | 
| 1424 | 
            +
            #| tags: []
         | 
| 1425 | 
            +
            group = penguins.group(:species)
         | 
| 1426 | 
            +
            ```
         | 
| 1427 | 
            +
             | 
| 1428 | 
            +
            The instance of `Group` class has methods to summary functions.
         | 
| 1429 | 
            +
             | 
| 1430 | 
            +
            It returns `function(key)` style summarized columns as a result.
         | 
| 1431 | 
            +
             | 
| 1432 | 
            +
            ```{ruby}
         | 
| 1433 | 
            +
            #| tags: []
         | 
| 1434 | 
            +
            group.count
         | 
| 1435 | 
            +
            ```
         | 
| 1436 | 
            +
             | 
| 1437 | 
            +
            If count result is same in multiple columns, count column is aggregated to one column `:count`.
         | 
| 1438 | 
            +
             | 
| 1439 | 
            +
            ```{ruby}
         | 
| 1440 | 
            +
            #| tags: []
         | 
| 1441 | 
            +
            penguins.pick(:species, :bill_length_mm, :bill_depth_mm).group(:species).count
         | 
| 1442 | 
            +
            ```
         | 
| 1443 | 
            +
             | 
| 1444 | 
            +
            Grouping key comes first (leftmost) in the columns.
         | 
| 1445 | 
            +
             | 
| 1446 | 
            +
            ## 50. Grouping with a block
         | 
| 1447 | 
            +
             | 
| 1448 | 
            +
            `DataFrame#group` takes a block and we can specify multiple functions.
         | 
| 1449 | 
            +
             | 
| 1450 | 
            +
            Inside the block is the context of instance of Group. So we can use summary functions without the reciever.
         | 
| 1451 | 
            +
             | 
| 1452 | 
            +
            (Since 0.1.8)
         | 
| 1453 | 
            +
             | 
| 1454 | 
            +
            ```{ruby}
         | 
| 1455 | 
            +
            #| tags: []
         | 
| 1456 | 
            +
            penguins.group(:species) { [count(:species), mean(:body_mass_g)] }
         | 
| 1457 | 
            +
            ```
         | 
| 1458 | 
            +
             | 
| 1459 | 
            +
            `Group#summarize` accepts same block as `DataFrame#group`.
         | 
| 1460 | 
            +
             | 
| 1461 | 
            +
            ```{ruby}
         | 
| 1462 | 
            +
            #| tags: []
         | 
| 1463 | 
            +
            group.summarize { [count(:species), mean] }
         | 
| 1464 | 
            +
            ```
         | 
| 1465 | 
            +
             | 
| 1466 | 
            +
            ## 51. Group#count family
         | 
| 1467 | 
            +
             | 
| 1468 | 
            +
            `Group#count` counts the number of non-nil values in each group.
         | 
| 1469 | 
            +
            If counts are the same (and do not include NaN or nil), columns for counts are unified.
         | 
| 1470 | 
            +
             | 
| 1471 | 
            +
            ```{ruby}
         | 
| 1472 | 
            +
            dataframe = DataFrame.new(
         | 
| 1473 | 
            +
              x: [*1..6],
         | 
| 1474 | 
            +
              y: %w[A A B B B C],
         | 
| 1475 | 
            +
              z: [false, true, false, nil, true, false])
         | 
| 1476 | 
            +
            ```
         | 
| 1477 | 
            +
             | 
| 1478 | 
            +
            Non-nil counts in column y and z are different.
         | 
| 1479 | 
            +
             | 
| 1480 | 
            +
            ```{ruby}
         | 
| 1481 | 
            +
            dataframe.group(:y).count
         | 
| 1482 | 
            +
            ```
         | 
| 1483 | 
            +
             | 
| 1484 | 
            +
            Non-nil counts in column x and y are same, so only one column is emitted.
         | 
| 1485 | 
            +
             | 
| 1486 | 
            +
            ```{ruby}
         | 
| 1487 | 
            +
            dataframe.group(:z).count
         | 
| 1488 | 
            +
            ```
         | 
| 1489 | 
            +
             | 
| 1490 | 
            +
            `Group#count_all` returns each record group size as a DataFrame. `Group#group_count` is an alias.
         | 
| 1491 | 
            +
             | 
| 1492 | 
            +
            ```{ruby}
         | 
| 1493 | 
            +
            dataframe.group(:y).count_all
         | 
| 1494 | 
            +
            ```
         | 
| 1495 | 
            +
             | 
| 1496 | 
            +
            `Group#count_uniq` count the unique values in each group and return as a DataFrame. `Group#count_distinct` is an alias.
         | 
| 1497 | 
            +
             | 
| 1498 | 
            +
            ```{ruby}
         | 
| 1499 | 
            +
            dataframe.group(:y).count_uniq
         | 
| 1500 | 
            +
            ```
         | 
| 1501 | 
            +
             | 
| 1502 | 
            +
            ## 52. Group#one
         | 
| 1503 | 
            +
             | 
| 1504 | 
            +
            `Group#one` gets one value from each group.
         | 
| 1505 | 
            +
             | 
| 1506 | 
            +
            ```{ruby}
         | 
| 1507 | 
            +
            dataframe.group(:y).one
         | 
| 1508 | 
            +
            ```
         | 
| 1509 | 
            +
             | 
| 1510 | 
            +
            ## 53. Group aggregation functions
         | 
| 1511 | 
            +
             | 
| 1512 | 
            +
            `Group#all` emits aggragated booleans Whether all elements in each group evaluate to true.
         | 
| 1513 | 
            +
             | 
| 1514 | 
            +
            ```{ruby}
         | 
| 1515 | 
            +
            dataframe.group(:y).all
         | 
| 1516 | 
            +
            ```
         | 
| 1517 | 
            +
             | 
| 1518 | 
            +
            `Group#any` emits aggragated booleans Whether any elements in each group evaluate to true.
         | 
| 1519 | 
            +
             | 
| 1520 | 
            +
            ```{ruby}
         | 
| 1521 | 
            +
            dataframe.group(:y).any
         | 
| 1522 | 
            +
            ```
         | 
| 1523 | 
            +
             | 
| 1524 | 
            +
            `Group#max` computes maximum of values in each group for numeric columns.
         | 
| 1525 | 
            +
             | 
| 1526 | 
            +
            ```{ruby}
         | 
| 1527 | 
            +
            dataframe.group(:y).max
         | 
| 1528 | 
            +
            ```
         | 
| 1529 | 
            +
             | 
| 1530 | 
            +
            `Group#mean` computes mean of values in each group for numeric columns.
         | 
| 1531 | 
            +
             | 
| 1532 | 
            +
            ```{ruby}
         | 
| 1533 | 
            +
            dataframe.group(:y).mean
         | 
| 1534 | 
            +
            ```
         | 
| 1535 | 
            +
             | 
| 1536 | 
            +
            `Group#median` computes median of values in each group for numeric columns.
         | 
| 1537 | 
            +
             | 
| 1538 | 
            +
            ```{ruby}
         | 
| 1539 | 
            +
            dataframe.group(:y).median
         | 
| 1540 | 
            +
            ```
         | 
| 1541 | 
            +
             | 
| 1542 | 
            +
            `Group#min` computes minimum of values in each group for numeric columns.
         | 
| 1543 | 
            +
             | 
| 1544 | 
            +
            ```{ruby}
         | 
| 1545 | 
            +
            dataframe.group(:y).min
         | 
| 1546 | 
            +
            ```
         | 
| 1547 | 
            +
             | 
| 1548 | 
            +
            `Group#product` computes product of values in each group for numeric columns.
         | 
| 1549 | 
            +
             | 
| 1550 | 
            +
            ```{ruby}
         | 
| 1551 | 
            +
            dataframe.group(:y).product
         | 
| 1552 | 
            +
            ```
         | 
| 1553 | 
            +
             | 
| 1554 | 
            +
            `Group#stddev` computes standrad deviation of values in each group for numeric columns.
         | 
| 1555 | 
            +
             | 
| 1556 | 
            +
            ```{ruby}
         | 
| 1557 | 
            +
            dataframe.group(:y).stddev
         | 
| 1558 | 
            +
            ```
         | 
| 1559 | 
            +
             | 
| 1560 | 
            +
            `Group#sum` computes sum of values in each group for numeric columns.
         | 
| 1561 | 
            +
             | 
| 1562 | 
            +
            ```{ruby}
         | 
| 1563 | 
            +
            dataframe.group(:y).sum
         | 
| 1564 | 
            +
            ```
         | 
| 1565 | 
            +
             | 
| 1566 | 
            +
            `Group#variance` computes variance of values in each group for numeric columns.
         | 
| 1567 | 
            +
             | 
| 1568 | 
            +
            ```{ruby}
         | 
| 1569 | 
            +
            dataframe.group(:y).variance
         | 
| 1570 | 
            +
            ```
         | 
| 1571 | 
            +
             | 
| 1572 | 
            +
            ## 54. Group#grouped_frame
         | 
| 1573 | 
            +
             | 
| 1574 | 
            +
            `Group#grouped_frame` returns grouped DataFrame only for group keys. The alias is `#none`
         | 
| 1575 | 
            +
             | 
| 1576 | 
            +
            ```{ruby}
         | 
| 1577 | 
            +
            dataframe.group(:y).grouped_frame
         | 
| 1578 | 
            +
            ```
         | 
| 1579 | 
            +
             | 
| 1580 | 
            +
            ## 55. Vector#shift
         | 
| 1581 | 
            +
             | 
| 1582 | 
            +
            `Vector#shift(amount = 1, fill: nil)`
         | 
| 1583 | 
            +
             | 
| 1584 | 
            +
            Shift vector's values by specified `amount`. Shifted space is filled by value `fill`.
         | 
| 1585 | 
            +
             | 
| 1586 | 
            +
            (Since 0.1.8)
         | 
| 1587 | 
            +
             | 
| 1588 | 
            +
            ```{ruby}
         | 
| 1589 | 
            +
            #| tags: []
         | 
| 1590 | 
            +
            vector = RedAmber::Vector.new([1, 2, 3, 4, 5])
         | 
| 1591 | 
            +
            vector.shift
         | 
| 1592 | 
            +
            ```
         | 
| 1593 | 
            +
             | 
| 1594 | 
            +
            ```{ruby}
         | 
| 1595 | 
            +
            #| tags: []
         | 
| 1596 | 
            +
            vector.shift(-2)
         | 
| 1597 | 
            +
            ```
         | 
| 1598 | 
            +
             | 
| 1599 | 
            +
            ```{ruby}
         | 
| 1600 | 
            +
            #| tags: []
         | 
| 1601 | 
            +
            vector.shift(fill: Float::NAN)
         | 
| 1602 | 
            +
            ```
         | 
| 1603 | 
            +
             | 
| 1604 | 
            +
            ## 56. From the Pandas cookbook - if-then
         | 
| 1605 | 
            +
             | 
| 1606 | 
            +
            https://pandas.pydata.org/docs/user_guide/cookbook.html#if-then
         | 
| 1607 | 
            +
             | 
| 1608 | 
            +
            ```python
         | 
| 1609 | 
            +
            # by Python Pandas
         | 
| 1610 | 
            +
            df = pd.DataFrame(
         | 
| 1611 | 
            +
                {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
         | 
| 1612 | 
            +
            )
         | 
| 1613 | 
            +
            df.loc[df.AAA >= 5, "BBB"] = -1
         | 
| 1614 | 
            +
             | 
| 1615 | 
            +
            # returns =>
         | 
| 1616 | 
            +
               AAA  BBB  CCC
         | 
| 1617 | 
            +
            0    4   10  100
         | 
| 1618 | 
            +
            1    5   -1   50
         | 
| 1619 | 
            +
            2    6   -1  -30
         | 
| 1620 | 
            +
            3    7   -1  -50
         | 
| 1621 | 
            +
            ```
         | 
| 1622 | 
            +
             | 
| 1623 | 
            +
            ```{ruby}
         | 
| 1624 | 
            +
            #| tags: []
         | 
| 1625 | 
            +
            # RedAmber
         | 
| 1626 | 
            +
            df = DataFrame.new(
         | 
| 1627 | 
            +
              "AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]  # You can omit {}
         | 
| 1628 | 
            +
            )
         | 
| 1629 | 
            +
             | 
| 1630 | 
            +
            df.assign(BBB: df[:BBB].replace(df[:AAA] >= 5, -1))
         | 
| 1631 | 
            +
            ```
         | 
| 1632 | 
            +
             | 
| 1633 | 
            +
            If you want to replace both :BBB and :CCC ;
         | 
| 1634 | 
            +
             | 
| 1635 | 
            +
            ```{ruby}
         | 
| 1636 | 
            +
            #| tags: []
         | 
| 1637 | 
            +
            df.assign do
         | 
| 1638 | 
            +
              replacer = v(:AAA) >= 5  # Boolean Vector
         | 
| 1639 | 
            +
              {
         | 
| 1640 | 
            +
                BBB: v(:BBB).replace(replacer, -1),
         | 
| 1641 | 
            +
                CCC: v(:CCC).replace(replacer, -2)
         | 
| 1642 | 
            +
              }
         | 
| 1643 | 
            +
            end
         | 
| 1644 | 
            +
            ```
         | 
| 1645 | 
            +
             | 
| 1646 | 
            +
            ## 57. From the Pandas cookbook - Splitting
         | 
| 1647 | 
            +
            Split a frame with a boolean criterion
         | 
| 1648 | 
            +
             | 
| 1649 | 
            +
            https://pandas.pydata.org/docs/user_guide/cookbook.html#splitting
         | 
| 1650 | 
            +
             | 
| 1651 | 
            +
            ```python
         | 
| 1652 | 
            +
            # by Python Pandas
         | 
| 1653 | 
            +
            df = pd.DataFrame(
         | 
| 1654 | 
            +
                {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
         | 
| 1655 | 
            +
            )
         | 
| 1656 | 
            +
            df[df.AAA <= 5]
         | 
| 1657 | 
            +
             | 
| 1658 | 
            +
            # returns =>
         | 
| 1659 | 
            +
               AAA  BBB  CCC
         | 
| 1660 | 
            +
            0    4   10  100
         | 
| 1661 | 
            +
            1    5   20   50
         | 
| 1662 | 
            +
             | 
| 1663 | 
            +
            df[df.AAA > 5]
         | 
| 1664 | 
            +
             | 
| 1665 | 
            +
            # returns =>
         | 
| 1666 | 
            +
               AAA  BBB  CCC
         | 
| 1667 | 
            +
            2    6   30  -30
         | 
| 1668 | 
            +
            3    7   40  -50
         | 
| 1669 | 
            +
            ```
         | 
| 1670 | 
            +
             | 
| 1671 | 
            +
            ```{ruby}
         | 
| 1672 | 
            +
            #| tags: []
         | 
| 1673 | 
            +
            # RedAmber
         | 
| 1674 | 
            +
            df = DataFrame.new(
         | 
| 1675 | 
            +
              # You can omit outer {}
         | 
| 1676 | 
            +
              "AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]
         | 
| 1677 | 
            +
            )
         | 
| 1678 | 
            +
             | 
| 1679 | 
            +
            df.slice(df[:AAA] <= 5)
         | 
| 1680 | 
            +
            # df[df[:AAA] <= 5] # is also OK
         | 
| 1681 | 
            +
            ```
         | 
| 1682 | 
            +
             | 
| 1683 | 
            +
            ```{ruby}
         | 
| 1684 | 
            +
            #| tags: []
         | 
| 1685 | 
            +
            df.remove(df[:AAA] <= 5)
         | 
| 1686 | 
            +
            # df.slice(df[:AAA] > 5) # do the same thing
         | 
| 1687 | 
            +
            ```
         | 
| 1688 | 
            +
             | 
| 1689 | 
            +
            ## 58. From the Pandas cookbook - Building criteria
         | 
| 1690 | 
            +
            Split a frame with a boolean criterion
         | 
| 1691 | 
            +
             | 
| 1692 | 
            +
            https://pandas.pydata.org/docs/user_guide/cookbook.html#building-criteria
         | 
| 1693 | 
            +
             | 
| 1694 | 
            +
            ```python
         | 
| 1695 | 
            +
            # by Python Pandas
         | 
| 1696 | 
            +
            df = pd.DataFrame(
         | 
| 1697 | 
            +
                {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
         | 
| 1698 | 
            +
            )
         | 
| 1699 | 
            +
             | 
| 1700 | 
            +
            # and
         | 
| 1701 | 
            +
            df.loc[(df["BBB"] < 25) & (df["CCC"] >= -40), "AAA"]
         | 
| 1702 | 
            +
             | 
| 1703 | 
            +
            # returns a series =>
         | 
| 1704 | 
            +
            0    4
         | 
| 1705 | 
            +
            1    5
         | 
| 1706 | 
            +
            Name: AAA, dtype: int64
         | 
| 1707 | 
            +
             | 
| 1708 | 
            +
            # or
         | 
| 1709 | 
            +
            df.loc[(df["BBB"] > 25) | (df["CCC"] >= -40), "AAA"]
         | 
| 1710 | 
            +
             | 
| 1711 | 
            +
            # returns a series =>
         | 
| 1712 | 
            +
            0    4
         | 
| 1713 | 
            +
            1    5
         | 
| 1714 | 
            +
            2    6
         | 
| 1715 | 
            +
            3    7
         | 
| 1716 | 
            +
            Name: AAA, dtype: int64
         | 
| 1717 | 
            +
            ```
         | 
| 1718 | 
            +
             | 
| 1719 | 
            +
            ```{ruby}
         | 
| 1720 | 
            +
            #| tags: []
         | 
| 1721 | 
            +
            # RedAmber
         | 
| 1722 | 
            +
            df = DataFrame.new(
         | 
| 1723 | 
            +
              # You can omit {}
         | 
| 1724 | 
            +
              "AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]
         | 
| 1725 | 
            +
            )
         | 
| 1726 | 
            +
             | 
| 1727 | 
            +
            df.slice( (df[:BBB] < 25) & (df[:CCC] >= 40) ).pick(:AAA)
         | 
| 1728 | 
            +
            ```
         | 
| 1729 | 
            +
             | 
| 1730 | 
            +
            ```{ruby}
         | 
| 1731 | 
            +
            #| tags: []
         | 
| 1732 | 
            +
            df.slice( (df[:BBB] > 25) | (df[:CCC] >= 40) ).pick(:AAA)
         | 
| 1733 | 
            +
            # df[ (df[:BBB] > 25) | (df[:CCC] >= 40) ][:AAA)] # also OK
         | 
| 1734 | 
            +
            ```
         | 
| 1735 | 
            +
             | 
| 1736 | 
            +
            ```python
         | 
| 1737 | 
            +
            # by Python Pandas
         | 
| 1738 | 
            +
            # or (with assignment)
         | 
| 1739 | 
            +
            df.loc[(df["BBB"] > 25) | (df["CCC"] >= 75), "AAA"] = 0.1
         | 
| 1740 | 
            +
            df
         | 
| 1741 | 
            +
             | 
| 1742 | 
            +
            # returns a dataframe =>
         | 
| 1743 | 
            +
               AAA  BBB  CCC
         | 
| 1744 | 
            +
            0  0.1   10  100
         | 
| 1745 | 
            +
            1  5.0   20   50
         | 
| 1746 | 
            +
            2  0.1   30  -30
         | 
| 1747 | 
            +
            3  0.1   40  -50
         | 
| 1748 | 
            +
            ```
         | 
| 1749 | 
            +
             | 
| 1750 | 
            +
            ```{ruby}
         | 
| 1751 | 
            +
            #| tags: []
         | 
| 1752 | 
            +
            # df.assign(AAA: df[:AAA].replace((df[:BBB] > 25) | (df[:CCC] >= 75), 0.1)) # by one liner
         | 
| 1753 | 
            +
             | 
| 1754 | 
            +
            booleans = (df[:BBB] > 25) | (df[:CCC] >= 75)
         | 
| 1755 | 
            +
            replaced = df[:AAA].replace(booleans, 0.1)
         | 
| 1756 | 
            +
            df.assign(AAA: replaced)
         | 
| 1757 | 
            +
            ```
         | 
| 1758 | 
            +
             | 
| 1759 | 
            +
            ```python
         | 
| 1760 | 
            +
            # by Python Pandas
         | 
| 1761 | 
            +
            # Select rows with data closest to certain value using argsort
         | 
| 1762 | 
            +
            df = pd.DataFrame(
         | 
| 1763 | 
            +
                {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
         | 
| 1764 | 
            +
            )
         | 
| 1765 | 
            +
            aValue = 43.0
         | 
| 1766 | 
            +
            df.loc[(df.CCC - aValue).abs().argsort()]
         | 
| 1767 | 
            +
             | 
| 1768 | 
            +
            # returns a dataframe =>
         | 
| 1769 | 
            +
               AAA  BBB  CCC
         | 
| 1770 | 
            +
            1    5   20   50
         | 
| 1771 | 
            +
            0    4   10  100
         | 
| 1772 | 
            +
            2    6   30  -30
         | 
| 1773 | 
            +
            3    7   40  -50
         | 
| 1774 | 
            +
            ```
         | 
| 1775 | 
            +
             | 
| 1776 | 
            +
            ```{ruby}
         | 
| 1777 | 
            +
            #| tags: []
         | 
| 1778 | 
            +
            a_value = 43
         | 
| 1779 | 
            +
            df[(df[:CCC] - a_value).abs.sort_indexes]
         | 
| 1780 | 
            +
            # df.slice (df[:CCC] - a_value).abs.sort_indexes # also OK
         | 
| 1781 | 
            +
            ```
         | 
| 1782 | 
            +
             | 
| 1783 | 
            +
            ```python
         | 
| 1784 | 
            +
            # by Python Pandas
         | 
| 1785 | 
            +
            # Dynamically reduce a list of criteria using a binary operators
         | 
| 1786 | 
            +
            df = pd.DataFrame(
         | 
| 1787 | 
            +
                {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
         | 
| 1788 | 
            +
            )
         | 
| 1789 | 
            +
            Crit1 = df.AAA <= 5.5
         | 
| 1790 | 
            +
            Crit2 = df.BBB == 10.0
         | 
| 1791 | 
            +
            Crit3 = df.CCC > -40.0
         | 
| 1792 | 
            +
            AllCrit = Crit1 & Crit2 & Crit3
         | 
| 1793 | 
            +
             | 
| 1794 | 
            +
            import functools
         | 
| 1795 | 
            +
             | 
| 1796 | 
            +
            CritList = [Crit1, Crit2, Crit3]
         | 
| 1797 | 
            +
            AllCrit = functools.reduce(lambda x, y: x & y, CritList)
         | 
| 1798 | 
            +
            df[AllCrit]
         | 
| 1799 | 
            +
             | 
| 1800 | 
            +
            # returns a dataframe =>
         | 
| 1801 | 
            +
               AAA  BBB  CCC
         | 
| 1802 | 
            +
            0    4   10  100
         | 
| 1803 | 
            +
            ```
         | 
| 1804 | 
            +
             | 
| 1805 | 
            +
            ```{ruby}
         | 
| 1806 | 
            +
            #| tags: []
         | 
| 1807 | 
            +
            crit1 = df[:AAA] <= 5.5
         | 
| 1808 | 
            +
            crit2 = df[:BBB] == 10.0
         | 
| 1809 | 
            +
            crit3 = df[:CCC] >= -40.0
         | 
| 1810 | 
            +
            df[crit1 & crit2 & crit3]
         | 
| 1811 | 
            +
            ```
         | 
| 1812 | 
            +
             | 
| 1813 | 
            +
            ## 59. From the Pandas cookbook - Dataframes
         | 
| 1814 | 
            +
             | 
| 1815 | 
            +
            https://pandas.pydata.org/docs/user_guide/cookbook.html#dataframes
         | 
| 1816 | 
            +
             | 
| 1817 | 
            +
            ```python
         | 
| 1818 | 
            +
            # by Python Pandas
         | 
| 1819 | 
            +
            # Using both row labels and value conditionals
         | 
| 1820 | 
            +
            df = pd.DataFrame(
         | 
| 1821 | 
            +
                {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]}
         | 
| 1822 | 
            +
            )
         | 
| 1823 | 
            +
            df[(df.AAA <= 6) & (df.index.isin([0, 2, 4]))]
         | 
| 1824 | 
            +
             | 
| 1825 | 
            +
            # returns =>
         | 
| 1826 | 
            +
               AAA  BBB  CCC
         | 
| 1827 | 
            +
            0    4   10  100
         | 
| 1828 | 
            +
            2    6   30  -30
         | 
| 1829 | 
            +
            ```
         | 
| 1830 | 
            +
             | 
| 1831 | 
            +
            ```{ruby}
         | 
| 1832 | 
            +
            #| tags: []
         | 
| 1833 | 
            +
            # RedAmber
         | 
| 1834 | 
            +
            df = DataFrame.new(
         | 
| 1835 | 
            +
              "AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]
         | 
| 1836 | 
            +
            )
         | 
| 1837 | 
            +
             | 
| 1838 | 
            +
            df[(df[:AAA] <= 6) & df.indices.map { |i| [0, 2, 4].include? i }]
         | 
| 1839 | 
            +
            ```
         | 
| 1840 | 
            +
             | 
| 1841 | 
            +
            ```python
         | 
| 1842 | 
            +
            # by Python Pandas
         | 
| 1843 | 
            +
            # Use loc for label-oriented slicing and iloc positional slicing GH2904
         | 
| 1844 | 
            +
            df = pd.DataFrame(
         | 
| 1845 | 
            +
                {"AAA": [4, 5, 6, 7], "BBB": [10, 20, 30, 40], "CCC": [100, 50, -30, -50]},
         | 
| 1846 | 
            +
                index=["foo", "bar", "boo", "kar"],
         | 
| 1847 | 
            +
            )
         | 
| 1848 | 
            +
             | 
| 1849 | 
            +
            # There are 2 explicit slicing methods, with a third general case
         | 
| 1850 | 
            +
            # 1. Positional-oriented (Python slicing style : exclusive of end)
         | 
| 1851 | 
            +
            # 2. Label-oriented (Non-Python slicing style : inclusive of end)
         | 
| 1852 | 
            +
            # 3. General (Either slicing style : depends on if the slice contains labels or positions)
         | 
| 1853 | 
            +
             | 
| 1854 | 
            +
            df.loc["bar":"kar"]  # Label
         | 
| 1855 | 
            +
            # returns =>
         | 
| 1856 | 
            +
                 AAA  BBB  CCC
         | 
| 1857 | 
            +
            bar    5   20   50
         | 
| 1858 | 
            +
            boo    6   30  -30
         | 
| 1859 | 
            +
            kar    7   40  -50
         | 
| 1860 | 
            +
             | 
| 1861 | 
            +
            # Generic
         | 
| 1862 | 
            +
            df[0:3]
         | 
| 1863 | 
            +
            # returns =>
         | 
| 1864 | 
            +
                 AAA  BBB  CCC
         | 
| 1865 | 
            +
            foo    4   10  100
         | 
| 1866 | 
            +
            bar    5   20   50
         | 
| 1867 | 
            +
            boo    6   30  -30
         | 
| 1868 | 
            +
             | 
| 1869 | 
            +
            df["bar":"kar"]
         | 
| 1870 | 
            +
            # returns =>
         | 
| 1871 | 
            +
                 AAA  BBB  CCC
         | 
| 1872 | 
            +
            bar    5   20   50
         | 
| 1873 | 
            +
            boo    6   30  -30
         | 
| 1874 | 
            +
            kar    7   40  -50
         | 
| 1875 | 
            +
            ```
         | 
| 1876 | 
            +
             | 
| 1877 | 
            +
            ```{ruby}
         | 
| 1878 | 
            +
            #| tags: []
         | 
| 1879 | 
            +
            # RedAmber does not have row index. Use a new column as indexes.
         | 
| 1880 | 
            +
            labeled = df.assign_left(index: %w[foo bar boo kar])
         | 
| 1881 | 
            +
            # labeled = df.assign(index: %w[foo bar boo kar]).pick { [keys[-1], keys[0...-1]] } # until v0.1.8
         | 
| 1882 | 
            +
            ```
         | 
| 1883 | 
            +
             | 
| 1884 | 
            +
            ```{ruby}
         | 
| 1885 | 
            +
            #| tags: []
         | 
| 1886 | 
            +
            labeled[1..3]
         | 
| 1887 | 
            +
            ```
         | 
| 1888 | 
            +
             | 
| 1889 | 
            +
            ```{ruby}
         | 
| 1890 | 
            +
            #| tags: []
         | 
| 1891 | 
            +
            labeled.slice do
         | 
| 1892 | 
            +
              v = v(:index)
         | 
| 1893 | 
            +
              v.index("bar")..v.index("kar")
         | 
| 1894 | 
            +
            end
         | 
| 1895 | 
            +
            ```
         | 
| 1896 | 
            +
             | 
| 1897 | 
            +
            `slice_by` returns the same result as above.
         | 
| 1898 | 
            +
             | 
| 1899 | 
            +
            (Since 0.2.1)
         | 
| 1900 | 
            +
             | 
| 1901 | 
            +
            ```{ruby}
         | 
| 1902 | 
            +
            #| tags: []
         | 
| 1903 | 
            +
            labeled.slice_by(:index, keep_key: true) { "bar".."kar"}
         | 
| 1904 | 
            +
            ```
         | 
| 1905 | 
            +
             | 
| 1906 | 
            +
            ```python
         | 
| 1907 | 
            +
            # by Python Pandas
         | 
| 1908 | 
            +
            # Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.
         | 
| 1909 | 
            +
            df2 = pd.DataFrame(data=data, index=[1, 2, 3, 4])  # Note index starts at 1.
         | 
| 1910 | 
            +
             | 
| 1911 | 
            +
            df2.iloc[1:3]  # Position-oriented
         | 
| 1912 | 
            +
            # returns =>
         | 
| 1913 | 
            +
               AAA  BBB  CCC
         | 
| 1914 | 
            +
            2    5   20   50
         | 
| 1915 | 
            +
            3    6   30  -30
         | 
| 1916 | 
            +
             | 
| 1917 | 
            +
            df2.loc[1:3]  # Label-oriented
         | 
| 1918 | 
            +
            # returns =>
         | 
| 1919 | 
            +
               AAA  BBB  CCC
         | 
| 1920 | 
            +
            1    4   10  100
         | 
| 1921 | 
            +
            2    5   20   50
         | 
| 1922 | 
            +
            3    6   30  -30
         | 
| 1923 | 
            +
            ```
         | 
| 1924 | 
            +
             | 
| 1925 | 
            +
            ```{ruby}
         | 
| 1926 | 
            +
            #| tags: []
         | 
| 1927 | 
            +
            # RedAmber only have an implicit integer index 0...size,
         | 
| 1928 | 
            +
            # does not happen any ambiguity unless you create a new column and use it for indexes :-).
         | 
| 1929 | 
            +
            ```
         | 
| 1930 | 
            +
             | 
| 1931 | 
            +
            ```python
         | 
| 1932 | 
            +
            # by Python Pandas
         | 
| 1933 | 
            +
            # Using inverse operator (~) to take the complement of a mask
         | 
| 1934 | 
            +
            df[~((df.AAA <= 6) & (df.index.isin([0, 2, 4])))]
         | 
| 1935 | 
            +
             | 
| 1936 | 
            +
            # returns =>
         | 
| 1937 | 
            +
               AAA  BBB  CCC
         | 
| 1938 | 
            +
            1    5   20   50
         | 
| 1939 | 
            +
            3    7   40  -50
         | 
| 1940 | 
            +
            ```
         | 
| 1941 | 
            +
             | 
| 1942 | 
            +
            ```{ruby}
         | 
| 1943 | 
            +
            #| tags: []
         | 
| 1944 | 
            +
            # RedAmber offers #! method for boolean Vector.
         | 
| 1945 | 
            +
            df[!((df[:AAA] <= 6) & df.indices.map { |i| [0, 2, 4].include? i })]
         | 
| 1946 | 
            +
             | 
| 1947 | 
            +
            # or
         | 
| 1948 | 
            +
            # df[((df[:AAA] <= 6) & df.indices.map { |i| [0, 2, 4].include? i }).invert]
         | 
| 1949 | 
            +
            ```
         | 
| 1950 | 
            +
             | 
| 1951 | 
            +
            If you have `nil` in your data, consider #primitive_invert for consistent result. See example #26.
         | 
| 1952 | 
            +
             | 
| 1953 | 
            +
            ## 60. From the Pandas cookbook - New columns
         | 
| 1954 | 
            +
             | 
| 1955 | 
            +
            https://pandas.pydata.org/docs/user_guide/cookbook.html#new-columns
         | 
| 1956 | 
            +
             | 
| 1957 | 
            +
            ```python
         | 
| 1958 | 
            +
            # by Python Pandas
         | 
| 1959 | 
            +
            # Efficiently and dynamically creating new columns using applymap
         | 
| 1960 | 
            +
            df = pd.DataFrame({"AAA": [1, 2, 1, 3], "BBB": [1, 1, 2, 2], "CCC": [2, 1, 3, 1]})
         | 
| 1961 | 
            +
            df
         | 
| 1962 | 
            +
             | 
| 1963 | 
            +
            # returns =>
         | 
| 1964 | 
            +
               AAA  BBB  CCC
         | 
| 1965 | 
            +
            0    1    1    2
         | 
| 1966 | 
            +
            1    2    1    1
         | 
| 1967 | 
            +
            2    1    2    3
         | 
| 1968 | 
            +
            3    3    2    1
         | 
| 1969 | 
            +
             | 
| 1970 | 
            +
            source_cols = df.columns  # Or some subset would work too
         | 
| 1971 | 
            +
            new_cols = [str(x) + "_cat" for x in source_cols]
         | 
| 1972 | 
            +
            categories = {1: "Alpha", 2: "Beta", 3: "Charlie"}
         | 
| 1973 | 
            +
            df[new_cols] = df[source_cols].applymap(categories.get)
         | 
| 1974 | 
            +
            df
         | 
| 1975 | 
            +
             | 
| 1976 | 
            +
            # returns =>
         | 
| 1977 | 
            +
               AAA  BBB  CCC  AAA_cat BBB_cat  CCC_cat
         | 
| 1978 | 
            +
            0    1    1    2    Alpha   Alpha     Beta
         | 
| 1979 | 
            +
            1    2    1    1     Beta   Alpha    Alpha
         | 
| 1980 | 
            +
            2    1    2    3    Alpha    Beta  Charlie
         | 
| 1981 | 
            +
            3    3    2    1  Charlie    Beta    Alpha
         | 
| 1982 | 
            +
            ```
         | 
| 1983 | 
            +
             | 
| 1984 | 
            +
            ```{ruby}
         | 
| 1985 | 
            +
            #| tags: []
         | 
| 1986 | 
            +
            # RedAmber
         | 
| 1987 | 
            +
            df = DataFrame.new({"AAA": [1, 2, 1, 3], "BBB": [1, 1, 2, 2], "CCC": [2, 1, 3, 1]})
         | 
| 1988 | 
            +
            ```
         | 
| 1989 | 
            +
             | 
| 1990 | 
            +
            ```{ruby}
         | 
| 1991 | 
            +
            #| tags: []
         | 
| 1992 | 
            +
            categories = {1 => "Alpha", 2 => "Beta", 3 => "Charlie"}
         | 
| 1993 | 
            +
             | 
| 1994 | 
            +
            # Creating a Hash from keys
         | 
| 1995 | 
            +
            df.assign do
         | 
| 1996 | 
            +
              keys.each_with_object({}) do |key, h|
         | 
| 1997 | 
            +
                h["#{key}_cat"] = v(key).to_a.map { |x| categories[x] }
         | 
| 1998 | 
            +
              end
         | 
| 1999 | 
            +
            end
         | 
| 2000 | 
            +
             | 
| 2001 | 
            +
            # Creating an Array from vectors, from v0.2.0
         | 
| 2002 | 
            +
            df.assign do
         | 
| 2003 | 
            +
              vectors.map do |v|
         | 
| 2004 | 
            +
                ["#{v.key}_cat", v.to_a.map { |x| categories[x] } ]
         | 
| 2005 | 
            +
              end
         | 
| 2006 | 
            +
            end
         | 
| 2007 | 
            +
            ```
         | 
| 2008 | 
            +
             | 
| 2009 | 
            +
            ```python
         | 
| 2010 | 
            +
            # by Python Pandas
         | 
| 2011 | 
            +
            # Keep other columns when using min() with groupby
         | 
| 2012 | 
            +
            df = pd.DataFrame(
         | 
| 2013 | 
            +
                {"AAA": [1, 1, 1, 2, 2, 2, 3, 3], "BBB": [2, 1, 3, 4, 5, 1, 2, 3]}
         | 
| 2014 | 
            +
            )
         | 
| 2015 | 
            +
            df
         | 
| 2016 | 
            +
             | 
| 2017 | 
            +
            # returns =>
         | 
| 2018 | 
            +
               AAA  BBB
         | 
| 2019 | 
            +
            0    1    2
         | 
| 2020 | 
            +
            1    1    1
         | 
| 2021 | 
            +
            2    1    3
         | 
| 2022 | 
            +
            3    2    4
         | 
| 2023 | 
            +
            4    2    5
         | 
| 2024 | 
            +
            5    2    1
         | 
| 2025 | 
            +
            6    3    2
         | 
| 2026 | 
            +
            7    3    3
         | 
| 2027 | 
            +
             | 
| 2028 | 
            +
            # Method 1 : idxmin() to get the index of the minimums
         | 
| 2029 | 
            +
            df.loc[df.groupby("AAA")["BBB"].idxmin()]
         | 
| 2030 | 
            +
             | 
| 2031 | 
            +
            # returns =>
         | 
| 2032 | 
            +
               AAA  BBB
         | 
| 2033 | 
            +
            1    1    1
         | 
| 2034 | 
            +
            5    2    1
         | 
| 2035 | 
            +
            6    3    2
         | 
| 2036 | 
            +
             | 
| 2037 | 
            +
            # Method 2 : sort then take first of each
         | 
| 2038 | 
            +
            df.sort_values(by="BBB").groupby("AAA", as_index=False).first()
         | 
| 2039 | 
            +
             | 
| 2040 | 
            +
            # returns =>
         | 
| 2041 | 
            +
               AAA  BBB
         | 
| 2042 | 
            +
            0    1    1
         | 
| 2043 | 
            +
            1    2    1
         | 
| 2044 | 
            +
            2    3    2
         | 
| 2045 | 
            +
             | 
| 2046 | 
            +
            # Notice the same results, with the exception of the index.
         | 
| 2047 | 
            +
            ```
         | 
| 2048 | 
            +
             | 
| 2049 | 
            +
            ```{ruby}
         | 
| 2050 | 
            +
            #| tags: []
         | 
| 2051 | 
            +
            # RedAmber
         | 
| 2052 | 
            +
            df = DataFrame.new(AAA: [1, 1, 1, 2, 2, 2, 3, 3], BBB: [2, 1, 3, 4, 5, 1, 2, 3])
         | 
| 2053 | 
            +
            ```
         | 
| 2054 | 
            +
             | 
| 2055 | 
            +
            ```{ruby}
         | 
| 2056 | 
            +
            #| tags: []
         | 
| 2057 | 
            +
            df.group(:AAA).min
         | 
| 2058 | 
            +
             | 
| 2059 | 
            +
            # Add `.rename { [keys[-1], :BBB] }` if you want.
         | 
| 2060 | 
            +
            ```
         | 
| 2061 | 
            +
             | 
| 2062 | 
            +
            ## 61. Summary/describe
         | 
| 2063 | 
            +
             | 
| 2064 | 
            +
            ```{ruby}
         | 
| 2065 | 
            +
            #| tags: []
         | 
| 2066 | 
            +
            penguins.summary
         | 
| 2067 | 
            +
            # or
         | 
| 2068 | 
            +
            penguins.describe
         | 
| 2069 | 
            +
            ```
         | 
| 2070 | 
            +
             | 
| 2071 | 
            +
            If you need a variables in row, use `transpose`. (Since 0.2.0)
         | 
| 2072 | 
            +
             | 
| 2073 | 
            +
            ```{ruby}
         | 
| 2074 | 
            +
            #| tags: []
         | 
| 2075 | 
            +
            penguins.summary.transpose(name: :stats)
         | 
| 2076 | 
            +
            ```
         | 
| 2077 | 
            +
             | 
| 2078 | 
            +
            ## 62. Quantile/Quantiles
         | 
| 2079 | 
            +
             | 
| 2080 | 
            +
            `Vector#quantile(prob)` returns quantile at probability `prob`.
         | 
| 2081 | 
            +
             | 
| 2082 | 
            +
            (Since 0.2.0)
         | 
| 2083 | 
            +
             | 
| 2084 | 
            +
            ```{ruby}
         | 
| 2085 | 
            +
            #| tags: []
         | 
| 2086 | 
            +
            penguins[:bill_depth_mm].quantile # default is prob = 0.5
         | 
| 2087 | 
            +
            ```
         | 
| 2088 | 
            +
             | 
| 2089 | 
            +
            `Vector#quantiles` accepts an Array for multiple quantiles. Returns a DataFrame.
         | 
| 2090 | 
            +
             | 
| 2091 | 
            +
            ```{ruby}
         | 
| 2092 | 
            +
            #| tags: []
         | 
| 2093 | 
            +
            penguins[:bill_depth_mm].quantiles([0.05, 0.95])
         | 
| 2094 | 
            +
            ```
         | 
| 2095 | 
            +
             | 
| 2096 | 
            +
            ## 63. Transpose
         | 
| 2097 | 
            +
             | 
| 2098 | 
            +
            `DataFrame#transpose` creates transposed DataFrame for wide type dataframe.
         | 
| 2099 | 
            +
             | 
| 2100 | 
            +
            (Since 0.2.0)
         | 
| 2101 | 
            +
             | 
| 2102 | 
            +
            ```{ruby}
         | 
| 2103 | 
            +
            #| tags: []
         | 
| 2104 | 
            +
            uri = URI("https://raw.githubusercontent.com/heronshoes/red_amber/master/test/entity/import_cars.tsv")
         | 
| 2105 | 
            +
            import_cars = RedAmber::DataFrame.load(uri)
         | 
| 2106 | 
            +
            ```
         | 
| 2107 | 
            +
             | 
| 2108 | 
            +
            ```{ruby}
         | 
| 2109 | 
            +
            #| tags: []
         | 
| 2110 | 
            +
            import_cars.transpose
         | 
| 2111 | 
            +
            ```
         | 
| 2112 | 
            +
             | 
| 2113 | 
            +
            Default name of created column is `:NAME`.
         | 
| 2114 | 
            +
             | 
| 2115 | 
            +
            We can name the column from the keys in original by the option `name:`.
         | 
| 2116 | 
            +
             | 
| 2117 | 
            +
            ```{ruby}
         | 
| 2118 | 
            +
            #| tags: []
         | 
| 2119 | 
            +
            import_cars.transpose(key: :Year, name: :Manufacturer)
         | 
| 2120 | 
            +
            ```
         | 
| 2121 | 
            +
             | 
| 2122 | 
            +
            You can specify index column by option `:key` even if it is in the middle of the original DataFrame.
         | 
| 2123 | 
            +
             | 
| 2124 | 
            +
            ```{ruby}
         | 
| 2125 | 
            +
            #| tags: []
         | 
| 2126 | 
            +
            # locate `:Year` in the middle
         | 
| 2127 | 
            +
            df = import_cars.pick(1..2, 0, 3..)
         | 
| 2128 | 
            +
            ```
         | 
| 2129 | 
            +
             | 
| 2130 | 
            +
            ```{ruby}
         | 
| 2131 | 
            +
            #| tags: []
         | 
| 2132 | 
            +
            df.transpose(key: :Year)
         | 
| 2133 | 
            +
            ```
         | 
| 2134 | 
            +
             | 
| 2135 | 
            +
            ## 64. To_long
         | 
| 2136 | 
            +
             | 
| 2137 | 
            +
            `DataFrame#to_long(*keep_keys)` reshapes wide DataFrame to the long DataFrame.
         | 
| 2138 | 
            +
             | 
| 2139 | 
            +
            - Parameter `keep_keys` specifies the key names to keep.
         | 
| 2140 | 
            +
             | 
| 2141 | 
            +
            (Since 0.2.0)
         | 
| 2142 | 
            +
             | 
| 2143 | 
            +
            ```{ruby}
         | 
| 2144 | 
            +
            #| tags: []
         | 
| 2145 | 
            +
            uri = URI("https://raw.githubusercontent.com/heronshoes/red_amber/master/test/entity/import_cars.tsv")
         | 
| 2146 | 
            +
            import_cars = RedAmber::DataFrame.load(uri)
         | 
| 2147 | 
            +
            ```
         | 
| 2148 | 
            +
             | 
| 2149 | 
            +
            ```{ruby}
         | 
| 2150 | 
            +
            #| tags: []
         | 
| 2151 | 
            +
            import_cars.to_long(:Year)
         | 
| 2152 | 
            +
            ```
         | 
| 2153 | 
            +
             | 
| 2154 | 
            +
            - Option `:name` specify the key of the column which is come **from key names**. Default is `:NAME`.
         | 
| 2155 | 
            +
            - Option `:value` specify the key of the column which is come **from values**. Default is `:VALUE`.
         | 
| 2156 | 
            +
             | 
| 2157 | 
            +
            ```{ruby}
         | 
| 2158 | 
            +
            #| tags: []
         | 
| 2159 | 
            +
            import_cars.to_long(:Year, name: :Manufacturer, value: :Num_of_imported)
         | 
| 2160 | 
            +
            ```
         | 
| 2161 | 
            +
             | 
| 2162 | 
            +
            ## 65. To_wide
         | 
| 2163 | 
            +
             | 
| 2164 | 
            +
            `DataFrame#to_wide(*keep_keys)` reshapes long DataFrame to a wide DataFrame.
         | 
| 2165 | 
            +
             | 
| 2166 | 
            +
            - Option `:name` specify the key of the column which will be expanded **to key name**. Default is `:NAME`.
         | 
| 2167 | 
            +
            - Option `:value` specify the key of the column which will be expanded **to values**. Default is `:VALUE`.
         | 
| 2168 | 
            +
             | 
| 2169 | 
            +
            (Since 0.2.0)
         | 
| 2170 | 
            +
             | 
| 2171 | 
            +
            ```{ruby}
         | 
| 2172 | 
            +
            #| tags: []
         | 
| 2173 | 
            +
            import_cars.to_long(:Year).to_wide
         | 
| 2174 | 
            +
            ```
         | 
| 2175 | 
            +
             | 
| 2176 | 
            +
            ```{ruby}
         | 
| 2177 | 
            +
            #| tags: []
         | 
| 2178 | 
            +
            import_cars.to_long(:Year).to_wide(name: :NAME, value: :VALUE)
         | 
| 2179 | 
            +
            # is also OK
         | 
| 2180 | 
            +
            ```
         | 
| 2181 | 
            +
             | 
| 2182 | 
            +
            ## 66. Custom index
         | 
| 2183 | 
            +
             | 
| 2184 | 
            +
            Another example of `indices` is [14. Indices](#14.-Indices).
         | 
| 2185 | 
            +
             | 
| 2186 | 
            +
            We can set the start of indices by the option.
         | 
| 2187 | 
            +
             | 
| 2188 | 
            +
            (Since 0.2.1)
         | 
| 2189 | 
            +
             | 
| 2190 | 
            +
            ```{ruby}
         | 
| 2191 | 
            +
            #| tags: []
         | 
| 2192 | 
            +
            df = DataFrame.new(x: [0, 1, 2, 3, 4])
         | 
| 2193 | 
            +
            df.indices
         | 
| 2194 | 
            +
            ```
         | 
| 2195 | 
            +
             | 
| 2196 | 
            +
            ```{ruby}
         | 
| 2197 | 
            +
            #| tags: []
         | 
| 2198 | 
            +
            df.indices(1)
         | 
| 2199 | 
            +
            ```
         | 
| 2200 | 
            +
             | 
| 2201 | 
            +
            You can put the first value which accepts `#succ` method.
         | 
| 2202 | 
            +
             | 
| 2203 | 
            +
            ```{ruby}
         | 
| 2204 | 
            +
            #| tags: []
         | 
| 2205 | 
            +
            df.indices("a")
         | 
| 2206 | 
            +
            ```
         | 
| 2207 | 
            +
             | 
| 2208 | 
            +
            ## 67. Method missing
         | 
| 2209 | 
            +
             | 
| 2210 | 
            +
            `RedAmber::DataFrame` has `#method_missing` to enable to call key names as methods.
         | 
| 2211 | 
            +
             | 
| 2212 | 
            +
            This feature is limited to what can be called as a method (`:key` is OK, not allowed for the keys `:Key`, `:"key.1"`, `:"1key"`, etc. ). But it will be convenient in many cases.
         | 
| 2213 | 
            +
             | 
| 2214 | 
            +
            (Since 0.2.1)
         | 
| 2215 | 
            +
             | 
| 2216 | 
            +
            ```{ruby}
         | 
| 2217 | 
            +
            #| tags: []
         | 
| 2218 | 
            +
            df = DataFrame.new(x: [1, 2, 3])
         | 
| 2219 | 
            +
            df.x.sum
         | 
| 2220 | 
            +
            ```
         | 
| 2221 | 
            +
             | 
| 2222 | 
            +
            ```{ruby}
         | 
| 2223 | 
            +
            #| tags: []
         | 
| 2224 | 
            +
            # Some ways to pull a Vector
         | 
| 2225 | 
            +
            df[:x] # Formal style
         | 
| 2226 | 
            +
             | 
| 2227 | 
            +
            df.v(:x) # #v method
         | 
| 2228 | 
            +
             | 
| 2229 | 
            +
            df.x # method
         | 
| 2230 | 
            +
            ```
         | 
| 2231 | 
            +
             | 
| 2232 | 
            +
            ```{ruby}
         | 
| 2233 | 
            +
            #| tags: []
         | 
| 2234 | 
            +
            df.x.sum
         | 
| 2235 | 
            +
            ```
         | 
| 2236 | 
            +
             | 
| 2237 | 
            +
            ## 68. Assign revised
         | 
| 2238 | 
            +
             | 
| 2239 | 
            +
            Another example of `assign` is [#34. Assign](#34.-Assign), [#69. Variations of assign](#69.-Variations-of-assign) .
         | 
| 2240 | 
            +
             | 
| 2241 | 
            +
            ```{ruby}
         | 
| 2242 | 
            +
            #| tags: []
         | 
| 2243 | 
            +
            df = DataFrame.new(x: [1, 2, 3])
         | 
| 2244 | 
            +
             | 
| 2245 | 
            +
            # Assign by a Hash
         | 
| 2246 | 
            +
            df.assign(y: df.x / 10.0)
         | 
| 2247 | 
            +
            ```
         | 
| 2248 | 
            +
             | 
| 2249 | 
            +
            ```{ruby}
         | 
| 2250 | 
            +
            #| tags: []
         | 
| 2251 | 
            +
            # Assign by separated key and value
         | 
| 2252 | 
            +
            df.assign(:y) { x / 10.0 }
         | 
| 2253 | 
            +
            ```
         | 
| 2254 | 
            +
             | 
| 2255 | 
            +
            ```{ruby}
         | 
| 2256 | 
            +
            #| tags: []
         | 
| 2257 | 
            +
            # Separated keys and values
         | 
| 2258 | 
            +
            df.assign(:y, :z) { [x * 10, x / 10.0] }
         | 
| 2259 | 
            +
            ```
         | 
| 2260 | 
            +
             | 
| 2261 | 
            +
            ## 69. Variations of assign
         | 
| 2262 | 
            +
             | 
| 2263 | 
            +
            Another example of `assign` is [#34. Assign](#34.-Assign), [#68. Assign revised](#68.-Assign-revised) .
         | 
| 2264 | 
            +
             | 
| 2265 | 
            +
            ```{ruby}
         | 
| 2266 | 
            +
            #| tags: []
         | 
| 2267 | 
            +
            df = DataFrame.new(x: [1, 2, 3])
         | 
| 2268 | 
            +
            ```
         | 
| 2269 | 
            +
             | 
| 2270 | 
            +
            ```{ruby}
         | 
| 2271 | 
            +
            #| tags: []
         | 
| 2272 | 
            +
            # Hash args
         | 
| 2273 | 
            +
            df.assign(y: df[:x] * 10, z: df[:x] / 10.0)
         | 
| 2274 | 
            +
             | 
| 2275 | 
            +
            # Hash
         | 
| 2276 | 
            +
            hash = {y: df[:x] * 10, z: df[:x] / 10.0}
         | 
| 2277 | 
            +
            df.assign(hash)
         | 
| 2278 | 
            +
             | 
| 2279 | 
            +
            # Array
         | 
| 2280 | 
            +
            array = [[:y, df[:x] * 10], [:z, df[:x] / 10.0]]
         | 
| 2281 | 
            +
            df.assign(array)
         | 
| 2282 | 
            +
             | 
| 2283 | 
            +
            # Array
         | 
| 2284 | 
            +
            df.assign [
         | 
| 2285 | 
            +
              [:y, df[:x] * 10],
         | 
| 2286 | 
            +
              [:z, df[:x] / 10.0]
         | 
| 2287 | 
            +
            ]
         | 
| 2288 | 
            +
             | 
| 2289 | 
            +
            # Hash
         | 
| 2290 | 
            +
            df.assign({
         | 
| 2291 | 
            +
              y: df[:x] * 10,
         | 
| 2292 | 
            +
              z: df[:x] / 10.0
         | 
| 2293 | 
            +
            })
         | 
| 2294 | 
            +
             | 
| 2295 | 
            +
            # Block, Hash
         | 
| 2296 | 
            +
            df.assign { {y: df[:x] * 10, z: df[:x] / 10.0} }
         | 
| 2297 | 
            +
             | 
| 2298 | 
            +
            # Block, Array
         | 
| 2299 | 
            +
            df.assign { [[:y, df[:x] * 10], [:z, df[:x] / 10.0]] }
         | 
| 2300 | 
            +
             | 
| 2301 | 
            +
            # Block, Array, method
         | 
| 2302 | 
            +
            #df.assign { [:y, x * 10], [:z, x / 10.0]] }
         | 
| 2303 | 
            +
             | 
| 2304 | 
            +
            # Separated
         | 
| 2305 | 
            +
            #df.assign(:y, :z) { [x * 10, x / 10.0] }
         | 
| 2306 | 
            +
            ```
         | 
| 2307 | 
            +
             | 
| 2308 | 
            +
            ## 70. Row index label by slice_by
         | 
| 2309 | 
            +
             | 
| 2310 | 
            +
            Another example of `slice` is [#28. Slice](#28.-Slice).
         | 
| 2311 | 
            +
             | 
| 2312 | 
            +
            (Since 0.2.1)
         | 
| 2313 | 
            +
             | 
| 2314 | 
            +
            ```{ruby}
         | 
| 2315 | 
            +
            #| tags: []
         | 
| 2316 | 
            +
            df = DataFrame.new(num: [1.1, 2.2, 3.3, 4.4, 5.5])
         | 
| 2317 | 
            +
                          .assign_left(:label) { indices("a") }
         | 
| 2318 | 
            +
            ```
         | 
| 2319 | 
            +
             | 
| 2320 | 
            +
            `slice_by(key) { row_selector }` selects rows in column `key` with `row_selector`.
         | 
| 2321 | 
            +
             | 
| 2322 | 
            +
            ```{ruby}
         | 
| 2323 | 
            +
            #| tags: []
         | 
| 2324 | 
            +
            df.slice_by(:label) { "b".."d" }
         | 
| 2325 | 
            +
            ```
         | 
| 2326 | 
            +
             | 
| 2327 | 
            +
            ```{ruby}
         | 
| 2328 | 
            +
            #| tags: []
         | 
| 2329 | 
            +
            df.slice_by(:label) { ["c", "b", "e"] }
         | 
| 2330 | 
            +
            ```
         | 
| 2331 | 
            +
             | 
| 2332 | 
            +
            If the option `keep_key:` set to `true`, index label column is preserved.
         | 
| 2333 | 
            +
             | 
| 2334 | 
            +
            ```{ruby}
         | 
| 2335 | 
            +
            #| tags: []
         | 
| 2336 | 
            +
            df.slice_by(:label, keep_key: true) { "b".."d" }
         | 
| 2337 | 
            +
            ```
         | 
| 2338 | 
            +
             | 
| 2339 | 
            +
            ## 71. Simpson's paradox in COVID-19 data
         | 
| 2340 | 
            +
             | 
| 2341 | 
            +
            https://www.rdocumentation.org/packages/openintro/versions/2.3.0/topics/simpsons_paradox_covid
         | 
| 2342 | 
            +
             | 
| 2343 | 
            +
            ```{ruby}
         | 
| 2344 | 
            +
            #| tags: []
         | 
| 2345 | 
            +
            require 'datasets-arrow'
         | 
| 2346 | 
            +
             | 
| 2347 | 
            +
            ds = Datasets::Rdatasets.new('openintro', 'simpsons_paradox_covid')
         | 
| 2348 | 
            +
            df = RedAmber::DataFrame.new(ds.to_arrow)
         | 
| 2349 | 
            +
            ```
         | 
| 2350 | 
            +
             | 
| 2351 | 
            +
            Create group and count by vaccine status and outcome.
         | 
| 2352 | 
            +
             | 
| 2353 | 
            +
            ```{ruby}
         | 
| 2354 | 
            +
            #| tags: []
         | 
| 2355 | 
            +
            count = df.group(:vaccine_status, :outcome).count
         | 
| 2356 | 
            +
            ```
         | 
| 2357 | 
            +
             | 
| 2358 | 
            +
            Reshape to human readable wide table.
         | 
| 2359 | 
            +
             | 
| 2360 | 
            +
            ```{ruby}
         | 
| 2361 | 
            +
            #| tags: []
         | 
| 2362 | 
            +
            all_count = count.to_wide(name: :vaccine_status, value: :count)
         | 
| 2363 | 
            +
            ```
         | 
| 2364 | 
            +
             | 
| 2365 | 
            +
            Compute death or survived ratio for vaccine status.
         | 
| 2366 | 
            +
             | 
| 2367 | 
            +
            ```{ruby}
         | 
| 2368 | 
            +
            #| tags: []
         | 
| 2369 | 
            +
            all_count.assign do
         | 
| 2370 | 
            +
              {
         | 
| 2371 | 
            +
                "vaccinated_%": 100.0 * vaccinated / vaccinated.sum,
         | 
| 2372 | 
            +
                "unvaccinated_%": 100.0 * unvaccinated / unvaccinated.sum
         | 
| 2373 | 
            +
              }
         | 
| 2374 | 
            +
            end
         | 
| 2375 | 
            +
            ```
         | 
| 2376 | 
            +
             | 
| 2377 | 
            +
            Death ratio for vaccinated is higher than unvaccinated. Is it true?
         | 
| 2378 | 
            +
             | 
| 2379 | 
            +
            Next, do the same thing above for each age group. Temporally create methods.
         | 
| 2380 | 
            +
             | 
| 2381 | 
            +
            ```{ruby}
         | 
| 2382 | 
            +
            #| tags: []
         | 
| 2383 | 
            +
            def make_covid_table(df)
         | 
| 2384 | 
            +
              df.group(:vaccine_status, :outcome)
         | 
| 2385 | 
            +
                .count
         | 
| 2386 | 
            +
                .to_wide(name: :vaccine_status, value: :count)
         | 
| 2387 | 
            +
                .assign do
         | 
| 2388 | 
            +
                  {
         | 
| 2389 | 
            +
                    "vaccinated_%": (100.0 * vaccinated / vaccinated.sum).round(n_digits: 3),
         | 
| 2390 | 
            +
                    "unvaccinated_%": (100.0 * unvaccinated / unvaccinated.sum).round(n_digits: 3)
         | 
| 2391 | 
            +
                  }
         | 
| 2392 | 
            +
                 end
         | 
| 2393 | 
            +
            end
         | 
| 2394 | 
            +
            ```
         | 
| 2395 | 
            +
             | 
| 2396 | 
            +
            ```{ruby}
         | 
| 2397 | 
            +
            #| tags: []
         | 
| 2398 | 
            +
            # under 50
         | 
| 2399 | 
            +
            make_covid_table(df[df[:age_group] == "under 50"])
         | 
| 2400 | 
            +
            ```
         | 
| 2401 | 
            +
             | 
| 2402 | 
            +
            ```{ruby}
         | 
| 2403 | 
            +
            #| tags: []
         | 
| 2404 | 
            +
            # 50 +
         | 
| 2405 | 
            +
            make_covid_table(df[df[:age_group] == "50 +"])
         | 
| 2406 | 
            +
            ```
         | 
| 2407 | 
            +
             | 
| 2408 | 
            +
            Death ratio for vaccinated is lower than unvaccinated for grouped subset by age. This is an exaple of "Simpson's paradox" .
         | 
| 2409 | 
            +
             | 
| 2410 | 
            +
            ```{ruby}
         | 
| 2411 | 
            +
            #| tags: []
         | 
| 2412 | 
            +
            # Vaccine status vs age
         | 
| 2413 | 
            +
            # 50+ is highly vaccinated.
         | 
| 2414 | 
            +
            df.group(:vaccine_status, :age_group).count.to_wide(name: :age_group, value: :count)
         | 
| 2415 | 
            +
            ```
         | 
| 2416 | 
            +
             | 
| 2417 | 
            +
            ```{ruby}
         | 
| 2418 | 
            +
            #| tags: []
         | 
| 2419 | 
            +
            # Outcome vs age
         | 
| 2420 | 
            +
            # 50+ also has higher death rate.
         | 
| 2421 | 
            +
            df.group(:outcome, :age_group).count.to_wide(name: :age_group, value: :count)
         | 
| 2422 | 
            +
            ```
         | 
| 2423 | 
            +
             | 
| 2424 | 
            +
            ## 72. Clean up dirty data
         | 
| 2425 | 
            +
             | 
| 2426 | 
            +
            ```{ruby}
         | 
| 2427 | 
            +
            #| tags: []
         | 
| 2428 | 
            +
            file = Tempfile.open(['dirty_data', '.csv']) do |f|
         | 
| 2429 | 
            +
              f.puts(<<~CSV)
         | 
| 2430 | 
            +
                height,weight
         | 
| 2431 | 
            +
                154.9,52.2
         | 
| 2432 | 
            +
                156.8cm,51.1kg
         | 
| 2433 | 
            +
                152,49
         | 
| 2434 | 
            +
                148.5cm,45.4kg
         | 
| 2435 | 
            +
                155cm,
         | 
| 2436 | 
            +
                ,49.9kg
         | 
| 2437 | 
            +
                1.58m,49.8kg
         | 
| 2438 | 
            +
                166.8cm,53.6kg
         | 
| 2439 | 
            +
              CSV
         | 
| 2440 | 
            +
              f
         | 
| 2441 | 
            +
            end
         | 
| 2442 | 
            +
             | 
| 2443 | 
            +
            df = DataFrame.load(file)
         | 
| 2444 | 
            +
            ```
         | 
| 2445 | 
            +
             | 
| 2446 | 
            +
            It was loaded as String Vectors.
         | 
| 2447 | 
            +
             | 
| 2448 | 
            +
            ```{ruby}
         | 
| 2449 | 
            +
            #| tags: []
         | 
| 2450 | 
            +
            df.schema
         | 
| 2451 | 
            +
            ```
         | 
| 2452 | 
            +
             | 
| 2453 | 
            +
            First for the `:weight` column. Replacing "" to NaN causes casting to Float.
         | 
| 2454 | 
            +
             | 
| 2455 | 
            +
            ```{ruby}
         | 
| 2456 | 
            +
            #| tags: []
         | 
| 2457 | 
            +
            df.assign do
         | 
| 2458 | 
            +
              {
         | 
| 2459 | 
            +
                weight: weight.replace(weight == "", Float::NAN)
         | 
| 2460 | 
            +
              }
         | 
| 2461 | 
            +
            end
         | 
| 2462 | 
            +
            ```
         | 
| 2463 | 
            +
             | 
| 2464 | 
            +
            Apply same conversion for `:height` followed by unit conversion by `if_else`.
         | 
| 2465 | 
            +
             | 
| 2466 | 
            +
            ```{ruby}
         | 
| 2467 | 
            +
            #| tags: []
         | 
| 2468 | 
            +
            df = df.assign do
         | 
| 2469 | 
            +
              {
         | 
| 2470 | 
            +
                weight: weight.replace(weight == '', Float::NAN),
         | 
| 2471 | 
            +
                height: height.replace(height == '', Float::NAN)
         | 
| 2472 | 
            +
                              .then { |h| (h < 10).if_else(h * 100, h) }
         | 
| 2473 | 
            +
              }
         | 
| 2474 | 
            +
            end
         | 
| 2475 | 
            +
            puts df.schema
         | 
| 2476 | 
            +
            df
         | 
| 2477 | 
            +
            ```
         | 
| 2478 | 
            +
             | 
| 2479 | 
            +
            We got clean data, then compute BMI as a new column.
         | 
| 2480 | 
            +
             | 
| 2481 | 
            +
            ```{ruby}
         | 
| 2482 | 
            +
            #| tags: []
         | 
| 2483 | 
            +
            df.assign(:BMI) { (weight / height ** 2 * 10000).round(n_digits: 1) }
         | 
| 2484 | 
            +
            ```
         | 
| 2485 | 
            +
             | 
| 2486 | 
            +
            ## 73. From the Pandas cookbook - Multiindexing
         | 
| 2487 | 
            +
             | 
| 2488 | 
            +
            (Updated on v0.3.0)
         | 
| 2489 | 
            +
            https://pandas.pydata.org/docs/user_guide/cookbook.html#multiindexing
         | 
| 2490 | 
            +
             | 
| 2491 | 
            +
            ```python
         | 
| 2492 | 
            +
            # by Python Pandas
         | 
| 2493 | 
            +
            # Efficiently and dynamically creating new columns using applymap
         | 
| 2494 | 
            +
             | 
| 2495 | 
            +
            df = pd.DataFrame(
         | 
| 2496 | 
            +
                {
         | 
| 2497 | 
            +
                    "row": [0, 1, 2],
         | 
| 2498 | 
            +
                    "One_X": [1.1, 1.1, 1.1],
         | 
| 2499 | 
            +
                    "One_Y": [1.2, 1.2, 1.2],
         | 
| 2500 | 
            +
                    "Two_X": [1.11, 1.11, 1.11],
         | 
| 2501 | 
            +
                    "Two_Y": [1.22, 1.22, 1.22],
         | 
| 2502 | 
            +
                }
         | 
| 2503 | 
            +
            )
         | 
| 2504 | 
            +
            df
         | 
| 2505 | 
            +
             | 
| 2506 | 
            +
            # =>
         | 
| 2507 | 
            +
               row  One_X  One_Y  Two_X  Two_Y
         | 
| 2508 | 
            +
            0    0    1.1    1.2   1.11   1.22
         | 
| 2509 | 
            +
            1    1    1.1    1.2   1.11   1.22
         | 
| 2510 | 
            +
            2    2    1.1    1.2   1.11   1.22
         | 
| 2511 | 
            +
             | 
| 2512 | 
            +
            # As Labelled Index
         | 
| 2513 | 
            +
            df = df.set_index("row")
         | 
| 2514 | 
            +
            df
         | 
| 2515 | 
            +
             | 
| 2516 | 
            +
            # =>
         | 
| 2517 | 
            +
                 One_X  One_Y  Two_X  Two_Y
         | 
| 2518 | 
            +
            row
         | 
| 2519 | 
            +
            0      1.1    1.2   1.11   1.22
         | 
| 2520 | 
            +
            1      1.1    1.2   1.11   1.22
         | 
| 2521 | 
            +
            2      1.1    1.2   1.11   1.22
         | 
| 2522 | 
            +
             | 
| 2523 | 
            +
            # With Hierarchical Columns
         | 
| 2524 | 
            +
            df.columns = pd.MultiIndex.from_tuples([tuple(c.split("_")) for c in df.columns])
         | 
| 2525 | 
            +
            df
         | 
| 2526 | 
            +
             | 
| 2527 | 
            +
            # =>
         | 
| 2528 | 
            +
                 One        Two
         | 
| 2529 | 
            +
                   X    Y     X     Y
         | 
| 2530 | 
            +
            row
         | 
| 2531 | 
            +
            0    1.1  1.2  1.11  1.22
         | 
| 2532 | 
            +
            1    1.1  1.2  1.11  1.22
         | 
| 2533 | 
            +
            2    1.1  1.2  1.11  1.22
         | 
| 2534 | 
            +
             | 
| 2535 | 
            +
            # Now stack & Reset
         | 
| 2536 | 
            +
            df = df.stack(0).reset_index(1)
         | 
| 2537 | 
            +
            df
         | 
| 2538 | 
            +
             | 
| 2539 | 
            +
            # =>
         | 
| 2540 | 
            +
                level_1     X     Y
         | 
| 2541 | 
            +
            row
         | 
| 2542 | 
            +
            0       One  1.10  1.20
         | 
| 2543 | 
            +
            0       Two  1.11  1.22
         | 
| 2544 | 
            +
            1       One  1.10  1.20
         | 
| 2545 | 
            +
            1       Two  1.11  1.22
         | 
| 2546 | 
            +
            2       One  1.10  1.20
         | 
| 2547 | 
            +
            2       Two  1.11  1.22
         | 
| 2548 | 
            +
             | 
| 2549 | 
            +
            # And fix the labels (Notice the label 'level_1' got added automatically)
         | 
| 2550 | 
            +
            df.columns = ["Sample", "All_X", "All_Y"]
         | 
| 2551 | 
            +
            df
         | 
| 2552 | 
            +
             | 
| 2553 | 
            +
            # =>
         | 
| 2554 | 
            +
                Sample  All_X  All_Y
         | 
| 2555 | 
            +
            row
         | 
| 2556 | 
            +
            0      One   1.10   1.20
         | 
| 2557 | 
            +
            0      Two   1.11   1.22
         | 
| 2558 | 
            +
            1      One   1.10   1.20
         | 
| 2559 | 
            +
            1      Two   1.11   1.22
         | 
| 2560 | 
            +
            2      One   1.10   1.20
         | 
| 2561 | 
            +
            2      Two   1.11   1.22
         | 
| 2562 | 
            +
            ```
         | 
| 2563 | 
            +
             | 
| 2564 | 
            +
            (Until 0.2.3)
         | 
| 2565 | 
            +
            This is an example before `Vector#split_*` has introduced. See [88. Vector#split_columns](#88.-Vector#split_to_columns) .
         | 
| 2566 | 
            +
             | 
| 2567 | 
            +
            ```{ruby}
         | 
| 2568 | 
            +
            #| tags: []
         | 
| 2569 | 
            +
            df = RedAmber::DataFrame.new(
         | 
| 2570 | 
            +
                    "row": [0, 1, 2],
         | 
| 2571 | 
            +
                    "One_X": [1.1, 1.1, 1.1],
         | 
| 2572 | 
            +
                    "One_Y": [1.2, 1.2, 1.2],
         | 
| 2573 | 
            +
                    "Two_X": [1.11, 1.11, 1.11],
         | 
| 2574 | 
            +
                    "Two_Y": [1.22, 1.22, 1.22],
         | 
| 2575 | 
            +
            )
         | 
| 2576 | 
            +
            ```
         | 
| 2577 | 
            +
             | 
| 2578 | 
            +
            ```{ruby}
         | 
| 2579 | 
            +
            #| tags: []
         | 
| 2580 | 
            +
            df_x = df.pick(:row, :One_X, :Two_X)
         | 
| 2581 | 
            +
              .to_long(:row, name: :Sample, value: :All_X)
         | 
| 2582 | 
            +
            ```
         | 
| 2583 | 
            +
             | 
| 2584 | 
            +
            ```{ruby}
         | 
| 2585 | 
            +
            #| tags: []
         | 
| 2586 | 
            +
            df_y = df.pick(:row, :One_Y, :Two_Y)
         | 
| 2587 | 
            +
              .to_long(:row, name: :Sample, value: :All_Y)
         | 
| 2588 | 
            +
            ```
         | 
| 2589 | 
            +
             | 
| 2590 | 
            +
            ```{ruby}
         | 
| 2591 | 
            +
            #| tags: []
         | 
| 2592 | 
            +
            df_x.pick(:row)
         | 
| 2593 | 
            +
             .assign [
         | 
| 2594 | 
            +
               [:Sample, df_x[:Sample].each.map { |x| x.split("_").first }],
         | 
| 2595 | 
            +
               [:All_X, df_x[:All_X]],
         | 
| 2596 | 
            +
               [:All_Y, df_y[:All_Y]]
         | 
| 2597 | 
            +
             ]
         | 
| 2598 | 
            +
            ```
         | 
| 2599 | 
            +
             | 
| 2600 | 
            +
            (Since 0.3.0)
         | 
| 2601 | 
            +
            This example will use `Vector#split_to_columns`.
         | 
| 2602 | 
            +
             | 
| 2603 | 
            +
            ```{ruby}
         | 
| 2604 | 
            +
            #| tags: []
         | 
| 2605 | 
            +
            df = RedAmber::DataFrame.new(
         | 
| 2606 | 
            +
                    "row": [0, 1, 2],
         | 
| 2607 | 
            +
                    "One_X": [1.1, 1.1, 1.1],
         | 
| 2608 | 
            +
                    "One_Y": [1.2, 1.2, 1.2],
         | 
| 2609 | 
            +
                    "Two_X": [1.11, 1.11, 1.11],
         | 
| 2610 | 
            +
                    "Two_Y": [1.22, 1.22, 1.22],
         | 
| 2611 | 
            +
            )
         | 
| 2612 | 
            +
            ```
         | 
| 2613 | 
            +
             | 
| 2614 | 
            +
            ```{ruby}
         | 
| 2615 | 
            +
            #| tags: []
         | 
| 2616 | 
            +
            df.to_long(:row)
         | 
| 2617 | 
            +
            ```
         | 
| 2618 | 
            +
             | 
| 2619 | 
            +
            `Vector#split_to_colums` returns two splitted Vectors.
         | 
| 2620 | 
            +
             | 
| 2621 | 
            +
            ```{ruby}
         | 
| 2622 | 
            +
            #| tags: []
         | 
| 2623 | 
            +
            df.to_long(:row, name: :Sample)
         | 
| 2624 | 
            +
              .assign(:Sample, :xy) { v(:Sample).split_to_columns('_') }
         | 
| 2625 | 
            +
            ```
         | 
| 2626 | 
            +
             | 
| 2627 | 
            +
            ```{ruby}
         | 
| 2628 | 
            +
            #| tags: []
         | 
| 2629 | 
            +
            df.to_long(:row, name: :Sample)
         | 
| 2630 | 
            +
              .assign(:Sample, :xy) { v(:Sample).split_to_columns('_') }
         | 
| 2631 | 
            +
              .to_wide(name: :xy, value: :VALUE)
         | 
| 2632 | 
            +
            ```
         | 
| 2633 | 
            +
             | 
| 2634 | 
            +
            ## 74. From the Pandas cookbook - Arithmetic
         | 
| 2635 | 
            +
             | 
| 2636 | 
            +
            https://pandas.pydata.org/docs/user_guide/cookbook.html#arithmetic
         | 
| 2637 | 
            +
             | 
| 2638 | 
            +
            ```python
         | 
| 2639 | 
            +
            # by Python Pandas
         | 
| 2640 | 
            +
            cols = pd.MultiIndex.from_tuples(
         | 
| 2641 | 
            +
                [(x, y) for x in ["A", "B", "C"] for y in ["O", "I"]]
         | 
| 2642 | 
            +
            )
         | 
| 2643 | 
            +
             | 
| 2644 | 
            +
            df = pd.DataFrame(np.random.randn(2, 6), index=["n", "m"], columns=cols)
         | 
| 2645 | 
            +
            df
         | 
| 2646 | 
            +
             | 
| 2647 | 
            +
            # =>
         | 
| 2648 | 
            +
                      A                   B                   C
         | 
| 2649 | 
            +
                      O         I         O         I         O         I
         | 
| 2650 | 
            +
            n  0.469112 -0.282863 -1.509059 -1.135632  1.212112 -0.173215
         | 
| 2651 | 
            +
            m  0.119209 -1.044236 -0.861849 -2.104569 -0.494929  1.071804
         | 
| 2652 | 
            +
             | 
| 2653 | 
            +
            df = df.div(df["C"], level=1)
         | 
| 2654 | 
            +
            df
         | 
| 2655 | 
            +
             | 
| 2656 | 
            +
            # =>
         | 
| 2657 | 
            +
                      A                   B              C
         | 
| 2658 | 
            +
                      O         I         O         I    O    I
         | 
| 2659 | 
            +
            n  0.387021  1.633022 -1.244983  6.556214  1.0  1.0
         | 
| 2660 | 
            +
            m -0.240860 -0.974279  1.741358 -1.963577  1.0  1.0
         | 
| 2661 | 
            +
            ```
         | 
| 2662 | 
            +
             | 
| 2663 | 
            +
            This is a tentative example. This work may be refined by the coming feature which treats multiple key header easily.
         | 
| 2664 | 
            +
             | 
| 2665 | 
            +
            ```{ruby}
         | 
| 2666 | 
            +
            #| tags: []
         | 
| 2667 | 
            +
            require "arrow-numo-narray"
         | 
| 2668 | 
            +
             | 
| 2669 | 
            +
            values = Numo::DFloat.new(6, 2).rand_norm
         | 
| 2670 | 
            +
            ```
         | 
| 2671 | 
            +
             | 
| 2672 | 
            +
            For consistency with the pandas result, we will use same data of them.
         | 
| 2673 | 
            +
             | 
| 2674 | 
            +
            ```{ruby}
         | 
| 2675 | 
            +
            #| tags: []
         | 
| 2676 | 
            +
            values = [
         | 
| 2677 | 
            +
              [0.469112, -0.282863, -1.509059, -1.135632,  1.212112, -0.173215],
         | 
| 2678 | 
            +
              [0.119209, -1.044236, -0.861849, -2.104569, -0.494929,  1.071804]
         | 
| 2679 | 
            +
            ].transpose
         | 
| 2680 | 
            +
            ```
         | 
| 2681 | 
            +
             | 
| 2682 | 
            +
            ```{ruby}
         | 
| 2683 | 
            +
            #| tags: []
         | 
| 2684 | 
            +
            keys = %w[A B C].product(%w[O I]).map(&:join)
         | 
| 2685 | 
            +
            ```
         | 
| 2686 | 
            +
             | 
| 2687 | 
            +
            ```{ruby}
         | 
| 2688 | 
            +
            #| tags: []
         | 
| 2689 | 
            +
            df = RedAmber::DataFrame.new(index: %w[n m])
         | 
| 2690 | 
            +
                                    .assign(*keys) { values }
         | 
| 2691 | 
            +
            ```
         | 
| 2692 | 
            +
             | 
| 2693 | 
            +
            ```{ruby}
         | 
| 2694 | 
            +
            #| tags: []
         | 
| 2695 | 
            +
            df.assign do
         | 
| 2696 | 
            +
              assigner = {}
         | 
| 2697 | 
            +
              %w[A B C].each do |abc|
         | 
| 2698 | 
            +
                %w[O I].each do |oi|
         | 
| 2699 | 
            +
                  key = "#{abc}#{oi}".to_sym
         | 
| 2700 | 
            +
                  assigner[key] = v(key) / v("C#{oi}".to_sym)
         | 
| 2701 | 
            +
                end
         | 
| 2702 | 
            +
              end
         | 
| 2703 | 
            +
              assigner
         | 
| 2704 | 
            +
            end
         | 
| 2705 | 
            +
            ```
         | 
| 2706 | 
            +
             | 
| 2707 | 
            +
            ```{ruby}
         | 
| 2708 | 
            +
            #| tags: []
         | 
| 2709 | 
            +
            coords = [["AA", "one"], ["AA", "six"], ["BB", "one"], ["BB", "two"], ["BB", "six"]].transpose
         | 
| 2710 | 
            +
            df = RedAmber::DataFrame.new(MyData: [11, 22, 33, 44, 55])
         | 
| 2711 | 
            +
                                    .assign_left(:label1, :label2) { coords }
         | 
| 2712 | 
            +
            ```
         | 
| 2713 | 
            +
             | 
| 2714 | 
            +
            ## 75. From the Pandas cookbook - Slicing
         | 
| 2715 | 
            +
             | 
| 2716 | 
            +
            https://pandas.pydata.org/docs/user_guide/cookbook.html#slicing
         | 
| 2717 | 
            +
             | 
| 2718 | 
            +
            ```python
         | 
| 2719 | 
            +
            # by Python Pandas
         | 
| 2720 | 
            +
            coords = [("AA", "one"), ("AA", "six"), ("BB", "one"), ("BB", "two"), ("BB", "six")]
         | 
| 2721 | 
            +
            index = pd.MultiIndex.from_tuples(coords)
         | 
| 2722 | 
            +
            df = pd.DataFrame([11, 22, 33, 44, 55], index, ["MyData"])
         | 
| 2723 | 
            +
            df
         | 
| 2724 | 
            +
             | 
| 2725 | 
            +
            # =>
         | 
| 2726 | 
            +
                    MyData
         | 
| 2727 | 
            +
            AA one      11
         | 
| 2728 | 
            +
               six      22
         | 
| 2729 | 
            +
            BB one      33
         | 
| 2730 | 
            +
               two      44
         | 
| 2731 | 
            +
               six      55
         | 
| 2732 | 
            +
            ```
         | 
| 2733 | 
            +
             | 
| 2734 | 
            +
            To take the cross section of the 1st level and 1st axis the index:
         | 
| 2735 | 
            +
             | 
| 2736 | 
            +
            ```python
         | 
| 2737 | 
            +
            # by Python Pandas
         | 
| 2738 | 
            +
            # Note : level and axis are optional, and default to zero
         | 
| 2739 | 
            +
            df.xs("BB", level=0, axis=0)
         | 
| 2740 | 
            +
             | 
| 2741 | 
            +
            # =>
         | 
| 2742 | 
            +
                 MyData
         | 
| 2743 | 
            +
            one      33
         | 
| 2744 | 
            +
            two      44
         | 
| 2745 | 
            +
            six      55
         | 
| 2746 | 
            +
            ```
         | 
| 2747 | 
            +
             | 
| 2748 | 
            +
            ```{ruby}
         | 
| 2749 | 
            +
            #| tags: []
         | 
| 2750 | 
            +
            df.slice { label1 == "BB" }.drop(:label1)
         | 
| 2751 | 
            +
            ```
         | 
| 2752 | 
            +
             | 
| 2753 | 
            +
            …and now the 2nd level of the 1st axis.
         | 
| 2754 | 
            +
             | 
| 2755 | 
            +
            ```python
         | 
| 2756 | 
            +
            # by Python Pandas
         | 
| 2757 | 
            +
            df.xs("six", level=1, axis=0)
         | 
| 2758 | 
            +
             | 
| 2759 | 
            +
            # =>
         | 
| 2760 | 
            +
                MyData
         | 
| 2761 | 
            +
            AA      22
         | 
| 2762 | 
            +
            BB      55
         | 
| 2763 | 
            +
            ```
         | 
| 2764 | 
            +
             | 
| 2765 | 
            +
            ```{ruby}
         | 
| 2766 | 
            +
            #| tags: []
         | 
| 2767 | 
            +
            df.slice { label2 == "six" }.drop(:label2)
         | 
| 2768 | 
            +
            ```
         | 
| 2769 | 
            +
             | 
| 2770 | 
            +
            ```python
         | 
| 2771 | 
            +
            # by Python Pandas
         | 
| 2772 | 
            +
            import itertools
         | 
| 2773 | 
            +
             | 
| 2774 | 
            +
            index = list(itertools.product(["Ada", "Quinn", "Violet"], ["Comp", "Math", "Sci"]))
         | 
| 2775 | 
            +
            headr = list(itertools.product(["Exams", "Labs"], ["I", "II"]))
         | 
| 2776 | 
            +
            indx = pd.MultiIndex.from_tuples(index, names=["Student", "Course"])
         | 
| 2777 | 
            +
            cols = pd.MultiIndex.from_tuples(headr)  # Notice these are un-named
         | 
| 2778 | 
            +
            data = [[70 + x + y + (x * y) % 3 for x in range(4)] for y in range(9)]
         | 
| 2779 | 
            +
            df = pd.DataFrame(data, indx, cols)
         | 
| 2780 | 
            +
            df
         | 
| 2781 | 
            +
             | 
| 2782 | 
            +
            # =>
         | 
| 2783 | 
            +
                           Exams     Labs
         | 
| 2784 | 
            +
                               I  II    I  II
         | 
| 2785 | 
            +
            Student Course
         | 
| 2786 | 
            +
            Ada     Comp      70  71   72  73
         | 
| 2787 | 
            +
                    Math      71  73   75  74
         | 
| 2788 | 
            +
                    Sci       72  75   75  75
         | 
| 2789 | 
            +
            Quinn   Comp      73  74   75  76
         | 
| 2790 | 
            +
                    Math      74  76   78  77
         | 
| 2791 | 
            +
                    Sci       75  78   78  78
         | 
| 2792 | 
            +
            Violet  Comp      76  77   78  79
         | 
| 2793 | 
            +
                    Math      77  79   81  80
         | 
| 2794 | 
            +
                    Sci       78  81   81  81
         | 
| 2795 | 
            +
            ```
         | 
| 2796 | 
            +
             | 
| 2797 | 
            +
            ```{ruby}
         | 
| 2798 | 
            +
            #| tags: []
         | 
| 2799 | 
            +
            indexes = %w[Ada Quinn Violet].product(%w[Comp Math Sci]).transpose
         | 
| 2800 | 
            +
            df = RedAmber::DataFrame.new(%w[Student Course].zip(indexes))
         | 
| 2801 | 
            +
                                    .assign do
         | 
| 2802 | 
            +
                                      assigner = {}
         | 
| 2803 | 
            +
                                      keys = %w[Exams Labs].product(%w[I II]).map { |a| a.join("/") }
         | 
| 2804 | 
            +
                                      keys.each.with_index do |key, x|
         | 
| 2805 | 
            +
                                        assigner[key] = (0...9).map { |y| 70 + x + y + (x * y) % 3 }
         | 
| 2806 | 
            +
                                      end
         | 
| 2807 | 
            +
                                      assigner
         | 
| 2808 | 
            +
                                    end
         | 
| 2809 | 
            +
            ```
         | 
| 2810 | 
            +
             | 
| 2811 | 
            +
            ```python
         | 
| 2812 | 
            +
            # by Python Pandas
         | 
| 2813 | 
            +
            All = slice(None)
         | 
| 2814 | 
            +
             | 
| 2815 | 
            +
            df.loc["Violet"]
         | 
| 2816 | 
            +
             | 
| 2817 | 
            +
            # =>
         | 
| 2818 | 
            +
                   Exams     Labs
         | 
| 2819 | 
            +
                       I  II    I  II
         | 
| 2820 | 
            +
            Course
         | 
| 2821 | 
            +
            Comp      76  77   78  79
         | 
| 2822 | 
            +
            Math      77  79   81  80
         | 
| 2823 | 
            +
            Sci       78  81   81  81
         | 
| 2824 | 
            +
            ```
         | 
| 2825 | 
            +
             | 
| 2826 | 
            +
            ```{ruby}
         | 
| 2827 | 
            +
            #| tags: []
         | 
| 2828 | 
            +
            df.slice(df[:Student] == "Violet").drop(:Student)
         | 
| 2829 | 
            +
            ```
         | 
| 2830 | 
            +
             | 
| 2831 | 
            +
            ```python
         | 
| 2832 | 
            +
            # by Python Pandas
         | 
| 2833 | 
            +
            df.loc[(All, "Math"), All]
         | 
| 2834 | 
            +
             | 
| 2835 | 
            +
            # =>
         | 
| 2836 | 
            +
                           Exams     Labs
         | 
| 2837 | 
            +
                               I  II    I  II
         | 
| 2838 | 
            +
            Student Course
         | 
| 2839 | 
            +
            Ada     Math      71  73   75  74
         | 
| 2840 | 
            +
            Quinn   Math      74  76   78  77
         | 
| 2841 | 
            +
            Violet  Math      77  79   81  80
         | 
| 2842 | 
            +
            ```
         | 
| 2843 | 
            +
             | 
| 2844 | 
            +
            ```{ruby}
         | 
| 2845 | 
            +
            #| tags: []
         | 
| 2846 | 
            +
            df.slice(df[:Course] == "Math")
         | 
| 2847 | 
            +
            ```
         | 
| 2848 | 
            +
             | 
| 2849 | 
            +
            ```python
         | 
| 2850 | 
            +
            # by Python Pandas
         | 
| 2851 | 
            +
            df.loc[(slice("Ada", "Quinn"), "Math"), All]
         | 
| 2852 | 
            +
             | 
| 2853 | 
            +
            # =>
         | 
| 2854 | 
            +
                           Exams     Labs
         | 
| 2855 | 
            +
                               I  II    I  II
         | 
| 2856 | 
            +
            Student Course
         | 
| 2857 | 
            +
            Ada     Math      71  73   75  74
         | 
| 2858 | 
            +
            Quinn   Math      74  76   78  77
         | 
| 2859 | 
            +
            ```
         | 
| 2860 | 
            +
             | 
| 2861 | 
            +
            ```{ruby}
         | 
| 2862 | 
            +
            #| tags: []
         | 
| 2863 | 
            +
            df.slice(df[:Course] == "Math")
         | 
| 2864 | 
            +
              .slice { (v(:Student) == "Ada") | (v(:Student) == "Quinn") }
         | 
| 2865 | 
            +
            ```
         | 
| 2866 | 
            +
             | 
| 2867 | 
            +
            ```python
         | 
| 2868 | 
            +
            # by Python Pandas
         | 
| 2869 | 
            +
            df.loc[(All, "Math"), ("Exams")]
         | 
| 2870 | 
            +
             | 
| 2871 | 
            +
            # =>
         | 
| 2872 | 
            +
                             I  II
         | 
| 2873 | 
            +
            Student Course
         | 
| 2874 | 
            +
            Ada     Math    71  73
         | 
| 2875 | 
            +
            Quinn   Math    74  76
         | 
| 2876 | 
            +
            Violet  Math    77  79
         | 
| 2877 | 
            +
            ```
         | 
| 2878 | 
            +
             | 
| 2879 | 
            +
            ```{ruby}
         | 
| 2880 | 
            +
            #| tags: []
         | 
| 2881 | 
            +
            df.slice(df[:Course] == "Math")
         | 
| 2882 | 
            +
              .pick {
         | 
| 2883 | 
            +
                [:Student, :Course].concat keys.select { |key| key.to_s.start_with?("Exams") }
         | 
| 2884 | 
            +
              }
         | 
| 2885 | 
            +
            ```
         | 
| 2886 | 
            +
             | 
| 2887 | 
            +
            ```python
         | 
| 2888 | 
            +
            # by Python Pandas
         | 
| 2889 | 
            +
            df.loc[(All, "Math"), (All, "II")]
         | 
| 2890 | 
            +
             | 
| 2891 | 
            +
            # =>
         | 
| 2892 | 
            +
                           Exams Labs
         | 
| 2893 | 
            +
                              II   II
         | 
| 2894 | 
            +
            Student Course
         | 
| 2895 | 
            +
            Ada     Math      73   74
         | 
| 2896 | 
            +
            Quinn   Math      76   77
         | 
| 2897 | 
            +
            Violet  Math      79   80
         | 
| 2898 | 
            +
            ```
         | 
| 2899 | 
            +
             | 
| 2900 | 
            +
            ```{ruby}
         | 
| 2901 | 
            +
            #| tags: []
         | 
| 2902 | 
            +
            df.slice(df[:Course] == "Math")
         | 
| 2903 | 
            +
              .pick {
         | 
| 2904 | 
            +
                [:Student, :Course].concat keys.select { |key| key.to_s.end_with?("II") }
         | 
| 2905 | 
            +
              }
         | 
| 2906 | 
            +
            ```
         | 
| 2907 | 
            +
             | 
| 2908 | 
            +
            ## 76. Vector#map
         | 
| 2909 | 
            +
             | 
| 2910 | 
            +
            `Vector#map` method accepts a block and return yielded results from the block in a Vector.
         | 
| 2911 | 
            +
             | 
| 2912 | 
            +
            ```{ruby}
         | 
| 2913 | 
            +
            #| tags: []
         | 
| 2914 | 
            +
            v = Vector.new(1, 2, 3, 4)
         | 
| 2915 | 
            +
            v.map { |x| x / 100.0 }
         | 
| 2916 | 
            +
            ```
         | 
| 2917 | 
            +
             | 
| 2918 | 
            +
            If no block is given, return a Enumerator.
         | 
| 2919 | 
            +
             | 
| 2920 | 
            +
            ```{ruby}
         | 
| 2921 | 
            +
            #| tags: []
         | 
| 2922 | 
            +
            v.map
         | 
| 2923 | 
            +
            ```
         | 
| 2924 | 
            +
             | 
| 2925 | 
            +
            If you need ruby's map from a Vector, try `.each.map` .
         | 
| 2926 | 
            +
             | 
| 2927 | 
            +
            ```{ruby}
         | 
| 2928 | 
            +
            #| tags: []
         | 
| 2929 | 
            +
            v.each.map { |x| x / 100.0 }
         | 
| 2930 | 
            +
            ```
         | 
| 2931 | 
            +
             | 
| 2932 | 
            +
            Alias for `#map` is `#collect`
         | 
| 2933 | 
            +
             | 
| 2934 | 
            +
            Similar method is `Vector#filter/#select`.
         | 
| 2935 | 
            +
             | 
| 2936 | 
            +
            ## 77. Introduce columns from numo/narray
         | 
| 2937 | 
            +
             | 
| 2938 | 
            +
            (Until 0.2.2 w/Arrow 9.0.0) We couldn't construct the DataFrame directly from Numo/NArray, but following trick enables.
         | 
| 2939 | 
            +
             | 
| 2940 | 
            +
            ```{ruby}
         | 
| 2941 | 
            +
            #| tags: []
         | 
| 2942 | 
            +
            DataFrame.new(index: Array(1..10))
         | 
| 2943 | 
            +
              .assign do
         | 
| 2944 | 
            +
                {
         | 
| 2945 | 
            +
                  x0: Numo::DFloat.new(size).rand_norm(0, 2),
         | 
| 2946 | 
            +
                  x1: Numo::DFloat.new(size).rand_norm(5, 2),
         | 
| 2947 | 
            +
                  x2: Numo::DFloat.new(size).rand_norm(10, 2),
         | 
| 2948 | 
            +
                  y0: Numo::DFloat.new(size).rand_norm(100, 10),
         | 
| 2949 | 
            +
                  y1: Numo::DFloat.new(size).rand_norm(200, 10),
         | 
| 2950 | 
            +
                  y2: Numo::DFloat.new(size).rand_norm(300, 10)
         | 
| 2951 | 
            +
                }
         | 
| 2952 | 
            +
              end
         | 
| 2953 | 
            +
            ```
         | 
| 2954 | 
            +
             | 
| 2955 | 
            +
            If you do not need the index column, try this.
         | 
| 2956 | 
            +
             | 
| 2957 | 
            +
            ```{ruby}
         | 
| 2958 | 
            +
            #| tags: []
         | 
| 2959 | 
            +
            DataFrame.new(_: Array(1..10))
         | 
| 2960 | 
            +
              .assign do
         | 
| 2961 | 
            +
                {
         | 
| 2962 | 
            +
                  x0: Numo::DFloat.new(size).rand_norm(0, 2),
         | 
| 2963 | 
            +
                  x1: Numo::DFloat.new(size).rand_norm(5, 2),
         | 
| 2964 | 
            +
                  x2: Numo::DFloat.new(size).rand_norm(10, 2),
         | 
| 2965 | 
            +
                  y0: Numo::DFloat.new(size).rand_norm(100, 10),
         | 
| 2966 | 
            +
                  y1: Numo::DFloat.new(size).rand_norm(200, 10),
         | 
| 2967 | 
            +
                  y2: Numo::DFloat.new(size).rand_norm(300, 10)
         | 
| 2968 | 
            +
                }
         | 
| 2969 | 
            +
              end
         | 
| 2970 | 
            +
              .drop(:_)
         | 
| 2971 | 
            +
            ```
         | 
| 2972 | 
            +
             | 
| 2973 | 
            +
            (New from 0.2.3 with Aroow 10.0.0) It is possible to initialize by objects responsible to `to_arrow` since 0.2.3 . Arrays in Numo::NArray is responsible to `to_arrow` with `red-arrow-numo-narray` gem. This feature is proposed by the Red Data Tools member @kojix2 and implemented by @kou in Arrow 10.0.0 and Red Arrow Numo::NArray 0.0.6. Thanks!
         | 
| 2974 | 
            +
             | 
| 2975 | 
            +
            ```{ruby}
         | 
| 2976 | 
            +
            #| tags: []
         | 
| 2977 | 
            +
            require 'arrow-numo-narray'
         | 
| 2978 | 
            +
             | 
| 2979 | 
            +
            size = 10
         | 
| 2980 | 
            +
            DataFrame.new(
         | 
| 2981 | 
            +
              x0: Numo::DFloat.new(size).rand_norm(0, 2),
         | 
| 2982 | 
            +
              x1: Numo::DFloat.new(size).rand_norm(5, 2),
         | 
| 2983 | 
            +
              x2: Numo::DFloat.new(size).rand_norm(10, 2),
         | 
| 2984 | 
            +
              y0: Numo::DFloat.new(size).rand_norm(100, 10),
         | 
| 2985 | 
            +
              y1: Numo::DFloat.new(size).rand_norm(200, 10),
         | 
| 2986 | 
            +
              y2: Numo::DFloat.new(size).rand_norm(300, 10)
         | 
| 2987 | 
            +
            )
         | 
| 2988 | 
            +
            ```
         | 
| 2989 | 
            +
             | 
| 2990 | 
            +
            ## 78. Join (mutating joins)
         | 
| 2991 | 
            +
             | 
| 2992 | 
            +
            (Since 0.2.3)
         | 
| 2993 | 
            +
             | 
| 2994 | 
            +
            ```{ruby}
         | 
| 2995 | 
            +
            #| tags: []
         | 
| 2996 | 
            +
            df = DataFrame.new(
         | 
| 2997 | 
            +
              KEY: %w[A B C],
         | 
| 2998 | 
            +
              X1: [1, 2, 3]
         | 
| 2999 | 
            +
            )
         | 
| 3000 | 
            +
            ```
         | 
| 3001 | 
            +
             | 
| 3002 | 
            +
            ```{ruby}
         | 
| 3003 | 
            +
            #| tags: []
         | 
| 3004 | 
            +
            other = DataFrame.new(
         | 
| 3005 | 
            +
              KEY: %w[A B D],
         | 
| 3006 | 
            +
              X2: [true, false, nil]
         | 
| 3007 | 
            +
            )
         | 
| 3008 | 
            +
            ```
         | 
| 3009 | 
            +
             | 
| 3010 | 
            +
            Inner join will join data leaving only the matching records.
         | 
| 3011 | 
            +
             | 
| 3012 | 
            +
            ```{ruby}
         | 
| 3013 | 
            +
            #| tags: []
         | 
| 3014 | 
            +
            df.inner_join(other, :KEY)
         | 
| 3015 | 
            +
            ```
         | 
| 3016 | 
            +
             | 
| 3017 | 
            +
            If we omit join keys, common keys are automatically chosen (natural key).
         | 
| 3018 | 
            +
             | 
| 3019 | 
            +
            ```{ruby}
         | 
| 3020 | 
            +
            #| tags: []
         | 
| 3021 | 
            +
            df.inner_join(other)
         | 
| 3022 | 
            +
            ```
         | 
| 3023 | 
            +
             | 
| 3024 | 
            +
            Full join will join data leaving all records.
         | 
| 3025 | 
            +
             | 
| 3026 | 
            +
            ```{ruby}
         | 
| 3027 | 
            +
            #| tags: []
         | 
| 3028 | 
            +
            df.full_join(other)
         | 
| 3029 | 
            +
            ```
         | 
| 3030 | 
            +
             | 
| 3031 | 
            +
            Left join will join matching values to self from other (type: left_outer).
         | 
| 3032 | 
            +
             | 
| 3033 | 
            +
            ```{ruby}
         | 
| 3034 | 
            +
            #| tags: []
         | 
| 3035 | 
            +
            df.left_join(other)
         | 
| 3036 | 
            +
            ```
         | 
| 3037 | 
            +
             | 
| 3038 | 
            +
            Right join will join matching values from self to other (type: right_outer).
         | 
| 3039 | 
            +
             | 
| 3040 | 
            +
            ```{ruby}
         | 
| 3041 | 
            +
            #| tags: []
         | 
| 3042 | 
            +
            df.right_join(other)
         | 
| 3043 | 
            +
            ```
         | 
| 3044 | 
            +
             | 
| 3045 | 
            +
            Left join will join matching values to self from other.
         | 
| 3046 | 
            +
             | 
| 3047 | 
            +
            ```{ruby}
         | 
| 3048 | 
            +
            #| tags: []
         | 
| 3049 | 
            +
            df.left_join(other)
         | 
| 3050 | 
            +
            ```
         | 
| 3051 | 
            +
             | 
| 3052 | 
            +
            ## 79. Join (filtering joins)
         | 
| 3053 | 
            +
             | 
| 3054 | 
            +
            (Since 0.2.3)
         | 
| 3055 | 
            +
             | 
| 3056 | 
            +
            Semi join will return records of self that have a match in other.
         | 
| 3057 | 
            +
             | 
| 3058 | 
            +
            ```{ruby}
         | 
| 3059 | 
            +
            #| tags: []
         | 
| 3060 | 
            +
            df.semi_join(other)
         | 
| 3061 | 
            +
            ```
         | 
| 3062 | 
            +
             | 
| 3063 | 
            +
            Anti join will return records of self that do not have a match in other.
         | 
| 3064 | 
            +
             | 
| 3065 | 
            +
            ```{ruby}
         | 
| 3066 | 
            +
            #| tags: []
         | 
| 3067 | 
            +
            df.anti_join(other)
         | 
| 3068 | 
            +
            ```
         | 
| 3069 | 
            +
             | 
| 3070 | 
            +
            ## 80. Partial joins
         | 
| 3071 | 
            +
             | 
| 3072 | 
            +
            (Since 0.2.3)
         | 
| 3073 | 
            +
             | 
| 3074 | 
            +
            ```{ruby}
         | 
| 3075 | 
            +
            #| tags: []
         | 
| 3076 | 
            +
            df2 = DataFrame.new(
         | 
| 3077 | 
            +
              KEY1: %w[A B C],
         | 
| 3078 | 
            +
              KEY2: %w[s t u],
         | 
| 3079 | 
            +
              X: [1, 2, 3]
         | 
| 3080 | 
            +
            )
         | 
| 3081 | 
            +
            ```
         | 
| 3082 | 
            +
             | 
| 3083 | 
            +
            ```{ruby}
         | 
| 3084 | 
            +
            #| tags: []
         | 
| 3085 | 
            +
            other2 = DataFrame.new(
         | 
| 3086 | 
            +
              KEY1: %w[A B D],
         | 
| 3087 | 
            +
              KEY2: %w[s u v],
         | 
| 3088 | 
            +
              Y: [3, 2, 1]
         | 
| 3089 | 
            +
            )
         | 
| 3090 | 
            +
            ```
         | 
| 3091 | 
            +
             | 
| 3092 | 
            +
            ```{ruby}
         | 
| 3093 | 
            +
            #| tags: []
         | 
| 3094 | 
            +
            # natural join
         | 
| 3095 | 
            +
            df2.inner_join(other2)
         | 
| 3096 | 
            +
            # Same as df2.inner_join(other2, [:KEY1, :KEY2])
         | 
| 3097 | 
            +
            ```
         | 
| 3098 | 
            +
             | 
| 3099 | 
            +
            Partial join enables some part of common keys as join keys.
         | 
| 3100 | 
            +
             | 
| 3101 | 
            +
            Common keys of other not used as join keys will renamed as `:suffix`. Default suffix is '.1'.
         | 
| 3102 | 
            +
             | 
| 3103 | 
            +
            ```{ruby}
         | 
| 3104 | 
            +
            #| tags: []
         | 
| 3105 | 
            +
            # partial join
         | 
| 3106 | 
            +
            df2.inner_join(other2, :KEY1)
         | 
| 3107 | 
            +
            ```
         | 
| 3108 | 
            +
             | 
| 3109 | 
            +
            ```{ruby}
         | 
| 3110 | 
            +
            #| tags: []
         | 
| 3111 | 
            +
            df2.inner_join(other2, :KEY1, suffix: '_')
         | 
| 3112 | 
            +
            ```
         | 
| 3113 | 
            +
             | 
| 3114 | 
            +
            ## 81. Order of record in join
         | 
| 3115 | 
            +
             | 
| 3116 | 
            +
            Order of records is not guaranteed to be preserved before or after join. This is a similar property to RDB. Records behave like a set.
         | 
| 3117 | 
            +
             | 
| 3118 | 
            +
            If you want to preserve the order of records, it is recommended to add an index or sort.
         | 
| 3119 | 
            +
             | 
| 3120 | 
            +
            (Since 0.2.3)
         | 
| 3121 | 
            +
             | 
| 3122 | 
            +
            ```{ruby}
         | 
| 3123 | 
            +
            #| tags: []
         | 
| 3124 | 
            +
            df2
         | 
| 3125 | 
            +
            ```
         | 
| 3126 | 
            +
             | 
| 3127 | 
            +
            ```{ruby}
         | 
| 3128 | 
            +
            #| tags: []
         | 
| 3129 | 
            +
            other2
         | 
| 3130 | 
            +
            ```
         | 
| 3131 | 
            +
             | 
| 3132 | 
            +
            ```{ruby}
         | 
| 3133 | 
            +
            #| tags: []
         | 
| 3134 | 
            +
            df2.full_join(other2, :KEY2)
         | 
| 3135 | 
            +
            ```
         | 
| 3136 | 
            +
             | 
| 3137 | 
            +
            ## 82. Set operations
         | 
| 3138 | 
            +
             | 
| 3139 | 
            +
            Keys in self and other must be same in set operations.
         | 
| 3140 | 
            +
             | 
| 3141 | 
            +
            (Since 0.2.3)
         | 
| 3142 | 
            +
             | 
| 3143 | 
            +
            ```{ruby}
         | 
| 3144 | 
            +
            #| tags: []
         | 
| 3145 | 
            +
            df = DataFrame.new(
         | 
| 3146 | 
            +
              KEY1: %w[A B C],
         | 
| 3147 | 
            +
              KEY2: [1, 2, 3]
         | 
| 3148 | 
            +
            )
         | 
| 3149 | 
            +
            ```
         | 
| 3150 | 
            +
             | 
| 3151 | 
            +
            ```{ruby}
         | 
| 3152 | 
            +
            #| tags: []
         | 
| 3153 | 
            +
            other = DataFrame.new(
         | 
| 3154 | 
            +
              KEY1: %w[A B D],
         | 
| 3155 | 
            +
              KEY2: [1, 4, 5]
         | 
| 3156 | 
            +
            )
         | 
| 3157 | 
            +
            ```
         | 
| 3158 | 
            +
             | 
| 3159 | 
            +
            Intersect will select records appearing in both self and other.
         | 
| 3160 | 
            +
             | 
| 3161 | 
            +
            ```{ruby}
         | 
| 3162 | 
            +
            #| tags: []
         | 
| 3163 | 
            +
            df.intersect(other)
         | 
| 3164 | 
            +
            ```
         | 
| 3165 | 
            +
             | 
| 3166 | 
            +
            Union will select records appearing in both self or other.
         | 
| 3167 | 
            +
             | 
| 3168 | 
            +
            ```{ruby}
         | 
| 3169 | 
            +
            #| tags: []
         | 
| 3170 | 
            +
            df.union(other)
         | 
| 3171 | 
            +
            ```
         | 
| 3172 | 
            +
             | 
| 3173 | 
            +
            Difference will select records appearing in self but not in other.
         | 
| 3174 | 
            +
             | 
| 3175 | 
            +
            It has an alias `#setdiff`.
         | 
| 3176 | 
            +
             | 
| 3177 | 
            +
            ```{ruby}
         | 
| 3178 | 
            +
            #| tags: []
         | 
| 3179 | 
            +
            df.difference(other)
         | 
| 3180 | 
            +
            ```
         | 
| 3181 | 
            +
             | 
| 3182 | 
            +
            ## 83. Join (big method)
         | 
| 3183 | 
            +
             | 
| 3184 | 
            +
            Undocumented big method `join` supports all mutating joins, filtering joins and set operations.
         | 
| 3185 | 
            +
             | 
| 3186 | 
            +
            |category|method of RedAmber|:type in join method|requirement|
         | 
| 3187 | 
            +
            |-|-|-|-|
         | 
| 3188 | 
            +
            |mutating joins|#inner_join|:inner||
         | 
| 3189 | 
            +
            |mutating joins|#full_join|:full_outer||
         | 
| 3190 | 
            +
            |mutating joins|#left_join|:left_outer||
         | 
| 3191 | 
            +
            |mutating joins|#right_join|:right_outer||
         | 
| 3192 | 
            +
            |-|-|:right_semi||
         | 
| 3193 | 
            +
            |-|-|:right_anti||
         | 
| 3194 | 
            +
            |filtering joins|#semi_join|:left_semi||
         | 
| 3195 | 
            +
            |filtering joins|#anti_join|:left_anti||
         | 
| 3196 | 
            +
            |set operations|#intersect|:inner|must have same keys with self and other|
         | 
| 3197 | 
            +
            |set operations|#union|:full_outer|must have same keys with self and other|
         | 
| 3198 | 
            +
            |set operations|#difference|:left_anti|must have same keys with self and other|
         | 
| 3199 | 
            +
             | 
| 3200 | 
            +
            (Since 0.2.3)
         | 
| 3201 | 
            +
             | 
| 3202 | 
            +
            ```{ruby}
         | 
| 3203 | 
            +
            #| tags: []
         | 
| 3204 | 
            +
            df = DataFrame.new(
         | 
| 3205 | 
            +
              KEY: %w[A B C],
         | 
| 3206 | 
            +
              X1: [1, 2, 3]
         | 
| 3207 | 
            +
            )
         | 
| 3208 | 
            +
            ```
         | 
| 3209 | 
            +
             | 
| 3210 | 
            +
            ```{ruby}
         | 
| 3211 | 
            +
            #| tags: []
         | 
| 3212 | 
            +
            other = DataFrame.new(
         | 
| 3213 | 
            +
              KEY: %w[A B D],
         | 
| 3214 | 
            +
              X2: [true, false, nil]
         | 
| 3215 | 
            +
            )
         | 
| 3216 | 
            +
            ```
         | 
| 3217 | 
            +
             | 
| 3218 | 
            +
            ```{ruby}
         | 
| 3219 | 
            +
            #| tags: []
         | 
| 3220 | 
            +
            df.join(other, :KEY, type: :inner)
         | 
| 3221 | 
            +
            # Same as df.inner_join(other)
         | 
| 3222 | 
            +
            ```
         | 
| 3223 | 
            +
             | 
| 3224 | 
            +
            (Since 0.5.0) `#join` will not force ordering of original column by default.
         | 
| 3225 | 
            +
             | 
| 3226 | 
            +
            ## 84. Force order for #join
         | 
| 3227 | 
            +
             | 
| 3228 | 
            +
            We can use `:force_order` option to ensure unique order for `join` families.
         | 
| 3229 | 
            +
            This option is true by default in `#inner_join`, `#full_join`, `#left_join`, `#right_join`, `#semi_join` and `#anti_join`.
         | 
| 3230 | 
            +
            It will append index to the source and sort after joining. It will cause some degradation in performance.
         | 
| 3231 | 
            +
            (Since 0.4.0)
         | 
| 3232 | 
            +
             | 
| 3233 | 
            +
            (Since 0.5.0) `#join` will not force ordering of original column by default.
         | 
| 3234 | 
            +
             | 
| 3235 | 
            +
            ```{ruby}
         | 
| 3236 | 
            +
            #| tags: []
         | 
| 3237 | 
            +
            df2 = DataFrame.new(
         | 
| 3238 | 
            +
              KEY1: %w[A B C],
         | 
| 3239 | 
            +
              KEY2: %w[s t u],
         | 
| 3240 | 
            +
              X: [1, 2, 3]
         | 
| 3241 | 
            +
            )
         | 
| 3242 | 
            +
            ```
         | 
| 3243 | 
            +
             | 
| 3244 | 
            +
            ```{ruby}
         | 
| 3245 | 
            +
            #| tags: []
         | 
| 3246 | 
            +
            right2 = DataFrame.new(
         | 
| 3247 | 
            +
              KEY1: %w[A B D],
         | 
| 3248 | 
            +
              KEY2: %w[s u v],
         | 
| 3249 | 
            +
              Y: [3, 2, 1]
         | 
| 3250 | 
            +
            )
         | 
| 3251 | 
            +
            ```
         | 
| 3252 | 
            +
             | 
| 3253 | 
            +
            ```{ruby}
         | 
| 3254 | 
            +
            #| tags: []
         | 
| 3255 | 
            +
            df2.full_join(right2, :KEY2)
         | 
| 3256 | 
            +
            ```
         | 
| 3257 | 
            +
             | 
| 3258 | 
            +
            ```{ruby}
         | 
| 3259 | 
            +
            #| tags: []
         | 
| 3260 | 
            +
            df2.full_join(right2, :KEY2, force_order: false)
         | 
| 3261 | 
            +
            ```
         | 
| 3262 | 
            +
             | 
| 3263 | 
            +
            ```{ruby}
         | 
| 3264 | 
            +
            #| tags: []
         | 
| 3265 | 
            +
            df2.full_join(right2, { left: :KEY2, right: 'KEY2' })
         | 
| 3266 | 
            +
            ```
         | 
| 3267 | 
            +
             | 
| 3268 | 
            +
            ```{ruby}
         | 
| 3269 | 
            +
            #| tags: []
         | 
| 3270 | 
            +
            df2.full_join(right2, { left: :KEY2, right: 'KEY2' }, force_order: false)
         | 
| 3271 | 
            +
            ```
         | 
| 3272 | 
            +
             | 
| 3273 | 
            +
            ## 85. Binding DataFrames in vertical (concatenate)
         | 
| 3274 | 
            +
             | 
| 3275 | 
            +
            Concatenate another DataFrame or Table onto the bottom of self. The shape and data type of other must be the same as self.
         | 
| 3276 | 
            +
             | 
| 3277 | 
            +
            The alias is `concat`.
         | 
| 3278 | 
            +
            (Since 0.2.3)
         | 
| 3279 | 
            +
             | 
| 3280 | 
            +
            ```{ruby}
         | 
| 3281 | 
            +
            #| tags: []
         | 
| 3282 | 
            +
            df = DataFrame.new(x: [1, 2], y: ['A', 'B'])
         | 
| 3283 | 
            +
            ```
         | 
| 3284 | 
            +
             | 
| 3285 | 
            +
            ```{ruby}
         | 
| 3286 | 
            +
            #| tags: []
         | 
| 3287 | 
            +
            other = DataFrame.new(x: [3, 4], y: ['C', 'D'])
         | 
| 3288 | 
            +
            ```
         | 
| 3289 | 
            +
             | 
| 3290 | 
            +
            ```{ruby}
         | 
| 3291 | 
            +
            #| tags: []
         | 
| 3292 | 
            +
            df.concatenate(other)
         | 
| 3293 | 
            +
            ```
         | 
| 3294 | 
            +
             | 
| 3295 | 
            +
            ## 86. Binding DataFrames in lateral (merge)
         | 
| 3296 | 
            +
             | 
| 3297 | 
            +
            Concatenate another DataFrame or Table onto the bottom of self. The shape and data type of other must be the same as self.
         | 
| 3298 | 
            +
             | 
| 3299 | 
            +
            (Since 0.2.3)
         | 
| 3300 | 
            +
             | 
| 3301 | 
            +
            ```{ruby}
         | 
| 3302 | 
            +
            #| tags: []
         | 
| 3303 | 
            +
            df = DataFrame.new(x: [1, 2], y: [3, 4])
         | 
| 3304 | 
            +
            ```
         | 
| 3305 | 
            +
             | 
| 3306 | 
            +
            ```{ruby}
         | 
| 3307 | 
            +
            #| tags: []
         | 
| 3308 | 
            +
            other = DataFrame.new(a: ['A', 'B'], b: ['C', 'D'])
         | 
| 3309 | 
            +
            ```
         | 
| 3310 | 
            +
             | 
| 3311 | 
            +
            ```{ruby}
         | 
| 3312 | 
            +
            #| tags: []
         | 
| 3313 | 
            +
            df.merge(other)
         | 
| 3314 | 
            +
            ```
         | 
| 3315 | 
            +
             | 
| 3316 | 
            +
            ## 87. Join - larger example by nycflight13
         | 
| 3317 | 
            +
             | 
| 3318 | 
            +
            (Since 0.2.3)
         | 
| 3319 | 
            +
             | 
| 3320 | 
            +
            'nycflights13' dataset is a large dataset. It will take a while for the first run to fetch and prepare red-datasets cache.
         | 
| 3321 | 
            +
             | 
| 3322 | 
            +
            ```{ruby}
         | 
| 3323 | 
            +
            #| tags: []
         | 
| 3324 | 
            +
            require 'datasets-arrow'
         | 
| 3325 | 
            +
             | 
| 3326 | 
            +
            package = 'nycflights13'
         | 
| 3327 | 
            +
             | 
| 3328 | 
            +
            airlines = DataFrame.new(Datasets::Rdatasets.new(package, 'airlines'))
         | 
| 3329 | 
            +
            airlines
         | 
| 3330 | 
            +
            ```
         | 
| 3331 | 
            +
             | 
| 3332 | 
            +
            Creating `Datasets::Rdatasets.new('flights', 'airlines')` is very slow because Red Datasets uses Ruby's primitive CSV as csv parser. We can parse csv by Arrow's faster parser.
         | 
| 3333 | 
            +
             | 
| 3334 | 
            +
            ```{ruby}
         | 
| 3335 | 
            +
            uri = URI('https://vincentarelbundock.github.io/Rdatasets/csv/nycflights13/flights.csv')
         | 
| 3336 | 
            +
            flights  = DataFrame.load(uri)
         | 
| 3337 | 
            +
              .pick(%i[month day carrier flight tailnum origin dest air_time distance])
         | 
| 3338 | 
            +
            flights
         | 
| 3339 | 
            +
            ```
         | 
| 3340 | 
            +
             | 
| 3341 | 
            +
            ```{ruby}
         | 
| 3342 | 
            +
            # inner join
         | 
| 3343 | 
            +
            flights.inner_join(airlines, :carrier)
         | 
| 3344 | 
            +
            # flights.inner_join(airlines) # natural join (same result)
         | 
| 3345 | 
            +
            ```
         | 
| 3346 | 
            +
             | 
| 3347 | 
            +
            ## 88. Vector#split_to_columns
         | 
| 3348 | 
            +
             | 
| 3349 | 
            +
            Another example using in the DataFrame operation is in [73. From the Pandas cookbook - Multiindexing](#73.-From-the-Pandas-cookbook---Multiindexing).
         | 
| 3350 | 
            +
             | 
| 3351 | 
            +
            `self` must be a String type Vector.
         | 
| 3352 | 
            +
             | 
| 3353 | 
            +
            (Since 0.3.0)
         | 
| 3354 | 
            +
             | 
| 3355 | 
            +
            ```{ruby}
         | 
| 3356 | 
            +
            #| tags: []
         | 
| 3357 | 
            +
            v = Vector.new(['a b', 'c d', 'e f'])
         | 
| 3358 | 
            +
            ```
         | 
| 3359 | 
            +
             | 
| 3360 | 
            +
            ```{ruby}
         | 
| 3361 | 
            +
            #| tags: []
         | 
| 3362 | 
            +
            v.split_to_columns
         | 
| 3363 | 
            +
            ```
         | 
| 3364 | 
            +
             | 
| 3365 | 
            +
            `#split` accepts `sep` argument as a separator. `sep` is passed to `String#split(sep)`.
         | 
| 3366 | 
            +
             | 
| 3367 | 
            +
            ```{ruby}
         | 
| 3368 | 
            +
            #| tags: []
         | 
| 3369 | 
            +
            Vector.new('ab', 'cd', 'ef')
         | 
| 3370 | 
            +
                  .split_to_columns('')
         | 
| 3371 | 
            +
            ```
         | 
| 3372 | 
            +
             | 
| 3373 | 
            +
            nil will separated as nil.
         | 
| 3374 | 
            +
             | 
| 3375 | 
            +
            ```{ruby}
         | 
| 3376 | 
            +
            #| tags: []
         | 
| 3377 | 
            +
            Vector.new(nil, 'c d', 'e f')
         | 
| 3378 | 
            +
                  .split_to_columns
         | 
| 3379 | 
            +
            ```
         | 
| 3380 | 
            +
             | 
| 3381 | 
            +
            ## 89. Vector#split_to_rows
         | 
| 3382 | 
            +
             | 
| 3383 | 
            +
            `#split_to_rows` will separate strings and flatten into row.
         | 
| 3384 | 
            +
             | 
| 3385 | 
            +
            (Since 0.3.0)
         | 
| 3386 | 
            +
             | 
| 3387 | 
            +
            ```{ruby}
         | 
| 3388 | 
            +
            #| tags: []
         | 
| 3389 | 
            +
            v = Vector.new(['a b', 'c d', 'e f'])
         | 
| 3390 | 
            +
            ```
         | 
| 3391 | 
            +
             | 
| 3392 | 
            +
            ```{ruby}
         | 
| 3393 | 
            +
            #| tags: []
         | 
| 3394 | 
            +
            v.split_to_rows
         | 
| 3395 | 
            +
            ```
         | 
| 3396 | 
            +
             | 
| 3397 | 
            +
            ## 90. Vector#merge
         | 
| 3398 | 
            +
            (Since 0.3.0)
         | 
| 3399 | 
            +
             | 
| 3400 | 
            +
            `Vector#merge(other)` merges `self` and `other` if they are String Vector.
         | 
| 3401 | 
            +
             | 
| 3402 | 
            +
            ```{ruby}
         | 
| 3403 | 
            +
            #| tags: []
         | 
| 3404 | 
            +
            vector = Vector.new(%w[a c e])
         | 
| 3405 | 
            +
            other = Vector.new(%w[b d f])
         | 
| 3406 | 
            +
            vector.merge(other)
         | 
| 3407 | 
            +
            ```
         | 
| 3408 | 
            +
             | 
| 3409 | 
            +
            If `other` is scalar, it will be appended to each elements of `self`.
         | 
| 3410 | 
            +
             | 
| 3411 | 
            +
            ```{ruby}
         | 
| 3412 | 
            +
            #| tags: []
         | 
| 3413 | 
            +
            vector.merge('x')
         | 
| 3414 | 
            +
            ```
         | 
| 3415 | 
            +
             | 
| 3416 | 
            +
            Option `:sep` is used to concatenating elements. Its default value is ' '.
         | 
| 3417 | 
            +
             | 
| 3418 | 
            +
            ```{ruby}
         | 
| 3419 | 
            +
            #| tags: []
         | 
| 3420 | 
            +
            vector.merge('x', sep: '')
         | 
| 3421 | 
            +
            ```
         | 
| 3422 | 
            +
             | 
| 3423 | 
            +
            ## 91. Separate a variable (column) in a DataFrame
         | 
| 3424 | 
            +
            (Since 0.3.0)
         | 
| 3425 | 
            +
             | 
| 3426 | 
            +
            R's separate operation.
         | 
| 3427 | 
            +
             | 
| 3428 | 
            +
            https://tidyr.tidyverse.org/reference/separate.html
         | 
| 3429 | 
            +
             | 
| 3430 | 
            +
            ```{ruby}
         | 
| 3431 | 
            +
            #| tags: []
         | 
| 3432 | 
            +
            df = DataFrame.new(xyz: [nil, 'x.y', 'x.z', 'y.z'])
         | 
| 3433 | 
            +
            ```
         | 
| 3434 | 
            +
             | 
| 3435 | 
            +
            Instead of `separate(:xyz, [:a, :b])` we will do:
         | 
| 3436 | 
            +
             | 
| 3437 | 
            +
            ```{ruby}
         | 
| 3438 | 
            +
            #| tags: []
         | 
| 3439 | 
            +
            df.assign(:A, :B) { xyz.split_to_columns('.') }
         | 
| 3440 | 
            +
              .drop(:xyz)
         | 
| 3441 | 
            +
            ```
         | 
| 3442 | 
            +
             | 
| 3443 | 
            +
            If you need :B only, instead of `separate(:xyz, [nil, :B])` we will do:
         | 
| 3444 | 
            +
             | 
| 3445 | 
            +
            ```{ruby}
         | 
| 3446 | 
            +
            #| tags: []
         | 
| 3447 | 
            +
            df.assign(:A, :B) { xyz.split_to_columns('.') }
         | 
| 3448 | 
            +
              .pick(:B)
         | 
| 3449 | 
            +
            ```
         | 
| 3450 | 
            +
             | 
| 3451 | 
            +
            When splitted length is not equal, split returns max size of Vector Array filled with nil.
         | 
| 3452 | 
            +
             | 
| 3453 | 
            +
            ```{ruby}
         | 
| 3454 | 
            +
            #| tags: []
         | 
| 3455 | 
            +
            df = DataFrame.new(xyz: ['x', 'x y', 'x y z', nil])
         | 
| 3456 | 
            +
            df.assign(:x, :y, :z) { xyz.split_to_columns }
         | 
| 3457 | 
            +
            ```
         | 
| 3458 | 
            +
             | 
| 3459 | 
            +
            Split limiting max 2 elemnts.
         | 
| 3460 | 
            +
             | 
| 3461 | 
            +
            ```{ruby}
         | 
| 3462 | 
            +
            #| tags: []
         | 
| 3463 | 
            +
            df.assign(:x, :yz) { xyz.split_to_columns(' ', 2) }
         | 
| 3464 | 
            +
            ```
         | 
| 3465 | 
            +
             | 
| 3466 | 
            +
            Another example:
         | 
| 3467 | 
            +
             | 
| 3468 | 
            +
            ```{ruby}
         | 
| 3469 | 
            +
            #| tags: []
         | 
| 3470 | 
            +
            df = DataFrame.new(id: 1..3, 'month-year': %w[8-2022 9-2022 10-2022])
         | 
| 3471 | 
            +
              .assign(:month, :year) { v(:'month-year').split_to_columns('-') }
         | 
| 3472 | 
            +
            ```
         | 
| 3473 | 
            +
             | 
| 3474 | 
            +
            Split between the letters.
         | 
| 3475 | 
            +
             | 
| 3476 | 
            +
            ```{ruby}
         | 
| 3477 | 
            +
            #| tags: []
         | 
| 3478 | 
            +
            df = DataFrame.new(id: 1..3, yearmonth: %w[202209 202210 202211])
         | 
| 3479 | 
            +
              .assign(:year, :month) { yearmonth.split_to_columns(/(?=..$)/) }
         | 
| 3480 | 
            +
            ```
         | 
| 3481 | 
            +
             | 
| 3482 | 
            +
            ## 92. Unite variables (columns) in a DataFrame
         | 
| 3483 | 
            +
            (Since 0.3.0)
         | 
| 3484 | 
            +
             | 
| 3485 | 
            +
            R's unite operation.
         | 
| 3486 | 
            +
             | 
| 3487 | 
            +
            ```{ruby}
         | 
| 3488 | 
            +
            #| tags: []
         | 
| 3489 | 
            +
            df = DataFrame.new(id: 1..3, year: %w[2022 2022 2022], month: %w[09 10 11])
         | 
| 3490 | 
            +
            ```
         | 
| 3491 | 
            +
             | 
| 3492 | 
            +
            ```{ruby}
         | 
| 3493 | 
            +
            #| tags: []
         | 
| 3494 | 
            +
            df.assign(:yearmonth) { year.merge(month, sep: '') }
         | 
| 3495 | 
            +
              .pick(:id, :yearmonth)
         | 
| 3496 | 
            +
            ```
         | 
| 3497 | 
            +
             | 
| 3498 | 
            +
            ```{ruby}
         | 
| 3499 | 
            +
            #| tags: []
         | 
| 3500 | 
            +
            # Or directly create:
         | 
| 3501 | 
            +
            DataFrame.new(id: 1..3, yearmonth: df.year.merge(df.month, sep: ''))
         | 
| 3502 | 
            +
            ```
         | 
| 3503 | 
            +
             | 
| 3504 | 
            +
            ## 93. Separate variable and lengthen into several rows.
         | 
| 3505 | 
            +
            (Since 0.3.0)
         | 
| 3506 | 
            +
             | 
| 3507 | 
            +
            R's separate_rows operation.
         | 
| 3508 | 
            +
             | 
| 3509 | 
            +
            ```{ruby}
         | 
| 3510 | 
            +
            #| tags: []
         | 
| 3511 | 
            +
            df = DataFrame.new(id: 1..3, yearmonth: %w[202209 202210 202211])
         | 
| 3512 | 
            +
              .assign(:year, :month) { yearmonth.split_to_columns(/(?=..$)/) }
         | 
| 3513 | 
            +
              .drop(:yearmonth)
         | 
| 3514 | 
            +
              .to_long(:id)
         | 
| 3515 | 
            +
            ```
         | 
| 3516 | 
            +
             | 
| 3517 | 
            +
            Another example with different list size.
         | 
| 3518 | 
            +
             | 
| 3519 | 
            +
            ```{ruby}
         | 
| 3520 | 
            +
            #| tags: []
         | 
| 3521 | 
            +
            df = DataFrame.new(
         | 
| 3522 | 
            +
              x: 1..3,
         | 
| 3523 | 
            +
              y: ['a', 'd,e,f', 'g,h'],
         | 
| 3524 | 
            +
              z: ['1', '2,3,4', '5,6'],
         | 
| 3525 | 
            +
            )
         | 
| 3526 | 
            +
            ```
         | 
| 3527 | 
            +
             | 
| 3528 | 
            +
            ```{ruby}
         | 
| 3529 | 
            +
            #| tags: []
         | 
| 3530 | 
            +
            sizes = df.y.split(',').list_sizes
         | 
| 3531 | 
            +
            a = sizes.to_a.map.with_index(1) { |n, i| [i] * n }.flatten
         | 
| 3532 | 
            +
            ```
         | 
| 3533 | 
            +
             | 
| 3534 | 
            +
            ```{ruby}
         | 
| 3535 | 
            +
            #| tags: []
         | 
| 3536 | 
            +
            DataFrame.new(
         | 
| 3537 | 
            +
              x: a,
         | 
| 3538 | 
            +
              y: df.y.split_to_rows(','),
         | 
| 3539 | 
            +
              z: df.z.split_to_rows(',')
         | 
| 3540 | 
            +
            )
         | 
| 3541 | 
            +
            ```
         | 
| 3542 | 
            +
             | 
| 3543 | 
            +
            Another way to use `#split_to_columns`.
         | 
| 3544 | 
            +
             | 
| 3545 | 
            +
            ```{ruby}
         | 
| 3546 | 
            +
            #| tags: []
         | 
| 3547 | 
            +
            xy = df.pick(:x, :y)
         | 
| 3548 | 
            +
              .assign(:y, :y1, :y2) { v(:y).split_to_columns(',') }
         | 
| 3549 | 
            +
              .to_long(:x, value: :y)
         | 
| 3550 | 
            +
              .remove_nil
         | 
| 3551 | 
            +
            ```
         | 
| 3552 | 
            +
             | 
| 3553 | 
            +
            ```{ruby}
         | 
| 3554 | 
            +
            #| tags: []
         | 
| 3555 | 
            +
            xz = df.pick(:x, :z)
         | 
| 3556 | 
            +
              .assign(:z, :z1, :z2) { v(:z).split_to_columns(',') }
         | 
| 3557 | 
            +
              .to_long(:x, value: :z)
         | 
| 3558 | 
            +
              .remove_nil
         | 
| 3559 | 
            +
            ```
         | 
| 3560 | 
            +
             | 
| 3561 | 
            +
            ```{ruby}
         | 
| 3562 | 
            +
            #| tags: []
         | 
| 3563 | 
            +
            xy.pick(:x, :y).merge(xz.pick(:z))
         | 
| 3564 | 
            +
            ```
         | 
| 3565 | 
            +
             | 
| 3566 | 
            +
            Get all combinations of :y and :z.
         | 
| 3567 | 
            +
             | 
| 3568 | 
            +
            ```{ruby}
         | 
| 3569 | 
            +
            #| tags: []
         | 
| 3570 | 
            +
            df.assign(:y, :y1, :y2) { v(:y).split_to_columns(',') }
         | 
| 3571 | 
            +
              .to_long(:x, :z, value: :y)
         | 
| 3572 | 
            +
              .drop(:NAME)
         | 
| 3573 | 
            +
              .assign(:z, :z1, :z2) { v(:z).split_to_columns(',') }
         | 
| 3574 | 
            +
              .to_long(:x, :y, value: :z)
         | 
| 3575 | 
            +
              .drop(:NAME)
         | 
| 3576 | 
            +
              .drop_nil
         | 
| 3577 | 
            +
            ```
         | 
| 3578 | 
            +
             | 
| 3579 | 
            +
            ## 94. Vector#propagate
         | 
| 3580 | 
            +
             | 
| 3581 | 
            +
            Spread the return value of an aggregate function as if it is a element-wise function.
         | 
| 3582 | 
            +
             | 
| 3583 | 
            +
            It has an alias `#expand`.
         | 
| 3584 | 
            +
             | 
| 3585 | 
            +
            (Since 0.4.0)
         | 
| 3586 | 
            +
             | 
| 3587 | 
            +
            ```{ruby}
         | 
| 3588 | 
            +
            #| tags: []
         | 
| 3589 | 
            +
            vec = Vector.new(1, 2, 3, 4)
         | 
| 3590 | 
            +
            vec.propagate(:mean)
         | 
| 3591 | 
            +
            ```
         | 
| 3592 | 
            +
             | 
| 3593 | 
            +
            Block is also available.
         | 
| 3594 | 
            +
             | 
| 3595 | 
            +
            ```{ruby}
         | 
| 3596 | 
            +
            #| tags: []
         | 
| 3597 | 
            +
            vec.propagate { |v| v.mean.round }
         | 
| 3598 | 
            +
            ```
         | 
| 3599 | 
            +
             | 
| 3600 | 
            +
            ## 95. DataFrame#propagate
         | 
| 3601 | 
            +
             | 
| 3602 | 
            +
            Returns a Vector such that all elements have value `scalar` and have same size as self.
         | 
| 3603 | 
            +
             | 
| 3604 | 
            +
            (Since 0.5.0)
         | 
| 3605 | 
            +
             | 
| 3606 | 
            +
            ```{ruby}
         | 
| 3607 | 
            +
            #| tags: []
         | 
| 3608 | 
            +
            df
         | 
| 3609 | 
            +
            ```
         | 
| 3610 | 
            +
             | 
| 3611 | 
            +
            ```{ruby}
         | 
| 3612 | 
            +
            #| tags: []
         | 
| 3613 | 
            +
            df.assign(:sum_x) { propagate(x.sum) }
         | 
| 3614 | 
            +
            ```
         | 
| 3615 | 
            +
             | 
| 3616 | 
            +
            With a block.
         | 
| 3617 | 
            +
             | 
| 3618 | 
            +
            ```{ruby}
         | 
| 3619 | 
            +
            #| tags: []
         | 
| 3620 | 
            +
            df.assign(:range) { propagate { x.max - x.min } }
         | 
| 3621 | 
            +
            ```
         | 
| 3622 | 
            +
             | 
| 3623 | 
            +
            ## 96. Vector#sort / #sort_indices
         | 
| 3624 | 
            +
             | 
| 3625 | 
            +
            `#sort` will arrange values in Vector.
         | 
| 3626 | 
            +
             | 
| 3627 | 
            +
            Accepts :sort order option:
         | 
| 3628 | 
            +
               - `:+`, `:ascending` or without argument will sort in increasing order.
         | 
| 3629 | 
            +
               - `:-` or `:descending` will sort in decreasing order.
         | 
| 3630 | 
            +
             | 
| 3631 | 
            +
            (Since 0.4.0)
         | 
| 3632 | 
            +
             | 
| 3633 | 
            +
            ```{ruby}
         | 
| 3634 | 
            +
            #| tags: []
         | 
| 3635 | 
            +
            vector = Vector.new(%w[B D A E C])
         | 
| 3636 | 
            +
            vector.sort
         | 
| 3637 | 
            +
            # same as vector.sort(:+)
         | 
| 3638 | 
            +
            # same as vector.sort(:ascending)
         | 
| 3639 | 
            +
            ```
         | 
| 3640 | 
            +
             | 
| 3641 | 
            +
            Sort in decreasing order;
         | 
| 3642 | 
            +
             | 
| 3643 | 
            +
            ```{ruby}
         | 
| 3644 | 
            +
            #| tags: []
         | 
| 3645 | 
            +
            vector.sort(:-)
         | 
| 3646 | 
            +
            # same as vector.sort(:descending)
         | 
| 3647 | 
            +
            ```
         | 
| 3648 | 
            +
             | 
| 3649 | 
            +
            ## 97. Vector#rank
         | 
| 3650 | 
            +
             | 
| 3651 | 
            +
            Returns 1-based numerical rank of self.
         | 
| 3652 | 
            +
             | 
| 3653 | 
            +
            - Nil values are considered greater than any value.
         | 
| 3654 | 
            +
            - NaN values are considered greater than any value but smaller than nil values.
         | 
| 3655 | 
            +
            - Sort order can be controlled by the option `order`.
         | 
| 3656 | 
            +
              * `:ascending` or `+` will compute rank in ascending order (default).
         | 
| 3657 | 
            +
              * `:descending` or `-` will compute rank in descending order.
         | 
| 3658 | 
            +
            - Tiebreakers will configure how ties between equal values are handled.
         | 
| 3659 | 
            +
              * `tie: :first` : Ranks are assigned in order of when ties appear in the input (default).
         | 
| 3660 | 
            +
              * `tie: :min` : Ties get the smallest possible rank in the sorted order.
         | 
| 3661 | 
            +
              * `tie: :max` : Ties get the largest possible rank in the sorted order.
         | 
| 3662 | 
            +
              * `tie: :dense` : The ranks span a dense [1, M] interval where M is the number of distinct values in the input.
         | 
| 3663 | 
            +
            - Placement of nil and NaN is controlled by the option `null_placement`.
         | 
| 3664 | 
            +
              * `null_placement: :at_end` : place nulls at end (default).
         | 
| 3665 | 
            +
              * `null_placement: :at_start` : place nulls at the top of Vector.
         | 
| 3666 | 
            +
             | 
| 3667 | 
            +
            (Since 0.4.0, revised in 0.5.1)
         | 
| 3668 | 
            +
             | 
| 3669 | 
            +
            Rank of float Vector;
         | 
| 3670 | 
            +
             | 
| 3671 | 
            +
            ```{ruby}
         | 
| 3672 | 
            +
            #| tags: []
         | 
| 3673 | 
            +
            float = Vector[1, 0, nil, Float::NAN, Float::INFINITY, -Float::INFINITY, 3, 2]
         | 
| 3674 | 
            +
            ```
         | 
| 3675 | 
            +
             | 
| 3676 | 
            +
            ```{ruby}
         | 
| 3677 | 
            +
            #| tags: []
         | 
| 3678 | 
            +
            # Same as float.rank(:ascending, tie: :first, null_placement: :at_end)
         | 
| 3679 | 
            +
            float.rank
         | 
| 3680 | 
            +
            ```
         | 
| 3681 | 
            +
             | 
| 3682 | 
            +
            With sort order;
         | 
| 3683 | 
            +
             | 
| 3684 | 
            +
            ```{ruby}
         | 
| 3685 | 
            +
            #| tags: []
         | 
| 3686 | 
            +
            float.rank(:descending) # or float.rank('-')
         | 
| 3687 | 
            +
            ```
         | 
| 3688 | 
            +
             | 
| 3689 | 
            +
            With null placement;
         | 
| 3690 | 
            +
             | 
| 3691 | 
            +
            ```{ruby}
         | 
| 3692 | 
            +
            #| tags: []
         | 
| 3693 | 
            +
            float.rank(null_placement: :at_start)
         | 
| 3694 | 
            +
            ```
         | 
| 3695 | 
            +
             | 
| 3696 | 
            +
            Rank of string Vector with tiebreakers;
         | 
| 3697 | 
            +
             | 
| 3698 | 
            +
            ```{ruby}
         | 
| 3699 | 
            +
            #| tags: []
         | 
| 3700 | 
            +
            string = Vector['A', 'A', nil, nil, 'C', 'B']
         | 
| 3701 | 
            +
            ```
         | 
| 3702 | 
            +
             | 
| 3703 | 
            +
            ```{ruby}
         | 
| 3704 | 
            +
            #| tags: []
         | 
| 3705 | 
            +
            string.rank # same as string.rank(tie: :first)
         | 
| 3706 | 
            +
            ```
         | 
| 3707 | 
            +
             | 
| 3708 | 
            +
            ```{ruby}
         | 
| 3709 | 
            +
            #| tags: []
         | 
| 3710 | 
            +
            string.rank(tie: :min)
         | 
| 3711 | 
            +
            ```
         | 
| 3712 | 
            +
             | 
| 3713 | 
            +
            ```{ruby}
         | 
| 3714 | 
            +
            #| tags: []
         | 
| 3715 | 
            +
            string.rank(tie: :max)
         | 
| 3716 | 
            +
            ```
         | 
| 3717 | 
            +
             | 
| 3718 | 
            +
            ```{ruby}
         | 
| 3719 | 
            +
            #| tags: []
         | 
| 3720 | 
            +
            string.rank(tie: :dense)
         | 
| 3721 | 
            +
            ```
         | 
| 3722 | 
            +
             | 
| 3723 | 
            +
            ## 98. Vector#sample
         | 
| 3724 | 
            +
            Pick up elements at random.
         | 
| 3725 | 
            +
             | 
| 3726 | 
            +
            (Since 0.4.0)
         | 
| 3727 | 
            +
             | 
| 3728 | 
            +
            Return a randomly selected element. This is one of an aggregation function.
         | 
| 3729 | 
            +
             | 
| 3730 | 
            +
            ```{ruby}
         | 
| 3731 | 
            +
            #| tags: []
         | 
| 3732 | 
            +
            v = Vector.new('A'..'H')
         | 
| 3733 | 
            +
            ```
         | 
| 3734 | 
            +
             | 
| 3735 | 
            +
            Returns scalar without any arguments.
         | 
| 3736 | 
            +
             | 
| 3737 | 
            +
            ```{ruby}
         | 
| 3738 | 
            +
            #| tags: []
         | 
| 3739 | 
            +
            v.sample
         | 
| 3740 | 
            +
            ```
         | 
| 3741 | 
            +
             | 
| 3742 | 
            +
            `sample(n)` will pick up `n` elements at random. `n` is a positive number of elements to pick.
         | 
| 3743 | 
            +
             | 
| 3744 | 
            +
            If n is smaller or equal to size, elements are picked by non-repeating.
         | 
| 3745 | 
            +
             | 
| 3746 | 
            +
            If n == 1 (in case of `sample(1)`), it returns a Vector of size == 1 not a scalar.
         | 
| 3747 | 
            +
             | 
| 3748 | 
            +
            ```{ruby}
         | 
| 3749 | 
            +
            #| tags: []
         | 
| 3750 | 
            +
            v.sample(1)
         | 
| 3751 | 
            +
            ```
         | 
| 3752 | 
            +
             | 
| 3753 | 
            +
            Sample same size of self: every element is picked in random order.
         | 
| 3754 | 
            +
             | 
| 3755 | 
            +
            ```{ruby}
         | 
| 3756 | 
            +
            #| tags: []
         | 
| 3757 | 
            +
            v.sample(8)
         | 
| 3758 | 
            +
            ```
         | 
| 3759 | 
            +
             | 
| 3760 | 
            +
            If n is greater than `size`, some elements are picked repeatedly.
         | 
| 3761 | 
            +
             | 
| 3762 | 
            +
            ```{ruby}
         | 
| 3763 | 
            +
            #| tags: []
         | 
| 3764 | 
            +
            v.sample(9)
         | 
| 3765 | 
            +
            ```
         | 
| 3766 | 
            +
             | 
| 3767 | 
            +
            `sample(prop)` will pick up elements by proportion `prop` at random. `prop` must be positive float.
         | 
| 3768 | 
            +
             - Absolute number of elements to pick:`prop*size` is truncated.
         | 
| 3769 | 
            +
             - If prop is smaller or equal to 1.0, elements are picked by non-repeating.
         | 
| 3770 | 
            +
             | 
| 3771 | 
            +
            ```{ruby}
         | 
| 3772 | 
            +
            #| tags: []
         | 
| 3773 | 
            +
            v.sample(0.7)
         | 
| 3774 | 
            +
            ```
         | 
| 3775 | 
            +
             | 
| 3776 | 
            +
            If picked element is only one, it returns a Vector of size == 1 not a scalar.
         | 
| 3777 | 
            +
             | 
| 3778 | 
            +
            ```{ruby}
         | 
| 3779 | 
            +
            #| tags: []
         | 
| 3780 | 
            +
            v.sample(0.1)
         | 
| 3781 | 
            +
            ```
         | 
| 3782 | 
            +
             | 
| 3783 | 
            +
            Sample same size of self: every element is picked in random order.
         | 
| 3784 | 
            +
             | 
| 3785 | 
            +
            ```{ruby}
         | 
| 3786 | 
            +
            #| tags: []
         | 
| 3787 | 
            +
            v.sample(1.0)
         | 
| 3788 | 
            +
            ```
         | 
| 3789 | 
            +
             | 
| 3790 | 
            +
            If prop is greater than 1.0, some elements are picked repeatedly.
         | 
| 3791 | 
            +
             | 
| 3792 | 
            +
            ```{ruby}
         | 
| 3793 | 
            +
            #| tags: []
         | 
| 3794 | 
            +
            # 2 times over sampling
         | 
| 3795 | 
            +
            sampled = v.sample(2.0)
         | 
| 3796 | 
            +
            ```
         | 
| 3797 | 
            +
             | 
| 3798 | 
            +
            ```{ruby}
         | 
| 3799 | 
            +
            #| tags: []
         | 
| 3800 | 
            +
            sampled.tally
         | 
| 3801 | 
            +
            ```
         | 
| 3802 | 
            +
             | 
| 3803 | 
            +
            ## 99. DataFrame#sample/shuffle
         | 
| 3804 | 
            +
             | 
| 3805 | 
            +
            (Since 0.5.0)
         | 
| 3806 | 
            +
             | 
| 3807 | 
            +
            Select records randomly to create a DataFrame.
         | 
| 3808 | 
            +
             | 
| 3809 | 
            +
            ```{ruby}
         | 
| 3810 | 
            +
            #| tags: []
         | 
| 3811 | 
            +
            penguins.sample(0.1)
         | 
| 3812 | 
            +
            ```
         | 
| 3813 | 
            +
             | 
| 3814 | 
            +
            Returns a DataFrame with shuffled rows.
         | 
| 3815 | 
            +
             | 
| 3816 | 
            +
            ```{ruby}
         | 
| 3817 | 
            +
            #| tags: []
         | 
| 3818 | 
            +
            penguins.shuffle
         | 
| 3819 | 
            +
            ```
         | 
| 3820 | 
            +
             | 
| 3821 | 
            +
            ## 100. Vector#concatenate
         | 
| 3822 | 
            +
             | 
| 3823 | 
            +
            Concatenate other array-like to self.
         | 
| 3824 | 
            +
             | 
| 3825 | 
            +
            (Since 0.4.0)
         | 
| 3826 | 
            +
             | 
| 3827 | 
            +
            Concatenate to string;
         | 
| 3828 | 
            +
             | 
| 3829 | 
            +
            ```{ruby}
         | 
| 3830 | 
            +
            #| tags: []
         | 
| 3831 | 
            +
            string = Vector.new(%w[A B])
         | 
| 3832 | 
            +
            ```
         | 
| 3833 | 
            +
             | 
| 3834 | 
            +
            ```{ruby}
         | 
| 3835 | 
            +
            #| tags: []
         | 
| 3836 | 
            +
            string.concatenate([1, 2])
         | 
| 3837 | 
            +
            ```
         | 
| 3838 | 
            +
             | 
| 3839 | 
            +
            Concatenate to integer;
         | 
| 3840 | 
            +
             | 
| 3841 | 
            +
            ```{ruby}
         | 
| 3842 | 
            +
            #| tags: []
         | 
| 3843 | 
            +
            integer = Vector.new(1, 2)
         | 
| 3844 | 
            +
            ```
         | 
| 3845 | 
            +
             | 
| 3846 | 
            +
            ```{ruby}
         | 
| 3847 | 
            +
            #| tags: []
         | 
| 3848 | 
            +
            integer.concatenate(["A", "B"])
         | 
| 3849 | 
            +
            ```
         | 
| 3850 | 
            +
             | 
| 3851 | 
            +
            ## 101. Vector#resolve
         | 
| 3852 | 
            +
             | 
| 3853 | 
            +
            Return other as a Vector which is same data type as self.
         | 
| 3854 | 
            +
             | 
| 3855 | 
            +
            (Since 0.4.0)
         | 
| 3856 | 
            +
             | 
| 3857 | 
            +
            Integer to String;
         | 
| 3858 | 
            +
             | 
| 3859 | 
            +
            ```{ruby}
         | 
| 3860 | 
            +
            #| tags: []
         | 
| 3861 | 
            +
            Vector.new('A').resolve([1, 2])
         | 
| 3862 | 
            +
            ```
         | 
| 3863 | 
            +
             | 
| 3864 | 
            +
            String to Ineger;
         | 
| 3865 | 
            +
             | 
| 3866 | 
            +
            ```{ruby}
         | 
| 3867 | 
            +
            #| tags: []
         | 
| 3868 | 
            +
            Vector.new(1).resolve(['A'])
         | 
| 3869 | 
            +
            ```
         | 
| 3870 | 
            +
             | 
| 3871 | 
            +
            Upcast to uint16;
         | 
| 3872 | 
            +
             | 
| 3873 | 
            +
            ```{ruby}
         | 
| 3874 | 
            +
            #| tags: []
         | 
| 3875 | 
            +
            vector = Vector.new(256)
         | 
| 3876 | 
            +
            ```
         | 
| 3877 | 
            +
             | 
| 3878 | 
            +
            Not a uint8 Vector;
         | 
| 3879 | 
            +
             | 
| 3880 | 
            +
            ```{ruby}
         | 
| 3881 | 
            +
            #| tags: []
         | 
| 3882 | 
            +
            vector.resolve([1, 2])
         | 
| 3883 | 
            +
            ```
         | 
| 3884 | 
            +
             | 
| 3885 | 
            +
            ## 102. Vector#cast
         | 
| 3886 | 
            +
             | 
| 3887 | 
            +
            Cast self to `type`.
         | 
| 3888 | 
            +
             | 
| 3889 | 
            +
            (since 0.4.2)
         | 
| 3890 | 
            +
             | 
| 3891 | 
            +
            ```{ruby}
         | 
| 3892 | 
            +
            #| tags: []
         | 
| 3893 | 
            +
            vector = Vector.new(1, 2, nil)
         | 
| 3894 | 
            +
            vector.cast(:int16)
         | 
| 3895 | 
            +
            ```
         | 
| 3896 | 
            +
             | 
| 3897 | 
            +
            ```{ruby}
         | 
| 3898 | 
            +
            #| tags: []
         | 
| 3899 | 
            +
            vector.cast(:double)
         | 
| 3900 | 
            +
            ```
         | 
| 3901 | 
            +
             | 
| 3902 | 
            +
            ```{ruby}
         | 
| 3903 | 
            +
            #| tags: []
         | 
| 3904 | 
            +
            vector.cast(:string)
         | 
| 3905 | 
            +
            ```
         | 
| 3906 | 
            +
             | 
| 3907 | 
            +
            ## 103. Vector#one
         | 
| 3908 | 
            +
             | 
| 3909 | 
            +
            Get a non-nil element in self. If all elements are nil, return nil.
         | 
| 3910 | 
            +
             | 
| 3911 | 
            +
            (since 0.4.2)
         | 
| 3912 | 
            +
             | 
| 3913 | 
            +
            ```{ruby}
         | 
| 3914 | 
            +
            #| tags: []
         | 
| 3915 | 
            +
            vector = Vector.new([nil, 1, 3])
         | 
| 3916 | 
            +
            vector.one
         | 
| 3917 | 
            +
            ```
         | 
| 3918 | 
            +
             | 
| 3919 | 
            +
            ## 104. SubFrames
         | 
| 3920 | 
            +
             | 
| 3921 | 
            +
            `SubFrames` is a new concept of DataFrame collection. It represents ordered subsets of a DataFrame collected by some rules. It includes both grouping and windowing concepts in a unified manner, and also covers broader cases more flexibly.
         | 
| 3922 | 
            +
             | 
| 3923 | 
            +
            (Since 0.4.0)
         | 
| 3924 | 
            +
             | 
| 3925 | 
            +
            ```{ruby}
         | 
| 3926 | 
            +
            #| tags: []
         | 
| 3927 | 
            +
            dataframe = DataFrame.new(
         | 
| 3928 | 
            +
              x: [*1..6],
         | 
| 3929 | 
            +
              y: %w[A A B B B C],
         | 
| 3930 | 
            +
              z: [false, true, false, nil, true, false]
         | 
| 3931 | 
            +
            )
         | 
| 3932 | 
            +
            p dataframe; nil
         | 
| 3933 | 
            +
            ```
         | 
| 3934 | 
            +
             | 
| 3935 | 
            +
            ```{ruby}
         | 
| 3936 | 
            +
            #| tags: []
         | 
| 3937 | 
            +
            sf = SubFrames.new(dataframe, [[0, 1], [2, 3, 4], [5]])
         | 
| 3938 | 
            +
            ```
         | 
| 3939 | 
            +
             | 
| 3940 | 
            +
            Source DataFrame (univarsal set).
         | 
| 3941 | 
            +
             | 
| 3942 | 
            +
            ```{ruby}
         | 
| 3943 | 
            +
            #| tags: []
         | 
| 3944 | 
            +
            sf.baseframe
         | 
| 3945 | 
            +
            ```
         | 
| 3946 | 
            +
             | 
| 3947 | 
            +
            Size of subsets.
         | 
| 3948 | 
            +
             | 
| 3949 | 
            +
            ```{ruby}
         | 
| 3950 | 
            +
            #| tags: []
         | 
| 3951 | 
            +
            sf.size
         | 
| 3952 | 
            +
            ```
         | 
| 3953 | 
            +
             | 
| 3954 | 
            +
            Sizes of each subsets.
         | 
| 3955 | 
            +
             | 
| 3956 | 
            +
            ```{ruby}
         | 
| 3957 | 
            +
            #| tags: []
         | 
| 3958 | 
            +
            sf.sizes
         | 
| 3959 | 
            +
            ```
         | 
| 3960 | 
            +
             | 
| 3961 | 
            +
            `#each` will return an Enumerator or iterates each subset as a DataFrame.
         | 
| 3962 | 
            +
             | 
| 3963 | 
            +
            ```{ruby}
         | 
| 3964 | 
            +
            #| tags: []
         | 
| 3965 | 
            +
            sf.each
         | 
| 3966 | 
            +
            ```
         | 
| 3967 | 
            +
             | 
| 3968 | 
            +
            ```{ruby}
         | 
| 3969 | 
            +
            #| tags: []
         | 
| 3970 | 
            +
            sf.each.next
         | 
| 3971 | 
            +
            ```
         | 
| 3972 | 
            +
             | 
| 3973 | 
            +
            `SubFrames.new` also accepts a block.
         | 
| 3974 | 
            +
             | 
| 3975 | 
            +
            ```{ruby}
         | 
| 3976 | 
            +
            #| tags: []
         | 
| 3977 | 
            +
            usf = SubFrames.new(dataframe) { |df| [df.indices] }
         | 
| 3978 | 
            +
            ```
         | 
| 3979 | 
            +
             | 
| 3980 | 
            +
            `#universal?` tests if self is an univarsal set.
         | 
| 3981 | 
            +
             | 
| 3982 | 
            +
            ```{ruby}
         | 
| 3983 | 
            +
            #| tags: []
         | 
| 3984 | 
            +
            usf.universal?
         | 
| 3985 | 
            +
            ```
         | 
| 3986 | 
            +
             | 
| 3987 | 
            +
            `#empty?` tests if self is an empty set.
         | 
| 3988 | 
            +
             | 
| 3989 | 
            +
            ```{ruby}
         | 
| 3990 | 
            +
            #| tags: []
         | 
| 3991 | 
            +
            esf = SubFrames.new(dataframe, [])
         | 
| 3992 | 
            +
            ```
         | 
| 3993 | 
            +
             | 
| 3994 | 
            +
            ```{ruby}
         | 
| 3995 | 
            +
            #| scrolled: true
         | 
| 3996 | 
            +
            #| tags: []
         | 
| 3997 | 
            +
            esf.empty?
         | 
| 3998 | 
            +
            ```
         | 
| 3999 | 
            +
             | 
| 4000 | 
            +
            `#take(n)` takes n sub dataframes and return them by SubFrames. If n >= size, it returns self.
         | 
| 4001 | 
            +
             | 
| 4002 | 
            +
            ```{ruby}
         | 
| 4003 | 
            +
            sf.take(2)
         | 
| 4004 | 
            +
            ```
         | 
| 4005 | 
            +
             | 
| 4006 | 
            +
            `#offset_indices` returns indices at the top of each sub DataFrames.
         | 
| 4007 | 
            +
             | 
| 4008 | 
            +
            ```{ruby}
         | 
| 4009 | 
            +
            sf.offset_indices
         | 
| 4010 | 
            +
            ```
         | 
| 4011 | 
            +
             | 
| 4012 | 
            +
            `#frames` returns an Array of sub DataFrames.
         | 
| 4013 | 
            +
             | 
| 4014 | 
            +
            ```{ruby}
         | 
| 4015 | 
            +
            sf.frames
         | 
| 4016 | 
            +
            ```
         | 
| 4017 | 
            +
             | 
| 4018 | 
            +
            `SubFrames.new` also accepts boolean filters even from the block.
         | 
| 4019 | 
            +
             | 
| 4020 | 
            +
            ```{ruby}
         | 
| 4021 | 
            +
            #| tags: []
         | 
| 4022 | 
            +
            small = dataframe.x < 4
         | 
| 4023 | 
            +
            large = !small
         | 
| 4024 | 
            +
            small_large = SubFrames.new(dataframe) { [small, large] }
         | 
| 4025 | 
            +
            ```
         | 
| 4026 | 
            +
             | 
| 4027 | 
            +
            ## 105. SubFrames#concatenate
         | 
| 4028 | 
            +
             | 
| 4029 | 
            +
            `SubFrames#concatenate` (or alias `#concat`) will concatenate SubFrames to create a DataFrame.
         | 
| 4030 | 
            +
             | 
| 4031 | 
            +
            (Since 0.4.0)
         | 
| 4032 | 
            +
             | 
| 4033 | 
            +
            ```{ruby}
         | 
| 4034 | 
            +
            #| tags: []
         | 
| 4035 | 
            +
            sf.concatenate
         | 
| 4036 | 
            +
            ```
         | 
| 4037 | 
            +
             | 
| 4038 | 
            +
            ## 106. SubFrames.by_group
         | 
| 4039 | 
            +
             | 
| 4040 | 
            +
            Create SubFrames by Group object.
         | 
| 4041 | 
            +
             | 
| 4042 | 
            +
            (Since 0.4.0)
         | 
| 4043 | 
            +
             | 
| 4044 | 
            +
            ```{ruby}
         | 
| 4045 | 
            +
            #| tags: []
         | 
| 4046 | 
            +
            p dataframe; nil
         | 
| 4047 | 
            +
            ```
         | 
| 4048 | 
            +
             | 
| 4049 | 
            +
            ```{ruby}
         | 
| 4050 | 
            +
            #| tags: []
         | 
| 4051 | 
            +
            group = Group.new(dataframe, [:y])
         | 
| 4052 | 
            +
            sf = SubFrames.by_group(group)
         | 
| 4053 | 
            +
            ```
         | 
| 4054 | 
            +
             | 
| 4055 | 
            +
            ## 107. SubFrames.by_indices/.by_filters
         | 
| 4056 | 
            +
             | 
| 4057 | 
            +
            `SubFrames.by_indices(dataframe, subset_indices)` creates a new SubFrames object from a DataFrame and an array of indices.#
         | 
| 4058 | 
            +
             | 
| 4059 | 
            +
            ```{ruby}
         | 
| 4060 | 
            +
            SubFrames.by_indices(dataframe, [[0, 2, 4], [1, 3, 5]])
         | 
| 4061 | 
            +
            ```
         | 
| 4062 | 
            +
             | 
| 4063 | 
            +
            `SubFrames.by_filters(dataframe, subset_filters)` creates a new SubFrames object from a DataFrame and an array of filters.
         | 
| 4064 | 
            +
             | 
| 4065 | 
            +
            ```{ruby}
         | 
| 4066 | 
            +
            #| scrolled: true
         | 
| 4067 | 
            +
            SubFrames.by_filters(dataframe, [[true, false, true, false, nil, false], [true, true, false, false, nil, false]])
         | 
| 4068 | 
            +
            ```
         | 
| 4069 | 
            +
             | 
| 4070 | 
            +
            ## 108. SubFrames.by_dataframes
         | 
| 4071 | 
            +
             | 
| 4072 | 
            +
            `SubFrames.by_dataframes(dataframes)` creates a new SubFrames from an Array of DataFrames.
         | 
| 4073 | 
            +
             | 
| 4074 | 
            +
            ```{ruby}
         | 
| 4075 | 
            +
            dataframes = [
         | 
| 4076 | 
            +
                DataFrame.new(x: [1, 2, 3], y: %w[A A B], z: [false, true, false]),
         | 
| 4077 | 
            +
                DataFrame.new(x: [4, 5, 6], y: %w[B B C], z: [nil, true, false])
         | 
| 4078 | 
            +
            ]
         | 
| 4079 | 
            +
            ```
         | 
| 4080 | 
            +
             | 
| 4081 | 
            +
            ```{ruby}
         | 
| 4082 | 
            +
            SubFrames.by_dataframes(dataframes)
         | 
| 4083 | 
            +
            ```
         | 
| 4084 | 
            +
             | 
| 4085 | 
            +
            ## 109. DataFrame#sub_by_value
         | 
| 4086 | 
            +
             | 
| 4087 | 
            +
            `sub_by_value(*keys)` make subframes by value. It is corresponding to Group processing.
         | 
| 4088 | 
            +
             | 
| 4089 | 
            +
            Create SubFrames from keys and group by values in columns specified by the key.
         | 
| 4090 | 
            +
             | 
| 4091 | 
            +
            (Since 0.4.0)
         | 
| 4092 | 
            +
             | 
| 4093 | 
            +
            ```{ruby}
         | 
| 4094 | 
            +
            #| tags: []
         | 
| 4095 | 
            +
            dataframe.sub_by_value(:y)
         | 
| 4096 | 
            +
            ```
         | 
| 4097 | 
            +
             | 
| 4098 | 
            +
            ## 110. DataFrame#sub_by_window
         | 
| 4099 | 
            +
             | 
| 4100 | 
            +
            Create SubFrames by window in `size` rolling `from` by `step`.
         | 
| 4101 | 
            +
             | 
| 4102 | 
            +
            Default values is `from: 0`, `size: nil` and `step: 1`.
         | 
| 4103 | 
            +
             | 
| 4104 | 
            +
            (Since 0.4.0)
         | 
| 4105 | 
            +
             | 
| 4106 | 
            +
            ```{ruby}
         | 
| 4107 | 
            +
            #| tags: []
         | 
| 4108 | 
            +
            dataframe.sub_by_window(size: 4, step: 2)
         | 
| 4109 | 
            +
            ```
         | 
| 4110 | 
            +
             | 
| 4111 | 
            +
            ## 111. DataFrame#sub_by_enum
         | 
| 4112 | 
            +
             | 
| 4113 | 
            +
            Create SubFrames by Grouping/Windowing by posion. The position is specified by `Array`'s enumerator method such as `each_slice` or `each_cons`.
         | 
| 4114 | 
            +
             | 
| 4115 | 
            +
            (Since 0.4.0)
         | 
| 4116 | 
            +
             | 
| 4117 | 
            +
            Create a SubFrames object sliced by 3 rows. This is MECE (Mutually Exclusive and Collectively Exhaustive) SubFrames.
         | 
| 4118 | 
            +
             | 
| 4119 | 
            +
            ```{ruby}
         | 
| 4120 | 
            +
            #| tags: []
         | 
| 4121 | 
            +
            dataframe.sub_by_enum(:each_slice, 3)
         | 
| 4122 | 
            +
            ```
         | 
| 4123 | 
            +
             | 
| 4124 | 
            +
            Create a SubFrames object for each consecutive 3 rows.
         | 
| 4125 | 
            +
             | 
| 4126 | 
            +
            ```{ruby}
         | 
| 4127 | 
            +
            #| tags: []
         | 
| 4128 | 
            +
            dataframe.sub_by_enum(:each_cons, 4)
         | 
| 4129 | 
            +
            ```
         | 
| 4130 | 
            +
             | 
| 4131 | 
            +
            ## 112. DataFrame#sub_by_kernel
         | 
| 4132 | 
            +
             | 
| 4133 | 
            +
            Create SubFrames by windowing with a kernel and step.
         | 
| 4134 | 
            +
            Kernel is a boolean Array and it behaves like a masked window.
         | 
| 4135 | 
            +
             | 
| 4136 | 
            +
            (Since 0.4.0)
         | 
| 4137 | 
            +
             | 
| 4138 | 
            +
            ```{ruby}
         | 
| 4139 | 
            +
            #| tags: []
         | 
| 4140 | 
            +
            kernel = [true, false, false, true]
         | 
| 4141 | 
            +
            dataframe.sub_by_kernel(kernel, step: 2)
         | 
| 4142 | 
            +
            ```
         | 
| 4143 | 
            +
             | 
| 4144 | 
            +
            ## 113. DataFrame#build_subframes
         | 
| 4145 | 
            +
             | 
| 4146 | 
            +
            Generic builder of sub-dataframe from self.
         | 
| 4147 | 
            +
             | 
| 4148 | 
            +
            (Sice 0.4.0)
         | 
| 4149 | 
            +
             | 
| 4150 | 
            +
            ```{ruby}
         | 
| 4151 | 
            +
            #| tags: []
         | 
| 4152 | 
            +
            dataframe.build_subframes([[0, 2, 4], [1, 3, 5]])
         | 
| 4153 | 
            +
            ```
         | 
| 4154 | 
            +
             | 
| 4155 | 
            +
            `#build_subframes` also accepts a block.
         | 
| 4156 | 
            +
             | 
| 4157 | 
            +
            ```{ruby}
         | 
| 4158 | 
            +
            #| tags: []
         | 
| 4159 | 
            +
            dataframe.build_subframes do |df|
         | 
| 4160 | 
            +
              even = df.indices.map(&:even?)
         | 
| 4161 | 
            +
              [even, !even]
         | 
| 4162 | 
            +
            end
         | 
| 4163 | 
            +
            ```
         | 
| 4164 | 
            +
             | 
| 4165 | 
            +
            ## 114. SubFrames#aggregate
         | 
| 4166 | 
            +
             | 
| 4167 | 
            +
            Aggregate SubFrames to create a DataFrame. There are 4 APIs in this method.
         | 
| 4168 | 
            +
             | 
| 4169 | 
            +
            (Since 0.4.0)
         | 
| 4170 | 
            +
             | 
| 4171 | 
            +
            - `#aggregate(keys) { columns }`
         | 
| 4172 | 
            +
             | 
| 4173 | 
            +
            Aggregate SubFrames creating DataFrame with label `keys` and  its column values by block.
         | 
| 4174 | 
            +
             | 
| 4175 | 
            +
            ```{ruby}
         | 
| 4176 | 
            +
            #| tags: []
         | 
| 4177 | 
            +
            sf = dataframe.sub_by_value(:y)
         | 
| 4178 | 
            +
            ```
         | 
| 4179 | 
            +
             | 
| 4180 | 
            +
            ```{ruby}
         | 
| 4181 | 
            +
            sf.aggregate(:y, :sum_x) { [y.one, x.sum] }  # sf.aggregate([:y, :sum_x]) { [y.one, x.sum] } is also acceptable
         | 
| 4182 | 
            +
            ```
         | 
| 4183 | 
            +
             | 
| 4184 | 
            +
            - `#aggregate { key_and_aggregated_values }`
         | 
| 4185 | 
            +
             | 
| 4186 | 
            +
            Aggregate SubFrames creating DataFrame with pairs of key and aggregated values  in Hash from the block.
         | 
| 4187 | 
            +
             | 
| 4188 | 
            +
            ```{ruby}
         | 
| 4189 | 
            +
            sf.aggregate do
         | 
| 4190 | 
            +
              { y: y.one, sum_x: x.sum }
         | 
| 4191 | 
            +
            end
         | 
| 4192 | 
            +
            ```
         | 
| 4193 | 
            +
             | 
| 4194 | 
            +
            - `#aggregate { [keys, values] }`
         | 
| 4195 | 
            +
             | 
| 4196 | 
            +
            Aggregate SubFrames creating DataFrame with an Array of key and aggregated value  from the block.
         | 
| 4197 | 
            +
             | 
| 4198 | 
            +
            ```{ruby}
         | 
| 4199 | 
            +
            #| tags: []
         | 
| 4200 | 
            +
            sf.aggregate do
         | 
| 4201 | 
            +
              [[:y, y.one], [:sum_x, x.sum]]
         | 
| 4202 | 
            +
            end
         | 
| 4203 | 
            +
            ```
         | 
| 4204 | 
            +
             | 
| 4205 | 
            +
            - `#aggregate(group_keys, aggregations)`
         | 
| 4206 | 
            +
             | 
| 4207 | 
            +
            Aggregate SubFrames for first values of the columns of  `group_keys` and the aggregated results of key-function pairs.
         | 
| 4208 | 
            +
            ( [Experiment)l] This API may be changed in the future.
         | 
| 4209 | 
            +
             | 
| 4210 | 
            +
            ```{ruby}
         | 
| 4211 | 
            +
            #| tags: []
         | 
| 4212 | 
            +
            sf.aggregate(:y, { x: :sum, z: :count })
         | 
| 4213 | 
            +
            ```
         | 
| 4214 | 
            +
             | 
| 4215 | 
            +
            ## 115. SubFrames#map/#assign
         | 
| 4216 | 
            +
             | 
| 4217 | 
            +
            `#map` Returns a SubFrames containing DataFrames returned by the block. It has an alias `collect`.
         | 
| 4218 | 
            +
             | 
| 4219 | 
            +
            ```{ruby}
         | 
| 4220 | 
            +
            sf
         | 
| 4221 | 
            +
            ```
         | 
| 4222 | 
            +
             | 
| 4223 | 
            +
            This example assigns a new column.
         | 
| 4224 | 
            +
             | 
| 4225 | 
            +
            ```{ruby}
         | 
| 4226 | 
            +
            sf.map { |df| df.assign(x_plus1: df[:x] + 1) }
         | 
| 4227 | 
            +
            ```
         | 
| 4228 | 
            +
             | 
| 4229 | 
            +
            There is a shortcut of `map { assign }`. We can use `assign(key) { updated_column }`.
         | 
| 4230 | 
            +
             | 
| 4231 | 
            +
            ```{ruby}
         | 
| 4232 | 
            +
            sf.assign(:x_plus1) { x + 1 }
         | 
| 4233 | 
            +
            ```
         | 
| 4234 | 
            +
             | 
| 4235 | 
            +
            We can use `assign(keys) { updated_columns }` for multiple columns.
         | 
| 4236 | 
            +
             | 
| 4237 | 
            +
            ```{ruby}
         | 
| 4238 | 
            +
            sf.assign(:sum_x, :flac_x) do
         | 
| 4239 | 
            +
              group_sum = x.sum
         | 
| 4240 | 
            +
              [[group_sum] * x.size, x / group_sum.to_f]
         | 
| 4241 | 
            +
            end
         | 
| 4242 | 
            +
            ```
         | 
| 4243 | 
            +
             | 
| 4244 | 
            +
            Also `assign { keys_and_columns }` is possible.
         | 
| 4245 | 
            +
             | 
| 4246 | 
            +
            ```{ruby}
         | 
| 4247 | 
            +
            sf.assign do
         | 
| 4248 | 
            +
              { 'x*z': x * z.if_else(1, 0) }
         | 
| 4249 | 
            +
            end
         | 
| 4250 | 
            +
            ```
         | 
| 4251 | 
            +
             | 
| 4252 | 
            +
            (Notice) `SubFrames#assign` has a same syntax as `DataFrame#assign`.
         | 
| 4253 | 
            +
             | 
| 4254 | 
            +
            If you need an Array of DataFrames (not a SubFrames), use `each.map` instead.
         | 
| 4255 | 
            +
             | 
| 4256 | 
            +
            ```{ruby}
         | 
| 4257 | 
            +
            sf.each.map { |df| df.assign(x_plus1: df[:x] + 1) }
         | 
| 4258 | 
            +
            ```
         | 
| 4259 | 
            +
             | 
| 4260 | 
            +
            ## 116. SubFrames#select/#reject
         | 
| 4261 | 
            +
             | 
| 4262 | 
            +
            `#select` returns a SubFrames containing DataFrames selected by the block.#
         | 
| 4263 | 
            +
             | 
| 4264 | 
            +
            ```{ruby}
         | 
| 4265 | 
            +
            sf.select { |df| df[:z].any? }
         | 
| 4266 | 
            +
            ```
         | 
| 4267 | 
            +
             | 
| 4268 | 
            +
            `#select` has aliases `#filter` and `#find_all`.
         | 
| 4269 | 
            +
             | 
| 4270 | 
            +
            `#reject` returns a SubFrames containing truthy DataFrames returned by the block.#
         | 
| 4271 | 
            +
             | 
| 4272 | 
            +
            ```{ruby}
         | 
| 4273 | 
            +
            sf.reject { |df| df[:z].any? }
         | 
| 4274 | 
            +
            ```
         | 
| 4275 | 
            +
             | 
| 4276 | 
            +
            ## 117. SubFrames#filter_map
         | 
| 4277 | 
            +
             | 
| 4278 | 
            +
            It returns a SubFrames containing truthy DataFrames returned by the block.
         | 
| 4279 | 
            +
             | 
| 4280 | 
            +
            ```{ruby}
         | 
| 4281 | 
            +
            sf.filter_map do |df|
         | 
| 4282 | 
            +
              if df.size > 1
         | 
| 4283 | 
            +
                df.assign(:y) do
         | 
| 4284 | 
            +
                  y.merge(indices('1'), sep: '')
         | 
| 4285 | 
            +
                end
         | 
| 4286 | 
            +
              end
         | 
| 4287 | 
            +
            end
         | 
| 4288 | 
            +
            ```
         | 
| 4289 | 
            +
             | 
| 4290 | 
            +
            ## 118. Vector#modulo
         | 
| 4291 | 
            +
             | 
| 4292 | 
            +
            (Since 0.4.1)
         | 
| 4293 | 
            +
             | 
| 4294 | 
            +
            `#%` is an alias of `#modulo`.
         | 
| 4295 | 
            +
             | 
| 4296 | 
            +
            ```{ruby}
         | 
| 4297 | 
            +
            #| tags: []
         | 
| 4298 | 
            +
            vector = Vector.new(5, -3, 1)
         | 
| 4299 | 
            +
            vector % 3
         | 
| 4300 | 
            +
            ```
         | 
| 4301 | 
            +
             | 
| 4302 | 
            +
            `#%` and `#modulo` is equivalent to `self-divisor*(self/divisor).floor`.
         | 
| 4303 | 
            +
             | 
| 4304 | 
            +
            ```{ruby}
         | 
| 4305 | 
            +
            #| tags: []
         | 
| 4306 | 
            +
            vector.modulo(-2)
         | 
| 4307 | 
            +
            ```
         | 
| 4308 | 
            +
             | 
| 4309 | 
            +
            ## 119. Vector#mode
         | 
| 4310 | 
            +
             | 
| 4311 | 
            +
            Compute the 1 most common values and their respective occurence counts.
         | 
| 4312 | 
            +
             | 
| 4313 | 
            +
            (since 0.5.0) ModeOptions are not supported in 0.5.0 . Only one mode value is returned.
         | 
| 4314 | 
            +
             | 
| 4315 | 
            +
            ```{ruby}
         | 
| 4316 | 
            +
            #| tags: []
         | 
| 4317 | 
            +
            Vector[true, true, false, nil].mode
         | 
| 4318 | 
            +
            ```
         | 
| 4319 | 
            +
             | 
| 4320 | 
            +
            ```{ruby}
         | 
| 4321 | 
            +
            #| tags: []
         | 
| 4322 | 
            +
            Vector[0, 1, 1, 2, nil].mode
         | 
| 4323 | 
            +
            ```
         | 
| 4324 | 
            +
             | 
| 4325 | 
            +
            ```{ruby}
         | 
| 4326 | 
            +
            #| tags: []
         | 
| 4327 | 
            +
            Vector[1, 0/0.0, -1/0.0, 1/0.0, nil].mode
         | 
| 4328 | 
            +
            ```
         | 
| 4329 | 
            +
             | 
| 4330 | 
            +
            ## 120. Vector#end_with/start_with
         | 
| 4331 | 
            +
             | 
| 4332 | 
            +
            Check if elements in self ends/starts with a literal pattern.
         | 
| 4333 | 
            +
             | 
| 4334 | 
            +
            (since 0.5.0)
         | 
| 4335 | 
            +
             | 
| 4336 | 
            +
            ```{ruby}
         | 
| 4337 | 
            +
            #| tags: []
         | 
| 4338 | 
            +
            v = Vector['array', 'Arrow', 'carrot', nil, 'window']
         | 
| 4339 | 
            +
            ```
         | 
| 4340 | 
            +
             | 
| 4341 | 
            +
            Emits true if it contains `string`. Emit false if not found. Nil inputs emit nil.
         | 
| 4342 | 
            +
             | 
| 4343 | 
            +
            ```{ruby}
         | 
| 4344 | 
            +
            #| tags: []
         | 
| 4345 | 
            +
            v.end_with('ow')
         | 
| 4346 | 
            +
            ```
         | 
| 4347 | 
            +
             | 
| 4348 | 
            +
            ```{ruby}
         | 
| 4349 | 
            +
            #| tags: []
         | 
| 4350 | 
            +
            v.start_with('arr')
         | 
| 4351 | 
            +
            ```
         | 
| 4352 | 
            +
             | 
| 4353 | 
            +
            ## 121. Vector#match_substring
         | 
| 4354 | 
            +
             | 
| 4355 | 
            +
            For each string in self, emit true if it contains a given pattern.
         | 
| 4356 | 
            +
             | 
| 4357 | 
            +
            (since 0.5.0)
         | 
| 4358 | 
            +
             | 
| 4359 | 
            +
            ```{ruby}
         | 
| 4360 | 
            +
            #| tags: []
         | 
| 4361 | 
            +
            v = Vector['array', 'Arrow', 'carrot', nil, 'window']
         | 
| 4362 | 
            +
            ```
         | 
| 4363 | 
            +
             | 
| 4364 | 
            +
            Emits true if it contains `string`. Emit false if not found. Nil inputs emit nil.
         | 
| 4365 | 
            +
             | 
| 4366 | 
            +
            ```{ruby}
         | 
| 4367 | 
            +
            #| tags: []
         | 
| 4368 | 
            +
            v.match_substring('arr')
         | 
| 4369 | 
            +
            ```
         | 
| 4370 | 
            +
             | 
| 4371 | 
            +
            Otherwise use it with Regexp pattern. It calls `count_substring_regex` in Arrow compute function and uses re2 library.
         | 
| 4372 | 
            +
             | 
| 4373 | 
            +
            ```{ruby}
         | 
| 4374 | 
            +
            #| tags: []
         | 
| 4375 | 
            +
            v.match_substring(/arr/)
         | 
| 4376 | 
            +
            ```
         | 
| 4377 | 
            +
             | 
| 4378 | 
            +
            You can ignore case if you use regexp with `i` option, or `igfnore_case: true`
         | 
| 4379 | 
            +
             | 
| 4380 | 
            +
            ```{ruby}
         | 
| 4381 | 
            +
            #| tags: []
         | 
| 4382 | 
            +
            v.match_substring(/arr/i)  # same as v.find_substring(/arr/, ignore_case: true)
         | 
| 4383 | 
            +
            ```
         | 
| 4384 | 
            +
             | 
| 4385 | 
            +
            ## 122. Vector#match_like
         | 
| 4386 | 
            +
             | 
| 4387 | 
            +
            Match elements of self against SQL-style LIKE pattern. The pattern matches a given pattern at any position.
         | 
| 4388 | 
            +
             | 
| 4389 | 
            +
            - '%' will match any number of characters,
         | 
| 4390 | 
            +
            - '_' will match exactly one character, and any other character matches itself.
         | 
| 4391 | 
            +
            - To match a literal '%', '_', or '\', precede the character with a backslash.
         | 
| 4392 | 
            +
             | 
| 4393 | 
            +
            (since 0.5.0)
         | 
| 4394 | 
            +
             | 
| 4395 | 
            +
            ```{ruby}
         | 
| 4396 | 
            +
            #| tags: []
         | 
| 4397 | 
            +
            v = Vector['array', 'Arrow', 'carrot', nil, 'window']
         | 
| 4398 | 
            +
            ```
         | 
| 4399 | 
            +
             | 
| 4400 | 
            +
            You can find indices of a literal string. Emit -1 if not found. Nil inputs emit nil.
         | 
| 4401 | 
            +
             | 
| 4402 | 
            +
            ```{ruby}
         | 
| 4403 | 
            +
            #| tags: []
         | 
| 4404 | 
            +
            v.match_like('_arr%')
         | 
| 4405 | 
            +
            ```
         | 
| 4406 | 
            +
             | 
| 4407 | 
            +
            You can ignore case if you use the option `igfnore_case: true`.
         | 
| 4408 | 
            +
             | 
| 4409 | 
            +
            ```{ruby}
         | 
| 4410 | 
            +
            #| tags: []
         | 
| 4411 | 
            +
            v.match_like('arr%', ignore_case: true)
         | 
| 4412 | 
            +
            ```
         | 
| 4413 | 
            +
             | 
| 4414 | 
            +
            ## 123. Vector#find_substring
         | 
| 4415 | 
            +
             | 
| 4416 | 
            +
            Find first occurrence of substring in string Vector.
         | 
| 4417 | 
            +
             | 
| 4418 | 
            +
            (since 0.5.1)
         | 
| 4419 | 
            +
             | 
| 4420 | 
            +
            ```{ruby}
         | 
| 4421 | 
            +
            #| tags: []
         | 
| 4422 | 
            +
            v = Vector['array', 'Arrow', 'carrot', nil, 'window']
         | 
| 4423 | 
            +
            ```
         | 
| 4424 | 
            +
             | 
| 4425 | 
            +
            You can find indices of a literal string. Emit -1 if not found. Nil inputs emit nil.
         | 
| 4426 | 
            +
             | 
| 4427 | 
            +
            ```{ruby}
         | 
| 4428 | 
            +
            #| tags: []
         | 
| 4429 | 
            +
            v.find_substring('arr')
         | 
| 4430 | 
            +
            ```
         | 
| 4431 | 
            +
             | 
| 4432 | 
            +
            Otherwise use it with Regexp pattern. It calls `count_substring_regex` in Arrow compute function and uses re2 library.
         | 
| 4433 | 
            +
             | 
| 4434 | 
            +
            ```{ruby}
         | 
| 4435 | 
            +
            #| tags: []
         | 
| 4436 | 
            +
            v.find_substring(/arr/)
         | 
| 4437 | 
            +
            ```
         | 
| 4438 | 
            +
             | 
| 4439 | 
            +
            You can ignore case if you use regexp with `i` option, or `igfnore_case: true`
         | 
| 4440 | 
            +
             | 
| 4441 | 
            +
            ```{ruby}
         | 
| 4442 | 
            +
            #| tags: []
         | 
| 4443 | 
            +
            v.find_substring(/arr/i)  # same as v.find_substring(/arr/, ignore_case: true)
         | 
| 4444 | 
            +
            ```
         | 
| 4445 | 
            +
             | 
| 4446 | 
            +
            ## 124. Vector#count_substring
         | 
| 4447 | 
            +
             | 
| 4448 | 
            +
            For each string in self, count occuerences of substring in given pattern.
         | 
| 4449 | 
            +
             | 
| 4450 | 
            +
            (since 0.5.0)
         | 
| 4451 | 
            +
             | 
| 4452 | 
            +
            ```{ruby}
         | 
| 4453 | 
            +
            #| tags: []
         | 
| 4454 | 
            +
            v = Vector['amber', 'Amazon', 'banana', nil]
         | 
| 4455 | 
            +
            ```
         | 
| 4456 | 
            +
             | 
| 4457 | 
            +
            You can find indices of a literal string. Emit -1 if not found. Nil inputs emit nil.
         | 
| 4458 | 
            +
             | 
| 4459 | 
            +
            ```{ruby}
         | 
| 4460 | 
            +
            #| tags: []
         | 
| 4461 | 
            +
            v.count_substring('an')
         | 
| 4462 | 
            +
            ```
         | 
| 4463 | 
            +
             | 
| 4464 | 
            +
            Otherwise use it with Regexp pattern. It calls `count_substring_regex` in Arrow compute function and uses re2 library.
         | 
| 4465 | 
            +
             | 
| 4466 | 
            +
            ```{ruby}
         | 
| 4467 | 
            +
            #| tags: []
         | 
| 4468 | 
            +
            v.count_substring(/a[mn]/)
         | 
| 4469 | 
            +
            ```
         | 
| 4470 | 
            +
             | 
| 4471 | 
            +
            You can ignore case if you use regexp with `i` option, or `igfnore_case: true`
         | 
| 4472 | 
            +
             | 
| 4473 | 
            +
            ```{ruby}
         | 
| 4474 | 
            +
            #| tags: []
         | 
| 4475 | 
            +
            v.count_substring(/a[mn]/i)  # same as v.find_substring(/arr/, ignore_case: true)
         | 
| 4476 | 
            +
            ```
         | 
| 4477 | 
            +
             | 
| 4478 | 
            +
            ## 125. Grouped DataFrame as a list
         | 
| 4479 | 
            +
             | 
| 4480 | 
            +
            This API was introduced in 0.2.3, and supply a new DataFrame group (experimental).
         | 
| 4481 | 
            +
             | 
| 4482 | 
            +
            This additional API will treat a grouped DataFrame as a list of DataFrames. I think this API has pros such as:
         | 
| 4483 | 
            +
             | 
| 4484 | 
            +
            - API is easy to understand and flexible.
         | 
| 4485 | 
            +
            - It has good compatibility with Ruby's primitive Enumerables.
         | 
| 4486 | 
            +
            - We can only use non hash-ed aggregation functions.
         | 
| 4487 | 
            +
            - Do not need grouped DataFrame state, nor `#ungroup` method.
         | 
| 4488 | 
            +
            - May be useful for concurrent operations.
         | 
| 4489 | 
            +
             | 
| 4490 | 
            +
            This feature is implemented by Ruby, so it is pretty slow and experimental. Use original Group API for practical purpose.
         | 
| 4491 | 
            +
             | 
| 4492 | 
            +
            (Since 0.2.3, experimental feature => This was upgraded to SubFrames feature)
         | 
| 4493 | 
            +
             | 
| 4494 | 
            +
            ```{ruby}
         | 
| 4495 | 
            +
            enum = penguins.group(:island).each
         | 
| 4496 | 
            +
            ```
         | 
| 4497 | 
            +
             | 
| 4498 | 
            +
            ```{ruby}
         | 
| 4499 | 
            +
            enum.to_a
         | 
| 4500 | 
            +
            ```
         | 
| 4501 | 
            +
             | 
| 4502 | 
            +
            ```{ruby}
         | 
| 4503 | 
            +
            array = enum.map do |df|
         | 
| 4504 | 
            +
              DataFrame.new(island: [df.island[0]]).assign do
         | 
| 4505 | 
            +
                df.variables.each_with_object({}) do |(key, vec), hash|
         | 
| 4506 | 
            +
                  next unless vec.numeric?
         | 
| 4507 | 
            +
                  hash["mean(#{key})"] = [vec.mean]
         | 
| 4508 | 
            +
                end
         | 
| 4509 | 
            +
              end
         | 
| 4510 | 
            +
            end
         | 
| 4511 | 
            +
            ```
         | 
| 4512 | 
            +
             | 
| 4513 | 
            +
            ```{ruby}
         | 
| 4514 | 
            +
            array.reduce { |a, df| a.concat df }
         | 
| 4515 | 
            +
            ```
         | 
| 4516 | 
            +
             | 
| 4517 | 
            +
            ## 126. ArrowFunction helpers
         | 
| 4518 | 
            +
             | 
| 4519 | 
            +
            `ArrowFunction` module adds two helper method.
         | 
| 4520 | 
            +
             | 
| 4521 | 
            +
            `ArrowFunction.find(function_name)` returns Arrow Function object in Arrow C++ Compute Functions.
         | 
| 4522 | 
            +
             | 
| 4523 | 
            +
            ```{ruby}
         | 
| 4524 | 
            +
            ArrowFunction.find(:mean)
         | 
| 4525 | 
            +
            ```
         | 
| 4526 | 
            +
             | 
| 4527 | 
            +
            To execute this function,
         | 
| 4528 | 
            +
             | 
| 4529 | 
            +
            ```{ruby}
         | 
| 4530 | 
            +
            ArrowFunction.find(:mean).execute([[1, 2, 3, 4]]).value.value
         | 
| 4531 | 
            +
            ```
         | 
| 4532 | 
            +
             | 
| 4533 | 
            +
            `ArrowFunction.arrow_doc(function_name)` returns a document of Arrow C++ Compute Function in a string.
         | 
| 4534 | 
            +
             | 
| 4535 | 
            +
            ```{ruby}
         | 
| 4536 | 
            +
            puts ArrowFunction.arrow_doc(:mean)
         | 
| 4537 | 
            +
            ```
         | 
| 4538 | 
            +
             | 
| 4539 | 
            +
            ## 127. DataFrame.auto_cast
         | 
| 4540 | 
            +
             | 
| 4541 | 
            +
            A data set for planetary data in https://nssdc.gsfc.nasa.gov/planetary/factsheet/ is used here. Let's manually copy the data in the html table and get the tab separated text values.
         | 
| 4542 | 
            +
             | 
| 4543 | 
            +
            ```{ruby}
         | 
| 4544 | 
            +
            tsv = ' 	 MERCURY 	 VENUS 	 EARTH 	 MOON 	 MARS 	 JUPITER 	 SATURN 	 URANUS 	 NEPTUNE 	 PLUTO
         | 
| 4545 | 
            +
            Mass (1024kg)	0.330	4.87	5.97	0.073	0.642	1898	568	86.8	102	0.0130
         | 
| 4546 | 
            +
            Diameter (km)	4879	12,104	12,756	3475	6792	142,984	120,536	51,118	49,528	2376
         | 
| 4547 | 
            +
            Density (kg/m3)	5429	5243	5514	3340	3934	1326	687	1270	1638	1850
         | 
| 4548 | 
            +
            Gravity (m/s2)	3.7	8.9	9.8	1.6	3.7	23.1	9.0	8.7	11.0	0.7
         | 
| 4549 | 
            +
            Escape Velocity (km/s)	4.3	10.4	11.2	2.4	5.0	59.5	35.5	21.3	23.5	1.3
         | 
| 4550 | 
            +
            Rotation Period (hours)	1407.6	-5832.5	23.9	655.7	24.6	9.9	10.7	-17.2	16.1	-153.3
         | 
| 4551 | 
            +
            Length of Day (hours)	4222.6	2802.0	24.0	708.7	24.7	9.9	10.7	17.2	16.1	153.3
         | 
| 4552 | 
            +
            Distance from Sun (106 km)	57.9	108.2	149.6	0.384*	228.0	778.5	1432.0	2867.0	4515.0	5906.4
         | 
| 4553 | 
            +
            Perihelion (106 km)	46.0	107.5	147.1	0.363*	206.7	740.6	1357.6	2732.7	4471.1	4436.8
         | 
| 4554 | 
            +
            Aphelion (106 km)	69.8	108.9	152.1	0.406*	249.3	816.4	1506.5	3001.4	4558.9	7375.9
         | 
| 4555 | 
            +
            Orbital Period (days)	88.0	224.7	365.2	27.3*	687.0	4331	10,747	30,589	59,800	90,560
         | 
| 4556 | 
            +
            Orbital Velocity (km/s)	47.4	35.0	29.8	1.0*	24.1	13.1	9.7	6.8	5.4	4.7
         | 
| 4557 | 
            +
            Orbital Inclination (degrees)	7.0	3.4	0.0	5.1	1.8	1.3	2.5	0.8	1.8	17.2
         | 
| 4558 | 
            +
            Orbital Eccentricity	0.206	0.007	0.017	0.055	0.094	0.049	0.052	0.047	0.010	0.244
         | 
| 4559 | 
            +
            Obliquity to Orbit (degrees)	0.034	177.4	23.4	6.7	25.2	3.1	26.7	97.8	28.3	122.5
         | 
| 4560 | 
            +
            Mean Temperature (C)	167	464	15	-20	-65	-110	-140	-195	-200	-225
         | 
| 4561 | 
            +
            Surface Pressure (bars)	0	92	1	0	0.01	Unknown*	Unknown*	Unknown*	Unknown*	0.00001
         | 
| 4562 | 
            +
            Number of Moons	0	0	1	0	2	79	82	27	14	5
         | 
| 4563 | 
            +
            Ring System?	No	No	No	No	No	Yes	Yes	Yes	Yes	No
         | 
| 4564 | 
            +
            Global Magnetic Field?	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes	Unknown
         | 
| 4565 | 
            +
            '
         | 
| 4566 | 
            +
             | 
| 4567 | 
            +
            raw_dataframe = DataFrame.load(Arrow::Buffer.new(tsv), format: :tsv)
         | 
| 4568 | 
            +
             | 
| 4569 | 
            +
            ENV['RED_AMBER_OUTPUT_MODE'] = 'plain'
         | 
| 4570 | 
            +
            raw_dataframe
         | 
| 4571 | 
            +
            ```
         | 
| 4572 | 
            +
             | 
| 4573 | 
            +
            This dataframe has row oriented calues. So we must transpose the dataframe.
         | 
| 4574 | 
            +
             | 
| 4575 | 
            +
            ```{ruby}
         | 
| 4576 | 
            +
            transposed = raw_dataframe.transpose
         | 
| 4577 | 
            +
            ```
         | 
| 4578 | 
            +
             | 
| 4579 | 
            +
            This dataframe has string columns. We can cast each numeric columns, recommended way is to use `#auto_cast`. `#auto_cast` save it in temporally tsv file and re-open it to get a casted dataframe.
         | 
| 4580 | 
            +
             | 
| 4581 | 
            +
            ```{ruby}
         | 
| 4582 | 
            +
            transposed.auto_cast
         | 
| 4583 | 
            +
            ```
         | 
| 4584 | 
            +
             | 
| 4585 | 
            +
            There are still some dirts to be cleaned in this dataframe, we don't touch them here. If you are interested, give it a try!
         | 
| 4586 | 
            +
             | 
| 4587 | 
            +
            - Rename a column 'NAME' to 'Planet_name'.
         | 
| 4588 | 
            +
            - Remove preceding/trailing spaces in 'Planet_name' values.
         | 
| 4589 | 
            +
            - Capitalize 'Planet_name' values.
         | 
| 4590 | 
            +
            - Remove data for 'Moon' and 'Pluto' to create the Table for planets.
         | 
| 4591 | 
            +
            - Convert 'Unknown*' to nil.
         | 
| 4592 | 
            +
            - Change 'Yes' / 'No' values to true / false (change column type to boolean).
         | 
| 4593 | 
            +
            - Remove comma in numeric values. They obstruct to be numeric columns.
         | 
| 4594 | 
            +
            - Correct cell values which have '*'. They obstruct to be numeric columns.
         | 
| 4595 | 
            +
            - Add missing '^' to unit in labels.
         | 
| 4596 | 
            +
             |