polars-df 0.2.0-arm64-darwin
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +3 -0
- data/CHANGELOG.md +33 -0
- data/Cargo.lock +2230 -0
- data/Cargo.toml +10 -0
- data/LICENSE-THIRD-PARTY.txt +38856 -0
- data/LICENSE.txt +20 -0
- data/README.md +91 -0
- data/lib/polars/3.0/polars.bundle +0 -0
- data/lib/polars/3.1/polars.bundle +0 -0
- data/lib/polars/3.2/polars.bundle +0 -0
- data/lib/polars/batched_csv_reader.rb +96 -0
- data/lib/polars/cat_expr.rb +52 -0
- data/lib/polars/cat_name_space.rb +54 -0
- data/lib/polars/convert.rb +100 -0
- data/lib/polars/data_frame.rb +4833 -0
- data/lib/polars/data_types.rb +122 -0
- data/lib/polars/date_time_expr.rb +1418 -0
- data/lib/polars/date_time_name_space.rb +1484 -0
- data/lib/polars/dynamic_group_by.rb +52 -0
- data/lib/polars/exceptions.rb +20 -0
- data/lib/polars/expr.rb +5307 -0
- data/lib/polars/expr_dispatch.rb +22 -0
- data/lib/polars/functions.rb +453 -0
- data/lib/polars/group_by.rb +558 -0
- data/lib/polars/io.rb +814 -0
- data/lib/polars/lazy_frame.rb +2442 -0
- data/lib/polars/lazy_functions.rb +1195 -0
- data/lib/polars/lazy_group_by.rb +93 -0
- data/lib/polars/list_expr.rb +610 -0
- data/lib/polars/list_name_space.rb +346 -0
- data/lib/polars/meta_expr.rb +54 -0
- data/lib/polars/rolling_group_by.rb +35 -0
- data/lib/polars/series.rb +3730 -0
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/string_expr.rb +972 -0
- data/lib/polars/string_name_space.rb +690 -0
- data/lib/polars/struct_expr.rb +100 -0
- data/lib/polars/struct_name_space.rb +64 -0
- data/lib/polars/utils.rb +192 -0
- data/lib/polars/version.rb +4 -0
- data/lib/polars/when.rb +16 -0
- data/lib/polars/when_then.rb +19 -0
- data/lib/polars-df.rb +1 -0
- data/lib/polars.rb +50 -0
- metadata +89 -0
@@ -0,0 +1,4833 @@
|
|
1
|
+
module Polars
|
2
|
+
# Two-dimensional data structure representing data as a table with rows and columns.
|
3
|
+
class DataFrame
|
4
|
+
# @private
|
5
|
+
attr_accessor :_df
|
6
|
+
|
7
|
+
# Create a new DataFrame.
|
8
|
+
#
|
9
|
+
# @param data [Hash, Array, Series, nil]
|
10
|
+
# Two-dimensional data in various forms. Hash must contain Arrays.
|
11
|
+
# Array may contain Series.
|
12
|
+
# @param columns [Array, Hash, nil]
|
13
|
+
# Column labels to use for resulting DataFrame. If specified, overrides any
|
14
|
+
# labels already present in the data. Must match data dimensions.
|
15
|
+
# @param orient ["col", "row", nil]
|
16
|
+
# Whether to interpret two-dimensional data as columns or as rows. If `nil`,
|
17
|
+
# the orientation is inferred by matching the columns and data dimensions. If
|
18
|
+
# this does not yield conclusive results, column orientation is used.
|
19
|
+
def initialize(data = nil, columns: nil, orient: nil)
|
20
|
+
if defined?(ActiveRecord) && (data.is_a?(ActiveRecord::Relation) || data.is_a?(ActiveRecord::Result))
|
21
|
+
result = data.is_a?(ActiveRecord::Result) ? data : data.connection.select_all(data.to_sql)
|
22
|
+
data = {}
|
23
|
+
result.columns.each_with_index do |k, i|
|
24
|
+
data[k] = result.rows.map { |r| r[i] }
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
if data.nil?
|
29
|
+
self._df = self.class.hash_to_rbdf({}, columns: columns)
|
30
|
+
elsif data.is_a?(Hash)
|
31
|
+
data = data.transform_keys { |v| v.is_a?(Symbol) ? v.to_s : v }
|
32
|
+
self._df = self.class.hash_to_rbdf(data, columns: columns)
|
33
|
+
elsif data.is_a?(Array)
|
34
|
+
self._df = self.class.sequence_to_rbdf(data, columns: columns, orient: orient)
|
35
|
+
elsif data.is_a?(Series)
|
36
|
+
self._df = self.class.series_to_rbdf(data, columns: columns)
|
37
|
+
else
|
38
|
+
raise ArgumentError, "DataFrame constructor called with unsupported type; got #{data.class.name}"
|
39
|
+
end
|
40
|
+
end
|
41
|
+
|
42
|
+
# @private
|
43
|
+
def self._from_rbdf(rb_df)
|
44
|
+
df = DataFrame.allocate
|
45
|
+
df._df = rb_df
|
46
|
+
df
|
47
|
+
end
|
48
|
+
|
49
|
+
# @private
|
50
|
+
def self._from_hashes(data, infer_schema_length: 100, schema: nil)
|
51
|
+
rbdf = RbDataFrame.read_hashes(data, infer_schema_length, schema)
|
52
|
+
_from_rbdf(rbdf)
|
53
|
+
end
|
54
|
+
|
55
|
+
# @private
|
56
|
+
def self._from_hash(data, columns: nil)
|
57
|
+
_from_rbdf(hash_to_rbdf(data, columns: columns))
|
58
|
+
end
|
59
|
+
|
60
|
+
# def self._from_records
|
61
|
+
# end
|
62
|
+
|
63
|
+
# def self._from_numo
|
64
|
+
# end
|
65
|
+
|
66
|
+
# no self._from_arrow
|
67
|
+
|
68
|
+
# no self._from_pandas
|
69
|
+
|
70
|
+
# @private
|
71
|
+
def self._read_csv(
|
72
|
+
file,
|
73
|
+
has_header: true,
|
74
|
+
columns: nil,
|
75
|
+
sep: str = ",",
|
76
|
+
comment_char: nil,
|
77
|
+
quote_char: '"',
|
78
|
+
skip_rows: 0,
|
79
|
+
dtypes: nil,
|
80
|
+
null_values: nil,
|
81
|
+
ignore_errors: false,
|
82
|
+
parse_dates: false,
|
83
|
+
n_threads: nil,
|
84
|
+
infer_schema_length: 100,
|
85
|
+
batch_size: 8192,
|
86
|
+
n_rows: nil,
|
87
|
+
encoding: "utf8",
|
88
|
+
low_memory: false,
|
89
|
+
rechunk: true,
|
90
|
+
skip_rows_after_header: 0,
|
91
|
+
row_count_name: nil,
|
92
|
+
row_count_offset: 0,
|
93
|
+
sample_size: 1024,
|
94
|
+
eol_char: "\n"
|
95
|
+
)
|
96
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
97
|
+
path = Utils.format_path(file)
|
98
|
+
else
|
99
|
+
path = nil
|
100
|
+
# if defined?(StringIO) && file.is_a?(StringIO)
|
101
|
+
# file = file.string
|
102
|
+
# end
|
103
|
+
end
|
104
|
+
|
105
|
+
dtype_list = nil
|
106
|
+
dtype_slice = nil
|
107
|
+
if !dtypes.nil?
|
108
|
+
if dtypes.is_a?(Hash)
|
109
|
+
dtype_list = []
|
110
|
+
dtypes.each do|k, v|
|
111
|
+
dtype_list << [k, Utils.rb_type_to_dtype(v)]
|
112
|
+
end
|
113
|
+
elsif dtypes.is_a?(Array)
|
114
|
+
dtype_slice = dtypes
|
115
|
+
else
|
116
|
+
raise ArgumentError, "dtype arg should be list or dict"
|
117
|
+
end
|
118
|
+
end
|
119
|
+
|
120
|
+
processed_null_values = Utils._process_null_values(null_values)
|
121
|
+
|
122
|
+
if columns.is_a?(String)
|
123
|
+
columns = [columns]
|
124
|
+
end
|
125
|
+
if file.is_a?(String) && file.include?("*")
|
126
|
+
raise Todo
|
127
|
+
end
|
128
|
+
|
129
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
130
|
+
|
131
|
+
_from_rbdf(
|
132
|
+
RbDataFrame.read_csv(
|
133
|
+
file,
|
134
|
+
infer_schema_length,
|
135
|
+
batch_size,
|
136
|
+
has_header,
|
137
|
+
ignore_errors,
|
138
|
+
n_rows,
|
139
|
+
skip_rows,
|
140
|
+
projection,
|
141
|
+
sep,
|
142
|
+
rechunk,
|
143
|
+
columns,
|
144
|
+
encoding,
|
145
|
+
n_threads,
|
146
|
+
path,
|
147
|
+
dtype_list,
|
148
|
+
dtype_slice,
|
149
|
+
low_memory,
|
150
|
+
comment_char,
|
151
|
+
quote_char,
|
152
|
+
processed_null_values,
|
153
|
+
parse_dates,
|
154
|
+
skip_rows_after_header,
|
155
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
156
|
+
sample_size,
|
157
|
+
eol_char
|
158
|
+
)
|
159
|
+
)
|
160
|
+
end
|
161
|
+
|
162
|
+
# @private
|
163
|
+
def self._read_parquet(
|
164
|
+
file,
|
165
|
+
columns: nil,
|
166
|
+
n_rows: nil,
|
167
|
+
parallel: "auto",
|
168
|
+
row_count_name: nil,
|
169
|
+
row_count_offset: 0,
|
170
|
+
low_memory: false
|
171
|
+
)
|
172
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
173
|
+
file = Utils.format_path(file)
|
174
|
+
end
|
175
|
+
|
176
|
+
if file.is_a?(String) && file.include?("*")
|
177
|
+
raise Todo
|
178
|
+
end
|
179
|
+
|
180
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
181
|
+
_from_rbdf(
|
182
|
+
RbDataFrame.read_parquet(
|
183
|
+
file,
|
184
|
+
columns,
|
185
|
+
projection,
|
186
|
+
n_rows,
|
187
|
+
parallel,
|
188
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
189
|
+
low_memory
|
190
|
+
)
|
191
|
+
)
|
192
|
+
end
|
193
|
+
|
194
|
+
# @private
|
195
|
+
def self._read_avro(file, columns: nil, n_rows: nil)
|
196
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
197
|
+
file = Utils.format_path(file)
|
198
|
+
end
|
199
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
200
|
+
_from_rbdf(RbDataFrame.read_avro(file, columns, projection, n_rows))
|
201
|
+
end
|
202
|
+
|
203
|
+
# @private
|
204
|
+
def self._read_ipc(
|
205
|
+
file,
|
206
|
+
columns: nil,
|
207
|
+
n_rows: nil,
|
208
|
+
row_count_name: nil,
|
209
|
+
row_count_offset: 0,
|
210
|
+
rechunk: true,
|
211
|
+
memory_map: true
|
212
|
+
)
|
213
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
214
|
+
file = Utils.format_path(file)
|
215
|
+
end
|
216
|
+
if columns.is_a?(String)
|
217
|
+
columns = [columns]
|
218
|
+
end
|
219
|
+
|
220
|
+
if file.is_a?(String) && file.include?("*")
|
221
|
+
raise Todo
|
222
|
+
end
|
223
|
+
|
224
|
+
projection, columns = Utils.handle_projection_columns(columns)
|
225
|
+
_from_rbdf(
|
226
|
+
RbDataFrame.read_ipc(
|
227
|
+
file,
|
228
|
+
columns,
|
229
|
+
projection,
|
230
|
+
n_rows,
|
231
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
232
|
+
memory_map
|
233
|
+
)
|
234
|
+
)
|
235
|
+
end
|
236
|
+
|
237
|
+
# @private
|
238
|
+
def self._read_json(file)
|
239
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
240
|
+
file = Utils.format_path(file)
|
241
|
+
end
|
242
|
+
|
243
|
+
_from_rbdf(RbDataFrame.read_json(file))
|
244
|
+
end
|
245
|
+
|
246
|
+
# @private
|
247
|
+
def self._read_ndjson(file)
|
248
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
249
|
+
file = Utils.format_path(file)
|
250
|
+
end
|
251
|
+
|
252
|
+
_from_rbdf(RbDataFrame.read_ndjson(file))
|
253
|
+
end
|
254
|
+
|
255
|
+
# Get the shape of the DataFrame.
|
256
|
+
#
|
257
|
+
# @return [Array]
|
258
|
+
#
|
259
|
+
# @example
|
260
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3, 4, 5]})
|
261
|
+
# df.shape
|
262
|
+
# # => [5, 1]
|
263
|
+
def shape
|
264
|
+
_df.shape
|
265
|
+
end
|
266
|
+
|
267
|
+
# Get the height of the DataFrame.
|
268
|
+
#
|
269
|
+
# @return [Integer]
|
270
|
+
#
|
271
|
+
# @example
|
272
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3, 4, 5]})
|
273
|
+
# df.height
|
274
|
+
# # => 5
|
275
|
+
def height
|
276
|
+
_df.height
|
277
|
+
end
|
278
|
+
|
279
|
+
# Get the width of the DataFrame.
|
280
|
+
#
|
281
|
+
# @return [Integer]
|
282
|
+
#
|
283
|
+
# @example
|
284
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3, 4, 5]})
|
285
|
+
# df.width
|
286
|
+
# # => 1
|
287
|
+
def width
|
288
|
+
_df.width
|
289
|
+
end
|
290
|
+
|
291
|
+
# Get column names.
|
292
|
+
#
|
293
|
+
# @return [Array]
|
294
|
+
#
|
295
|
+
# @example
|
296
|
+
# df = Polars::DataFrame.new(
|
297
|
+
# {
|
298
|
+
# "foo" => [1, 2, 3],
|
299
|
+
# "bar" => [6, 7, 8],
|
300
|
+
# "ham" => ["a", "b", "c"]
|
301
|
+
# }
|
302
|
+
# )
|
303
|
+
# df.columns
|
304
|
+
# # => ["foo", "bar", "ham"]
|
305
|
+
def columns
|
306
|
+
_df.columns
|
307
|
+
end
|
308
|
+
|
309
|
+
# Change the column names of the DataFrame.
|
310
|
+
#
|
311
|
+
# @param columns [Array]
|
312
|
+
# A list with new names for the DataFrame.
|
313
|
+
# The length of the list should be equal to the width of the DataFrame.
|
314
|
+
#
|
315
|
+
# @return [Object]
|
316
|
+
#
|
317
|
+
# @example
|
318
|
+
# df = Polars::DataFrame.new(
|
319
|
+
# {
|
320
|
+
# "foo" => [1, 2, 3],
|
321
|
+
# "bar" => [6, 7, 8],
|
322
|
+
# "ham" => ["a", "b", "c"]
|
323
|
+
# }
|
324
|
+
# )
|
325
|
+
# df.columns = ["apple", "banana", "orange"]
|
326
|
+
# df
|
327
|
+
# # =>
|
328
|
+
# # shape: (3, 3)
|
329
|
+
# # ┌───────┬────────┬────────┐
|
330
|
+
# # │ apple ┆ banana ┆ orange │
|
331
|
+
# # │ --- ┆ --- ┆ --- │
|
332
|
+
# # │ i64 ┆ i64 ┆ str │
|
333
|
+
# # ╞═══════╪════════╪════════╡
|
334
|
+
# # │ 1 ┆ 6 ┆ a │
|
335
|
+
# # ├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
336
|
+
# # │ 2 ┆ 7 ┆ b │
|
337
|
+
# # ├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
338
|
+
# # │ 3 ┆ 8 ┆ c │
|
339
|
+
# # └───────┴────────┴────────┘
|
340
|
+
def columns=(columns)
|
341
|
+
_df.set_column_names(columns)
|
342
|
+
end
|
343
|
+
|
344
|
+
# Get dtypes of columns in DataFrame. Dtypes can also be found in column headers when printing the DataFrame.
|
345
|
+
#
|
346
|
+
# @return [Array]
|
347
|
+
#
|
348
|
+
# @example
|
349
|
+
# df = Polars::DataFrame.new(
|
350
|
+
# {
|
351
|
+
# "foo" => [1, 2, 3],
|
352
|
+
# "bar" => [6.0, 7.0, 8.0],
|
353
|
+
# "ham" => ["a", "b", "c"]
|
354
|
+
# }
|
355
|
+
# )
|
356
|
+
# df.dtypes
|
357
|
+
# # => [Polars::Int64, Polars::Float64, Polars::Utf8]
|
358
|
+
def dtypes
|
359
|
+
_df.dtypes
|
360
|
+
end
|
361
|
+
|
362
|
+
# Get the schema.
|
363
|
+
#
|
364
|
+
# @return [Hash]
|
365
|
+
#
|
366
|
+
# @example
|
367
|
+
# df = Polars::DataFrame.new(
|
368
|
+
# {
|
369
|
+
# "foo" => [1, 2, 3],
|
370
|
+
# "bar" => [6.0, 7.0, 8.0],
|
371
|
+
# "ham" => ["a", "b", "c"]
|
372
|
+
# }
|
373
|
+
# )
|
374
|
+
# df.schema
|
375
|
+
# # => {"foo"=>Polars::Int64, "bar"=>Polars::Float64, "ham"=>Polars::Utf8}
|
376
|
+
def schema
|
377
|
+
columns.zip(dtypes).to_h
|
378
|
+
end
|
379
|
+
|
380
|
+
# Equal.
|
381
|
+
#
|
382
|
+
# @return [DataFrame]
|
383
|
+
def ==(other)
|
384
|
+
_comp(other, "eq")
|
385
|
+
end
|
386
|
+
|
387
|
+
# Not equal.
|
388
|
+
#
|
389
|
+
# @return [DataFrame]
|
390
|
+
def !=(other)
|
391
|
+
_comp(other, "neq")
|
392
|
+
end
|
393
|
+
|
394
|
+
# Greater than.
|
395
|
+
#
|
396
|
+
# @return [DataFrame]
|
397
|
+
def >(other)
|
398
|
+
_comp(other, "gt")
|
399
|
+
end
|
400
|
+
|
401
|
+
# Less than.
|
402
|
+
#
|
403
|
+
# @return [DataFrame]
|
404
|
+
def <(other)
|
405
|
+
_comp(other, "lt")
|
406
|
+
end
|
407
|
+
|
408
|
+
# Greater than or equal.
|
409
|
+
#
|
410
|
+
# @return [DataFrame]
|
411
|
+
def >=(other)
|
412
|
+
_comp(other, "gt_eq")
|
413
|
+
end
|
414
|
+
|
415
|
+
# Less than or equal.
|
416
|
+
#
|
417
|
+
# @return [DataFrame]
|
418
|
+
def <=(other)
|
419
|
+
_comp(other, "lt_eq")
|
420
|
+
end
|
421
|
+
|
422
|
+
# Performs multiplication.
|
423
|
+
#
|
424
|
+
# @return [DataFrame]
|
425
|
+
def *(other)
|
426
|
+
if other.is_a?(DataFrame)
|
427
|
+
return _from_rbdf(_df.mul_df(other._df))
|
428
|
+
end
|
429
|
+
|
430
|
+
other = _prepare_other_arg(other)
|
431
|
+
_from_rbdf(_df.mul(other._s))
|
432
|
+
end
|
433
|
+
|
434
|
+
# Performs division.
|
435
|
+
#
|
436
|
+
# @return [DataFrame]
|
437
|
+
def /(other)
|
438
|
+
if other.is_a?(DataFrame)
|
439
|
+
return _from_rbdf(_df.div_df(other._df))
|
440
|
+
end
|
441
|
+
|
442
|
+
other = _prepare_other_arg(other)
|
443
|
+
_from_rbdf(_df.div(other._s))
|
444
|
+
end
|
445
|
+
|
446
|
+
# Performs addition.
|
447
|
+
#
|
448
|
+
# @return [DataFrame]
|
449
|
+
def +(other)
|
450
|
+
if other.is_a?(DataFrame)
|
451
|
+
return _from_rbdf(_df.add_df(other._df))
|
452
|
+
end
|
453
|
+
|
454
|
+
other = _prepare_other_arg(other)
|
455
|
+
_from_rbdf(_df.add(other._s))
|
456
|
+
end
|
457
|
+
|
458
|
+
# Performs subtraction.
|
459
|
+
#
|
460
|
+
# @return [DataFrame]
|
461
|
+
def -(other)
|
462
|
+
if other.is_a?(DataFrame)
|
463
|
+
return _from_rbdf(_df.sub_df(other._df))
|
464
|
+
end
|
465
|
+
|
466
|
+
other = _prepare_other_arg(other)
|
467
|
+
_from_rbdf(_df.sub(other._s))
|
468
|
+
end
|
469
|
+
|
470
|
+
# Returns the modulo.
|
471
|
+
#
|
472
|
+
# @return [DataFrame]
|
473
|
+
def %(other)
|
474
|
+
if other.is_a?(DataFrame)
|
475
|
+
return _from_rbdf(_df.rem_df(other._df))
|
476
|
+
end
|
477
|
+
|
478
|
+
other = _prepare_other_arg(other)
|
479
|
+
_from_rbdf(_df.rem(other._s))
|
480
|
+
end
|
481
|
+
|
482
|
+
# Returns a string representing the DataFrame.
|
483
|
+
#
|
484
|
+
# @return [String]
|
485
|
+
def to_s
|
486
|
+
_df.to_s
|
487
|
+
end
|
488
|
+
alias_method :inspect, :to_s
|
489
|
+
|
490
|
+
# Check if DataFrame includes column.
|
491
|
+
#
|
492
|
+
# @return [Boolean]
|
493
|
+
def include?(name)
|
494
|
+
columns.include?(name)
|
495
|
+
end
|
496
|
+
|
497
|
+
# def each
|
498
|
+
# end
|
499
|
+
|
500
|
+
# Returns subset of the DataFrame.
|
501
|
+
#
|
502
|
+
# @return [Object]
|
503
|
+
def [](*args)
|
504
|
+
if args.size == 2
|
505
|
+
row_selection, col_selection = args
|
506
|
+
|
507
|
+
# df[.., unknown]
|
508
|
+
if row_selection.is_a?(Range)
|
509
|
+
|
510
|
+
# multiple slices
|
511
|
+
# df[.., ..]
|
512
|
+
if col_selection.is_a?(Range)
|
513
|
+
raise Todo
|
514
|
+
end
|
515
|
+
end
|
516
|
+
|
517
|
+
# df[2, ..] (select row as df)
|
518
|
+
if row_selection.is_a?(Integer)
|
519
|
+
if col_selection.is_a?(Array)
|
520
|
+
df = self[0.., col_selection]
|
521
|
+
return df.slice(row_selection, 1)
|
522
|
+
end
|
523
|
+
# df[2, "a"]
|
524
|
+
if col_selection.is_a?(String)
|
525
|
+
return self[col_selection][row_selection]
|
526
|
+
end
|
527
|
+
end
|
528
|
+
|
529
|
+
# column selection can be "a" and ["a", "b"]
|
530
|
+
if col_selection.is_a?(String)
|
531
|
+
col_selection = [col_selection]
|
532
|
+
end
|
533
|
+
|
534
|
+
# df[.., 1]
|
535
|
+
if col_selection.is_a?(Integer)
|
536
|
+
series = to_series(col_selection)
|
537
|
+
return series[row_selection]
|
538
|
+
end
|
539
|
+
|
540
|
+
if col_selection.is_a?(Array)
|
541
|
+
# df[.., [1, 2]]
|
542
|
+
if is_int_sequence(col_selection)
|
543
|
+
series_list = col_selection.map { |i| to_series(i) }
|
544
|
+
df = self.class.new(series_list)
|
545
|
+
return df[row_selection]
|
546
|
+
end
|
547
|
+
end
|
548
|
+
|
549
|
+
df = self[col_selection]
|
550
|
+
return df[row_selection]
|
551
|
+
elsif args.size == 1
|
552
|
+
item = args[0]
|
553
|
+
|
554
|
+
# select single column
|
555
|
+
# df["foo"]
|
556
|
+
if item.is_a?(String)
|
557
|
+
return Utils.wrap_s(_df.column(item))
|
558
|
+
end
|
559
|
+
|
560
|
+
# df[idx]
|
561
|
+
if item.is_a?(Integer)
|
562
|
+
return slice(_pos_idx(item, 0), 1)
|
563
|
+
end
|
564
|
+
|
565
|
+
# df[..]
|
566
|
+
if item.is_a?(Range)
|
567
|
+
return Slice.new(self).apply(item)
|
568
|
+
end
|
569
|
+
|
570
|
+
if Utils.is_str_sequence(item, allow_str: false)
|
571
|
+
# select multiple columns
|
572
|
+
# df[["foo", "bar"]]
|
573
|
+
return _from_rbdf(_df.select(item))
|
574
|
+
end
|
575
|
+
end
|
576
|
+
|
577
|
+
raise ArgumentError, "Cannot get item of type: #{item.class.name}"
|
578
|
+
end
|
579
|
+
|
580
|
+
# Set item.
|
581
|
+
#
|
582
|
+
# @return [Object]
|
583
|
+
# def []=(key, value)
|
584
|
+
# if key.is_a?(String)
|
585
|
+
# raise TypeError, "'DataFrame' object does not support 'Series' assignment by index. Use 'DataFrame.with_columns'"
|
586
|
+
# end
|
587
|
+
|
588
|
+
# raise Todo
|
589
|
+
# end
|
590
|
+
|
591
|
+
# no to_arrow
|
592
|
+
|
593
|
+
# Convert DataFrame to a hash mapping column name to values.
|
594
|
+
#
|
595
|
+
# @return [Hash]
|
596
|
+
def to_h(as_series: true)
|
597
|
+
if as_series
|
598
|
+
get_columns.to_h { |s| [s.name, s] }
|
599
|
+
else
|
600
|
+
get_columns.to_h { |s| [s.name, s.to_a] }
|
601
|
+
end
|
602
|
+
end
|
603
|
+
|
604
|
+
# Convert every row to a dictionary.
|
605
|
+
#
|
606
|
+
# Note that this is slow.
|
607
|
+
#
|
608
|
+
# @return [Array]
|
609
|
+
#
|
610
|
+
# @example
|
611
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]})
|
612
|
+
# df.to_hashes
|
613
|
+
# [{'foo': 1, 'bar': 4}, {'foo': 2, 'bar': 5}, {'foo': 3, 'bar': 6}]
|
614
|
+
def to_hashes
|
615
|
+
rbdf = _df
|
616
|
+
names = columns
|
617
|
+
|
618
|
+
height.times.map do |i|
|
619
|
+
names.zip(rbdf.row_tuple(i)).to_h
|
620
|
+
end
|
621
|
+
end
|
622
|
+
|
623
|
+
# def to_numo
|
624
|
+
# end
|
625
|
+
|
626
|
+
# no to_pandas
|
627
|
+
|
628
|
+
# Select column as Series at index location.
|
629
|
+
#
|
630
|
+
# @param index [Integer]
|
631
|
+
# Location of selection.
|
632
|
+
#
|
633
|
+
# @return [Series]
|
634
|
+
#
|
635
|
+
# @example
|
636
|
+
# df = Polars::DataFrame.new(
|
637
|
+
# {
|
638
|
+
# "foo" => [1, 2, 3],
|
639
|
+
# "bar" => [6, 7, 8],
|
640
|
+
# "ham" => ["a", "b", "c"]
|
641
|
+
# }
|
642
|
+
# )
|
643
|
+
# df.to_series(1)
|
644
|
+
# # =>
|
645
|
+
# # shape: (3,)
|
646
|
+
# # Series: 'bar' [i64]
|
647
|
+
# # [
|
648
|
+
# # 6
|
649
|
+
# # 7
|
650
|
+
# # 8
|
651
|
+
# # ]
|
652
|
+
def to_series(index = 0)
|
653
|
+
if index < 0
|
654
|
+
index = columns.length + index
|
655
|
+
end
|
656
|
+
Utils.wrap_s(_df.select_at_idx(index))
|
657
|
+
end
|
658
|
+
|
659
|
+
# Serialize to JSON representation.
|
660
|
+
#
|
661
|
+
# @return [nil]
|
662
|
+
#
|
663
|
+
# @param file [String]
|
664
|
+
# File path to which the result should be written.
|
665
|
+
# @param pretty [Boolean]
|
666
|
+
# Pretty serialize json.
|
667
|
+
# @param row_oriented [Boolean]
|
668
|
+
# Write to row oriented json. This is slower, but more common.
|
669
|
+
#
|
670
|
+
# @see #write_ndjson
|
671
|
+
def write_json(
|
672
|
+
file,
|
673
|
+
pretty: false,
|
674
|
+
row_oriented: false
|
675
|
+
)
|
676
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
677
|
+
file = Utils.format_path(file)
|
678
|
+
end
|
679
|
+
|
680
|
+
_df.write_json(file, pretty, row_oriented)
|
681
|
+
nil
|
682
|
+
end
|
683
|
+
|
684
|
+
# Serialize to newline delimited JSON representation.
|
685
|
+
#
|
686
|
+
# @param file [String]
|
687
|
+
# File path to which the result should be written.
|
688
|
+
#
|
689
|
+
# @return [nil]
|
690
|
+
def write_ndjson(file)
|
691
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
692
|
+
file = Utils.format_path(file)
|
693
|
+
end
|
694
|
+
|
695
|
+
_df.write_ndjson(file)
|
696
|
+
nil
|
697
|
+
end
|
698
|
+
|
699
|
+
# Write to comma-separated values (CSV) file.
|
700
|
+
#
|
701
|
+
# @param file [String, nil]
|
702
|
+
# File path to which the result should be written. If set to `nil`
|
703
|
+
# (default), the output is returned as a string instead.
|
704
|
+
# @param has_header [Boolean]
|
705
|
+
# Whether to include header in the CSV output.
|
706
|
+
# @param sep [String]
|
707
|
+
# Separate CSV fields with this symbol.
|
708
|
+
# @param quote [String]
|
709
|
+
# Byte to use as quoting character.
|
710
|
+
# @param batch_size [Integer]
|
711
|
+
# Number of rows that will be processed per thread.
|
712
|
+
# @param datetime_format [String, nil]
|
713
|
+
# A format string, with the specifiers defined by the
|
714
|
+
# [chrono](https://docs.rs/chrono/latest/chrono/format/strftime/index.html)
|
715
|
+
# Rust crate. If no format specified, the default fractional-second
|
716
|
+
# precision is inferred from the maximum timeunit found in the frame's
|
717
|
+
# Datetime cols (if any).
|
718
|
+
# @param date_format [String, nil]
|
719
|
+
# A format string, with the specifiers defined by the
|
720
|
+
# [chrono](https://docs.rs/chrono/latest/chrono/format/strftime/index.html)
|
721
|
+
# Rust crate.
|
722
|
+
# @param time_format [String, nil]
|
723
|
+
# A format string, with the specifiers defined by the
|
724
|
+
# [chrono](https://docs.rs/chrono/latest/chrono/format/strftime/index.html)
|
725
|
+
# Rust crate.
|
726
|
+
# @param float_precision [Integer, nil]
|
727
|
+
# Number of decimal places to write, applied to both `:f32` and
|
728
|
+
# `:f64` datatypes.
|
729
|
+
# @param null_value [String, nil]
|
730
|
+
# A string representing null values (defaulting to the empty string).
|
731
|
+
#
|
732
|
+
# @return [String, nil]
|
733
|
+
#
|
734
|
+
# @example
|
735
|
+
# df = Polars::DataFrame.new(
|
736
|
+
# {
|
737
|
+
# "foo" => [1, 2, 3, 4, 5],
|
738
|
+
# "bar" => [6, 7, 8, 9, 10],
|
739
|
+
# "ham" => ["a", "b", "c", "d", "e"]
|
740
|
+
# }
|
741
|
+
# )
|
742
|
+
# df.write_csv("file.csv")
|
743
|
+
def write_csv(
|
744
|
+
file = nil,
|
745
|
+
has_header: true,
|
746
|
+
sep: ",",
|
747
|
+
quote: '"',
|
748
|
+
batch_size: 1024,
|
749
|
+
datetime_format: nil,
|
750
|
+
date_format: nil,
|
751
|
+
time_format: nil,
|
752
|
+
float_precision: nil,
|
753
|
+
null_value: nil
|
754
|
+
)
|
755
|
+
if sep.length > 1
|
756
|
+
raise ArgumentError, "only single byte separator is allowed"
|
757
|
+
elsif quote.length > 1
|
758
|
+
raise ArgumentError, "only single byte quote char is allowed"
|
759
|
+
elsif null_value == ""
|
760
|
+
null_value = nil
|
761
|
+
end
|
762
|
+
|
763
|
+
if file.nil?
|
764
|
+
buffer = StringIO.new
|
765
|
+
buffer.set_encoding(Encoding::BINARY)
|
766
|
+
_df.write_csv(
|
767
|
+
buffer,
|
768
|
+
has_header,
|
769
|
+
sep.ord,
|
770
|
+
quote.ord,
|
771
|
+
batch_size,
|
772
|
+
datetime_format,
|
773
|
+
date_format,
|
774
|
+
time_format,
|
775
|
+
float_precision,
|
776
|
+
null_value
|
777
|
+
)
|
778
|
+
return buffer.string.force_encoding(Encoding::UTF_8)
|
779
|
+
end
|
780
|
+
|
781
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
782
|
+
file = Utils.format_path(file)
|
783
|
+
end
|
784
|
+
|
785
|
+
_df.write_csv(
|
786
|
+
file,
|
787
|
+
has_header,
|
788
|
+
sep.ord,
|
789
|
+
quote.ord,
|
790
|
+
batch_size,
|
791
|
+
datetime_format,
|
792
|
+
date_format,
|
793
|
+
time_format,
|
794
|
+
float_precision,
|
795
|
+
null_value,
|
796
|
+
)
|
797
|
+
nil
|
798
|
+
end
|
799
|
+
|
800
|
+
# Write to Apache Avro file.
|
801
|
+
#
|
802
|
+
# @param file [String]
|
803
|
+
# File path to which the file should be written.
|
804
|
+
# @param compression ["uncompressed", "snappy", "deflate"]
|
805
|
+
# Compression method. Defaults to "uncompressed".
|
806
|
+
#
|
807
|
+
# @return [nil]
|
808
|
+
def write_avro(file, compression = "uncompressed")
|
809
|
+
if compression.nil?
|
810
|
+
compression = "uncompressed"
|
811
|
+
end
|
812
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
813
|
+
file = Utils.format_path(file)
|
814
|
+
end
|
815
|
+
|
816
|
+
_df.write_avro(file, compression)
|
817
|
+
end
|
818
|
+
|
819
|
+
# Write to Arrow IPC binary stream or Feather file.
|
820
|
+
#
|
821
|
+
# @param file [String]
|
822
|
+
# File path to which the file should be written.
|
823
|
+
# @param compression ["uncompressed", "lz4", "zstd"]
|
824
|
+
# Compression method. Defaults to "uncompressed".
|
825
|
+
#
|
826
|
+
# @return [nil]
|
827
|
+
def write_ipc(file, compression: "uncompressed")
|
828
|
+
if compression.nil?
|
829
|
+
compression = "uncompressed"
|
830
|
+
end
|
831
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
832
|
+
file = Utils.format_path(file)
|
833
|
+
end
|
834
|
+
|
835
|
+
_df.write_ipc(file, compression)
|
836
|
+
end
|
837
|
+
|
838
|
+
# Write to Apache Parquet file.
|
839
|
+
#
|
840
|
+
# @param file [String]
|
841
|
+
# File path to which the file should be written.
|
842
|
+
# @param compression ["lz4", "uncompressed", "snappy", "gzip", "lzo", "brotli", "zstd"]
|
843
|
+
# Choose "zstd" for good compression performance.
|
844
|
+
# Choose "lz4" for fast compression/decompression.
|
845
|
+
# Choose "snappy" for more backwards compatibility guarantees
|
846
|
+
# when you deal with older parquet readers.
|
847
|
+
# @param compression_level [Integer, nil]
|
848
|
+
# The level of compression to use. Higher compression means smaller files on
|
849
|
+
# disk.
|
850
|
+
#
|
851
|
+
# - "gzip" : min-level: 0, max-level: 10.
|
852
|
+
# - "brotli" : min-level: 0, max-level: 11.
|
853
|
+
# - "zstd" : min-level: 1, max-level: 22.
|
854
|
+
# @param statistics [Boolean]
|
855
|
+
# Write statistics to the parquet headers. This requires extra compute.
|
856
|
+
# @param row_group_size [Integer, nil]
|
857
|
+
# Size of the row groups in number of rows.
|
858
|
+
# If `nil` (default), the chunks of the DataFrame are
|
859
|
+
# used. Writing in smaller chunks may reduce memory pressure and improve
|
860
|
+
# writing speeds.
|
861
|
+
#
|
862
|
+
# @return [nil]
|
863
|
+
def write_parquet(
|
864
|
+
file,
|
865
|
+
compression: "zstd",
|
866
|
+
compression_level: nil,
|
867
|
+
statistics: false,
|
868
|
+
row_group_size: nil
|
869
|
+
)
|
870
|
+
if compression.nil?
|
871
|
+
compression = "uncompressed"
|
872
|
+
end
|
873
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
874
|
+
file = Utils.format_path(file)
|
875
|
+
end
|
876
|
+
|
877
|
+
_df.write_parquet(
|
878
|
+
file, compression, compression_level, statistics, row_group_size
|
879
|
+
)
|
880
|
+
end
|
881
|
+
|
882
|
+
# Return an estimation of the total (heap) allocated size of the DataFrame.
|
883
|
+
#
|
884
|
+
# Estimated size is given in the specified unit (bytes by default).
|
885
|
+
#
|
886
|
+
# This estimation is the sum of the size of its buffers, validity, including
|
887
|
+
# nested arrays. Multiple arrays may share buffers and bitmaps. Therefore, the
|
888
|
+
# size of 2 arrays is not the sum of the sizes computed from this function. In
|
889
|
+
# particular, StructArray's size is an upper bound.
|
890
|
+
#
|
891
|
+
# When an array is sliced, its allocated size remains constant because the buffer
|
892
|
+
# unchanged. However, this function will yield a smaller number. This is because
|
893
|
+
# this function returns the visible size of the buffer, not its total capacity.
|
894
|
+
#
|
895
|
+
# FFI buffers are included in this estimation.
|
896
|
+
#
|
897
|
+
# @param unit ["b", "kb", "mb", "gb", "tb"]
|
898
|
+
# Scale the returned size to the given unit.
|
899
|
+
#
|
900
|
+
# @return [Numeric]
|
901
|
+
#
|
902
|
+
# @example
|
903
|
+
# df = Polars::DataFrame.new(
|
904
|
+
# {
|
905
|
+
# "x" => 1_000_000.times.to_a.reverse,
|
906
|
+
# "y" => 1_000_000.times.map { |v| v / 1000.0 },
|
907
|
+
# "z" => 1_000_000.times.map(&:to_s)
|
908
|
+
# },
|
909
|
+
# columns: {"x" => :u32, "y" => :f64, "z" => :str}
|
910
|
+
# )
|
911
|
+
# df.estimated_size
|
912
|
+
# # => 25888898
|
913
|
+
# df.estimated_size("mb")
|
914
|
+
# # => 24.689577102661133
|
915
|
+
def estimated_size(unit = "b")
|
916
|
+
sz = _df.estimated_size
|
917
|
+
Utils.scale_bytes(sz, to: unit)
|
918
|
+
end
|
919
|
+
|
920
|
+
# Transpose a DataFrame over the diagonal.
|
921
|
+
#
|
922
|
+
# @param include_header [Boolean]
|
923
|
+
# If set, the column names will be added as first column.
|
924
|
+
# @param header_name [String]
|
925
|
+
# If `include_header` is set, this determines the name of the column that will
|
926
|
+
# be inserted.
|
927
|
+
# @param column_names [Array]
|
928
|
+
# Optional generator/iterator that yields column names. Will be used to
|
929
|
+
# replace the columns in the DataFrame.
|
930
|
+
#
|
931
|
+
# @return [DataFrame]
|
932
|
+
#
|
933
|
+
# @note
|
934
|
+
# This is a very expensive operation. Perhaps you can do it differently.
|
935
|
+
#
|
936
|
+
# @example
|
937
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3], "b" => [1, 2, 3]})
|
938
|
+
# df.transpose(include_header: true)
|
939
|
+
# # =>
|
940
|
+
# # shape: (2, 4)
|
941
|
+
# # ┌────────┬──────────┬──────────┬──────────┐
|
942
|
+
# # │ column ┆ column_0 ┆ column_1 ┆ column_2 │
|
943
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
944
|
+
# # │ str ┆ i64 ┆ i64 ┆ i64 │
|
945
|
+
# # ╞════════╪══════════╪══════════╪══════════╡
|
946
|
+
# # │ a ┆ 1 ┆ 2 ┆ 3 │
|
947
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
|
948
|
+
# # │ b ┆ 1 ┆ 2 ┆ 3 │
|
949
|
+
# # └────────┴──────────┴──────────┴──────────┘
|
950
|
+
#
|
951
|
+
# @example Replace the auto-generated column names with a list
|
952
|
+
# df.transpose(include_header: false, column_names: ["a", "b", "c"])
|
953
|
+
# # =>
|
954
|
+
# # shape: (2, 3)
|
955
|
+
# # ┌─────┬─────┬─────┐
|
956
|
+
# # │ a ┆ b ┆ c │
|
957
|
+
# # │ --- ┆ --- ┆ --- │
|
958
|
+
# # │ i64 ┆ i64 ┆ i64 │
|
959
|
+
# # ╞═════╪═════╪═════╡
|
960
|
+
# # │ 1 ┆ 2 ┆ 3 │
|
961
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
962
|
+
# # │ 1 ┆ 2 ┆ 3 │
|
963
|
+
# # └─────┴─────┴─────┘
|
964
|
+
#
|
965
|
+
# @example Include the header as a separate column
|
966
|
+
# df.transpose(
|
967
|
+
# include_header: true, header_name: "foo", column_names: ["a", "b", "c"]
|
968
|
+
# )
|
969
|
+
# # =>
|
970
|
+
# # shape: (2, 4)
|
971
|
+
# # ┌─────┬─────┬─────┬─────┐
|
972
|
+
# # │ foo ┆ a ┆ b ┆ c │
|
973
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
974
|
+
# # │ str ┆ i64 ┆ i64 ┆ i64 │
|
975
|
+
# # ╞═════╪═════╪═════╪═════╡
|
976
|
+
# # │ a ┆ 1 ┆ 2 ┆ 3 │
|
977
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
978
|
+
# # │ b ┆ 1 ┆ 2 ┆ 3 │
|
979
|
+
# # └─────┴─────┴─────┴─────┘
|
980
|
+
def transpose(include_header: false, header_name: "column", column_names: nil)
|
981
|
+
df = _from_rbdf(_df.transpose(include_header, header_name))
|
982
|
+
if !column_names.nil?
|
983
|
+
names = []
|
984
|
+
n = df.width
|
985
|
+
if include_header
|
986
|
+
names << header_name
|
987
|
+
n -= 1
|
988
|
+
end
|
989
|
+
|
990
|
+
column_names = column_names.each
|
991
|
+
n.times do
|
992
|
+
names << column_names.next
|
993
|
+
end
|
994
|
+
df.columns = names
|
995
|
+
end
|
996
|
+
df
|
997
|
+
end
|
998
|
+
|
999
|
+
# Reverse the DataFrame.
|
1000
|
+
#
|
1001
|
+
# @return [DataFrame]
|
1002
|
+
#
|
1003
|
+
# @example
|
1004
|
+
# df = Polars::DataFrame.new(
|
1005
|
+
# {
|
1006
|
+
# "key" => ["a", "b", "c"],
|
1007
|
+
# "val" => [1, 2, 3]
|
1008
|
+
# }
|
1009
|
+
# )
|
1010
|
+
# df.reverse
|
1011
|
+
# # =>
|
1012
|
+
# # shape: (3, 2)
|
1013
|
+
# # ┌─────┬─────┐
|
1014
|
+
# # │ key ┆ val │
|
1015
|
+
# # │ --- ┆ --- │
|
1016
|
+
# # │ str ┆ i64 │
|
1017
|
+
# # ╞═════╪═════╡
|
1018
|
+
# # │ c ┆ 3 │
|
1019
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1020
|
+
# # │ b ┆ 2 │
|
1021
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1022
|
+
# # │ a ┆ 1 │
|
1023
|
+
# # └─────┴─────┘
|
1024
|
+
def reverse
|
1025
|
+
select(Polars.col("*").reverse)
|
1026
|
+
end
|
1027
|
+
|
1028
|
+
# Rename column names.
|
1029
|
+
#
|
1030
|
+
# @param mapping [Hash]
|
1031
|
+
# Key value pairs that map from old name to new name.
|
1032
|
+
#
|
1033
|
+
# @return [DataFrame]
|
1034
|
+
#
|
1035
|
+
# @example
|
1036
|
+
# df = Polars::DataFrame.new(
|
1037
|
+
# {
|
1038
|
+
# "foo" => [1, 2, 3],
|
1039
|
+
# "bar" => [6, 7, 8],
|
1040
|
+
# "ham" => ["a", "b", "c"]
|
1041
|
+
# }
|
1042
|
+
# )
|
1043
|
+
# df.rename({"foo" => "apple"})
|
1044
|
+
# # =>
|
1045
|
+
# # shape: (3, 3)
|
1046
|
+
# # ┌───────┬─────┬─────┐
|
1047
|
+
# # │ apple ┆ bar ┆ ham │
|
1048
|
+
# # │ --- ┆ --- ┆ --- │
|
1049
|
+
# # │ i64 ┆ i64 ┆ str │
|
1050
|
+
# # ╞═══════╪═════╪═════╡
|
1051
|
+
# # │ 1 ┆ 6 ┆ a │
|
1052
|
+
# # ├╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1053
|
+
# # │ 2 ┆ 7 ┆ b │
|
1054
|
+
# # ├╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1055
|
+
# # │ 3 ┆ 8 ┆ c │
|
1056
|
+
# # └───────┴─────┴─────┘
|
1057
|
+
def rename(mapping)
|
1058
|
+
lazy.rename(mapping).collect(no_optimization: true)
|
1059
|
+
end
|
1060
|
+
|
1061
|
+
# Insert a Series at a certain column index. This operation is in place.
|
1062
|
+
#
|
1063
|
+
# @param index [Integer]
|
1064
|
+
# Column to insert the new `Series` column.
|
1065
|
+
# @param series [Series]
|
1066
|
+
# `Series` to insert.
|
1067
|
+
#
|
1068
|
+
# @return [DataFrame]
|
1069
|
+
#
|
1070
|
+
# @example
|
1071
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]})
|
1072
|
+
# s = Polars::Series.new("baz", [97, 98, 99])
|
1073
|
+
# df.insert_at_idx(1, s)
|
1074
|
+
# # =>
|
1075
|
+
# # shape: (3, 3)
|
1076
|
+
# # ┌─────┬─────┬─────┐
|
1077
|
+
# # │ foo ┆ baz ┆ bar │
|
1078
|
+
# # │ --- ┆ --- ┆ --- │
|
1079
|
+
# # │ i64 ┆ i64 ┆ i64 │
|
1080
|
+
# # ╞═════╪═════╪═════╡
|
1081
|
+
# # │ 1 ┆ 97 ┆ 4 │
|
1082
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1083
|
+
# # │ 2 ┆ 98 ┆ 5 │
|
1084
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1085
|
+
# # │ 3 ┆ 99 ┆ 6 │
|
1086
|
+
# # └─────┴─────┴─────┘
|
1087
|
+
#
|
1088
|
+
# @example
|
1089
|
+
# df = Polars::DataFrame.new(
|
1090
|
+
# {
|
1091
|
+
# "a" => [1, 2, 3, 4],
|
1092
|
+
# "b" => [0.5, 4, 10, 13],
|
1093
|
+
# "c" => [true, true, false, true]
|
1094
|
+
# }
|
1095
|
+
# )
|
1096
|
+
# s = Polars::Series.new("d", [-2.5, 15, 20.5, 0])
|
1097
|
+
# df.insert_at_idx(3, s)
|
1098
|
+
# # =>
|
1099
|
+
# # shape: (4, 4)
|
1100
|
+
# # ┌─────┬──────┬───────┬──────┐
|
1101
|
+
# # │ a ┆ b ┆ c ┆ d │
|
1102
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1103
|
+
# # │ i64 ┆ f64 ┆ bool ┆ f64 │
|
1104
|
+
# # ╞═════╪══════╪═══════╪══════╡
|
1105
|
+
# # │ 1 ┆ 0.5 ┆ true ┆ -2.5 │
|
1106
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1107
|
+
# # │ 2 ┆ 4.0 ┆ true ┆ 15.0 │
|
1108
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1109
|
+
# # │ 3 ┆ 10.0 ┆ false ┆ 20.5 │
|
1110
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1111
|
+
# # │ 4 ┆ 13.0 ┆ true ┆ 0.0 │
|
1112
|
+
# # └─────┴──────┴───────┴──────┘
|
1113
|
+
def insert_at_idx(index, series)
|
1114
|
+
if index < 0
|
1115
|
+
index = columns.length + index
|
1116
|
+
end
|
1117
|
+
_df.insert_at_idx(index, series._s)
|
1118
|
+
self
|
1119
|
+
end
|
1120
|
+
|
1121
|
+
# Filter the rows in the DataFrame based on a predicate expression.
|
1122
|
+
#
|
1123
|
+
# @param predicate [Expr]
|
1124
|
+
# Expression that evaluates to a boolean Series.
|
1125
|
+
#
|
1126
|
+
# @return [DataFrame]
|
1127
|
+
#
|
1128
|
+
# @example Filter on one condition:
|
1129
|
+
# df = Polars::DataFrame.new(
|
1130
|
+
# {
|
1131
|
+
# "foo" => [1, 2, 3],
|
1132
|
+
# "bar" => [6, 7, 8],
|
1133
|
+
# "ham" => ["a", "b", "c"]
|
1134
|
+
# }
|
1135
|
+
# )
|
1136
|
+
# df.filter(Polars.col("foo") < 3)
|
1137
|
+
# # =>
|
1138
|
+
# # shape: (2, 3)
|
1139
|
+
# # ┌─────┬─────┬─────┐
|
1140
|
+
# # │ foo ┆ bar ┆ ham │
|
1141
|
+
# # │ --- ┆ --- ┆ --- │
|
1142
|
+
# # │ i64 ┆ i64 ┆ str │
|
1143
|
+
# # ╞═════╪═════╪═════╡
|
1144
|
+
# # │ 1 ┆ 6 ┆ a │
|
1145
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1146
|
+
# # │ 2 ┆ 7 ┆ b │
|
1147
|
+
# # └─────┴─────┴─────┘
|
1148
|
+
#
|
1149
|
+
# @example Filter on multiple conditions:
|
1150
|
+
# df.filter((Polars.col("foo") < 3) & (Polars.col("ham") == "a"))
|
1151
|
+
# # =>
|
1152
|
+
# # shape: (1, 3)
|
1153
|
+
# # ┌─────┬─────┬─────┐
|
1154
|
+
# # │ foo ┆ bar ┆ ham │
|
1155
|
+
# # │ --- ┆ --- ┆ --- │
|
1156
|
+
# # │ i64 ┆ i64 ┆ str │
|
1157
|
+
# # ╞═════╪═════╪═════╡
|
1158
|
+
# # │ 1 ┆ 6 ┆ a │
|
1159
|
+
# # └─────┴─────┴─────┘
|
1160
|
+
def filter(predicate)
|
1161
|
+
lazy.filter(predicate).collect
|
1162
|
+
end
|
1163
|
+
|
1164
|
+
# Summary statistics for a DataFrame.
|
1165
|
+
#
|
1166
|
+
# @return [DataFrame]
|
1167
|
+
#
|
1168
|
+
# @example
|
1169
|
+
# df = Polars::DataFrame.new(
|
1170
|
+
# {
|
1171
|
+
# "a" => [1.0, 2.8, 3.0],
|
1172
|
+
# "b" => [4, 5, nil],
|
1173
|
+
# "c" => [true, false, true],
|
1174
|
+
# "d" => [nil, "b", "c"],
|
1175
|
+
# "e" => ["usd", "eur", nil]
|
1176
|
+
# }
|
1177
|
+
# )
|
1178
|
+
# df.describe
|
1179
|
+
# # =>
|
1180
|
+
# # shape: (7, 6)
|
1181
|
+
# # ┌────────────┬──────────┬──────────┬──────────┬──────┬──────┐
|
1182
|
+
# # │ describe ┆ a ┆ b ┆ c ┆ d ┆ e │
|
1183
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
1184
|
+
# # │ str ┆ f64 ┆ f64 ┆ f64 ┆ str ┆ str │
|
1185
|
+
# # ╞════════════╪══════════╪══════════╪══════════╪══════╪══════╡
|
1186
|
+
# # │ count ┆ 3.0 ┆ 3.0 ┆ 3.0 ┆ 3 ┆ 3 │
|
1187
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1188
|
+
# # │ null_count ┆ 0.0 ┆ 1.0 ┆ 0.0 ┆ 1 ┆ 1 │
|
1189
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1190
|
+
# # │ mean ┆ 2.266667 ┆ 4.5 ┆ 0.666667 ┆ null ┆ null │
|
1191
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1192
|
+
# # │ std ┆ 1.101514 ┆ 0.707107 ┆ 0.57735 ┆ null ┆ null │
|
1193
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1194
|
+
# # │ min ┆ 1.0 ┆ 4.0 ┆ 0.0 ┆ b ┆ eur │
|
1195
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1196
|
+
# # │ max ┆ 3.0 ┆ 5.0 ┆ 1.0 ┆ c ┆ usd │
|
1197
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1198
|
+
# # │ median ┆ 2.8 ┆ 4.5 ┆ 1.0 ┆ null ┆ null │
|
1199
|
+
# # └────────────┴──────────┴──────────┴──────────┴──────┴──────┘
|
1200
|
+
def describe
|
1201
|
+
describe_cast = lambda do |stat|
|
1202
|
+
columns = []
|
1203
|
+
self.columns.each_with_index do |s, i|
|
1204
|
+
if self[s].is_numeric || self[s].is_boolean
|
1205
|
+
columns << stat[0.., i].cast(:f64)
|
1206
|
+
else
|
1207
|
+
# for dates, strings, etc, we cast to string so that all
|
1208
|
+
# statistics can be shown
|
1209
|
+
columns << stat[0.., i].cast(:str)
|
1210
|
+
end
|
1211
|
+
end
|
1212
|
+
self.class.new(columns)
|
1213
|
+
end
|
1214
|
+
|
1215
|
+
summary = _from_rbdf(
|
1216
|
+
Polars.concat(
|
1217
|
+
[
|
1218
|
+
describe_cast.(
|
1219
|
+
self.class.new(columns.to_h { |c| [c, [height]] })
|
1220
|
+
),
|
1221
|
+
describe_cast.(null_count),
|
1222
|
+
describe_cast.(mean),
|
1223
|
+
describe_cast.(std),
|
1224
|
+
describe_cast.(min),
|
1225
|
+
describe_cast.(max),
|
1226
|
+
describe_cast.(median)
|
1227
|
+
]
|
1228
|
+
)._df
|
1229
|
+
)
|
1230
|
+
summary.insert_at_idx(
|
1231
|
+
0,
|
1232
|
+
Polars::Series.new(
|
1233
|
+
"describe",
|
1234
|
+
["count", "null_count", "mean", "std", "min", "max", "median"],
|
1235
|
+
)
|
1236
|
+
)
|
1237
|
+
summary
|
1238
|
+
end
|
1239
|
+
|
1240
|
+
# Find the index of a column by name.
|
1241
|
+
#
|
1242
|
+
# @param name [String]
|
1243
|
+
# Name of the column to find.
|
1244
|
+
#
|
1245
|
+
# @return [Series]
|
1246
|
+
#
|
1247
|
+
# @example
|
1248
|
+
# df = Polars::DataFrame.new(
|
1249
|
+
# {"foo" => [1, 2, 3], "bar" => [6, 7, 8], "ham" => ["a", "b", "c"]}
|
1250
|
+
# )
|
1251
|
+
# df.find_idx_by_name("ham")
|
1252
|
+
# # => 2
|
1253
|
+
def find_idx_by_name(name)
|
1254
|
+
_df.find_idx_by_name(name)
|
1255
|
+
end
|
1256
|
+
|
1257
|
+
# Replace a column at an index location.
|
1258
|
+
#
|
1259
|
+
# @param index [Integer]
|
1260
|
+
# Column index.
|
1261
|
+
# @param series [Series]
|
1262
|
+
# Series that will replace the column.
|
1263
|
+
#
|
1264
|
+
# @return [DataFrame]
|
1265
|
+
#
|
1266
|
+
# @example
|
1267
|
+
# df = Polars::DataFrame.new(
|
1268
|
+
# {
|
1269
|
+
# "foo" => [1, 2, 3],
|
1270
|
+
# "bar" => [6, 7, 8],
|
1271
|
+
# "ham" => ["a", "b", "c"]
|
1272
|
+
# }
|
1273
|
+
# )
|
1274
|
+
# s = Polars::Series.new("apple", [10, 20, 30])
|
1275
|
+
# df.replace_at_idx(0, s)
|
1276
|
+
# # =>
|
1277
|
+
# # shape: (3, 3)
|
1278
|
+
# # ┌───────┬─────┬─────┐
|
1279
|
+
# # │ apple ┆ bar ┆ ham │
|
1280
|
+
# # │ --- ┆ --- ┆ --- │
|
1281
|
+
# # │ i64 ┆ i64 ┆ str │
|
1282
|
+
# # ╞═══════╪═════╪═════╡
|
1283
|
+
# # │ 10 ┆ 6 ┆ a │
|
1284
|
+
# # ├╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1285
|
+
# # │ 20 ┆ 7 ┆ b │
|
1286
|
+
# # ├╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1287
|
+
# # │ 30 ┆ 8 ┆ c │
|
1288
|
+
# # └───────┴─────┴─────┘
|
1289
|
+
def replace_at_idx(index, series)
|
1290
|
+
if index < 0
|
1291
|
+
index = columns.length + index
|
1292
|
+
end
|
1293
|
+
_df.replace_at_idx(index, series._s)
|
1294
|
+
self
|
1295
|
+
end
|
1296
|
+
|
1297
|
+
# Sort the DataFrame by column.
|
1298
|
+
#
|
1299
|
+
# @param by [String]
|
1300
|
+
# By which column to sort.
|
1301
|
+
# @param reverse [Boolean]
|
1302
|
+
# Reverse/descending sort.
|
1303
|
+
# @param nulls_last [Boolean]
|
1304
|
+
# Place null values last. Can only be used if sorted by a single column.
|
1305
|
+
#
|
1306
|
+
# @return [DataFrame]
|
1307
|
+
#
|
1308
|
+
# @example
|
1309
|
+
# df = Polars::DataFrame.new(
|
1310
|
+
# {
|
1311
|
+
# "foo" => [1, 2, 3],
|
1312
|
+
# "bar" => [6.0, 7.0, 8.0],
|
1313
|
+
# "ham" => ["a", "b", "c"]
|
1314
|
+
# }
|
1315
|
+
# )
|
1316
|
+
# df.sort("foo", reverse: true)
|
1317
|
+
# # =>
|
1318
|
+
# # shape: (3, 3)
|
1319
|
+
# # ┌─────┬─────┬─────┐
|
1320
|
+
# # │ foo ┆ bar ┆ ham │
|
1321
|
+
# # │ --- ┆ --- ┆ --- │
|
1322
|
+
# # │ i64 ┆ f64 ┆ str │
|
1323
|
+
# # ╞═════╪═════╪═════╡
|
1324
|
+
# # │ 3 ┆ 8.0 ┆ c │
|
1325
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1326
|
+
# # │ 2 ┆ 7.0 ┆ b │
|
1327
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1328
|
+
# # │ 1 ┆ 6.0 ┆ a │
|
1329
|
+
# # └─────┴─────┴─────┘
|
1330
|
+
#
|
1331
|
+
# @example Sort by multiple columns.
|
1332
|
+
# df.sort(
|
1333
|
+
# [Polars.col("foo"), Polars.col("bar")**2],
|
1334
|
+
# reverse: [true, false]
|
1335
|
+
# )
|
1336
|
+
# # =>
|
1337
|
+
# # shape: (3, 3)
|
1338
|
+
# # ┌─────┬─────┬─────┐
|
1339
|
+
# # │ foo ┆ bar ┆ ham │
|
1340
|
+
# # │ --- ┆ --- ┆ --- │
|
1341
|
+
# # │ i64 ┆ f64 ┆ str │
|
1342
|
+
# # ╞═════╪═════╪═════╡
|
1343
|
+
# # │ 3 ┆ 8.0 ┆ c │
|
1344
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1345
|
+
# # │ 2 ┆ 7.0 ┆ b │
|
1346
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1347
|
+
# # │ 1 ┆ 6.0 ┆ a │
|
1348
|
+
# # └─────┴─────┴─────┘
|
1349
|
+
def sort(by, reverse: false, nulls_last: false)
|
1350
|
+
if by.is_a?(Array) || by.is_a?(Expr)
|
1351
|
+
lazy
|
1352
|
+
.sort(by, reverse: reverse, nulls_last: nulls_last)
|
1353
|
+
.collect(no_optimization: true, string_cache: false)
|
1354
|
+
else
|
1355
|
+
_from_rbdf(_df.sort(by, reverse, nulls_last))
|
1356
|
+
end
|
1357
|
+
end
|
1358
|
+
|
1359
|
+
# Check if DataFrame is equal to other.
|
1360
|
+
#
|
1361
|
+
# @param other [DataFrame]
|
1362
|
+
# DataFrame to compare with.
|
1363
|
+
# @param null_equal [Boolean]
|
1364
|
+
# Consider null values as equal.
|
1365
|
+
#
|
1366
|
+
# @return [Boolean]
|
1367
|
+
#
|
1368
|
+
# @example
|
1369
|
+
# df1 = Polars::DataFrame.new(
|
1370
|
+
# {
|
1371
|
+
# "foo" => [1, 2, 3],
|
1372
|
+
# "bar" => [6.0, 7.0, 8.0],
|
1373
|
+
# "ham" => ["a", "b", "c"]
|
1374
|
+
# }
|
1375
|
+
# )
|
1376
|
+
# df2 = Polars::DataFrame.new(
|
1377
|
+
# {
|
1378
|
+
# "foo" => [3, 2, 1],
|
1379
|
+
# "bar" => [8.0, 7.0, 6.0],
|
1380
|
+
# "ham" => ["c", "b", "a"]
|
1381
|
+
# }
|
1382
|
+
# )
|
1383
|
+
# df1.frame_equal(df1)
|
1384
|
+
# # => true
|
1385
|
+
# df1.frame_equal(df2)
|
1386
|
+
# # => false
|
1387
|
+
def frame_equal(other, null_equal: true)
|
1388
|
+
_df.frame_equal(other._df, null_equal)
|
1389
|
+
end
|
1390
|
+
|
1391
|
+
# Replace a column by a new Series.
|
1392
|
+
#
|
1393
|
+
# @param column [String]
|
1394
|
+
# Column to replace.
|
1395
|
+
# @param new_col [Series]
|
1396
|
+
# New column to insert.
|
1397
|
+
#
|
1398
|
+
# @return [DataFrame]
|
1399
|
+
#
|
1400
|
+
# @example
|
1401
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]})
|
1402
|
+
# s = Polars::Series.new([10, 20, 30])
|
1403
|
+
# df.replace("foo", s)
|
1404
|
+
# # =>
|
1405
|
+
# # shape: (3, 2)
|
1406
|
+
# # ┌─────┬─────┐
|
1407
|
+
# # │ foo ┆ bar │
|
1408
|
+
# # │ --- ┆ --- │
|
1409
|
+
# # │ i64 ┆ i64 │
|
1410
|
+
# # ╞═════╪═════╡
|
1411
|
+
# # │ 10 ┆ 4 │
|
1412
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1413
|
+
# # │ 20 ┆ 5 │
|
1414
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1415
|
+
# # │ 30 ┆ 6 │
|
1416
|
+
# # └─────┴─────┘
|
1417
|
+
def replace(column, new_col)
|
1418
|
+
_df.replace(column, new_col._s)
|
1419
|
+
self
|
1420
|
+
end
|
1421
|
+
|
1422
|
+
# Get a slice of this DataFrame.
|
1423
|
+
#
|
1424
|
+
# @param offset [Integer]
|
1425
|
+
# Start index. Negative indexing is supported.
|
1426
|
+
# @param length [Integer, nil]
|
1427
|
+
# Length of the slice. If set to `nil`, all rows starting at the offset
|
1428
|
+
# will be selected.
|
1429
|
+
#
|
1430
|
+
# @return [DataFrame]
|
1431
|
+
#
|
1432
|
+
# @example
|
1433
|
+
# df = Polars::DataFrame.new(
|
1434
|
+
# {
|
1435
|
+
# "foo" => [1, 2, 3],
|
1436
|
+
# "bar" => [6.0, 7.0, 8.0],
|
1437
|
+
# "ham" => ["a", "b", "c"]
|
1438
|
+
# }
|
1439
|
+
# )
|
1440
|
+
# df.slice(1, 2)
|
1441
|
+
# # =>
|
1442
|
+
# # shape: (2, 3)
|
1443
|
+
# # ┌─────┬─────┬─────┐
|
1444
|
+
# # │ foo ┆ bar ┆ ham │
|
1445
|
+
# # │ --- ┆ --- ┆ --- │
|
1446
|
+
# # │ i64 ┆ f64 ┆ str │
|
1447
|
+
# # ╞═════╪═════╪═════╡
|
1448
|
+
# # │ 2 ┆ 7.0 ┆ b │
|
1449
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1450
|
+
# # │ 3 ┆ 8.0 ┆ c │
|
1451
|
+
# # └─────┴─────┴─────┘
|
1452
|
+
def slice(offset, length = nil)
|
1453
|
+
if !length.nil? && length < 0
|
1454
|
+
length = height - offset + length
|
1455
|
+
end
|
1456
|
+
_from_rbdf(_df.slice(offset, length))
|
1457
|
+
end
|
1458
|
+
|
1459
|
+
# Get the first `n` rows.
|
1460
|
+
#
|
1461
|
+
# Alias for {#head}.
|
1462
|
+
#
|
1463
|
+
# @param n [Integer]
|
1464
|
+
# Number of rows to return.
|
1465
|
+
#
|
1466
|
+
# @return [DataFrame]
|
1467
|
+
#
|
1468
|
+
# @example
|
1469
|
+
# df = Polars::DataFrame.new(
|
1470
|
+
# {"foo" => [1, 2, 3, 4, 5, 6], "bar" => ["a", "b", "c", "d", "e", "f"]}
|
1471
|
+
# )
|
1472
|
+
# df.limit(4)
|
1473
|
+
# # =>
|
1474
|
+
# # shape: (4, 2)
|
1475
|
+
# # ┌─────┬─────┐
|
1476
|
+
# # │ foo ┆ bar │
|
1477
|
+
# # │ --- ┆ --- │
|
1478
|
+
# # │ i64 ┆ str │
|
1479
|
+
# # ╞═════╪═════╡
|
1480
|
+
# # │ 1 ┆ a │
|
1481
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1482
|
+
# # │ 2 ┆ b │
|
1483
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1484
|
+
# # │ 3 ┆ c │
|
1485
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1486
|
+
# # │ 4 ┆ d │
|
1487
|
+
# # └─────┴─────┘
|
1488
|
+
def limit(n = 5)
|
1489
|
+
head(n)
|
1490
|
+
end
|
1491
|
+
|
1492
|
+
# Get the first `n` rows.
|
1493
|
+
#
|
1494
|
+
# @param n [Integer]
|
1495
|
+
# Number of rows to return.
|
1496
|
+
#
|
1497
|
+
# @return [DataFrame]
|
1498
|
+
#
|
1499
|
+
# @example
|
1500
|
+
# df = Polars::DataFrame.new(
|
1501
|
+
# {
|
1502
|
+
# "foo" => [1, 2, 3, 4, 5],
|
1503
|
+
# "bar" => [6, 7, 8, 9, 10],
|
1504
|
+
# "ham" => ["a", "b", "c", "d", "e"]
|
1505
|
+
# }
|
1506
|
+
# )
|
1507
|
+
# df.head(3)
|
1508
|
+
# # =>
|
1509
|
+
# # shape: (3, 3)
|
1510
|
+
# # ┌─────┬─────┬─────┐
|
1511
|
+
# # │ foo ┆ bar ┆ ham │
|
1512
|
+
# # │ --- ┆ --- ┆ --- │
|
1513
|
+
# # │ i64 ┆ i64 ┆ str │
|
1514
|
+
# # ╞═════╪═════╪═════╡
|
1515
|
+
# # │ 1 ┆ 6 ┆ a │
|
1516
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1517
|
+
# # │ 2 ┆ 7 ┆ b │
|
1518
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1519
|
+
# # │ 3 ┆ 8 ┆ c │
|
1520
|
+
# # └─────┴─────┴─────┘
|
1521
|
+
def head(n = 5)
|
1522
|
+
_from_rbdf(_df.head(n))
|
1523
|
+
end
|
1524
|
+
|
1525
|
+
# Get the last `n` rows.
|
1526
|
+
#
|
1527
|
+
# @param n [Integer]
|
1528
|
+
# Number of rows to return.
|
1529
|
+
#
|
1530
|
+
# @return [DataFrame]
|
1531
|
+
#
|
1532
|
+
# @example
|
1533
|
+
# df = Polars::DataFrame.new(
|
1534
|
+
# {
|
1535
|
+
# "foo" => [1, 2, 3, 4, 5],
|
1536
|
+
# "bar" => [6, 7, 8, 9, 10],
|
1537
|
+
# "ham" => ["a", "b", "c", "d", "e"]
|
1538
|
+
# }
|
1539
|
+
# )
|
1540
|
+
# df.tail(3)
|
1541
|
+
# # =>
|
1542
|
+
# # shape: (3, 3)
|
1543
|
+
# # ┌─────┬─────┬─────┐
|
1544
|
+
# # │ foo ┆ bar ┆ ham │
|
1545
|
+
# # │ --- ┆ --- ┆ --- │
|
1546
|
+
# # │ i64 ┆ i64 ┆ str │
|
1547
|
+
# # ╞═════╪═════╪═════╡
|
1548
|
+
# # │ 3 ┆ 8 ┆ c │
|
1549
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1550
|
+
# # │ 4 ┆ 9 ┆ d │
|
1551
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1552
|
+
# # │ 5 ┆ 10 ┆ e │
|
1553
|
+
# # └─────┴─────┴─────┘
|
1554
|
+
def tail(n = 5)
|
1555
|
+
_from_rbdf(_df.tail(n))
|
1556
|
+
end
|
1557
|
+
|
1558
|
+
# Return a new DataFrame where the null values are dropped.
|
1559
|
+
#
|
1560
|
+
# @param subset [Object]
|
1561
|
+
# Subset of column(s) on which `drop_nulls` will be applied.
|
1562
|
+
#
|
1563
|
+
# @return [DataFrame]
|
1564
|
+
#
|
1565
|
+
# @example
|
1566
|
+
# df = Polars::DataFrame.new(
|
1567
|
+
# {
|
1568
|
+
# "foo" => [1, 2, 3],
|
1569
|
+
# "bar" => [6, nil, 8],
|
1570
|
+
# "ham" => ["a", "b", "c"]
|
1571
|
+
# }
|
1572
|
+
# )
|
1573
|
+
# df.drop_nulls
|
1574
|
+
# # =>
|
1575
|
+
# # shape: (2, 3)
|
1576
|
+
# # ┌─────┬─────┬─────┐
|
1577
|
+
# # │ foo ┆ bar ┆ ham │
|
1578
|
+
# # │ --- ┆ --- ┆ --- │
|
1579
|
+
# # │ i64 ┆ i64 ┆ str │
|
1580
|
+
# # ╞═════╪═════╪═════╡
|
1581
|
+
# # │ 1 ┆ 6 ┆ a │
|
1582
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1583
|
+
# # │ 3 ┆ 8 ┆ c │
|
1584
|
+
# # └─────┴─────┴─────┘
|
1585
|
+
def drop_nulls(subset: nil)
|
1586
|
+
if subset.is_a?(String)
|
1587
|
+
subset = [subset]
|
1588
|
+
end
|
1589
|
+
_from_rbdf(_df.drop_nulls(subset))
|
1590
|
+
end
|
1591
|
+
|
1592
|
+
# Offers a structured way to apply a sequence of user-defined functions (UDFs).
|
1593
|
+
#
|
1594
|
+
# @param func [Object]
|
1595
|
+
# Callable; will receive the frame as the first parameter,
|
1596
|
+
# followed by any given args/kwargs.
|
1597
|
+
# @param args [Object]
|
1598
|
+
# Arguments to pass to the UDF.
|
1599
|
+
# @param kwargs [Object]
|
1600
|
+
# Keyword arguments to pass to the UDF.
|
1601
|
+
#
|
1602
|
+
# @return [Object]
|
1603
|
+
#
|
1604
|
+
# @note
|
1605
|
+
# It is recommended to use LazyFrame when piping operations, in order
|
1606
|
+
# to fully take advantage of query optimization and parallelization.
|
1607
|
+
# See {#lazy}.
|
1608
|
+
#
|
1609
|
+
# @example
|
1610
|
+
# cast_str_to_int = lambda do |data, col_name:|
|
1611
|
+
# data.with_column(Polars.col(col_name).cast(:i64))
|
1612
|
+
# end
|
1613
|
+
#
|
1614
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => ["10", "20", "30", "40"]})
|
1615
|
+
# df.pipe(cast_str_to_int, col_name: "b")
|
1616
|
+
# # =>
|
1617
|
+
# # shape: (4, 2)
|
1618
|
+
# # ┌─────┬─────┐
|
1619
|
+
# # │ a ┆ b │
|
1620
|
+
# # │ --- ┆ --- │
|
1621
|
+
# # │ i64 ┆ i64 │
|
1622
|
+
# # ╞═════╪═════╡
|
1623
|
+
# # │ 1 ┆ 10 │
|
1624
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1625
|
+
# # │ 2 ┆ 20 │
|
1626
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1627
|
+
# # │ 3 ┆ 30 │
|
1628
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1629
|
+
# # │ 4 ┆ 40 │
|
1630
|
+
# # └─────┴─────┘
|
1631
|
+
def pipe(func, *args, **kwargs, &block)
|
1632
|
+
func.call(self, *args, **kwargs, &block)
|
1633
|
+
end
|
1634
|
+
|
1635
|
+
# Add a column at index 0 that counts the rows.
|
1636
|
+
#
|
1637
|
+
# @param name [String]
|
1638
|
+
# Name of the column to add.
|
1639
|
+
# @param offset [Integer]
|
1640
|
+
# Start the row count at this offset.
|
1641
|
+
#
|
1642
|
+
# @return [DataFrame]
|
1643
|
+
#
|
1644
|
+
# @example
|
1645
|
+
# df = Polars::DataFrame.new(
|
1646
|
+
# {
|
1647
|
+
# "a" => [1, 3, 5],
|
1648
|
+
# "b" => [2, 4, 6]
|
1649
|
+
# }
|
1650
|
+
# )
|
1651
|
+
# df.with_row_count
|
1652
|
+
# # =>
|
1653
|
+
# # shape: (3, 3)
|
1654
|
+
# # ┌────────┬─────┬─────┐
|
1655
|
+
# # │ row_nr ┆ a ┆ b │
|
1656
|
+
# # │ --- ┆ --- ┆ --- │
|
1657
|
+
# # │ u32 ┆ i64 ┆ i64 │
|
1658
|
+
# # ╞════════╪═════╪═════╡
|
1659
|
+
# # │ 0 ┆ 1 ┆ 2 │
|
1660
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1661
|
+
# # │ 1 ┆ 3 ┆ 4 │
|
1662
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1663
|
+
# # │ 2 ┆ 5 ┆ 6 │
|
1664
|
+
# # └────────┴─────┴─────┘
|
1665
|
+
def with_row_count(name: "row_nr", offset: 0)
|
1666
|
+
_from_rbdf(_df.with_row_count(name, offset))
|
1667
|
+
end
|
1668
|
+
|
1669
|
+
# Start a groupby operation.
|
1670
|
+
#
|
1671
|
+
# @param by [Object]
|
1672
|
+
# Column(s) to group by.
|
1673
|
+
# @param maintain_order [Boolean]
|
1674
|
+
# Make sure that the order of the groups remain consistent. This is more
|
1675
|
+
# expensive than a default groupby. Note that this only works in expression
|
1676
|
+
# aggregations.
|
1677
|
+
#
|
1678
|
+
# @return [GroupBy]
|
1679
|
+
#
|
1680
|
+
# @example
|
1681
|
+
# df = Polars::DataFrame.new(
|
1682
|
+
# {
|
1683
|
+
# "a" => ["a", "b", "a", "b", "b", "c"],
|
1684
|
+
# "b" => [1, 2, 3, 4, 5, 6],
|
1685
|
+
# "c" => [6, 5, 4, 3, 2, 1]
|
1686
|
+
# }
|
1687
|
+
# )
|
1688
|
+
# df.groupby("a").agg(Polars.col("b").sum).sort("a")
|
1689
|
+
# # =>
|
1690
|
+
# # shape: (3, 2)
|
1691
|
+
# # ┌─────┬─────┐
|
1692
|
+
# # │ a ┆ b │
|
1693
|
+
# # │ --- ┆ --- │
|
1694
|
+
# # │ str ┆ i64 │
|
1695
|
+
# # ╞═════╪═════╡
|
1696
|
+
# # │ a ┆ 4 │
|
1697
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1698
|
+
# # │ b ┆ 11 │
|
1699
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1700
|
+
# # │ c ┆ 6 │
|
1701
|
+
# # └─────┴─────┘
|
1702
|
+
def groupby(by, maintain_order: false)
|
1703
|
+
if !Utils.bool?(maintain_order)
|
1704
|
+
raise TypeError, "invalid input for groupby arg `maintain_order`: #{maintain_order}."
|
1705
|
+
end
|
1706
|
+
if by.is_a?(String)
|
1707
|
+
by = [by]
|
1708
|
+
end
|
1709
|
+
GroupBy.new(
|
1710
|
+
_df,
|
1711
|
+
by,
|
1712
|
+
self.class,
|
1713
|
+
maintain_order: maintain_order
|
1714
|
+
)
|
1715
|
+
end
|
1716
|
+
|
1717
|
+
# Create rolling groups based on a time column.
|
1718
|
+
#
|
1719
|
+
# Also works for index values of type `:i32` or `:i64`.
|
1720
|
+
#
|
1721
|
+
# Different from a `dynamic_groupby` the windows are now determined by the
|
1722
|
+
# individual values and are not of constant intervals. For constant intervals use
|
1723
|
+
# *groupby_dynamic*
|
1724
|
+
#
|
1725
|
+
# The `period` and `offset` arguments are created either from a timedelta, or
|
1726
|
+
# by using the following string language:
|
1727
|
+
#
|
1728
|
+
# - 1ns (1 nanosecond)
|
1729
|
+
# - 1us (1 microsecond)
|
1730
|
+
# - 1ms (1 millisecond)
|
1731
|
+
# - 1s (1 second)
|
1732
|
+
# - 1m (1 minute)
|
1733
|
+
# - 1h (1 hour)
|
1734
|
+
# - 1d (1 day)
|
1735
|
+
# - 1w (1 week)
|
1736
|
+
# - 1mo (1 calendar month)
|
1737
|
+
# - 1y (1 calendar year)
|
1738
|
+
# - 1i (1 index count)
|
1739
|
+
#
|
1740
|
+
# Or combine them:
|
1741
|
+
# "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
|
1742
|
+
#
|
1743
|
+
# In case of a groupby_rolling on an integer column, the windows are defined by:
|
1744
|
+
#
|
1745
|
+
# - **"1i" # length 1**
|
1746
|
+
# - **"10i" # length 10**
|
1747
|
+
#
|
1748
|
+
# @param index_column [Object]
|
1749
|
+
# Column used to group based on the time window.
|
1750
|
+
# Often to type Date/Datetime
|
1751
|
+
# This column must be sorted in ascending order. If not the output will not
|
1752
|
+
# make sense.
|
1753
|
+
#
|
1754
|
+
# In case of a rolling groupby on indices, dtype needs to be one of
|
1755
|
+
# `:i32`, `:i64`. Note that `:i32` gets temporarily cast to `:i64`, so if
|
1756
|
+
# performance matters use an `:i64` column.
|
1757
|
+
# @param period [Object]
|
1758
|
+
# Length of the window.
|
1759
|
+
# @param offset [Object]
|
1760
|
+
# Offset of the window. Default is -period.
|
1761
|
+
# @param closed ["right", "left", "both", "none"]
|
1762
|
+
# Define whether the temporal window interval is closed or not.
|
1763
|
+
# @param by [Object]
|
1764
|
+
# Also group by this column/these columns.
|
1765
|
+
#
|
1766
|
+
# @return [RollingGroupBy]
|
1767
|
+
#
|
1768
|
+
# @example
|
1769
|
+
# dates = [
|
1770
|
+
# "2020-01-01 13:45:48",
|
1771
|
+
# "2020-01-01 16:42:13",
|
1772
|
+
# "2020-01-01 16:45:09",
|
1773
|
+
# "2020-01-02 18:12:48",
|
1774
|
+
# "2020-01-03 19:45:32",
|
1775
|
+
# "2020-01-08 23:16:43"
|
1776
|
+
# ]
|
1777
|
+
# df = Polars::DataFrame.new({"dt" => dates, "a" => [3, 7, 5, 9, 2, 1]}).with_column(
|
1778
|
+
# Polars.col("dt").str.strptime(:datetime)
|
1779
|
+
# )
|
1780
|
+
# df.groupby_rolling(index_column: "dt", period: "2d").agg(
|
1781
|
+
# [
|
1782
|
+
# Polars.sum("a").alias("sum_a"),
|
1783
|
+
# Polars.min("a").alias("min_a"),
|
1784
|
+
# Polars.max("a").alias("max_a")
|
1785
|
+
# ]
|
1786
|
+
# )
|
1787
|
+
# # =>
|
1788
|
+
# # shape: (6, 4)
|
1789
|
+
# # ┌─────────────────────┬───────┬───────┬───────┐
|
1790
|
+
# # │ dt ┆ sum_a ┆ min_a ┆ max_a │
|
1791
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1792
|
+
# # │ datetime[μs] ┆ i64 ┆ i64 ┆ i64 │
|
1793
|
+
# # ╞═════════════════════╪═══════╪═══════╪═══════╡
|
1794
|
+
# # │ 2020-01-01 13:45:48 ┆ 3 ┆ 3 ┆ 3 │
|
1795
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1796
|
+
# # │ 2020-01-01 16:42:13 ┆ 10 ┆ 3 ┆ 7 │
|
1797
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1798
|
+
# # │ 2020-01-01 16:45:09 ┆ 15 ┆ 3 ┆ 7 │
|
1799
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1800
|
+
# # │ 2020-01-02 18:12:48 ┆ 24 ┆ 3 ┆ 9 │
|
1801
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1802
|
+
# # │ 2020-01-03 19:45:32 ┆ 11 ┆ 2 ┆ 9 │
|
1803
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1804
|
+
# # │ 2020-01-08 23:16:43 ┆ 1 ┆ 1 ┆ 1 │
|
1805
|
+
# # └─────────────────────┴───────┴───────┴───────┘
|
1806
|
+
def groupby_rolling(
|
1807
|
+
index_column:,
|
1808
|
+
period:,
|
1809
|
+
offset: nil,
|
1810
|
+
closed: "right",
|
1811
|
+
by: nil
|
1812
|
+
)
|
1813
|
+
RollingGroupBy.new(self, index_column, period, offset, closed, by)
|
1814
|
+
end
|
1815
|
+
|
1816
|
+
# Group based on a time value (or index value of type `:i32`, `:i64`).
|
1817
|
+
#
|
1818
|
+
# Time windows are calculated and rows are assigned to windows. Different from a
|
1819
|
+
# normal groupby is that a row can be member of multiple groups. The time/index
|
1820
|
+
# window could be seen as a rolling window, with a window size determined by
|
1821
|
+
# dates/times/values instead of slots in the DataFrame.
|
1822
|
+
#
|
1823
|
+
# A window is defined by:
|
1824
|
+
#
|
1825
|
+
# - every: interval of the window
|
1826
|
+
# - period: length of the window
|
1827
|
+
# - offset: offset of the window
|
1828
|
+
#
|
1829
|
+
# The `every`, `period` and `offset` arguments are created with
|
1830
|
+
# the following string language:
|
1831
|
+
#
|
1832
|
+
# - 1ns (1 nanosecond)
|
1833
|
+
# - 1us (1 microsecond)
|
1834
|
+
# - 1ms (1 millisecond)
|
1835
|
+
# - 1s (1 second)
|
1836
|
+
# - 1m (1 minute)
|
1837
|
+
# - 1h (1 hour)
|
1838
|
+
# - 1d (1 day)
|
1839
|
+
# - 1w (1 week)
|
1840
|
+
# - 1mo (1 calendar month)
|
1841
|
+
# - 1y (1 calendar year)
|
1842
|
+
# - 1i (1 index count)
|
1843
|
+
#
|
1844
|
+
# Or combine them:
|
1845
|
+
# "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
|
1846
|
+
#
|
1847
|
+
# In case of a groupby_dynamic on an integer column, the windows are defined by:
|
1848
|
+
#
|
1849
|
+
# - "1i" # length 1
|
1850
|
+
# - "10i" # length 10
|
1851
|
+
#
|
1852
|
+
# @param index_column
|
1853
|
+
# Column used to group based on the time window.
|
1854
|
+
# Often to type Date/Datetime
|
1855
|
+
# This column must be sorted in ascending order. If not the output will not
|
1856
|
+
# make sense.
|
1857
|
+
#
|
1858
|
+
# In case of a dynamic groupby on indices, dtype needs to be one of
|
1859
|
+
# `:i32`, `:i64`. Note that `:i32` gets temporarily cast to `:i64`, so if
|
1860
|
+
# performance matters use an `:i64` column.
|
1861
|
+
# @param every
|
1862
|
+
# Interval of the window.
|
1863
|
+
# @param period
|
1864
|
+
# Length of the window, if None it is equal to 'every'.
|
1865
|
+
# @param offset
|
1866
|
+
# Offset of the window if None and period is None it will be equal to negative
|
1867
|
+
# `every`.
|
1868
|
+
# @param truncate
|
1869
|
+
# Truncate the time value to the window lower bound.
|
1870
|
+
# @param include_boundaries
|
1871
|
+
# Add the lower and upper bound of the window to the "_lower_bound" and
|
1872
|
+
# "_upper_bound" columns. This will impact performance because it's harder to
|
1873
|
+
# parallelize
|
1874
|
+
# @param closed ["right", "left", "both", "none"]
|
1875
|
+
# Define whether the temporal window interval is closed or not.
|
1876
|
+
# @param by
|
1877
|
+
# Also group by this column/these columns
|
1878
|
+
#
|
1879
|
+
# @return [DataFrame]
|
1880
|
+
#
|
1881
|
+
# @example
|
1882
|
+
# df = Polars::DataFrame.new(
|
1883
|
+
# {
|
1884
|
+
# "time" => Polars.date_range(
|
1885
|
+
# DateTime.new(2021, 12, 16),
|
1886
|
+
# DateTime.new(2021, 12, 16, 3),
|
1887
|
+
# "30m"
|
1888
|
+
# ),
|
1889
|
+
# "n" => 0..6
|
1890
|
+
# }
|
1891
|
+
# )
|
1892
|
+
# # =>
|
1893
|
+
# # shape: (7, 2)
|
1894
|
+
# # ┌─────────────────────┬─────┐
|
1895
|
+
# # │ time ┆ n │
|
1896
|
+
# # │ --- ┆ --- │
|
1897
|
+
# # │ datetime[μs] ┆ i64 │
|
1898
|
+
# # ╞═════════════════════╪═════╡
|
1899
|
+
# # │ 2021-12-16 00:00:00 ┆ 0 │
|
1900
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1901
|
+
# # │ 2021-12-16 00:30:00 ┆ 1 │
|
1902
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1903
|
+
# # │ 2021-12-16 01:00:00 ┆ 2 │
|
1904
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1905
|
+
# # │ 2021-12-16 01:30:00 ┆ 3 │
|
1906
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1907
|
+
# # │ 2021-12-16 02:00:00 ┆ 4 │
|
1908
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1909
|
+
# # │ 2021-12-16 02:30:00 ┆ 5 │
|
1910
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1911
|
+
# # │ 2021-12-16 03:00:00 ┆ 6 │
|
1912
|
+
# # └─────────────────────┴─────┘
|
1913
|
+
#
|
1914
|
+
# @example Group by windows of 1 hour starting at 2021-12-16 00:00:00.
|
1915
|
+
# df.groupby_dynamic("time", every: "1h", closed: "right").agg(
|
1916
|
+
# [
|
1917
|
+
# Polars.col("time").min.alias("time_min"),
|
1918
|
+
# Polars.col("time").max.alias("time_max")
|
1919
|
+
# ]
|
1920
|
+
# )
|
1921
|
+
# # =>
|
1922
|
+
# # shape: (4, 3)
|
1923
|
+
# # ┌─────────────────────┬─────────────────────┬─────────────────────┐
|
1924
|
+
# # │ time ┆ time_min ┆ time_max │
|
1925
|
+
# # │ --- ┆ --- ┆ --- │
|
1926
|
+
# # │ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] │
|
1927
|
+
# # ╞═════════════════════╪═════════════════════╪═════════════════════╡
|
1928
|
+
# # │ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-16 00:00:00 │
|
1929
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1930
|
+
# # │ 2021-12-16 00:00:00 ┆ 2021-12-16 00:30:00 ┆ 2021-12-16 01:00:00 │
|
1931
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1932
|
+
# # │ 2021-12-16 01:00:00 ┆ 2021-12-16 01:30:00 ┆ 2021-12-16 02:00:00 │
|
1933
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1934
|
+
# # │ 2021-12-16 02:00:00 ┆ 2021-12-16 02:30:00 ┆ 2021-12-16 03:00:00 │
|
1935
|
+
# # └─────────────────────┴─────────────────────┴─────────────────────┘
|
1936
|
+
#
|
1937
|
+
# @example The window boundaries can also be added to the aggregation result.
|
1938
|
+
# df.groupby_dynamic(
|
1939
|
+
# "time", every: "1h", include_boundaries: true, closed: "right"
|
1940
|
+
# ).agg([Polars.col("time").count.alias("time_count")])
|
1941
|
+
# # =>
|
1942
|
+
# # shape: (4, 4)
|
1943
|
+
# # ┌─────────────────────┬─────────────────────┬─────────────────────┬────────────┐
|
1944
|
+
# # │ _lower_boundary ┆ _upper_boundary ┆ time ┆ time_count │
|
1945
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1946
|
+
# # │ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] ┆ u32 │
|
1947
|
+
# # ╞═════════════════════╪═════════════════════╪═════════════════════╪════════════╡
|
1948
|
+
# # │ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-15 23:00:00 ┆ 1 │
|
1949
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1950
|
+
# # │ 2021-12-16 00:00:00 ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 00:00:00 ┆ 2 │
|
1951
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1952
|
+
# # │ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 2 │
|
1953
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1954
|
+
# # │ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 2 │
|
1955
|
+
# # └─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
|
1956
|
+
#
|
1957
|
+
# @example When closed="left", should not include right end of interval.
|
1958
|
+
# df.groupby_dynamic("time", every: "1h", closed: "left").agg(
|
1959
|
+
# [
|
1960
|
+
# Polars.col("time").count.alias("time_count"),
|
1961
|
+
# Polars.col("time").list.alias("time_agg_list")
|
1962
|
+
# ]
|
1963
|
+
# )
|
1964
|
+
# # =>
|
1965
|
+
# # shape: (4, 3)
|
1966
|
+
# # ┌─────────────────────┬────────────┬─────────────────────────────────────┐
|
1967
|
+
# # │ time ┆ time_count ┆ time_agg_list │
|
1968
|
+
# # │ --- ┆ --- ┆ --- │
|
1969
|
+
# # │ datetime[μs] ┆ u32 ┆ list[datetime[μs]] │
|
1970
|
+
# # ╞═════════════════════╪════════════╪═════════════════════════════════════╡
|
1971
|
+
# # │ 2021-12-16 00:00:00 ┆ 2 ┆ [2021-12-16 00:00:00, 2021-12-16... │
|
1972
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1973
|
+
# # │ 2021-12-16 01:00:00 ┆ 2 ┆ [2021-12-16 01:00:00, 2021-12-16... │
|
1974
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1975
|
+
# # │ 2021-12-16 02:00:00 ┆ 2 ┆ [2021-12-16 02:00:00, 2021-12-16... │
|
1976
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1977
|
+
# # │ 2021-12-16 03:00:00 ┆ 1 ┆ [2021-12-16 03:00:00] │
|
1978
|
+
# # └─────────────────────┴────────────┴─────────────────────────────────────┘
|
1979
|
+
#
|
1980
|
+
# @example When closed="both" the time values at the window boundaries belong to 2 groups.
|
1981
|
+
# df.groupby_dynamic("time", every: "1h", closed: "both").agg(
|
1982
|
+
# [Polars.col("time").count.alias("time_count")]
|
1983
|
+
# )
|
1984
|
+
# # =>
|
1985
|
+
# # shape: (5, 2)
|
1986
|
+
# # ┌─────────────────────┬────────────┐
|
1987
|
+
# # │ time ┆ time_count │
|
1988
|
+
# # │ --- ┆ --- │
|
1989
|
+
# # │ datetime[μs] ┆ u32 │
|
1990
|
+
# # ╞═════════════════════╪════════════╡
|
1991
|
+
# # │ 2021-12-15 23:00:00 ┆ 1 │
|
1992
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1993
|
+
# # │ 2021-12-16 00:00:00 ┆ 3 │
|
1994
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1995
|
+
# # │ 2021-12-16 01:00:00 ┆ 3 │
|
1996
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1997
|
+
# # │ 2021-12-16 02:00:00 ┆ 3 │
|
1998
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1999
|
+
# # │ 2021-12-16 03:00:00 ┆ 1 │
|
2000
|
+
# # └─────────────────────┴────────────┘
|
2001
|
+
#
|
2002
|
+
# @example Dynamic groupbys can also be combined with grouping on normal keys.
|
2003
|
+
# df = Polars::DataFrame.new(
|
2004
|
+
# {
|
2005
|
+
# "time" => Polars.date_range(
|
2006
|
+
# DateTime.new(2021, 12, 16),
|
2007
|
+
# DateTime.new(2021, 12, 16, 3),
|
2008
|
+
# "30m"
|
2009
|
+
# ),
|
2010
|
+
# "groups" => ["a", "a", "a", "b", "b", "a", "a"]
|
2011
|
+
# }
|
2012
|
+
# )
|
2013
|
+
# df.groupby_dynamic(
|
2014
|
+
# "time",
|
2015
|
+
# every: "1h",
|
2016
|
+
# closed: "both",
|
2017
|
+
# by: "groups",
|
2018
|
+
# include_boundaries: true
|
2019
|
+
# ).agg([Polars.col("time").count.alias("time_count")])
|
2020
|
+
# # =>
|
2021
|
+
# # shape: (7, 5)
|
2022
|
+
# # ┌────────┬─────────────────────┬─────────────────────┬─────────────────────┬────────────┐
|
2023
|
+
# # │ groups ┆ _lower_boundary ┆ _upper_boundary ┆ time ┆ time_count │
|
2024
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
2025
|
+
# # │ str ┆ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] ┆ u32 │
|
2026
|
+
# # ╞════════╪═════════════════════╪═════════════════════╪═════════════════════╪════════════╡
|
2027
|
+
# # │ a ┆ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-15 23:00:00 ┆ 1 │
|
2028
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
2029
|
+
# # │ a ┆ 2021-12-16 00:00:00 ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 00:00:00 ┆ 3 │
|
2030
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
2031
|
+
# # │ a ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 1 │
|
2032
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
2033
|
+
# # │ a ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 2 │
|
2034
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
2035
|
+
# # │ a ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 04:00:00 ┆ 2021-12-16 03:00:00 ┆ 1 │
|
2036
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
2037
|
+
# # │ b ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 2 │
|
2038
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
2039
|
+
# # │ b ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 1 │
|
2040
|
+
# # └────────┴─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
|
2041
|
+
#
|
2042
|
+
# @example Dynamic groupby on an index column.
|
2043
|
+
# df = Polars::DataFrame.new(
|
2044
|
+
# {
|
2045
|
+
# "idx" => Polars.arange(0, 6, eager: true),
|
2046
|
+
# "A" => ["A", "A", "B", "B", "B", "C"]
|
2047
|
+
# }
|
2048
|
+
# )
|
2049
|
+
# df.groupby_dynamic(
|
2050
|
+
# "idx",
|
2051
|
+
# every: "2i",
|
2052
|
+
# period: "3i",
|
2053
|
+
# include_boundaries: true,
|
2054
|
+
# closed: "right"
|
2055
|
+
# ).agg(Polars.col("A").list.alias("A_agg_list"))
|
2056
|
+
# # =>
|
2057
|
+
# # shape: (3, 4)
|
2058
|
+
# # ┌─────────────────┬─────────────────┬─────┬─────────────────┐
|
2059
|
+
# # │ _lower_boundary ┆ _upper_boundary ┆ idx ┆ A_agg_list │
|
2060
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
2061
|
+
# # │ i64 ┆ i64 ┆ i64 ┆ list[str] │
|
2062
|
+
# # ╞═════════════════╪═════════════════╪═════╪═════════════════╡
|
2063
|
+
# # │ 0 ┆ 3 ┆ 0 ┆ ["A", "B", "B"] │
|
2064
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
2065
|
+
# # │ 2 ┆ 5 ┆ 2 ┆ ["B", "B", "C"] │
|
2066
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
2067
|
+
# # │ 4 ┆ 7 ┆ 4 ┆ ["C"] │
|
2068
|
+
# # └─────────────────┴─────────────────┴─────┴─────────────────┘
|
2069
|
+
def groupby_dynamic(
|
2070
|
+
index_column,
|
2071
|
+
every:,
|
2072
|
+
period: nil,
|
2073
|
+
offset: nil,
|
2074
|
+
truncate: true,
|
2075
|
+
include_boundaries: false,
|
2076
|
+
closed: "left",
|
2077
|
+
by: nil,
|
2078
|
+
start_by: "window"
|
2079
|
+
)
|
2080
|
+
DynamicGroupBy.new(
|
2081
|
+
self,
|
2082
|
+
index_column,
|
2083
|
+
every,
|
2084
|
+
period,
|
2085
|
+
offset,
|
2086
|
+
truncate,
|
2087
|
+
include_boundaries,
|
2088
|
+
closed,
|
2089
|
+
by,
|
2090
|
+
start_by
|
2091
|
+
)
|
2092
|
+
end
|
2093
|
+
|
2094
|
+
# Upsample a DataFrame at a regular frequency.
|
2095
|
+
#
|
2096
|
+
# @param time_column [Object]
|
2097
|
+
# time column will be used to determine a date_range.
|
2098
|
+
# Note that this column has to be sorted for the output to make sense.
|
2099
|
+
# @param every [String]
|
2100
|
+
# interval will start 'every' duration
|
2101
|
+
# @param offset [String]
|
2102
|
+
# change the start of the date_range by this offset.
|
2103
|
+
# @param by [Object]
|
2104
|
+
# First group by these columns and then upsample for every group
|
2105
|
+
# @param maintain_order [Boolean]
|
2106
|
+
# Keep the ordering predictable. This is slower.
|
2107
|
+
#
|
2108
|
+
# The `every` and `offset` arguments are created with
|
2109
|
+
# the following string language:
|
2110
|
+
#
|
2111
|
+
# - 1ns (1 nanosecond)
|
2112
|
+
# - 1us (1 microsecond)
|
2113
|
+
# - 1ms (1 millisecond)
|
2114
|
+
# - 1s (1 second)
|
2115
|
+
# - 1m (1 minute)
|
2116
|
+
# - 1h (1 hour)
|
2117
|
+
# - 1d (1 day)
|
2118
|
+
# - 1w (1 week)
|
2119
|
+
# - 1mo (1 calendar month)
|
2120
|
+
# - 1y (1 calendar year)
|
2121
|
+
# - 1i (1 index count)
|
2122
|
+
#
|
2123
|
+
# Or combine them:
|
2124
|
+
# "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
|
2125
|
+
#
|
2126
|
+
# @return [DataFrame]
|
2127
|
+
#
|
2128
|
+
# @example Upsample a DataFrame by a certain interval.
|
2129
|
+
# df = Polars::DataFrame.new(
|
2130
|
+
# {
|
2131
|
+
# "time" => [
|
2132
|
+
# DateTime.new(2021, 2, 1),
|
2133
|
+
# DateTime.new(2021, 4, 1),
|
2134
|
+
# DateTime.new(2021, 5, 1),
|
2135
|
+
# DateTime.new(2021, 6, 1)
|
2136
|
+
# ],
|
2137
|
+
# "groups" => ["A", "B", "A", "B"],
|
2138
|
+
# "values" => [0, 1, 2, 3]
|
2139
|
+
# }
|
2140
|
+
# )
|
2141
|
+
# df.upsample(
|
2142
|
+
# time_column: "time", every: "1mo", by: "groups", maintain_order: true
|
2143
|
+
# ).select(Polars.all.forward_fill)
|
2144
|
+
# # =>
|
2145
|
+
# # shape: (7, 3)
|
2146
|
+
# # ┌─────────────────────┬────────┬────────┐
|
2147
|
+
# # │ time ┆ groups ┆ values │
|
2148
|
+
# # │ --- ┆ --- ┆ --- │
|
2149
|
+
# # │ datetime[ns] ┆ str ┆ i64 │
|
2150
|
+
# # ╞═════════════════════╪════════╪════════╡
|
2151
|
+
# # │ 2021-02-01 00:00:00 ┆ A ┆ 0 │
|
2152
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
2153
|
+
# # │ 2021-03-01 00:00:00 ┆ A ┆ 0 │
|
2154
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
2155
|
+
# # │ 2021-04-01 00:00:00 ┆ A ┆ 0 │
|
2156
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
2157
|
+
# # │ 2021-05-01 00:00:00 ┆ A ┆ 2 │
|
2158
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
2159
|
+
# # │ 2021-04-01 00:00:00 ┆ B ┆ 1 │
|
2160
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
2161
|
+
# # │ 2021-05-01 00:00:00 ┆ B ┆ 1 │
|
2162
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
2163
|
+
# # │ 2021-06-01 00:00:00 ┆ B ┆ 3 │
|
2164
|
+
# # └─────────────────────┴────────┴────────┘
|
2165
|
+
def upsample(
|
2166
|
+
time_column:,
|
2167
|
+
every:,
|
2168
|
+
offset: nil,
|
2169
|
+
by: nil,
|
2170
|
+
maintain_order: false
|
2171
|
+
)
|
2172
|
+
if by.nil?
|
2173
|
+
by = []
|
2174
|
+
end
|
2175
|
+
if by.is_a?(String)
|
2176
|
+
by = [by]
|
2177
|
+
end
|
2178
|
+
if offset.nil?
|
2179
|
+
offset = "0ns"
|
2180
|
+
end
|
2181
|
+
|
2182
|
+
every = Utils._timedelta_to_pl_duration(every)
|
2183
|
+
offset = Utils._timedelta_to_pl_duration(offset)
|
2184
|
+
|
2185
|
+
_from_rbdf(
|
2186
|
+
_df.upsample(by, time_column, every, offset, maintain_order)
|
2187
|
+
)
|
2188
|
+
end
|
2189
|
+
|
2190
|
+
# Perform an asof join.
|
2191
|
+
#
|
2192
|
+
# This is similar to a left-join except that we match on nearest key rather than
|
2193
|
+
# equal keys.
|
2194
|
+
#
|
2195
|
+
# Both DataFrames must be sorted by the asof_join key.
|
2196
|
+
#
|
2197
|
+
# For each row in the left DataFrame:
|
2198
|
+
#
|
2199
|
+
# - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key.
|
2200
|
+
# - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key.
|
2201
|
+
#
|
2202
|
+
# The default is "backward".
|
2203
|
+
#
|
2204
|
+
# @param other [DataFrame]
|
2205
|
+
# DataFrame to join with.
|
2206
|
+
# @param left_on [String]
|
2207
|
+
# Join column of the left DataFrame.
|
2208
|
+
# @param right_on [String]
|
2209
|
+
# Join column of the right DataFrame.
|
2210
|
+
# @param on [String]
|
2211
|
+
# Join column of both DataFrames. If set, `left_on` and `right_on` should be
|
2212
|
+
# None.
|
2213
|
+
# @param by [Object]
|
2214
|
+
# join on these columns before doing asof join
|
2215
|
+
# @param by_left [Object]
|
2216
|
+
# join on these columns before doing asof join
|
2217
|
+
# @param by_right [Object]
|
2218
|
+
# join on these columns before doing asof join
|
2219
|
+
# @param strategy ["backward", "forward"]
|
2220
|
+
# Join strategy.
|
2221
|
+
# @param suffix [String]
|
2222
|
+
# Suffix to append to columns with a duplicate name.
|
2223
|
+
# @param tolerance [Object]
|
2224
|
+
# Numeric tolerance. By setting this the join will only be done if the near
|
2225
|
+
# keys are within this distance. If an asof join is done on columns of dtype
|
2226
|
+
# "Date", "Datetime", "Duration" or "Time" you use the following string
|
2227
|
+
# language:
|
2228
|
+
#
|
2229
|
+
# - 1ns (1 nanosecond)
|
2230
|
+
# - 1us (1 microsecond)
|
2231
|
+
# - 1ms (1 millisecond)
|
2232
|
+
# - 1s (1 second)
|
2233
|
+
# - 1m (1 minute)
|
2234
|
+
# - 1h (1 hour)
|
2235
|
+
# - 1d (1 day)
|
2236
|
+
# - 1w (1 week)
|
2237
|
+
# - 1mo (1 calendar month)
|
2238
|
+
# - 1y (1 calendar year)
|
2239
|
+
# - 1i (1 index count)
|
2240
|
+
#
|
2241
|
+
# Or combine them:
|
2242
|
+
# "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
|
2243
|
+
#
|
2244
|
+
# @param allow_parallel [Boolean]
|
2245
|
+
# Allow the physical plan to optionally evaluate the computation of both
|
2246
|
+
# DataFrames up to the join in parallel.
|
2247
|
+
# @param force_parallel [Boolean]
|
2248
|
+
# Force the physical plan to evaluate the computation of both DataFrames up to
|
2249
|
+
# the join in parallel.
|
2250
|
+
#
|
2251
|
+
# @return [DataFrame]
|
2252
|
+
#
|
2253
|
+
# @example
|
2254
|
+
# gdp = Polars::DataFrame.new(
|
2255
|
+
# {
|
2256
|
+
# "date" => [
|
2257
|
+
# DateTime.new(2016, 1, 1),
|
2258
|
+
# DateTime.new(2017, 1, 1),
|
2259
|
+
# DateTime.new(2018, 1, 1),
|
2260
|
+
# DateTime.new(2019, 1, 1),
|
2261
|
+
# ], # note record date: Jan 1st (sorted!)
|
2262
|
+
# "gdp" => [4164, 4411, 4566, 4696]
|
2263
|
+
# }
|
2264
|
+
# )
|
2265
|
+
# population = Polars::DataFrame.new(
|
2266
|
+
# {
|
2267
|
+
# "date" => [
|
2268
|
+
# DateTime.new(2016, 5, 12),
|
2269
|
+
# DateTime.new(2017, 5, 12),
|
2270
|
+
# DateTime.new(2018, 5, 12),
|
2271
|
+
# DateTime.new(2019, 5, 12),
|
2272
|
+
# ], # note record date: May 12th (sorted!)
|
2273
|
+
# "population" => [82.19, 82.66, 83.12, 83.52]
|
2274
|
+
# }
|
2275
|
+
# )
|
2276
|
+
# population.join_asof(
|
2277
|
+
# gdp, left_on: "date", right_on: "date", strategy: "backward"
|
2278
|
+
# )
|
2279
|
+
# # =>
|
2280
|
+
# # shape: (4, 3)
|
2281
|
+
# # ┌─────────────────────┬────────────┬──────┐
|
2282
|
+
# # │ date ┆ population ┆ gdp │
|
2283
|
+
# # │ --- ┆ --- ┆ --- │
|
2284
|
+
# # │ datetime[ns] ┆ f64 ┆ i64 │
|
2285
|
+
# # ╞═════════════════════╪════════════╪══════╡
|
2286
|
+
# # │ 2016-05-12 00:00:00 ┆ 82.19 ┆ 4164 │
|
2287
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2288
|
+
# # │ 2017-05-12 00:00:00 ┆ 82.66 ┆ 4411 │
|
2289
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2290
|
+
# # │ 2018-05-12 00:00:00 ┆ 83.12 ┆ 4566 │
|
2291
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2292
|
+
# # │ 2019-05-12 00:00:00 ┆ 83.52 ┆ 4696 │
|
2293
|
+
# # └─────────────────────┴────────────┴──────┘
|
2294
|
+
def join_asof(
|
2295
|
+
other,
|
2296
|
+
left_on: nil,
|
2297
|
+
right_on: nil,
|
2298
|
+
on: nil,
|
2299
|
+
by_left: nil,
|
2300
|
+
by_right: nil,
|
2301
|
+
by: nil,
|
2302
|
+
strategy: "backward",
|
2303
|
+
suffix: "_right",
|
2304
|
+
tolerance: nil,
|
2305
|
+
allow_parallel: true,
|
2306
|
+
force_parallel: false
|
2307
|
+
)
|
2308
|
+
lazy
|
2309
|
+
.join_asof(
|
2310
|
+
other.lazy,
|
2311
|
+
left_on: left_on,
|
2312
|
+
right_on: right_on,
|
2313
|
+
on: on,
|
2314
|
+
by_left: by_left,
|
2315
|
+
by_right: by_right,
|
2316
|
+
by: by,
|
2317
|
+
strategy: strategy,
|
2318
|
+
suffix: suffix,
|
2319
|
+
tolerance: tolerance,
|
2320
|
+
allow_parallel: allow_parallel,
|
2321
|
+
force_parallel: force_parallel
|
2322
|
+
)
|
2323
|
+
.collect(no_optimization: true)
|
2324
|
+
end
|
2325
|
+
|
2326
|
+
# Join in SQL-like fashion.
|
2327
|
+
#
|
2328
|
+
# @param other [DataFrame]
|
2329
|
+
# DataFrame to join with.
|
2330
|
+
# @param left_on [Object]
|
2331
|
+
# Name(s) of the left join column(s).
|
2332
|
+
# @param right_on [Object]
|
2333
|
+
# Name(s) of the right join column(s).
|
2334
|
+
# @param on [Object]
|
2335
|
+
# Name(s) of the join columns in both DataFrames.
|
2336
|
+
# @param how ["inner", "left", "outer", "semi", "anti", "cross"]
|
2337
|
+
# Join strategy.
|
2338
|
+
# @param suffix [String]
|
2339
|
+
# Suffix to append to columns with a duplicate name.
|
2340
|
+
#
|
2341
|
+
# @return [DataFrame]
|
2342
|
+
#
|
2343
|
+
# @example
|
2344
|
+
# df = Polars::DataFrame.new(
|
2345
|
+
# {
|
2346
|
+
# "foo" => [1, 2, 3],
|
2347
|
+
# "bar" => [6.0, 7.0, 8.0],
|
2348
|
+
# "ham" => ["a", "b", "c"]
|
2349
|
+
# }
|
2350
|
+
# )
|
2351
|
+
# other_df = Polars::DataFrame.new(
|
2352
|
+
# {
|
2353
|
+
# "apple" => ["x", "y", "z"],
|
2354
|
+
# "ham" => ["a", "b", "d"]
|
2355
|
+
# }
|
2356
|
+
# )
|
2357
|
+
# df.join(other_df, on: "ham")
|
2358
|
+
# # =>
|
2359
|
+
# # shape: (2, 4)
|
2360
|
+
# # ┌─────┬─────┬─────┬───────┐
|
2361
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
2362
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
2363
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
2364
|
+
# # ╞═════╪═════╪═════╪═══════╡
|
2365
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
2366
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2367
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
2368
|
+
# # └─────┴─────┴─────┴───────┘
|
2369
|
+
#
|
2370
|
+
# @example
|
2371
|
+
# df.join(other_df, on: "ham", how: "outer")
|
2372
|
+
# # =>
|
2373
|
+
# # shape: (4, 4)
|
2374
|
+
# # ┌──────┬──────┬─────┬───────┐
|
2375
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
2376
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
2377
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
2378
|
+
# # ╞══════╪══════╪═════╪═══════╡
|
2379
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
2380
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2381
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
2382
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2383
|
+
# # │ null ┆ null ┆ d ┆ z │
|
2384
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2385
|
+
# # │ 3 ┆ 8.0 ┆ c ┆ null │
|
2386
|
+
# # └──────┴──────┴─────┴───────┘
|
2387
|
+
#
|
2388
|
+
# @example
|
2389
|
+
# df.join(other_df, on: "ham", how: "left")
|
2390
|
+
# # =>
|
2391
|
+
# # shape: (3, 4)
|
2392
|
+
# # ┌─────┬─────┬─────┬───────┐
|
2393
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
2394
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
2395
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
2396
|
+
# # ╞═════╪═════╪═════╪═══════╡
|
2397
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
2398
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2399
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
2400
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2401
|
+
# # │ 3 ┆ 8.0 ┆ c ┆ null │
|
2402
|
+
# # └─────┴─────┴─────┴───────┘
|
2403
|
+
#
|
2404
|
+
# @example
|
2405
|
+
# df.join(other_df, on: "ham", how: "semi")
|
2406
|
+
# # =>
|
2407
|
+
# # shape: (2, 3)
|
2408
|
+
# # ┌─────┬─────┬─────┐
|
2409
|
+
# # │ foo ┆ bar ┆ ham │
|
2410
|
+
# # │ --- ┆ --- ┆ --- │
|
2411
|
+
# # │ i64 ┆ f64 ┆ str │
|
2412
|
+
# # ╞═════╪═════╪═════╡
|
2413
|
+
# # │ 1 ┆ 6.0 ┆ a │
|
2414
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
2415
|
+
# # │ 2 ┆ 7.0 ┆ b │
|
2416
|
+
# # └─────┴─────┴─────┘
|
2417
|
+
#
|
2418
|
+
# @example
|
2419
|
+
# df.join(other_df, on: "ham", how: "anti")
|
2420
|
+
# # =>
|
2421
|
+
# # shape: (1, 3)
|
2422
|
+
# # ┌─────┬─────┬─────┐
|
2423
|
+
# # │ foo ┆ bar ┆ ham │
|
2424
|
+
# # │ --- ┆ --- ┆ --- │
|
2425
|
+
# # │ i64 ┆ f64 ┆ str │
|
2426
|
+
# # ╞═════╪═════╪═════╡
|
2427
|
+
# # │ 3 ┆ 8.0 ┆ c │
|
2428
|
+
# # └─────┴─────┴─────┘
|
2429
|
+
def join(other, left_on: nil, right_on: nil, on: nil, how: "inner", suffix: "_right")
|
2430
|
+
lazy
|
2431
|
+
.join(
|
2432
|
+
other.lazy,
|
2433
|
+
left_on: left_on,
|
2434
|
+
right_on: right_on,
|
2435
|
+
on: on,
|
2436
|
+
how: how,
|
2437
|
+
suffix: suffix,
|
2438
|
+
)
|
2439
|
+
.collect(no_optimization: true)
|
2440
|
+
end
|
2441
|
+
|
2442
|
+
# Apply a custom/user-defined function (UDF) over the rows of the DataFrame.
|
2443
|
+
#
|
2444
|
+
# The UDF will receive each row as a tuple of values: `udf(row)`.
|
2445
|
+
#
|
2446
|
+
# Implementing logic using a Ruby function is almost always _significantly_
|
2447
|
+
# slower and more memory intensive than implementing the same logic using
|
2448
|
+
# the native expression API because:
|
2449
|
+
#
|
2450
|
+
# - The native expression engine runs in Rust; UDFs run in Ruby.
|
2451
|
+
# - Use of Ruby UDFs forces the DataFrame to be materialized in memory.
|
2452
|
+
# - Polars-native expressions can be parallelised (UDFs cannot).
|
2453
|
+
# - Polars-native expressions can be logically optimised (UDFs cannot).
|
2454
|
+
#
|
2455
|
+
# Wherever possible you should strongly prefer the native expression API
|
2456
|
+
# to achieve the best performance.
|
2457
|
+
#
|
2458
|
+
# @param return_dtype [Symbol]
|
2459
|
+
# Output type of the operation. If none given, Polars tries to infer the type.
|
2460
|
+
# @param inference_size [Integer]
|
2461
|
+
# Only used in the case when the custom function returns rows.
|
2462
|
+
# This uses the first `n` rows to determine the output schema
|
2463
|
+
#
|
2464
|
+
# @return [Object]
|
2465
|
+
#
|
2466
|
+
# @note
|
2467
|
+
# The frame-level `apply` cannot track column names (as the UDF is a black-box
|
2468
|
+
# that may arbitrarily drop, rearrange, transform, or add new columns); if you
|
2469
|
+
# want to apply a UDF such that column names are preserved, you should use the
|
2470
|
+
# expression-level `apply` syntax instead.
|
2471
|
+
#
|
2472
|
+
# @example
|
2473
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [-1, 5, 8]})
|
2474
|
+
#
|
2475
|
+
# @example Return a DataFrame by mapping each row to a tuple:
|
2476
|
+
# df.apply { |t| [t[0] * 2, t[1] * 3] }
|
2477
|
+
# # =>
|
2478
|
+
# # shape: (3, 2)
|
2479
|
+
# # ┌──────────┬──────────┐
|
2480
|
+
# # │ column_0 ┆ column_1 │
|
2481
|
+
# # │ --- ┆ --- │
|
2482
|
+
# # │ i64 ┆ i64 │
|
2483
|
+
# # ╞══════════╪══════════╡
|
2484
|
+
# # │ 2 ┆ -3 │
|
2485
|
+
# # ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
|
2486
|
+
# # │ 4 ┆ 15 │
|
2487
|
+
# # ├╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┤
|
2488
|
+
# # │ 6 ┆ 24 │
|
2489
|
+
# # └──────────┴──────────┘
|
2490
|
+
#
|
2491
|
+
# @example Return a Series by mapping each row to a scalar:
|
2492
|
+
# df.apply { |t| t[0] * 2 + t[1] }
|
2493
|
+
# # =>
|
2494
|
+
# # shape: (3, 1)
|
2495
|
+
# # ┌───────┐
|
2496
|
+
# # │ apply │
|
2497
|
+
# # │ --- │
|
2498
|
+
# # │ i64 │
|
2499
|
+
# # ╞═══════╡
|
2500
|
+
# # │ 1 │
|
2501
|
+
# # ├╌╌╌╌╌╌╌┤
|
2502
|
+
# # │ 9 │
|
2503
|
+
# # ├╌╌╌╌╌╌╌┤
|
2504
|
+
# # │ 14 │
|
2505
|
+
# # └───────┘
|
2506
|
+
def apply(return_dtype: nil, inference_size: 256, &f)
|
2507
|
+
out, is_df = _df.apply(f, return_dtype, inference_size)
|
2508
|
+
if is_df
|
2509
|
+
_from_rbdf(out)
|
2510
|
+
else
|
2511
|
+
_from_rbdf(Utils.wrap_s(out).to_frame._df)
|
2512
|
+
end
|
2513
|
+
end
|
2514
|
+
|
2515
|
+
# Return a new DataFrame with the column added or replaced.
|
2516
|
+
#
|
2517
|
+
# @param column [Object]
|
2518
|
+
# Series, where the name of the Series refers to the column in the DataFrame.
|
2519
|
+
#
|
2520
|
+
# @return [DataFrame]
|
2521
|
+
#
|
2522
|
+
# @example Added
|
2523
|
+
# df = Polars::DataFrame.new(
|
2524
|
+
# {
|
2525
|
+
# "a" => [1, 3, 5],
|
2526
|
+
# "b" => [2, 4, 6]
|
2527
|
+
# }
|
2528
|
+
# )
|
2529
|
+
# df.with_column((Polars.col("b") ** 2).alias("b_squared"))
|
2530
|
+
# # =>
|
2531
|
+
# # shape: (3, 3)
|
2532
|
+
# # ┌─────┬─────┬───────────┐
|
2533
|
+
# # │ a ┆ b ┆ b_squared │
|
2534
|
+
# # │ --- ┆ --- ┆ --- │
|
2535
|
+
# # │ i64 ┆ i64 ┆ f64 │
|
2536
|
+
# # ╞═════╪═════╪═══════════╡
|
2537
|
+
# # │ 1 ┆ 2 ┆ 4.0 │
|
2538
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
|
2539
|
+
# # │ 3 ┆ 4 ┆ 16.0 │
|
2540
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
|
2541
|
+
# # │ 5 ┆ 6 ┆ 36.0 │
|
2542
|
+
# # └─────┴─────┴───────────┘
|
2543
|
+
#
|
2544
|
+
# @example Replaced
|
2545
|
+
# df.with_column(Polars.col("a") ** 2)
|
2546
|
+
# # =>
|
2547
|
+
# # shape: (3, 2)
|
2548
|
+
# # ┌──────┬─────┐
|
2549
|
+
# # │ a ┆ b │
|
2550
|
+
# # │ --- ┆ --- │
|
2551
|
+
# # │ f64 ┆ i64 │
|
2552
|
+
# # ╞══════╪═════╡
|
2553
|
+
# # │ 1.0 ┆ 2 │
|
2554
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌┤
|
2555
|
+
# # │ 9.0 ┆ 4 │
|
2556
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌┤
|
2557
|
+
# # │ 25.0 ┆ 6 │
|
2558
|
+
# # └──────┴─────┘
|
2559
|
+
def with_column(column)
|
2560
|
+
lazy
|
2561
|
+
.with_column(column)
|
2562
|
+
.collect(no_optimization: true, string_cache: false)
|
2563
|
+
end
|
2564
|
+
|
2565
|
+
# Return a new DataFrame grown horizontally by stacking multiple Series to it.
|
2566
|
+
#
|
2567
|
+
# @param columns [Object]
|
2568
|
+
# Series to stack.
|
2569
|
+
# @param in_place [Boolean]
|
2570
|
+
# Modify in place.
|
2571
|
+
#
|
2572
|
+
# @return [DataFrame]
|
2573
|
+
#
|
2574
|
+
# @example
|
2575
|
+
# df = Polars::DataFrame.new(
|
2576
|
+
# {
|
2577
|
+
# "foo" => [1, 2, 3],
|
2578
|
+
# "bar" => [6, 7, 8],
|
2579
|
+
# "ham" => ["a", "b", "c"]
|
2580
|
+
# }
|
2581
|
+
# )
|
2582
|
+
# x = Polars::Series.new("apple", [10, 20, 30])
|
2583
|
+
# df.hstack([x])
|
2584
|
+
# # =>
|
2585
|
+
# # shape: (3, 4)
|
2586
|
+
# # ┌─────┬─────┬─────┬───────┐
|
2587
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
2588
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
2589
|
+
# # │ i64 ┆ i64 ┆ str ┆ i64 │
|
2590
|
+
# # ╞═════╪═════╪═════╪═══════╡
|
2591
|
+
# # │ 1 ┆ 6 ┆ a ┆ 10 │
|
2592
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2593
|
+
# # │ 2 ┆ 7 ┆ b ┆ 20 │
|
2594
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2595
|
+
# # │ 3 ┆ 8 ┆ c ┆ 30 │
|
2596
|
+
# # └─────┴─────┴─────┴───────┘
|
2597
|
+
def hstack(columns, in_place: false)
|
2598
|
+
if !columns.is_a?(Array)
|
2599
|
+
columns = columns.get_columns
|
2600
|
+
end
|
2601
|
+
if in_place
|
2602
|
+
_df.hstack_mut(columns.map(&:_s))
|
2603
|
+
self
|
2604
|
+
else
|
2605
|
+
_from_rbdf(_df.hstack(columns.map(&:_s)))
|
2606
|
+
end
|
2607
|
+
end
|
2608
|
+
|
2609
|
+
# Grow this DataFrame vertically by stacking a DataFrame to it.
|
2610
|
+
#
|
2611
|
+
# @param df [DataFrame]
|
2612
|
+
# DataFrame to stack.
|
2613
|
+
# @param in_place [Boolean]
|
2614
|
+
# Modify in place
|
2615
|
+
#
|
2616
|
+
# @return [DataFrame]
|
2617
|
+
#
|
2618
|
+
# @example
|
2619
|
+
# df1 = Polars::DataFrame.new(
|
2620
|
+
# {
|
2621
|
+
# "foo" => [1, 2],
|
2622
|
+
# "bar" => [6, 7],
|
2623
|
+
# "ham" => ["a", "b"]
|
2624
|
+
# }
|
2625
|
+
# )
|
2626
|
+
# df2 = Polars::DataFrame.new(
|
2627
|
+
# {
|
2628
|
+
# "foo" => [3, 4],
|
2629
|
+
# "bar" => [8, 9],
|
2630
|
+
# "ham" => ["c", "d"]
|
2631
|
+
# }
|
2632
|
+
# )
|
2633
|
+
# df1.vstack(df2)
|
2634
|
+
# # =>
|
2635
|
+
# # shape: (4, 3)
|
2636
|
+
# # ┌─────┬─────┬─────┐
|
2637
|
+
# # │ foo ┆ bar ┆ ham │
|
2638
|
+
# # │ --- ┆ --- ┆ --- │
|
2639
|
+
# # │ i64 ┆ i64 ┆ str │
|
2640
|
+
# # ╞═════╪═════╪═════╡
|
2641
|
+
# # │ 1 ┆ 6 ┆ a │
|
2642
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
2643
|
+
# # │ 2 ┆ 7 ┆ b │
|
2644
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
2645
|
+
# # │ 3 ┆ 8 ┆ c │
|
2646
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
2647
|
+
# # │ 4 ┆ 9 ┆ d │
|
2648
|
+
# # └─────┴─────┴─────┘
|
2649
|
+
def vstack(df, in_place: false)
|
2650
|
+
if in_place
|
2651
|
+
_df.vstack_mut(df._df)
|
2652
|
+
self
|
2653
|
+
else
|
2654
|
+
_from_rbdf(_df.vstack(df._df))
|
2655
|
+
end
|
2656
|
+
end
|
2657
|
+
|
2658
|
+
# Extend the memory backed by this `DataFrame` with the values from `other`.
|
2659
|
+
#
|
2660
|
+
# Different from `vstack` which adds the chunks from `other` to the chunks of this
|
2661
|
+
# `DataFrame` `extend` appends the data from `other` to the underlying memory
|
2662
|
+
# locations and thus may cause a reallocation.
|
2663
|
+
#
|
2664
|
+
# If this does not cause a reallocation, the resulting data structure will not
|
2665
|
+
# have any extra chunks and thus will yield faster queries.
|
2666
|
+
#
|
2667
|
+
# Prefer `extend` over `vstack` when you want to do a query after a single append.
|
2668
|
+
# For instance during online operations where you add `n` rows and rerun a query.
|
2669
|
+
#
|
2670
|
+
# Prefer `vstack` over `extend` when you want to append many times before doing a
|
2671
|
+
# query. For instance when you read in multiple files and when to store them in a
|
2672
|
+
# single `DataFrame`. In the latter case, finish the sequence of `vstack`
|
2673
|
+
# operations with a `rechunk`.
|
2674
|
+
#
|
2675
|
+
# @param other [DataFrame]
|
2676
|
+
# DataFrame to vertically add.
|
2677
|
+
#
|
2678
|
+
# @return [DataFrame]
|
2679
|
+
#
|
2680
|
+
# @example
|
2681
|
+
# df1 = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]})
|
2682
|
+
# df2 = Polars::DataFrame.new({"foo" => [10, 20, 30], "bar" => [40, 50, 60]})
|
2683
|
+
# df1.extend(df2)
|
2684
|
+
# # =>
|
2685
|
+
# # shape: (6, 2)
|
2686
|
+
# # ┌─────┬─────┐
|
2687
|
+
# # │ foo ┆ bar │
|
2688
|
+
# # │ --- ┆ --- │
|
2689
|
+
# # │ i64 ┆ i64 │
|
2690
|
+
# # ╞═════╪═════╡
|
2691
|
+
# # │ 1 ┆ 4 │
|
2692
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
2693
|
+
# # │ 2 ┆ 5 │
|
2694
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
2695
|
+
# # │ 3 ┆ 6 │
|
2696
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
2697
|
+
# # │ 10 ┆ 40 │
|
2698
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
2699
|
+
# # │ 20 ┆ 50 │
|
2700
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
2701
|
+
# # │ 30 ┆ 60 │
|
2702
|
+
# # └─────┴─────┘
|
2703
|
+
def extend(other)
|
2704
|
+
_df.extend(other._df)
|
2705
|
+
self
|
2706
|
+
end
|
2707
|
+
|
2708
|
+
# Remove column from DataFrame and return as new.
|
2709
|
+
#
|
2710
|
+
# @param columns [Object]
|
2711
|
+
# Column(s) to drop.
|
2712
|
+
#
|
2713
|
+
# @return [DataFrame]
|
2714
|
+
#
|
2715
|
+
# @example
|
2716
|
+
# df = Polars::DataFrame.new(
|
2717
|
+
# {
|
2718
|
+
# "foo" => [1, 2, 3],
|
2719
|
+
# "bar" => [6.0, 7.0, 8.0],
|
2720
|
+
# "ham" => ["a", "b", "c"]
|
2721
|
+
# }
|
2722
|
+
# )
|
2723
|
+
# df.drop("ham")
|
2724
|
+
# # =>
|
2725
|
+
# # shape: (3, 2)
|
2726
|
+
# # ┌─────┬─────┐
|
2727
|
+
# # │ foo ┆ bar │
|
2728
|
+
# # │ --- ┆ --- │
|
2729
|
+
# # │ i64 ┆ f64 │
|
2730
|
+
# # ╞═════╪═════╡
|
2731
|
+
# # │ 1 ┆ 6.0 │
|
2732
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
2733
|
+
# # │ 2 ┆ 7.0 │
|
2734
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
2735
|
+
# # │ 3 ┆ 8.0 │
|
2736
|
+
# # └─────┴─────┘
|
2737
|
+
def drop(columns)
|
2738
|
+
if columns.is_a?(Array)
|
2739
|
+
df = clone
|
2740
|
+
columns.each do |n|
|
2741
|
+
df._df.drop_in_place(n)
|
2742
|
+
end
|
2743
|
+
df
|
2744
|
+
else
|
2745
|
+
_from_rbdf(_df.drop(columns))
|
2746
|
+
end
|
2747
|
+
end
|
2748
|
+
|
2749
|
+
# Drop in place.
|
2750
|
+
#
|
2751
|
+
# @param name [Object]
|
2752
|
+
# Column to drop.
|
2753
|
+
#
|
2754
|
+
# @return [Series]
|
2755
|
+
#
|
2756
|
+
# @example
|
2757
|
+
# df = Polars::DataFrame.new(
|
2758
|
+
# {
|
2759
|
+
# "foo" => [1, 2, 3],
|
2760
|
+
# "bar" => [6, 7, 8],
|
2761
|
+
# "ham" => ["a", "b", "c"]
|
2762
|
+
# }
|
2763
|
+
# )
|
2764
|
+
# df.drop_in_place("ham")
|
2765
|
+
# # =>
|
2766
|
+
# # shape: (3,)
|
2767
|
+
# # Series: 'ham' [str]
|
2768
|
+
# # [
|
2769
|
+
# # "a"
|
2770
|
+
# # "b"
|
2771
|
+
# # "c"
|
2772
|
+
# # ]
|
2773
|
+
def drop_in_place(name)
|
2774
|
+
Utils.wrap_s(_df.drop_in_place(name))
|
2775
|
+
end
|
2776
|
+
|
2777
|
+
# Create an empty copy of the current DataFrame.
|
2778
|
+
#
|
2779
|
+
# Returns a DataFrame with identical schema but no data.
|
2780
|
+
#
|
2781
|
+
# @return [DataFrame]
|
2782
|
+
#
|
2783
|
+
# @example
|
2784
|
+
# df = Polars::DataFrame.new(
|
2785
|
+
# {
|
2786
|
+
# "a" => [nil, 2, 3, 4],
|
2787
|
+
# "b" => [0.5, nil, 2.5, 13],
|
2788
|
+
# "c" => [true, true, false, nil]
|
2789
|
+
# }
|
2790
|
+
# )
|
2791
|
+
# df.cleared
|
2792
|
+
# # =>
|
2793
|
+
# # shape: (0, 3)
|
2794
|
+
# # ┌─────┬─────┬──────┐
|
2795
|
+
# # │ a ┆ b ┆ c │
|
2796
|
+
# # │ --- ┆ --- ┆ --- │
|
2797
|
+
# # │ i64 ┆ f64 ┆ bool │
|
2798
|
+
# # ╞═════╪═════╪══════╡
|
2799
|
+
# # └─────┴─────┴──────┘
|
2800
|
+
def cleared
|
2801
|
+
height > 0 ? head(0) : clone
|
2802
|
+
end
|
2803
|
+
|
2804
|
+
# clone handled by initialize_copy
|
2805
|
+
|
2806
|
+
# Get the DataFrame as a Array of Series.
|
2807
|
+
#
|
2808
|
+
# @return [Array]
|
2809
|
+
def get_columns
|
2810
|
+
_df.get_columns.map { |s| Utils.wrap_s(s) }
|
2811
|
+
end
|
2812
|
+
|
2813
|
+
# Get a single column as Series by name.
|
2814
|
+
#
|
2815
|
+
# @param name [String]
|
2816
|
+
# Name of the column to retrieve.
|
2817
|
+
#
|
2818
|
+
# @return [Series]
|
2819
|
+
#
|
2820
|
+
# @example
|
2821
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]})
|
2822
|
+
# df.get_column("foo")
|
2823
|
+
# # =>
|
2824
|
+
# # shape: (3,)
|
2825
|
+
# # Series: 'foo' [i64]
|
2826
|
+
# # [
|
2827
|
+
# # 1
|
2828
|
+
# # 2
|
2829
|
+
# # 3
|
2830
|
+
# # ]
|
2831
|
+
def get_column(name)
|
2832
|
+
self[name]
|
2833
|
+
end
|
2834
|
+
|
2835
|
+
# Fill null values using the specified value or strategy.
|
2836
|
+
#
|
2837
|
+
# @param value [Numeric]
|
2838
|
+
# Value used to fill null values.
|
2839
|
+
# @param strategy [nil, "forward", "backward", "min", "max", "mean", "zero", "one"]
|
2840
|
+
# Strategy used to fill null values.
|
2841
|
+
# @param limit [Integer]
|
2842
|
+
# Number of consecutive null values to fill when using the 'forward' or
|
2843
|
+
# 'backward' strategy.
|
2844
|
+
# @param matches_supertype [Boolean]
|
2845
|
+
# Fill all matching supertype of the fill `value`.
|
2846
|
+
#
|
2847
|
+
# @return [DataFrame]
|
2848
|
+
#
|
2849
|
+
# @example
|
2850
|
+
# df = Polars::DataFrame.new(
|
2851
|
+
# {
|
2852
|
+
# "a" => [1, 2, nil, 4],
|
2853
|
+
# "b" => [0.5, 4, nil, 13]
|
2854
|
+
# }
|
2855
|
+
# )
|
2856
|
+
# df.fill_null(99)
|
2857
|
+
# # =>
|
2858
|
+
# # shape: (4, 2)
|
2859
|
+
# # ┌─────┬──────┐
|
2860
|
+
# # │ a ┆ b │
|
2861
|
+
# # │ --- ┆ --- │
|
2862
|
+
# # │ i64 ┆ f64 │
|
2863
|
+
# # ╞═════╪══════╡
|
2864
|
+
# # │ 1 ┆ 0.5 │
|
2865
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2866
|
+
# # │ 2 ┆ 4.0 │
|
2867
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2868
|
+
# # │ 99 ┆ 99.0 │
|
2869
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2870
|
+
# # │ 4 ┆ 13.0 │
|
2871
|
+
# # └─────┴──────┘
|
2872
|
+
#
|
2873
|
+
# @example
|
2874
|
+
# df.fill_null(strategy: "forward")
|
2875
|
+
# # =>
|
2876
|
+
# # shape: (4, 2)
|
2877
|
+
# # ┌─────┬──────┐
|
2878
|
+
# # │ a ┆ b │
|
2879
|
+
# # │ --- ┆ --- │
|
2880
|
+
# # │ i64 ┆ f64 │
|
2881
|
+
# # ╞═════╪══════╡
|
2882
|
+
# # │ 1 ┆ 0.5 │
|
2883
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2884
|
+
# # │ 2 ┆ 4.0 │
|
2885
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2886
|
+
# # │ 2 ┆ 4.0 │
|
2887
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2888
|
+
# # │ 4 ┆ 13.0 │
|
2889
|
+
# # └─────┴──────┘
|
2890
|
+
#
|
2891
|
+
# @example
|
2892
|
+
# df.fill_null(strategy: "max")
|
2893
|
+
# # =>
|
2894
|
+
# # shape: (4, 2)
|
2895
|
+
# # ┌─────┬──────┐
|
2896
|
+
# # │ a ┆ b │
|
2897
|
+
# # │ --- ┆ --- │
|
2898
|
+
# # │ i64 ┆ f64 │
|
2899
|
+
# # ╞═════╪══════╡
|
2900
|
+
# # │ 1 ┆ 0.5 │
|
2901
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2902
|
+
# # │ 2 ┆ 4.0 │
|
2903
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2904
|
+
# # │ 4 ┆ 13.0 │
|
2905
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2906
|
+
# # │ 4 ┆ 13.0 │
|
2907
|
+
# # └─────┴──────┘
|
2908
|
+
#
|
2909
|
+
# @example
|
2910
|
+
# df.fill_null(strategy: "zero")
|
2911
|
+
# # =>
|
2912
|
+
# # shape: (4, 2)
|
2913
|
+
# # ┌─────┬──────┐
|
2914
|
+
# # │ a ┆ b │
|
2915
|
+
# # │ --- ┆ --- │
|
2916
|
+
# # │ i64 ┆ f64 │
|
2917
|
+
# # ╞═════╪══════╡
|
2918
|
+
# # │ 1 ┆ 0.5 │
|
2919
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2920
|
+
# # │ 2 ┆ 4.0 │
|
2921
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2922
|
+
# # │ 0 ┆ 0.0 │
|
2923
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2924
|
+
# # │ 4 ┆ 13.0 │
|
2925
|
+
# # └─────┴──────┘
|
2926
|
+
def fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: true)
|
2927
|
+
_from_rbdf(
|
2928
|
+
lazy
|
2929
|
+
.fill_null(value, strategy: strategy, limit: limit, matches_supertype: matches_supertype)
|
2930
|
+
.collect(no_optimization: true)
|
2931
|
+
._df
|
2932
|
+
)
|
2933
|
+
end
|
2934
|
+
|
2935
|
+
# Fill floating point NaN values by an Expression evaluation.
|
2936
|
+
#
|
2937
|
+
# @param fill_value [Object]
|
2938
|
+
# Value to fill NaN with.
|
2939
|
+
#
|
2940
|
+
# @return [DataFrame]
|
2941
|
+
#
|
2942
|
+
# @note
|
2943
|
+
# Note that floating point NaNs (Not a Number) are not missing values!
|
2944
|
+
# To replace missing values, use `fill_null`.
|
2945
|
+
#
|
2946
|
+
# @example
|
2947
|
+
# df = Polars::DataFrame.new(
|
2948
|
+
# {
|
2949
|
+
# "a" => [1.5, 2, Float::NAN, 4],
|
2950
|
+
# "b" => [0.5, 4, Float::NAN, 13]
|
2951
|
+
# }
|
2952
|
+
# )
|
2953
|
+
# df.fill_nan(99)
|
2954
|
+
# # =>
|
2955
|
+
# # shape: (4, 2)
|
2956
|
+
# # ┌──────┬──────┐
|
2957
|
+
# # │ a ┆ b │
|
2958
|
+
# # │ --- ┆ --- │
|
2959
|
+
# # │ f64 ┆ f64 │
|
2960
|
+
# # ╞══════╪══════╡
|
2961
|
+
# # │ 1.5 ┆ 0.5 │
|
2962
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2963
|
+
# # │ 2.0 ┆ 4.0 │
|
2964
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2965
|
+
# # │ 99.0 ┆ 99.0 │
|
2966
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
2967
|
+
# # │ 4.0 ┆ 13.0 │
|
2968
|
+
# # └──────┴──────┘
|
2969
|
+
def fill_nan(fill_value)
|
2970
|
+
lazy.fill_nan(fill_value).collect(no_optimization: true)
|
2971
|
+
end
|
2972
|
+
|
2973
|
+
# Explode `DataFrame` to long format by exploding a column with Lists.
|
2974
|
+
#
|
2975
|
+
# @param columns [Object]
|
2976
|
+
# Column of LargeList type.
|
2977
|
+
#
|
2978
|
+
# @return [DataFrame]
|
2979
|
+
#
|
2980
|
+
# @example
|
2981
|
+
# df = Polars::DataFrame.new(
|
2982
|
+
# {
|
2983
|
+
# "letters" => ["a", "a", "b", "c"],
|
2984
|
+
# "numbers" => [[1], [2, 3], [4, 5], [6, 7, 8]]
|
2985
|
+
# }
|
2986
|
+
# )
|
2987
|
+
# df.explode("numbers")
|
2988
|
+
# # =>
|
2989
|
+
# # shape: (8, 2)
|
2990
|
+
# # ┌─────────┬─────────┐
|
2991
|
+
# # │ letters ┆ numbers │
|
2992
|
+
# # │ --- ┆ --- │
|
2993
|
+
# # │ str ┆ i64 │
|
2994
|
+
# # ╞═════════╪═════════╡
|
2995
|
+
# # │ a ┆ 1 │
|
2996
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2997
|
+
# # │ a ┆ 2 │
|
2998
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2999
|
+
# # │ a ┆ 3 │
|
3000
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
3001
|
+
# # │ b ┆ 4 │
|
3002
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
3003
|
+
# # │ b ┆ 5 │
|
3004
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
3005
|
+
# # │ c ┆ 6 │
|
3006
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
3007
|
+
# # │ c ┆ 7 │
|
3008
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
3009
|
+
# # │ c ┆ 8 │
|
3010
|
+
# # └─────────┴─────────┘
|
3011
|
+
def explode(columns)
|
3012
|
+
lazy.explode(columns).collect(no_optimization: true)
|
3013
|
+
end
|
3014
|
+
|
3015
|
+
# Create a spreadsheet-style pivot table as a DataFrame.
|
3016
|
+
#
|
3017
|
+
# @param values [Object]
|
3018
|
+
# Column values to aggregate. Can be multiple columns if the *columns*
|
3019
|
+
# arguments contains multiple columns as well
|
3020
|
+
# @param index [Object]
|
3021
|
+
# One or multiple keys to group by
|
3022
|
+
# @param columns [Object]
|
3023
|
+
# Columns whose values will be used as the header of the output DataFrame
|
3024
|
+
# @param aggregate_fn ["first", "sum", "max", "min", "mean", "median", "last", "count"]
|
3025
|
+
# A predefined aggregate function str or an expression.
|
3026
|
+
# @param maintain_order [Object]
|
3027
|
+
# Sort the grouped keys so that the output order is predictable.
|
3028
|
+
# @param sort_columns [Object]
|
3029
|
+
# Sort the transposed columns by name. Default is by order of discovery.
|
3030
|
+
#
|
3031
|
+
# @return [DataFrame]
|
3032
|
+
#
|
3033
|
+
# @example
|
3034
|
+
# df = Polars::DataFrame.new(
|
3035
|
+
# {
|
3036
|
+
# "foo" => ["one", "one", "one", "two", "two", "two"],
|
3037
|
+
# "bar" => ["A", "B", "C", "A", "B", "C"],
|
3038
|
+
# "baz" => [1, 2, 3, 4, 5, 6]
|
3039
|
+
# }
|
3040
|
+
# )
|
3041
|
+
# df.pivot(values: "baz", index: "foo", columns: "bar")
|
3042
|
+
# # =>
|
3043
|
+
# # shape: (2, 4)
|
3044
|
+
# # ┌─────┬─────┬─────┬─────┐
|
3045
|
+
# # │ foo ┆ A ┆ B ┆ C │
|
3046
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
3047
|
+
# # │ str ┆ i64 ┆ i64 ┆ i64 │
|
3048
|
+
# # ╞═════╪═════╪═════╪═════╡
|
3049
|
+
# # │ one ┆ 1 ┆ 2 ┆ 3 │
|
3050
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
3051
|
+
# # │ two ┆ 4 ┆ 5 ┆ 6 │
|
3052
|
+
# # └─────┴─────┴─────┴─────┘
|
3053
|
+
def pivot(
|
3054
|
+
values:,
|
3055
|
+
index:,
|
3056
|
+
columns:,
|
3057
|
+
aggregate_fn: "first",
|
3058
|
+
maintain_order: true,
|
3059
|
+
sort_columns: false
|
3060
|
+
)
|
3061
|
+
if values.is_a?(String)
|
3062
|
+
values = [values]
|
3063
|
+
end
|
3064
|
+
if index.is_a?(String)
|
3065
|
+
index = [index]
|
3066
|
+
end
|
3067
|
+
if columns.is_a?(String)
|
3068
|
+
columns = [columns]
|
3069
|
+
end
|
3070
|
+
|
3071
|
+
if aggregate_fn.is_a?(String)
|
3072
|
+
case aggregate_fn
|
3073
|
+
when "first"
|
3074
|
+
aggregate_fn = Polars.element.first
|
3075
|
+
when "sum"
|
3076
|
+
aggregate_fn = Polars.element.sum
|
3077
|
+
when "max"
|
3078
|
+
aggregate_fn = Polars.element.max
|
3079
|
+
when "min"
|
3080
|
+
aggregate_fn = Polars.element.min
|
3081
|
+
when "mean"
|
3082
|
+
aggregate_fn = Polars.element.mean
|
3083
|
+
when "median"
|
3084
|
+
aggregate_fn = Polars.element.median
|
3085
|
+
when "last"
|
3086
|
+
aggregate_fn = Polars.element.last
|
3087
|
+
when "count"
|
3088
|
+
aggregate_fn = Polars.count
|
3089
|
+
else
|
3090
|
+
raise ArgumentError, "Argument aggregate fn: '#{aggregate_fn}' was not expected."
|
3091
|
+
end
|
3092
|
+
end
|
3093
|
+
|
3094
|
+
_from_rbdf(
|
3095
|
+
_df.pivot_expr(
|
3096
|
+
values,
|
3097
|
+
index,
|
3098
|
+
columns,
|
3099
|
+
aggregate_fn._rbexpr,
|
3100
|
+
maintain_order,
|
3101
|
+
sort_columns
|
3102
|
+
)
|
3103
|
+
)
|
3104
|
+
end
|
3105
|
+
|
3106
|
+
# Unpivot a DataFrame from wide to long format.
|
3107
|
+
#
|
3108
|
+
# Optionally leaves identifiers set.
|
3109
|
+
#
|
3110
|
+
# This function is useful to massage a DataFrame into a format where one or more
|
3111
|
+
# columns are identifier variables (id_vars), while all other columns, considered
|
3112
|
+
# measured variables (value_vars), are "unpivoted" to the row axis, leaving just
|
3113
|
+
# two non-identifier columns, 'variable' and 'value'.
|
3114
|
+
#
|
3115
|
+
# @param id_vars [Object]
|
3116
|
+
# Columns to use as identifier variables.
|
3117
|
+
# @param value_vars [Object]
|
3118
|
+
# Values to use as identifier variables.
|
3119
|
+
# If `value_vars` is empty all columns that are not in `id_vars` will be used.
|
3120
|
+
# @param variable_name [String]
|
3121
|
+
# Name to give to the `value` column. Defaults to "variable"
|
3122
|
+
# @param value_name [String]
|
3123
|
+
# Name to give to the `value` column. Defaults to "value"
|
3124
|
+
#
|
3125
|
+
# @return [DataFrame]
|
3126
|
+
#
|
3127
|
+
# @example
|
3128
|
+
# df = Polars::DataFrame.new(
|
3129
|
+
# {
|
3130
|
+
# "a" => ["x", "y", "z"],
|
3131
|
+
# "b" => [1, 3, 5],
|
3132
|
+
# "c" => [2, 4, 6]
|
3133
|
+
# }
|
3134
|
+
# )
|
3135
|
+
# df.melt(id_vars: "a", value_vars: ["b", "c"])
|
3136
|
+
# # =>
|
3137
|
+
# # shape: (6, 3)
|
3138
|
+
# # ┌─────┬──────────┬───────┐
|
3139
|
+
# # │ a ┆ variable ┆ value │
|
3140
|
+
# # │ --- ┆ --- ┆ --- │
|
3141
|
+
# # │ str ┆ str ┆ i64 │
|
3142
|
+
# # ╞═════╪══════════╪═══════╡
|
3143
|
+
# # │ x ┆ b ┆ 1 │
|
3144
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
3145
|
+
# # │ y ┆ b ┆ 3 │
|
3146
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
3147
|
+
# # │ z ┆ b ┆ 5 │
|
3148
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
3149
|
+
# # │ x ┆ c ┆ 2 │
|
3150
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
3151
|
+
# # │ y ┆ c ┆ 4 │
|
3152
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
3153
|
+
# # │ z ┆ c ┆ 6 │
|
3154
|
+
# # └─────┴──────────┴───────┘
|
3155
|
+
def melt(id_vars: nil, value_vars: nil, variable_name: nil, value_name: nil)
|
3156
|
+
if value_vars.is_a?(String)
|
3157
|
+
value_vars = [value_vars]
|
3158
|
+
end
|
3159
|
+
if id_vars.is_a?(String)
|
3160
|
+
id_vars = [id_vars]
|
3161
|
+
end
|
3162
|
+
if value_vars.nil?
|
3163
|
+
value_vars = []
|
3164
|
+
end
|
3165
|
+
if id_vars.nil?
|
3166
|
+
id_vars = []
|
3167
|
+
end
|
3168
|
+
_from_rbdf(
|
3169
|
+
_df.melt(id_vars, value_vars, value_name, variable_name)
|
3170
|
+
)
|
3171
|
+
end
|
3172
|
+
|
3173
|
+
# Unstack a long table to a wide form without doing an aggregation.
|
3174
|
+
#
|
3175
|
+
# This can be much faster than a pivot, because it can skip the grouping phase.
|
3176
|
+
#
|
3177
|
+
# @note
|
3178
|
+
# This functionality is experimental and may be subject to changes
|
3179
|
+
# without it being considered a breaking change.
|
3180
|
+
#
|
3181
|
+
# @param step Integer
|
3182
|
+
# Number of rows in the unstacked frame.
|
3183
|
+
# @param how ["vertical", "horizontal"]
|
3184
|
+
# Direction of the unstack.
|
3185
|
+
# @param columns [Object]
|
3186
|
+
# Column to include in the operation.
|
3187
|
+
# @param fill_values [Object]
|
3188
|
+
# Fill values that don't fit the new size with this value.
|
3189
|
+
#
|
3190
|
+
# @return [DataFrame]
|
3191
|
+
#
|
3192
|
+
# @example
|
3193
|
+
# df = Polars::DataFrame.new(
|
3194
|
+
# {
|
3195
|
+
# "col1" => "A".."I",
|
3196
|
+
# "col2" => Polars.arange(0, 9, eager: true)
|
3197
|
+
# }
|
3198
|
+
# )
|
3199
|
+
# # =>
|
3200
|
+
# # shape: (9, 2)
|
3201
|
+
# # ┌──────┬──────┐
|
3202
|
+
# # │ col1 ┆ col2 │
|
3203
|
+
# # │ --- ┆ --- │
|
3204
|
+
# # │ str ┆ i64 │
|
3205
|
+
# # ╞══════╪══════╡
|
3206
|
+
# # │ A ┆ 0 │
|
3207
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3208
|
+
# # │ B ┆ 1 │
|
3209
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3210
|
+
# # │ C ┆ 2 │
|
3211
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3212
|
+
# # │ D ┆ 3 │
|
3213
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3214
|
+
# # │ ... ┆ ... │
|
3215
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3216
|
+
# # │ F ┆ 5 │
|
3217
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3218
|
+
# # │ G ┆ 6 │
|
3219
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3220
|
+
# # │ H ┆ 7 │
|
3221
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3222
|
+
# # │ I ┆ 8 │
|
3223
|
+
# # └──────┴──────┘
|
3224
|
+
#
|
3225
|
+
# @example
|
3226
|
+
# df.unstack(step: 3, how: "vertical")
|
3227
|
+
# # =>
|
3228
|
+
# # shape: (3, 6)
|
3229
|
+
# # ┌────────┬────────┬────────┬────────┬────────┬────────┐
|
3230
|
+
# # │ col1_0 ┆ col1_1 ┆ col1_2 ┆ col2_0 ┆ col2_1 ┆ col2_2 │
|
3231
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
3232
|
+
# # │ str ┆ str ┆ str ┆ i64 ┆ i64 ┆ i64 │
|
3233
|
+
# # ╞════════╪════════╪════════╪════════╪════════╪════════╡
|
3234
|
+
# # │ A ┆ D ┆ G ┆ 0 ┆ 3 ┆ 6 │
|
3235
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
3236
|
+
# # │ B ┆ E ┆ H ┆ 1 ┆ 4 ┆ 7 │
|
3237
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
3238
|
+
# # │ C ┆ F ┆ I ┆ 2 ┆ 5 ┆ 8 │
|
3239
|
+
# # └────────┴────────┴────────┴────────┴────────┴────────┘
|
3240
|
+
#
|
3241
|
+
# @example
|
3242
|
+
# df.unstack(step: 3, how: "horizontal")
|
3243
|
+
# # =>
|
3244
|
+
# # shape: (3, 6)
|
3245
|
+
# # ┌────────┬────────┬────────┬────────┬────────┬────────┐
|
3246
|
+
# # │ col1_0 ┆ col1_1 ┆ col1_2 ┆ col2_0 ┆ col2_1 ┆ col2_2 │
|
3247
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
3248
|
+
# # │ str ┆ str ┆ str ┆ i64 ┆ i64 ┆ i64 │
|
3249
|
+
# # ╞════════╪════════╪════════╪════════╪════════╪════════╡
|
3250
|
+
# # │ A ┆ B ┆ C ┆ 0 ┆ 1 ┆ 2 │
|
3251
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
3252
|
+
# # │ D ┆ E ┆ F ┆ 3 ┆ 4 ┆ 5 │
|
3253
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌┤
|
3254
|
+
# # │ G ┆ H ┆ I ┆ 6 ┆ 7 ┆ 8 │
|
3255
|
+
# # └────────┴────────┴────────┴────────┴────────┴────────┘
|
3256
|
+
def unstack(step:, how: "vertical", columns: nil, fill_values: nil)
|
3257
|
+
if !columns.nil?
|
3258
|
+
df = select(columns)
|
3259
|
+
else
|
3260
|
+
df = self
|
3261
|
+
end
|
3262
|
+
|
3263
|
+
height = df.height
|
3264
|
+
if how == "vertical"
|
3265
|
+
n_rows = step
|
3266
|
+
n_cols = (height / n_rows.to_f).ceil
|
3267
|
+
else
|
3268
|
+
n_cols = step
|
3269
|
+
n_rows = (height / n_cols.to_f).ceil
|
3270
|
+
end
|
3271
|
+
|
3272
|
+
n_fill = n_cols * n_rows - height
|
3273
|
+
|
3274
|
+
if n_fill > 0
|
3275
|
+
if !fill_values.is_a?(Array)
|
3276
|
+
fill_values = [fill_values] * df.width
|
3277
|
+
end
|
3278
|
+
|
3279
|
+
df = df.select(
|
3280
|
+
df.get_columns.zip(fill_values).map do |s, next_fill|
|
3281
|
+
s.extend_constant(next_fill, n_fill)
|
3282
|
+
end
|
3283
|
+
)
|
3284
|
+
end
|
3285
|
+
|
3286
|
+
if how == "horizontal"
|
3287
|
+
df = (
|
3288
|
+
df.with_column(
|
3289
|
+
(Polars.arange(0, n_cols * n_rows, eager: true) % n_cols).alias(
|
3290
|
+
"__sort_order"
|
3291
|
+
)
|
3292
|
+
)
|
3293
|
+
.sort("__sort_order")
|
3294
|
+
.drop("__sort_order")
|
3295
|
+
)
|
3296
|
+
end
|
3297
|
+
|
3298
|
+
zfill_val = Math.log10(n_cols).floor + 1
|
3299
|
+
slices =
|
3300
|
+
df.get_columns.flat_map do |s|
|
3301
|
+
n_cols.times.map do |slice_nbr|
|
3302
|
+
s.slice(slice_nbr * n_rows, n_rows).alias("%s_%0#{zfill_val}d" % [s.name, slice_nbr])
|
3303
|
+
end
|
3304
|
+
end
|
3305
|
+
|
3306
|
+
_from_rbdf(DataFrame.new(slices)._df)
|
3307
|
+
end
|
3308
|
+
|
3309
|
+
# Split into multiple DataFrames partitioned by groups.
|
3310
|
+
#
|
3311
|
+
# @param groups [Object]
|
3312
|
+
# Groups to partition by.
|
3313
|
+
# @param maintain_order [Boolean]
|
3314
|
+
# Keep predictable output order. This is slower as it requires an extra sort
|
3315
|
+
# operation.
|
3316
|
+
# @param as_dict [Boolean]
|
3317
|
+
# If true, return the partitions in a dictionary keyed by the distinct group
|
3318
|
+
# values instead of a list.
|
3319
|
+
#
|
3320
|
+
# @return [Object]
|
3321
|
+
#
|
3322
|
+
# @example
|
3323
|
+
# df = Polars::DataFrame.new(
|
3324
|
+
# {
|
3325
|
+
# "foo" => ["A", "A", "B", "B", "C"],
|
3326
|
+
# "N" => [1, 2, 2, 4, 2],
|
3327
|
+
# "bar" => ["k", "l", "m", "m", "l"]
|
3328
|
+
# }
|
3329
|
+
# )
|
3330
|
+
# df.partition_by("foo", maintain_order: true)
|
3331
|
+
# # =>
|
3332
|
+
# # [shape: (2, 3)
|
3333
|
+
# # ┌─────┬─────┬─────┐
|
3334
|
+
# # │ foo ┆ N ┆ bar │
|
3335
|
+
# # │ --- ┆ --- ┆ --- │
|
3336
|
+
# # │ str ┆ i64 ┆ str │
|
3337
|
+
# # ╞═════╪═════╪═════╡
|
3338
|
+
# # │ A ┆ 1 ┆ k │
|
3339
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
3340
|
+
# # │ A ┆ 2 ┆ l │
|
3341
|
+
# # └─────┴─────┴─────┘, shape: (2, 3)
|
3342
|
+
# # ┌─────┬─────┬─────┐
|
3343
|
+
# # │ foo ┆ N ┆ bar │
|
3344
|
+
# # │ --- ┆ --- ┆ --- │
|
3345
|
+
# # │ str ┆ i64 ┆ str │
|
3346
|
+
# # ╞═════╪═════╪═════╡
|
3347
|
+
# # │ B ┆ 2 ┆ m │
|
3348
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
3349
|
+
# # │ B ┆ 4 ┆ m │
|
3350
|
+
# # └─────┴─────┴─────┘, shape: (1, 3)
|
3351
|
+
# # ┌─────┬─────┬─────┐
|
3352
|
+
# # │ foo ┆ N ┆ bar │
|
3353
|
+
# # │ --- ┆ --- ┆ --- │
|
3354
|
+
# # │ str ┆ i64 ┆ str │
|
3355
|
+
# # ╞═════╪═════╪═════╡
|
3356
|
+
# # │ C ┆ 2 ┆ l │
|
3357
|
+
# # └─────┴─────┴─────┘]
|
3358
|
+
#
|
3359
|
+
# @example
|
3360
|
+
# df.partition_by("foo", maintain_order: true, as_dict: true)
|
3361
|
+
# # =>
|
3362
|
+
# # {"A"=>shape: (2, 3)
|
3363
|
+
# # ┌─────┬─────┬─────┐
|
3364
|
+
# # │ foo ┆ N ┆ bar │
|
3365
|
+
# # │ --- ┆ --- ┆ --- │
|
3366
|
+
# # │ str ┆ i64 ┆ str │
|
3367
|
+
# # ╞═════╪═════╪═════╡
|
3368
|
+
# # │ A ┆ 1 ┆ k │
|
3369
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
3370
|
+
# # │ A ┆ 2 ┆ l │
|
3371
|
+
# # └─────┴─────┴─────┘, "B"=>shape: (2, 3)
|
3372
|
+
# # ┌─────┬─────┬─────┐
|
3373
|
+
# # │ foo ┆ N ┆ bar │
|
3374
|
+
# # │ --- ┆ --- ┆ --- │
|
3375
|
+
# # │ str ┆ i64 ┆ str │
|
3376
|
+
# # ╞═════╪═════╪═════╡
|
3377
|
+
# # │ B ┆ 2 ┆ m │
|
3378
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
3379
|
+
# # │ B ┆ 4 ┆ m │
|
3380
|
+
# # └─────┴─────┴─────┘, "C"=>shape: (1, 3)
|
3381
|
+
# # ┌─────┬─────┬─────┐
|
3382
|
+
# # │ foo ┆ N ┆ bar │
|
3383
|
+
# # │ --- ┆ --- ┆ --- │
|
3384
|
+
# # │ str ┆ i64 ┆ str │
|
3385
|
+
# # ╞═════╪═════╪═════╡
|
3386
|
+
# # │ C ┆ 2 ┆ l │
|
3387
|
+
# # └─────┴─────┴─────┘}
|
3388
|
+
def partition_by(groups, maintain_order: true, as_dict: false)
|
3389
|
+
if groups.is_a?(String)
|
3390
|
+
groups = [groups]
|
3391
|
+
elsif !groups.is_a?(Array)
|
3392
|
+
groups = Array(groups)
|
3393
|
+
end
|
3394
|
+
|
3395
|
+
if as_dict
|
3396
|
+
out = {}
|
3397
|
+
if groups.length == 1
|
3398
|
+
_df.partition_by(groups, maintain_order).each do |df|
|
3399
|
+
df = _from_rbdf(df)
|
3400
|
+
out[df[groups][0, 0]] = df
|
3401
|
+
end
|
3402
|
+
else
|
3403
|
+
_df.partition_by(groups, maintain_order).each do |df|
|
3404
|
+
df = _from_rbdf(df)
|
3405
|
+
out[df[groups].row(0)] = df
|
3406
|
+
end
|
3407
|
+
end
|
3408
|
+
out
|
3409
|
+
else
|
3410
|
+
_df.partition_by(groups, maintain_order).map { |df| _from_rbdf(df) }
|
3411
|
+
end
|
3412
|
+
end
|
3413
|
+
|
3414
|
+
# Shift values by the given period.
|
3415
|
+
#
|
3416
|
+
# @param periods [Integer]
|
3417
|
+
# Number of places to shift (may be negative).
|
3418
|
+
#
|
3419
|
+
# @return [DataFrame]
|
3420
|
+
#
|
3421
|
+
# @example
|
3422
|
+
# df = Polars::DataFrame.new(
|
3423
|
+
# {
|
3424
|
+
# "foo" => [1, 2, 3],
|
3425
|
+
# "bar" => [6, 7, 8],
|
3426
|
+
# "ham" => ["a", "b", "c"]
|
3427
|
+
# }
|
3428
|
+
# )
|
3429
|
+
# df.shift(1)
|
3430
|
+
# # =>
|
3431
|
+
# # shape: (3, 3)
|
3432
|
+
# # ┌──────┬──────┬──────┐
|
3433
|
+
# # │ foo ┆ bar ┆ ham │
|
3434
|
+
# # │ --- ┆ --- ┆ --- │
|
3435
|
+
# # │ i64 ┆ i64 ┆ str │
|
3436
|
+
# # ╞══════╪══════╪══════╡
|
3437
|
+
# # │ null ┆ null ┆ null │
|
3438
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3439
|
+
# # │ 1 ┆ 6 ┆ a │
|
3440
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3441
|
+
# # │ 2 ┆ 7 ┆ b │
|
3442
|
+
# # └──────┴──────┴──────┘
|
3443
|
+
#
|
3444
|
+
# @example
|
3445
|
+
# df.shift(-1)
|
3446
|
+
# # =>
|
3447
|
+
# # shape: (3, 3)
|
3448
|
+
# # ┌──────┬──────┬──────┐
|
3449
|
+
# # │ foo ┆ bar ┆ ham │
|
3450
|
+
# # │ --- ┆ --- ┆ --- │
|
3451
|
+
# # │ i64 ┆ i64 ┆ str │
|
3452
|
+
# # ╞══════╪══════╪══════╡
|
3453
|
+
# # │ 2 ┆ 7 ┆ b │
|
3454
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3455
|
+
# # │ 3 ┆ 8 ┆ c │
|
3456
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
3457
|
+
# # │ null ┆ null ┆ null │
|
3458
|
+
# # └──────┴──────┴──────┘
|
3459
|
+
def shift(periods)
|
3460
|
+
_from_rbdf(_df.shift(periods))
|
3461
|
+
end
|
3462
|
+
|
3463
|
+
# Shift the values by a given period and fill the resulting null values.
|
3464
|
+
#
|
3465
|
+
# @param periods [Integer]
|
3466
|
+
# Number of places to shift (may be negative).
|
3467
|
+
# @param fill_value [Object]
|
3468
|
+
# fill nil values with this value.
|
3469
|
+
#
|
3470
|
+
# @return [DataFrame]
|
3471
|
+
#
|
3472
|
+
# @example
|
3473
|
+
# df = Polars::DataFrame.new(
|
3474
|
+
# {
|
3475
|
+
# "foo" => [1, 2, 3],
|
3476
|
+
# "bar" => [6, 7, 8],
|
3477
|
+
# "ham" => ["a", "b", "c"]
|
3478
|
+
# }
|
3479
|
+
# )
|
3480
|
+
# df.shift_and_fill(1, 0)
|
3481
|
+
# # =>
|
3482
|
+
# # shape: (3, 3)
|
3483
|
+
# # ┌─────┬─────┬─────┐
|
3484
|
+
# # │ foo ┆ bar ┆ ham │
|
3485
|
+
# # │ --- ┆ --- ┆ --- │
|
3486
|
+
# # │ i64 ┆ i64 ┆ str │
|
3487
|
+
# # ╞═════╪═════╪═════╡
|
3488
|
+
# # │ 0 ┆ 0 ┆ 0 │
|
3489
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
3490
|
+
# # │ 1 ┆ 6 ┆ a │
|
3491
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
3492
|
+
# # │ 2 ┆ 7 ┆ b │
|
3493
|
+
# # └─────┴─────┴─────┘
|
3494
|
+
def shift_and_fill(periods, fill_value)
|
3495
|
+
lazy
|
3496
|
+
.shift_and_fill(periods, fill_value)
|
3497
|
+
.collect(no_optimization: true, string_cache: false)
|
3498
|
+
end
|
3499
|
+
|
3500
|
+
# Get a mask of all duplicated rows in this DataFrame.
|
3501
|
+
#
|
3502
|
+
# @return [Series]
|
3503
|
+
#
|
3504
|
+
# @example
|
3505
|
+
# df = Polars::DataFrame.new(
|
3506
|
+
# {
|
3507
|
+
# "a" => [1, 2, 3, 1],
|
3508
|
+
# "b" => ["x", "y", "z", "x"],
|
3509
|
+
# }
|
3510
|
+
# )
|
3511
|
+
# df.is_duplicated
|
3512
|
+
# # =>
|
3513
|
+
# # shape: (4,)
|
3514
|
+
# # Series: '' [bool]
|
3515
|
+
# # [
|
3516
|
+
# # true
|
3517
|
+
# # false
|
3518
|
+
# # false
|
3519
|
+
# # true
|
3520
|
+
# # ]
|
3521
|
+
def is_duplicated
|
3522
|
+
Utils.wrap_s(_df.is_duplicated)
|
3523
|
+
end
|
3524
|
+
|
3525
|
+
# Get a mask of all unique rows in this DataFrame.
|
3526
|
+
#
|
3527
|
+
# @return [Series]
|
3528
|
+
#
|
3529
|
+
# @example
|
3530
|
+
# df = Polars::DataFrame.new(
|
3531
|
+
# {
|
3532
|
+
# "a" => [1, 2, 3, 1],
|
3533
|
+
# "b" => ["x", "y", "z", "x"]
|
3534
|
+
# }
|
3535
|
+
# )
|
3536
|
+
# df.is_unique
|
3537
|
+
# # =>
|
3538
|
+
# # shape: (4,)
|
3539
|
+
# # Series: '' [bool]
|
3540
|
+
# # [
|
3541
|
+
# # false
|
3542
|
+
# # true
|
3543
|
+
# # true
|
3544
|
+
# # false
|
3545
|
+
# # ]
|
3546
|
+
def is_unique
|
3547
|
+
Utils.wrap_s(_df.is_unique)
|
3548
|
+
end
|
3549
|
+
|
3550
|
+
# Start a lazy query from this point.
|
3551
|
+
#
|
3552
|
+
# @return [LazyFrame]
|
3553
|
+
def lazy
|
3554
|
+
wrap_ldf(_df.lazy)
|
3555
|
+
end
|
3556
|
+
|
3557
|
+
# Select columns from this DataFrame.
|
3558
|
+
#
|
3559
|
+
# @param exprs [Object]
|
3560
|
+
# Column or columns to select.
|
3561
|
+
#
|
3562
|
+
# @return [DataFrame]
|
3563
|
+
#
|
3564
|
+
# @example
|
3565
|
+
# df = Polars::DataFrame.new(
|
3566
|
+
# {
|
3567
|
+
# "foo" => [1, 2, 3],
|
3568
|
+
# "bar" => [6, 7, 8],
|
3569
|
+
# "ham" => ["a", "b", "c"]
|
3570
|
+
# }
|
3571
|
+
# )
|
3572
|
+
# df.select("foo")
|
3573
|
+
# # =>
|
3574
|
+
# # shape: (3, 1)
|
3575
|
+
# # ┌─────┐
|
3576
|
+
# # │ foo │
|
3577
|
+
# # │ --- │
|
3578
|
+
# # │ i64 │
|
3579
|
+
# # ╞═════╡
|
3580
|
+
# # │ 1 │
|
3581
|
+
# # ├╌╌╌╌╌┤
|
3582
|
+
# # │ 2 │
|
3583
|
+
# # ├╌╌╌╌╌┤
|
3584
|
+
# # │ 3 │
|
3585
|
+
# # └─────┘
|
3586
|
+
#
|
3587
|
+
# @example
|
3588
|
+
# df.select(["foo", "bar"])
|
3589
|
+
# # =>
|
3590
|
+
# # shape: (3, 2)
|
3591
|
+
# # ┌─────┬─────┐
|
3592
|
+
# # │ foo ┆ bar │
|
3593
|
+
# # │ --- ┆ --- │
|
3594
|
+
# # │ i64 ┆ i64 │
|
3595
|
+
# # ╞═════╪═════╡
|
3596
|
+
# # │ 1 ┆ 6 │
|
3597
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
3598
|
+
# # │ 2 ┆ 7 │
|
3599
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
3600
|
+
# # │ 3 ┆ 8 │
|
3601
|
+
# # └─────┴─────┘
|
3602
|
+
#
|
3603
|
+
# @example
|
3604
|
+
# df.select(Polars.col("foo") + 1)
|
3605
|
+
# # =>
|
3606
|
+
# # shape: (3, 1)
|
3607
|
+
# # ┌─────┐
|
3608
|
+
# # │ foo │
|
3609
|
+
# # │ --- │
|
3610
|
+
# # │ i64 │
|
3611
|
+
# # ╞═════╡
|
3612
|
+
# # │ 2 │
|
3613
|
+
# # ├╌╌╌╌╌┤
|
3614
|
+
# # │ 3 │
|
3615
|
+
# # ├╌╌╌╌╌┤
|
3616
|
+
# # │ 4 │
|
3617
|
+
# # └─────┘
|
3618
|
+
#
|
3619
|
+
# @example
|
3620
|
+
# df.select([Polars.col("foo") + 1, Polars.col("bar") + 1])
|
3621
|
+
# # =>
|
3622
|
+
# # shape: (3, 2)
|
3623
|
+
# # ┌─────┬─────┐
|
3624
|
+
# # │ foo ┆ bar │
|
3625
|
+
# # │ --- ┆ --- │
|
3626
|
+
# # │ i64 ┆ i64 │
|
3627
|
+
# # ╞═════╪═════╡
|
3628
|
+
# # │ 2 ┆ 7 │
|
3629
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
3630
|
+
# # │ 3 ┆ 8 │
|
3631
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
3632
|
+
# # │ 4 ┆ 9 │
|
3633
|
+
# # └─────┴─────┘
|
3634
|
+
#
|
3635
|
+
# @example
|
3636
|
+
# df.select(Polars.when(Polars.col("foo") > 2).then(10).otherwise(0))
|
3637
|
+
# # =>
|
3638
|
+
# # shape: (3, 1)
|
3639
|
+
# # ┌─────────┐
|
3640
|
+
# # │ literal │
|
3641
|
+
# # │ --- │
|
3642
|
+
# # │ i64 │
|
3643
|
+
# # ╞═════════╡
|
3644
|
+
# # │ 0 │
|
3645
|
+
# # ├╌╌╌╌╌╌╌╌╌┤
|
3646
|
+
# # │ 0 │
|
3647
|
+
# # ├╌╌╌╌╌╌╌╌╌┤
|
3648
|
+
# # │ 10 │
|
3649
|
+
# # └─────────┘
|
3650
|
+
def select(exprs)
|
3651
|
+
_from_rbdf(
|
3652
|
+
lazy
|
3653
|
+
.select(exprs)
|
3654
|
+
.collect(no_optimization: true, string_cache: false)
|
3655
|
+
._df
|
3656
|
+
)
|
3657
|
+
end
|
3658
|
+
|
3659
|
+
# Add or overwrite multiple columns in a DataFrame.
|
3660
|
+
#
|
3661
|
+
# @param exprs [Array]
|
3662
|
+
# Array of Expressions that evaluate to columns.
|
3663
|
+
#
|
3664
|
+
# @return [DataFrame]
|
3665
|
+
#
|
3666
|
+
# @example
|
3667
|
+
# df = Polars::DataFrame.new(
|
3668
|
+
# {
|
3669
|
+
# "a" => [1, 2, 3, 4],
|
3670
|
+
# "b" => [0.5, 4, 10, 13],
|
3671
|
+
# "c" => [true, true, false, true]
|
3672
|
+
# }
|
3673
|
+
# )
|
3674
|
+
# df.with_columns(
|
3675
|
+
# [
|
3676
|
+
# (Polars.col("a") ** 2).alias("a^2"),
|
3677
|
+
# (Polars.col("b") / 2).alias("b/2"),
|
3678
|
+
# (Polars.col("c").is_not).alias("not c")
|
3679
|
+
# ]
|
3680
|
+
# )
|
3681
|
+
# # =>
|
3682
|
+
# # shape: (4, 6)
|
3683
|
+
# # ┌─────┬──────┬───────┬──────┬──────┬───────┐
|
3684
|
+
# # │ a ┆ b ┆ c ┆ a^2 ┆ b/2 ┆ not c │
|
3685
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
3686
|
+
# # │ i64 ┆ f64 ┆ bool ┆ f64 ┆ f64 ┆ bool │
|
3687
|
+
# # ╞═════╪══════╪═══════╪══════╪══════╪═══════╡
|
3688
|
+
# # │ 1 ┆ 0.5 ┆ true ┆ 1.0 ┆ 0.25 ┆ false │
|
3689
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
3690
|
+
# # │ 2 ┆ 4.0 ┆ true ┆ 4.0 ┆ 2.0 ┆ false │
|
3691
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
3692
|
+
# # │ 3 ┆ 10.0 ┆ false ┆ 9.0 ┆ 5.0 ┆ true │
|
3693
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
3694
|
+
# # │ 4 ┆ 13.0 ┆ true ┆ 16.0 ┆ 6.5 ┆ false │
|
3695
|
+
# # └─────┴──────┴───────┴──────┴──────┴───────┘
|
3696
|
+
def with_columns(exprs)
|
3697
|
+
if !exprs.nil? && !exprs.is_a?(Array)
|
3698
|
+
exprs = [exprs]
|
3699
|
+
end
|
3700
|
+
lazy
|
3701
|
+
.with_columns(exprs)
|
3702
|
+
.collect(no_optimization: true, string_cache: false)
|
3703
|
+
end
|
3704
|
+
|
3705
|
+
# Get number of chunks used by the ChunkedArrays of this DataFrame.
|
3706
|
+
#
|
3707
|
+
# @param strategy ["first", "all"]
|
3708
|
+
# Return the number of chunks of the 'first' column,
|
3709
|
+
# or 'all' columns in this DataFrame.
|
3710
|
+
#
|
3711
|
+
# @return [Object]
|
3712
|
+
#
|
3713
|
+
# @example
|
3714
|
+
# df = Polars::DataFrame.new(
|
3715
|
+
# {
|
3716
|
+
# "a" => [1, 2, 3, 4],
|
3717
|
+
# "b" => [0.5, 4, 10, 13],
|
3718
|
+
# "c" => [true, true, false, true]
|
3719
|
+
# }
|
3720
|
+
# )
|
3721
|
+
# df.n_chunks
|
3722
|
+
# # => 1
|
3723
|
+
# df.n_chunks(strategy: "all")
|
3724
|
+
# # => [1, 1, 1]
|
3725
|
+
def n_chunks(strategy: "first")
|
3726
|
+
if strategy == "first"
|
3727
|
+
_df.n_chunks
|
3728
|
+
elsif strategy == "all"
|
3729
|
+
get_columns.map(&:n_chunks)
|
3730
|
+
else
|
3731
|
+
raise ArgumentError, "Strategy: '{strategy}' not understood. Choose one of {{'first', 'all'}}"
|
3732
|
+
end
|
3733
|
+
end
|
3734
|
+
|
3735
|
+
# Aggregate the columns of this DataFrame to their maximum value.
|
3736
|
+
#
|
3737
|
+
# @return [DataFrame]
|
3738
|
+
#
|
3739
|
+
# @example
|
3740
|
+
# df = Polars::DataFrame.new(
|
3741
|
+
# {
|
3742
|
+
# "foo" => [1, 2, 3],
|
3743
|
+
# "bar" => [6, 7, 8],
|
3744
|
+
# "ham" => ["a", "b", "c"]
|
3745
|
+
# }
|
3746
|
+
# )
|
3747
|
+
# df.max
|
3748
|
+
# # =>
|
3749
|
+
# # shape: (1, 3)
|
3750
|
+
# # ┌─────┬─────┬─────┐
|
3751
|
+
# # │ foo ┆ bar ┆ ham │
|
3752
|
+
# # │ --- ┆ --- ┆ --- │
|
3753
|
+
# # │ i64 ┆ i64 ┆ str │
|
3754
|
+
# # ╞═════╪═════╪═════╡
|
3755
|
+
# # │ 3 ┆ 8 ┆ c │
|
3756
|
+
# # └─────┴─────┴─────┘
|
3757
|
+
def max(axis: 0)
|
3758
|
+
if axis == 0
|
3759
|
+
_from_rbdf(_df.max)
|
3760
|
+
elsif axis == 1
|
3761
|
+
Utils.wrap_s(_df.hmax)
|
3762
|
+
else
|
3763
|
+
raise ArgumentError, "Axis should be 0 or 1."
|
3764
|
+
end
|
3765
|
+
end
|
3766
|
+
|
3767
|
+
# Aggregate the columns of this DataFrame to their minimum value.
|
3768
|
+
#
|
3769
|
+
# @return [DataFrame]
|
3770
|
+
#
|
3771
|
+
# @example
|
3772
|
+
# df = Polars::DataFrame.new(
|
3773
|
+
# {
|
3774
|
+
# "foo" => [1, 2, 3],
|
3775
|
+
# "bar" => [6, 7, 8],
|
3776
|
+
# "ham" => ["a", "b", "c"]
|
3777
|
+
# }
|
3778
|
+
# )
|
3779
|
+
# df.min
|
3780
|
+
# # =>
|
3781
|
+
# # shape: (1, 3)
|
3782
|
+
# # ┌─────┬─────┬─────┐
|
3783
|
+
# # │ foo ┆ bar ┆ ham │
|
3784
|
+
# # │ --- ┆ --- ┆ --- │
|
3785
|
+
# # │ i64 ┆ i64 ┆ str │
|
3786
|
+
# # ╞═════╪═════╪═════╡
|
3787
|
+
# # │ 1 ┆ 6 ┆ a │
|
3788
|
+
# # └─────┴─────┴─────┘
|
3789
|
+
def min(axis: 0)
|
3790
|
+
if axis == 0
|
3791
|
+
_from_rbdf(_df.min)
|
3792
|
+
elsif axis == 1
|
3793
|
+
Utils.wrap_s(_df.hmin)
|
3794
|
+
else
|
3795
|
+
raise ArgumentError, "Axis should be 0 or 1."
|
3796
|
+
end
|
3797
|
+
end
|
3798
|
+
|
3799
|
+
# Aggregate the columns of this DataFrame to their sum value.
|
3800
|
+
#
|
3801
|
+
# @param axis [Integer]
|
3802
|
+
# Either 0 or 1.
|
3803
|
+
# @param null_strategy ["ignore", "propagate"]
|
3804
|
+
# This argument is only used if axis == 1.
|
3805
|
+
#
|
3806
|
+
# @return [DataFrame]
|
3807
|
+
#
|
3808
|
+
# @example
|
3809
|
+
# df = Polars::DataFrame.new(
|
3810
|
+
# {
|
3811
|
+
# "foo" => [1, 2, 3],
|
3812
|
+
# "bar" => [6, 7, 8],
|
3813
|
+
# "ham" => ["a", "b", "c"],
|
3814
|
+
# }
|
3815
|
+
# )
|
3816
|
+
# df.sum
|
3817
|
+
# # =>
|
3818
|
+
# # shape: (1, 3)
|
3819
|
+
# # ┌─────┬─────┬──────┐
|
3820
|
+
# # │ foo ┆ bar ┆ ham │
|
3821
|
+
# # │ --- ┆ --- ┆ --- │
|
3822
|
+
# # │ i64 ┆ i64 ┆ str │
|
3823
|
+
# # ╞═════╪═════╪══════╡
|
3824
|
+
# # │ 6 ┆ 21 ┆ null │
|
3825
|
+
# # └─────┴─────┴──────┘
|
3826
|
+
#
|
3827
|
+
# @example
|
3828
|
+
# df.sum(axis: 1)
|
3829
|
+
# # =>
|
3830
|
+
# # shape: (3,)
|
3831
|
+
# # Series: 'foo' [str]
|
3832
|
+
# # [
|
3833
|
+
# # "16a"
|
3834
|
+
# # "27b"
|
3835
|
+
# # "38c"
|
3836
|
+
# # ]
|
3837
|
+
def sum(axis: 0, null_strategy: "ignore")
|
3838
|
+
case axis
|
3839
|
+
when 0
|
3840
|
+
_from_rbdf(_df.sum)
|
3841
|
+
when 1
|
3842
|
+
Utils.wrap_s(_df.hsum(null_strategy))
|
3843
|
+
else
|
3844
|
+
raise ArgumentError, "Axis should be 0 or 1."
|
3845
|
+
end
|
3846
|
+
end
|
3847
|
+
|
3848
|
+
# Aggregate the columns of this DataFrame to their mean value.
|
3849
|
+
#
|
3850
|
+
# @param axis [Integer]
|
3851
|
+
# Either 0 or 1.
|
3852
|
+
# @param null_strategy ["ignore", "propagate"]
|
3853
|
+
# This argument is only used if axis == 1.
|
3854
|
+
#
|
3855
|
+
# @return [DataFrame]
|
3856
|
+
#
|
3857
|
+
# @example
|
3858
|
+
# df = Polars::DataFrame.new(
|
3859
|
+
# {
|
3860
|
+
# "foo" => [1, 2, 3],
|
3861
|
+
# "bar" => [6, 7, 8],
|
3862
|
+
# "ham" => ["a", "b", "c"]
|
3863
|
+
# }
|
3864
|
+
# )
|
3865
|
+
# df.mean
|
3866
|
+
# # =>
|
3867
|
+
# # shape: (1, 3)
|
3868
|
+
# # ┌─────┬─────┬──────┐
|
3869
|
+
# # │ foo ┆ bar ┆ ham │
|
3870
|
+
# # │ --- ┆ --- ┆ --- │
|
3871
|
+
# # │ f64 ┆ f64 ┆ str │
|
3872
|
+
# # ╞═════╪═════╪══════╡
|
3873
|
+
# # │ 2.0 ┆ 7.0 ┆ null │
|
3874
|
+
# # └─────┴─────┴──────┘
|
3875
|
+
def mean(axis: 0, null_strategy: "ignore")
|
3876
|
+
case axis
|
3877
|
+
when 0
|
3878
|
+
_from_rbdf(_df.mean)
|
3879
|
+
when 1
|
3880
|
+
Utils.wrap_s(_df.hmean(null_strategy))
|
3881
|
+
else
|
3882
|
+
raise ArgumentError, "Axis should be 0 or 1."
|
3883
|
+
end
|
3884
|
+
end
|
3885
|
+
|
3886
|
+
# Aggregate the columns of this DataFrame to their standard deviation value.
|
3887
|
+
#
|
3888
|
+
# @param ddof [Integer]
|
3889
|
+
# Degrees of freedom
|
3890
|
+
#
|
3891
|
+
# @return [DataFrame]
|
3892
|
+
#
|
3893
|
+
# @example
|
3894
|
+
# df = Polars::DataFrame.new(
|
3895
|
+
# {
|
3896
|
+
# "foo" => [1, 2, 3],
|
3897
|
+
# "bar" => [6, 7, 8],
|
3898
|
+
# "ham" => ["a", "b", "c"]
|
3899
|
+
# }
|
3900
|
+
# )
|
3901
|
+
# df.std
|
3902
|
+
# # =>
|
3903
|
+
# # shape: (1, 3)
|
3904
|
+
# # ┌─────┬─────┬──────┐
|
3905
|
+
# # │ foo ┆ bar ┆ ham │
|
3906
|
+
# # │ --- ┆ --- ┆ --- │
|
3907
|
+
# # │ f64 ┆ f64 ┆ str │
|
3908
|
+
# # ╞═════╪═════╪══════╡
|
3909
|
+
# # │ 1.0 ┆ 1.0 ┆ null │
|
3910
|
+
# # └─────┴─────┴──────┘
|
3911
|
+
#
|
3912
|
+
# @example
|
3913
|
+
# df.std(ddof: 0)
|
3914
|
+
# # =>
|
3915
|
+
# # shape: (1, 3)
|
3916
|
+
# # ┌──────────┬──────────┬──────┐
|
3917
|
+
# # │ foo ┆ bar ┆ ham │
|
3918
|
+
# # │ --- ┆ --- ┆ --- │
|
3919
|
+
# # │ f64 ┆ f64 ┆ str │
|
3920
|
+
# # ╞══════════╪══════════╪══════╡
|
3921
|
+
# # │ 0.816497 ┆ 0.816497 ┆ null │
|
3922
|
+
# # └──────────┴──────────┴──────┘
|
3923
|
+
def std(ddof: 1)
|
3924
|
+
_from_rbdf(_df.std(ddof))
|
3925
|
+
end
|
3926
|
+
|
3927
|
+
# Aggregate the columns of this DataFrame to their variance value.
|
3928
|
+
#
|
3929
|
+
# @param ddof [Integer]
|
3930
|
+
# Degrees of freedom
|
3931
|
+
#
|
3932
|
+
# @return [DataFrame]
|
3933
|
+
#
|
3934
|
+
# @example
|
3935
|
+
# df = Polars::DataFrame.new(
|
3936
|
+
# {
|
3937
|
+
# "foo" => [1, 2, 3],
|
3938
|
+
# "bar" => [6, 7, 8],
|
3939
|
+
# "ham" => ["a", "b", "c"]
|
3940
|
+
# }
|
3941
|
+
# )
|
3942
|
+
# df.var
|
3943
|
+
# # =>
|
3944
|
+
# # shape: (1, 3)
|
3945
|
+
# # ┌─────┬─────┬──────┐
|
3946
|
+
# # │ foo ┆ bar ┆ ham │
|
3947
|
+
# # │ --- ┆ --- ┆ --- │
|
3948
|
+
# # │ f64 ┆ f64 ┆ str │
|
3949
|
+
# # ╞═════╪═════╪══════╡
|
3950
|
+
# # │ 1.0 ┆ 1.0 ┆ null │
|
3951
|
+
# # └─────┴─────┴──────┘
|
3952
|
+
#
|
3953
|
+
# @example
|
3954
|
+
# df.var(ddof: 0)
|
3955
|
+
# # =>
|
3956
|
+
# # shape: (1, 3)
|
3957
|
+
# # ┌──────────┬──────────┬──────┐
|
3958
|
+
# # │ foo ┆ bar ┆ ham │
|
3959
|
+
# # │ --- ┆ --- ┆ --- │
|
3960
|
+
# # │ f64 ┆ f64 ┆ str │
|
3961
|
+
# # ╞══════════╪══════════╪══════╡
|
3962
|
+
# # │ 0.666667 ┆ 0.666667 ┆ null │
|
3963
|
+
# # └──────────┴──────────┴──────┘
|
3964
|
+
def var(ddof: 1)
|
3965
|
+
_from_rbdf(_df.var(ddof))
|
3966
|
+
end
|
3967
|
+
|
3968
|
+
# Aggregate the columns of this DataFrame to their median value.
|
3969
|
+
#
|
3970
|
+
# @return [DataFrame]
|
3971
|
+
#
|
3972
|
+
# @example
|
3973
|
+
# df = Polars::DataFrame.new(
|
3974
|
+
# {
|
3975
|
+
# "foo" => [1, 2, 3],
|
3976
|
+
# "bar" => [6, 7, 8],
|
3977
|
+
# "ham" => ["a", "b", "c"]
|
3978
|
+
# }
|
3979
|
+
# )
|
3980
|
+
# df.median
|
3981
|
+
# # =>
|
3982
|
+
# # shape: (1, 3)
|
3983
|
+
# # ┌─────┬─────┬──────┐
|
3984
|
+
# # │ foo ┆ bar ┆ ham │
|
3985
|
+
# # │ --- ┆ --- ┆ --- │
|
3986
|
+
# # │ f64 ┆ f64 ┆ str │
|
3987
|
+
# # ╞═════╪═════╪══════╡
|
3988
|
+
# # │ 2.0 ┆ 7.0 ┆ null │
|
3989
|
+
# # └─────┴─────┴──────┘
|
3990
|
+
def median
|
3991
|
+
_from_rbdf(_df.median)
|
3992
|
+
end
|
3993
|
+
|
3994
|
+
# Aggregate the columns of this DataFrame to their product values.
|
3995
|
+
#
|
3996
|
+
# @return [DataFrame]
|
3997
|
+
#
|
3998
|
+
# @example
|
3999
|
+
# df = Polars::DataFrame.new(
|
4000
|
+
# {
|
4001
|
+
# "a" => [1, 2, 3],
|
4002
|
+
# "b" => [0.5, 4, 10],
|
4003
|
+
# "c" => [true, true, false]
|
4004
|
+
# }
|
4005
|
+
# )
|
4006
|
+
# df.product
|
4007
|
+
# # =>
|
4008
|
+
# # shape: (1, 3)
|
4009
|
+
# # ┌─────┬──────┬─────┐
|
4010
|
+
# # │ a ┆ b ┆ c │
|
4011
|
+
# # │ --- ┆ --- ┆ --- │
|
4012
|
+
# # │ i64 ┆ f64 ┆ i64 │
|
4013
|
+
# # ╞═════╪══════╪═════╡
|
4014
|
+
# # │ 6 ┆ 20.0 ┆ 0 │
|
4015
|
+
# # └─────┴──────┴─────┘
|
4016
|
+
def product
|
4017
|
+
select(Polars.all.product)
|
4018
|
+
end
|
4019
|
+
|
4020
|
+
# Aggregate the columns of this DataFrame to their quantile value.
|
4021
|
+
#
|
4022
|
+
# @param quantile [Float]
|
4023
|
+
# Quantile between 0.0 and 1.0.
|
4024
|
+
# @param interpolation ["nearest", "higher", "lower", "midpoint", "linear"]
|
4025
|
+
# Interpolation method.
|
4026
|
+
#
|
4027
|
+
# @return [DataFrame]
|
4028
|
+
#
|
4029
|
+
# @example
|
4030
|
+
# df = Polars::DataFrame.new(
|
4031
|
+
# {
|
4032
|
+
# "foo" => [1, 2, 3],
|
4033
|
+
# "bar" => [6, 7, 8],
|
4034
|
+
# "ham" => ["a", "b", "c"]
|
4035
|
+
# }
|
4036
|
+
# )
|
4037
|
+
# df.quantile(0.5, interpolation: "nearest")
|
4038
|
+
# # =>
|
4039
|
+
# # shape: (1, 3)
|
4040
|
+
# # ┌─────┬─────┬──────┐
|
4041
|
+
# # │ foo ┆ bar ┆ ham │
|
4042
|
+
# # │ --- ┆ --- ┆ --- │
|
4043
|
+
# # │ f64 ┆ f64 ┆ str │
|
4044
|
+
# # ╞═════╪═════╪══════╡
|
4045
|
+
# # │ 2.0 ┆ 7.0 ┆ null │
|
4046
|
+
# # └─────┴─────┴──────┘
|
4047
|
+
def quantile(quantile, interpolation: "nearest")
|
4048
|
+
_from_rbdf(_df.quantile(quantile, interpolation))
|
4049
|
+
end
|
4050
|
+
|
4051
|
+
# Get one hot encoded dummy variables.
|
4052
|
+
#
|
4053
|
+
# @param columns
|
4054
|
+
# A subset of columns to convert to dummy variables. `nil` means
|
4055
|
+
# "all columns".
|
4056
|
+
#
|
4057
|
+
# @return [DataFrame]
|
4058
|
+
#
|
4059
|
+
# @example
|
4060
|
+
# df = Polars::DataFrame.new(
|
4061
|
+
# {
|
4062
|
+
# "foo" => [1, 2],
|
4063
|
+
# "bar" => [3, 4],
|
4064
|
+
# "ham" => ["a", "b"]
|
4065
|
+
# }
|
4066
|
+
# )
|
4067
|
+
# df.to_dummies
|
4068
|
+
# # =>
|
4069
|
+
# # shape: (2, 6)
|
4070
|
+
# # ┌───────┬───────┬───────┬───────┬───────┬───────┐
|
4071
|
+
# # │ foo_1 ┆ foo_2 ┆ bar_3 ┆ bar_4 ┆ ham_a ┆ ham_b │
|
4072
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
4073
|
+
# # │ u8 ┆ u8 ┆ u8 ┆ u8 ┆ u8 ┆ u8 │
|
4074
|
+
# # ╞═══════╪═══════╪═══════╪═══════╪═══════╪═══════╡
|
4075
|
+
# # │ 1 ┆ 0 ┆ 1 ┆ 0 ┆ 1 ┆ 0 │
|
4076
|
+
# # ├╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
4077
|
+
# # │ 0 ┆ 1 ┆ 0 ┆ 1 ┆ 0 ┆ 1 │
|
4078
|
+
# # └───────┴───────┴───────┴───────┴───────┴───────┘
|
4079
|
+
def to_dummies(columns: nil)
|
4080
|
+
if columns.is_a?(String)
|
4081
|
+
columns = [columns]
|
4082
|
+
end
|
4083
|
+
_from_rbdf(_df.to_dummies(columns))
|
4084
|
+
end
|
4085
|
+
|
4086
|
+
# Drop duplicate rows from this DataFrame.
|
4087
|
+
#
|
4088
|
+
# @param maintain_order [Boolean]
|
4089
|
+
# Keep the same order as the original DataFrame. This requires more work to
|
4090
|
+
# compute.
|
4091
|
+
# @param subset [Object]
|
4092
|
+
# Subset to use to compare rows.
|
4093
|
+
# @param keep ["first", "last"]
|
4094
|
+
# Which of the duplicate rows to keep (in conjunction with `subset`).
|
4095
|
+
#
|
4096
|
+
# @return [DataFrame]
|
4097
|
+
#
|
4098
|
+
# @note
|
4099
|
+
# Note that this fails if there is a column of type `List` in the DataFrame or
|
4100
|
+
# subset.
|
4101
|
+
#
|
4102
|
+
# @example
|
4103
|
+
# df = Polars::DataFrame.new(
|
4104
|
+
# {
|
4105
|
+
# "a" => [1, 1, 2, 3, 4, 5],
|
4106
|
+
# "b" => [0.5, 0.5, 1.0, 2.0, 3.0, 3.0],
|
4107
|
+
# "c" => [true, true, true, false, true, true]
|
4108
|
+
# }
|
4109
|
+
# )
|
4110
|
+
# df.unique
|
4111
|
+
# # =>
|
4112
|
+
# # shape: (5, 3)
|
4113
|
+
# # ┌─────┬─────┬───────┐
|
4114
|
+
# # │ a ┆ b ┆ c │
|
4115
|
+
# # │ --- ┆ --- ┆ --- │
|
4116
|
+
# # │ i64 ┆ f64 ┆ bool │
|
4117
|
+
# # ╞═════╪═════╪═══════╡
|
4118
|
+
# # │ 1 ┆ 0.5 ┆ true │
|
4119
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
4120
|
+
# # │ 2 ┆ 1.0 ┆ true │
|
4121
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
4122
|
+
# # │ 3 ┆ 2.0 ┆ false │
|
4123
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
4124
|
+
# # │ 4 ┆ 3.0 ┆ true │
|
4125
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
4126
|
+
# # │ 5 ┆ 3.0 ┆ true │
|
4127
|
+
# # └─────┴─────┴───────┘
|
4128
|
+
def unique(maintain_order: true, subset: nil, keep: "first")
|
4129
|
+
if !subset.nil?
|
4130
|
+
if subset.is_a?(String)
|
4131
|
+
subset = [subset]
|
4132
|
+
elsif !subset.is_a?(Array)
|
4133
|
+
subset = subset.to_a
|
4134
|
+
end
|
4135
|
+
end
|
4136
|
+
|
4137
|
+
_from_rbdf(_df.unique(maintain_order, subset, keep))
|
4138
|
+
end
|
4139
|
+
|
4140
|
+
# Return the number of unique rows, or the number of unique row-subsets.
|
4141
|
+
#
|
4142
|
+
# @param subset [Object]
|
4143
|
+
# One or more columns/expressions that define what to count;
|
4144
|
+
# omit to return the count of unique rows.
|
4145
|
+
#
|
4146
|
+
# @return [DataFrame]
|
4147
|
+
#
|
4148
|
+
# @example
|
4149
|
+
# df = Polars::DataFrame.new(
|
4150
|
+
# {
|
4151
|
+
# "a" => [1, 1, 2, 3, 4, 5],
|
4152
|
+
# "b" => [0.5, 0.5, 1.0, 2.0, 3.0, 3.0],
|
4153
|
+
# "c" => [true, true, true, false, true, true]
|
4154
|
+
# }
|
4155
|
+
# )
|
4156
|
+
# df.n_unique
|
4157
|
+
# # => 5
|
4158
|
+
#
|
4159
|
+
# @example Simple columns subset
|
4160
|
+
# df.n_unique(subset: ["b", "c"])
|
4161
|
+
# # => 4
|
4162
|
+
#
|
4163
|
+
# @example Expression subset
|
4164
|
+
# df.n_unique(
|
4165
|
+
# subset: [
|
4166
|
+
# (Polars.col("a").floordiv(2)),
|
4167
|
+
# (Polars.col("c") | (Polars.col("b") >= 2))
|
4168
|
+
# ]
|
4169
|
+
# )
|
4170
|
+
# # => 3
|
4171
|
+
def n_unique(subset: nil)
|
4172
|
+
if subset.is_a?(StringIO)
|
4173
|
+
subset = [Polars.col(subset)]
|
4174
|
+
elsif subset.is_a?(Expr)
|
4175
|
+
subset = [subset]
|
4176
|
+
end
|
4177
|
+
|
4178
|
+
if subset.is_a?(Array) && subset.length == 1
|
4179
|
+
expr = Utils.expr_to_lit_or_expr(subset[0], str_to_lit: false)
|
4180
|
+
else
|
4181
|
+
struct_fields = subset.nil? ? Polars.all : subset
|
4182
|
+
expr = Polars.struct(struct_fields)
|
4183
|
+
end
|
4184
|
+
|
4185
|
+
df = lazy.select(expr.n_unique).collect
|
4186
|
+
df.is_empty ? 0 : df.row(0)[0]
|
4187
|
+
end
|
4188
|
+
|
4189
|
+
# Rechunk the data in this DataFrame to a contiguous allocation.
|
4190
|
+
|
4191
|
+
# This will make sure all subsequent operations have optimal and predictable
|
4192
|
+
# performance.
|
4193
|
+
#
|
4194
|
+
# @return [DataFrame]
|
4195
|
+
def rechunk
|
4196
|
+
_from_rbdf(_df.rechunk)
|
4197
|
+
end
|
4198
|
+
|
4199
|
+
# Create a new DataFrame that shows the null counts per column.
|
4200
|
+
#
|
4201
|
+
# @return [DataFrame]
|
4202
|
+
#
|
4203
|
+
# @example
|
4204
|
+
# df = Polars::DataFrame.new(
|
4205
|
+
# {
|
4206
|
+
# "foo" => [1, nil, 3],
|
4207
|
+
# "bar" => [6, 7, nil],
|
4208
|
+
# "ham" => ["a", "b", "c"]
|
4209
|
+
# }
|
4210
|
+
# )
|
4211
|
+
# df.null_count
|
4212
|
+
# # =>
|
4213
|
+
# # shape: (1, 3)
|
4214
|
+
# # ┌─────┬─────┬─────┐
|
4215
|
+
# # │ foo ┆ bar ┆ ham │
|
4216
|
+
# # │ --- ┆ --- ┆ --- │
|
4217
|
+
# # │ u32 ┆ u32 ┆ u32 │
|
4218
|
+
# # ╞═════╪═════╪═════╡
|
4219
|
+
# # │ 1 ┆ 1 ┆ 0 │
|
4220
|
+
# # └─────┴─────┴─────┘
|
4221
|
+
def null_count
|
4222
|
+
_from_rbdf(_df.null_count)
|
4223
|
+
end
|
4224
|
+
|
4225
|
+
# Sample from this DataFrame.
|
4226
|
+
#
|
4227
|
+
# @param n [Integer]
|
4228
|
+
# Number of items to return. Cannot be used with `frac`. Defaults to 1 if
|
4229
|
+
# `frac` is nil.
|
4230
|
+
# @param frac [Float]
|
4231
|
+
# Fraction of items to return. Cannot be used with `n`.
|
4232
|
+
# @param with_replacement [Boolean]
|
4233
|
+
# Allow values to be sampled more than once.
|
4234
|
+
# @param shuffle [Boolean]
|
4235
|
+
# Shuffle the order of sampled data points.
|
4236
|
+
# @param seed [Integer]
|
4237
|
+
# Seed for the random number generator. If set to nil (default), a random
|
4238
|
+
# seed is used.
|
4239
|
+
#
|
4240
|
+
# @return [DataFrame]
|
4241
|
+
#
|
4242
|
+
# @example
|
4243
|
+
# df = Polars::DataFrame.new(
|
4244
|
+
# {
|
4245
|
+
# "foo" => [1, 2, 3],
|
4246
|
+
# "bar" => [6, 7, 8],
|
4247
|
+
# "ham" => ["a", "b", "c"]
|
4248
|
+
# }
|
4249
|
+
# )
|
4250
|
+
# df.sample(n: 2, seed: 0)
|
4251
|
+
# # =>
|
4252
|
+
# # shape: (2, 3)
|
4253
|
+
# # ┌─────┬─────┬─────┐
|
4254
|
+
# # │ foo ┆ bar ┆ ham │
|
4255
|
+
# # │ --- ┆ --- ┆ --- │
|
4256
|
+
# # │ i64 ┆ i64 ┆ str │
|
4257
|
+
# # ╞═════╪═════╪═════╡
|
4258
|
+
# # │ 3 ┆ 8 ┆ c │
|
4259
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
4260
|
+
# # │ 2 ┆ 7 ┆ b │
|
4261
|
+
# # └─────┴─────┴─────┘
|
4262
|
+
def sample(
|
4263
|
+
n: nil,
|
4264
|
+
frac: nil,
|
4265
|
+
with_replacement: false,
|
4266
|
+
shuffle: false,
|
4267
|
+
seed: nil
|
4268
|
+
)
|
4269
|
+
if !n.nil? && !frac.nil?
|
4270
|
+
raise ArgumentError, "cannot specify both `n` and `frac`"
|
4271
|
+
end
|
4272
|
+
|
4273
|
+
if n.nil? && !frac.nil?
|
4274
|
+
_from_rbdf(
|
4275
|
+
_df.sample_frac(frac, with_replacement, shuffle, seed)
|
4276
|
+
)
|
4277
|
+
end
|
4278
|
+
|
4279
|
+
if n.nil?
|
4280
|
+
n = 1
|
4281
|
+
end
|
4282
|
+
_from_rbdf(_df.sample_n(n, with_replacement, shuffle, seed))
|
4283
|
+
end
|
4284
|
+
|
4285
|
+
# Apply a horizontal reduction on a DataFrame.
|
4286
|
+
#
|
4287
|
+
# This can be used to effectively determine aggregations on a row level, and can
|
4288
|
+
# be applied to any DataType that can be supercasted (casted to a similar parent
|
4289
|
+
# type).
|
4290
|
+
#
|
4291
|
+
# An example of the supercast rules when applying an arithmetic operation on two
|
4292
|
+
# DataTypes are for instance:
|
4293
|
+
#
|
4294
|
+
# i8 + str = str
|
4295
|
+
# f32 + i64 = f32
|
4296
|
+
# f32 + f64 = f64
|
4297
|
+
#
|
4298
|
+
# @return [Series]
|
4299
|
+
#
|
4300
|
+
# @example A horizontal sum operation:
|
4301
|
+
# df = Polars::DataFrame.new(
|
4302
|
+
# {
|
4303
|
+
# "a" => [2, 1, 3],
|
4304
|
+
# "b" => [1, 2, 3],
|
4305
|
+
# "c" => [1.0, 2.0, 3.0]
|
4306
|
+
# }
|
4307
|
+
# )
|
4308
|
+
# df.fold { |s1, s2| s1 + s2 }
|
4309
|
+
# # =>
|
4310
|
+
# # shape: (3,)
|
4311
|
+
# # Series: 'a' [f64]
|
4312
|
+
# # [
|
4313
|
+
# # 4.0
|
4314
|
+
# # 5.0
|
4315
|
+
# # 9.0
|
4316
|
+
# # ]
|
4317
|
+
#
|
4318
|
+
# @example A horizontal minimum operation:
|
4319
|
+
# df = Polars::DataFrame.new({"a" => [2, 1, 3], "b" => [1, 2, 3], "c" => [1.0, 2.0, 3.0]})
|
4320
|
+
# df.fold { |s1, s2| s1.zip_with(s1 < s2, s2) }
|
4321
|
+
# # =>
|
4322
|
+
# # shape: (3,)
|
4323
|
+
# # Series: 'a' [f64]
|
4324
|
+
# # [
|
4325
|
+
# # 1.0
|
4326
|
+
# # 1.0
|
4327
|
+
# # 3.0
|
4328
|
+
# # ]
|
4329
|
+
#
|
4330
|
+
# @example A horizontal string concatenation:
|
4331
|
+
# df = Polars::DataFrame.new(
|
4332
|
+
# {
|
4333
|
+
# "a" => ["foo", "bar", 2],
|
4334
|
+
# "b" => [1, 2, 3],
|
4335
|
+
# "c" => [1.0, 2.0, 3.0]
|
4336
|
+
# }
|
4337
|
+
# )
|
4338
|
+
# df.fold { |s1, s2| s1 + s2 }
|
4339
|
+
# # =>
|
4340
|
+
# # shape: (3,)
|
4341
|
+
# # Series: 'a' [str]
|
4342
|
+
# # [
|
4343
|
+
# # "foo11.0"
|
4344
|
+
# # "bar22.0"
|
4345
|
+
# # null
|
4346
|
+
# # ]
|
4347
|
+
#
|
4348
|
+
# @example A horizontal boolean or, similar to a row-wise .any():
|
4349
|
+
# df = Polars::DataFrame.new(
|
4350
|
+
# {
|
4351
|
+
# "a" => [false, false, true],
|
4352
|
+
# "b" => [false, true, false]
|
4353
|
+
# }
|
4354
|
+
# )
|
4355
|
+
# df.fold { |s1, s2| s1 | s2 }
|
4356
|
+
# # =>
|
4357
|
+
# # shape: (3,)
|
4358
|
+
# # Series: 'a' [bool]
|
4359
|
+
# # [
|
4360
|
+
# # false
|
4361
|
+
# # true
|
4362
|
+
# # true
|
4363
|
+
# # ]
|
4364
|
+
def fold(&operation)
|
4365
|
+
acc = to_series(0)
|
4366
|
+
|
4367
|
+
1.upto(width - 1) do |i|
|
4368
|
+
acc = operation.call(acc, to_series(i))
|
4369
|
+
end
|
4370
|
+
acc
|
4371
|
+
end
|
4372
|
+
|
4373
|
+
# Get a row as tuple, either by index or by predicate.
|
4374
|
+
#
|
4375
|
+
# @param index [Object]
|
4376
|
+
# Row index.
|
4377
|
+
# @param by_predicate [Object]
|
4378
|
+
# Select the row according to a given expression/predicate.
|
4379
|
+
#
|
4380
|
+
# @return [Object]
|
4381
|
+
#
|
4382
|
+
# @note
|
4383
|
+
# The `index` and `by_predicate` params are mutually exclusive. Additionally,
|
4384
|
+
# to ensure clarity, the `by_predicate` parameter must be supplied by keyword.
|
4385
|
+
#
|
4386
|
+
# When using `by_predicate` it is an error condition if anything other than
|
4387
|
+
# one row is returned; more than one row raises `TooManyRowsReturned`, and
|
4388
|
+
# zero rows will raise `NoRowsReturned` (both inherit from `RowsException`).
|
4389
|
+
#
|
4390
|
+
# @example Return the row at the given index
|
4391
|
+
# df = Polars::DataFrame.new(
|
4392
|
+
# {
|
4393
|
+
# "foo" => [1, 2, 3],
|
4394
|
+
# "bar" => [6, 7, 8],
|
4395
|
+
# "ham" => ["a", "b", "c"]
|
4396
|
+
# }
|
4397
|
+
# )
|
4398
|
+
# df.row(2)
|
4399
|
+
# # => [3, 8, "c"]
|
4400
|
+
#
|
4401
|
+
# @example Return the row that matches the given predicate
|
4402
|
+
# df.row(by_predicate: Polars.col("ham") == "b")
|
4403
|
+
# # => [2, 7, "b"]
|
4404
|
+
def row(index = nil, by_predicate: nil)
|
4405
|
+
if !index.nil? && !by_predicate.nil?
|
4406
|
+
raise ArgumentError, "Cannot set both 'index' and 'by_predicate'; mutually exclusive"
|
4407
|
+
elsif index.is_a?(Expr)
|
4408
|
+
raise TypeError, "Expressions should be passed to the 'by_predicate' param"
|
4409
|
+
elsif index.is_a?(Integer)
|
4410
|
+
_df.row_tuple(index)
|
4411
|
+
elsif by_predicate.is_a?(Expr)
|
4412
|
+
rows = filter(by_predicate).rows
|
4413
|
+
n_rows = rows.length
|
4414
|
+
if n_rows > 1
|
4415
|
+
raise TooManyRowsReturned, "Predicate #{by_predicate} returned #{n_rows} rows"
|
4416
|
+
elsif n_rows == 0
|
4417
|
+
raise NoRowsReturned, "Predicate <{by_predicate!s}> returned no rows"
|
4418
|
+
end
|
4419
|
+
rows[0]
|
4420
|
+
else
|
4421
|
+
raise ArgumentError, "One of 'index' or 'by_predicate' must be set"
|
4422
|
+
end
|
4423
|
+
end
|
4424
|
+
|
4425
|
+
# Convert columnar data to rows as Ruby arrays.
|
4426
|
+
#
|
4427
|
+
# @return [Array]
|
4428
|
+
#
|
4429
|
+
# @example
|
4430
|
+
# df = Polars::DataFrame.new(
|
4431
|
+
# {
|
4432
|
+
# "a" => [1, 3, 5],
|
4433
|
+
# "b" => [2, 4, 6]
|
4434
|
+
# }
|
4435
|
+
# )
|
4436
|
+
# df.rows
|
4437
|
+
# # => [[1, 2], [3, 4], [5, 6]]
|
4438
|
+
def rows
|
4439
|
+
_df.row_tuples
|
4440
|
+
end
|
4441
|
+
|
4442
|
+
# Shrink DataFrame memory usage.
|
4443
|
+
#
|
4444
|
+
# Shrinks to fit the exact capacity needed to hold the data.
|
4445
|
+
#
|
4446
|
+
# @return [DataFrame]
|
4447
|
+
def shrink_to_fit(in_place: false)
|
4448
|
+
if in_place
|
4449
|
+
_df.shrink_to_fit
|
4450
|
+
self
|
4451
|
+
else
|
4452
|
+
df = clone
|
4453
|
+
df._df.shrink_to_fit
|
4454
|
+
df
|
4455
|
+
end
|
4456
|
+
end
|
4457
|
+
|
4458
|
+
# Take every nth row in the DataFrame and return as a new DataFrame.
|
4459
|
+
#
|
4460
|
+
# @return [DataFrame]
|
4461
|
+
#
|
4462
|
+
# @example
|
4463
|
+
# s = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [5, 6, 7, 8]})
|
4464
|
+
# s.take_every(2)
|
4465
|
+
# # =>
|
4466
|
+
# # shape: (2, 2)
|
4467
|
+
# # ┌─────┬─────┐
|
4468
|
+
# # │ a ┆ b │
|
4469
|
+
# # │ --- ┆ --- │
|
4470
|
+
# # │ i64 ┆ i64 │
|
4471
|
+
# # ╞═════╪═════╡
|
4472
|
+
# # │ 1 ┆ 5 │
|
4473
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
4474
|
+
# # │ 3 ┆ 7 │
|
4475
|
+
# # └─────┴─────┘
|
4476
|
+
def take_every(n)
|
4477
|
+
select(Utils.col("*").take_every(n))
|
4478
|
+
end
|
4479
|
+
|
4480
|
+
# Hash and combine the rows in this DataFrame.
|
4481
|
+
#
|
4482
|
+
# The hash value is of type `:u64`.
|
4483
|
+
#
|
4484
|
+
# @param seed [Integer]
|
4485
|
+
# Random seed parameter. Defaults to 0.
|
4486
|
+
# @param seed_1 [Integer]
|
4487
|
+
# Random seed parameter. Defaults to `seed` if not set.
|
4488
|
+
# @param seed_2 [Integer]
|
4489
|
+
# Random seed parameter. Defaults to `seed` if not set.
|
4490
|
+
# @param seed_3 [Integer]
|
4491
|
+
# Random seed parameter. Defaults to `seed` if not set.
|
4492
|
+
#
|
4493
|
+
# @return [Series]
|
4494
|
+
#
|
4495
|
+
# @example
|
4496
|
+
# df = Polars::DataFrame.new(
|
4497
|
+
# {
|
4498
|
+
# "foo" => [1, nil, 3, 4],
|
4499
|
+
# "ham" => ["a", "b", nil, "d"]
|
4500
|
+
# }
|
4501
|
+
# )
|
4502
|
+
# df.hash_rows(seed: 42)
|
4503
|
+
# # =>
|
4504
|
+
# # shape: (4,)
|
4505
|
+
# # Series: '' [u64]
|
4506
|
+
# # [
|
4507
|
+
# # 4238614331852490969
|
4508
|
+
# # 17976148875586754089
|
4509
|
+
# # 4702262519505526977
|
4510
|
+
# # 18144177983981041107
|
4511
|
+
# # ]
|
4512
|
+
def hash_rows(seed: 0, seed_1: nil, seed_2: nil, seed_3: nil)
|
4513
|
+
k0 = seed
|
4514
|
+
k1 = seed_1.nil? ? seed : seed_1
|
4515
|
+
k2 = seed_2.nil? ? seed : seed_2
|
4516
|
+
k3 = seed_3.nil? ? seed : seed_3
|
4517
|
+
Utils.wrap_s(_df.hash_rows(k0, k1, k2, k3))
|
4518
|
+
end
|
4519
|
+
|
4520
|
+
# Interpolate intermediate values. The interpolation method is linear.
|
4521
|
+
#
|
4522
|
+
# @return [DataFrame]
|
4523
|
+
#
|
4524
|
+
# @example
|
4525
|
+
# df = Polars::DataFrame.new(
|
4526
|
+
# {
|
4527
|
+
# "foo" => [1, nil, 9, 10],
|
4528
|
+
# "bar" => [6, 7, 9, nil],
|
4529
|
+
# "baz" => [1, nil, nil, 9]
|
4530
|
+
# }
|
4531
|
+
# )
|
4532
|
+
# df.interpolate
|
4533
|
+
# # =>
|
4534
|
+
# # shape: (4, 3)
|
4535
|
+
# # ┌─────┬──────┬─────┐
|
4536
|
+
# # │ foo ┆ bar ┆ baz │
|
4537
|
+
# # │ --- ┆ --- ┆ --- │
|
4538
|
+
# # │ i64 ┆ i64 ┆ i64 │
|
4539
|
+
# # ╞═════╪══════╪═════╡
|
4540
|
+
# # │ 1 ┆ 6 ┆ 1 │
|
4541
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
4542
|
+
# # │ 5 ┆ 7 ┆ 3 │
|
4543
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
4544
|
+
# # │ 9 ┆ 9 ┆ 6 │
|
4545
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
4546
|
+
# # │ 10 ┆ null ┆ 9 │
|
4547
|
+
# # └─────┴──────┴─────┘
|
4548
|
+
def interpolate
|
4549
|
+
select(Utils.col("*").interpolate)
|
4550
|
+
end
|
4551
|
+
|
4552
|
+
# Check if the dataframe is empty.
|
4553
|
+
#
|
4554
|
+
# @return [Boolean]
|
4555
|
+
#
|
4556
|
+
# @example
|
4557
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]})
|
4558
|
+
# df.is_empty
|
4559
|
+
# # => false
|
4560
|
+
# df.filter(Polars.col("foo") > 99).is_empty
|
4561
|
+
# # => true
|
4562
|
+
def is_empty
|
4563
|
+
height == 0
|
4564
|
+
end
|
4565
|
+
alias_method :empty?, :is_empty
|
4566
|
+
|
4567
|
+
# Convert a `DataFrame` to a `Series` of type `Struct`.
|
4568
|
+
#
|
4569
|
+
# @param name [String]
|
4570
|
+
# Name for the struct Series
|
4571
|
+
#
|
4572
|
+
# @return [Series]
|
4573
|
+
#
|
4574
|
+
# @example
|
4575
|
+
# df = Polars::DataFrame.new(
|
4576
|
+
# {
|
4577
|
+
# "a" => [1, 2, 3, 4, 5],
|
4578
|
+
# "b" => ["one", "two", "three", "four", "five"]
|
4579
|
+
# }
|
4580
|
+
# )
|
4581
|
+
# df.to_struct("nums")
|
4582
|
+
# # =>
|
4583
|
+
# # shape: (5,)
|
4584
|
+
# # Series: 'nums' [struct[2]]
|
4585
|
+
# # [
|
4586
|
+
# # {1,"one"}
|
4587
|
+
# # {2,"two"}
|
4588
|
+
# # {3,"three"}
|
4589
|
+
# # {4,"four"}
|
4590
|
+
# # {5,"five"}
|
4591
|
+
# # ]
|
4592
|
+
def to_struct(name)
|
4593
|
+
Utils.wrap_s(_df.to_struct(name))
|
4594
|
+
end
|
4595
|
+
|
4596
|
+
# Decompose a struct into its fields.
|
4597
|
+
#
|
4598
|
+
# The fields will be inserted into the `DataFrame` on the location of the
|
4599
|
+
# `struct` type.
|
4600
|
+
#
|
4601
|
+
# @param names [Object]
|
4602
|
+
# Names of the struct columns that will be decomposed by its fields
|
4603
|
+
#
|
4604
|
+
# @return [DataFrame]
|
4605
|
+
#
|
4606
|
+
# @example
|
4607
|
+
# df = Polars::DataFrame.new(
|
4608
|
+
# {
|
4609
|
+
# "before" => ["foo", "bar"],
|
4610
|
+
# "t_a" => [1, 2],
|
4611
|
+
# "t_b" => ["a", "b"],
|
4612
|
+
# "t_c" => [true, nil],
|
4613
|
+
# "t_d" => [[1, 2], [3]],
|
4614
|
+
# "after" => ["baz", "womp"]
|
4615
|
+
# }
|
4616
|
+
# ).select(["before", Polars.struct(Polars.col("^t_.$")).alias("t_struct"), "after"])
|
4617
|
+
# df.unnest("t_struct")
|
4618
|
+
# # =>
|
4619
|
+
# # shape: (2, 6)
|
4620
|
+
# # ┌────────┬─────┬─────┬──────┬───────────┬───────┐
|
4621
|
+
# # │ before ┆ t_a ┆ t_b ┆ t_c ┆ t_d ┆ after │
|
4622
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
4623
|
+
# # │ str ┆ i64 ┆ str ┆ bool ┆ list[i64] ┆ str │
|
4624
|
+
# # ╞════════╪═════╪═════╪══════╪═══════════╪═══════╡
|
4625
|
+
# # │ foo ┆ 1 ┆ a ┆ true ┆ [1, 2] ┆ baz │
|
4626
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
4627
|
+
# # │ bar ┆ 2 ┆ b ┆ null ┆ [3] ┆ womp │
|
4628
|
+
# # └────────┴─────┴─────┴──────┴───────────┴───────┘
|
4629
|
+
def unnest(names)
|
4630
|
+
if names.is_a?(String)
|
4631
|
+
names = [names]
|
4632
|
+
end
|
4633
|
+
_from_rbdf(_df.unnest(names))
|
4634
|
+
end
|
4635
|
+
|
4636
|
+
private
|
4637
|
+
|
4638
|
+
def initialize_copy(other)
|
4639
|
+
super
|
4640
|
+
self._df = _df._clone
|
4641
|
+
end
|
4642
|
+
|
4643
|
+
def _pos_idx(idx, dim)
|
4644
|
+
if idx >= 0
|
4645
|
+
idx
|
4646
|
+
else
|
4647
|
+
shape[dim] + idx
|
4648
|
+
end
|
4649
|
+
end
|
4650
|
+
|
4651
|
+
# def _pos_idxs
|
4652
|
+
# end
|
4653
|
+
|
4654
|
+
# @private
|
4655
|
+
def self.hash_to_rbdf(data, columns: nil)
|
4656
|
+
if !columns.nil?
|
4657
|
+
columns, dtypes = _unpack_columns(columns, lookup_names: data.keys)
|
4658
|
+
|
4659
|
+
if data.empty? && dtypes
|
4660
|
+
data_series = columns.map { |name| Series.new(name, [], dtype: dtypes[name])._s }
|
4661
|
+
else
|
4662
|
+
data_series = data.map { |name, values| Series.new(name, values, dtype: dtypes[name])._s }
|
4663
|
+
end
|
4664
|
+
data_series = _handle_columns_arg(data_series, columns: columns)
|
4665
|
+
return RbDataFrame.new(data_series)
|
4666
|
+
end
|
4667
|
+
|
4668
|
+
RbDataFrame.read_hash(data)
|
4669
|
+
end
|
4670
|
+
|
4671
|
+
# @private
|
4672
|
+
def self._unpack_columns(columns, lookup_names: nil, n_expected: nil)
|
4673
|
+
if columns.is_a?(Hash)
|
4674
|
+
columns = columns.to_a
|
4675
|
+
end
|
4676
|
+
column_names =
|
4677
|
+
(columns || []).map.with_index do |col, i|
|
4678
|
+
if col.is_a?(String)
|
4679
|
+
col || "column_#{i}"
|
4680
|
+
else
|
4681
|
+
col[0]
|
4682
|
+
end
|
4683
|
+
end
|
4684
|
+
if column_names.empty? && n_expected
|
4685
|
+
column_names = n_expected.times.map { |i| "column_#{i}" }
|
4686
|
+
end
|
4687
|
+
# TODO zip_longest
|
4688
|
+
lookup = column_names.zip(lookup_names || []).to_h
|
4689
|
+
|
4690
|
+
[
|
4691
|
+
column_names,
|
4692
|
+
(columns || []).select { |col| !col.is_a?(String) && col[1] }.to_h do |col|
|
4693
|
+
[lookup[col[0]] || col[0], col[1]]
|
4694
|
+
end
|
4695
|
+
]
|
4696
|
+
end
|
4697
|
+
|
4698
|
+
def self._handle_columns_arg(data, columns: nil)
|
4699
|
+
if columns.nil?
|
4700
|
+
data
|
4701
|
+
else
|
4702
|
+
if data.empty?
|
4703
|
+
columns.map { |c| Series.new(c, nil)._s }
|
4704
|
+
elsif data.length == columns.length
|
4705
|
+
columns.each_with_index do |c, i|
|
4706
|
+
# not in-place?
|
4707
|
+
data[i].rename(c)
|
4708
|
+
end
|
4709
|
+
data
|
4710
|
+
else
|
4711
|
+
raise ArgumentError, "Dimensions of columns arg must match data dimensions."
|
4712
|
+
end
|
4713
|
+
end
|
4714
|
+
end
|
4715
|
+
|
4716
|
+
# @private
|
4717
|
+
def self.sequence_to_rbdf(data, columns: nil, orient: nil)
|
4718
|
+
if data.length == 0
|
4719
|
+
return hash_to_rbdf({}, columns: columns)
|
4720
|
+
end
|
4721
|
+
|
4722
|
+
if data[0].is_a?(Series)
|
4723
|
+
# series_names = data.map(&:name)
|
4724
|
+
# columns, dtypes = _unpack_columns(columns || series_names, n_expected: data.length)
|
4725
|
+
data_series = []
|
4726
|
+
data.each do |s|
|
4727
|
+
data_series << s._s
|
4728
|
+
end
|
4729
|
+
elsif data[0].is_a?(Array)
|
4730
|
+
if orient.nil? && !columns.nil?
|
4731
|
+
orient = columns.length == data.length ? "col" : "row"
|
4732
|
+
end
|
4733
|
+
|
4734
|
+
if orient == "row"
|
4735
|
+
raise Todo
|
4736
|
+
elsif orient == "col" || orient.nil?
|
4737
|
+
raise Todo
|
4738
|
+
else
|
4739
|
+
raise ArgumentError, "orient must be one of {{'col', 'row', nil}}, got #{orient} instead."
|
4740
|
+
end
|
4741
|
+
end
|
4742
|
+
|
4743
|
+
data_series = _handle_columns_arg(data_series, columns: columns)
|
4744
|
+
RbDataFrame.new(data_series)
|
4745
|
+
end
|
4746
|
+
|
4747
|
+
# @private
|
4748
|
+
def self.series_to_rbdf(data, columns: nil)
|
4749
|
+
if columns
|
4750
|
+
raise Todo
|
4751
|
+
end
|
4752
|
+
RbDataFrame.new([data._s])
|
4753
|
+
end
|
4754
|
+
|
4755
|
+
def wrap_ldf(ldf)
|
4756
|
+
LazyFrame._from_rbldf(ldf)
|
4757
|
+
end
|
4758
|
+
|
4759
|
+
def _from_rbdf(rb_df)
|
4760
|
+
self.class._from_rbdf(rb_df)
|
4761
|
+
end
|
4762
|
+
|
4763
|
+
def _comp(other, op)
|
4764
|
+
if other.is_a?(DataFrame)
|
4765
|
+
_compare_to_other_df(other, op)
|
4766
|
+
else
|
4767
|
+
_compare_to_non_df(other, op)
|
4768
|
+
end
|
4769
|
+
end
|
4770
|
+
|
4771
|
+
def _compare_to_other_df(other, op)
|
4772
|
+
if columns != other.columns
|
4773
|
+
raise ArgmentError, "DataFrame columns do not match"
|
4774
|
+
end
|
4775
|
+
if shape != other.shape
|
4776
|
+
raise ArgmentError, "DataFrame dimensions do not match"
|
4777
|
+
end
|
4778
|
+
|
4779
|
+
suffix = "__POLARS_CMP_OTHER"
|
4780
|
+
other_renamed = other.select(Polars.all.suffix(suffix))
|
4781
|
+
combined = Polars.concat([self, other_renamed], how: "horizontal")
|
4782
|
+
|
4783
|
+
expr = case op
|
4784
|
+
when "eq"
|
4785
|
+
columns.map { |n| Polars.col(n) == Polars.col("#{n}#{suffix}") }
|
4786
|
+
when "neq"
|
4787
|
+
columns.map { |n| Polars.col(n) != Polars.col("#{n}#{suffix}") }
|
4788
|
+
when "gt"
|
4789
|
+
columns.map { |n| Polars.col(n) > Polars.col("#{n}#{suffix}") }
|
4790
|
+
when "lt"
|
4791
|
+
columns.map { |n| Polars.col(n) < Polars.col("#{n}#{suffix}") }
|
4792
|
+
when "gt_eq"
|
4793
|
+
columns.map { |n| Polars.col(n) >= Polars.col("#{n}#{suffix}") }
|
4794
|
+
when "lt_eq"
|
4795
|
+
columns.map { |n| Polars.col(n) <= Polars.col("#{n}#{suffix}") }
|
4796
|
+
else
|
4797
|
+
raise ArgumentError, "got unexpected comparison operator: #{op}"
|
4798
|
+
end
|
4799
|
+
|
4800
|
+
combined.select(expr)
|
4801
|
+
end
|
4802
|
+
|
4803
|
+
def _compare_to_non_df(other, op)
|
4804
|
+
case op
|
4805
|
+
when "eq"
|
4806
|
+
select(Polars.all == other)
|
4807
|
+
when "neq"
|
4808
|
+
select(Polars.all != other)
|
4809
|
+
when "gt"
|
4810
|
+
select(Polars.all > other)
|
4811
|
+
when "lt"
|
4812
|
+
select(Polars.all < other)
|
4813
|
+
when "gt_eq"
|
4814
|
+
select(Polars.all >= other)
|
4815
|
+
when "lt_eq"
|
4816
|
+
select(Polars.all <= other)
|
4817
|
+
else
|
4818
|
+
raise ArgumentError, "got unexpected comparison operator: #{op}"
|
4819
|
+
end
|
4820
|
+
end
|
4821
|
+
|
4822
|
+
def _prepare_other_arg(other)
|
4823
|
+
if !other.is_a?(Series)
|
4824
|
+
if other.is_a?(Array)
|
4825
|
+
raise ArgumentError, "Operation not supported."
|
4826
|
+
end
|
4827
|
+
|
4828
|
+
other = Series.new("", [other])
|
4829
|
+
end
|
4830
|
+
other
|
4831
|
+
end
|
4832
|
+
end
|
4833
|
+
end
|