polars-df 0.2.0-arm64-darwin
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +3 -0
- data/CHANGELOG.md +33 -0
- data/Cargo.lock +2230 -0
- data/Cargo.toml +10 -0
- data/LICENSE-THIRD-PARTY.txt +38856 -0
- data/LICENSE.txt +20 -0
- data/README.md +91 -0
- data/lib/polars/3.0/polars.bundle +0 -0
- data/lib/polars/3.1/polars.bundle +0 -0
- data/lib/polars/3.2/polars.bundle +0 -0
- data/lib/polars/batched_csv_reader.rb +96 -0
- data/lib/polars/cat_expr.rb +52 -0
- data/lib/polars/cat_name_space.rb +54 -0
- data/lib/polars/convert.rb +100 -0
- data/lib/polars/data_frame.rb +4833 -0
- data/lib/polars/data_types.rb +122 -0
- data/lib/polars/date_time_expr.rb +1418 -0
- data/lib/polars/date_time_name_space.rb +1484 -0
- data/lib/polars/dynamic_group_by.rb +52 -0
- data/lib/polars/exceptions.rb +20 -0
- data/lib/polars/expr.rb +5307 -0
- data/lib/polars/expr_dispatch.rb +22 -0
- data/lib/polars/functions.rb +453 -0
- data/lib/polars/group_by.rb +558 -0
- data/lib/polars/io.rb +814 -0
- data/lib/polars/lazy_frame.rb +2442 -0
- data/lib/polars/lazy_functions.rb +1195 -0
- data/lib/polars/lazy_group_by.rb +93 -0
- data/lib/polars/list_expr.rb +610 -0
- data/lib/polars/list_name_space.rb +346 -0
- data/lib/polars/meta_expr.rb +54 -0
- data/lib/polars/rolling_group_by.rb +35 -0
- data/lib/polars/series.rb +3730 -0
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/string_expr.rb +972 -0
- data/lib/polars/string_name_space.rb +690 -0
- data/lib/polars/struct_expr.rb +100 -0
- data/lib/polars/struct_name_space.rb +64 -0
- data/lib/polars/utils.rb +192 -0
- data/lib/polars/version.rb +4 -0
- data/lib/polars/when.rb +16 -0
- data/lib/polars/when_then.rb +19 -0
- data/lib/polars-df.rb +1 -0
- data/lib/polars.rb +50 -0
- metadata +89 -0
@@ -0,0 +1,2442 @@
|
|
1
|
+
module Polars
|
2
|
+
# Representation of a Lazy computation graph/query againat a DataFrame.
|
3
|
+
class LazyFrame
|
4
|
+
# @private
|
5
|
+
attr_accessor :_ldf
|
6
|
+
|
7
|
+
# @private
|
8
|
+
def self._from_rbldf(rb_ldf)
|
9
|
+
ldf = LazyFrame.allocate
|
10
|
+
ldf._ldf = rb_ldf
|
11
|
+
ldf
|
12
|
+
end
|
13
|
+
|
14
|
+
# @private
|
15
|
+
def self._scan_csv(
|
16
|
+
file,
|
17
|
+
has_header: true,
|
18
|
+
sep: ",",
|
19
|
+
comment_char: nil,
|
20
|
+
quote_char: '"',
|
21
|
+
skip_rows: 0,
|
22
|
+
dtypes: nil,
|
23
|
+
null_values: nil,
|
24
|
+
ignore_errors: false,
|
25
|
+
cache: true,
|
26
|
+
with_column_names: nil,
|
27
|
+
infer_schema_length: 100,
|
28
|
+
n_rows: nil,
|
29
|
+
encoding: "utf8",
|
30
|
+
low_memory: false,
|
31
|
+
rechunk: true,
|
32
|
+
skip_rows_after_header: 0,
|
33
|
+
row_count_name: nil,
|
34
|
+
row_count_offset: 0,
|
35
|
+
parse_dates: false,
|
36
|
+
eol_char: "\n"
|
37
|
+
)
|
38
|
+
dtype_list = nil
|
39
|
+
if !dtypes.nil?
|
40
|
+
dtype_list = []
|
41
|
+
dtypes.each do |k, v|
|
42
|
+
dtype_list << [k, Utils.rb_type_to_dtype(v)]
|
43
|
+
end
|
44
|
+
end
|
45
|
+
processed_null_values = Utils._process_null_values(null_values)
|
46
|
+
|
47
|
+
_from_rbldf(
|
48
|
+
RbLazyFrame.new_from_csv(
|
49
|
+
file,
|
50
|
+
sep,
|
51
|
+
has_header,
|
52
|
+
ignore_errors,
|
53
|
+
skip_rows,
|
54
|
+
n_rows,
|
55
|
+
cache,
|
56
|
+
dtype_list,
|
57
|
+
low_memory,
|
58
|
+
comment_char,
|
59
|
+
quote_char,
|
60
|
+
processed_null_values,
|
61
|
+
infer_schema_length,
|
62
|
+
with_column_names,
|
63
|
+
rechunk,
|
64
|
+
skip_rows_after_header,
|
65
|
+
encoding,
|
66
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
67
|
+
parse_dates,
|
68
|
+
eol_char
|
69
|
+
)
|
70
|
+
)
|
71
|
+
end
|
72
|
+
|
73
|
+
# @private
|
74
|
+
def self._scan_parquet(
|
75
|
+
file,
|
76
|
+
n_rows: nil,
|
77
|
+
cache: true,
|
78
|
+
parallel: "auto",
|
79
|
+
rechunk: true,
|
80
|
+
row_count_name: nil,
|
81
|
+
row_count_offset: 0,
|
82
|
+
storage_options: nil,
|
83
|
+
low_memory: false
|
84
|
+
)
|
85
|
+
_from_rbldf(
|
86
|
+
RbLazyFrame.new_from_parquet(
|
87
|
+
file,
|
88
|
+
n_rows,
|
89
|
+
cache,
|
90
|
+
parallel,
|
91
|
+
rechunk,
|
92
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
93
|
+
low_memory
|
94
|
+
)
|
95
|
+
)
|
96
|
+
end
|
97
|
+
|
98
|
+
# @private
|
99
|
+
def self._scan_ipc(
|
100
|
+
file,
|
101
|
+
n_rows: nil,
|
102
|
+
cache: true,
|
103
|
+
rechunk: true,
|
104
|
+
row_count_name: nil,
|
105
|
+
row_count_offset: 0,
|
106
|
+
storage_options: nil,
|
107
|
+
memory_map: true
|
108
|
+
)
|
109
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
110
|
+
file = Utils.format_path(file)
|
111
|
+
end
|
112
|
+
|
113
|
+
_from_rbldf(
|
114
|
+
RbLazyFrame.new_from_ipc(
|
115
|
+
file,
|
116
|
+
n_rows,
|
117
|
+
cache,
|
118
|
+
rechunk,
|
119
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset),
|
120
|
+
memory_map
|
121
|
+
)
|
122
|
+
)
|
123
|
+
end
|
124
|
+
|
125
|
+
# @private
|
126
|
+
def self._scan_ndjson(
|
127
|
+
file,
|
128
|
+
infer_schema_length: nil,
|
129
|
+
batch_size: nil,
|
130
|
+
n_rows: nil,
|
131
|
+
low_memory: false,
|
132
|
+
rechunk: true,
|
133
|
+
row_count_name: nil,
|
134
|
+
row_count_offset: 0
|
135
|
+
)
|
136
|
+
_from_rbldf(
|
137
|
+
RbLazyFrame.new_from_ndjson(
|
138
|
+
file,
|
139
|
+
infer_schema_length,
|
140
|
+
batch_size,
|
141
|
+
n_rows,
|
142
|
+
low_memory,
|
143
|
+
rechunk,
|
144
|
+
Utils._prepare_row_count_args(row_count_name, row_count_offset)
|
145
|
+
)
|
146
|
+
)
|
147
|
+
end
|
148
|
+
|
149
|
+
# def self.from_json
|
150
|
+
# end
|
151
|
+
|
152
|
+
# Read a logical plan from a JSON file to construct a LazyFrame.
|
153
|
+
#
|
154
|
+
# @param file [String]
|
155
|
+
# Path to a file or a file-like object.
|
156
|
+
#
|
157
|
+
# @return [LazyFrame]
|
158
|
+
def self.read_json(file)
|
159
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
160
|
+
file = Utils.format_path(file)
|
161
|
+
end
|
162
|
+
|
163
|
+
Utils.wrap_ldf(RbLazyFrame.read_json(file))
|
164
|
+
end
|
165
|
+
|
166
|
+
# Get or set column names.
|
167
|
+
#
|
168
|
+
# @return [Array]
|
169
|
+
#
|
170
|
+
# @example
|
171
|
+
# df = (
|
172
|
+
# Polars::DataFrame.new(
|
173
|
+
# {
|
174
|
+
# "foo" => [1, 2, 3],
|
175
|
+
# "bar" => [6, 7, 8],
|
176
|
+
# "ham" => ["a", "b", "c"]
|
177
|
+
# }
|
178
|
+
# )
|
179
|
+
# .lazy
|
180
|
+
# .select(["foo", "bar"])
|
181
|
+
# )
|
182
|
+
# df.columns
|
183
|
+
# # => ["foo", "bar"]
|
184
|
+
def columns
|
185
|
+
_ldf.columns
|
186
|
+
end
|
187
|
+
|
188
|
+
# Get dtypes of columns in LazyFrame.
|
189
|
+
#
|
190
|
+
# @return [Array]
|
191
|
+
#
|
192
|
+
# @example
|
193
|
+
# lf = Polars::DataFrame.new(
|
194
|
+
# {
|
195
|
+
# "foo" => [1, 2, 3],
|
196
|
+
# "bar" => [6.0, 7.0, 8.0],
|
197
|
+
# "ham" => ["a", "b", "c"]
|
198
|
+
# }
|
199
|
+
# ).lazy
|
200
|
+
# lf.dtypes
|
201
|
+
# # => [Polars::Int64, Polars::Float64, Polars::Utf8]
|
202
|
+
def dtypes
|
203
|
+
_ldf.dtypes
|
204
|
+
end
|
205
|
+
|
206
|
+
# Get the schema.
|
207
|
+
#
|
208
|
+
# @return [Hash]
|
209
|
+
#
|
210
|
+
# @example
|
211
|
+
# lf = Polars::DataFrame.new(
|
212
|
+
# {
|
213
|
+
# "foo" => [1, 2, 3],
|
214
|
+
# "bar" => [6.0, 7.0, 8.0],
|
215
|
+
# "ham" => ["a", "b", "c"]
|
216
|
+
# }
|
217
|
+
# ).lazy
|
218
|
+
# lf.schema
|
219
|
+
# # => {"foo"=>Polars::Int64, "bar"=>Polars::Float64, "ham"=>Polars::Utf8}
|
220
|
+
def schema
|
221
|
+
_ldf.schema
|
222
|
+
end
|
223
|
+
|
224
|
+
# Get the width of the LazyFrame.
|
225
|
+
#
|
226
|
+
# @return [Integer]
|
227
|
+
#
|
228
|
+
# @example
|
229
|
+
# lf = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]}).lazy
|
230
|
+
# lf.width
|
231
|
+
# # => 2
|
232
|
+
def width
|
233
|
+
_ldf.width
|
234
|
+
end
|
235
|
+
|
236
|
+
# Check if LazyFrame includes key.
|
237
|
+
#
|
238
|
+
# @return [Boolean]
|
239
|
+
def include?(key)
|
240
|
+
columns.include?(key)
|
241
|
+
end
|
242
|
+
|
243
|
+
# clone handled by initialize_copy
|
244
|
+
|
245
|
+
# def [](item)
|
246
|
+
# end
|
247
|
+
|
248
|
+
# Returns a string representing the LazyFrame.
|
249
|
+
#
|
250
|
+
# @return [String]
|
251
|
+
def to_s
|
252
|
+
<<~EOS
|
253
|
+
naive plan: (run LazyFrame#describe_optimized_plan to see the optimized plan)
|
254
|
+
|
255
|
+
#{describe_plan}
|
256
|
+
EOS
|
257
|
+
end
|
258
|
+
|
259
|
+
# Write the logical plan of this LazyFrame to a file or string in JSON format.
|
260
|
+
#
|
261
|
+
# @param file [String]
|
262
|
+
# File path to which the result should be written.
|
263
|
+
#
|
264
|
+
# @return [nil]
|
265
|
+
def write_json(file)
|
266
|
+
if file.is_a?(String) || (defined?(Pathname) && file.is_a?(Pathname))
|
267
|
+
file = Utils.format_path(file)
|
268
|
+
end
|
269
|
+
_ldf.write_json(file)
|
270
|
+
nil
|
271
|
+
end
|
272
|
+
|
273
|
+
# Offers a structured way to apply a sequence of user-defined functions (UDFs).
|
274
|
+
#
|
275
|
+
# @param func [Object]
|
276
|
+
# Callable; will receive the frame as the first parameter,
|
277
|
+
# followed by any given args/kwargs.
|
278
|
+
# @param args [Object]
|
279
|
+
# Arguments to pass to the UDF.
|
280
|
+
# @param kwargs [Object]
|
281
|
+
# Keyword arguments to pass to the UDF.
|
282
|
+
#
|
283
|
+
# @return [LazyFrame]
|
284
|
+
#
|
285
|
+
# @example
|
286
|
+
# cast_str_to_int = lambda do |data, col_name:|
|
287
|
+
# data.with_column(Polars.col(col_name).cast(:i64))
|
288
|
+
# end
|
289
|
+
#
|
290
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => ["10", "20", "30", "40"]}).lazy
|
291
|
+
# df.pipe(cast_str_to_int, col_name: "b").collect()
|
292
|
+
# # =>
|
293
|
+
# # shape: (4, 2)
|
294
|
+
# # ┌─────┬─────┐
|
295
|
+
# # │ a ┆ b │
|
296
|
+
# # │ --- ┆ --- │
|
297
|
+
# # │ i64 ┆ i64 │
|
298
|
+
# # ╞═════╪═════╡
|
299
|
+
# # │ 1 ┆ 10 │
|
300
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
301
|
+
# # │ 2 ┆ 20 │
|
302
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
303
|
+
# # │ 3 ┆ 30 │
|
304
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
305
|
+
# # │ 4 ┆ 40 │
|
306
|
+
# # └─────┴─────┘
|
307
|
+
def pipe(func, *args, **kwargs, &block)
|
308
|
+
func.call(self, *args, **kwargs, &block)
|
309
|
+
end
|
310
|
+
|
311
|
+
# Create a string representation of the unoptimized query plan.
|
312
|
+
#
|
313
|
+
# @return [String]
|
314
|
+
def describe_plan
|
315
|
+
_ldf.describe_plan
|
316
|
+
end
|
317
|
+
|
318
|
+
# Create a string representation of the optimized query plan.
|
319
|
+
#
|
320
|
+
# @return [String]
|
321
|
+
def describe_optimized_plan(
|
322
|
+
type_coercion: true,
|
323
|
+
predicate_pushdown: true,
|
324
|
+
projection_pushdown: true,
|
325
|
+
simplify_expression: true,
|
326
|
+
slice_pushdown: true,
|
327
|
+
common_subplan_elimination: true,
|
328
|
+
allow_streaming: false
|
329
|
+
)
|
330
|
+
ldf = _ldf.optimization_toggle(
|
331
|
+
type_coercion,
|
332
|
+
predicate_pushdown,
|
333
|
+
projection_pushdown,
|
334
|
+
simplify_expression,
|
335
|
+
slice_pushdown,
|
336
|
+
common_subplan_elimination,
|
337
|
+
allow_streaming,
|
338
|
+
)
|
339
|
+
|
340
|
+
ldf.describe_optimized_plan
|
341
|
+
end
|
342
|
+
|
343
|
+
# def show_graph
|
344
|
+
# end
|
345
|
+
|
346
|
+
# Sort the DataFrame.
|
347
|
+
#
|
348
|
+
# Sorting can be done by:
|
349
|
+
#
|
350
|
+
# - A single column name
|
351
|
+
# - An expression
|
352
|
+
# - Multiple expressions
|
353
|
+
#
|
354
|
+
# @param by [Object]
|
355
|
+
# Column (expressions) to sort by.
|
356
|
+
# @param reverse [Boolean]
|
357
|
+
# Sort in descending order.
|
358
|
+
# @param nulls_last [Boolean]
|
359
|
+
# Place null values last. Can only be used if sorted by a single column.
|
360
|
+
#
|
361
|
+
# @return [LazyFrame]
|
362
|
+
#
|
363
|
+
# @example
|
364
|
+
# df = Polars::DataFrame.new(
|
365
|
+
# {
|
366
|
+
# "foo" => [1, 2, 3],
|
367
|
+
# "bar" => [6.0, 7.0, 8.0],
|
368
|
+
# "ham" => ["a", "b", "c"]
|
369
|
+
# }
|
370
|
+
# ).lazy
|
371
|
+
# df.sort("foo", reverse: true).collect
|
372
|
+
# # =>
|
373
|
+
# # shape: (3, 3)
|
374
|
+
# # ┌─────┬─────┬─────┐
|
375
|
+
# # │ foo ┆ bar ┆ ham │
|
376
|
+
# # │ --- ┆ --- ┆ --- │
|
377
|
+
# # │ i64 ┆ f64 ┆ str │
|
378
|
+
# # ╞═════╪═════╪═════╡
|
379
|
+
# # │ 3 ┆ 8.0 ┆ c │
|
380
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
381
|
+
# # │ 2 ┆ 7.0 ┆ b │
|
382
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
383
|
+
# # │ 1 ┆ 6.0 ┆ a │
|
384
|
+
# # └─────┴─────┴─────┘
|
385
|
+
def sort(by, reverse: false, nulls_last: false)
|
386
|
+
if by.is_a?(String)
|
387
|
+
_from_rbldf(_ldf.sort(by, reverse, nulls_last))
|
388
|
+
end
|
389
|
+
if Utils.bool?(reverse)
|
390
|
+
reverse = [reverse]
|
391
|
+
end
|
392
|
+
|
393
|
+
by = Utils.selection_to_rbexpr_list(by)
|
394
|
+
_from_rbldf(_ldf.sort_by_exprs(by, reverse, nulls_last))
|
395
|
+
end
|
396
|
+
|
397
|
+
# def profile
|
398
|
+
# end
|
399
|
+
|
400
|
+
# Collect into a DataFrame.
|
401
|
+
#
|
402
|
+
# Note: use {#fetch} if you want to run your query on the first `n` rows
|
403
|
+
# only. This can be a huge time saver in debugging queries.
|
404
|
+
#
|
405
|
+
# @param type_coercion [Boolean]
|
406
|
+
# Do type coercion optimization.
|
407
|
+
# @param predicate_pushdown [Boolean]
|
408
|
+
# Do predicate pushdown optimization.
|
409
|
+
# @param projection_pushdown [Boolean]
|
410
|
+
# Do projection pushdown optimization.
|
411
|
+
# @param simplify_expression [Boolean]
|
412
|
+
# Run simplify expressions optimization.
|
413
|
+
# @param string_cache [Boolean]
|
414
|
+
# This argument is deprecated. Please set the string cache globally.
|
415
|
+
# The argument will be ignored
|
416
|
+
# @param no_optimization [Boolean]
|
417
|
+
# Turn off (certain) optimizations.
|
418
|
+
# @param slice_pushdown [Boolean]
|
419
|
+
# Slice pushdown optimization.
|
420
|
+
# @param common_subplan_elimination [Boolean]
|
421
|
+
# Will try to cache branching subplans that occur on self-joins or unions.
|
422
|
+
# @param allow_streaming [Boolean]
|
423
|
+
# Run parts of the query in a streaming fashion (this is in an alpha state)
|
424
|
+
#
|
425
|
+
# @return [DataFrame]
|
426
|
+
#
|
427
|
+
# @example
|
428
|
+
# df = Polars::DataFrame.new(
|
429
|
+
# {
|
430
|
+
# "a" => ["a", "b", "a", "b", "b", "c"],
|
431
|
+
# "b" => [1, 2, 3, 4, 5, 6],
|
432
|
+
# "c" => [6, 5, 4, 3, 2, 1]
|
433
|
+
# }
|
434
|
+
# ).lazy
|
435
|
+
# df.groupby("a", maintain_order: true).agg(Polars.all.sum).collect
|
436
|
+
# # =>
|
437
|
+
# # shape: (3, 3)
|
438
|
+
# # ┌─────┬─────┬─────┐
|
439
|
+
# # │ a ┆ b ┆ c │
|
440
|
+
# # │ --- ┆ --- ┆ --- │
|
441
|
+
# # │ str ┆ i64 ┆ i64 │
|
442
|
+
# # ╞═════╪═════╪═════╡
|
443
|
+
# # │ a ┆ 4 ┆ 10 │
|
444
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
445
|
+
# # │ b ┆ 11 ┆ 10 │
|
446
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
447
|
+
# # │ c ┆ 6 ┆ 1 │
|
448
|
+
# # └─────┴─────┴─────┘
|
449
|
+
def collect(
|
450
|
+
type_coercion: true,
|
451
|
+
predicate_pushdown: true,
|
452
|
+
projection_pushdown: true,
|
453
|
+
simplify_expression: true,
|
454
|
+
string_cache: false,
|
455
|
+
no_optimization: false,
|
456
|
+
slice_pushdown: true,
|
457
|
+
common_subplan_elimination: true,
|
458
|
+
allow_streaming: false
|
459
|
+
)
|
460
|
+
if no_optimization
|
461
|
+
predicate_pushdown = false
|
462
|
+
projection_pushdown = false
|
463
|
+
slice_pushdown = false
|
464
|
+
common_subplan_elimination = false
|
465
|
+
end
|
466
|
+
|
467
|
+
if allow_streaming
|
468
|
+
common_subplan_elimination = false
|
469
|
+
end
|
470
|
+
|
471
|
+
ldf = _ldf.optimization_toggle(
|
472
|
+
type_coercion,
|
473
|
+
predicate_pushdown,
|
474
|
+
projection_pushdown,
|
475
|
+
simplify_expression,
|
476
|
+
slice_pushdown,
|
477
|
+
common_subplan_elimination,
|
478
|
+
allow_streaming
|
479
|
+
)
|
480
|
+
Utils.wrap_df(ldf.collect)
|
481
|
+
end
|
482
|
+
|
483
|
+
# Collect a small number of rows for debugging purposes.
|
484
|
+
#
|
485
|
+
# Fetch is like a {#collect} operation, but it overwrites the number of rows
|
486
|
+
# read by every scan operation. This is a utility that helps debug a query on a
|
487
|
+
# smaller number of rows.
|
488
|
+
#
|
489
|
+
# Note that the fetch does not guarantee the final number of rows in the
|
490
|
+
# DataFrame. Filter, join operations and a lower number of rows available in the
|
491
|
+
# scanned file influence the final number of rows.
|
492
|
+
#
|
493
|
+
# @param n_rows [Integer]
|
494
|
+
# Collect n_rows from the data sources.
|
495
|
+
# @param type_coercion [Boolean]
|
496
|
+
# Run type coercion optimization.
|
497
|
+
# @param predicate_pushdown [Boolean]
|
498
|
+
# Run predicate pushdown optimization.
|
499
|
+
# @param projection_pushdown [Boolean]
|
500
|
+
# Run projection pushdown optimization.
|
501
|
+
# @param simplify_expression [Boolean]
|
502
|
+
# Run simplify expressions optimization.
|
503
|
+
# @param string_cache [Boolean]
|
504
|
+
# This argument is deprecated. Please set the string cache globally.
|
505
|
+
# The argument will be ignored
|
506
|
+
# @param no_optimization [Boolean]
|
507
|
+
# Turn off optimizations.
|
508
|
+
# @param slice_pushdown [Boolean]
|
509
|
+
# Slice pushdown optimization
|
510
|
+
# @param common_subplan_elimination [Boolean]
|
511
|
+
# Will try to cache branching subplans that occur on self-joins or unions.
|
512
|
+
# @param allow_streaming [Boolean]
|
513
|
+
# Run parts of the query in a streaming fashion (this is in an alpha state)
|
514
|
+
#
|
515
|
+
# @return [DataFrame]
|
516
|
+
#
|
517
|
+
# @example
|
518
|
+
# df = Polars::DataFrame.new(
|
519
|
+
# {
|
520
|
+
# "a" => ["a", "b", "a", "b", "b", "c"],
|
521
|
+
# "b" => [1, 2, 3, 4, 5, 6],
|
522
|
+
# "c" => [6, 5, 4, 3, 2, 1]
|
523
|
+
# }
|
524
|
+
# ).lazy
|
525
|
+
# df.groupby("a", maintain_order: true).agg(Polars.all.sum).fetch(2)
|
526
|
+
# # =>
|
527
|
+
# # shape: (2, 3)
|
528
|
+
# # ┌─────┬─────┬─────┐
|
529
|
+
# # │ a ┆ b ┆ c │
|
530
|
+
# # │ --- ┆ --- ┆ --- │
|
531
|
+
# # │ str ┆ i64 ┆ i64 │
|
532
|
+
# # ╞═════╪═════╪═════╡
|
533
|
+
# # │ a ┆ 1 ┆ 6 │
|
534
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
535
|
+
# # │ b ┆ 2 ┆ 5 │
|
536
|
+
# # └─────┴─────┴─────┘
|
537
|
+
def fetch(
|
538
|
+
n_rows = 500,
|
539
|
+
type_coercion: true,
|
540
|
+
predicate_pushdown: true,
|
541
|
+
projection_pushdown: true,
|
542
|
+
simplify_expression: true,
|
543
|
+
string_cache: false,
|
544
|
+
no_optimization: false,
|
545
|
+
slice_pushdown: true,
|
546
|
+
common_subplan_elimination: true,
|
547
|
+
allow_streaming: false
|
548
|
+
)
|
549
|
+
if no_optimization
|
550
|
+
predicate_pushdown = false
|
551
|
+
projection_pushdown = false
|
552
|
+
slice_pushdown = false
|
553
|
+
common_subplan_elimination = false
|
554
|
+
end
|
555
|
+
|
556
|
+
ldf = _ldf.optimization_toggle(
|
557
|
+
type_coercion,
|
558
|
+
predicate_pushdown,
|
559
|
+
projection_pushdown,
|
560
|
+
simplify_expression,
|
561
|
+
slice_pushdown,
|
562
|
+
common_subplan_elimination,
|
563
|
+
allow_streaming
|
564
|
+
)
|
565
|
+
Utils.wrap_df(ldf.fetch(n_rows))
|
566
|
+
end
|
567
|
+
|
568
|
+
# Return lazy representation, i.e. itself.
|
569
|
+
#
|
570
|
+
# Useful for writing code that expects either a `DataFrame` or
|
571
|
+
# `LazyFrame`.
|
572
|
+
#
|
573
|
+
# @return [LazyFrame]
|
574
|
+
#
|
575
|
+
# @example
|
576
|
+
# df = Polars::DataFrame.new(
|
577
|
+
# {
|
578
|
+
# "a" => [nil, 2, 3, 4],
|
579
|
+
# "b" => [0.5, nil, 2.5, 13],
|
580
|
+
# "c" => [true, true, false, nil]
|
581
|
+
# }
|
582
|
+
# )
|
583
|
+
# df.lazy
|
584
|
+
def lazy
|
585
|
+
self
|
586
|
+
end
|
587
|
+
|
588
|
+
# Cache the result once the execution of the physical plan hits this node.
|
589
|
+
#
|
590
|
+
# @return [LazyFrame]
|
591
|
+
def cache
|
592
|
+
_from_rbldf(_ldf.cache)
|
593
|
+
end
|
594
|
+
|
595
|
+
# Create an empty copy of the current LazyFrame.
|
596
|
+
#
|
597
|
+
# The copy has an identical schema but no data.
|
598
|
+
#
|
599
|
+
# @return [LazyFrame]
|
600
|
+
#
|
601
|
+
# @example
|
602
|
+
# df = Polars::DataFrame.new(
|
603
|
+
# {
|
604
|
+
# "a" => [nil, 2, 3, 4],
|
605
|
+
# "b" => [0.5, nil, 2.5, 13],
|
606
|
+
# "c" => [true, true, false, nil],
|
607
|
+
# }
|
608
|
+
# ).lazy
|
609
|
+
# df.cleared.fetch
|
610
|
+
# # =>
|
611
|
+
# # shape: (0, 3)
|
612
|
+
# # ┌─────┬─────┬──────┐
|
613
|
+
# # │ a ┆ b ┆ c │
|
614
|
+
# # │ --- ┆ --- ┆ --- │
|
615
|
+
# # │ i64 ┆ f64 ┆ bool │
|
616
|
+
# # ╞═════╪═════╪══════╡
|
617
|
+
# # └─────┴─────┴──────┘
|
618
|
+
def cleared
|
619
|
+
DataFrame.new(columns: schema).lazy
|
620
|
+
end
|
621
|
+
|
622
|
+
# Filter the rows in the DataFrame based on a predicate expression.
|
623
|
+
#
|
624
|
+
# @param predicate [Object]
|
625
|
+
# Expression that evaluates to a boolean Series.
|
626
|
+
#
|
627
|
+
# @return [LazyFrame]
|
628
|
+
#
|
629
|
+
# @example Filter on one condition:
|
630
|
+
# lf = Polars::DataFrame.new(
|
631
|
+
# {
|
632
|
+
# "foo" => [1, 2, 3],
|
633
|
+
# "bar" => [6, 7, 8],
|
634
|
+
# "ham" => ["a", "b", "c"]
|
635
|
+
# }
|
636
|
+
# ).lazy
|
637
|
+
# lf.filter(Polars.col("foo") < 3).collect
|
638
|
+
# # =>
|
639
|
+
# # shape: (2, 3)
|
640
|
+
# # ┌─────┬─────┬─────┐
|
641
|
+
# # │ foo ┆ bar ┆ ham │
|
642
|
+
# # │ --- ┆ --- ┆ --- │
|
643
|
+
# # │ i64 ┆ i64 ┆ str │
|
644
|
+
# # ╞═════╪═════╪═════╡
|
645
|
+
# # │ 1 ┆ 6 ┆ a │
|
646
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
647
|
+
# # │ 2 ┆ 7 ┆ b │
|
648
|
+
# # └─────┴─────┴─────┘
|
649
|
+
#
|
650
|
+
# @example Filter on multiple conditions:
|
651
|
+
# lf.filter((Polars.col("foo") < 3) & (Polars.col("ham") == "a")).collect
|
652
|
+
# # =>
|
653
|
+
# # shape: (1, 3)
|
654
|
+
# # ┌─────┬─────┬─────┐
|
655
|
+
# # │ foo ┆ bar ┆ ham │
|
656
|
+
# # │ --- ┆ --- ┆ --- │
|
657
|
+
# # │ i64 ┆ i64 ┆ str │
|
658
|
+
# # ╞═════╪═════╪═════╡
|
659
|
+
# # │ 1 ┆ 6 ┆ a │
|
660
|
+
# # └─────┴─────┴─────┘
|
661
|
+
def filter(predicate)
|
662
|
+
_from_rbldf(
|
663
|
+
_ldf.filter(
|
664
|
+
Utils.expr_to_lit_or_expr(predicate, str_to_lit: false)._rbexpr
|
665
|
+
)
|
666
|
+
)
|
667
|
+
end
|
668
|
+
|
669
|
+
# Select columns from this DataFrame.
|
670
|
+
#
|
671
|
+
# @param exprs [Object]
|
672
|
+
# Column or columns to select.
|
673
|
+
#
|
674
|
+
# @return [LazyFrame]
|
675
|
+
#
|
676
|
+
# @example
|
677
|
+
# df = Polars::DataFrame.new(
|
678
|
+
# {
|
679
|
+
# "foo" => [1, 2, 3],
|
680
|
+
# "bar" => [6, 7, 8],
|
681
|
+
# "ham" => ["a", "b", "c"],
|
682
|
+
# }
|
683
|
+
# ).lazy
|
684
|
+
# df.select("foo").collect
|
685
|
+
# # =>
|
686
|
+
# # shape: (3, 1)
|
687
|
+
# # ┌─────┐
|
688
|
+
# # │ foo │
|
689
|
+
# # │ --- │
|
690
|
+
# # │ i64 │
|
691
|
+
# # ╞═════╡
|
692
|
+
# # │ 1 │
|
693
|
+
# # ├╌╌╌╌╌┤
|
694
|
+
# # │ 2 │
|
695
|
+
# # ├╌╌╌╌╌┤
|
696
|
+
# # │ 3 │
|
697
|
+
# # └─────┘
|
698
|
+
#
|
699
|
+
# @example
|
700
|
+
# df.select(["foo", "bar"]).collect
|
701
|
+
# # =>
|
702
|
+
# # shape: (3, 2)
|
703
|
+
# # ┌─────┬─────┐
|
704
|
+
# # │ foo ┆ bar │
|
705
|
+
# # │ --- ┆ --- │
|
706
|
+
# # │ i64 ┆ i64 │
|
707
|
+
# # ╞═════╪═════╡
|
708
|
+
# # │ 1 ┆ 6 │
|
709
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
710
|
+
# # │ 2 ┆ 7 │
|
711
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
712
|
+
# # │ 3 ┆ 8 │
|
713
|
+
# # └─────┴─────┘
|
714
|
+
#
|
715
|
+
# @example
|
716
|
+
# df.select(Polars.col("foo") + 1).collect
|
717
|
+
# # =>
|
718
|
+
# # shape: (3, 1)
|
719
|
+
# # ┌─────┐
|
720
|
+
# # │ foo │
|
721
|
+
# # │ --- │
|
722
|
+
# # │ i64 │
|
723
|
+
# # ╞═════╡
|
724
|
+
# # │ 2 │
|
725
|
+
# # ├╌╌╌╌╌┤
|
726
|
+
# # │ 3 │
|
727
|
+
# # ├╌╌╌╌╌┤
|
728
|
+
# # │ 4 │
|
729
|
+
# # └─────┘
|
730
|
+
#
|
731
|
+
# @example
|
732
|
+
# df.select([Polars.col("foo") + 1, Polars.col("bar") + 1]).collect
|
733
|
+
# # =>
|
734
|
+
# # shape: (3, 2)
|
735
|
+
# # ┌─────┬─────┐
|
736
|
+
# # │ foo ┆ bar │
|
737
|
+
# # │ --- ┆ --- │
|
738
|
+
# # │ i64 ┆ i64 │
|
739
|
+
# # ╞═════╪═════╡
|
740
|
+
# # │ 2 ┆ 7 │
|
741
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
742
|
+
# # │ 3 ┆ 8 │
|
743
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
744
|
+
# # │ 4 ┆ 9 │
|
745
|
+
# # └─────┴─────┘
|
746
|
+
#
|
747
|
+
# @example
|
748
|
+
# df.select(Polars.when(Polars.col("foo") > 2).then(10).otherwise(0)).collect
|
749
|
+
# # =>
|
750
|
+
# # shape: (3, 1)
|
751
|
+
# # ┌─────────┐
|
752
|
+
# # │ literal │
|
753
|
+
# # │ --- │
|
754
|
+
# # │ i64 │
|
755
|
+
# # ╞═════════╡
|
756
|
+
# # │ 0 │
|
757
|
+
# # ├╌╌╌╌╌╌╌╌╌┤
|
758
|
+
# # │ 0 │
|
759
|
+
# # ├╌╌╌╌╌╌╌╌╌┤
|
760
|
+
# # │ 10 │
|
761
|
+
# # └─────────┘
|
762
|
+
def select(exprs)
|
763
|
+
exprs = Utils.selection_to_rbexpr_list(exprs)
|
764
|
+
_from_rbldf(_ldf.select(exprs))
|
765
|
+
end
|
766
|
+
|
767
|
+
# Start a groupby operation.
|
768
|
+
#
|
769
|
+
# @param by [Object]
|
770
|
+
# Column(s) to group by.
|
771
|
+
# @param maintain_order [Boolean]
|
772
|
+
# Make sure that the order of the groups remain consistent. This is more
|
773
|
+
# expensive than a default groupby.
|
774
|
+
#
|
775
|
+
# @return [LazyGroupBy]
|
776
|
+
#
|
777
|
+
# @example
|
778
|
+
# df = Polars::DataFrame.new(
|
779
|
+
# {
|
780
|
+
# "a" => ["a", "b", "a", "b", "b", "c"],
|
781
|
+
# "b" => [1, 2, 3, 4, 5, 6],
|
782
|
+
# "c" => [6, 5, 4, 3, 2, 1]
|
783
|
+
# }
|
784
|
+
# ).lazy
|
785
|
+
# df.groupby("a", maintain_order: true).agg(Polars.col("b").sum).collect
|
786
|
+
# # =>
|
787
|
+
# # shape: (3, 2)
|
788
|
+
# # ┌─────┬─────┐
|
789
|
+
# # │ a ┆ b │
|
790
|
+
# # │ --- ┆ --- │
|
791
|
+
# # │ str ┆ i64 │
|
792
|
+
# # ╞═════╪═════╡
|
793
|
+
# # │ a ┆ 4 │
|
794
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
795
|
+
# # │ b ┆ 11 │
|
796
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
797
|
+
# # │ c ┆ 6 │
|
798
|
+
# # └─────┴─────┘
|
799
|
+
def groupby(by, maintain_order: false)
|
800
|
+
rbexprs_by = Utils.selection_to_rbexpr_list(by)
|
801
|
+
lgb = _ldf.groupby(rbexprs_by, maintain_order)
|
802
|
+
LazyGroupBy.new(lgb, self.class)
|
803
|
+
end
|
804
|
+
|
805
|
+
# Create rolling groups based on a time column.
|
806
|
+
#
|
807
|
+
# Also works for index values of type `:i32` or `:i64`.
|
808
|
+
#
|
809
|
+
# Different from a `dynamic_groupby` the windows are now determined by the
|
810
|
+
# individual values and are not of constant intervals. For constant intervals
|
811
|
+
# use *groupby_dynamic*.
|
812
|
+
#
|
813
|
+
# The `period` and `offset` arguments are created either from a timedelta, or
|
814
|
+
# by using the following string language:
|
815
|
+
#
|
816
|
+
# - 1ns (1 nanosecond)
|
817
|
+
# - 1us (1 microsecond)
|
818
|
+
# - 1ms (1 millisecond)
|
819
|
+
# - 1s (1 second)
|
820
|
+
# - 1m (1 minute)
|
821
|
+
# - 1h (1 hour)
|
822
|
+
# - 1d (1 day)
|
823
|
+
# - 1w (1 week)
|
824
|
+
# - 1mo (1 calendar month)
|
825
|
+
# - 1y (1 calendar year)
|
826
|
+
# - 1i (1 index count)
|
827
|
+
#
|
828
|
+
# Or combine them:
|
829
|
+
# "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
|
830
|
+
#
|
831
|
+
# In case of a groupby_rolling on an integer column, the windows are defined by:
|
832
|
+
#
|
833
|
+
# - "1i" # length 1
|
834
|
+
# - "10i" # length 10
|
835
|
+
#
|
836
|
+
# @param index_column [Object]
|
837
|
+
# Column used to group based on the time window.
|
838
|
+
# Often to type Date/Datetime
|
839
|
+
# This column must be sorted in ascending order. If not the output will not
|
840
|
+
# make sense.
|
841
|
+
#
|
842
|
+
# In case of a rolling groupby on indices, dtype needs to be one of
|
843
|
+
# `:i32`, `:i64`. Note that `:i32` gets temporarily cast to `:i64`, so if
|
844
|
+
# performance matters use an `:i64` column.
|
845
|
+
# @param period [Object]
|
846
|
+
# Length of the window.
|
847
|
+
# @param offset [Object]
|
848
|
+
# Offset of the window. Default is -period.
|
849
|
+
# @param closed ["right", "left", "both", "none"]
|
850
|
+
# Define whether the temporal window interval is closed or not.
|
851
|
+
# @param by [Object]
|
852
|
+
# Also group by this column/these columns.
|
853
|
+
#
|
854
|
+
# @return [LazyFrame]
|
855
|
+
#
|
856
|
+
# @example
|
857
|
+
# dates = [
|
858
|
+
# "2020-01-01 13:45:48",
|
859
|
+
# "2020-01-01 16:42:13",
|
860
|
+
# "2020-01-01 16:45:09",
|
861
|
+
# "2020-01-02 18:12:48",
|
862
|
+
# "2020-01-03 19:45:32",
|
863
|
+
# "2020-01-08 23:16:43"
|
864
|
+
# ]
|
865
|
+
# df = Polars::DataFrame.new({"dt" => dates, "a" => [3, 7, 5, 9, 2, 1]}).with_column(
|
866
|
+
# Polars.col("dt").str.strptime(:datetime)
|
867
|
+
# )
|
868
|
+
# df.groupby_rolling(index_column: "dt", period: "2d").agg(
|
869
|
+
# [
|
870
|
+
# Polars.sum("a").alias("sum_a"),
|
871
|
+
# Polars.min("a").alias("min_a"),
|
872
|
+
# Polars.max("a").alias("max_a")
|
873
|
+
# ]
|
874
|
+
# )
|
875
|
+
# # =>
|
876
|
+
# # shape: (6, 4)
|
877
|
+
# # ┌─────────────────────┬───────┬───────┬───────┐
|
878
|
+
# # │ dt ┆ sum_a ┆ min_a ┆ max_a │
|
879
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
880
|
+
# # │ datetime[μs] ┆ i64 ┆ i64 ┆ i64 │
|
881
|
+
# # ╞═════════════════════╪═══════╪═══════╪═══════╡
|
882
|
+
# # │ 2020-01-01 13:45:48 ┆ 3 ┆ 3 ┆ 3 │
|
883
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
884
|
+
# # │ 2020-01-01 16:42:13 ┆ 10 ┆ 3 ┆ 7 │
|
885
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
886
|
+
# # │ 2020-01-01 16:45:09 ┆ 15 ┆ 3 ┆ 7 │
|
887
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
888
|
+
# # │ 2020-01-02 18:12:48 ┆ 24 ┆ 3 ┆ 9 │
|
889
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
890
|
+
# # │ 2020-01-03 19:45:32 ┆ 11 ┆ 2 ┆ 9 │
|
891
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
892
|
+
# # │ 2020-01-08 23:16:43 ┆ 1 ┆ 1 ┆ 1 │
|
893
|
+
# # └─────────────────────┴───────┴───────┴───────┘
|
894
|
+
def groupby_rolling(
|
895
|
+
index_column:,
|
896
|
+
period:,
|
897
|
+
offset: nil,
|
898
|
+
closed: "right",
|
899
|
+
by: nil
|
900
|
+
)
|
901
|
+
if offset.nil?
|
902
|
+
offset = "-#{period}"
|
903
|
+
end
|
904
|
+
|
905
|
+
rbexprs_by = by.nil? ? [] : Utils.selection_to_rbexpr_list(by)
|
906
|
+
period = Utils._timedelta_to_pl_duration(period)
|
907
|
+
offset = Utils._timedelta_to_pl_duration(offset)
|
908
|
+
|
909
|
+
lgb = _ldf.groupby_rolling(
|
910
|
+
index_column, period, offset, closed, rbexprs_by
|
911
|
+
)
|
912
|
+
LazyGroupBy.new(lgb, self.class)
|
913
|
+
end
|
914
|
+
|
915
|
+
# Group based on a time value (or index value of type `:i32`, `:i64`).
|
916
|
+
#
|
917
|
+
# Time windows are calculated and rows are assigned to windows. Different from a
|
918
|
+
# normal groupby is that a row can be member of multiple groups. The time/index
|
919
|
+
# window could be seen as a rolling window, with a window size determined by
|
920
|
+
# dates/times/values instead of slots in the DataFrame.
|
921
|
+
#
|
922
|
+
# A window is defined by:
|
923
|
+
#
|
924
|
+
# - every: interval of the window
|
925
|
+
# - period: length of the window
|
926
|
+
# - offset: offset of the window
|
927
|
+
#
|
928
|
+
# The `every`, `period` and `offset` arguments are created with
|
929
|
+
# the following string language:
|
930
|
+
#
|
931
|
+
# - 1ns (1 nanosecond)
|
932
|
+
# - 1us (1 microsecond)
|
933
|
+
# - 1ms (1 millisecond)
|
934
|
+
# - 1s (1 second)
|
935
|
+
# - 1m (1 minute)
|
936
|
+
# - 1h (1 hour)
|
937
|
+
# - 1d (1 day)
|
938
|
+
# - 1w (1 week)
|
939
|
+
# - 1mo (1 calendar month)
|
940
|
+
# - 1y (1 calendar year)
|
941
|
+
# - 1i (1 index count)
|
942
|
+
#
|
943
|
+
# Or combine them:
|
944
|
+
# "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
|
945
|
+
#
|
946
|
+
# In case of a groupby_dynamic on an integer column, the windows are defined by:
|
947
|
+
#
|
948
|
+
# - "1i" # length 1
|
949
|
+
# - "10i" # length 10
|
950
|
+
#
|
951
|
+
# @param index_column
|
952
|
+
# Column used to group based on the time window.
|
953
|
+
# Often to type Date/Datetime
|
954
|
+
# This column must be sorted in ascending order. If not the output will not
|
955
|
+
# make sense.
|
956
|
+
#
|
957
|
+
# In case of a dynamic groupby on indices, dtype needs to be one of
|
958
|
+
# `:i32`, `:i64`. Note that `:i32` gets temporarily cast to `:i64`, so if
|
959
|
+
# performance matters use an `:i64` column.
|
960
|
+
# @param every
|
961
|
+
# Interval of the window.
|
962
|
+
# @param period
|
963
|
+
# Length of the window, if None it is equal to 'every'.
|
964
|
+
# @param offset
|
965
|
+
# Offset of the window if None and period is None it will be equal to negative
|
966
|
+
# `every`.
|
967
|
+
# @param truncate
|
968
|
+
# Truncate the time value to the window lower bound.
|
969
|
+
# @param include_boundaries
|
970
|
+
# Add the lower and upper bound of the window to the "_lower_bound" and
|
971
|
+
# "_upper_bound" columns. This will impact performance because it's harder to
|
972
|
+
# parallelize
|
973
|
+
# @param closed ["right", "left", "both", "none"]
|
974
|
+
# Define whether the temporal window interval is closed or not.
|
975
|
+
# @param by
|
976
|
+
# Also group by this column/these columns
|
977
|
+
#
|
978
|
+
# @return [DataFrame]
|
979
|
+
#
|
980
|
+
# @example
|
981
|
+
# df = Polars::DataFrame.new(
|
982
|
+
# {
|
983
|
+
# "time" => Polars.date_range(
|
984
|
+
# DateTime.new(2021, 12, 16),
|
985
|
+
# DateTime.new(2021, 12, 16, 3),
|
986
|
+
# "30m"
|
987
|
+
# ),
|
988
|
+
# "n" => 0..6
|
989
|
+
# }
|
990
|
+
# )
|
991
|
+
# # =>
|
992
|
+
# # shape: (7, 2)
|
993
|
+
# # ┌─────────────────────┬─────┐
|
994
|
+
# # │ time ┆ n │
|
995
|
+
# # │ --- ┆ --- │
|
996
|
+
# # │ datetime[μs] ┆ i64 │
|
997
|
+
# # ╞═════════════════════╪═════╡
|
998
|
+
# # │ 2021-12-16 00:00:00 ┆ 0 │
|
999
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1000
|
+
# # │ 2021-12-16 00:30:00 ┆ 1 │
|
1001
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1002
|
+
# # │ 2021-12-16 01:00:00 ┆ 2 │
|
1003
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1004
|
+
# # │ 2021-12-16 01:30:00 ┆ 3 │
|
1005
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1006
|
+
# # │ 2021-12-16 02:00:00 ┆ 4 │
|
1007
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1008
|
+
# # │ 2021-12-16 02:30:00 ┆ 5 │
|
1009
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1010
|
+
# # │ 2021-12-16 03:00:00 ┆ 6 │
|
1011
|
+
# # └─────────────────────┴─────┘
|
1012
|
+
#
|
1013
|
+
# @example Group by windows of 1 hour starting at 2021-12-16 00:00:00.
|
1014
|
+
# df.groupby_dynamic("time", every: "1h", closed: "right").agg(
|
1015
|
+
# [
|
1016
|
+
# Polars.col("time").min.alias("time_min"),
|
1017
|
+
# Polars.col("time").max.alias("time_max")
|
1018
|
+
# ]
|
1019
|
+
# )
|
1020
|
+
# # =>
|
1021
|
+
# # shape: (4, 3)
|
1022
|
+
# # ┌─────────────────────┬─────────────────────┬─────────────────────┐
|
1023
|
+
# # │ time ┆ time_min ┆ time_max │
|
1024
|
+
# # │ --- ┆ --- ┆ --- │
|
1025
|
+
# # │ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] │
|
1026
|
+
# # ╞═════════════════════╪═════════════════════╪═════════════════════╡
|
1027
|
+
# # │ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-16 00:00:00 │
|
1028
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1029
|
+
# # │ 2021-12-16 00:00:00 ┆ 2021-12-16 00:30:00 ┆ 2021-12-16 01:00:00 │
|
1030
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1031
|
+
# # │ 2021-12-16 01:00:00 ┆ 2021-12-16 01:30:00 ┆ 2021-12-16 02:00:00 │
|
1032
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1033
|
+
# # │ 2021-12-16 02:00:00 ┆ 2021-12-16 02:30:00 ┆ 2021-12-16 03:00:00 │
|
1034
|
+
# # └─────────────────────┴─────────────────────┴─────────────────────┘
|
1035
|
+
#
|
1036
|
+
# @example The window boundaries can also be added to the aggregation result.
|
1037
|
+
# df.groupby_dynamic(
|
1038
|
+
# "time", every: "1h", include_boundaries: true, closed: "right"
|
1039
|
+
# ).agg([Polars.col("time").count.alias("time_count")])
|
1040
|
+
# # =>
|
1041
|
+
# # shape: (4, 4)
|
1042
|
+
# # ┌─────────────────────┬─────────────────────┬─────────────────────┬────────────┐
|
1043
|
+
# # │ _lower_boundary ┆ _upper_boundary ┆ time ┆ time_count │
|
1044
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1045
|
+
# # │ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] ┆ u32 │
|
1046
|
+
# # ╞═════════════════════╪═════════════════════╪═════════════════════╪════════════╡
|
1047
|
+
# # │ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-15 23:00:00 ┆ 1 │
|
1048
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1049
|
+
# # │ 2021-12-16 00:00:00 ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 00:00:00 ┆ 2 │
|
1050
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1051
|
+
# # │ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 2 │
|
1052
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1053
|
+
# # │ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 2 │
|
1054
|
+
# # └─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
|
1055
|
+
#
|
1056
|
+
# @example When closed="left", should not include right end of interval.
|
1057
|
+
# df.groupby_dynamic("time", every: "1h", closed: "left").agg(
|
1058
|
+
# [
|
1059
|
+
# Polars.col("time").count.alias("time_count"),
|
1060
|
+
# Polars.col("time").list.alias("time_agg_list")
|
1061
|
+
# ]
|
1062
|
+
# )
|
1063
|
+
# # =>
|
1064
|
+
# # shape: (4, 3)
|
1065
|
+
# # ┌─────────────────────┬────────────┬─────────────────────────────────────┐
|
1066
|
+
# # │ time ┆ time_count ┆ time_agg_list │
|
1067
|
+
# # │ --- ┆ --- ┆ --- │
|
1068
|
+
# # │ datetime[μs] ┆ u32 ┆ list[datetime[μs]] │
|
1069
|
+
# # ╞═════════════════════╪════════════╪═════════════════════════════════════╡
|
1070
|
+
# # │ 2021-12-16 00:00:00 ┆ 2 ┆ [2021-12-16 00:00:00, 2021-12-16... │
|
1071
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1072
|
+
# # │ 2021-12-16 01:00:00 ┆ 2 ┆ [2021-12-16 01:00:00, 2021-12-16... │
|
1073
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1074
|
+
# # │ 2021-12-16 02:00:00 ┆ 2 ┆ [2021-12-16 02:00:00, 2021-12-16... │
|
1075
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1076
|
+
# # │ 2021-12-16 03:00:00 ┆ 1 ┆ [2021-12-16 03:00:00] │
|
1077
|
+
# # └─────────────────────┴────────────┴─────────────────────────────────────┘
|
1078
|
+
#
|
1079
|
+
# @example When closed="both" the time values at the window boundaries belong to 2 groups.
|
1080
|
+
# df.groupby_dynamic("time", every: "1h", closed: "both").agg(
|
1081
|
+
# [Polars.col("time").count.alias("time_count")]
|
1082
|
+
# )
|
1083
|
+
# # =>
|
1084
|
+
# # shape: (5, 2)
|
1085
|
+
# # ┌─────────────────────┬────────────┐
|
1086
|
+
# # │ time ┆ time_count │
|
1087
|
+
# # │ --- ┆ --- │
|
1088
|
+
# # │ datetime[μs] ┆ u32 │
|
1089
|
+
# # ╞═════════════════════╪════════════╡
|
1090
|
+
# # │ 2021-12-15 23:00:00 ┆ 1 │
|
1091
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1092
|
+
# # │ 2021-12-16 00:00:00 ┆ 3 │
|
1093
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1094
|
+
# # │ 2021-12-16 01:00:00 ┆ 3 │
|
1095
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1096
|
+
# # │ 2021-12-16 02:00:00 ┆ 3 │
|
1097
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1098
|
+
# # │ 2021-12-16 03:00:00 ┆ 1 │
|
1099
|
+
# # └─────────────────────┴────────────┘
|
1100
|
+
#
|
1101
|
+
# @example Dynamic groupbys can also be combined with grouping on normal keys.
|
1102
|
+
# df = Polars::DataFrame.new(
|
1103
|
+
# {
|
1104
|
+
# "time" => Polars.date_range(
|
1105
|
+
# DateTime.new(2021, 12, 16),
|
1106
|
+
# DateTime.new(2021, 12, 16, 3),
|
1107
|
+
# "30m"
|
1108
|
+
# ),
|
1109
|
+
# "groups" => ["a", "a", "a", "b", "b", "a", "a"]
|
1110
|
+
# }
|
1111
|
+
# )
|
1112
|
+
# df.groupby_dynamic(
|
1113
|
+
# "time",
|
1114
|
+
# every: "1h",
|
1115
|
+
# closed: "both",
|
1116
|
+
# by: "groups",
|
1117
|
+
# include_boundaries: true
|
1118
|
+
# ).agg([Polars.col("time").count.alias("time_count")])
|
1119
|
+
# # =>
|
1120
|
+
# # shape: (7, 5)
|
1121
|
+
# # ┌────────┬─────────────────────┬─────────────────────┬─────────────────────┬────────────┐
|
1122
|
+
# # │ groups ┆ _lower_boundary ┆ _upper_boundary ┆ time ┆ time_count │
|
1123
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
1124
|
+
# # │ str ┆ datetime[μs] ┆ datetime[μs] ┆ datetime[μs] ┆ u32 │
|
1125
|
+
# # ╞════════╪═════════════════════╪═════════════════════╪═════════════════════╪════════════╡
|
1126
|
+
# # │ a ┆ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-15 23:00:00 ┆ 1 │
|
1127
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1128
|
+
# # │ a ┆ 2021-12-16 00:00:00 ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 00:00:00 ┆ 3 │
|
1129
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1130
|
+
# # │ a ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 1 │
|
1131
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1132
|
+
# # │ a ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 2 │
|
1133
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1134
|
+
# # │ a ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 04:00:00 ┆ 2021-12-16 03:00:00 ┆ 1 │
|
1135
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1136
|
+
# # │ b ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 2 │
|
1137
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1138
|
+
# # │ b ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 1 │
|
1139
|
+
# # └────────┴─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
|
1140
|
+
#
|
1141
|
+
# @example Dynamic groupby on an index column.
|
1142
|
+
# df = Polars::DataFrame.new(
|
1143
|
+
# {
|
1144
|
+
# "idx" => Polars.arange(0, 6, eager: true),
|
1145
|
+
# "A" => ["A", "A", "B", "B", "B", "C"]
|
1146
|
+
# }
|
1147
|
+
# )
|
1148
|
+
# df.groupby_dynamic(
|
1149
|
+
# "idx",
|
1150
|
+
# every: "2i",
|
1151
|
+
# period: "3i",
|
1152
|
+
# include_boundaries: true,
|
1153
|
+
# closed: "right"
|
1154
|
+
# ).agg(Polars.col("A").list.alias("A_agg_list"))
|
1155
|
+
# # =>
|
1156
|
+
# # shape: (3, 4)
|
1157
|
+
# # ┌─────────────────┬─────────────────┬─────┬─────────────────┐
|
1158
|
+
# # │ _lower_boundary ┆ _upper_boundary ┆ idx ┆ A_agg_list │
|
1159
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1160
|
+
# # │ i64 ┆ i64 ┆ i64 ┆ list[str] │
|
1161
|
+
# # ╞═════════════════╪═════════════════╪═════╪═════════════════╡
|
1162
|
+
# # │ 0 ┆ 3 ┆ 0 ┆ ["A", "B", "B"] │
|
1163
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1164
|
+
# # │ 2 ┆ 5 ┆ 2 ┆ ["B", "B", "C"] │
|
1165
|
+
# # ├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┤
|
1166
|
+
# # │ 4 ┆ 7 ┆ 4 ┆ ["C"] │
|
1167
|
+
# # └─────────────────┴─────────────────┴─────┴─────────────────┘
|
1168
|
+
def groupby_dynamic(
|
1169
|
+
index_column,
|
1170
|
+
every:,
|
1171
|
+
period: nil,
|
1172
|
+
offset: nil,
|
1173
|
+
truncate: true,
|
1174
|
+
include_boundaries: false,
|
1175
|
+
closed: "left",
|
1176
|
+
by: nil,
|
1177
|
+
start_by: "window"
|
1178
|
+
)
|
1179
|
+
if offset.nil?
|
1180
|
+
if period.nil?
|
1181
|
+
offset = "-#{every}"
|
1182
|
+
else
|
1183
|
+
offset = "0ns"
|
1184
|
+
end
|
1185
|
+
end
|
1186
|
+
|
1187
|
+
if period.nil?
|
1188
|
+
period = every
|
1189
|
+
end
|
1190
|
+
|
1191
|
+
period = Utils._timedelta_to_pl_duration(period)
|
1192
|
+
offset = Utils._timedelta_to_pl_duration(offset)
|
1193
|
+
every = Utils._timedelta_to_pl_duration(every)
|
1194
|
+
|
1195
|
+
rbexprs_by = by.nil? ? [] : Utils.selection_to_rbexpr_list(by)
|
1196
|
+
lgb = _ldf.groupby_dynamic(
|
1197
|
+
index_column,
|
1198
|
+
every,
|
1199
|
+
period,
|
1200
|
+
offset,
|
1201
|
+
truncate,
|
1202
|
+
include_boundaries,
|
1203
|
+
closed,
|
1204
|
+
rbexprs_by,
|
1205
|
+
start_by
|
1206
|
+
)
|
1207
|
+
LazyGroupBy.new(lgb, self.class)
|
1208
|
+
end
|
1209
|
+
|
1210
|
+
# Perform an asof join.
|
1211
|
+
#
|
1212
|
+
# This is similar to a left-join except that we match on nearest key rather than
|
1213
|
+
# equal keys.
|
1214
|
+
#
|
1215
|
+
# Both DataFrames must be sorted by the join_asof key.
|
1216
|
+
#
|
1217
|
+
# For each row in the left DataFrame:
|
1218
|
+
#
|
1219
|
+
# - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key.
|
1220
|
+
# - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key.
|
1221
|
+
#
|
1222
|
+
# The default is "backward".
|
1223
|
+
#
|
1224
|
+
# @param other [LazyFrame]
|
1225
|
+
# Lazy DataFrame to join with.
|
1226
|
+
# @param left_on [String]
|
1227
|
+
# Join column of the left DataFrame.
|
1228
|
+
# @param right_on [String]
|
1229
|
+
# Join column of the right DataFrame.
|
1230
|
+
# @param on [String]
|
1231
|
+
# Join column of both DataFrames. If set, `left_on` and `right_on` should be
|
1232
|
+
# None.
|
1233
|
+
# @param by [Object]
|
1234
|
+
# Join on these columns before doing asof join.
|
1235
|
+
# @param by_left [Object]
|
1236
|
+
# Join on these columns before doing asof join.
|
1237
|
+
# @param by_right [Object]
|
1238
|
+
# Join on these columns before doing asof join.
|
1239
|
+
# @param strategy ["backward", "forward"]
|
1240
|
+
# Join strategy.
|
1241
|
+
# @param suffix [String]
|
1242
|
+
# Suffix to append to columns with a duplicate name.
|
1243
|
+
# @param tolerance [Object]
|
1244
|
+
# Numeric tolerance. By setting this the join will only be done if the near
|
1245
|
+
# keys are within this distance. If an asof join is done on columns of dtype
|
1246
|
+
# "Date", "Datetime", "Duration" or "Time" you use the following string
|
1247
|
+
# language:
|
1248
|
+
#
|
1249
|
+
# - 1ns (1 nanosecond)
|
1250
|
+
# - 1us (1 microsecond)
|
1251
|
+
# - 1ms (1 millisecond)
|
1252
|
+
# - 1s (1 second)
|
1253
|
+
# - 1m (1 minute)
|
1254
|
+
# - 1h (1 hour)
|
1255
|
+
# - 1d (1 day)
|
1256
|
+
# - 1w (1 week)
|
1257
|
+
# - 1mo (1 calendar month)
|
1258
|
+
# - 1y (1 calendar year)
|
1259
|
+
# - 1i (1 index count)
|
1260
|
+
#
|
1261
|
+
# Or combine them:
|
1262
|
+
# "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
|
1263
|
+
#
|
1264
|
+
# @param allow_parallel [Boolean]
|
1265
|
+
# Allow the physical plan to optionally evaluate the computation of both
|
1266
|
+
# DataFrames up to the join in parallel.
|
1267
|
+
# @param force_parallel [Boolean]
|
1268
|
+
# Force the physical plan to evaluate the computation of both DataFrames up to
|
1269
|
+
# the join in parallel.
|
1270
|
+
#
|
1271
|
+
# @return [LazyFrame]
|
1272
|
+
def join_asof(
|
1273
|
+
other,
|
1274
|
+
left_on: nil,
|
1275
|
+
right_on: nil,
|
1276
|
+
on: nil,
|
1277
|
+
by_left: nil,
|
1278
|
+
by_right: nil,
|
1279
|
+
by: nil,
|
1280
|
+
strategy: "backward",
|
1281
|
+
suffix: "_right",
|
1282
|
+
tolerance: nil,
|
1283
|
+
allow_parallel: true,
|
1284
|
+
force_parallel: false
|
1285
|
+
)
|
1286
|
+
if !other.is_a?(LazyFrame)
|
1287
|
+
raise ArgumentError, "Expected a `LazyFrame` as join table, got #{other.class.name}"
|
1288
|
+
end
|
1289
|
+
|
1290
|
+
if on.is_a?(String)
|
1291
|
+
left_on = on
|
1292
|
+
right_on = on
|
1293
|
+
end
|
1294
|
+
|
1295
|
+
if left_on.nil? || right_on.nil?
|
1296
|
+
raise ArgumentError, "You should pass the column to join on as an argument."
|
1297
|
+
end
|
1298
|
+
|
1299
|
+
if by_left.is_a?(String) || by_left.is_a?(Expr)
|
1300
|
+
by_left_ = [by_left]
|
1301
|
+
else
|
1302
|
+
by_left_ = by_left
|
1303
|
+
end
|
1304
|
+
|
1305
|
+
if by_right.is_a?(String) || by_right.is_a?(Expr)
|
1306
|
+
by_right_ = [by_right]
|
1307
|
+
else
|
1308
|
+
by_right_ = by_right
|
1309
|
+
end
|
1310
|
+
|
1311
|
+
if by.is_a?(String)
|
1312
|
+
by_left_ = [by]
|
1313
|
+
by_right_ = [by]
|
1314
|
+
elsif by.is_a?(Array)
|
1315
|
+
by_left_ = by
|
1316
|
+
by_right_ = by
|
1317
|
+
end
|
1318
|
+
|
1319
|
+
tolerance_str = nil
|
1320
|
+
tolerance_num = nil
|
1321
|
+
if tolerance.is_a?(String)
|
1322
|
+
tolerance_str = tolerance
|
1323
|
+
else
|
1324
|
+
tolerance_num = tolerance
|
1325
|
+
end
|
1326
|
+
|
1327
|
+
_from_rbldf(
|
1328
|
+
_ldf.join_asof(
|
1329
|
+
other._ldf,
|
1330
|
+
Polars.col(left_on)._rbexpr,
|
1331
|
+
Polars.col(right_on)._rbexpr,
|
1332
|
+
by_left_,
|
1333
|
+
by_right_,
|
1334
|
+
allow_parallel,
|
1335
|
+
force_parallel,
|
1336
|
+
suffix,
|
1337
|
+
strategy,
|
1338
|
+
tolerance_num,
|
1339
|
+
tolerance_str
|
1340
|
+
)
|
1341
|
+
)
|
1342
|
+
end
|
1343
|
+
|
1344
|
+
# Add a join operation to the Logical Plan.
|
1345
|
+
#
|
1346
|
+
# @param other [LazyFrame]
|
1347
|
+
# Lazy DataFrame to join with.
|
1348
|
+
# @param left_on [Object]
|
1349
|
+
# Join column of the left DataFrame.
|
1350
|
+
# @param right_on [Object]
|
1351
|
+
# Join column of the right DataFrame.
|
1352
|
+
# @param on Object
|
1353
|
+
# Join column of both DataFrames. If set, `left_on` and `right_on` should be
|
1354
|
+
# None.
|
1355
|
+
# @param how ["inner", "left", "outer", "semi", "anti", "cross"]
|
1356
|
+
# Join strategy.
|
1357
|
+
# @param suffix [String]
|
1358
|
+
# Suffix to append to columns with a duplicate name.
|
1359
|
+
# @param allow_parallel [Boolean]
|
1360
|
+
# Allow the physical plan to optionally evaluate the computation of both
|
1361
|
+
# DataFrames up to the join in parallel.
|
1362
|
+
# @param force_parallel [Boolean]
|
1363
|
+
# Force the physical plan to evaluate the computation of both DataFrames up to
|
1364
|
+
# the join in parallel.
|
1365
|
+
#
|
1366
|
+
# @return [LazyFrame]
|
1367
|
+
#
|
1368
|
+
# @example
|
1369
|
+
# df = Polars::DataFrame.new(
|
1370
|
+
# {
|
1371
|
+
# "foo" => [1, 2, 3],
|
1372
|
+
# "bar" => [6.0, 7.0, 8.0],
|
1373
|
+
# "ham" => ["a", "b", "c"]
|
1374
|
+
# }
|
1375
|
+
# ).lazy
|
1376
|
+
# other_df = Polars::DataFrame.new(
|
1377
|
+
# {
|
1378
|
+
# "apple" => ["x", "y", "z"],
|
1379
|
+
# "ham" => ["a", "b", "d"]
|
1380
|
+
# }
|
1381
|
+
# ).lazy
|
1382
|
+
# df.join(other_df, on: "ham").collect
|
1383
|
+
# # =>
|
1384
|
+
# # shape: (2, 4)
|
1385
|
+
# # ┌─────┬─────┬─────┬───────┐
|
1386
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
1387
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1388
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
1389
|
+
# # ╞═════╪═════╪═════╪═══════╡
|
1390
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
1391
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1392
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
1393
|
+
# # └─────┴─────┴─────┴───────┘
|
1394
|
+
#
|
1395
|
+
# @example
|
1396
|
+
# df.join(other_df, on: "ham", how: "outer").collect
|
1397
|
+
# # =>
|
1398
|
+
# # shape: (4, 4)
|
1399
|
+
# # ┌──────┬──────┬─────┬───────┐
|
1400
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
1401
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1402
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
1403
|
+
# # ╞══════╪══════╪═════╪═══════╡
|
1404
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
1405
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1406
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
1407
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1408
|
+
# # │ null ┆ null ┆ d ┆ z │
|
1409
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1410
|
+
# # │ 3 ┆ 8.0 ┆ c ┆ null │
|
1411
|
+
# # └──────┴──────┴─────┴───────┘
|
1412
|
+
#
|
1413
|
+
# @example
|
1414
|
+
# df.join(other_df, on: "ham", how: "left").collect
|
1415
|
+
# # =>
|
1416
|
+
# # shape: (3, 4)
|
1417
|
+
# # ┌─────┬─────┬─────┬───────┐
|
1418
|
+
# # │ foo ┆ bar ┆ ham ┆ apple │
|
1419
|
+
# # │ --- ┆ --- ┆ --- ┆ --- │
|
1420
|
+
# # │ i64 ┆ f64 ┆ str ┆ str │
|
1421
|
+
# # ╞═════╪═════╪═════╪═══════╡
|
1422
|
+
# # │ 1 ┆ 6.0 ┆ a ┆ x │
|
1423
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1424
|
+
# # │ 2 ┆ 7.0 ┆ b ┆ y │
|
1425
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1426
|
+
# # │ 3 ┆ 8.0 ┆ c ┆ null │
|
1427
|
+
# # └─────┴─────┴─────┴───────┘
|
1428
|
+
#
|
1429
|
+
# @example
|
1430
|
+
# df.join(other_df, on: "ham", how: "semi").collect
|
1431
|
+
# # =>
|
1432
|
+
# # shape: (2, 3)
|
1433
|
+
# # ┌─────┬─────┬─────┐
|
1434
|
+
# # │ foo ┆ bar ┆ ham │
|
1435
|
+
# # │ --- ┆ --- ┆ --- │
|
1436
|
+
# # │ i64 ┆ f64 ┆ str │
|
1437
|
+
# # ╞═════╪═════╪═════╡
|
1438
|
+
# # │ 1 ┆ 6.0 ┆ a │
|
1439
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1440
|
+
# # │ 2 ┆ 7.0 ┆ b │
|
1441
|
+
# # └─────┴─────┴─────┘
|
1442
|
+
#
|
1443
|
+
# @example
|
1444
|
+
# df.join(other_df, on: "ham", how: "anti").collect
|
1445
|
+
# # =>
|
1446
|
+
# # shape: (1, 3)
|
1447
|
+
# # ┌─────┬─────┬─────┐
|
1448
|
+
# # │ foo ┆ bar ┆ ham │
|
1449
|
+
# # │ --- ┆ --- ┆ --- │
|
1450
|
+
# # │ i64 ┆ f64 ┆ str │
|
1451
|
+
# # ╞═════╪═════╪═════╡
|
1452
|
+
# # │ 3 ┆ 8.0 ┆ c │
|
1453
|
+
# # └─────┴─────┴─────┘
|
1454
|
+
def join(
|
1455
|
+
other,
|
1456
|
+
left_on: nil,
|
1457
|
+
right_on: nil,
|
1458
|
+
on: nil,
|
1459
|
+
how: "inner",
|
1460
|
+
suffix: "_right",
|
1461
|
+
allow_parallel: true,
|
1462
|
+
force_parallel: false
|
1463
|
+
)
|
1464
|
+
if !other.is_a?(LazyFrame)
|
1465
|
+
raise ArgumentError, "Expected a `LazyFrame` as join table, got #{other.class.name}"
|
1466
|
+
end
|
1467
|
+
|
1468
|
+
if how == "cross"
|
1469
|
+
return _from_rbldf(
|
1470
|
+
_ldf.join(
|
1471
|
+
other._ldf, [], [], allow_parallel, force_parallel, how, suffix
|
1472
|
+
)
|
1473
|
+
)
|
1474
|
+
end
|
1475
|
+
|
1476
|
+
if !on.nil?
|
1477
|
+
rbexprs = Utils.selection_to_rbexpr_list(on)
|
1478
|
+
rbexprs_left = rbexprs
|
1479
|
+
rbexprs_right = rbexprs
|
1480
|
+
elsif !left_on.nil? && !right_on.nil?
|
1481
|
+
rbexprs_left = Utils.selection_to_rbexpr_list(left_on)
|
1482
|
+
rbexprs_right = Utils.selection_to_rbexpr_list(right_on)
|
1483
|
+
else
|
1484
|
+
raise ArgumentError, "must specify `on` OR `left_on` and `right_on`"
|
1485
|
+
end
|
1486
|
+
|
1487
|
+
_from_rbldf(
|
1488
|
+
self._ldf.join(
|
1489
|
+
other._ldf,
|
1490
|
+
rbexprs_left,
|
1491
|
+
rbexprs_right,
|
1492
|
+
allow_parallel,
|
1493
|
+
force_parallel,
|
1494
|
+
how,
|
1495
|
+
suffix,
|
1496
|
+
)
|
1497
|
+
)
|
1498
|
+
end
|
1499
|
+
|
1500
|
+
# Add or overwrite multiple columns in a DataFrame.
|
1501
|
+
#
|
1502
|
+
# @param exprs [Object]
|
1503
|
+
# List of Expressions that evaluate to columns.
|
1504
|
+
#
|
1505
|
+
# @return [LazyFrame]
|
1506
|
+
#
|
1507
|
+
# @example
|
1508
|
+
# ldf = Polars::DataFrame.new(
|
1509
|
+
# {
|
1510
|
+
# "a" => [1, 2, 3, 4],
|
1511
|
+
# "b" => [0.5, 4, 10, 13],
|
1512
|
+
# "c" => [true, true, false, true]
|
1513
|
+
# }
|
1514
|
+
# ).lazy
|
1515
|
+
# ldf.with_columns(
|
1516
|
+
# [
|
1517
|
+
# (Polars.col("a") ** 2).alias("a^2"),
|
1518
|
+
# (Polars.col("b") / 2).alias("b/2"),
|
1519
|
+
# (Polars.col("c").is_not).alias("not c")
|
1520
|
+
# ]
|
1521
|
+
# ).collect
|
1522
|
+
# # =>
|
1523
|
+
# # shape: (4, 6)
|
1524
|
+
# # ┌─────┬──────┬───────┬──────┬──────┬───────┐
|
1525
|
+
# # │ a ┆ b ┆ c ┆ a^2 ┆ b/2 ┆ not c │
|
1526
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
1527
|
+
# # │ i64 ┆ f64 ┆ bool ┆ f64 ┆ f64 ┆ bool │
|
1528
|
+
# # ╞═════╪══════╪═══════╪══════╪══════╪═══════╡
|
1529
|
+
# # │ 1 ┆ 0.5 ┆ true ┆ 1.0 ┆ 0.25 ┆ false │
|
1530
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1531
|
+
# # │ 2 ┆ 4.0 ┆ true ┆ 4.0 ┆ 2.0 ┆ false │
|
1532
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1533
|
+
# # │ 3 ┆ 10.0 ┆ false ┆ 9.0 ┆ 5.0 ┆ true │
|
1534
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
1535
|
+
# # │ 4 ┆ 13.0 ┆ true ┆ 16.0 ┆ 6.5 ┆ false │
|
1536
|
+
# # └─────┴──────┴───────┴──────┴──────┴───────┘
|
1537
|
+
def with_columns(exprs)
|
1538
|
+
exprs =
|
1539
|
+
if exprs.nil?
|
1540
|
+
[]
|
1541
|
+
elsif exprs.is_a?(Expr)
|
1542
|
+
[exprs]
|
1543
|
+
else
|
1544
|
+
exprs.to_a
|
1545
|
+
end
|
1546
|
+
|
1547
|
+
rbexprs = []
|
1548
|
+
exprs.each do |e|
|
1549
|
+
case e
|
1550
|
+
when Expr
|
1551
|
+
rbexprs << e._rbexpr
|
1552
|
+
when Series
|
1553
|
+
rbexprs = Utils.lit(e)._rbexpr
|
1554
|
+
else
|
1555
|
+
raise ArgumentError, "Expected an expression, got #{e}"
|
1556
|
+
end
|
1557
|
+
end
|
1558
|
+
|
1559
|
+
_from_rbldf(_ldf.with_columns(rbexprs))
|
1560
|
+
end
|
1561
|
+
|
1562
|
+
# Add an external context to the computation graph.
|
1563
|
+
#
|
1564
|
+
# This allows expressions to also access columns from DataFrames
|
1565
|
+
# that are not part of this one.
|
1566
|
+
#
|
1567
|
+
# @param other [Object]
|
1568
|
+
# Lazy DataFrame to join with.
|
1569
|
+
#
|
1570
|
+
# @return [LazyFrame]
|
1571
|
+
#
|
1572
|
+
# @example
|
1573
|
+
# df_a = Polars::DataFrame.new({"a" => [1, 2, 3], "b" => ["a", "c", nil]}).lazy
|
1574
|
+
# df_other = Polars::DataFrame.new({"c" => ["foo", "ham"]})
|
1575
|
+
# (
|
1576
|
+
# df_a.with_context(df_other.lazy).select(
|
1577
|
+
# [Polars.col("b") + Polars.col("c").first]
|
1578
|
+
# )
|
1579
|
+
# ).collect
|
1580
|
+
# # =>
|
1581
|
+
# # shape: (3, 1)
|
1582
|
+
# # ┌──────┐
|
1583
|
+
# # │ b │
|
1584
|
+
# # │ --- │
|
1585
|
+
# # │ str │
|
1586
|
+
# # ╞══════╡
|
1587
|
+
# # │ afoo │
|
1588
|
+
# # ├╌╌╌╌╌╌┤
|
1589
|
+
# # │ cfoo │
|
1590
|
+
# # ├╌╌╌╌╌╌┤
|
1591
|
+
# # │ null │
|
1592
|
+
# # └──────┘
|
1593
|
+
def with_context(other)
|
1594
|
+
if !other.is_a?(Array)
|
1595
|
+
other = [other]
|
1596
|
+
end
|
1597
|
+
|
1598
|
+
_from_rbldf(_ldf.with_context(other.map(&:_ldf)))
|
1599
|
+
end
|
1600
|
+
|
1601
|
+
# Add or overwrite column in a DataFrame.
|
1602
|
+
#
|
1603
|
+
# @param column [Object]
|
1604
|
+
# Expression that evaluates to column or a Series to use.
|
1605
|
+
#
|
1606
|
+
# @return [LazyFrame]
|
1607
|
+
#
|
1608
|
+
# @example
|
1609
|
+
# df = Polars::DataFrame.new(
|
1610
|
+
# {
|
1611
|
+
# "a" => [1, 3, 5],
|
1612
|
+
# "b" => [2, 4, 6]
|
1613
|
+
# }
|
1614
|
+
# ).lazy
|
1615
|
+
# df.with_column((Polars.col("b") ** 2).alias("b_squared")).collect
|
1616
|
+
# # =>
|
1617
|
+
# # shape: (3, 3)
|
1618
|
+
# # ┌─────┬─────┬───────────┐
|
1619
|
+
# # │ a ┆ b ┆ b_squared │
|
1620
|
+
# # │ --- ┆ --- ┆ --- │
|
1621
|
+
# # │ i64 ┆ i64 ┆ f64 │
|
1622
|
+
# # ╞═════╪═════╪═══════════╡
|
1623
|
+
# # │ 1 ┆ 2 ┆ 4.0 │
|
1624
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
|
1625
|
+
# # │ 3 ┆ 4 ┆ 16.0 │
|
1626
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
|
1627
|
+
# # │ 5 ┆ 6 ┆ 36.0 │
|
1628
|
+
# # └─────┴─────┴───────────┘
|
1629
|
+
#
|
1630
|
+
# @example
|
1631
|
+
# df.with_column(Polars.col("a") ** 2).collect
|
1632
|
+
# # =>
|
1633
|
+
# # shape: (3, 2)
|
1634
|
+
# # ┌──────┬─────┐
|
1635
|
+
# # │ a ┆ b │
|
1636
|
+
# # │ --- ┆ --- │
|
1637
|
+
# # │ f64 ┆ i64 │
|
1638
|
+
# # ╞══════╪═════╡
|
1639
|
+
# # │ 1.0 ┆ 2 │
|
1640
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1641
|
+
# # │ 9.0 ┆ 4 │
|
1642
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌┤
|
1643
|
+
# # │ 25.0 ┆ 6 │
|
1644
|
+
# # └──────┴─────┘
|
1645
|
+
def with_column(column)
|
1646
|
+
with_columns([column])
|
1647
|
+
end
|
1648
|
+
|
1649
|
+
# Remove one or multiple columns from a DataFrame.
|
1650
|
+
#
|
1651
|
+
# @param columns [Object]
|
1652
|
+
# - Name of the column that should be removed.
|
1653
|
+
# - List of column names.
|
1654
|
+
#
|
1655
|
+
# @return [LazyFrame]
|
1656
|
+
def drop(columns)
|
1657
|
+
if columns.is_a?(String)
|
1658
|
+
columns = [columns]
|
1659
|
+
end
|
1660
|
+
_from_rbldf(_ldf.drop_columns(columns))
|
1661
|
+
end
|
1662
|
+
|
1663
|
+
# Rename column names.
|
1664
|
+
#
|
1665
|
+
# @param mapping [Hash]
|
1666
|
+
# Key value pairs that map from old name to new name.
|
1667
|
+
#
|
1668
|
+
# @return [LazyFrame]
|
1669
|
+
def rename(mapping)
|
1670
|
+
existing = mapping.keys
|
1671
|
+
_new = mapping.values
|
1672
|
+
_from_rbldf(_ldf.rename(existing, _new))
|
1673
|
+
end
|
1674
|
+
|
1675
|
+
# Reverse the DataFrame.
|
1676
|
+
#
|
1677
|
+
# @return [LazyFrame]
|
1678
|
+
def reverse
|
1679
|
+
_from_rbldf(_ldf.reverse)
|
1680
|
+
end
|
1681
|
+
|
1682
|
+
# Shift the values by a given period.
|
1683
|
+
#
|
1684
|
+
# @param periods [Integer]
|
1685
|
+
# Number of places to shift (may be negative).
|
1686
|
+
#
|
1687
|
+
# @return [LazyFrame]
|
1688
|
+
#
|
1689
|
+
# @example
|
1690
|
+
# df = Polars::DataFrame.new(
|
1691
|
+
# {
|
1692
|
+
# "a" => [1, 3, 5],
|
1693
|
+
# "b" => [2, 4, 6]
|
1694
|
+
# }
|
1695
|
+
# ).lazy
|
1696
|
+
# df.shift(1).collect
|
1697
|
+
# # =>
|
1698
|
+
# # shape: (3, 2)
|
1699
|
+
# # ┌──────┬──────┐
|
1700
|
+
# # │ a ┆ b │
|
1701
|
+
# # │ --- ┆ --- │
|
1702
|
+
# # │ i64 ┆ i64 │
|
1703
|
+
# # ╞══════╪══════╡
|
1704
|
+
# # │ null ┆ null │
|
1705
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1706
|
+
# # │ 1 ┆ 2 │
|
1707
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1708
|
+
# # │ 3 ┆ 4 │
|
1709
|
+
# # └──────┴──────┘
|
1710
|
+
#
|
1711
|
+
# @example
|
1712
|
+
# df.shift(-1).collect
|
1713
|
+
# # =>
|
1714
|
+
# # shape: (3, 2)
|
1715
|
+
# # ┌──────┬──────┐
|
1716
|
+
# # │ a ┆ b │
|
1717
|
+
# # │ --- ┆ --- │
|
1718
|
+
# # │ i64 ┆ i64 │
|
1719
|
+
# # ╞══════╪══════╡
|
1720
|
+
# # │ 3 ┆ 4 │
|
1721
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1722
|
+
# # │ 5 ┆ 6 │
|
1723
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1724
|
+
# # │ null ┆ null │
|
1725
|
+
# # └──────┴──────┘
|
1726
|
+
def shift(periods)
|
1727
|
+
_from_rbldf(_ldf.shift(periods))
|
1728
|
+
end
|
1729
|
+
|
1730
|
+
# Shift the values by a given period and fill the resulting null values.
|
1731
|
+
#
|
1732
|
+
# @param periods [Integer]
|
1733
|
+
# Number of places to shift (may be negative).
|
1734
|
+
# @param fill_value [Object]
|
1735
|
+
# Fill `nil` values with the result of this expression.
|
1736
|
+
#
|
1737
|
+
# @return [LazyFrame]
|
1738
|
+
#
|
1739
|
+
# @example
|
1740
|
+
# df = Polars::DataFrame.new(
|
1741
|
+
# {
|
1742
|
+
# "a" => [1, 3, 5],
|
1743
|
+
# "b" => [2, 4, 6]
|
1744
|
+
# }
|
1745
|
+
# ).lazy
|
1746
|
+
# df.shift_and_fill(1, 0).collect
|
1747
|
+
# # =>
|
1748
|
+
# # shape: (3, 2)
|
1749
|
+
# # ┌─────┬─────┐
|
1750
|
+
# # │ a ┆ b │
|
1751
|
+
# # │ --- ┆ --- │
|
1752
|
+
# # │ i64 ┆ i64 │
|
1753
|
+
# # ╞═════╪═════╡
|
1754
|
+
# # │ 0 ┆ 0 │
|
1755
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1756
|
+
# # │ 1 ┆ 2 │
|
1757
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1758
|
+
# # │ 3 ┆ 4 │
|
1759
|
+
# # └─────┴─────┘
|
1760
|
+
#
|
1761
|
+
# @example
|
1762
|
+
# df.shift_and_fill(-1, 0).collect
|
1763
|
+
# # =>
|
1764
|
+
# # shape: (3, 2)
|
1765
|
+
# # ┌─────┬─────┐
|
1766
|
+
# # │ a ┆ b │
|
1767
|
+
# # │ --- ┆ --- │
|
1768
|
+
# # │ i64 ┆ i64 │
|
1769
|
+
# # ╞═════╪═════╡
|
1770
|
+
# # │ 3 ┆ 4 │
|
1771
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1772
|
+
# # │ 5 ┆ 6 │
|
1773
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1774
|
+
# # │ 0 ┆ 0 │
|
1775
|
+
# # └─────┴─────┘
|
1776
|
+
def shift_and_fill(periods, fill_value)
|
1777
|
+
if !fill_value.is_a?(Expr)
|
1778
|
+
fill_value = Polars.lit(fill_value)
|
1779
|
+
end
|
1780
|
+
_from_rbldf(_ldf.shift_and_fill(periods, fill_value._rbexpr))
|
1781
|
+
end
|
1782
|
+
|
1783
|
+
# Get a slice of this DataFrame.
|
1784
|
+
#
|
1785
|
+
# @param offset [Integer]
|
1786
|
+
# Start index. Negative indexing is supported.
|
1787
|
+
# @param length [Integer]
|
1788
|
+
# Length of the slice. If set to `nil`, all rows starting at the offset
|
1789
|
+
# will be selected.
|
1790
|
+
#
|
1791
|
+
# @return [LazyFrame]
|
1792
|
+
#
|
1793
|
+
# @example
|
1794
|
+
# df = Polars::DataFrame.new(
|
1795
|
+
# {
|
1796
|
+
# "a" => ["x", "y", "z"],
|
1797
|
+
# "b" => [1, 3, 5],
|
1798
|
+
# "c" => [2, 4, 6]
|
1799
|
+
# }
|
1800
|
+
# ).lazy
|
1801
|
+
# df.slice(1, 2).collect
|
1802
|
+
# # =>
|
1803
|
+
# # shape: (2, 3)
|
1804
|
+
# # ┌─────┬─────┬─────┐
|
1805
|
+
# # │ a ┆ b ┆ c │
|
1806
|
+
# # │ --- ┆ --- ┆ --- │
|
1807
|
+
# # │ str ┆ i64 ┆ i64 │
|
1808
|
+
# # ╞═════╪═════╪═════╡
|
1809
|
+
# # │ y ┆ 3 ┆ 4 │
|
1810
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1811
|
+
# # │ z ┆ 5 ┆ 6 │
|
1812
|
+
# # └─────┴─────┴─────┘
|
1813
|
+
def slice(offset, length = nil)
|
1814
|
+
if length && length < 0
|
1815
|
+
raise ArgumentError, "Negative slice lengths (#{length}) are invalid for LazyFrame"
|
1816
|
+
end
|
1817
|
+
_from_rbldf(_ldf.slice(offset, length))
|
1818
|
+
end
|
1819
|
+
|
1820
|
+
# Get the first `n` rows.
|
1821
|
+
#
|
1822
|
+
# Alias for {#head}.
|
1823
|
+
#
|
1824
|
+
# @param n [Integer]
|
1825
|
+
# Number of rows to return.
|
1826
|
+
#
|
1827
|
+
# @return [LazyFrame]
|
1828
|
+
#
|
1829
|
+
# @note
|
1830
|
+
# Consider using the {#fetch} operation if you only want to test your
|
1831
|
+
# query. The {#fetch} operation will load the first `n` rows at the scan
|
1832
|
+
# level, whereas the {#head}/{#limit} are applied at the end.
|
1833
|
+
def limit(n = 5)
|
1834
|
+
head(5)
|
1835
|
+
end
|
1836
|
+
|
1837
|
+
# Get the first `n` rows.
|
1838
|
+
#
|
1839
|
+
# @param n [Integer]
|
1840
|
+
# Number of rows to return.
|
1841
|
+
#
|
1842
|
+
# @return [LazyFrame]
|
1843
|
+
#
|
1844
|
+
# @note
|
1845
|
+
# Consider using the {#fetch} operation if you only want to test your
|
1846
|
+
# query. The {#fetch} operation will load the first `n` rows at the scan
|
1847
|
+
# level, whereas the {#head}/{#limit} are applied at the end.
|
1848
|
+
def head(n = 5)
|
1849
|
+
slice(0, n)
|
1850
|
+
end
|
1851
|
+
|
1852
|
+
# Get the last `n` rows.
|
1853
|
+
#
|
1854
|
+
# @param n [Integer]
|
1855
|
+
# Number of rows.
|
1856
|
+
#
|
1857
|
+
# @return [LazyFrame]
|
1858
|
+
def tail(n = 5)
|
1859
|
+
_from_rbldf(_ldf.tail(n))
|
1860
|
+
end
|
1861
|
+
|
1862
|
+
# Get the last row of the DataFrame.
|
1863
|
+
#
|
1864
|
+
# @return [LazyFrame]
|
1865
|
+
def last
|
1866
|
+
tail(1)
|
1867
|
+
end
|
1868
|
+
|
1869
|
+
# Get the first row of the DataFrame.
|
1870
|
+
#
|
1871
|
+
# @return [LazyFrame]
|
1872
|
+
def first
|
1873
|
+
slice(0, 1)
|
1874
|
+
end
|
1875
|
+
|
1876
|
+
# Add a column at index 0 that counts the rows.
|
1877
|
+
#
|
1878
|
+
# @param name [String]
|
1879
|
+
# Name of the column to add.
|
1880
|
+
# @param offset [Integer]
|
1881
|
+
# Start the row count at this offset.
|
1882
|
+
#
|
1883
|
+
# @return [LazyFrame]
|
1884
|
+
#
|
1885
|
+
# @note
|
1886
|
+
# This can have a negative effect on query performance.
|
1887
|
+
# This may, for instance, block predicate pushdown optimization.
|
1888
|
+
#
|
1889
|
+
# @example
|
1890
|
+
# df = Polars::DataFrame.new(
|
1891
|
+
# {
|
1892
|
+
# "a" => [1, 3, 5],
|
1893
|
+
# "b" => [2, 4, 6]
|
1894
|
+
# }
|
1895
|
+
# ).lazy
|
1896
|
+
# df.with_row_count.collect
|
1897
|
+
# # =>
|
1898
|
+
# # shape: (3, 3)
|
1899
|
+
# # ┌────────┬─────┬─────┐
|
1900
|
+
# # │ row_nr ┆ a ┆ b │
|
1901
|
+
# # │ --- ┆ --- ┆ --- │
|
1902
|
+
# # │ u32 ┆ i64 ┆ i64 │
|
1903
|
+
# # ╞════════╪═════╪═════╡
|
1904
|
+
# # │ 0 ┆ 1 ┆ 2 │
|
1905
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1906
|
+
# # │ 1 ┆ 3 ┆ 4 │
|
1907
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
1908
|
+
# # │ 2 ┆ 5 ┆ 6 │
|
1909
|
+
# # └────────┴─────┴─────┘
|
1910
|
+
def with_row_count(name: "row_nr", offset: 0)
|
1911
|
+
_from_rbldf(_ldf.with_row_count(name, offset))
|
1912
|
+
end
|
1913
|
+
|
1914
|
+
# Take every nth row in the LazyFrame and return as a new LazyFrame.
|
1915
|
+
#
|
1916
|
+
# @return [LazyFrame]
|
1917
|
+
#
|
1918
|
+
# @example
|
1919
|
+
# s = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [5, 6, 7, 8]}).lazy
|
1920
|
+
# s.take_every(2).collect
|
1921
|
+
# # =>
|
1922
|
+
# # shape: (2, 2)
|
1923
|
+
# # ┌─────┬─────┐
|
1924
|
+
# # │ a ┆ b │
|
1925
|
+
# # │ --- ┆ --- │
|
1926
|
+
# # │ i64 ┆ i64 │
|
1927
|
+
# # ╞═════╪═════╡
|
1928
|
+
# # │ 1 ┆ 5 │
|
1929
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┤
|
1930
|
+
# # │ 3 ┆ 7 │
|
1931
|
+
# # └─────┴─────┘
|
1932
|
+
def take_every(n)
|
1933
|
+
select(Utils.col("*").take_every(n))
|
1934
|
+
end
|
1935
|
+
|
1936
|
+
# Fill null values using the specified value or strategy.
|
1937
|
+
#
|
1938
|
+
# @return [LazyFrame]
|
1939
|
+
def fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: nil)
|
1940
|
+
select(Polars.all.fill_null(value, strategy: strategy, limit: limit))
|
1941
|
+
end
|
1942
|
+
|
1943
|
+
# Fill floating point NaN values.
|
1944
|
+
#
|
1945
|
+
# @param fill_value [Object]
|
1946
|
+
# Value to fill the NaN values with.
|
1947
|
+
#
|
1948
|
+
# @return [LazyFrame]
|
1949
|
+
#
|
1950
|
+
# @note
|
1951
|
+
# Note that floating point NaN (Not a Number) are not missing values!
|
1952
|
+
# To replace missing values, use `fill_null` instead.
|
1953
|
+
#
|
1954
|
+
# @example
|
1955
|
+
# df = Polars::DataFrame.new(
|
1956
|
+
# {
|
1957
|
+
# "a" => [1.5, 2, Float::NAN, 4],
|
1958
|
+
# "b" => [0.5, 4, Float::NAN, 13],
|
1959
|
+
# }
|
1960
|
+
# ).lazy
|
1961
|
+
# df.fill_nan(99).collect
|
1962
|
+
# # =>
|
1963
|
+
# # shape: (4, 2)
|
1964
|
+
# # ┌──────┬──────┐
|
1965
|
+
# # │ a ┆ b │
|
1966
|
+
# # │ --- ┆ --- │
|
1967
|
+
# # │ f64 ┆ f64 │
|
1968
|
+
# # ╞══════╪══════╡
|
1969
|
+
# # │ 1.5 ┆ 0.5 │
|
1970
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1971
|
+
# # │ 2.0 ┆ 4.0 │
|
1972
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1973
|
+
# # │ 99.0 ┆ 99.0 │
|
1974
|
+
# # ├╌╌╌╌╌╌┼╌╌╌╌╌╌┤
|
1975
|
+
# # │ 4.0 ┆ 13.0 │
|
1976
|
+
# # └──────┴──────┘
|
1977
|
+
def fill_nan(fill_value)
|
1978
|
+
if !fill_value.is_a?(Expr)
|
1979
|
+
fill_value = Utils.lit(fill_value)
|
1980
|
+
end
|
1981
|
+
_from_rbldf(_ldf.fill_nan(fill_value._rbexpr))
|
1982
|
+
end
|
1983
|
+
|
1984
|
+
# Aggregate the columns in the DataFrame to their standard deviation value.
|
1985
|
+
#
|
1986
|
+
# @return [LazyFrame]
|
1987
|
+
#
|
1988
|
+
# @example
|
1989
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
1990
|
+
# df.std.collect
|
1991
|
+
# # =>
|
1992
|
+
# # shape: (1, 2)
|
1993
|
+
# # ┌──────────┬─────┐
|
1994
|
+
# # │ a ┆ b │
|
1995
|
+
# # │ --- ┆ --- │
|
1996
|
+
# # │ f64 ┆ f64 │
|
1997
|
+
# # ╞══════════╪═════╡
|
1998
|
+
# # │ 1.290994 ┆ 0.5 │
|
1999
|
+
# # └──────────┴─────┘
|
2000
|
+
#
|
2001
|
+
# @example
|
2002
|
+
# df.std(ddof: 0).collect
|
2003
|
+
# # =>
|
2004
|
+
# # shape: (1, 2)
|
2005
|
+
# # ┌──────────┬──────────┐
|
2006
|
+
# # │ a ┆ b │
|
2007
|
+
# # │ --- ┆ --- │
|
2008
|
+
# # │ f64 ┆ f64 │
|
2009
|
+
# # ╞══════════╪══════════╡
|
2010
|
+
# # │ 1.118034 ┆ 0.433013 │
|
2011
|
+
# # └──────────┴──────────┘
|
2012
|
+
def std(ddof: 1)
|
2013
|
+
_from_rbldf(_ldf.std(ddof))
|
2014
|
+
end
|
2015
|
+
|
2016
|
+
# Aggregate the columns in the DataFrame to their variance value.
|
2017
|
+
#
|
2018
|
+
# @return [LazyFrame]
|
2019
|
+
#
|
2020
|
+
# @example
|
2021
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
2022
|
+
# df.var.collect
|
2023
|
+
# # =>
|
2024
|
+
# # shape: (1, 2)
|
2025
|
+
# # ┌──────────┬──────┐
|
2026
|
+
# # │ a ┆ b │
|
2027
|
+
# # │ --- ┆ --- │
|
2028
|
+
# # │ f64 ┆ f64 │
|
2029
|
+
# # ╞══════════╪══════╡
|
2030
|
+
# # │ 1.666667 ┆ 0.25 │
|
2031
|
+
# # └──────────┴──────┘
|
2032
|
+
#
|
2033
|
+
# @example
|
2034
|
+
# df.var(ddof: 0).collect
|
2035
|
+
# # =>
|
2036
|
+
# # shape: (1, 2)
|
2037
|
+
# # ┌──────┬────────┐
|
2038
|
+
# # │ a ┆ b │
|
2039
|
+
# # │ --- ┆ --- │
|
2040
|
+
# # │ f64 ┆ f64 │
|
2041
|
+
# # ╞══════╪════════╡
|
2042
|
+
# # │ 1.25 ┆ 0.1875 │
|
2043
|
+
# # └──────┴────────┘
|
2044
|
+
def var(ddof: 1)
|
2045
|
+
_from_rbldf(_ldf.var(ddof))
|
2046
|
+
end
|
2047
|
+
|
2048
|
+
# Aggregate the columns in the DataFrame to their maximum value.
|
2049
|
+
#
|
2050
|
+
# @return [LazyFrame]
|
2051
|
+
#
|
2052
|
+
# @example
|
2053
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
2054
|
+
# df.max.collect
|
2055
|
+
# # =>
|
2056
|
+
# # shape: (1, 2)
|
2057
|
+
# # ┌─────┬─────┐
|
2058
|
+
# # │ a ┆ b │
|
2059
|
+
# # │ --- ┆ --- │
|
2060
|
+
# # │ i64 ┆ i64 │
|
2061
|
+
# # ╞═════╪═════╡
|
2062
|
+
# # │ 4 ┆ 2 │
|
2063
|
+
# # └─────┴─────┘
|
2064
|
+
def max
|
2065
|
+
_from_rbldf(_ldf.max)
|
2066
|
+
end
|
2067
|
+
|
2068
|
+
# Aggregate the columns in the DataFrame to their minimum value.
|
2069
|
+
#
|
2070
|
+
# @return [LazyFrame]
|
2071
|
+
#
|
2072
|
+
# @example
|
2073
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
2074
|
+
# df.min.collect
|
2075
|
+
# # =>
|
2076
|
+
# # shape: (1, 2)
|
2077
|
+
# # ┌─────┬─────┐
|
2078
|
+
# # │ a ┆ b │
|
2079
|
+
# # │ --- ┆ --- │
|
2080
|
+
# # │ i64 ┆ i64 │
|
2081
|
+
# # ╞═════╪═════╡
|
2082
|
+
# # │ 1 ┆ 1 │
|
2083
|
+
# # └─────┴─────┘
|
2084
|
+
def min
|
2085
|
+
_from_rbldf(_ldf.min)
|
2086
|
+
end
|
2087
|
+
|
2088
|
+
# Aggregate the columns in the DataFrame to their sum value.
|
2089
|
+
#
|
2090
|
+
# @return [LazyFrame]
|
2091
|
+
#
|
2092
|
+
# @example
|
2093
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
2094
|
+
# df.sum.collect
|
2095
|
+
# # =>
|
2096
|
+
# # shape: (1, 2)
|
2097
|
+
# # ┌─────┬─────┐
|
2098
|
+
# # │ a ┆ b │
|
2099
|
+
# # │ --- ┆ --- │
|
2100
|
+
# # │ i64 ┆ i64 │
|
2101
|
+
# # ╞═════╪═════╡
|
2102
|
+
# # │ 10 ┆ 5 │
|
2103
|
+
# # └─────┴─────┘
|
2104
|
+
def sum
|
2105
|
+
_from_rbldf(_ldf.sum)
|
2106
|
+
end
|
2107
|
+
|
2108
|
+
# Aggregate the columns in the DataFrame to their mean value.
|
2109
|
+
#
|
2110
|
+
# @return [LazyFrame]
|
2111
|
+
#
|
2112
|
+
# @example
|
2113
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
2114
|
+
# df.mean.collect
|
2115
|
+
# # =>
|
2116
|
+
# # shape: (1, 2)
|
2117
|
+
# # ┌─────┬──────┐
|
2118
|
+
# # │ a ┆ b │
|
2119
|
+
# # │ --- ┆ --- │
|
2120
|
+
# # │ f64 ┆ f64 │
|
2121
|
+
# # ╞═════╪══════╡
|
2122
|
+
# # │ 2.5 ┆ 1.25 │
|
2123
|
+
# # └─────┴──────┘
|
2124
|
+
def mean
|
2125
|
+
_from_rbldf(_ldf.mean)
|
2126
|
+
end
|
2127
|
+
|
2128
|
+
# Aggregate the columns in the DataFrame to their median value.
|
2129
|
+
#
|
2130
|
+
# @return [LazyFrame]
|
2131
|
+
#
|
2132
|
+
# @example
|
2133
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
2134
|
+
# df.median.collect
|
2135
|
+
# # =>
|
2136
|
+
# # shape: (1, 2)
|
2137
|
+
# # ┌─────┬─────┐
|
2138
|
+
# # │ a ┆ b │
|
2139
|
+
# # │ --- ┆ --- │
|
2140
|
+
# # │ f64 ┆ f64 │
|
2141
|
+
# # ╞═════╪═════╡
|
2142
|
+
# # │ 2.5 ┆ 1.0 │
|
2143
|
+
# # └─────┴─────┘
|
2144
|
+
def median
|
2145
|
+
_from_rbldf(_ldf.median)
|
2146
|
+
end
|
2147
|
+
|
2148
|
+
# Aggregate the columns in the DataFrame to their quantile value.
|
2149
|
+
#
|
2150
|
+
# @param quantile [Float]
|
2151
|
+
# Quantile between 0.0 and 1.0.
|
2152
|
+
# @param interpolation ["nearest", "higher", "lower", "midpoint", "linear"]
|
2153
|
+
# Interpolation method.
|
2154
|
+
#
|
2155
|
+
# @return [LazyFrame]
|
2156
|
+
#
|
2157
|
+
# @example
|
2158
|
+
# df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
|
2159
|
+
# df.quantile(0.7).collect
|
2160
|
+
# # =>
|
2161
|
+
# # shape: (1, 2)
|
2162
|
+
# # ┌─────┬─────┐
|
2163
|
+
# # │ a ┆ b │
|
2164
|
+
# # │ --- ┆ --- │
|
2165
|
+
# # │ f64 ┆ f64 │
|
2166
|
+
# # ╞═════╪═════╡
|
2167
|
+
# # │ 3.0 ┆ 1.0 │
|
2168
|
+
# # └─────┴─────┘
|
2169
|
+
def quantile(quantile, interpolation: "nearest")
|
2170
|
+
quantile = Utils.expr_to_lit_or_expr(quantile, str_to_lit: false)
|
2171
|
+
_from_rbldf(_ldf.quantile(quantile._rbexpr, interpolation))
|
2172
|
+
end
|
2173
|
+
|
2174
|
+
# Explode lists to long format.
|
2175
|
+
#
|
2176
|
+
# @return [LazyFrame]
|
2177
|
+
#
|
2178
|
+
# @example
|
2179
|
+
# df = Polars::DataFrame.new(
|
2180
|
+
# {
|
2181
|
+
# "letters" => ["a", "a", "b", "c"],
|
2182
|
+
# "numbers" => [[1], [2, 3], [4, 5], [6, 7, 8]],
|
2183
|
+
# }
|
2184
|
+
# ).lazy
|
2185
|
+
# df.explode("numbers").collect
|
2186
|
+
# # =>
|
2187
|
+
# # shape: (8, 2)
|
2188
|
+
# # ┌─────────┬─────────┐
|
2189
|
+
# # │ letters ┆ numbers │
|
2190
|
+
# # │ --- ┆ --- │
|
2191
|
+
# # │ str ┆ i64 │
|
2192
|
+
# # ╞═════════╪═════════╡
|
2193
|
+
# # │ a ┆ 1 │
|
2194
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2195
|
+
# # │ a ┆ 2 │
|
2196
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2197
|
+
# # │ a ┆ 3 │
|
2198
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2199
|
+
# # │ b ┆ 4 │
|
2200
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2201
|
+
# # │ b ┆ 5 │
|
2202
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2203
|
+
# # │ c ┆ 6 │
|
2204
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2205
|
+
# # │ c ┆ 7 │
|
2206
|
+
# # ├╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌┤
|
2207
|
+
# # │ c ┆ 8 │
|
2208
|
+
# # └─────────┴─────────┘
|
2209
|
+
def explode(columns)
|
2210
|
+
columns = Utils.selection_to_rbexpr_list(columns)
|
2211
|
+
_from_rbldf(_ldf.explode(columns))
|
2212
|
+
end
|
2213
|
+
|
2214
|
+
# Drop duplicate rows from this DataFrame.
|
2215
|
+
#
|
2216
|
+
# Note that this fails if there is a column of type `List` in the DataFrame or
|
2217
|
+
# subset.
|
2218
|
+
#
|
2219
|
+
# @param maintain_order [Boolean]
|
2220
|
+
# Keep the same order as the original DataFrame. This requires more work to
|
2221
|
+
# compute.
|
2222
|
+
# @param subset [Object]
|
2223
|
+
# Subset to use to compare rows.
|
2224
|
+
# @param keep ["first", "last"]
|
2225
|
+
# Which of the duplicate rows to keep.
|
2226
|
+
#
|
2227
|
+
# @return [LazyFrame]
|
2228
|
+
def unique(maintain_order: true, subset: nil, keep: "first")
|
2229
|
+
if !subset.nil? && !subset.is_a?(Array)
|
2230
|
+
subset = [subset]
|
2231
|
+
end
|
2232
|
+
_from_rbldf(_ldf.unique(maintain_order, subset, keep))
|
2233
|
+
end
|
2234
|
+
|
2235
|
+
# Drop rows with null values from this LazyFrame.
|
2236
|
+
#
|
2237
|
+
# @param subset [Object]
|
2238
|
+
# Subset of column(s) on which `drop_nulls` will be applied.
|
2239
|
+
#
|
2240
|
+
# @return [LazyFrame]
|
2241
|
+
#
|
2242
|
+
# @example
|
2243
|
+
# df = Polars::DataFrame.new(
|
2244
|
+
# {
|
2245
|
+
# "foo" => [1, 2, 3],
|
2246
|
+
# "bar" => [6, nil, 8],
|
2247
|
+
# "ham" => ["a", "b", "c"]
|
2248
|
+
# }
|
2249
|
+
# )
|
2250
|
+
# df.lazy.drop_nulls.collect
|
2251
|
+
# # =>
|
2252
|
+
# # shape: (2, 3)
|
2253
|
+
# # ┌─────┬─────┬─────┐
|
2254
|
+
# # │ foo ┆ bar ┆ ham │
|
2255
|
+
# # │ --- ┆ --- ┆ --- │
|
2256
|
+
# # │ i64 ┆ i64 ┆ str │
|
2257
|
+
# # ╞═════╪═════╪═════╡
|
2258
|
+
# # │ 1 ┆ 6 ┆ a │
|
2259
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┤
|
2260
|
+
# # │ 3 ┆ 8 ┆ c │
|
2261
|
+
# # └─────┴─────┴─────┘
|
2262
|
+
def drop_nulls(subset: nil)
|
2263
|
+
if !subset.nil? && !subset.is_a?(Array)
|
2264
|
+
subset = [subset]
|
2265
|
+
end
|
2266
|
+
_from_rbldf(_ldf.drop_nulls(subset))
|
2267
|
+
end
|
2268
|
+
|
2269
|
+
# Unpivot a DataFrame from wide to long format.
|
2270
|
+
#
|
2271
|
+
# Optionally leaves identifiers set.
|
2272
|
+
#
|
2273
|
+
# This function is useful to massage a DataFrame into a format where one or more
|
2274
|
+
# columns are identifier variables (id_vars), while all other columns, considered
|
2275
|
+
# measured variables (value_vars), are "unpivoted" to the row axis, leaving just
|
2276
|
+
# two non-identifier columns, 'variable' and 'value'.
|
2277
|
+
#
|
2278
|
+
# @param id_vars [Object]
|
2279
|
+
# Columns to use as identifier variables.
|
2280
|
+
# @param value_vars [Object]
|
2281
|
+
# Values to use as identifier variables.
|
2282
|
+
# If `value_vars` is empty all columns that are not in `id_vars` will be used.
|
2283
|
+
# @param variable_name [String]
|
2284
|
+
# Name to give to the `value` column. Defaults to "variable"
|
2285
|
+
# @param value_name [String]
|
2286
|
+
# Name to give to the `value` column. Defaults to "value"
|
2287
|
+
#
|
2288
|
+
# @return [LazyFrame]
|
2289
|
+
#
|
2290
|
+
# @example
|
2291
|
+
# df = Polars::DataFrame.new(
|
2292
|
+
# {
|
2293
|
+
# "a" => ["x", "y", "z"],
|
2294
|
+
# "b" => [1, 3, 5],
|
2295
|
+
# "c" => [2, 4, 6]
|
2296
|
+
# }
|
2297
|
+
# ).lazy
|
2298
|
+
# df.melt(id_vars: "a", value_vars: ["b", "c"]).collect
|
2299
|
+
# # =>
|
2300
|
+
# # shape: (6, 3)
|
2301
|
+
# # ┌─────┬──────────┬───────┐
|
2302
|
+
# # │ a ┆ variable ┆ value │
|
2303
|
+
# # │ --- ┆ --- ┆ --- │
|
2304
|
+
# # │ str ┆ str ┆ i64 │
|
2305
|
+
# # ╞═════╪══════════╪═══════╡
|
2306
|
+
# # │ x ┆ b ┆ 1 │
|
2307
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2308
|
+
# # │ y ┆ b ┆ 3 │
|
2309
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2310
|
+
# # │ z ┆ b ┆ 5 │
|
2311
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2312
|
+
# # │ x ┆ c ┆ 2 │
|
2313
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2314
|
+
# # │ y ┆ c ┆ 4 │
|
2315
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2316
|
+
# # │ z ┆ c ┆ 6 │
|
2317
|
+
# # └─────┴──────────┴───────┘
|
2318
|
+
def melt(id_vars: nil, value_vars: nil, variable_name: nil, value_name: nil)
|
2319
|
+
if value_vars.is_a?(String)
|
2320
|
+
value_vars = [value_vars]
|
2321
|
+
end
|
2322
|
+
if id_vars.is_a?(String)
|
2323
|
+
id_vars = [id_vars]
|
2324
|
+
end
|
2325
|
+
if value_vars.nil?
|
2326
|
+
value_vars = []
|
2327
|
+
end
|
2328
|
+
if id_vars.nil?
|
2329
|
+
id_vars = []
|
2330
|
+
end
|
2331
|
+
_from_rbldf(
|
2332
|
+
_ldf.melt(id_vars, value_vars, value_name, variable_name)
|
2333
|
+
)
|
2334
|
+
end
|
2335
|
+
|
2336
|
+
# def map
|
2337
|
+
# end
|
2338
|
+
|
2339
|
+
# Interpolate intermediate values. The interpolation method is linear.
|
2340
|
+
#
|
2341
|
+
# @return [LazyFrame]
|
2342
|
+
#
|
2343
|
+
# @example
|
2344
|
+
# df = Polars::DataFrame.new(
|
2345
|
+
# {
|
2346
|
+
# "foo" => [1, nil, 9, 10],
|
2347
|
+
# "bar" => [6, 7, 9, nil],
|
2348
|
+
# "baz" => [1, nil, nil, 9]
|
2349
|
+
# }
|
2350
|
+
# ).lazy
|
2351
|
+
# df.interpolate.collect
|
2352
|
+
# # =>
|
2353
|
+
# # shape: (4, 3)
|
2354
|
+
# # ┌─────┬──────┬─────┐
|
2355
|
+
# # │ foo ┆ bar ┆ baz │
|
2356
|
+
# # │ --- ┆ --- ┆ --- │
|
2357
|
+
# # │ i64 ┆ i64 ┆ i64 │
|
2358
|
+
# # ╞═════╪══════╪═════╡
|
2359
|
+
# # │ 1 ┆ 6 ┆ 1 │
|
2360
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
2361
|
+
# # │ 5 ┆ 7 ┆ 3 │
|
2362
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
2363
|
+
# # │ 9 ┆ 9 ┆ 6 │
|
2364
|
+
# # ├╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌┤
|
2365
|
+
# # │ 10 ┆ null ┆ 9 │
|
2366
|
+
# # └─────┴──────┴─────┘
|
2367
|
+
def interpolate
|
2368
|
+
select(Utils.col("*").interpolate)
|
2369
|
+
end
|
2370
|
+
|
2371
|
+
# Decompose a struct into its fields.
|
2372
|
+
#
|
2373
|
+
# The fields will be inserted into the `DataFrame` on the location of the
|
2374
|
+
# `struct` type.
|
2375
|
+
#
|
2376
|
+
# @param names [Object]
|
2377
|
+
# Names of the struct columns that will be decomposed by its fields
|
2378
|
+
#
|
2379
|
+
# @return [LazyFrame]
|
2380
|
+
#
|
2381
|
+
# @example
|
2382
|
+
# df = (
|
2383
|
+
# Polars::DataFrame.new(
|
2384
|
+
# {
|
2385
|
+
# "before" => ["foo", "bar"],
|
2386
|
+
# "t_a" => [1, 2],
|
2387
|
+
# "t_b" => ["a", "b"],
|
2388
|
+
# "t_c" => [true, nil],
|
2389
|
+
# "t_d" => [[1, 2], [3]],
|
2390
|
+
# "after" => ["baz", "womp"]
|
2391
|
+
# }
|
2392
|
+
# )
|
2393
|
+
# .lazy
|
2394
|
+
# .select(
|
2395
|
+
# ["before", Polars.struct(Polars.col("^t_.$")).alias("t_struct"), "after"]
|
2396
|
+
# )
|
2397
|
+
# )
|
2398
|
+
# df.fetch
|
2399
|
+
# # =>
|
2400
|
+
# # shape: (2, 3)
|
2401
|
+
# # ┌────────┬─────────────────────┬───────┐
|
2402
|
+
# # │ before ┆ t_struct ┆ after │
|
2403
|
+
# # │ --- ┆ --- ┆ --- │
|
2404
|
+
# # │ str ┆ struct[4] ┆ str │
|
2405
|
+
# # ╞════════╪═════════════════════╪═══════╡
|
2406
|
+
# # │ foo ┆ {1,"a",true,[1, 2]} ┆ baz │
|
2407
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2408
|
+
# # │ bar ┆ {2,"b",null,[3]} ┆ womp │
|
2409
|
+
# # └────────┴─────────────────────┴───────┘
|
2410
|
+
#
|
2411
|
+
# @example
|
2412
|
+
# df.unnest("t_struct").fetch
|
2413
|
+
# # =>
|
2414
|
+
# # shape: (2, 6)
|
2415
|
+
# # ┌────────┬─────┬─────┬──────┬───────────┬───────┐
|
2416
|
+
# # │ before ┆ t_a ┆ t_b ┆ t_c ┆ t_d ┆ after │
|
2417
|
+
# # │ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │
|
2418
|
+
# # │ str ┆ i64 ┆ str ┆ bool ┆ list[i64] ┆ str │
|
2419
|
+
# # ╞════════╪═════╪═════╪══════╪═══════════╪═══════╡
|
2420
|
+
# # │ foo ┆ 1 ┆ a ┆ true ┆ [1, 2] ┆ baz │
|
2421
|
+
# # ├╌╌╌╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌┼╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌┤
|
2422
|
+
# # │ bar ┆ 2 ┆ b ┆ null ┆ [3] ┆ womp │
|
2423
|
+
# # └────────┴─────┴─────┴──────┴───────────┴───────┘
|
2424
|
+
def unnest(names)
|
2425
|
+
if names.is_a?(String)
|
2426
|
+
names = [names]
|
2427
|
+
end
|
2428
|
+
_from_rbldf(_ldf.unnest(names))
|
2429
|
+
end
|
2430
|
+
|
2431
|
+
private
|
2432
|
+
|
2433
|
+
def initialize_copy(other)
|
2434
|
+
super
|
2435
|
+
self._ldf = _ldf._clone
|
2436
|
+
end
|
2437
|
+
|
2438
|
+
def _from_rbldf(rb_ldf)
|
2439
|
+
self.class._from_rbldf(rb_ldf)
|
2440
|
+
end
|
2441
|
+
end
|
2442
|
+
end
|