polars-df 0.13.0-aarch64-linux-musl
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +3 -0
- data/CHANGELOG.md +208 -0
- data/Cargo.lock +2556 -0
- data/Cargo.toml +6 -0
- data/LICENSE-THIRD-PARTY.txt +39059 -0
- data/LICENSE.txt +20 -0
- data/README.md +437 -0
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/3.3/polars.so +0 -0
- data/lib/polars/array_expr.rb +537 -0
- data/lib/polars/array_name_space.rb +423 -0
- data/lib/polars/batched_csv_reader.rb +104 -0
- data/lib/polars/binary_expr.rb +77 -0
- data/lib/polars/binary_name_space.rb +66 -0
- data/lib/polars/cat_expr.rb +36 -0
- data/lib/polars/cat_name_space.rb +88 -0
- data/lib/polars/config.rb +530 -0
- data/lib/polars/convert.rb +98 -0
- data/lib/polars/data_frame.rb +5191 -0
- data/lib/polars/data_types.rb +466 -0
- data/lib/polars/date_time_expr.rb +1397 -0
- data/lib/polars/date_time_name_space.rb +1287 -0
- data/lib/polars/dynamic_group_by.rb +52 -0
- data/lib/polars/exceptions.rb +38 -0
- data/lib/polars/expr.rb +7256 -0
- data/lib/polars/expr_dispatch.rb +22 -0
- data/lib/polars/functions/aggregation/horizontal.rb +246 -0
- data/lib/polars/functions/aggregation/vertical.rb +282 -0
- data/lib/polars/functions/as_datatype.rb +271 -0
- data/lib/polars/functions/col.rb +47 -0
- data/lib/polars/functions/eager.rb +182 -0
- data/lib/polars/functions/lazy.rb +1329 -0
- data/lib/polars/functions/len.rb +49 -0
- data/lib/polars/functions/lit.rb +35 -0
- data/lib/polars/functions/random.rb +16 -0
- data/lib/polars/functions/range/date_range.rb +136 -0
- data/lib/polars/functions/range/datetime_range.rb +149 -0
- data/lib/polars/functions/range/int_range.rb +51 -0
- data/lib/polars/functions/range/time_range.rb +141 -0
- data/lib/polars/functions/repeat.rb +144 -0
- data/lib/polars/functions/whenthen.rb +96 -0
- data/lib/polars/functions.rb +57 -0
- data/lib/polars/group_by.rb +613 -0
- data/lib/polars/io/avro.rb +24 -0
- data/lib/polars/io/csv.rb +696 -0
- data/lib/polars/io/database.rb +73 -0
- data/lib/polars/io/ipc.rb +275 -0
- data/lib/polars/io/json.rb +29 -0
- data/lib/polars/io/ndjson.rb +80 -0
- data/lib/polars/io/parquet.rb +233 -0
- data/lib/polars/lazy_frame.rb +2708 -0
- data/lib/polars/lazy_group_by.rb +181 -0
- data/lib/polars/list_expr.rb +791 -0
- data/lib/polars/list_name_space.rb +449 -0
- data/lib/polars/meta_expr.rb +222 -0
- data/lib/polars/name_expr.rb +198 -0
- data/lib/polars/plot.rb +109 -0
- data/lib/polars/rolling_group_by.rb +35 -0
- data/lib/polars/series.rb +4444 -0
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/sql_context.rb +194 -0
- data/lib/polars/string_cache.rb +75 -0
- data/lib/polars/string_expr.rb +1495 -0
- data/lib/polars/string_name_space.rb +811 -0
- data/lib/polars/struct_expr.rb +98 -0
- data/lib/polars/struct_name_space.rb +96 -0
- data/lib/polars/testing.rb +507 -0
- data/lib/polars/utils/constants.rb +9 -0
- data/lib/polars/utils/convert.rb +97 -0
- data/lib/polars/utils/parse.rb +89 -0
- data/lib/polars/utils/various.rb +76 -0
- data/lib/polars/utils/wrap.rb +19 -0
- data/lib/polars/utils.rb +130 -0
- data/lib/polars/version.rb +4 -0
- data/lib/polars/whenthen.rb +83 -0
- data/lib/polars-df.rb +1 -0
- data/lib/polars.rb +91 -0
- metadata +138 -0
@@ -0,0 +1,791 @@
|
|
1
|
+
module Polars
|
2
|
+
# Namespace for list related expressions.
|
3
|
+
class ListExpr
|
4
|
+
# @private
|
5
|
+
attr_accessor :_rbexpr
|
6
|
+
|
7
|
+
# @private
|
8
|
+
def initialize(expr)
|
9
|
+
self._rbexpr = expr._rbexpr
|
10
|
+
end
|
11
|
+
|
12
|
+
# Evaluate whether all boolean values in a list are true.
|
13
|
+
#
|
14
|
+
# @return [Expr]
|
15
|
+
#
|
16
|
+
# @example
|
17
|
+
# df = Polars::DataFrame.new(
|
18
|
+
# {"a" => [[true, true], [false, true], [false, false], [nil], [], nil]}
|
19
|
+
# )
|
20
|
+
# df.with_columns(all: Polars.col("a").list.all)
|
21
|
+
# # =>
|
22
|
+
# # shape: (6, 2)
|
23
|
+
# # ┌────────────────┬───────┐
|
24
|
+
# # │ a ┆ all │
|
25
|
+
# # │ --- ┆ --- │
|
26
|
+
# # │ list[bool] ┆ bool │
|
27
|
+
# # ╞════════════════╪═══════╡
|
28
|
+
# # │ [true, true] ┆ true │
|
29
|
+
# # │ [false, true] ┆ false │
|
30
|
+
# # │ [false, false] ┆ false │
|
31
|
+
# # │ [null] ┆ true │
|
32
|
+
# # │ [] ┆ true │
|
33
|
+
# # │ null ┆ null │
|
34
|
+
# # └────────────────┴───────┘
|
35
|
+
def all
|
36
|
+
Utils.wrap_expr(_rbexpr.list_all)
|
37
|
+
end
|
38
|
+
|
39
|
+
# Evaluate whether any boolean value in a list is true.
|
40
|
+
#
|
41
|
+
# @return [Expr]
|
42
|
+
#
|
43
|
+
# @example
|
44
|
+
# df = Polars::DataFrame.new(
|
45
|
+
# {"a" => [[true, true], [false, true], [false, false], [nil], [], nil]}
|
46
|
+
# )
|
47
|
+
# df.with_columns(any: Polars.col("a").list.any)
|
48
|
+
# # =>
|
49
|
+
# # shape: (6, 2)
|
50
|
+
# # ┌────────────────┬───────┐
|
51
|
+
# # │ a ┆ any │
|
52
|
+
# # │ --- ┆ --- │
|
53
|
+
# # │ list[bool] ┆ bool │
|
54
|
+
# # ╞════════════════╪═══════╡
|
55
|
+
# # │ [true, true] ┆ true │
|
56
|
+
# # │ [false, true] ┆ true │
|
57
|
+
# # │ [false, false] ┆ false │
|
58
|
+
# # │ [null] ┆ false │
|
59
|
+
# # │ [] ┆ false │
|
60
|
+
# # │ null ┆ null │
|
61
|
+
# # └────────────────┴───────┘
|
62
|
+
def any
|
63
|
+
Utils.wrap_expr(_rbexpr.list_any)
|
64
|
+
end
|
65
|
+
|
66
|
+
# Get the length of the arrays as `:u32`.
|
67
|
+
#
|
68
|
+
# @return [Expr]
|
69
|
+
#
|
70
|
+
# @example
|
71
|
+
# df = Polars::DataFrame.new({"foo" => [1, 2], "bar" => [["a", "b"], ["c"]]})
|
72
|
+
# df.select(Polars.col("bar").list.lengths)
|
73
|
+
# # =>
|
74
|
+
# # shape: (2, 1)
|
75
|
+
# # ┌─────┐
|
76
|
+
# # │ bar │
|
77
|
+
# # │ --- │
|
78
|
+
# # │ u32 │
|
79
|
+
# # ╞═════╡
|
80
|
+
# # │ 2 │
|
81
|
+
# # │ 1 │
|
82
|
+
# # └─────┘
|
83
|
+
def lengths
|
84
|
+
Utils.wrap_expr(_rbexpr.list_len)
|
85
|
+
end
|
86
|
+
alias_method :len, :lengths
|
87
|
+
|
88
|
+
# Drop all null values in the list.
|
89
|
+
#
|
90
|
+
# The original order of the remaining elements is preserved.
|
91
|
+
#
|
92
|
+
# @return [Expr]
|
93
|
+
#
|
94
|
+
# @example
|
95
|
+
# df = Polars::DataFrame.new({"values" => [[nil, 1, nil, 2], [nil], [3, 4]]})
|
96
|
+
# df.with_columns(drop_nulls: Polars.col("values").list.drop_nulls)
|
97
|
+
# # =>
|
98
|
+
# # shape: (3, 2)
|
99
|
+
# # ┌────────────────┬────────────┐
|
100
|
+
# # │ values ┆ drop_nulls │
|
101
|
+
# # │ --- ┆ --- │
|
102
|
+
# # │ list[i64] ┆ list[i64] │
|
103
|
+
# # ╞════════════════╪════════════╡
|
104
|
+
# # │ [null, 1, … 2] ┆ [1, 2] │
|
105
|
+
# # │ [null] ┆ [] │
|
106
|
+
# # │ [3, 4] ┆ [3, 4] │
|
107
|
+
# # └────────────────┴────────────┘
|
108
|
+
def drop_nulls
|
109
|
+
Utils.wrap_expr(_rbexpr.list_drop_nulls)
|
110
|
+
end
|
111
|
+
|
112
|
+
# Sample from this list.
|
113
|
+
#
|
114
|
+
# @param n [Integer]
|
115
|
+
# Number of items to return. Cannot be used with `fraction`. Defaults to 1 if
|
116
|
+
# `fraction` is nil.
|
117
|
+
# @param fraction [Float]
|
118
|
+
# Fraction of items to return. Cannot be used with `n`.
|
119
|
+
# @param with_replacement [Boolean]
|
120
|
+
# Allow values to be sampled more than once.
|
121
|
+
# @param shuffle [Boolean]
|
122
|
+
# Shuffle the order of sampled data points.
|
123
|
+
# @param seed [Integer]
|
124
|
+
# Seed for the random number generator. If set to nil (default), a
|
125
|
+
# random seed is generated for each sample operation.
|
126
|
+
#
|
127
|
+
# @return [Expr]
|
128
|
+
#
|
129
|
+
# @example
|
130
|
+
# df = Polars::DataFrame.new({"values" => [[1, 2, 3], [4, 5]], "n" => [2, 1]})
|
131
|
+
# df.with_columns(sample: Polars.col("values").list.sample(n: Polars.col("n"), seed: 1))
|
132
|
+
# # =>
|
133
|
+
# # shape: (2, 3)
|
134
|
+
# # ┌───────────┬─────┬───────────┐
|
135
|
+
# # │ values ┆ n ┆ sample │
|
136
|
+
# # │ --- ┆ --- ┆ --- │
|
137
|
+
# # │ list[i64] ┆ i64 ┆ list[i64] │
|
138
|
+
# # ╞═══════════╪═════╪═══════════╡
|
139
|
+
# # │ [1, 2, 3] ┆ 2 ┆ [2, 1] │
|
140
|
+
# # │ [4, 5] ┆ 1 ┆ [5] │
|
141
|
+
# # └───────────┴─────┴───────────┘
|
142
|
+
def sample(n: nil, fraction: nil, with_replacement: false, shuffle: false, seed: nil)
|
143
|
+
if !n.nil? && !fraction.nil?
|
144
|
+
msg = "cannot specify both `n` and `fraction`"
|
145
|
+
raise ArgumentError, msg
|
146
|
+
end
|
147
|
+
|
148
|
+
if !fraction.nil?
|
149
|
+
fraction = Utils.parse_into_expression(fraction)
|
150
|
+
return Utils.wrap_expr(
|
151
|
+
_rbexpr.list_sample_fraction(
|
152
|
+
fraction, with_replacement, shuffle, seed
|
153
|
+
)
|
154
|
+
)
|
155
|
+
end
|
156
|
+
|
157
|
+
n = 1 if n.nil?
|
158
|
+
n = Utils.parse_into_expression(n)
|
159
|
+
Utils.wrap_expr(_rbexpr.list_sample_n(n, with_replacement, shuffle, seed))
|
160
|
+
end
|
161
|
+
|
162
|
+
# Sum all the lists in the array.
|
163
|
+
#
|
164
|
+
# @return [Expr]
|
165
|
+
#
|
166
|
+
# @example
|
167
|
+
# df = Polars::DataFrame.new({"values" => [[1], [2, 3]]})
|
168
|
+
# df.select(Polars.col("values").list.sum)
|
169
|
+
# # =>
|
170
|
+
# # shape: (2, 1)
|
171
|
+
# # ┌────────┐
|
172
|
+
# # │ values │
|
173
|
+
# # │ --- │
|
174
|
+
# # │ i64 │
|
175
|
+
# # ╞════════╡
|
176
|
+
# # │ 1 │
|
177
|
+
# # │ 5 │
|
178
|
+
# # └────────┘
|
179
|
+
def sum
|
180
|
+
Utils.wrap_expr(_rbexpr.list_sum)
|
181
|
+
end
|
182
|
+
|
183
|
+
# Compute the max value of the lists in the array.
|
184
|
+
#
|
185
|
+
# @return [Expr]
|
186
|
+
#
|
187
|
+
# @example
|
188
|
+
# df = Polars::DataFrame.new({"values" => [[1], [2, 3]]})
|
189
|
+
# df.select(Polars.col("values").list.max)
|
190
|
+
# # =>
|
191
|
+
# # shape: (2, 1)
|
192
|
+
# # ┌────────┐
|
193
|
+
# # │ values │
|
194
|
+
# # │ --- │
|
195
|
+
# # │ i64 │
|
196
|
+
# # ╞════════╡
|
197
|
+
# # │ 1 │
|
198
|
+
# # │ 3 │
|
199
|
+
# # └────────┘
|
200
|
+
def max
|
201
|
+
Utils.wrap_expr(_rbexpr.list_max)
|
202
|
+
end
|
203
|
+
|
204
|
+
# Compute the min value of the lists in the array.
|
205
|
+
#
|
206
|
+
# @return [Expr]
|
207
|
+
#
|
208
|
+
# @example
|
209
|
+
# df = Polars::DataFrame.new({"values" => [[1], [2, 3]]})
|
210
|
+
# df.select(Polars.col("values").list.min)
|
211
|
+
# # =>
|
212
|
+
# # shape: (2, 1)
|
213
|
+
# # ┌────────┐
|
214
|
+
# # │ values │
|
215
|
+
# # │ --- │
|
216
|
+
# # │ i64 │
|
217
|
+
# # ╞════════╡
|
218
|
+
# # │ 1 │
|
219
|
+
# # │ 2 │
|
220
|
+
# # └────────┘
|
221
|
+
def min
|
222
|
+
Utils.wrap_expr(_rbexpr.list_min)
|
223
|
+
end
|
224
|
+
|
225
|
+
# Compute the mean value of the lists in the array.
|
226
|
+
#
|
227
|
+
# @return [Expr]
|
228
|
+
#
|
229
|
+
# @example
|
230
|
+
# df = Polars::DataFrame.new({"values" => [[1], [2, 3]]})
|
231
|
+
# df.select(Polars.col("values").list.mean)
|
232
|
+
# # =>
|
233
|
+
# # shape: (2, 1)
|
234
|
+
# # ┌────────┐
|
235
|
+
# # │ values │
|
236
|
+
# # │ --- │
|
237
|
+
# # │ f64 │
|
238
|
+
# # ╞════════╡
|
239
|
+
# # │ 1.0 │
|
240
|
+
# # │ 2.5 │
|
241
|
+
# # └────────┘
|
242
|
+
def mean
|
243
|
+
Utils.wrap_expr(_rbexpr.list_mean)
|
244
|
+
end
|
245
|
+
|
246
|
+
# Sort the arrays in the list.
|
247
|
+
#
|
248
|
+
# @return [Expr]
|
249
|
+
#
|
250
|
+
# @example
|
251
|
+
# df = Polars::DataFrame.new(
|
252
|
+
# {
|
253
|
+
# "a" => [[3, 2, 1], [9, 1, 2]]
|
254
|
+
# }
|
255
|
+
# )
|
256
|
+
# df.select(Polars.col("a").list.sort)
|
257
|
+
# # =>
|
258
|
+
# # shape: (2, 1)
|
259
|
+
# # ┌───────────┐
|
260
|
+
# # │ a │
|
261
|
+
# # │ --- │
|
262
|
+
# # │ list[i64] │
|
263
|
+
# # ╞═══════════╡
|
264
|
+
# # │ [1, 2, 3] │
|
265
|
+
# # │ [1, 2, 9] │
|
266
|
+
# # └───────────┘
|
267
|
+
def sort(reverse: false)
|
268
|
+
Utils.wrap_expr(_rbexpr.list_sort(reverse))
|
269
|
+
end
|
270
|
+
|
271
|
+
# Reverse the arrays in the list.
|
272
|
+
#
|
273
|
+
# @return [Expr]
|
274
|
+
#
|
275
|
+
# @example
|
276
|
+
# df = Polars::DataFrame.new(
|
277
|
+
# {
|
278
|
+
# "a" => [[3, 2, 1], [9, 1, 2]]
|
279
|
+
# }
|
280
|
+
# )
|
281
|
+
# df.select(Polars.col("a").list.reverse)
|
282
|
+
# # =>
|
283
|
+
# # shape: (2, 1)
|
284
|
+
# # ┌───────────┐
|
285
|
+
# # │ a │
|
286
|
+
# # │ --- │
|
287
|
+
# # │ list[i64] │
|
288
|
+
# # ╞═══════════╡
|
289
|
+
# # │ [1, 2, 3] │
|
290
|
+
# # │ [2, 1, 9] │
|
291
|
+
# # └───────────┘
|
292
|
+
def reverse
|
293
|
+
Utils.wrap_expr(_rbexpr.list_reverse)
|
294
|
+
end
|
295
|
+
|
296
|
+
# Get the unique/distinct values in the list.
|
297
|
+
#
|
298
|
+
# @return [Expr]
|
299
|
+
#
|
300
|
+
# @example
|
301
|
+
# df = Polars::DataFrame.new(
|
302
|
+
# {
|
303
|
+
# "a" => [[1, 1, 2]]
|
304
|
+
# }
|
305
|
+
# )
|
306
|
+
# df.select(Polars.col("a").list.unique)
|
307
|
+
# # =>
|
308
|
+
# # shape: (1, 1)
|
309
|
+
# # ┌───────────┐
|
310
|
+
# # │ a │
|
311
|
+
# # │ --- │
|
312
|
+
# # │ list[i64] │
|
313
|
+
# # ╞═══════════╡
|
314
|
+
# # │ [1, 2] │
|
315
|
+
# # └───────────┘
|
316
|
+
def unique(maintain_order: false)
|
317
|
+
Utils.wrap_expr(_rbexpr.list_unique(maintain_order))
|
318
|
+
end
|
319
|
+
|
320
|
+
# Concat the arrays in a Series dtype List in linear time.
|
321
|
+
#
|
322
|
+
# @param other [Object]
|
323
|
+
# Columns to concat into a List Series
|
324
|
+
#
|
325
|
+
# @return [Expr]
|
326
|
+
#
|
327
|
+
# @example
|
328
|
+
# df = Polars::DataFrame.new(
|
329
|
+
# {
|
330
|
+
# "a" => [["a"], ["x"]],
|
331
|
+
# "b" => [["b", "c"], ["y", "z"]]
|
332
|
+
# }
|
333
|
+
# )
|
334
|
+
# df.select(Polars.col("a").list.concat("b"))
|
335
|
+
# # =>
|
336
|
+
# # shape: (2, 1)
|
337
|
+
# # ┌─────────────────┐
|
338
|
+
# # │ a │
|
339
|
+
# # │ --- │
|
340
|
+
# # │ list[str] │
|
341
|
+
# # ╞═════════════════╡
|
342
|
+
# # │ ["a", "b", "c"] │
|
343
|
+
# # │ ["x", "y", "z"] │
|
344
|
+
# # └─────────────────┘
|
345
|
+
def concat(other)
|
346
|
+
if other.is_a?(::Array) && ![Expr, String, Series].any? { |c| other[0].is_a?(c) }
|
347
|
+
return concat(Series.new([other]))
|
348
|
+
end
|
349
|
+
|
350
|
+
if !other.is_a?(::Array)
|
351
|
+
other_list = [other]
|
352
|
+
else
|
353
|
+
other_list = other.dup
|
354
|
+
end
|
355
|
+
|
356
|
+
other_list.insert(0, Utils.wrap_expr(_rbexpr))
|
357
|
+
Polars.concat_list(other_list)
|
358
|
+
end
|
359
|
+
|
360
|
+
# Get the value by index in the sublists.
|
361
|
+
#
|
362
|
+
# So index `0` would return the first item of every sublist
|
363
|
+
# and index `-1` would return the last item of every sublist
|
364
|
+
# if an index is out of bounds, it will return a `None`.
|
365
|
+
#
|
366
|
+
# @param index [Integer]
|
367
|
+
# Index to return per sublist
|
368
|
+
# @param null_on_oob [Boolean]
|
369
|
+
# Behavior if an index is out of bounds:
|
370
|
+
# true -> set as null
|
371
|
+
# false -> raise an error
|
372
|
+
#
|
373
|
+
# @return [Expr]
|
374
|
+
#
|
375
|
+
# @example
|
376
|
+
# df = Polars::DataFrame.new({"foo" => [[3, 2, 1], [], [1, 2]]})
|
377
|
+
# df.select(Polars.col("foo").list.get(0))
|
378
|
+
# # =>
|
379
|
+
# # shape: (3, 1)
|
380
|
+
# # ┌──────┐
|
381
|
+
# # │ foo │
|
382
|
+
# # │ --- │
|
383
|
+
# # │ i64 │
|
384
|
+
# # ╞══════╡
|
385
|
+
# # │ 3 │
|
386
|
+
# # │ null │
|
387
|
+
# # │ 1 │
|
388
|
+
# # └──────┘
|
389
|
+
def get(index, null_on_oob: true)
|
390
|
+
index = Utils.parse_into_expression(index)
|
391
|
+
Utils.wrap_expr(_rbexpr.list_get(index, null_on_oob))
|
392
|
+
end
|
393
|
+
|
394
|
+
# Get the value by index in the sublists.
|
395
|
+
#
|
396
|
+
# @return [Expr]
|
397
|
+
def [](item)
|
398
|
+
get(item)
|
399
|
+
end
|
400
|
+
|
401
|
+
# Take sublists by multiple indices.
|
402
|
+
#
|
403
|
+
# The indices may be defined in a single column, or by sublists in another
|
404
|
+
# column of dtype `List`.
|
405
|
+
#
|
406
|
+
# @param index [Object]
|
407
|
+
# Indices to return per sublist
|
408
|
+
# @param null_on_oob [Boolean]
|
409
|
+
# Behavior if an index is out of bounds:
|
410
|
+
# True -> set as null
|
411
|
+
# False -> raise an error
|
412
|
+
# Note that defaulting to raising an error is much cheaper
|
413
|
+
#
|
414
|
+
# @return [Expr]
|
415
|
+
#
|
416
|
+
# @example
|
417
|
+
# df = Polars::DataFrame.new({"a" => [[3, 2, 1], [], [1, 2, 3, 4, 5]]})
|
418
|
+
# df.with_columns(gather: Polars.col("a").list.gather([0, 4], null_on_oob: true))
|
419
|
+
# # =>
|
420
|
+
# # shape: (3, 2)
|
421
|
+
# # ┌─────────────┬──────────────┐
|
422
|
+
# # │ a ┆ gather │
|
423
|
+
# # │ --- ┆ --- │
|
424
|
+
# # │ list[i64] ┆ list[i64] │
|
425
|
+
# # ╞═════════════╪══════════════╡
|
426
|
+
# # │ [3, 2, 1] ┆ [3, null] │
|
427
|
+
# # │ [] ┆ [null, null] │
|
428
|
+
# # │ [1, 2, … 5] ┆ [1, 5] │
|
429
|
+
# # └─────────────┴──────────────┘
|
430
|
+
def gather(index, null_on_oob: false)
|
431
|
+
if index.is_a?(::Array)
|
432
|
+
index = Series.new(index)
|
433
|
+
end
|
434
|
+
index = Utils.parse_into_expression(index, str_as_lit: false)
|
435
|
+
Utils.wrap_expr(_rbexpr.list_gather(index, null_on_oob))
|
436
|
+
end
|
437
|
+
alias_method :take, :gather
|
438
|
+
|
439
|
+
# Get the first value of the sublists.
|
440
|
+
#
|
441
|
+
# @return [Expr]
|
442
|
+
#
|
443
|
+
# @example
|
444
|
+
# df = Polars::DataFrame.new({"foo" => [[3, 2, 1], [], [1, 2]]})
|
445
|
+
# df.select(Polars.col("foo").list.first)
|
446
|
+
# # =>
|
447
|
+
# # shape: (3, 1)
|
448
|
+
# # ┌──────┐
|
449
|
+
# # │ foo │
|
450
|
+
# # │ --- │
|
451
|
+
# # │ i64 │
|
452
|
+
# # ╞══════╡
|
453
|
+
# # │ 3 │
|
454
|
+
# # │ null │
|
455
|
+
# # │ 1 │
|
456
|
+
# # └──────┘
|
457
|
+
def first
|
458
|
+
get(0)
|
459
|
+
end
|
460
|
+
|
461
|
+
# Get the last value of the sublists.
|
462
|
+
#
|
463
|
+
# @return [Expr]
|
464
|
+
#
|
465
|
+
# @example
|
466
|
+
# df = Polars::DataFrame.new({"foo" => [[3, 2, 1], [], [1, 2]]})
|
467
|
+
# df.select(Polars.col("foo").list.last)
|
468
|
+
# # =>
|
469
|
+
# # shape: (3, 1)
|
470
|
+
# # ┌──────┐
|
471
|
+
# # │ foo │
|
472
|
+
# # │ --- │
|
473
|
+
# # │ i64 │
|
474
|
+
# # ╞══════╡
|
475
|
+
# # │ 1 │
|
476
|
+
# # │ null │
|
477
|
+
# # │ 2 │
|
478
|
+
# # └──────┘
|
479
|
+
def last
|
480
|
+
get(-1)
|
481
|
+
end
|
482
|
+
|
483
|
+
# Check if sublists contain the given item.
|
484
|
+
#
|
485
|
+
# @param item [Object]
|
486
|
+
# Item that will be checked for membership
|
487
|
+
#
|
488
|
+
# @return [Expr]
|
489
|
+
#
|
490
|
+
# @example
|
491
|
+
# df = Polars::DataFrame.new({"foo" => [[3, 2, 1], [], [1, 2]]})
|
492
|
+
# df.select(Polars.col("foo").list.contains(1))
|
493
|
+
# # =>
|
494
|
+
# # shape: (3, 1)
|
495
|
+
# # ┌───────┐
|
496
|
+
# # │ foo │
|
497
|
+
# # │ --- │
|
498
|
+
# # │ bool │
|
499
|
+
# # ╞═══════╡
|
500
|
+
# # │ true │
|
501
|
+
# # │ false │
|
502
|
+
# # │ true │
|
503
|
+
# # └───────┘
|
504
|
+
def contains(item)
|
505
|
+
Utils.wrap_expr(_rbexpr.list_contains(Utils.parse_into_expression(item)))
|
506
|
+
end
|
507
|
+
|
508
|
+
# Join all string items in a sublist and place a separator between them.
|
509
|
+
#
|
510
|
+
# This errors if inner type of list `!= :str`.
|
511
|
+
#
|
512
|
+
# @param separator [String]
|
513
|
+
# string to separate the items with
|
514
|
+
# @param ignore_nulls [Boolean]
|
515
|
+
# Ignore null values (default).
|
516
|
+
#
|
517
|
+
# @return [Expr]
|
518
|
+
#
|
519
|
+
# @example
|
520
|
+
# df = Polars::DataFrame.new({"s" => [["a", "b", "c"], ["x", "y"]]})
|
521
|
+
# df.select(Polars.col("s").list.join(" "))
|
522
|
+
# # =>
|
523
|
+
# # shape: (2, 1)
|
524
|
+
# # ┌───────┐
|
525
|
+
# # │ s │
|
526
|
+
# # │ --- │
|
527
|
+
# # │ str │
|
528
|
+
# # ╞═══════╡
|
529
|
+
# # │ a b c │
|
530
|
+
# # │ x y │
|
531
|
+
# # └───────┘
|
532
|
+
def join(separator, ignore_nulls: true)
|
533
|
+
separator = Utils.parse_into_expression(separator, str_as_lit: true)
|
534
|
+
Utils.wrap_expr(_rbexpr.list_join(separator, ignore_nulls))
|
535
|
+
end
|
536
|
+
|
537
|
+
# Retrieve the index of the minimal value in every sublist.
|
538
|
+
#
|
539
|
+
# @return [Expr]
|
540
|
+
#
|
541
|
+
# @example
|
542
|
+
# df = Polars::DataFrame.new(
|
543
|
+
# {
|
544
|
+
# "a" => [[1, 2], [2, 1]]
|
545
|
+
# }
|
546
|
+
# )
|
547
|
+
# df.select(Polars.col("a").list.arg_min)
|
548
|
+
# # =>
|
549
|
+
# # shape: (2, 1)
|
550
|
+
# # ┌─────┐
|
551
|
+
# # │ a │
|
552
|
+
# # │ --- │
|
553
|
+
# # │ u32 │
|
554
|
+
# # ╞═════╡
|
555
|
+
# # │ 0 │
|
556
|
+
# # │ 1 │
|
557
|
+
# # └─────┘
|
558
|
+
def arg_min
|
559
|
+
Utils.wrap_expr(_rbexpr.list_arg_min)
|
560
|
+
end
|
561
|
+
|
562
|
+
# Retrieve the index of the maximum value in every sublist.
|
563
|
+
#
|
564
|
+
# @return [Expr]
|
565
|
+
#
|
566
|
+
# @example
|
567
|
+
# df = Polars::DataFrame.new(
|
568
|
+
# {
|
569
|
+
# "a" => [[1, 2], [2, 1]]
|
570
|
+
# }
|
571
|
+
# )
|
572
|
+
# df.select(Polars.col("a").list.arg_max)
|
573
|
+
# # =>
|
574
|
+
# # shape: (2, 1)
|
575
|
+
# # ┌─────┐
|
576
|
+
# # │ a │
|
577
|
+
# # │ --- │
|
578
|
+
# # │ u32 │
|
579
|
+
# # ╞═════╡
|
580
|
+
# # │ 1 │
|
581
|
+
# # │ 0 │
|
582
|
+
# # └─────┘
|
583
|
+
def arg_max
|
584
|
+
Utils.wrap_expr(_rbexpr.list_arg_max)
|
585
|
+
end
|
586
|
+
|
587
|
+
# Calculate the n-th discrete difference of every sublist.
|
588
|
+
#
|
589
|
+
# @param n [Integer]
|
590
|
+
# Number of slots to shift.
|
591
|
+
# @param null_behavior ["ignore", "drop"]
|
592
|
+
# How to handle null values.
|
593
|
+
#
|
594
|
+
# @return [Expr]
|
595
|
+
#
|
596
|
+
# @example
|
597
|
+
# s = Polars::Series.new("a", [[1, 2, 3, 4], [10, 2, 1]])
|
598
|
+
# s.list.diff
|
599
|
+
# # =>
|
600
|
+
# # shape: (2,)
|
601
|
+
# # Series: 'a' [list[i64]]
|
602
|
+
# # [
|
603
|
+
# # [null, 1, … 1]
|
604
|
+
# # [null, -8, -1]
|
605
|
+
# # ]
|
606
|
+
def diff(n: 1, null_behavior: "ignore")
|
607
|
+
Utils.wrap_expr(_rbexpr.list_diff(n, null_behavior))
|
608
|
+
end
|
609
|
+
|
610
|
+
# Shift values by the given period.
|
611
|
+
#
|
612
|
+
# @param n [Integer]
|
613
|
+
# Number of places to shift (may be negative).
|
614
|
+
#
|
615
|
+
# @return [Expr]
|
616
|
+
#
|
617
|
+
# @example
|
618
|
+
# s = Polars::Series.new("a", [[1, 2, 3, 4], [10, 2, 1]])
|
619
|
+
# s.list.shift
|
620
|
+
# # =>
|
621
|
+
# # shape: (2,)
|
622
|
+
# # Series: 'a' [list[i64]]
|
623
|
+
# # [
|
624
|
+
# # [null, 1, … 3]
|
625
|
+
# # [null, 10, 2]
|
626
|
+
# # ]
|
627
|
+
def shift(n = 1)
|
628
|
+
n = Utils.parse_into_expression(n)
|
629
|
+
Utils.wrap_expr(_rbexpr.list_shift(n))
|
630
|
+
end
|
631
|
+
|
632
|
+
# Slice every sublist.
|
633
|
+
#
|
634
|
+
# @param offset [Integer]
|
635
|
+
# Start index. Negative indexing is supported.
|
636
|
+
# @param length [Integer]
|
637
|
+
# Length of the slice. If set to `nil` (default), the slice is taken to the
|
638
|
+
# end of the list.
|
639
|
+
#
|
640
|
+
# @return [Expr]
|
641
|
+
#
|
642
|
+
# @example
|
643
|
+
# s = Polars::Series.new("a", [[1, 2, 3, 4], [10, 2, 1]])
|
644
|
+
# s.list.slice(1, 2)
|
645
|
+
# # =>
|
646
|
+
# # shape: (2,)
|
647
|
+
# # Series: 'a' [list[i64]]
|
648
|
+
# # [
|
649
|
+
# # [2, 3]
|
650
|
+
# # [2, 1]
|
651
|
+
# # ]
|
652
|
+
def slice(offset, length = nil)
|
653
|
+
offset = Utils.parse_into_expression(offset, str_as_lit: false)
|
654
|
+
length = Utils.parse_into_expression(length, str_as_lit: false)
|
655
|
+
Utils.wrap_expr(_rbexpr.list_slice(offset, length))
|
656
|
+
end
|
657
|
+
|
658
|
+
# Slice the first `n` values of every sublist.
|
659
|
+
#
|
660
|
+
# @param n [Integer]
|
661
|
+
# Number of values to return for each sublist.
|
662
|
+
#
|
663
|
+
# @return [Expr]
|
664
|
+
#
|
665
|
+
# @example
|
666
|
+
# s = Polars::Series.new("a", [[1, 2, 3, 4], [10, 2, 1]])
|
667
|
+
# s.list.head(2)
|
668
|
+
# # =>
|
669
|
+
# # shape: (2,)
|
670
|
+
# # Series: 'a' [list[i64]]
|
671
|
+
# # [
|
672
|
+
# # [1, 2]
|
673
|
+
# # [10, 2]
|
674
|
+
# # ]
|
675
|
+
def head(n = 5)
|
676
|
+
slice(0, n)
|
677
|
+
end
|
678
|
+
|
679
|
+
# Slice the last `n` values of every sublist.
|
680
|
+
#
|
681
|
+
# @param n [Integer]
|
682
|
+
# Number of values to return for each sublist.
|
683
|
+
#
|
684
|
+
# @return [Expr]
|
685
|
+
#
|
686
|
+
# @example
|
687
|
+
# s = Polars::Series.new("a", [[1, 2, 3, 4], [10, 2, 1]])
|
688
|
+
# s.list.tail(2)
|
689
|
+
# # =>
|
690
|
+
# # shape: (2,)
|
691
|
+
# # Series: 'a' [list[i64]]
|
692
|
+
# # [
|
693
|
+
# # [3, 4]
|
694
|
+
# # [2, 1]
|
695
|
+
# # ]
|
696
|
+
def tail(n = 5)
|
697
|
+
n = Utils.parse_into_expression(n)
|
698
|
+
Utils.wrap_expr(_rbexpr.list_tail(n))
|
699
|
+
end
|
700
|
+
|
701
|
+
# Count how often the value produced by ``element`` occurs.
|
702
|
+
#
|
703
|
+
# @param element [Expr]
|
704
|
+
# An expression that produces a single value
|
705
|
+
#
|
706
|
+
# @return [Expr]
|
707
|
+
#
|
708
|
+
# @example
|
709
|
+
# df = Polars::DataFrame.new({"listcol" => [[0], [1], [1, 2, 3, 2], [1, 2, 1], [4, 4]]})
|
710
|
+
# df.select(Polars.col("listcol").list.count_match(2).alias("number_of_twos"))
|
711
|
+
# # =>
|
712
|
+
# # shape: (5, 1)
|
713
|
+
# # ┌────────────────┐
|
714
|
+
# # │ number_of_twos │
|
715
|
+
# # │ --- │
|
716
|
+
# # │ u32 │
|
717
|
+
# # ╞════════════════╡
|
718
|
+
# # │ 0 │
|
719
|
+
# # │ 0 │
|
720
|
+
# # │ 2 │
|
721
|
+
# # │ 1 │
|
722
|
+
# # │ 0 │
|
723
|
+
# # └────────────────┘
|
724
|
+
def count_matches(element)
|
725
|
+
Utils.wrap_expr(_rbexpr.list_count_matches(Utils.parse_into_expression(element)))
|
726
|
+
end
|
727
|
+
alias_method :count_match, :count_matches
|
728
|
+
|
729
|
+
# Convert the series of type `List` to a series of type `Struct`.
|
730
|
+
#
|
731
|
+
# @param n_field_strategy ["first_non_null", "max_width"]
|
732
|
+
# Strategy to determine the number of fields of the struct.
|
733
|
+
# @param name_generator [Object]
|
734
|
+
# A custom function that can be used to generate the field names.
|
735
|
+
# Default field names are `field_0, field_1 .. field_n`
|
736
|
+
#
|
737
|
+
# @return [Expr]
|
738
|
+
#
|
739
|
+
# @example
|
740
|
+
# df = Polars::DataFrame.new({"a" => [[1, 2, 3], [1, 2]]})
|
741
|
+
# df.select([Polars.col("a").list.to_struct])
|
742
|
+
# # =>
|
743
|
+
# # shape: (2, 1)
|
744
|
+
# # ┌────────────┐
|
745
|
+
# # │ a │
|
746
|
+
# # │ --- │
|
747
|
+
# # │ struct[3] │
|
748
|
+
# # ╞════════════╡
|
749
|
+
# # │ {1,2,3} │
|
750
|
+
# # │ {1,2,null} │
|
751
|
+
# # └────────────┘
|
752
|
+
def to_struct(n_field_strategy: "first_non_null", name_generator: nil)
|
753
|
+
raise Todo if name_generator
|
754
|
+
Utils.wrap_expr(_rbexpr.list_to_struct(n_field_strategy, name_generator, 0))
|
755
|
+
end
|
756
|
+
|
757
|
+
# Run any polars expression against the lists' elements.
|
758
|
+
#
|
759
|
+
# @param expr [Expr]
|
760
|
+
# Expression to run. Note that you can select an element with `Polars.first`, or
|
761
|
+
# `Polars.col`
|
762
|
+
# @param parallel [Boolean]
|
763
|
+
# Run all expression parallel. Don't activate this blindly.
|
764
|
+
# Parallelism is worth it if there is enough work to do per thread.
|
765
|
+
#
|
766
|
+
# This likely should not be use in the group by context, because we already
|
767
|
+
# parallel execution per group
|
768
|
+
#
|
769
|
+
# @return [Expr]
|
770
|
+
#
|
771
|
+
# @example
|
772
|
+
# df = Polars::DataFrame.new({"a" => [1, 8, 3], "b" => [4, 5, 2]})
|
773
|
+
# df.with_column(
|
774
|
+
# Polars.concat_list(["a", "b"]).list.eval(Polars.element.rank).alias("rank")
|
775
|
+
# )
|
776
|
+
# # =>
|
777
|
+
# # shape: (3, 3)
|
778
|
+
# # ┌─────┬─────┬────────────┐
|
779
|
+
# # │ a ┆ b ┆ rank │
|
780
|
+
# # │ --- ┆ --- ┆ --- │
|
781
|
+
# # │ i64 ┆ i64 ┆ list[f64] │
|
782
|
+
# # ╞═════╪═════╪════════════╡
|
783
|
+
# # │ 1 ┆ 4 ┆ [1.0, 2.0] │
|
784
|
+
# # │ 8 ┆ 5 ┆ [2.0, 1.0] │
|
785
|
+
# # │ 3 ┆ 2 ┆ [2.0, 1.0] │
|
786
|
+
# # └─────┴─────┴────────────┘
|
787
|
+
def eval(expr, parallel: false)
|
788
|
+
Utils.wrap_expr(_rbexpr.list_eval(expr._rbexpr, parallel))
|
789
|
+
end
|
790
|
+
end
|
791
|
+
end
|