polars-df 0.13.0-aarch64-linux-musl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.yardopts +3 -0
- data/CHANGELOG.md +208 -0
- data/Cargo.lock +2556 -0
- data/Cargo.toml +6 -0
- data/LICENSE-THIRD-PARTY.txt +39059 -0
- data/LICENSE.txt +20 -0
- data/README.md +437 -0
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/3.3/polars.so +0 -0
- data/lib/polars/array_expr.rb +537 -0
- data/lib/polars/array_name_space.rb +423 -0
- data/lib/polars/batched_csv_reader.rb +104 -0
- data/lib/polars/binary_expr.rb +77 -0
- data/lib/polars/binary_name_space.rb +66 -0
- data/lib/polars/cat_expr.rb +36 -0
- data/lib/polars/cat_name_space.rb +88 -0
- data/lib/polars/config.rb +530 -0
- data/lib/polars/convert.rb +98 -0
- data/lib/polars/data_frame.rb +5191 -0
- data/lib/polars/data_types.rb +466 -0
- data/lib/polars/date_time_expr.rb +1397 -0
- data/lib/polars/date_time_name_space.rb +1287 -0
- data/lib/polars/dynamic_group_by.rb +52 -0
- data/lib/polars/exceptions.rb +38 -0
- data/lib/polars/expr.rb +7256 -0
- data/lib/polars/expr_dispatch.rb +22 -0
- data/lib/polars/functions/aggregation/horizontal.rb +246 -0
- data/lib/polars/functions/aggregation/vertical.rb +282 -0
- data/lib/polars/functions/as_datatype.rb +271 -0
- data/lib/polars/functions/col.rb +47 -0
- data/lib/polars/functions/eager.rb +182 -0
- data/lib/polars/functions/lazy.rb +1329 -0
- data/lib/polars/functions/len.rb +49 -0
- data/lib/polars/functions/lit.rb +35 -0
- data/lib/polars/functions/random.rb +16 -0
- data/lib/polars/functions/range/date_range.rb +136 -0
- data/lib/polars/functions/range/datetime_range.rb +149 -0
- data/lib/polars/functions/range/int_range.rb +51 -0
- data/lib/polars/functions/range/time_range.rb +141 -0
- data/lib/polars/functions/repeat.rb +144 -0
- data/lib/polars/functions/whenthen.rb +96 -0
- data/lib/polars/functions.rb +57 -0
- data/lib/polars/group_by.rb +613 -0
- data/lib/polars/io/avro.rb +24 -0
- data/lib/polars/io/csv.rb +696 -0
- data/lib/polars/io/database.rb +73 -0
- data/lib/polars/io/ipc.rb +275 -0
- data/lib/polars/io/json.rb +29 -0
- data/lib/polars/io/ndjson.rb +80 -0
- data/lib/polars/io/parquet.rb +233 -0
- data/lib/polars/lazy_frame.rb +2708 -0
- data/lib/polars/lazy_group_by.rb +181 -0
- data/lib/polars/list_expr.rb +791 -0
- data/lib/polars/list_name_space.rb +449 -0
- data/lib/polars/meta_expr.rb +222 -0
- data/lib/polars/name_expr.rb +198 -0
- data/lib/polars/plot.rb +109 -0
- data/lib/polars/rolling_group_by.rb +35 -0
- data/lib/polars/series.rb +4444 -0
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/sql_context.rb +194 -0
- data/lib/polars/string_cache.rb +75 -0
- data/lib/polars/string_expr.rb +1495 -0
- data/lib/polars/string_name_space.rb +811 -0
- data/lib/polars/struct_expr.rb +98 -0
- data/lib/polars/struct_name_space.rb +96 -0
- data/lib/polars/testing.rb +507 -0
- data/lib/polars/utils/constants.rb +9 -0
- data/lib/polars/utils/convert.rb +97 -0
- data/lib/polars/utils/parse.rb +89 -0
- data/lib/polars/utils/various.rb +76 -0
- data/lib/polars/utils/wrap.rb +19 -0
- data/lib/polars/utils.rb +130 -0
- data/lib/polars/version.rb +4 -0
- data/lib/polars/whenthen.rb +83 -0
- data/lib/polars-df.rb +1 -0
- data/lib/polars.rb +91 -0
- metadata +138 -0
| @@ -0,0 +1,2708 @@ | |
| 1 | 
            +
            module Polars
         | 
| 2 | 
            +
              # Representation of a Lazy computation graph/query against a DataFrame.
         | 
| 3 | 
            +
              class LazyFrame
         | 
| 4 | 
            +
                # @private
         | 
| 5 | 
            +
                attr_accessor :_ldf
         | 
| 6 | 
            +
             | 
| 7 | 
            +
                # Create a new LazyFrame.
         | 
| 8 | 
            +
                def initialize(data = nil, schema: nil, schema_overrides: nil, orient: nil, infer_schema_length: 100, nan_to_null: false)
         | 
| 9 | 
            +
                  self._ldf = (
         | 
| 10 | 
            +
                    DataFrame.new(
         | 
| 11 | 
            +
                      data,
         | 
| 12 | 
            +
                      schema: schema,
         | 
| 13 | 
            +
                      schema_overrides: schema_overrides,
         | 
| 14 | 
            +
                      orient: orient,
         | 
| 15 | 
            +
                      infer_schema_length: infer_schema_length,
         | 
| 16 | 
            +
                      nan_to_null: nan_to_null
         | 
| 17 | 
            +
                    )
         | 
| 18 | 
            +
                    .lazy
         | 
| 19 | 
            +
                    ._ldf
         | 
| 20 | 
            +
                  )
         | 
| 21 | 
            +
                end
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                # @private
         | 
| 24 | 
            +
                def self._from_rbldf(rb_ldf)
         | 
| 25 | 
            +
                  ldf = LazyFrame.allocate
         | 
| 26 | 
            +
                  ldf._ldf = rb_ldf
         | 
| 27 | 
            +
                  ldf
         | 
| 28 | 
            +
                end
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                # def self.from_json
         | 
| 31 | 
            +
                # end
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                # Read a logical plan from a JSON file to construct a LazyFrame.
         | 
| 34 | 
            +
                #
         | 
| 35 | 
            +
                # @param file [String]
         | 
| 36 | 
            +
                #   Path to a file or a file-like object.
         | 
| 37 | 
            +
                #
         | 
| 38 | 
            +
                # @return [LazyFrame]
         | 
| 39 | 
            +
                def self.read_json(file)
         | 
| 40 | 
            +
                  if Utils.pathlike?(file)
         | 
| 41 | 
            +
                    file = Utils.normalize_filepath(file)
         | 
| 42 | 
            +
                  end
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                  Utils.wrap_ldf(RbLazyFrame.read_json(file))
         | 
| 45 | 
            +
                end
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                # Get or set column names.
         | 
| 48 | 
            +
                #
         | 
| 49 | 
            +
                # @return [Array]
         | 
| 50 | 
            +
                #
         | 
| 51 | 
            +
                # @example
         | 
| 52 | 
            +
                #   df = (
         | 
| 53 | 
            +
                #      Polars::DataFrame.new(
         | 
| 54 | 
            +
                #        {
         | 
| 55 | 
            +
                #          "foo" => [1, 2, 3],
         | 
| 56 | 
            +
                #          "bar" => [6, 7, 8],
         | 
| 57 | 
            +
                #          "ham" => ["a", "b", "c"]
         | 
| 58 | 
            +
                #        }
         | 
| 59 | 
            +
                #      )
         | 
| 60 | 
            +
                #      .lazy
         | 
| 61 | 
            +
                #      .select(["foo", "bar"])
         | 
| 62 | 
            +
                #   )
         | 
| 63 | 
            +
                #   df.columns
         | 
| 64 | 
            +
                #   # => ["foo", "bar"]
         | 
| 65 | 
            +
                def columns
         | 
| 66 | 
            +
                  _ldf.collect_schema.keys
         | 
| 67 | 
            +
                end
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                # Get dtypes of columns in LazyFrame.
         | 
| 70 | 
            +
                #
         | 
| 71 | 
            +
                # @return [Array]
         | 
| 72 | 
            +
                #
         | 
| 73 | 
            +
                # @example
         | 
| 74 | 
            +
                #   lf = Polars::DataFrame.new(
         | 
| 75 | 
            +
                #     {
         | 
| 76 | 
            +
                #       "foo" => [1, 2, 3],
         | 
| 77 | 
            +
                #       "bar" => [6.0, 7.0, 8.0],
         | 
| 78 | 
            +
                #       "ham" => ["a", "b", "c"]
         | 
| 79 | 
            +
                #     }
         | 
| 80 | 
            +
                #   ).lazy
         | 
| 81 | 
            +
                #   lf.dtypes
         | 
| 82 | 
            +
                #   # => [Polars::Int64, Polars::Float64, Polars::String]
         | 
| 83 | 
            +
                def dtypes
         | 
| 84 | 
            +
                  _ldf.collect_schema.values
         | 
| 85 | 
            +
                end
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                # Get the schema.
         | 
| 88 | 
            +
                #
         | 
| 89 | 
            +
                # @return [Hash]
         | 
| 90 | 
            +
                #
         | 
| 91 | 
            +
                # @example
         | 
| 92 | 
            +
                #   lf = Polars::DataFrame.new(
         | 
| 93 | 
            +
                #     {
         | 
| 94 | 
            +
                #       "foo" => [1, 2, 3],
         | 
| 95 | 
            +
                #       "bar" => [6.0, 7.0, 8.0],
         | 
| 96 | 
            +
                #       "ham" => ["a", "b", "c"]
         | 
| 97 | 
            +
                #     }
         | 
| 98 | 
            +
                #   ).lazy
         | 
| 99 | 
            +
                #   lf.schema
         | 
| 100 | 
            +
                #   # => {"foo"=>Polars::Int64, "bar"=>Polars::Float64, "ham"=>Polars::String}
         | 
| 101 | 
            +
                def schema
         | 
| 102 | 
            +
                  _ldf.collect_schema
         | 
| 103 | 
            +
                end
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                # Get the width of the LazyFrame.
         | 
| 106 | 
            +
                #
         | 
| 107 | 
            +
                # @return [Integer]
         | 
| 108 | 
            +
                #
         | 
| 109 | 
            +
                # @example
         | 
| 110 | 
            +
                #   lf = Polars::DataFrame.new({"foo" => [1, 2, 3], "bar" => [4, 5, 6]}).lazy
         | 
| 111 | 
            +
                #   lf.width
         | 
| 112 | 
            +
                #   # => 2
         | 
| 113 | 
            +
                def width
         | 
| 114 | 
            +
                  _ldf.collect_schema.length
         | 
| 115 | 
            +
                end
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                # Check if LazyFrame includes key.
         | 
| 118 | 
            +
                #
         | 
| 119 | 
            +
                # @return [Boolean]
         | 
| 120 | 
            +
                def include?(key)
         | 
| 121 | 
            +
                  columns.include?(key)
         | 
| 122 | 
            +
                end
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                # clone handled by initialize_copy
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                # def [](item)
         | 
| 127 | 
            +
                # end
         | 
| 128 | 
            +
             | 
| 129 | 
            +
                # Returns a string representing the LazyFrame.
         | 
| 130 | 
            +
                #
         | 
| 131 | 
            +
                # @return [String]
         | 
| 132 | 
            +
                def to_s
         | 
| 133 | 
            +
                  <<~EOS
         | 
| 134 | 
            +
                    naive plan: (run LazyFrame#describe_optimized_plan to see the optimized plan)
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                    #{describe_plan}
         | 
| 137 | 
            +
                  EOS
         | 
| 138 | 
            +
                end
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                # Write the logical plan of this LazyFrame to a file or string in JSON format.
         | 
| 141 | 
            +
                #
         | 
| 142 | 
            +
                # @param file [String]
         | 
| 143 | 
            +
                #   File path to which the result should be written.
         | 
| 144 | 
            +
                #
         | 
| 145 | 
            +
                # @return [nil]
         | 
| 146 | 
            +
                def write_json(file)
         | 
| 147 | 
            +
                  if Utils.pathlike?(file)
         | 
| 148 | 
            +
                    file = Utils.normalize_filepath(file)
         | 
| 149 | 
            +
                  end
         | 
| 150 | 
            +
                  _ldf.write_json(file)
         | 
| 151 | 
            +
                  nil
         | 
| 152 | 
            +
                end
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                # Offers a structured way to apply a sequence of user-defined functions (UDFs).
         | 
| 155 | 
            +
                #
         | 
| 156 | 
            +
                # @param func [Object]
         | 
| 157 | 
            +
                #   Callable; will receive the frame as the first parameter,
         | 
| 158 | 
            +
                #   followed by any given args/kwargs.
         | 
| 159 | 
            +
                # @param args [Object]
         | 
| 160 | 
            +
                #   Arguments to pass to the UDF.
         | 
| 161 | 
            +
                # @param kwargs [Object]
         | 
| 162 | 
            +
                #   Keyword arguments to pass to the UDF.
         | 
| 163 | 
            +
                #
         | 
| 164 | 
            +
                # @return [LazyFrame]
         | 
| 165 | 
            +
                #
         | 
| 166 | 
            +
                # @example
         | 
| 167 | 
            +
                #   cast_str_to_int = lambda do |data, col_name:|
         | 
| 168 | 
            +
                #     data.with_column(Polars.col(col_name).cast(:i64))
         | 
| 169 | 
            +
                #   end
         | 
| 170 | 
            +
                #
         | 
| 171 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => ["10", "20", "30", "40"]}).lazy
         | 
| 172 | 
            +
                #   df.pipe(cast_str_to_int, col_name: "b").collect
         | 
| 173 | 
            +
                #   # =>
         | 
| 174 | 
            +
                #   # shape: (4, 2)
         | 
| 175 | 
            +
                #   # ┌─────┬─────┐
         | 
| 176 | 
            +
                #   # │ a   ┆ b   │
         | 
| 177 | 
            +
                #   # │ --- ┆ --- │
         | 
| 178 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 179 | 
            +
                #   # ╞═════╪═════╡
         | 
| 180 | 
            +
                #   # │ 1   ┆ 10  │
         | 
| 181 | 
            +
                #   # │ 2   ┆ 20  │
         | 
| 182 | 
            +
                #   # │ 3   ┆ 30  │
         | 
| 183 | 
            +
                #   # │ 4   ┆ 40  │
         | 
| 184 | 
            +
                #   # └─────┴─────┘
         | 
| 185 | 
            +
                def pipe(func, *args, **kwargs, &block)
         | 
| 186 | 
            +
                  func.call(self, *args, **kwargs, &block)
         | 
| 187 | 
            +
                end
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                # Create a string representation of the unoptimized query plan.
         | 
| 190 | 
            +
                #
         | 
| 191 | 
            +
                # @return [String]
         | 
| 192 | 
            +
                def describe_plan
         | 
| 193 | 
            +
                  _ldf.describe_plan
         | 
| 194 | 
            +
                end
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                # Create a string representation of the optimized query plan.
         | 
| 197 | 
            +
                #
         | 
| 198 | 
            +
                # @return [String]
         | 
| 199 | 
            +
                def describe_optimized_plan(
         | 
| 200 | 
            +
                  type_coercion: true,
         | 
| 201 | 
            +
                  predicate_pushdown: true,
         | 
| 202 | 
            +
                  projection_pushdown: true,
         | 
| 203 | 
            +
                  simplify_expression: true,
         | 
| 204 | 
            +
                  slice_pushdown: true,
         | 
| 205 | 
            +
                  common_subplan_elimination: true,
         | 
| 206 | 
            +
                  comm_subexpr_elim: true,
         | 
| 207 | 
            +
                  allow_streaming: false
         | 
| 208 | 
            +
                )
         | 
| 209 | 
            +
                  ldf = _ldf.optimization_toggle(
         | 
| 210 | 
            +
                    type_coercion,
         | 
| 211 | 
            +
                    predicate_pushdown,
         | 
| 212 | 
            +
                    projection_pushdown,
         | 
| 213 | 
            +
                    simplify_expression,
         | 
| 214 | 
            +
                    slice_pushdown,
         | 
| 215 | 
            +
                    common_subplan_elimination,
         | 
| 216 | 
            +
                    comm_subexpr_elim,
         | 
| 217 | 
            +
                    allow_streaming,
         | 
| 218 | 
            +
                    false
         | 
| 219 | 
            +
                  )
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                  ldf.describe_optimized_plan
         | 
| 222 | 
            +
                end
         | 
| 223 | 
            +
             | 
| 224 | 
            +
                # def show_graph
         | 
| 225 | 
            +
                # end
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                # Sort the DataFrame.
         | 
| 228 | 
            +
                #
         | 
| 229 | 
            +
                # Sorting can be done by:
         | 
| 230 | 
            +
                #
         | 
| 231 | 
            +
                # - A single column name
         | 
| 232 | 
            +
                # - An expression
         | 
| 233 | 
            +
                # - Multiple expressions
         | 
| 234 | 
            +
                #
         | 
| 235 | 
            +
                # @param by [Object]
         | 
| 236 | 
            +
                #   Column (expressions) to sort by.
         | 
| 237 | 
            +
                # @param reverse [Boolean]
         | 
| 238 | 
            +
                #   Sort in descending order.
         | 
| 239 | 
            +
                # @param nulls_last [Boolean]
         | 
| 240 | 
            +
                #   Place null values last. Can only be used if sorted by a single column.
         | 
| 241 | 
            +
                #
         | 
| 242 | 
            +
                # @return [LazyFrame]
         | 
| 243 | 
            +
                #
         | 
| 244 | 
            +
                # @example
         | 
| 245 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 246 | 
            +
                #     {
         | 
| 247 | 
            +
                #       "foo" => [1, 2, 3],
         | 
| 248 | 
            +
                #       "bar" => [6.0, 7.0, 8.0],
         | 
| 249 | 
            +
                #       "ham" => ["a", "b", "c"]
         | 
| 250 | 
            +
                #     }
         | 
| 251 | 
            +
                #   ).lazy
         | 
| 252 | 
            +
                #   df.sort("foo", reverse: true).collect
         | 
| 253 | 
            +
                #   # =>
         | 
| 254 | 
            +
                #   # shape: (3, 3)
         | 
| 255 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 256 | 
            +
                #   # │ foo ┆ bar ┆ ham │
         | 
| 257 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 258 | 
            +
                #   # │ i64 ┆ f64 ┆ str │
         | 
| 259 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 260 | 
            +
                #   # │ 3   ┆ 8.0 ┆ c   │
         | 
| 261 | 
            +
                #   # │ 2   ┆ 7.0 ┆ b   │
         | 
| 262 | 
            +
                #   # │ 1   ┆ 6.0 ┆ a   │
         | 
| 263 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 264 | 
            +
                def sort(by, *more_by, reverse: false, nulls_last: false, maintain_order: false, multithreaded: true)
         | 
| 265 | 
            +
                  if by.is_a?(::String) && more_by.empty?
         | 
| 266 | 
            +
                    return _from_rbldf(
         | 
| 267 | 
            +
                      _ldf.sort(
         | 
| 268 | 
            +
                        by, reverse, nulls_last, maintain_order, multithreaded
         | 
| 269 | 
            +
                      )
         | 
| 270 | 
            +
                    )
         | 
| 271 | 
            +
                  end
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                  by = Utils.parse_into_list_of_expressions(by, *more_by)
         | 
| 274 | 
            +
                  reverse = Utils.extend_bool(reverse, by.length, "reverse", "by")
         | 
| 275 | 
            +
                  nulls_last = Utils.extend_bool(nulls_last, by.length, "nulls_last", "by")
         | 
| 276 | 
            +
                  _from_rbldf(
         | 
| 277 | 
            +
                    _ldf.sort_by_exprs(
         | 
| 278 | 
            +
                      by, reverse, nulls_last, maintain_order, multithreaded
         | 
| 279 | 
            +
                    )
         | 
| 280 | 
            +
                  )
         | 
| 281 | 
            +
                end
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                # def profile
         | 
| 284 | 
            +
                # end
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                # Collect into a DataFrame.
         | 
| 287 | 
            +
                #
         | 
| 288 | 
            +
                # Note: use {#fetch} if you want to run your query on the first `n` rows
         | 
| 289 | 
            +
                # only. This can be a huge time saver in debugging queries.
         | 
| 290 | 
            +
                #
         | 
| 291 | 
            +
                # @param type_coercion [Boolean]
         | 
| 292 | 
            +
                #   Do type coercion optimization.
         | 
| 293 | 
            +
                # @param predicate_pushdown [Boolean]
         | 
| 294 | 
            +
                #   Do predicate pushdown optimization.
         | 
| 295 | 
            +
                # @param projection_pushdown [Boolean]
         | 
| 296 | 
            +
                #   Do projection pushdown optimization.
         | 
| 297 | 
            +
                # @param simplify_expression [Boolean]
         | 
| 298 | 
            +
                #   Run simplify expressions optimization.
         | 
| 299 | 
            +
                # @param string_cache [Boolean]
         | 
| 300 | 
            +
                #   This argument is deprecated. Please set the string cache globally.
         | 
| 301 | 
            +
                #   The argument will be ignored
         | 
| 302 | 
            +
                # @param no_optimization [Boolean]
         | 
| 303 | 
            +
                #   Turn off (certain) optimizations.
         | 
| 304 | 
            +
                # @param slice_pushdown [Boolean]
         | 
| 305 | 
            +
                #   Slice pushdown optimization.
         | 
| 306 | 
            +
                # @param common_subplan_elimination [Boolean]
         | 
| 307 | 
            +
                #   Will try to cache branching subplans that occur on self-joins or unions.
         | 
| 308 | 
            +
                # @param allow_streaming [Boolean]
         | 
| 309 | 
            +
                #   Run parts of the query in a streaming fashion (this is in an alpha state)
         | 
| 310 | 
            +
                #
         | 
| 311 | 
            +
                # @return [DataFrame]
         | 
| 312 | 
            +
                #
         | 
| 313 | 
            +
                # @example
         | 
| 314 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 315 | 
            +
                #     {
         | 
| 316 | 
            +
                #       "a" => ["a", "b", "a", "b", "b", "c"],
         | 
| 317 | 
            +
                #       "b" => [1, 2, 3, 4, 5, 6],
         | 
| 318 | 
            +
                #       "c" => [6, 5, 4, 3, 2, 1]
         | 
| 319 | 
            +
                #     }
         | 
| 320 | 
            +
                #   ).lazy
         | 
| 321 | 
            +
                #   df.group_by("a", maintain_order: true).agg(Polars.all.sum).collect
         | 
| 322 | 
            +
                #   # =>
         | 
| 323 | 
            +
                #   # shape: (3, 3)
         | 
| 324 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 325 | 
            +
                #   # │ a   ┆ b   ┆ c   │
         | 
| 326 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 327 | 
            +
                #   # │ str ┆ i64 ┆ i64 │
         | 
| 328 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 329 | 
            +
                #   # │ a   ┆ 4   ┆ 10  │
         | 
| 330 | 
            +
                #   # │ b   ┆ 11  ┆ 10  │
         | 
| 331 | 
            +
                #   # │ c   ┆ 6   ┆ 1   │
         | 
| 332 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 333 | 
            +
                def collect(
         | 
| 334 | 
            +
                  type_coercion: true,
         | 
| 335 | 
            +
                  predicate_pushdown: true,
         | 
| 336 | 
            +
                  projection_pushdown: true,
         | 
| 337 | 
            +
                  simplify_expression: true,
         | 
| 338 | 
            +
                  string_cache: false,
         | 
| 339 | 
            +
                  no_optimization: false,
         | 
| 340 | 
            +
                  slice_pushdown: true,
         | 
| 341 | 
            +
                  common_subplan_elimination: true,
         | 
| 342 | 
            +
                  comm_subexpr_elim: true,
         | 
| 343 | 
            +
                  allow_streaming: false,
         | 
| 344 | 
            +
                  _eager: false
         | 
| 345 | 
            +
                )
         | 
| 346 | 
            +
                  if no_optimization
         | 
| 347 | 
            +
                    predicate_pushdown = false
         | 
| 348 | 
            +
                    projection_pushdown = false
         | 
| 349 | 
            +
                    slice_pushdown = false
         | 
| 350 | 
            +
                    common_subplan_elimination = false
         | 
| 351 | 
            +
                    comm_subexpr_elim = false
         | 
| 352 | 
            +
                  end
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                  if allow_streaming
         | 
| 355 | 
            +
                    common_subplan_elimination = false
         | 
| 356 | 
            +
                  end
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                  ldf = _ldf.optimization_toggle(
         | 
| 359 | 
            +
                    type_coercion,
         | 
| 360 | 
            +
                    predicate_pushdown,
         | 
| 361 | 
            +
                    projection_pushdown,
         | 
| 362 | 
            +
                    simplify_expression,
         | 
| 363 | 
            +
                    slice_pushdown,
         | 
| 364 | 
            +
                    common_subplan_elimination,
         | 
| 365 | 
            +
                    comm_subexpr_elim,
         | 
| 366 | 
            +
                    allow_streaming,
         | 
| 367 | 
            +
                    _eager
         | 
| 368 | 
            +
                  )
         | 
| 369 | 
            +
                  Utils.wrap_df(ldf.collect)
         | 
| 370 | 
            +
                end
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                # Persists a LazyFrame at the provided path.
         | 
| 373 | 
            +
                #
         | 
| 374 | 
            +
                # This allows streaming results that are larger than RAM to be written to disk.
         | 
| 375 | 
            +
                #
         | 
| 376 | 
            +
                # @param path [String]
         | 
| 377 | 
            +
                #   File path to which the file should be written.
         | 
| 378 | 
            +
                # @param compression ["lz4", "uncompressed", "snappy", "gzip", "lzo", "brotli", "zstd"]
         | 
| 379 | 
            +
                #   Choose "zstd" for good compression performance.
         | 
| 380 | 
            +
                #   Choose "lz4" for fast compression/decompression.
         | 
| 381 | 
            +
                #   Choose "snappy" for more backwards compatibility guarantees
         | 
| 382 | 
            +
                #   when you deal with older parquet readers.
         | 
| 383 | 
            +
                # @param compression_level [Integer]
         | 
| 384 | 
            +
                #   The level of compression to use. Higher compression means smaller files on
         | 
| 385 | 
            +
                #   disk.
         | 
| 386 | 
            +
                #
         | 
| 387 | 
            +
                #   - "gzip" : min-level: 0, max-level: 10.
         | 
| 388 | 
            +
                #   - "brotli" : min-level: 0, max-level: 11.
         | 
| 389 | 
            +
                #   - "zstd" : min-level: 1, max-level: 22.
         | 
| 390 | 
            +
                # @param statistics [Boolean]
         | 
| 391 | 
            +
                #   Write statistics to the parquet headers. This requires extra compute.
         | 
| 392 | 
            +
                # @param row_group_size [Integer]
         | 
| 393 | 
            +
                #   Size of the row groups in number of rows.
         | 
| 394 | 
            +
                #   If `nil` (default), the chunks of the `DataFrame` are
         | 
| 395 | 
            +
                #   used. Writing in smaller chunks may reduce memory pressure and improve
         | 
| 396 | 
            +
                #   writing speeds.
         | 
| 397 | 
            +
                # @param data_pagesize_limit [Integer]
         | 
| 398 | 
            +
                #   Size limit of individual data pages.
         | 
| 399 | 
            +
                #   If not set defaults to 1024 * 1024 bytes
         | 
| 400 | 
            +
                # @param maintain_order [Boolean]
         | 
| 401 | 
            +
                #   Maintain the order in which data is processed.
         | 
| 402 | 
            +
                #   Setting this to `false` will  be slightly faster.
         | 
| 403 | 
            +
                # @param type_coercion [Boolean]
         | 
| 404 | 
            +
                #   Do type coercion optimization.
         | 
| 405 | 
            +
                # @param predicate_pushdown [Boolean]
         | 
| 406 | 
            +
                #   Do predicate pushdown optimization.
         | 
| 407 | 
            +
                # @param projection_pushdown [Boolean]
         | 
| 408 | 
            +
                #   Do projection pushdown optimization.
         | 
| 409 | 
            +
                # @param simplify_expression [Boolean]
         | 
| 410 | 
            +
                #   Run simplify expressions optimization.
         | 
| 411 | 
            +
                # @param no_optimization [Boolean]
         | 
| 412 | 
            +
                #   Turn off (certain) optimizations.
         | 
| 413 | 
            +
                # @param slice_pushdown [Boolean]
         | 
| 414 | 
            +
                #   Slice pushdown optimization.
         | 
| 415 | 
            +
                #
         | 
| 416 | 
            +
                # @return [DataFrame]
         | 
| 417 | 
            +
                #
         | 
| 418 | 
            +
                # @example
         | 
| 419 | 
            +
                #   lf = Polars.scan_csv("/path/to/my_larger_than_ram_file.csv")
         | 
| 420 | 
            +
                #   lf.sink_parquet("out.parquet")
         | 
| 421 | 
            +
                def sink_parquet(
         | 
| 422 | 
            +
                  path,
         | 
| 423 | 
            +
                  compression: "zstd",
         | 
| 424 | 
            +
                  compression_level: nil,
         | 
| 425 | 
            +
                  statistics: true,
         | 
| 426 | 
            +
                  row_group_size: nil,
         | 
| 427 | 
            +
                  data_pagesize_limit: nil,
         | 
| 428 | 
            +
                  maintain_order: true,
         | 
| 429 | 
            +
                  type_coercion: true,
         | 
| 430 | 
            +
                  predicate_pushdown: true,
         | 
| 431 | 
            +
                  projection_pushdown: true,
         | 
| 432 | 
            +
                  simplify_expression: true,
         | 
| 433 | 
            +
                  no_optimization: false,
         | 
| 434 | 
            +
                  slice_pushdown: true
         | 
| 435 | 
            +
                )
         | 
| 436 | 
            +
                  lf = _set_sink_optimizations(
         | 
| 437 | 
            +
                    type_coercion: type_coercion,
         | 
| 438 | 
            +
                    predicate_pushdown: predicate_pushdown,
         | 
| 439 | 
            +
                    projection_pushdown: projection_pushdown,
         | 
| 440 | 
            +
                    simplify_expression: simplify_expression,
         | 
| 441 | 
            +
                    slice_pushdown: slice_pushdown,
         | 
| 442 | 
            +
                    no_optimization: no_optimization
         | 
| 443 | 
            +
                  )
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                  if statistics == true
         | 
| 446 | 
            +
                    statistics = {
         | 
| 447 | 
            +
                      min: true,
         | 
| 448 | 
            +
                      max: true,
         | 
| 449 | 
            +
                      distinct_count: false,
         | 
| 450 | 
            +
                      null_count: true
         | 
| 451 | 
            +
                    }
         | 
| 452 | 
            +
                  elsif statistics == false
         | 
| 453 | 
            +
                    statistics = {}
         | 
| 454 | 
            +
                  elsif statistics == "full"
         | 
| 455 | 
            +
                    statistics = {
         | 
| 456 | 
            +
                      min: true,
         | 
| 457 | 
            +
                      max: true,
         | 
| 458 | 
            +
                      distinct_count: true,
         | 
| 459 | 
            +
                      null_count: true
         | 
| 460 | 
            +
                    }
         | 
| 461 | 
            +
                  end
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                  lf.sink_parquet(
         | 
| 464 | 
            +
                    path,
         | 
| 465 | 
            +
                    compression,
         | 
| 466 | 
            +
                    compression_level,
         | 
| 467 | 
            +
                    statistics,
         | 
| 468 | 
            +
                    row_group_size,
         | 
| 469 | 
            +
                    data_pagesize_limit,
         | 
| 470 | 
            +
                    maintain_order
         | 
| 471 | 
            +
                  )
         | 
| 472 | 
            +
                end
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                # Evaluate the query in streaming mode and write to an IPC file.
         | 
| 475 | 
            +
                #
         | 
| 476 | 
            +
                # This allows streaming results that are larger than RAM to be written to disk.
         | 
| 477 | 
            +
                #
         | 
| 478 | 
            +
                # @param path [String]
         | 
| 479 | 
            +
                #   File path to which the file should be written.
         | 
| 480 | 
            +
                # @param compression ["lz4", "zstd"]
         | 
| 481 | 
            +
                #   Choose "zstd" for good compression performance.
         | 
| 482 | 
            +
                #   Choose "lz4" for fast compression/decompression.
         | 
| 483 | 
            +
                # @param maintain_order [Boolean]
         | 
| 484 | 
            +
                #   Maintain the order in which data is processed.
         | 
| 485 | 
            +
                #   Setting this to `false` will  be slightly faster.
         | 
| 486 | 
            +
                # @param type_coercion [Boolean]
         | 
| 487 | 
            +
                #   Do type coercion optimization.
         | 
| 488 | 
            +
                # @param predicate_pushdown [Boolean]
         | 
| 489 | 
            +
                #   Do predicate pushdown optimization.
         | 
| 490 | 
            +
                # @param projection_pushdown [Boolean]
         | 
| 491 | 
            +
                #   Do projection pushdown optimization.
         | 
| 492 | 
            +
                # @param simplify_expression [Boolean]
         | 
| 493 | 
            +
                #   Run simplify expressions optimization.
         | 
| 494 | 
            +
                # @param slice_pushdown [Boolean]
         | 
| 495 | 
            +
                #   Slice pushdown optimization.
         | 
| 496 | 
            +
                # @param no_optimization [Boolean]
         | 
| 497 | 
            +
                #   Turn off (certain) optimizations.
         | 
| 498 | 
            +
                #
         | 
| 499 | 
            +
                # @return [DataFrame]
         | 
| 500 | 
            +
                #
         | 
| 501 | 
            +
                # @example
         | 
| 502 | 
            +
                #   lf = Polars.scan_csv("/path/to/my_larger_than_ram_file.csv")
         | 
| 503 | 
            +
                #   lf.sink_ipc("out.arrow")
         | 
| 504 | 
            +
                def sink_ipc(
         | 
| 505 | 
            +
                  path,
         | 
| 506 | 
            +
                  compression: "zstd",
         | 
| 507 | 
            +
                  maintain_order: true,
         | 
| 508 | 
            +
                  type_coercion: true,
         | 
| 509 | 
            +
                  predicate_pushdown: true,
         | 
| 510 | 
            +
                  projection_pushdown: true,
         | 
| 511 | 
            +
                  simplify_expression: true,
         | 
| 512 | 
            +
                  slice_pushdown: true,
         | 
| 513 | 
            +
                  no_optimization: false
         | 
| 514 | 
            +
                )
         | 
| 515 | 
            +
                  lf = _set_sink_optimizations(
         | 
| 516 | 
            +
                    type_coercion: type_coercion,
         | 
| 517 | 
            +
                    predicate_pushdown: predicate_pushdown,
         | 
| 518 | 
            +
                    projection_pushdown: projection_pushdown,
         | 
| 519 | 
            +
                    simplify_expression: simplify_expression,
         | 
| 520 | 
            +
                    slice_pushdown: slice_pushdown,
         | 
| 521 | 
            +
                    no_optimization: no_optimization
         | 
| 522 | 
            +
                  )
         | 
| 523 | 
            +
             | 
| 524 | 
            +
                  lf.sink_ipc(
         | 
| 525 | 
            +
                    path,
         | 
| 526 | 
            +
                    compression,
         | 
| 527 | 
            +
                    maintain_order
         | 
| 528 | 
            +
                  )
         | 
| 529 | 
            +
                end
         | 
| 530 | 
            +
             | 
| 531 | 
            +
                # Evaluate the query in streaming mode and write to a CSV file.
         | 
| 532 | 
            +
                #
         | 
| 533 | 
            +
                # This allows streaming results that are larger than RAM to be written to disk.
         | 
| 534 | 
            +
                #
         | 
| 535 | 
            +
                # @param path [String]
         | 
| 536 | 
            +
                #   File path to which the file should be written.
         | 
| 537 | 
            +
                # @param include_bom [Boolean]
         | 
| 538 | 
            +
                #   Whether to include UTF-8 BOM in the CSV output.
         | 
| 539 | 
            +
                # @param include_header [Boolean]
         | 
| 540 | 
            +
                #   Whether to include header in the CSV output.
         | 
| 541 | 
            +
                # @param separator [String]
         | 
| 542 | 
            +
                #   Separate CSV fields with this symbol.
         | 
| 543 | 
            +
                # @param line_terminator [String]
         | 
| 544 | 
            +
                #   String used to end each row.
         | 
| 545 | 
            +
                # @param quote_char [String]
         | 
| 546 | 
            +
                #   Byte to use as quoting character.
         | 
| 547 | 
            +
                # @param batch_size [Integer]
         | 
| 548 | 
            +
                #   Number of rows that will be processed per thread.
         | 
| 549 | 
            +
                # @param datetime_format [String]
         | 
| 550 | 
            +
                #   A format string, with the specifiers defined by the
         | 
| 551 | 
            +
                #   `chrono <https://docs.rs/chrono/latest/chrono/format/strftime/index.html>`_
         | 
| 552 | 
            +
                #   Rust crate. If no format specified, the default fractional-second
         | 
| 553 | 
            +
                #   precision is inferred from the maximum timeunit found in the frame's
         | 
| 554 | 
            +
                #   Datetime cols (if any).
         | 
| 555 | 
            +
                # @param date_format [String]
         | 
| 556 | 
            +
                #   A format string, with the specifiers defined by the
         | 
| 557 | 
            +
                #   `chrono <https://docs.rs/chrono/latest/chrono/format/strftime/index.html>`_
         | 
| 558 | 
            +
                #   Rust crate.
         | 
| 559 | 
            +
                # @param time_format [String]
         | 
| 560 | 
            +
                #   A format string, with the specifiers defined by the
         | 
| 561 | 
            +
                #   `chrono <https://docs.rs/chrono/latest/chrono/format/strftime/index.html>`_
         | 
| 562 | 
            +
                #   Rust crate.
         | 
| 563 | 
            +
                # @param float_precision [Integer]
         | 
| 564 | 
            +
                #   Number of decimal places to write, applied to both `Float32` and
         | 
| 565 | 
            +
                #   `Float64` datatypes.
         | 
| 566 | 
            +
                # @param null_value [String]
         | 
| 567 | 
            +
                #   A string representing null values (defaulting to the empty string).
         | 
| 568 | 
            +
                # @param quote_style ["necessary", "always", "non_numeric", "never"]
         | 
| 569 | 
            +
                #   Determines the quoting strategy used.
         | 
| 570 | 
            +
                #
         | 
| 571 | 
            +
                #   - necessary (default): This puts quotes around fields only when necessary.
         | 
| 572 | 
            +
                #     They are necessary when fields contain a quote,
         | 
| 573 | 
            +
                #     delimiter or record terminator.
         | 
| 574 | 
            +
                #     Quotes are also necessary when writing an empty record
         | 
| 575 | 
            +
                #     (which is indistinguishable from a record with one empty field).
         | 
| 576 | 
            +
                #     This is the default.
         | 
| 577 | 
            +
                #   - always: This puts quotes around every field. Always.
         | 
| 578 | 
            +
                #   - never: This never puts quotes around fields, even if that results in
         | 
| 579 | 
            +
                #     invalid CSV data (e.g.: by not quoting strings containing the
         | 
| 580 | 
            +
                #     separator).
         | 
| 581 | 
            +
                #   - non_numeric: This puts quotes around all fields that are non-numeric.
         | 
| 582 | 
            +
                #     Namely, when writing a field that does not parse as a valid float
         | 
| 583 | 
            +
                #     or integer, then quotes will be used even if they aren`t strictly
         | 
| 584 | 
            +
                #     necessary.
         | 
| 585 | 
            +
                # @param maintain_order [Boolean]
         | 
| 586 | 
            +
                #   Maintain the order in which data is processed.
         | 
| 587 | 
            +
                #   Setting this to `false` will  be slightly faster.
         | 
| 588 | 
            +
                # @param type_coercion [Boolean]
         | 
| 589 | 
            +
                #   Do type coercion optimization.
         | 
| 590 | 
            +
                # @param predicate_pushdown [Boolean]
         | 
| 591 | 
            +
                #   Do predicate pushdown optimization.
         | 
| 592 | 
            +
                # @param projection_pushdown [Boolean]
         | 
| 593 | 
            +
                #   Do projection pushdown optimization.
         | 
| 594 | 
            +
                # @param simplify_expression [Boolean]
         | 
| 595 | 
            +
                #   Run simplify expressions optimization.
         | 
| 596 | 
            +
                # @param slice_pushdown [Boolean]
         | 
| 597 | 
            +
                #   Slice pushdown optimization.
         | 
| 598 | 
            +
                # @param no_optimization [Boolean]
         | 
| 599 | 
            +
                #   Turn off (certain) optimizations.
         | 
| 600 | 
            +
                #
         | 
| 601 | 
            +
                # @return [DataFrame]
         | 
| 602 | 
            +
                #
         | 
| 603 | 
            +
                # @example
         | 
| 604 | 
            +
                #   lf = Polars.scan_csv("/path/to/my_larger_than_ram_file.csv")
         | 
| 605 | 
            +
                #   lf.sink_csv("out.csv")
         | 
| 606 | 
            +
                def sink_csv(
         | 
| 607 | 
            +
                  path,
         | 
| 608 | 
            +
                  include_bom: false,
         | 
| 609 | 
            +
                  include_header: true,
         | 
| 610 | 
            +
                  separator: ",",
         | 
| 611 | 
            +
                  line_terminator: "\n",
         | 
| 612 | 
            +
                  quote_char: '"',
         | 
| 613 | 
            +
                  batch_size: 1024,
         | 
| 614 | 
            +
                  datetime_format: nil,
         | 
| 615 | 
            +
                  date_format: nil,
         | 
| 616 | 
            +
                  time_format: nil,
         | 
| 617 | 
            +
                  float_scientific: nil,
         | 
| 618 | 
            +
                  float_precision: nil,
         | 
| 619 | 
            +
                  null_value: nil,
         | 
| 620 | 
            +
                  quote_style: nil,
         | 
| 621 | 
            +
                  maintain_order: true,
         | 
| 622 | 
            +
                  type_coercion: true,
         | 
| 623 | 
            +
                  predicate_pushdown: true,
         | 
| 624 | 
            +
                  projection_pushdown: true,
         | 
| 625 | 
            +
                  simplify_expression: true,
         | 
| 626 | 
            +
                  slice_pushdown: true,
         | 
| 627 | 
            +
                  no_optimization: false
         | 
| 628 | 
            +
                )
         | 
| 629 | 
            +
                  Utils._check_arg_is_1byte("separator", separator, false)
         | 
| 630 | 
            +
                  Utils._check_arg_is_1byte("quote_char", quote_char, false)
         | 
| 631 | 
            +
             | 
| 632 | 
            +
                  lf = _set_sink_optimizations(
         | 
| 633 | 
            +
                    type_coercion: type_coercion,
         | 
| 634 | 
            +
                    predicate_pushdown: predicate_pushdown,
         | 
| 635 | 
            +
                    projection_pushdown: projection_pushdown,
         | 
| 636 | 
            +
                    simplify_expression: simplify_expression,
         | 
| 637 | 
            +
                    slice_pushdown: slice_pushdown,
         | 
| 638 | 
            +
                    no_optimization: no_optimization
         | 
| 639 | 
            +
                  )
         | 
| 640 | 
            +
             | 
| 641 | 
            +
                  lf.sink_csv(
         | 
| 642 | 
            +
                    path,
         | 
| 643 | 
            +
                    include_bom,
         | 
| 644 | 
            +
                    include_header,
         | 
| 645 | 
            +
                    separator.ord,
         | 
| 646 | 
            +
                    line_terminator,
         | 
| 647 | 
            +
                    quote_char.ord,
         | 
| 648 | 
            +
                    batch_size,
         | 
| 649 | 
            +
                    datetime_format,
         | 
| 650 | 
            +
                    date_format,
         | 
| 651 | 
            +
                    time_format,
         | 
| 652 | 
            +
                    float_scientific,
         | 
| 653 | 
            +
                    float_precision,
         | 
| 654 | 
            +
                    null_value,
         | 
| 655 | 
            +
                    quote_style,
         | 
| 656 | 
            +
                    maintain_order
         | 
| 657 | 
            +
                  )
         | 
| 658 | 
            +
                end
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                # Evaluate the query in streaming mode and write to an NDJSON file.
         | 
| 661 | 
            +
                #
         | 
| 662 | 
            +
                # This allows streaming results that are larger than RAM to be written to disk.
         | 
| 663 | 
            +
                #
         | 
| 664 | 
            +
                # @param path [String]
         | 
| 665 | 
            +
                #   File path to which the file should be written.
         | 
| 666 | 
            +
                # @param maintain_order [Boolean]
         | 
| 667 | 
            +
                #   Maintain the order in which data is processed.
         | 
| 668 | 
            +
                #   Setting this to `false` will be slightly faster.
         | 
| 669 | 
            +
                # @param type_coercion [Boolean]
         | 
| 670 | 
            +
                #   Do type coercion optimization.
         | 
| 671 | 
            +
                # @param predicate_pushdown [Boolean]
         | 
| 672 | 
            +
                #   Do predicate pushdown optimization.
         | 
| 673 | 
            +
                # @param projection_pushdown [Boolean]
         | 
| 674 | 
            +
                #   Do projection pushdown optimization.
         | 
| 675 | 
            +
                # @param simplify_expression [Boolean]
         | 
| 676 | 
            +
                #   Run simplify expressions optimization.
         | 
| 677 | 
            +
                # @param slice_pushdown [Boolean]
         | 
| 678 | 
            +
                #   Slice pushdown optimization.
         | 
| 679 | 
            +
                # @param no_optimization [Boolean]
         | 
| 680 | 
            +
                #   Turn off (certain) optimizations.
         | 
| 681 | 
            +
                #
         | 
| 682 | 
            +
                # @return [DataFrame]
         | 
| 683 | 
            +
                #
         | 
| 684 | 
            +
                # @example
         | 
| 685 | 
            +
                #   lf = Polars.scan_csv("/path/to/my_larger_than_ram_file.csv")
         | 
| 686 | 
            +
                #   lf.sink_ndjson("out.ndjson")
         | 
| 687 | 
            +
                def sink_ndjson(
         | 
| 688 | 
            +
                  path,
         | 
| 689 | 
            +
                  maintain_order: true,
         | 
| 690 | 
            +
                  type_coercion: true,
         | 
| 691 | 
            +
                  predicate_pushdown: true,
         | 
| 692 | 
            +
                  projection_pushdown: true,
         | 
| 693 | 
            +
                  simplify_expression: true,
         | 
| 694 | 
            +
                  slice_pushdown: true,
         | 
| 695 | 
            +
                  no_optimization: false
         | 
| 696 | 
            +
                )
         | 
| 697 | 
            +
                  lf = _set_sink_optimizations(
         | 
| 698 | 
            +
                    type_coercion: type_coercion,
         | 
| 699 | 
            +
                    predicate_pushdown: predicate_pushdown,
         | 
| 700 | 
            +
                    projection_pushdown: projection_pushdown,
         | 
| 701 | 
            +
                    simplify_expression: simplify_expression,
         | 
| 702 | 
            +
                    slice_pushdown: slice_pushdown,
         | 
| 703 | 
            +
                    no_optimization: no_optimization
         | 
| 704 | 
            +
                  )
         | 
| 705 | 
            +
             | 
| 706 | 
            +
                  lf.sink_json(path, maintain_order)
         | 
| 707 | 
            +
                end
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                # @private
         | 
| 710 | 
            +
                def _set_sink_optimizations(
         | 
| 711 | 
            +
                  type_coercion: true,
         | 
| 712 | 
            +
                  predicate_pushdown: true,
         | 
| 713 | 
            +
                  projection_pushdown: true,
         | 
| 714 | 
            +
                  simplify_expression: true,
         | 
| 715 | 
            +
                  slice_pushdown: true,
         | 
| 716 | 
            +
                  no_optimization: false
         | 
| 717 | 
            +
                )
         | 
| 718 | 
            +
                  if no_optimization
         | 
| 719 | 
            +
                    predicate_pushdown = false
         | 
| 720 | 
            +
                    projection_pushdown = false
         | 
| 721 | 
            +
                    slice_pushdown = false
         | 
| 722 | 
            +
                  end
         | 
| 723 | 
            +
             | 
| 724 | 
            +
                  _ldf.optimization_toggle(
         | 
| 725 | 
            +
                    type_coercion,
         | 
| 726 | 
            +
                    predicate_pushdown,
         | 
| 727 | 
            +
                    projection_pushdown,
         | 
| 728 | 
            +
                    simplify_expression,
         | 
| 729 | 
            +
                    slice_pushdown,
         | 
| 730 | 
            +
                    false,
         | 
| 731 | 
            +
                    false,
         | 
| 732 | 
            +
                    true,
         | 
| 733 | 
            +
                    false
         | 
| 734 | 
            +
                  )
         | 
| 735 | 
            +
                end
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                # Collect a small number of rows for debugging purposes.
         | 
| 738 | 
            +
                #
         | 
| 739 | 
            +
                # Fetch is like a {#collect} operation, but it overwrites the number of rows
         | 
| 740 | 
            +
                # read by every scan operation. This is a utility that helps debug a query on a
         | 
| 741 | 
            +
                # smaller number of rows.
         | 
| 742 | 
            +
                #
         | 
| 743 | 
            +
                # Note that the fetch does not guarantee the final number of rows in the
         | 
| 744 | 
            +
                # DataFrame. Filter, join operations and a lower number of rows available in the
         | 
| 745 | 
            +
                # scanned file influence the final number of rows.
         | 
| 746 | 
            +
                #
         | 
| 747 | 
            +
                # @param n_rows [Integer]
         | 
| 748 | 
            +
                #   Collect n_rows from the data sources.
         | 
| 749 | 
            +
                # @param type_coercion [Boolean]
         | 
| 750 | 
            +
                #   Run type coercion optimization.
         | 
| 751 | 
            +
                # @param predicate_pushdown [Boolean]
         | 
| 752 | 
            +
                #   Run predicate pushdown optimization.
         | 
| 753 | 
            +
                # @param projection_pushdown [Boolean]
         | 
| 754 | 
            +
                #   Run projection pushdown optimization.
         | 
| 755 | 
            +
                # @param simplify_expression [Boolean]
         | 
| 756 | 
            +
                #   Run simplify expressions optimization.
         | 
| 757 | 
            +
                # @param string_cache [Boolean]
         | 
| 758 | 
            +
                #   This argument is deprecated. Please set the string cache globally.
         | 
| 759 | 
            +
                #   The argument will be ignored
         | 
| 760 | 
            +
                # @param no_optimization [Boolean]
         | 
| 761 | 
            +
                #   Turn off optimizations.
         | 
| 762 | 
            +
                # @param slice_pushdown [Boolean]
         | 
| 763 | 
            +
                #   Slice pushdown optimization
         | 
| 764 | 
            +
                # @param common_subplan_elimination [Boolean]
         | 
| 765 | 
            +
                #   Will try to cache branching subplans that occur on self-joins or unions.
         | 
| 766 | 
            +
                # @param allow_streaming [Boolean]
         | 
| 767 | 
            +
                #   Run parts of the query in a streaming fashion (this is in an alpha state)
         | 
| 768 | 
            +
                #
         | 
| 769 | 
            +
                # @return [DataFrame]
         | 
| 770 | 
            +
                #
         | 
| 771 | 
            +
                # @example
         | 
| 772 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 773 | 
            +
                #     {
         | 
| 774 | 
            +
                #       "a" => ["a", "b", "a", "b", "b", "c"],
         | 
| 775 | 
            +
                #       "b" => [1, 2, 3, 4, 5, 6],
         | 
| 776 | 
            +
                #       "c" => [6, 5, 4, 3, 2, 1]
         | 
| 777 | 
            +
                #     }
         | 
| 778 | 
            +
                #   ).lazy
         | 
| 779 | 
            +
                #   df.group_by("a", maintain_order: true).agg(Polars.all.sum).fetch(2)
         | 
| 780 | 
            +
                #   # =>
         | 
| 781 | 
            +
                #   # shape: (2, 3)
         | 
| 782 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 783 | 
            +
                #   # │ a   ┆ b   ┆ c   │
         | 
| 784 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 785 | 
            +
                #   # │ str ┆ i64 ┆ i64 │
         | 
| 786 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 787 | 
            +
                #   # │ a   ┆ 1   ┆ 6   │
         | 
| 788 | 
            +
                #   # │ b   ┆ 2   ┆ 5   │
         | 
| 789 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 790 | 
            +
                def fetch(
         | 
| 791 | 
            +
                  n_rows = 500,
         | 
| 792 | 
            +
                  type_coercion: true,
         | 
| 793 | 
            +
                  predicate_pushdown: true,
         | 
| 794 | 
            +
                  projection_pushdown: true,
         | 
| 795 | 
            +
                  simplify_expression: true,
         | 
| 796 | 
            +
                  string_cache: false,
         | 
| 797 | 
            +
                  no_optimization: false,
         | 
| 798 | 
            +
                  slice_pushdown: true,
         | 
| 799 | 
            +
                  common_subplan_elimination: true,
         | 
| 800 | 
            +
                  comm_subexpr_elim: true,
         | 
| 801 | 
            +
                  allow_streaming: false
         | 
| 802 | 
            +
                )
         | 
| 803 | 
            +
                  if no_optimization
         | 
| 804 | 
            +
                    predicate_pushdown = false
         | 
| 805 | 
            +
                    projection_pushdown = false
         | 
| 806 | 
            +
                    slice_pushdown = false
         | 
| 807 | 
            +
                    common_subplan_elimination = false
         | 
| 808 | 
            +
                  end
         | 
| 809 | 
            +
             | 
| 810 | 
            +
                  ldf = _ldf.optimization_toggle(
         | 
| 811 | 
            +
                    type_coercion,
         | 
| 812 | 
            +
                    predicate_pushdown,
         | 
| 813 | 
            +
                    projection_pushdown,
         | 
| 814 | 
            +
                    simplify_expression,
         | 
| 815 | 
            +
                    slice_pushdown,
         | 
| 816 | 
            +
                    common_subplan_elimination,
         | 
| 817 | 
            +
                    comm_subexpr_elim,
         | 
| 818 | 
            +
                    allow_streaming,
         | 
| 819 | 
            +
                    false
         | 
| 820 | 
            +
                  )
         | 
| 821 | 
            +
                  Utils.wrap_df(ldf.fetch(n_rows))
         | 
| 822 | 
            +
                end
         | 
| 823 | 
            +
             | 
| 824 | 
            +
                # Return lazy representation, i.e. itself.
         | 
| 825 | 
            +
                #
         | 
| 826 | 
            +
                # Useful for writing code that expects either a `DataFrame` or
         | 
| 827 | 
            +
                # `LazyFrame`.
         | 
| 828 | 
            +
                #
         | 
| 829 | 
            +
                # @return [LazyFrame]
         | 
| 830 | 
            +
                #
         | 
| 831 | 
            +
                # @example
         | 
| 832 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 833 | 
            +
                #     {
         | 
| 834 | 
            +
                #       "a" => [nil, 2, 3, 4],
         | 
| 835 | 
            +
                #       "b" => [0.5, nil, 2.5, 13],
         | 
| 836 | 
            +
                #       "c" => [true, true, false, nil]
         | 
| 837 | 
            +
                #     }
         | 
| 838 | 
            +
                #   )
         | 
| 839 | 
            +
                #   df.lazy
         | 
| 840 | 
            +
                def lazy
         | 
| 841 | 
            +
                  self
         | 
| 842 | 
            +
                end
         | 
| 843 | 
            +
             | 
| 844 | 
            +
                # Cache the result once the execution of the physical plan hits this node.
         | 
| 845 | 
            +
                #
         | 
| 846 | 
            +
                # @return [LazyFrame]
         | 
| 847 | 
            +
                def cache
         | 
| 848 | 
            +
                  _from_rbldf(_ldf.cache)
         | 
| 849 | 
            +
                end
         | 
| 850 | 
            +
             | 
| 851 | 
            +
                # TODO
         | 
| 852 | 
            +
                # def cast
         | 
| 853 | 
            +
                # end
         | 
| 854 | 
            +
             | 
| 855 | 
            +
                # Create an empty copy of the current LazyFrame.
         | 
| 856 | 
            +
                #
         | 
| 857 | 
            +
                # The copy has an identical schema but no data.
         | 
| 858 | 
            +
                #
         | 
| 859 | 
            +
                # @return [LazyFrame]
         | 
| 860 | 
            +
                #
         | 
| 861 | 
            +
                # @example
         | 
| 862 | 
            +
                #   lf = Polars::LazyFrame.new(
         | 
| 863 | 
            +
                #     {
         | 
| 864 | 
            +
                #       "a" => [nil, 2, 3, 4],
         | 
| 865 | 
            +
                #       "b" => [0.5, nil, 2.5, 13],
         | 
| 866 | 
            +
                #       "c" => [true, true, false, nil],
         | 
| 867 | 
            +
                #     }
         | 
| 868 | 
            +
                #   ).lazy
         | 
| 869 | 
            +
                #   lf.clear.fetch
         | 
| 870 | 
            +
                #   # =>
         | 
| 871 | 
            +
                #   # shape: (0, 3)
         | 
| 872 | 
            +
                #   # ┌─────┬─────┬──────┐
         | 
| 873 | 
            +
                #   # │ a   ┆ b   ┆ c    │
         | 
| 874 | 
            +
                #   # │ --- ┆ --- ┆ ---  │
         | 
| 875 | 
            +
                #   # │ i64 ┆ f64 ┆ bool │
         | 
| 876 | 
            +
                #   # ╞═════╪═════╪══════╡
         | 
| 877 | 
            +
                #   # └─────┴─────┴──────┘
         | 
| 878 | 
            +
                #
         | 
| 879 | 
            +
                # @example
         | 
| 880 | 
            +
                #   lf.clear(2).fetch
         | 
| 881 | 
            +
                #   # =>
         | 
| 882 | 
            +
                #   # shape: (2, 3)
         | 
| 883 | 
            +
                #   # ┌──────┬──────┬──────┐
         | 
| 884 | 
            +
                #   # │ a    ┆ b    ┆ c    │
         | 
| 885 | 
            +
                #   # │ ---  ┆ ---  ┆ ---  │
         | 
| 886 | 
            +
                #   # │ i64  ┆ f64  ┆ bool │
         | 
| 887 | 
            +
                #   # ╞══════╪══════╪══════╡
         | 
| 888 | 
            +
                #   # │ null ┆ null ┆ null │
         | 
| 889 | 
            +
                #   # │ null ┆ null ┆ null │
         | 
| 890 | 
            +
                #   # └──────┴──────┴──────┘
         | 
| 891 | 
            +
                def clear(n = 0)
         | 
| 892 | 
            +
                  DataFrame.new(columns: schema).clear(n).lazy
         | 
| 893 | 
            +
                end
         | 
| 894 | 
            +
                alias_method :cleared, :clear
         | 
| 895 | 
            +
             | 
| 896 | 
            +
                # Filter the rows in the DataFrame based on a predicate expression.
         | 
| 897 | 
            +
                #
         | 
| 898 | 
            +
                # @param predicate [Object]
         | 
| 899 | 
            +
                #   Expression that evaluates to a boolean Series.
         | 
| 900 | 
            +
                #
         | 
| 901 | 
            +
                # @return [LazyFrame]
         | 
| 902 | 
            +
                #
         | 
| 903 | 
            +
                # @example Filter on one condition:
         | 
| 904 | 
            +
                #   lf = Polars::DataFrame.new(
         | 
| 905 | 
            +
                #     {
         | 
| 906 | 
            +
                #       "foo" => [1, 2, 3],
         | 
| 907 | 
            +
                #       "bar" => [6, 7, 8],
         | 
| 908 | 
            +
                #       "ham" => ["a", "b", "c"]
         | 
| 909 | 
            +
                #     }
         | 
| 910 | 
            +
                #   ).lazy
         | 
| 911 | 
            +
                #   lf.filter(Polars.col("foo") < 3).collect
         | 
| 912 | 
            +
                #   # =>
         | 
| 913 | 
            +
                #   # shape: (2, 3)
         | 
| 914 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 915 | 
            +
                #   # │ foo ┆ bar ┆ ham │
         | 
| 916 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 917 | 
            +
                #   # │ i64 ┆ i64 ┆ str │
         | 
| 918 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 919 | 
            +
                #   # │ 1   ┆ 6   ┆ a   │
         | 
| 920 | 
            +
                #   # │ 2   ┆ 7   ┆ b   │
         | 
| 921 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 922 | 
            +
                #
         | 
| 923 | 
            +
                # @example Filter on multiple conditions:
         | 
| 924 | 
            +
                #   lf.filter((Polars.col("foo") < 3) & (Polars.col("ham") == "a")).collect
         | 
| 925 | 
            +
                #   # =>
         | 
| 926 | 
            +
                #   # shape: (1, 3)
         | 
| 927 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 928 | 
            +
                #   # │ foo ┆ bar ┆ ham │
         | 
| 929 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 930 | 
            +
                #   # │ i64 ┆ i64 ┆ str │
         | 
| 931 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 932 | 
            +
                #   # │ 1   ┆ 6   ┆ a   │
         | 
| 933 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 934 | 
            +
                def filter(predicate)
         | 
| 935 | 
            +
                  _from_rbldf(
         | 
| 936 | 
            +
                    _ldf.filter(
         | 
| 937 | 
            +
                      Utils.parse_into_expression(predicate, str_as_lit: false)
         | 
| 938 | 
            +
                    )
         | 
| 939 | 
            +
                  )
         | 
| 940 | 
            +
                end
         | 
| 941 | 
            +
             | 
| 942 | 
            +
                # Select columns from this DataFrame.
         | 
| 943 | 
            +
                #
         | 
| 944 | 
            +
                # @param exprs [Array]
         | 
| 945 | 
            +
                #   Column(s) to select, specified as positional arguments.
         | 
| 946 | 
            +
                #   Accepts expression input. Strings are parsed as column names,
         | 
| 947 | 
            +
                #   other non-expression inputs are parsed as literals.
         | 
| 948 | 
            +
                # @param named_exprs [Hash]
         | 
| 949 | 
            +
                #   Additional columns to select, specified as keyword arguments.
         | 
| 950 | 
            +
                #   The columns will be renamed to the keyword used.
         | 
| 951 | 
            +
                #
         | 
| 952 | 
            +
                # @return [LazyFrame]
         | 
| 953 | 
            +
                #
         | 
| 954 | 
            +
                # @example
         | 
| 955 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 956 | 
            +
                #     {
         | 
| 957 | 
            +
                #       "foo" => [1, 2, 3],
         | 
| 958 | 
            +
                #       "bar" => [6, 7, 8],
         | 
| 959 | 
            +
                #       "ham" => ["a", "b", "c"],
         | 
| 960 | 
            +
                #     }
         | 
| 961 | 
            +
                #   ).lazy
         | 
| 962 | 
            +
                #   df.select("foo").collect
         | 
| 963 | 
            +
                #   # =>
         | 
| 964 | 
            +
                #   # shape: (3, 1)
         | 
| 965 | 
            +
                #   # ┌─────┐
         | 
| 966 | 
            +
                #   # │ foo │
         | 
| 967 | 
            +
                #   # │ --- │
         | 
| 968 | 
            +
                #   # │ i64 │
         | 
| 969 | 
            +
                #   # ╞═════╡
         | 
| 970 | 
            +
                #   # │ 1   │
         | 
| 971 | 
            +
                #   # │ 2   │
         | 
| 972 | 
            +
                #   # │ 3   │
         | 
| 973 | 
            +
                #   # └─────┘
         | 
| 974 | 
            +
                #
         | 
| 975 | 
            +
                # @example
         | 
| 976 | 
            +
                #   df.select(["foo", "bar"]).collect
         | 
| 977 | 
            +
                #   # =>
         | 
| 978 | 
            +
                #   # shape: (3, 2)
         | 
| 979 | 
            +
                #   # ┌─────┬─────┐
         | 
| 980 | 
            +
                #   # │ foo ┆ bar │
         | 
| 981 | 
            +
                #   # │ --- ┆ --- │
         | 
| 982 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 983 | 
            +
                #   # ╞═════╪═════╡
         | 
| 984 | 
            +
                #   # │ 1   ┆ 6   │
         | 
| 985 | 
            +
                #   # │ 2   ┆ 7   │
         | 
| 986 | 
            +
                #   # │ 3   ┆ 8   │
         | 
| 987 | 
            +
                #   # └─────┴─────┘
         | 
| 988 | 
            +
                #
         | 
| 989 | 
            +
                # @example
         | 
| 990 | 
            +
                #   df.select(Polars.col("foo") + 1).collect
         | 
| 991 | 
            +
                #   # =>
         | 
| 992 | 
            +
                #   # shape: (3, 1)
         | 
| 993 | 
            +
                #   # ┌─────┐
         | 
| 994 | 
            +
                #   # │ foo │
         | 
| 995 | 
            +
                #   # │ --- │
         | 
| 996 | 
            +
                #   # │ i64 │
         | 
| 997 | 
            +
                #   # ╞═════╡
         | 
| 998 | 
            +
                #   # │ 2   │
         | 
| 999 | 
            +
                #   # │ 3   │
         | 
| 1000 | 
            +
                #   # │ 4   │
         | 
| 1001 | 
            +
                #   # └─────┘
         | 
| 1002 | 
            +
                #
         | 
| 1003 | 
            +
                # @example
         | 
| 1004 | 
            +
                #   df.select([Polars.col("foo") + 1, Polars.col("bar") + 1]).collect
         | 
| 1005 | 
            +
                #   # =>
         | 
| 1006 | 
            +
                #   # shape: (3, 2)
         | 
| 1007 | 
            +
                #   # ┌─────┬─────┐
         | 
| 1008 | 
            +
                #   # │ foo ┆ bar │
         | 
| 1009 | 
            +
                #   # │ --- ┆ --- │
         | 
| 1010 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 1011 | 
            +
                #   # ╞═════╪═════╡
         | 
| 1012 | 
            +
                #   # │ 2   ┆ 7   │
         | 
| 1013 | 
            +
                #   # │ 3   ┆ 8   │
         | 
| 1014 | 
            +
                #   # │ 4   ┆ 9   │
         | 
| 1015 | 
            +
                #   # └─────┴─────┘
         | 
| 1016 | 
            +
                #
         | 
| 1017 | 
            +
                # @example
         | 
| 1018 | 
            +
                #   df.select(Polars.when(Polars.col("foo") > 2).then(10).otherwise(0)).collect
         | 
| 1019 | 
            +
                #   # =>
         | 
| 1020 | 
            +
                #   # shape: (3, 1)
         | 
| 1021 | 
            +
                #   # ┌─────────┐
         | 
| 1022 | 
            +
                #   # │ literal │
         | 
| 1023 | 
            +
                #   # │ ---     │
         | 
| 1024 | 
            +
                #   # │ i32     │
         | 
| 1025 | 
            +
                #   # ╞═════════╡
         | 
| 1026 | 
            +
                #   # │ 0       │
         | 
| 1027 | 
            +
                #   # │ 0       │
         | 
| 1028 | 
            +
                #   # │ 10      │
         | 
| 1029 | 
            +
                #   # └─────────┘
         | 
| 1030 | 
            +
                def select(*exprs, **named_exprs)
         | 
| 1031 | 
            +
                  structify = ENV.fetch("POLARS_AUTO_STRUCTIFY", "0") != "0"
         | 
| 1032 | 
            +
             | 
| 1033 | 
            +
                  rbexprs = Utils.parse_into_list_of_expressions(
         | 
| 1034 | 
            +
                    *exprs, **named_exprs, __structify: structify
         | 
| 1035 | 
            +
                  )
         | 
| 1036 | 
            +
                  _from_rbldf(_ldf.select(rbexprs))
         | 
| 1037 | 
            +
                end
         | 
| 1038 | 
            +
             | 
| 1039 | 
            +
                # Start a group by operation.
         | 
| 1040 | 
            +
                #
         | 
| 1041 | 
            +
                # @param by [Array]
         | 
| 1042 | 
            +
                #   Column(s) to group by.
         | 
| 1043 | 
            +
                # @param maintain_order [Boolean]
         | 
| 1044 | 
            +
                #   Make sure that the order of the groups remain consistent. This is more
         | 
| 1045 | 
            +
                #   expensive than a default group by.
         | 
| 1046 | 
            +
                # @param named_by [Hash]
         | 
| 1047 | 
            +
                #   Additional columns to group by, specified as keyword arguments.
         | 
| 1048 | 
            +
                #   The columns will be renamed to the keyword used.
         | 
| 1049 | 
            +
                # @return [LazyGroupBy]
         | 
| 1050 | 
            +
                #
         | 
| 1051 | 
            +
                # @example
         | 
| 1052 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 1053 | 
            +
                #     {
         | 
| 1054 | 
            +
                #       "a" => ["a", "b", "a", "b", "b", "c"],
         | 
| 1055 | 
            +
                #       "b" => [1, 2, 3, 4, 5, 6],
         | 
| 1056 | 
            +
                #       "c" => [6, 5, 4, 3, 2, 1]
         | 
| 1057 | 
            +
                #     }
         | 
| 1058 | 
            +
                #   ).lazy
         | 
| 1059 | 
            +
                #   df.group_by("a", maintain_order: true).agg(Polars.col("b").sum).collect
         | 
| 1060 | 
            +
                #   # =>
         | 
| 1061 | 
            +
                #   # shape: (3, 2)
         | 
| 1062 | 
            +
                #   # ┌─────┬─────┐
         | 
| 1063 | 
            +
                #   # │ a   ┆ b   │
         | 
| 1064 | 
            +
                #   # │ --- ┆ --- │
         | 
| 1065 | 
            +
                #   # │ str ┆ i64 │
         | 
| 1066 | 
            +
                #   # ╞═════╪═════╡
         | 
| 1067 | 
            +
                #   # │ a   ┆ 4   │
         | 
| 1068 | 
            +
                #   # │ b   ┆ 11  │
         | 
| 1069 | 
            +
                #   # │ c   ┆ 6   │
         | 
| 1070 | 
            +
                #   # └─────┴─────┘
         | 
| 1071 | 
            +
                def group_by(*by, maintain_order: false, **named_by)
         | 
| 1072 | 
            +
                  exprs = Utils.parse_into_list_of_expressions(*by, **named_by)
         | 
| 1073 | 
            +
                  lgb = _ldf.group_by(exprs, maintain_order)
         | 
| 1074 | 
            +
                  LazyGroupBy.new(lgb)
         | 
| 1075 | 
            +
                end
         | 
| 1076 | 
            +
                alias_method :groupby, :group_by
         | 
| 1077 | 
            +
                alias_method :group, :group_by
         | 
| 1078 | 
            +
             | 
| 1079 | 
            +
                # Create rolling groups based on a time column.
         | 
| 1080 | 
            +
                #
         | 
| 1081 | 
            +
                # Also works for index values of type `:i32` or `:i64`.
         | 
| 1082 | 
            +
                #
         | 
| 1083 | 
            +
                # Different from a `dynamic_group_by` the windows are now determined by the
         | 
| 1084 | 
            +
                # individual values and are not of constant intervals. For constant intervals
         | 
| 1085 | 
            +
                # use *group_by_dynamic*.
         | 
| 1086 | 
            +
                #
         | 
| 1087 | 
            +
                # The `period` and `offset` arguments are created either from a timedelta, or
         | 
| 1088 | 
            +
                # by using the following string language:
         | 
| 1089 | 
            +
                #
         | 
| 1090 | 
            +
                # - 1ns   (1 nanosecond)
         | 
| 1091 | 
            +
                # - 1us   (1 microsecond)
         | 
| 1092 | 
            +
                # - 1ms   (1 millisecond)
         | 
| 1093 | 
            +
                # - 1s    (1 second)
         | 
| 1094 | 
            +
                # - 1m    (1 minute)
         | 
| 1095 | 
            +
                # - 1h    (1 hour)
         | 
| 1096 | 
            +
                # - 1d    (1 day)
         | 
| 1097 | 
            +
                # - 1w    (1 week)
         | 
| 1098 | 
            +
                # - 1mo   (1 calendar month)
         | 
| 1099 | 
            +
                # - 1y    (1 calendar year)
         | 
| 1100 | 
            +
                # - 1i    (1 index count)
         | 
| 1101 | 
            +
                #
         | 
| 1102 | 
            +
                # Or combine them:
         | 
| 1103 | 
            +
                # "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
         | 
| 1104 | 
            +
                #
         | 
| 1105 | 
            +
                # In case of a group_by_rolling on an integer column, the windows are defined by:
         | 
| 1106 | 
            +
                #
         | 
| 1107 | 
            +
                # - "1i"      # length 1
         | 
| 1108 | 
            +
                # - "10i"     # length 10
         | 
| 1109 | 
            +
                #
         | 
| 1110 | 
            +
                # @param index_column [Object]
         | 
| 1111 | 
            +
                #   Column used to group based on the time window.
         | 
| 1112 | 
            +
                #   Often to type Date/Datetime
         | 
| 1113 | 
            +
                #   This column must be sorted in ascending order. If not the output will not
         | 
| 1114 | 
            +
                #   make sense.
         | 
| 1115 | 
            +
                #
         | 
| 1116 | 
            +
                #   In case of a rolling group by on indices, dtype needs to be one of
         | 
| 1117 | 
            +
                #   `:i32`, `:i64`. Note that `:i32` gets temporarily cast to `:i64`, so if
         | 
| 1118 | 
            +
                #   performance matters use an `:i64` column.
         | 
| 1119 | 
            +
                # @param period [Object]
         | 
| 1120 | 
            +
                #   Length of the window.
         | 
| 1121 | 
            +
                # @param offset [Object]
         | 
| 1122 | 
            +
                #   Offset of the window. Default is -period.
         | 
| 1123 | 
            +
                # @param closed ["right", "left", "both", "none"]
         | 
| 1124 | 
            +
                #   Define whether the temporal window interval is closed or not.
         | 
| 1125 | 
            +
                # @param by [Object]
         | 
| 1126 | 
            +
                #   Also group by this column/these columns.
         | 
| 1127 | 
            +
                #
         | 
| 1128 | 
            +
                # @return [LazyFrame]
         | 
| 1129 | 
            +
                #
         | 
| 1130 | 
            +
                # @example
         | 
| 1131 | 
            +
                #   dates = [
         | 
| 1132 | 
            +
                #     "2020-01-01 13:45:48",
         | 
| 1133 | 
            +
                #     "2020-01-01 16:42:13",
         | 
| 1134 | 
            +
                #     "2020-01-01 16:45:09",
         | 
| 1135 | 
            +
                #     "2020-01-02 18:12:48",
         | 
| 1136 | 
            +
                #     "2020-01-03 19:45:32",
         | 
| 1137 | 
            +
                #     "2020-01-08 23:16:43"
         | 
| 1138 | 
            +
                #   ]
         | 
| 1139 | 
            +
                #   df = Polars::LazyFrame.new({"dt" => dates, "a" => [3, 7, 5, 9, 2, 1]}).with_column(
         | 
| 1140 | 
            +
                #     Polars.col("dt").str.strptime(Polars::Datetime).set_sorted
         | 
| 1141 | 
            +
                #   )
         | 
| 1142 | 
            +
                #   df.rolling(index_column: "dt", period: "2d").agg(
         | 
| 1143 | 
            +
                #     [
         | 
| 1144 | 
            +
                #       Polars.sum("a").alias("sum_a"),
         | 
| 1145 | 
            +
                #       Polars.min("a").alias("min_a"),
         | 
| 1146 | 
            +
                #       Polars.max("a").alias("max_a")
         | 
| 1147 | 
            +
                #     ]
         | 
| 1148 | 
            +
                #   ).collect
         | 
| 1149 | 
            +
                #   # =>
         | 
| 1150 | 
            +
                #   # shape: (6, 4)
         | 
| 1151 | 
            +
                #   # ┌─────────────────────┬───────┬───────┬───────┐
         | 
| 1152 | 
            +
                #   # │ dt                  ┆ sum_a ┆ min_a ┆ max_a │
         | 
| 1153 | 
            +
                #   # │ ---                 ┆ ---   ┆ ---   ┆ ---   │
         | 
| 1154 | 
            +
                #   # │ datetime[μs]        ┆ i64   ┆ i64   ┆ i64   │
         | 
| 1155 | 
            +
                #   # ╞═════════════════════╪═══════╪═══════╪═══════╡
         | 
| 1156 | 
            +
                #   # │ 2020-01-01 13:45:48 ┆ 3     ┆ 3     ┆ 3     │
         | 
| 1157 | 
            +
                #   # │ 2020-01-01 16:42:13 ┆ 10    ┆ 3     ┆ 7     │
         | 
| 1158 | 
            +
                #   # │ 2020-01-01 16:45:09 ┆ 15    ┆ 3     ┆ 7     │
         | 
| 1159 | 
            +
                #   # │ 2020-01-02 18:12:48 ┆ 24    ┆ 3     ┆ 9     │
         | 
| 1160 | 
            +
                #   # │ 2020-01-03 19:45:32 ┆ 11    ┆ 2     ┆ 9     │
         | 
| 1161 | 
            +
                #   # │ 2020-01-08 23:16:43 ┆ 1     ┆ 1     ┆ 1     │
         | 
| 1162 | 
            +
                #   # └─────────────────────┴───────┴───────┴───────┘
         | 
| 1163 | 
            +
                def rolling(
         | 
| 1164 | 
            +
                  index_column:,
         | 
| 1165 | 
            +
                  period:,
         | 
| 1166 | 
            +
                  offset: nil,
         | 
| 1167 | 
            +
                  closed: "right",
         | 
| 1168 | 
            +
                  by: nil
         | 
| 1169 | 
            +
                )
         | 
| 1170 | 
            +
                  index_column = Utils.parse_into_expression(index_column)
         | 
| 1171 | 
            +
                  if offset.nil?
         | 
| 1172 | 
            +
                    offset = Utils.negate_duration_string(Utils.parse_as_duration_string(period))
         | 
| 1173 | 
            +
                  end
         | 
| 1174 | 
            +
             | 
| 1175 | 
            +
                  rbexprs_by = (
         | 
| 1176 | 
            +
                    !by.nil? ? Utils.parse_into_list_of_expressions(by) : []
         | 
| 1177 | 
            +
                  )
         | 
| 1178 | 
            +
                  period = Utils.parse_as_duration_string(period)
         | 
| 1179 | 
            +
                  offset = Utils.parse_as_duration_string(offset)
         | 
| 1180 | 
            +
             | 
| 1181 | 
            +
                  lgb = _ldf.rolling(index_column, period, offset, closed, rbexprs_by)
         | 
| 1182 | 
            +
                  LazyGroupBy.new(lgb)
         | 
| 1183 | 
            +
                end
         | 
| 1184 | 
            +
                alias_method :group_by_rolling, :rolling
         | 
| 1185 | 
            +
                alias_method :groupby_rolling, :rolling
         | 
| 1186 | 
            +
             | 
| 1187 | 
            +
                # Group based on a time value (or index value of type `:i32`, `:i64`).
         | 
| 1188 | 
            +
                #
         | 
| 1189 | 
            +
                # Time windows are calculated and rows are assigned to windows. Different from a
         | 
| 1190 | 
            +
                # normal group by is that a row can be member of multiple groups. The time/index
         | 
| 1191 | 
            +
                # window could be seen as a rolling window, with a window size determined by
         | 
| 1192 | 
            +
                # dates/times/values instead of slots in the DataFrame.
         | 
| 1193 | 
            +
                #
         | 
| 1194 | 
            +
                # A window is defined by:
         | 
| 1195 | 
            +
                #
         | 
| 1196 | 
            +
                # - every: interval of the window
         | 
| 1197 | 
            +
                # - period: length of the window
         | 
| 1198 | 
            +
                # - offset: offset of the window
         | 
| 1199 | 
            +
                #
         | 
| 1200 | 
            +
                # The `every`, `period` and `offset` arguments are created with
         | 
| 1201 | 
            +
                # the following string language:
         | 
| 1202 | 
            +
                #
         | 
| 1203 | 
            +
                # - 1ns   (1 nanosecond)
         | 
| 1204 | 
            +
                # - 1us   (1 microsecond)
         | 
| 1205 | 
            +
                # - 1ms   (1 millisecond)
         | 
| 1206 | 
            +
                # - 1s    (1 second)
         | 
| 1207 | 
            +
                # - 1m    (1 minute)
         | 
| 1208 | 
            +
                # - 1h    (1 hour)
         | 
| 1209 | 
            +
                # - 1d    (1 day)
         | 
| 1210 | 
            +
                # - 1w    (1 week)
         | 
| 1211 | 
            +
                # - 1mo   (1 calendar month)
         | 
| 1212 | 
            +
                # - 1y    (1 calendar year)
         | 
| 1213 | 
            +
                # - 1i    (1 index count)
         | 
| 1214 | 
            +
                #
         | 
| 1215 | 
            +
                # Or combine them:
         | 
| 1216 | 
            +
                # "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
         | 
| 1217 | 
            +
                #
         | 
| 1218 | 
            +
                # In case of a group_by_dynamic on an integer column, the windows are defined by:
         | 
| 1219 | 
            +
                #
         | 
| 1220 | 
            +
                # - "1i"      # length 1
         | 
| 1221 | 
            +
                # - "10i"     # length 10
         | 
| 1222 | 
            +
                #
         | 
| 1223 | 
            +
                # @param index_column [Object]
         | 
| 1224 | 
            +
                #   Column used to group based on the time window.
         | 
| 1225 | 
            +
                #   Often to type Date/Datetime
         | 
| 1226 | 
            +
                #   This column must be sorted in ascending order. If not the output will not
         | 
| 1227 | 
            +
                #   make sense.
         | 
| 1228 | 
            +
                #
         | 
| 1229 | 
            +
                #   In case of a dynamic group by on indices, dtype needs to be one of
         | 
| 1230 | 
            +
                #   `:i32`, `:i64`. Note that `:i32` gets temporarily cast to `:i64`, so if
         | 
| 1231 | 
            +
                #   performance matters use an `:i64` column.
         | 
| 1232 | 
            +
                # @param every [Object]
         | 
| 1233 | 
            +
                #   Interval of the window.
         | 
| 1234 | 
            +
                # @param period [Object]
         | 
| 1235 | 
            +
                #   Length of the window, if None it is equal to 'every'.
         | 
| 1236 | 
            +
                # @param offset [Object]
         | 
| 1237 | 
            +
                #   Offset of the window if None and period is None it will be equal to negative
         | 
| 1238 | 
            +
                #   `every`.
         | 
| 1239 | 
            +
                # @param truncate [Boolean]
         | 
| 1240 | 
            +
                #   Truncate the time value to the window lower bound.
         | 
| 1241 | 
            +
                # @param include_boundaries [Boolean]
         | 
| 1242 | 
            +
                #   Add the lower and upper bound of the window to the "_lower_bound" and
         | 
| 1243 | 
            +
                #   "_upper_bound" columns. This will impact performance because it's harder to
         | 
| 1244 | 
            +
                #   parallelize
         | 
| 1245 | 
            +
                # @param closed ["right", "left", "both", "none"]
         | 
| 1246 | 
            +
                #   Define whether the temporal window interval is closed or not.
         | 
| 1247 | 
            +
                # @param by [Object]
         | 
| 1248 | 
            +
                #   Also group by this column/these columns
         | 
| 1249 | 
            +
                #
         | 
| 1250 | 
            +
                # @return [DataFrame]
         | 
| 1251 | 
            +
                #
         | 
| 1252 | 
            +
                # @example
         | 
| 1253 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 1254 | 
            +
                #     {
         | 
| 1255 | 
            +
                #       "time" => Polars.datetime_range(
         | 
| 1256 | 
            +
                #         DateTime.new(2021, 12, 16),
         | 
| 1257 | 
            +
                #         DateTime.new(2021, 12, 16, 3),
         | 
| 1258 | 
            +
                #         "30m",
         | 
| 1259 | 
            +
                #         time_unit: "us",
         | 
| 1260 | 
            +
                #         eager: true
         | 
| 1261 | 
            +
                #       ),
         | 
| 1262 | 
            +
                #       "n" => 0..6
         | 
| 1263 | 
            +
                #     }
         | 
| 1264 | 
            +
                #   )
         | 
| 1265 | 
            +
                #   # =>
         | 
| 1266 | 
            +
                #   # shape: (7, 2)
         | 
| 1267 | 
            +
                #   # ┌─────────────────────┬─────┐
         | 
| 1268 | 
            +
                #   # │ time                ┆ n   │
         | 
| 1269 | 
            +
                #   # │ ---                 ┆ --- │
         | 
| 1270 | 
            +
                #   # │ datetime[μs]        ┆ i64 │
         | 
| 1271 | 
            +
                #   # ╞═════════════════════╪═════╡
         | 
| 1272 | 
            +
                #   # │ 2021-12-16 00:00:00 ┆ 0   │
         | 
| 1273 | 
            +
                #   # │ 2021-12-16 00:30:00 ┆ 1   │
         | 
| 1274 | 
            +
                #   # │ 2021-12-16 01:00:00 ┆ 2   │
         | 
| 1275 | 
            +
                #   # │ 2021-12-16 01:30:00 ┆ 3   │
         | 
| 1276 | 
            +
                #   # │ 2021-12-16 02:00:00 ┆ 4   │
         | 
| 1277 | 
            +
                #   # │ 2021-12-16 02:30:00 ┆ 5   │
         | 
| 1278 | 
            +
                #   # │ 2021-12-16 03:00:00 ┆ 6   │
         | 
| 1279 | 
            +
                #   # └─────────────────────┴─────┘
         | 
| 1280 | 
            +
                #
         | 
| 1281 | 
            +
                # @example Group by windows of 1 hour starting at 2021-12-16 00:00:00.
         | 
| 1282 | 
            +
                #   df.group_by_dynamic("time", every: "1h", closed: "right").agg(
         | 
| 1283 | 
            +
                #     [
         | 
| 1284 | 
            +
                #       Polars.col("time").min.alias("time_min"),
         | 
| 1285 | 
            +
                #       Polars.col("time").max.alias("time_max")
         | 
| 1286 | 
            +
                #     ]
         | 
| 1287 | 
            +
                #   )
         | 
| 1288 | 
            +
                #   # =>
         | 
| 1289 | 
            +
                #   # shape: (4, 3)
         | 
| 1290 | 
            +
                #   # ┌─────────────────────┬─────────────────────┬─────────────────────┐
         | 
| 1291 | 
            +
                #   # │ time                ┆ time_min            ┆ time_max            │
         | 
| 1292 | 
            +
                #   # │ ---                 ┆ ---                 ┆ ---                 │
         | 
| 1293 | 
            +
                #   # │ datetime[μs]        ┆ datetime[μs]        ┆ datetime[μs]        │
         | 
| 1294 | 
            +
                #   # ╞═════════════════════╪═════════════════════╪═════════════════════╡
         | 
| 1295 | 
            +
                #   # │ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-16 00:00:00 │
         | 
| 1296 | 
            +
                #   # │ 2021-12-16 00:00:00 ┆ 2021-12-16 00:30:00 ┆ 2021-12-16 01:00:00 │
         | 
| 1297 | 
            +
                #   # │ 2021-12-16 01:00:00 ┆ 2021-12-16 01:30:00 ┆ 2021-12-16 02:00:00 │
         | 
| 1298 | 
            +
                #   # │ 2021-12-16 02:00:00 ┆ 2021-12-16 02:30:00 ┆ 2021-12-16 03:00:00 │
         | 
| 1299 | 
            +
                #   # └─────────────────────┴─────────────────────┴─────────────────────┘
         | 
| 1300 | 
            +
                #
         | 
| 1301 | 
            +
                # @example The window boundaries can also be added to the aggregation result.
         | 
| 1302 | 
            +
                #   df.group_by_dynamic(
         | 
| 1303 | 
            +
                #     "time", every: "1h", include_boundaries: true, closed: "right"
         | 
| 1304 | 
            +
                #   ).agg([Polars.col("time").count.alias("time_count")])
         | 
| 1305 | 
            +
                #   # =>
         | 
| 1306 | 
            +
                #   # shape: (4, 4)
         | 
| 1307 | 
            +
                #   # ┌─────────────────────┬─────────────────────┬─────────────────────┬────────────┐
         | 
| 1308 | 
            +
                #   # │ _lower_boundary     ┆ _upper_boundary     ┆ time                ┆ time_count │
         | 
| 1309 | 
            +
                #   # │ ---                 ┆ ---                 ┆ ---                 ┆ ---        │
         | 
| 1310 | 
            +
                #   # │ datetime[μs]        ┆ datetime[μs]        ┆ datetime[μs]        ┆ u32        │
         | 
| 1311 | 
            +
                #   # ╞═════════════════════╪═════════════════════╪═════════════════════╪════════════╡
         | 
| 1312 | 
            +
                #   # │ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-15 23:00:00 ┆ 1          │
         | 
| 1313 | 
            +
                #   # │ 2021-12-16 00:00:00 ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 00:00:00 ┆ 2          │
         | 
| 1314 | 
            +
                #   # │ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 2          │
         | 
| 1315 | 
            +
                #   # │ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 2          │
         | 
| 1316 | 
            +
                #   # └─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
         | 
| 1317 | 
            +
                #
         | 
| 1318 | 
            +
                # @example When closed="left", should not include right end of interval.
         | 
| 1319 | 
            +
                #   df.group_by_dynamic("time", every: "1h", closed: "left").agg(
         | 
| 1320 | 
            +
                #     [
         | 
| 1321 | 
            +
                #       Polars.col("time").count.alias("time_count"),
         | 
| 1322 | 
            +
                #       Polars.col("time").alias("time_agg_list")
         | 
| 1323 | 
            +
                #     ]
         | 
| 1324 | 
            +
                #   )
         | 
| 1325 | 
            +
                #   # =>
         | 
| 1326 | 
            +
                #   # shape: (4, 3)
         | 
| 1327 | 
            +
                #   # ┌─────────────────────┬────────────┬─────────────────────────────────┐
         | 
| 1328 | 
            +
                #   # │ time                ┆ time_count ┆ time_agg_list                   │
         | 
| 1329 | 
            +
                #   # │ ---                 ┆ ---        ┆ ---                             │
         | 
| 1330 | 
            +
                #   # │ datetime[μs]        ┆ u32        ┆ list[datetime[μs]]              │
         | 
| 1331 | 
            +
                #   # ╞═════════════════════╪════════════╪═════════════════════════════════╡
         | 
| 1332 | 
            +
                #   # │ 2021-12-16 00:00:00 ┆ 2          ┆ [2021-12-16 00:00:00, 2021-12-… │
         | 
| 1333 | 
            +
                #   # │ 2021-12-16 01:00:00 ┆ 2          ┆ [2021-12-16 01:00:00, 2021-12-… │
         | 
| 1334 | 
            +
                #   # │ 2021-12-16 02:00:00 ┆ 2          ┆ [2021-12-16 02:00:00, 2021-12-… │
         | 
| 1335 | 
            +
                #   # │ 2021-12-16 03:00:00 ┆ 1          ┆ [2021-12-16 03:00:00]           │
         | 
| 1336 | 
            +
                #   # └─────────────────────┴────────────┴─────────────────────────────────┘
         | 
| 1337 | 
            +
                #
         | 
| 1338 | 
            +
                # @example When closed="both" the time values at the window boundaries belong to 2 groups.
         | 
| 1339 | 
            +
                #   df.group_by_dynamic("time", every: "1h", closed: "both").agg(
         | 
| 1340 | 
            +
                #     [Polars.col("time").count.alias("time_count")]
         | 
| 1341 | 
            +
                #   )
         | 
| 1342 | 
            +
                #   # =>
         | 
| 1343 | 
            +
                #   # shape: (5, 2)
         | 
| 1344 | 
            +
                #   # ┌─────────────────────┬────────────┐
         | 
| 1345 | 
            +
                #   # │ time                ┆ time_count │
         | 
| 1346 | 
            +
                #   # │ ---                 ┆ ---        │
         | 
| 1347 | 
            +
                #   # │ datetime[μs]        ┆ u32        │
         | 
| 1348 | 
            +
                #   # ╞═════════════════════╪════════════╡
         | 
| 1349 | 
            +
                #   # │ 2021-12-15 23:00:00 ┆ 1          │
         | 
| 1350 | 
            +
                #   # │ 2021-12-16 00:00:00 ┆ 3          │
         | 
| 1351 | 
            +
                #   # │ 2021-12-16 01:00:00 ┆ 3          │
         | 
| 1352 | 
            +
                #   # │ 2021-12-16 02:00:00 ┆ 3          │
         | 
| 1353 | 
            +
                #   # │ 2021-12-16 03:00:00 ┆ 1          │
         | 
| 1354 | 
            +
                #   # └─────────────────────┴────────────┘
         | 
| 1355 | 
            +
                #
         | 
| 1356 | 
            +
                # @example Dynamic group bys can also be combined with grouping on normal keys.
         | 
| 1357 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 1358 | 
            +
                #     {
         | 
| 1359 | 
            +
                #       "time" => Polars.datetime_range(
         | 
| 1360 | 
            +
                #         DateTime.new(2021, 12, 16),
         | 
| 1361 | 
            +
                #         DateTime.new(2021, 12, 16, 3),
         | 
| 1362 | 
            +
                #         "30m",
         | 
| 1363 | 
            +
                #         time_unit: "us",
         | 
| 1364 | 
            +
                #         eager: true
         | 
| 1365 | 
            +
                #       ),
         | 
| 1366 | 
            +
                #       "groups" => ["a", "a", "a", "b", "b", "a", "a"]
         | 
| 1367 | 
            +
                #     }
         | 
| 1368 | 
            +
                #   )
         | 
| 1369 | 
            +
                #   df.group_by_dynamic(
         | 
| 1370 | 
            +
                #     "time",
         | 
| 1371 | 
            +
                #     every: "1h",
         | 
| 1372 | 
            +
                #     closed: "both",
         | 
| 1373 | 
            +
                #     by: "groups",
         | 
| 1374 | 
            +
                #     include_boundaries: true
         | 
| 1375 | 
            +
                #   ).agg([Polars.col("time").count.alias("time_count")])
         | 
| 1376 | 
            +
                #   # =>
         | 
| 1377 | 
            +
                #   # shape: (7, 5)
         | 
| 1378 | 
            +
                #   # ┌────────┬─────────────────────┬─────────────────────┬─────────────────────┬────────────┐
         | 
| 1379 | 
            +
                #   # │ groups ┆ _lower_boundary     ┆ _upper_boundary     ┆ time                ┆ time_count │
         | 
| 1380 | 
            +
                #   # │ ---    ┆ ---                 ┆ ---                 ┆ ---                 ┆ ---        │
         | 
| 1381 | 
            +
                #   # │ str    ┆ datetime[μs]        ┆ datetime[μs]        ┆ datetime[μs]        ┆ u32        │
         | 
| 1382 | 
            +
                #   # ╞════════╪═════════════════════╪═════════════════════╪═════════════════════╪════════════╡
         | 
| 1383 | 
            +
                #   # │ a      ┆ 2021-12-15 23:00:00 ┆ 2021-12-16 00:00:00 ┆ 2021-12-15 23:00:00 ┆ 1          │
         | 
| 1384 | 
            +
                #   # │ a      ┆ 2021-12-16 00:00:00 ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 00:00:00 ┆ 3          │
         | 
| 1385 | 
            +
                #   # │ a      ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 1          │
         | 
| 1386 | 
            +
                #   # │ a      ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 2          │
         | 
| 1387 | 
            +
                #   # │ a      ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 04:00:00 ┆ 2021-12-16 03:00:00 ┆ 1          │
         | 
| 1388 | 
            +
                #   # │ b      ┆ 2021-12-16 01:00:00 ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 01:00:00 ┆ 2          │
         | 
| 1389 | 
            +
                #   # │ b      ┆ 2021-12-16 02:00:00 ┆ 2021-12-16 03:00:00 ┆ 2021-12-16 02:00:00 ┆ 1          │
         | 
| 1390 | 
            +
                #   # └────────┴─────────────────────┴─────────────────────┴─────────────────────┴────────────┘
         | 
| 1391 | 
            +
                #
         | 
| 1392 | 
            +
                # @example Dynamic group by on an index column.
         | 
| 1393 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 1394 | 
            +
                #     {
         | 
| 1395 | 
            +
                #       "idx" => Polars.arange(0, 6, eager: true),
         | 
| 1396 | 
            +
                #       "A" => ["A", "A", "B", "B", "B", "C"]
         | 
| 1397 | 
            +
                #     }
         | 
| 1398 | 
            +
                #   )
         | 
| 1399 | 
            +
                #   df.group_by_dynamic(
         | 
| 1400 | 
            +
                #     "idx",
         | 
| 1401 | 
            +
                #     every: "2i",
         | 
| 1402 | 
            +
                #     period: "3i",
         | 
| 1403 | 
            +
                #     include_boundaries: true,
         | 
| 1404 | 
            +
                #     closed: "right"
         | 
| 1405 | 
            +
                #   ).agg(Polars.col("A").alias("A_agg_list"))
         | 
| 1406 | 
            +
                #   # =>
         | 
| 1407 | 
            +
                #   # shape: (4, 4)
         | 
| 1408 | 
            +
                #   # ┌─────────────────┬─────────────────┬─────┬─────────────────┐
         | 
| 1409 | 
            +
                #   # │ _lower_boundary ┆ _upper_boundary ┆ idx ┆ A_agg_list      │
         | 
| 1410 | 
            +
                #   # │ ---             ┆ ---             ┆ --- ┆ ---             │
         | 
| 1411 | 
            +
                #   # │ i64             ┆ i64             ┆ i64 ┆ list[str]       │
         | 
| 1412 | 
            +
                #   # ╞═════════════════╪═════════════════╪═════╪═════════════════╡
         | 
| 1413 | 
            +
                #   # │ -2              ┆ 1               ┆ -2  ┆ ["A", "A"]      │
         | 
| 1414 | 
            +
                #   # │ 0               ┆ 3               ┆ 0   ┆ ["A", "B", "B"] │
         | 
| 1415 | 
            +
                #   # │ 2               ┆ 5               ┆ 2   ┆ ["B", "B", "C"] │
         | 
| 1416 | 
            +
                #   # │ 4               ┆ 7               ┆ 4   ┆ ["C"]           │
         | 
| 1417 | 
            +
                #   # └─────────────────┴─────────────────┴─────┴─────────────────┘
         | 
| 1418 | 
            +
                def group_by_dynamic(
         | 
| 1419 | 
            +
                  index_column,
         | 
| 1420 | 
            +
                  every:,
         | 
| 1421 | 
            +
                  period: nil,
         | 
| 1422 | 
            +
                  offset: nil,
         | 
| 1423 | 
            +
                  truncate: nil,
         | 
| 1424 | 
            +
                  include_boundaries: false,
         | 
| 1425 | 
            +
                  closed: "left",
         | 
| 1426 | 
            +
                  label: "left",
         | 
| 1427 | 
            +
                  by: nil,
         | 
| 1428 | 
            +
                  start_by: "window"
         | 
| 1429 | 
            +
                )
         | 
| 1430 | 
            +
                  if !truncate.nil?
         | 
| 1431 | 
            +
                    label = truncate ? "left" : "datapoint"
         | 
| 1432 | 
            +
                  end
         | 
| 1433 | 
            +
             | 
| 1434 | 
            +
                  index_column = Utils.parse_into_expression(index_column, str_as_lit: false)
         | 
| 1435 | 
            +
                  if offset.nil?
         | 
| 1436 | 
            +
                    offset = period.nil? ? "-#{every}" : "0ns"
         | 
| 1437 | 
            +
                  end
         | 
| 1438 | 
            +
             | 
| 1439 | 
            +
                  if period.nil?
         | 
| 1440 | 
            +
                    period = every
         | 
| 1441 | 
            +
                  end
         | 
| 1442 | 
            +
             | 
| 1443 | 
            +
                  period = Utils.parse_as_duration_string(period)
         | 
| 1444 | 
            +
                  offset = Utils.parse_as_duration_string(offset)
         | 
| 1445 | 
            +
                  every = Utils.parse_as_duration_string(every)
         | 
| 1446 | 
            +
             | 
| 1447 | 
            +
                  rbexprs_by = by.nil? ? [] : Utils.parse_into_list_of_expressions(by)
         | 
| 1448 | 
            +
                  lgb = _ldf.group_by_dynamic(
         | 
| 1449 | 
            +
                    index_column,
         | 
| 1450 | 
            +
                    every,
         | 
| 1451 | 
            +
                    period,
         | 
| 1452 | 
            +
                    offset,
         | 
| 1453 | 
            +
                    label,
         | 
| 1454 | 
            +
                    include_boundaries,
         | 
| 1455 | 
            +
                    closed,
         | 
| 1456 | 
            +
                    rbexprs_by,
         | 
| 1457 | 
            +
                    start_by
         | 
| 1458 | 
            +
                  )
         | 
| 1459 | 
            +
                  LazyGroupBy.new(lgb)
         | 
| 1460 | 
            +
                end
         | 
| 1461 | 
            +
                alias_method :groupby_dynamic, :group_by_dynamic
         | 
| 1462 | 
            +
             | 
| 1463 | 
            +
                # Perform an asof join.
         | 
| 1464 | 
            +
                #
         | 
| 1465 | 
            +
                # This is similar to a left-join except that we match on nearest key rather than
         | 
| 1466 | 
            +
                # equal keys.
         | 
| 1467 | 
            +
                #
         | 
| 1468 | 
            +
                # Both DataFrames must be sorted by the join_asof key.
         | 
| 1469 | 
            +
                #
         | 
| 1470 | 
            +
                # For each row in the left DataFrame:
         | 
| 1471 | 
            +
                #
         | 
| 1472 | 
            +
                # - A "backward" search selects the last row in the right DataFrame whose 'on' key is less than or equal to the left's key.
         | 
| 1473 | 
            +
                # - A "forward" search selects the first row in the right DataFrame whose 'on' key is greater than or equal to the left's key.
         | 
| 1474 | 
            +
                #
         | 
| 1475 | 
            +
                # The default is "backward".
         | 
| 1476 | 
            +
                #
         | 
| 1477 | 
            +
                # @param other [LazyFrame]
         | 
| 1478 | 
            +
                #   Lazy DataFrame to join with.
         | 
| 1479 | 
            +
                # @param left_on [String]
         | 
| 1480 | 
            +
                #   Join column of the left DataFrame.
         | 
| 1481 | 
            +
                # @param right_on [String]
         | 
| 1482 | 
            +
                #   Join column of the right DataFrame.
         | 
| 1483 | 
            +
                # @param on [String]
         | 
| 1484 | 
            +
                #   Join column of both DataFrames. If set, `left_on` and `right_on` should be
         | 
| 1485 | 
            +
                #   None.
         | 
| 1486 | 
            +
                # @param by [Object]
         | 
| 1487 | 
            +
                #   Join on these columns before doing asof join.
         | 
| 1488 | 
            +
                # @param by_left [Object]
         | 
| 1489 | 
            +
                #   Join on these columns before doing asof join.
         | 
| 1490 | 
            +
                # @param by_right [Object]
         | 
| 1491 | 
            +
                #   Join on these columns before doing asof join.
         | 
| 1492 | 
            +
                # @param strategy ["backward", "forward"]
         | 
| 1493 | 
            +
                #   Join strategy.
         | 
| 1494 | 
            +
                # @param suffix [String]
         | 
| 1495 | 
            +
                #   Suffix to append to columns with a duplicate name.
         | 
| 1496 | 
            +
                # @param tolerance [Object]
         | 
| 1497 | 
            +
                #   Numeric tolerance. By setting this the join will only be done if the near
         | 
| 1498 | 
            +
                #   keys are within this distance. If an asof join is done on columns of dtype
         | 
| 1499 | 
            +
                #   "Date", "Datetime", "Duration" or "Time" you use the following string
         | 
| 1500 | 
            +
                #   language:
         | 
| 1501 | 
            +
                #
         | 
| 1502 | 
            +
                #   - 1ns   (1 nanosecond)
         | 
| 1503 | 
            +
                #   - 1us   (1 microsecond)
         | 
| 1504 | 
            +
                #   - 1ms   (1 millisecond)
         | 
| 1505 | 
            +
                #   - 1s    (1 second)
         | 
| 1506 | 
            +
                #   - 1m    (1 minute)
         | 
| 1507 | 
            +
                #   - 1h    (1 hour)
         | 
| 1508 | 
            +
                #   - 1d    (1 day)
         | 
| 1509 | 
            +
                #   - 1w    (1 week)
         | 
| 1510 | 
            +
                #   - 1mo   (1 calendar month)
         | 
| 1511 | 
            +
                #   - 1y    (1 calendar year)
         | 
| 1512 | 
            +
                #   - 1i    (1 index count)
         | 
| 1513 | 
            +
                #
         | 
| 1514 | 
            +
                #   Or combine them:
         | 
| 1515 | 
            +
                #   "3d12h4m25s" # 3 days, 12 hours, 4 minutes, and 25 seconds
         | 
| 1516 | 
            +
                #
         | 
| 1517 | 
            +
                # @param allow_parallel [Boolean]
         | 
| 1518 | 
            +
                #   Allow the physical plan to optionally evaluate the computation of both
         | 
| 1519 | 
            +
                #   DataFrames up to the join in parallel.
         | 
| 1520 | 
            +
                # @param force_parallel [Boolean]
         | 
| 1521 | 
            +
                #   Force the physical plan to evaluate the computation of both DataFrames up to
         | 
| 1522 | 
            +
                #   the join in parallel.
         | 
| 1523 | 
            +
                #
         | 
| 1524 | 
            +
                # @return [LazyFrame]
         | 
| 1525 | 
            +
                def join_asof(
         | 
| 1526 | 
            +
                  other,
         | 
| 1527 | 
            +
                  left_on: nil,
         | 
| 1528 | 
            +
                  right_on: nil,
         | 
| 1529 | 
            +
                  on: nil,
         | 
| 1530 | 
            +
                  by_left: nil,
         | 
| 1531 | 
            +
                  by_right: nil,
         | 
| 1532 | 
            +
                  by: nil,
         | 
| 1533 | 
            +
                  strategy: "backward",
         | 
| 1534 | 
            +
                  suffix: "_right",
         | 
| 1535 | 
            +
                  tolerance: nil,
         | 
| 1536 | 
            +
                  allow_parallel: true,
         | 
| 1537 | 
            +
                  force_parallel: false
         | 
| 1538 | 
            +
                )
         | 
| 1539 | 
            +
                  if !other.is_a?(LazyFrame)
         | 
| 1540 | 
            +
                    raise ArgumentError, "Expected a `LazyFrame` as join table, got #{other.class.name}"
         | 
| 1541 | 
            +
                  end
         | 
| 1542 | 
            +
             | 
| 1543 | 
            +
                  if on.is_a?(::String)
         | 
| 1544 | 
            +
                    left_on = on
         | 
| 1545 | 
            +
                    right_on = on
         | 
| 1546 | 
            +
                  end
         | 
| 1547 | 
            +
             | 
| 1548 | 
            +
                  if left_on.nil? || right_on.nil?
         | 
| 1549 | 
            +
                    raise ArgumentError, "You should pass the column to join on as an argument."
         | 
| 1550 | 
            +
                  end
         | 
| 1551 | 
            +
             | 
| 1552 | 
            +
                  if by_left.is_a?(::String) || by_left.is_a?(Expr)
         | 
| 1553 | 
            +
                    by_left_ = [by_left]
         | 
| 1554 | 
            +
                  else
         | 
| 1555 | 
            +
                    by_left_ = by_left
         | 
| 1556 | 
            +
                  end
         | 
| 1557 | 
            +
             | 
| 1558 | 
            +
                  if by_right.is_a?(::String) || by_right.is_a?(Expr)
         | 
| 1559 | 
            +
                    by_right_ = [by_right]
         | 
| 1560 | 
            +
                  else
         | 
| 1561 | 
            +
                    by_right_ = by_right
         | 
| 1562 | 
            +
                  end
         | 
| 1563 | 
            +
             | 
| 1564 | 
            +
                  if by.is_a?(::String)
         | 
| 1565 | 
            +
                    by_left_ = [by]
         | 
| 1566 | 
            +
                    by_right_ = [by]
         | 
| 1567 | 
            +
                  elsif by.is_a?(::Array)
         | 
| 1568 | 
            +
                    by_left_ = by
         | 
| 1569 | 
            +
                    by_right_ = by
         | 
| 1570 | 
            +
                  end
         | 
| 1571 | 
            +
             | 
| 1572 | 
            +
                  tolerance_str = nil
         | 
| 1573 | 
            +
                  tolerance_num = nil
         | 
| 1574 | 
            +
                  if tolerance.is_a?(::String)
         | 
| 1575 | 
            +
                    tolerance_str = tolerance
         | 
| 1576 | 
            +
                  else
         | 
| 1577 | 
            +
                    tolerance_num = tolerance
         | 
| 1578 | 
            +
                  end
         | 
| 1579 | 
            +
             | 
| 1580 | 
            +
                  _from_rbldf(
         | 
| 1581 | 
            +
                    _ldf.join_asof(
         | 
| 1582 | 
            +
                      other._ldf,
         | 
| 1583 | 
            +
                      Polars.col(left_on)._rbexpr,
         | 
| 1584 | 
            +
                      Polars.col(right_on)._rbexpr,
         | 
| 1585 | 
            +
                      by_left_,
         | 
| 1586 | 
            +
                      by_right_,
         | 
| 1587 | 
            +
                      allow_parallel,
         | 
| 1588 | 
            +
                      force_parallel,
         | 
| 1589 | 
            +
                      suffix,
         | 
| 1590 | 
            +
                      strategy,
         | 
| 1591 | 
            +
                      tolerance_num,
         | 
| 1592 | 
            +
                      tolerance_str
         | 
| 1593 | 
            +
                    )
         | 
| 1594 | 
            +
                  )
         | 
| 1595 | 
            +
                end
         | 
| 1596 | 
            +
             | 
| 1597 | 
            +
                # Add a join operation to the Logical Plan.
         | 
| 1598 | 
            +
                #
         | 
| 1599 | 
            +
                # @param other [LazyFrame]
         | 
| 1600 | 
            +
                #   Lazy DataFrame to join with.
         | 
| 1601 | 
            +
                # @param left_on [Object]
         | 
| 1602 | 
            +
                #   Join column of the left DataFrame.
         | 
| 1603 | 
            +
                # @param right_on [Object]
         | 
| 1604 | 
            +
                #   Join column of the right DataFrame.
         | 
| 1605 | 
            +
                # @param on Object
         | 
| 1606 | 
            +
                #   Join column of both DataFrames. If set, `left_on` and `right_on` should be
         | 
| 1607 | 
            +
                #   None.
         | 
| 1608 | 
            +
                # @param how ["inner", "left", "full", "semi", "anti", "cross"]
         | 
| 1609 | 
            +
                #   Join strategy.
         | 
| 1610 | 
            +
                # @param suffix [String]
         | 
| 1611 | 
            +
                #   Suffix to append to columns with a duplicate name.
         | 
| 1612 | 
            +
                # @param join_nulls [Boolean]
         | 
| 1613 | 
            +
                #   Join on null values. By default null values will never produce matches.
         | 
| 1614 | 
            +
                # @param allow_parallel [Boolean]
         | 
| 1615 | 
            +
                #   Allow the physical plan to optionally evaluate the computation of both
         | 
| 1616 | 
            +
                #   DataFrames up to the join in parallel.
         | 
| 1617 | 
            +
                # @param force_parallel [Boolean]
         | 
| 1618 | 
            +
                #   Force the physical plan to evaluate the computation of both DataFrames up to
         | 
| 1619 | 
            +
                #   the join in parallel.
         | 
| 1620 | 
            +
                #
         | 
| 1621 | 
            +
                # @return [LazyFrame]
         | 
| 1622 | 
            +
                #
         | 
| 1623 | 
            +
                # @example
         | 
| 1624 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 1625 | 
            +
                #     {
         | 
| 1626 | 
            +
                #       "foo" => [1, 2, 3],
         | 
| 1627 | 
            +
                #       "bar" => [6.0, 7.0, 8.0],
         | 
| 1628 | 
            +
                #       "ham" => ["a", "b", "c"]
         | 
| 1629 | 
            +
                #     }
         | 
| 1630 | 
            +
                #   ).lazy
         | 
| 1631 | 
            +
                #   other_df = Polars::DataFrame.new(
         | 
| 1632 | 
            +
                #     {
         | 
| 1633 | 
            +
                #       "apple" => ["x", "y", "z"],
         | 
| 1634 | 
            +
                #       "ham" => ["a", "b", "d"]
         | 
| 1635 | 
            +
                #     }
         | 
| 1636 | 
            +
                #   ).lazy
         | 
| 1637 | 
            +
                #   df.join(other_df, on: "ham").collect
         | 
| 1638 | 
            +
                #   # =>
         | 
| 1639 | 
            +
                #   # shape: (2, 4)
         | 
| 1640 | 
            +
                #   # ┌─────┬─────┬─────┬───────┐
         | 
| 1641 | 
            +
                #   # │ foo ┆ bar ┆ ham ┆ apple │
         | 
| 1642 | 
            +
                #   # │ --- ┆ --- ┆ --- ┆ ---   │
         | 
| 1643 | 
            +
                #   # │ i64 ┆ f64 ┆ str ┆ str   │
         | 
| 1644 | 
            +
                #   # ╞═════╪═════╪═════╪═══════╡
         | 
| 1645 | 
            +
                #   # │ 1   ┆ 6.0 ┆ a   ┆ x     │
         | 
| 1646 | 
            +
                #   # │ 2   ┆ 7.0 ┆ b   ┆ y     │
         | 
| 1647 | 
            +
                #   # └─────┴─────┴─────┴───────┘
         | 
| 1648 | 
            +
                #
         | 
| 1649 | 
            +
                # @example
         | 
| 1650 | 
            +
                #   df.join(other_df, on: "ham", how: "full").collect
         | 
| 1651 | 
            +
                #   # =>
         | 
| 1652 | 
            +
                #   # shape: (4, 5)
         | 
| 1653 | 
            +
                #   # ┌──────┬──────┬──────┬───────┬───────────┐
         | 
| 1654 | 
            +
                #   # │ foo  ┆ bar  ┆ ham  ┆ apple ┆ ham_right │
         | 
| 1655 | 
            +
                #   # │ ---  ┆ ---  ┆ ---  ┆ ---   ┆ ---       │
         | 
| 1656 | 
            +
                #   # │ i64  ┆ f64  ┆ str  ┆ str   ┆ str       │
         | 
| 1657 | 
            +
                #   # ╞══════╪══════╪══════╪═══════╪═══════════╡
         | 
| 1658 | 
            +
                #   # │ 1    ┆ 6.0  ┆ a    ┆ x     ┆ a         │
         | 
| 1659 | 
            +
                #   # │ 2    ┆ 7.0  ┆ b    ┆ y     ┆ b         │
         | 
| 1660 | 
            +
                #   # │ null ┆ null ┆ null ┆ z     ┆ d         │
         | 
| 1661 | 
            +
                #   # │ 3    ┆ 8.0  ┆ c    ┆ null  ┆ null      │
         | 
| 1662 | 
            +
                #   # └──────┴──────┴──────┴───────┴───────────┘
         | 
| 1663 | 
            +
                #
         | 
| 1664 | 
            +
                # @example
         | 
| 1665 | 
            +
                #   df.join(other_df, on: "ham", how: "left").collect
         | 
| 1666 | 
            +
                #   # =>
         | 
| 1667 | 
            +
                #   # shape: (3, 4)
         | 
| 1668 | 
            +
                #   # ┌─────┬─────┬─────┬───────┐
         | 
| 1669 | 
            +
                #   # │ foo ┆ bar ┆ ham ┆ apple │
         | 
| 1670 | 
            +
                #   # │ --- ┆ --- ┆ --- ┆ ---   │
         | 
| 1671 | 
            +
                #   # │ i64 ┆ f64 ┆ str ┆ str   │
         | 
| 1672 | 
            +
                #   # ╞═════╪═════╪═════╪═══════╡
         | 
| 1673 | 
            +
                #   # │ 1   ┆ 6.0 ┆ a   ┆ x     │
         | 
| 1674 | 
            +
                #   # │ 2   ┆ 7.0 ┆ b   ┆ y     │
         | 
| 1675 | 
            +
                #   # │ 3   ┆ 8.0 ┆ c   ┆ null  │
         | 
| 1676 | 
            +
                #   # └─────┴─────┴─────┴───────┘
         | 
| 1677 | 
            +
                #
         | 
| 1678 | 
            +
                # @example
         | 
| 1679 | 
            +
                #   df.join(other_df, on: "ham", how: "semi").collect
         | 
| 1680 | 
            +
                #   # =>
         | 
| 1681 | 
            +
                #   # shape: (2, 3)
         | 
| 1682 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 1683 | 
            +
                #   # │ foo ┆ bar ┆ ham │
         | 
| 1684 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 1685 | 
            +
                #   # │ i64 ┆ f64 ┆ str │
         | 
| 1686 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 1687 | 
            +
                #   # │ 1   ┆ 6.0 ┆ a   │
         | 
| 1688 | 
            +
                #   # │ 2   ┆ 7.0 ┆ b   │
         | 
| 1689 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 1690 | 
            +
                #
         | 
| 1691 | 
            +
                # @example
         | 
| 1692 | 
            +
                #   df.join(other_df, on: "ham", how: "anti").collect
         | 
| 1693 | 
            +
                #   # =>
         | 
| 1694 | 
            +
                #   # shape: (1, 3)
         | 
| 1695 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 1696 | 
            +
                #   # │ foo ┆ bar ┆ ham │
         | 
| 1697 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 1698 | 
            +
                #   # │ i64 ┆ f64 ┆ str │
         | 
| 1699 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 1700 | 
            +
                #   # │ 3   ┆ 8.0 ┆ c   │
         | 
| 1701 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 1702 | 
            +
                def join(
         | 
| 1703 | 
            +
                  other,
         | 
| 1704 | 
            +
                  left_on: nil,
         | 
| 1705 | 
            +
                  right_on: nil,
         | 
| 1706 | 
            +
                  on: nil,
         | 
| 1707 | 
            +
                  how: "inner",
         | 
| 1708 | 
            +
                  suffix: "_right",
         | 
| 1709 | 
            +
                  join_nulls: false,
         | 
| 1710 | 
            +
                  allow_parallel: true,
         | 
| 1711 | 
            +
                  force_parallel: false
         | 
| 1712 | 
            +
                )
         | 
| 1713 | 
            +
                  if !other.is_a?(LazyFrame)
         | 
| 1714 | 
            +
                    raise ArgumentError, "Expected a `LazyFrame` as join table, got #{other.class.name}"
         | 
| 1715 | 
            +
                  end
         | 
| 1716 | 
            +
             | 
| 1717 | 
            +
                  if how == "outer"
         | 
| 1718 | 
            +
                    how = "full"
         | 
| 1719 | 
            +
                  elsif how == "cross"
         | 
| 1720 | 
            +
                    return _from_rbldf(
         | 
| 1721 | 
            +
                      _ldf.join(
         | 
| 1722 | 
            +
                        other._ldf, [], [], allow_parallel, join_nulls, force_parallel, how, suffix
         | 
| 1723 | 
            +
                      )
         | 
| 1724 | 
            +
                    )
         | 
| 1725 | 
            +
                  end
         | 
| 1726 | 
            +
             | 
| 1727 | 
            +
                  if !on.nil?
         | 
| 1728 | 
            +
                    rbexprs = Utils.parse_into_list_of_expressions(on)
         | 
| 1729 | 
            +
                    rbexprs_left = rbexprs
         | 
| 1730 | 
            +
                    rbexprs_right = rbexprs
         | 
| 1731 | 
            +
                  elsif !left_on.nil? && !right_on.nil?
         | 
| 1732 | 
            +
                    rbexprs_left = Utils.parse_into_list_of_expressions(left_on)
         | 
| 1733 | 
            +
                    rbexprs_right = Utils.parse_into_list_of_expressions(right_on)
         | 
| 1734 | 
            +
                  else
         | 
| 1735 | 
            +
                    raise ArgumentError, "must specify `on` OR `left_on` and `right_on`"
         | 
| 1736 | 
            +
                  end
         | 
| 1737 | 
            +
             | 
| 1738 | 
            +
                  _from_rbldf(
         | 
| 1739 | 
            +
                    self._ldf.join(
         | 
| 1740 | 
            +
                      other._ldf,
         | 
| 1741 | 
            +
                      rbexprs_left,
         | 
| 1742 | 
            +
                      rbexprs_right,
         | 
| 1743 | 
            +
                      allow_parallel,
         | 
| 1744 | 
            +
                      force_parallel,
         | 
| 1745 | 
            +
                      join_nulls,
         | 
| 1746 | 
            +
                      how,
         | 
| 1747 | 
            +
                      suffix,
         | 
| 1748 | 
            +
                    )
         | 
| 1749 | 
            +
                  )
         | 
| 1750 | 
            +
                end
         | 
| 1751 | 
            +
             | 
| 1752 | 
            +
                # Add or overwrite multiple columns in a DataFrame.
         | 
| 1753 | 
            +
                #
         | 
| 1754 | 
            +
                # @param exprs [Object]
         | 
| 1755 | 
            +
                #   List of Expressions that evaluate to columns.
         | 
| 1756 | 
            +
                #
         | 
| 1757 | 
            +
                # @return [LazyFrame]
         | 
| 1758 | 
            +
                #
         | 
| 1759 | 
            +
                # @example
         | 
| 1760 | 
            +
                #   ldf = Polars::DataFrame.new(
         | 
| 1761 | 
            +
                #     {
         | 
| 1762 | 
            +
                #       "a" => [1, 2, 3, 4],
         | 
| 1763 | 
            +
                #       "b" => [0.5, 4, 10, 13],
         | 
| 1764 | 
            +
                #       "c" => [true, true, false, true]
         | 
| 1765 | 
            +
                #     }
         | 
| 1766 | 
            +
                #   ).lazy
         | 
| 1767 | 
            +
                #   ldf.with_columns(
         | 
| 1768 | 
            +
                #     [
         | 
| 1769 | 
            +
                #       (Polars.col("a") ** 2).alias("a^2"),
         | 
| 1770 | 
            +
                #       (Polars.col("b") / 2).alias("b/2"),
         | 
| 1771 | 
            +
                #       (Polars.col("c").is_not).alias("not c")
         | 
| 1772 | 
            +
                #     ]
         | 
| 1773 | 
            +
                #   ).collect
         | 
| 1774 | 
            +
                #   # =>
         | 
| 1775 | 
            +
                #   # shape: (4, 6)
         | 
| 1776 | 
            +
                #   # ┌─────┬──────┬───────┬─────┬──────┬───────┐
         | 
| 1777 | 
            +
                #   # │ a   ┆ b    ┆ c     ┆ a^2 ┆ b/2  ┆ not c │
         | 
| 1778 | 
            +
                #   # │ --- ┆ ---  ┆ ---   ┆ --- ┆ ---  ┆ ---   │
         | 
| 1779 | 
            +
                #   # │ i64 ┆ f64  ┆ bool  ┆ i64 ┆ f64  ┆ bool  │
         | 
| 1780 | 
            +
                #   # ╞═════╪══════╪═══════╪═════╪══════╪═══════╡
         | 
| 1781 | 
            +
                #   # │ 1   ┆ 0.5  ┆ true  ┆ 1   ┆ 0.25 ┆ false │
         | 
| 1782 | 
            +
                #   # │ 2   ┆ 4.0  ┆ true  ┆ 4   ┆ 2.0  ┆ false │
         | 
| 1783 | 
            +
                #   # │ 3   ┆ 10.0 ┆ false ┆ 9   ┆ 5.0  ┆ true  │
         | 
| 1784 | 
            +
                #   # │ 4   ┆ 13.0 ┆ true  ┆ 16  ┆ 6.5  ┆ false │
         | 
| 1785 | 
            +
                #   # └─────┴──────┴───────┴─────┴──────┴───────┘
         | 
| 1786 | 
            +
                def with_columns(*exprs, **named_exprs)
         | 
| 1787 | 
            +
                  structify = ENV.fetch("POLARS_AUTO_STRUCTIFY", "0") != "0"
         | 
| 1788 | 
            +
             | 
| 1789 | 
            +
                  rbexprs = Utils.parse_into_list_of_expressions(*exprs, **named_exprs, __structify: structify)
         | 
| 1790 | 
            +
             | 
| 1791 | 
            +
                  _from_rbldf(_ldf.with_columns(rbexprs))
         | 
| 1792 | 
            +
                end
         | 
| 1793 | 
            +
             | 
| 1794 | 
            +
                # Add an external context to the computation graph.
         | 
| 1795 | 
            +
                #
         | 
| 1796 | 
            +
                # This allows expressions to also access columns from DataFrames
         | 
| 1797 | 
            +
                # that are not part of this one.
         | 
| 1798 | 
            +
                #
         | 
| 1799 | 
            +
                # @param other [Object]
         | 
| 1800 | 
            +
                #   Lazy DataFrame to join with.
         | 
| 1801 | 
            +
                #
         | 
| 1802 | 
            +
                # @return [LazyFrame]
         | 
| 1803 | 
            +
                #
         | 
| 1804 | 
            +
                # @example
         | 
| 1805 | 
            +
                #   df_a = Polars::DataFrame.new({"a" => [1, 2, 3], "b" => ["a", "c", nil]}).lazy
         | 
| 1806 | 
            +
                #   df_other = Polars::DataFrame.new({"c" => ["foo", "ham"]})
         | 
| 1807 | 
            +
                #   (
         | 
| 1808 | 
            +
                #     df_a.with_context(df_other.lazy).select(
         | 
| 1809 | 
            +
                #       [Polars.col("b") + Polars.col("c").first]
         | 
| 1810 | 
            +
                #     )
         | 
| 1811 | 
            +
                #   ).collect
         | 
| 1812 | 
            +
                #   # =>
         | 
| 1813 | 
            +
                #   # shape: (3, 1)
         | 
| 1814 | 
            +
                #   # ┌──────┐
         | 
| 1815 | 
            +
                #   # │ b    │
         | 
| 1816 | 
            +
                #   # │ ---  │
         | 
| 1817 | 
            +
                #   # │ str  │
         | 
| 1818 | 
            +
                #   # ╞══════╡
         | 
| 1819 | 
            +
                #   # │ afoo │
         | 
| 1820 | 
            +
                #   # │ cfoo │
         | 
| 1821 | 
            +
                #   # │ null │
         | 
| 1822 | 
            +
                #   # └──────┘
         | 
| 1823 | 
            +
                def with_context(other)
         | 
| 1824 | 
            +
                  if !other.is_a?(::Array)
         | 
| 1825 | 
            +
                    other = [other]
         | 
| 1826 | 
            +
                  end
         | 
| 1827 | 
            +
             | 
| 1828 | 
            +
                  _from_rbldf(_ldf.with_context(other.map(&:_ldf)))
         | 
| 1829 | 
            +
                end
         | 
| 1830 | 
            +
             | 
| 1831 | 
            +
                # Add or overwrite column in a DataFrame.
         | 
| 1832 | 
            +
                #
         | 
| 1833 | 
            +
                # @param column [Object]
         | 
| 1834 | 
            +
                #   Expression that evaluates to column or a Series to use.
         | 
| 1835 | 
            +
                #
         | 
| 1836 | 
            +
                # @return [LazyFrame]
         | 
| 1837 | 
            +
                #
         | 
| 1838 | 
            +
                # @example
         | 
| 1839 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 1840 | 
            +
                #     {
         | 
| 1841 | 
            +
                #       "a" => [1, 3, 5],
         | 
| 1842 | 
            +
                #       "b" => [2, 4, 6]
         | 
| 1843 | 
            +
                #     }
         | 
| 1844 | 
            +
                #   ).lazy
         | 
| 1845 | 
            +
                #   df.with_column((Polars.col("b") ** 2).alias("b_squared")).collect
         | 
| 1846 | 
            +
                #   # =>
         | 
| 1847 | 
            +
                #   # shape: (3, 3)
         | 
| 1848 | 
            +
                #   # ┌─────┬─────┬───────────┐
         | 
| 1849 | 
            +
                #   # │ a   ┆ b   ┆ b_squared │
         | 
| 1850 | 
            +
                #   # │ --- ┆ --- ┆ ---       │
         | 
| 1851 | 
            +
                #   # │ i64 ┆ i64 ┆ i64       │
         | 
| 1852 | 
            +
                #   # ╞═════╪═════╪═══════════╡
         | 
| 1853 | 
            +
                #   # │ 1   ┆ 2   ┆ 4         │
         | 
| 1854 | 
            +
                #   # │ 3   ┆ 4   ┆ 16        │
         | 
| 1855 | 
            +
                #   # │ 5   ┆ 6   ┆ 36        │
         | 
| 1856 | 
            +
                #   # └─────┴─────┴───────────┘
         | 
| 1857 | 
            +
                #
         | 
| 1858 | 
            +
                # @example
         | 
| 1859 | 
            +
                #   df.with_column(Polars.col("a") ** 2).collect
         | 
| 1860 | 
            +
                #   # =>
         | 
| 1861 | 
            +
                #   # shape: (3, 2)
         | 
| 1862 | 
            +
                #   # ┌─────┬─────┐
         | 
| 1863 | 
            +
                #   # │ a   ┆ b   │
         | 
| 1864 | 
            +
                #   # │ --- ┆ --- │
         | 
| 1865 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 1866 | 
            +
                #   # ╞═════╪═════╡
         | 
| 1867 | 
            +
                #   # │ 1   ┆ 2   │
         | 
| 1868 | 
            +
                #   # │ 9   ┆ 4   │
         | 
| 1869 | 
            +
                #   # │ 25  ┆ 6   │
         | 
| 1870 | 
            +
                #   # └─────┴─────┘
         | 
| 1871 | 
            +
                def with_column(column)
         | 
| 1872 | 
            +
                  with_columns([column])
         | 
| 1873 | 
            +
                end
         | 
| 1874 | 
            +
             | 
| 1875 | 
            +
                # Remove one or multiple columns from a DataFrame.
         | 
| 1876 | 
            +
                #
         | 
| 1877 | 
            +
                # @param columns [Object]
         | 
| 1878 | 
            +
                #   - Name of the column that should be removed.
         | 
| 1879 | 
            +
                #   - List of column names.
         | 
| 1880 | 
            +
                #
         | 
| 1881 | 
            +
                # @return [LazyFrame]
         | 
| 1882 | 
            +
                def drop(*columns)
         | 
| 1883 | 
            +
                  drop_cols = Utils._expand_selectors(self, *columns)
         | 
| 1884 | 
            +
                  _from_rbldf(_ldf.drop(drop_cols))
         | 
| 1885 | 
            +
                end
         | 
| 1886 | 
            +
             | 
| 1887 | 
            +
                # Rename column names.
         | 
| 1888 | 
            +
                #
         | 
| 1889 | 
            +
                # @param mapping [Hash]
         | 
| 1890 | 
            +
                #   Key value pairs that map from old name to new name.
         | 
| 1891 | 
            +
                #
         | 
| 1892 | 
            +
                # @return [LazyFrame]
         | 
| 1893 | 
            +
                def rename(mapping)
         | 
| 1894 | 
            +
                  existing = mapping.keys
         | 
| 1895 | 
            +
                  _new = mapping.values
         | 
| 1896 | 
            +
                  _from_rbldf(_ldf.rename(existing, _new))
         | 
| 1897 | 
            +
                end
         | 
| 1898 | 
            +
             | 
| 1899 | 
            +
                # Reverse the DataFrame.
         | 
| 1900 | 
            +
                #
         | 
| 1901 | 
            +
                # @return [LazyFrame]
         | 
| 1902 | 
            +
                def reverse
         | 
| 1903 | 
            +
                  _from_rbldf(_ldf.reverse)
         | 
| 1904 | 
            +
                end
         | 
| 1905 | 
            +
             | 
| 1906 | 
            +
                # Shift the values by a given period.
         | 
| 1907 | 
            +
                #
         | 
| 1908 | 
            +
                # @param n [Integer]
         | 
| 1909 | 
            +
                #   Number of places to shift (may be negative).
         | 
| 1910 | 
            +
                # @param fill_value [Object]
         | 
| 1911 | 
            +
                #   Fill the resulting null values with this value.
         | 
| 1912 | 
            +
                #
         | 
| 1913 | 
            +
                # @return [LazyFrame]
         | 
| 1914 | 
            +
                #
         | 
| 1915 | 
            +
                # @example
         | 
| 1916 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 1917 | 
            +
                #     {
         | 
| 1918 | 
            +
                #       "a" => [1, 3, 5],
         | 
| 1919 | 
            +
                #       "b" => [2, 4, 6]
         | 
| 1920 | 
            +
                #     }
         | 
| 1921 | 
            +
                #   ).lazy
         | 
| 1922 | 
            +
                #   df.shift(1).collect
         | 
| 1923 | 
            +
                #   # =>
         | 
| 1924 | 
            +
                #   # shape: (3, 2)
         | 
| 1925 | 
            +
                #   # ┌──────┬──────┐
         | 
| 1926 | 
            +
                #   # │ a    ┆ b    │
         | 
| 1927 | 
            +
                #   # │ ---  ┆ ---  │
         | 
| 1928 | 
            +
                #   # │ i64  ┆ i64  │
         | 
| 1929 | 
            +
                #   # ╞══════╪══════╡
         | 
| 1930 | 
            +
                #   # │ null ┆ null │
         | 
| 1931 | 
            +
                #   # │ 1    ┆ 2    │
         | 
| 1932 | 
            +
                #   # │ 3    ┆ 4    │
         | 
| 1933 | 
            +
                #   # └──────┴──────┘
         | 
| 1934 | 
            +
                #
         | 
| 1935 | 
            +
                # @example
         | 
| 1936 | 
            +
                #   df.shift(-1).collect
         | 
| 1937 | 
            +
                #   # =>
         | 
| 1938 | 
            +
                #   # shape: (3, 2)
         | 
| 1939 | 
            +
                #   # ┌──────┬──────┐
         | 
| 1940 | 
            +
                #   # │ a    ┆ b    │
         | 
| 1941 | 
            +
                #   # │ ---  ┆ ---  │
         | 
| 1942 | 
            +
                #   # │ i64  ┆ i64  │
         | 
| 1943 | 
            +
                #   # ╞══════╪══════╡
         | 
| 1944 | 
            +
                #   # │ 3    ┆ 4    │
         | 
| 1945 | 
            +
                #   # │ 5    ┆ 6    │
         | 
| 1946 | 
            +
                #   # │ null ┆ null │
         | 
| 1947 | 
            +
                #   # └──────┴──────┘
         | 
| 1948 | 
            +
                def shift(n, fill_value: nil)
         | 
| 1949 | 
            +
                  if !fill_value.nil?
         | 
| 1950 | 
            +
                    fill_value = Utils.parse_into_expression(fill_value, str_as_lit: true)
         | 
| 1951 | 
            +
                  end
         | 
| 1952 | 
            +
                  n = Utils.parse_into_expression(n)
         | 
| 1953 | 
            +
                  _from_rbldf(_ldf.shift(n, fill_value))
         | 
| 1954 | 
            +
                end
         | 
| 1955 | 
            +
             | 
| 1956 | 
            +
                # Shift the values by a given period and fill the resulting null values.
         | 
| 1957 | 
            +
                #
         | 
| 1958 | 
            +
                # @param periods [Integer]
         | 
| 1959 | 
            +
                #   Number of places to shift (may be negative).
         | 
| 1960 | 
            +
                # @param fill_value [Object]
         | 
| 1961 | 
            +
                #   Fill `nil` values with the result of this expression.
         | 
| 1962 | 
            +
                #
         | 
| 1963 | 
            +
                # @return [LazyFrame]
         | 
| 1964 | 
            +
                #
         | 
| 1965 | 
            +
                # @example
         | 
| 1966 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 1967 | 
            +
                #     {
         | 
| 1968 | 
            +
                #       "a" => [1, 3, 5],
         | 
| 1969 | 
            +
                #       "b" => [2, 4, 6]
         | 
| 1970 | 
            +
                #     }
         | 
| 1971 | 
            +
                #   ).lazy
         | 
| 1972 | 
            +
                #   df.shift_and_fill(1, 0).collect
         | 
| 1973 | 
            +
                #   # =>
         | 
| 1974 | 
            +
                #   # shape: (3, 2)
         | 
| 1975 | 
            +
                #   # ┌─────┬─────┐
         | 
| 1976 | 
            +
                #   # │ a   ┆ b   │
         | 
| 1977 | 
            +
                #   # │ --- ┆ --- │
         | 
| 1978 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 1979 | 
            +
                #   # ╞═════╪═════╡
         | 
| 1980 | 
            +
                #   # │ 0   ┆ 0   │
         | 
| 1981 | 
            +
                #   # │ 1   ┆ 2   │
         | 
| 1982 | 
            +
                #   # │ 3   ┆ 4   │
         | 
| 1983 | 
            +
                #   # └─────┴─────┘
         | 
| 1984 | 
            +
                #
         | 
| 1985 | 
            +
                # @example
         | 
| 1986 | 
            +
                #   df.shift_and_fill(-1, 0).collect
         | 
| 1987 | 
            +
                #   # =>
         | 
| 1988 | 
            +
                #   # shape: (3, 2)
         | 
| 1989 | 
            +
                #   # ┌─────┬─────┐
         | 
| 1990 | 
            +
                #   # │ a   ┆ b   │
         | 
| 1991 | 
            +
                #   # │ --- ┆ --- │
         | 
| 1992 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 1993 | 
            +
                #   # ╞═════╪═════╡
         | 
| 1994 | 
            +
                #   # │ 3   ┆ 4   │
         | 
| 1995 | 
            +
                #   # │ 5   ┆ 6   │
         | 
| 1996 | 
            +
                #   # │ 0   ┆ 0   │
         | 
| 1997 | 
            +
                #   # └─────┴─────┘
         | 
| 1998 | 
            +
                def shift_and_fill(periods, fill_value)
         | 
| 1999 | 
            +
                  shift(periods, fill_value: fill_value)
         | 
| 2000 | 
            +
                end
         | 
| 2001 | 
            +
             | 
| 2002 | 
            +
                # Get a slice of this DataFrame.
         | 
| 2003 | 
            +
                #
         | 
| 2004 | 
            +
                # @param offset [Integer]
         | 
| 2005 | 
            +
                #   Start index. Negative indexing is supported.
         | 
| 2006 | 
            +
                # @param length [Integer]
         | 
| 2007 | 
            +
                #   Length of the slice. If set to `nil`, all rows starting at the offset
         | 
| 2008 | 
            +
                #   will be selected.
         | 
| 2009 | 
            +
                #
         | 
| 2010 | 
            +
                # @return [LazyFrame]
         | 
| 2011 | 
            +
                #
         | 
| 2012 | 
            +
                # @example
         | 
| 2013 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 2014 | 
            +
                #     {
         | 
| 2015 | 
            +
                #       "a" => ["x", "y", "z"],
         | 
| 2016 | 
            +
                #       "b" => [1, 3, 5],
         | 
| 2017 | 
            +
                #       "c" => [2, 4, 6]
         | 
| 2018 | 
            +
                #     }
         | 
| 2019 | 
            +
                #   ).lazy
         | 
| 2020 | 
            +
                #   df.slice(1, 2).collect
         | 
| 2021 | 
            +
                #   # =>
         | 
| 2022 | 
            +
                #   # shape: (2, 3)
         | 
| 2023 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 2024 | 
            +
                #   # │ a   ┆ b   ┆ c   │
         | 
| 2025 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 2026 | 
            +
                #   # │ str ┆ i64 ┆ i64 │
         | 
| 2027 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 2028 | 
            +
                #   # │ y   ┆ 3   ┆ 4   │
         | 
| 2029 | 
            +
                #   # │ z   ┆ 5   ┆ 6   │
         | 
| 2030 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 2031 | 
            +
                def slice(offset, length = nil)
         | 
| 2032 | 
            +
                  if length && length < 0
         | 
| 2033 | 
            +
                    raise ArgumentError, "Negative slice lengths (#{length}) are invalid for LazyFrame"
         | 
| 2034 | 
            +
                  end
         | 
| 2035 | 
            +
                  _from_rbldf(_ldf.slice(offset, length))
         | 
| 2036 | 
            +
                end
         | 
| 2037 | 
            +
             | 
| 2038 | 
            +
                # Get the first `n` rows.
         | 
| 2039 | 
            +
                #
         | 
| 2040 | 
            +
                # Alias for {#head}.
         | 
| 2041 | 
            +
                #
         | 
| 2042 | 
            +
                # @param n [Integer]
         | 
| 2043 | 
            +
                #   Number of rows to return.
         | 
| 2044 | 
            +
                #
         | 
| 2045 | 
            +
                # @return [LazyFrame]
         | 
| 2046 | 
            +
                #
         | 
| 2047 | 
            +
                # @note
         | 
| 2048 | 
            +
                #   Consider using the {#fetch} operation if you only want to test your
         | 
| 2049 | 
            +
                #   query. The {#fetch} operation will load the first `n` rows at the scan
         | 
| 2050 | 
            +
                #   level, whereas the {#head}/{#limit} are applied at the end.
         | 
| 2051 | 
            +
                def limit(n = 5)
         | 
| 2052 | 
            +
                  head(5)
         | 
| 2053 | 
            +
                end
         | 
| 2054 | 
            +
             | 
| 2055 | 
            +
                # Get the first `n` rows.
         | 
| 2056 | 
            +
                #
         | 
| 2057 | 
            +
                # @param n [Integer]
         | 
| 2058 | 
            +
                #   Number of rows to return.
         | 
| 2059 | 
            +
                #
         | 
| 2060 | 
            +
                # @return [LazyFrame]
         | 
| 2061 | 
            +
                #
         | 
| 2062 | 
            +
                # @note
         | 
| 2063 | 
            +
                #   Consider using the {#fetch} operation if you only want to test your
         | 
| 2064 | 
            +
                #   query. The {#fetch} operation will load the first `n` rows at the scan
         | 
| 2065 | 
            +
                #   level, whereas the {#head}/{#limit} are applied at the end.
         | 
| 2066 | 
            +
                def head(n = 5)
         | 
| 2067 | 
            +
                  slice(0, n)
         | 
| 2068 | 
            +
                end
         | 
| 2069 | 
            +
             | 
| 2070 | 
            +
                # Get the last `n` rows.
         | 
| 2071 | 
            +
                #
         | 
| 2072 | 
            +
                # @param n [Integer]
         | 
| 2073 | 
            +
                #     Number of rows.
         | 
| 2074 | 
            +
                #
         | 
| 2075 | 
            +
                # @return [LazyFrame]
         | 
| 2076 | 
            +
                def tail(n = 5)
         | 
| 2077 | 
            +
                  _from_rbldf(_ldf.tail(n))
         | 
| 2078 | 
            +
                end
         | 
| 2079 | 
            +
             | 
| 2080 | 
            +
                # Get the last row of the DataFrame.
         | 
| 2081 | 
            +
                #
         | 
| 2082 | 
            +
                # @return [LazyFrame]
         | 
| 2083 | 
            +
                def last
         | 
| 2084 | 
            +
                  tail(1)
         | 
| 2085 | 
            +
                end
         | 
| 2086 | 
            +
             | 
| 2087 | 
            +
                # Get the first row of the DataFrame.
         | 
| 2088 | 
            +
                #
         | 
| 2089 | 
            +
                # @return [LazyFrame]
         | 
| 2090 | 
            +
                def first
         | 
| 2091 | 
            +
                  slice(0, 1)
         | 
| 2092 | 
            +
                end
         | 
| 2093 | 
            +
             | 
| 2094 | 
            +
                # Add a column at index 0 that counts the rows.
         | 
| 2095 | 
            +
                #
         | 
| 2096 | 
            +
                # @param name [String]
         | 
| 2097 | 
            +
                #   Name of the column to add.
         | 
| 2098 | 
            +
                # @param offset [Integer]
         | 
| 2099 | 
            +
                #   Start the row count at this offset.
         | 
| 2100 | 
            +
                #
         | 
| 2101 | 
            +
                # @return [LazyFrame]
         | 
| 2102 | 
            +
                #
         | 
| 2103 | 
            +
                # @note
         | 
| 2104 | 
            +
                #   This can have a negative effect on query performance.
         | 
| 2105 | 
            +
                #   This may, for instance, block predicate pushdown optimization.
         | 
| 2106 | 
            +
                #
         | 
| 2107 | 
            +
                # @example
         | 
| 2108 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 2109 | 
            +
                #     {
         | 
| 2110 | 
            +
                #       "a" => [1, 3, 5],
         | 
| 2111 | 
            +
                #       "b" => [2, 4, 6]
         | 
| 2112 | 
            +
                #     }
         | 
| 2113 | 
            +
                #   ).lazy
         | 
| 2114 | 
            +
                #   df.with_row_index.collect
         | 
| 2115 | 
            +
                #   # =>
         | 
| 2116 | 
            +
                #   # shape: (3, 3)
         | 
| 2117 | 
            +
                #   # ┌───────┬─────┬─────┐
         | 
| 2118 | 
            +
                #   # │ index ┆ a   ┆ b   │
         | 
| 2119 | 
            +
                #   # │ ---   ┆ --- ┆ --- │
         | 
| 2120 | 
            +
                #   # │ u32   ┆ i64 ┆ i64 │
         | 
| 2121 | 
            +
                #   # ╞═══════╪═════╪═════╡
         | 
| 2122 | 
            +
                #   # │ 0     ┆ 1   ┆ 2   │
         | 
| 2123 | 
            +
                #   # │ 1     ┆ 3   ┆ 4   │
         | 
| 2124 | 
            +
                #   # │ 2     ┆ 5   ┆ 6   │
         | 
| 2125 | 
            +
                #   # └───────┴─────┴─────┘
         | 
| 2126 | 
            +
                def with_row_index(name: "index", offset: 0)
         | 
| 2127 | 
            +
                  _from_rbldf(_ldf.with_row_index(name, offset))
         | 
| 2128 | 
            +
                end
         | 
| 2129 | 
            +
                alias_method :with_row_count, :with_row_index
         | 
| 2130 | 
            +
             | 
| 2131 | 
            +
                # Take every nth row in the LazyFrame and return as a new LazyFrame.
         | 
| 2132 | 
            +
                #
         | 
| 2133 | 
            +
                # @return [LazyFrame]
         | 
| 2134 | 
            +
                #
         | 
| 2135 | 
            +
                # @example
         | 
| 2136 | 
            +
                #   s = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [5, 6, 7, 8]}).lazy
         | 
| 2137 | 
            +
                #   s.take_every(2).collect
         | 
| 2138 | 
            +
                #   # =>
         | 
| 2139 | 
            +
                #   # shape: (2, 2)
         | 
| 2140 | 
            +
                #   # ┌─────┬─────┐
         | 
| 2141 | 
            +
                #   # │ a   ┆ b   │
         | 
| 2142 | 
            +
                #   # │ --- ┆ --- │
         | 
| 2143 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 2144 | 
            +
                #   # ╞═════╪═════╡
         | 
| 2145 | 
            +
                #   # │ 1   ┆ 5   │
         | 
| 2146 | 
            +
                #   # │ 3   ┆ 7   │
         | 
| 2147 | 
            +
                #   # └─────┴─────┘
         | 
| 2148 | 
            +
                def take_every(n)
         | 
| 2149 | 
            +
                  select(F.col("*").take_every(n))
         | 
| 2150 | 
            +
                end
         | 
| 2151 | 
            +
             | 
| 2152 | 
            +
                # Fill null values using the specified value or strategy.
         | 
| 2153 | 
            +
                #
         | 
| 2154 | 
            +
                # @return [LazyFrame]
         | 
| 2155 | 
            +
                def fill_null(value = nil, strategy: nil, limit: nil, matches_supertype: nil)
         | 
| 2156 | 
            +
                  select(Polars.all.fill_null(value, strategy: strategy, limit: limit))
         | 
| 2157 | 
            +
                end
         | 
| 2158 | 
            +
             | 
| 2159 | 
            +
                # Fill floating point NaN values.
         | 
| 2160 | 
            +
                #
         | 
| 2161 | 
            +
                # @param fill_value [Object]
         | 
| 2162 | 
            +
                #   Value to fill the NaN values with.
         | 
| 2163 | 
            +
                #
         | 
| 2164 | 
            +
                # @return [LazyFrame]
         | 
| 2165 | 
            +
                #
         | 
| 2166 | 
            +
                # @note
         | 
| 2167 | 
            +
                #   Note that floating point NaN (Not a Number) are not missing values!
         | 
| 2168 | 
            +
                #   To replace missing values, use `fill_null` instead.
         | 
| 2169 | 
            +
                #
         | 
| 2170 | 
            +
                # @example
         | 
| 2171 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 2172 | 
            +
                #     {
         | 
| 2173 | 
            +
                #       "a" => [1.5, 2, Float::NAN, 4],
         | 
| 2174 | 
            +
                #       "b" => [0.5, 4, Float::NAN, 13],
         | 
| 2175 | 
            +
                #     }
         | 
| 2176 | 
            +
                #   ).lazy
         | 
| 2177 | 
            +
                #   df.fill_nan(99).collect
         | 
| 2178 | 
            +
                #   # =>
         | 
| 2179 | 
            +
                #   # shape: (4, 2)
         | 
| 2180 | 
            +
                #   # ┌──────┬──────┐
         | 
| 2181 | 
            +
                #   # │ a    ┆ b    │
         | 
| 2182 | 
            +
                #   # │ ---  ┆ ---  │
         | 
| 2183 | 
            +
                #   # │ f64  ┆ f64  │
         | 
| 2184 | 
            +
                #   # ╞══════╪══════╡
         | 
| 2185 | 
            +
                #   # │ 1.5  ┆ 0.5  │
         | 
| 2186 | 
            +
                #   # │ 2.0  ┆ 4.0  │
         | 
| 2187 | 
            +
                #   # │ 99.0 ┆ 99.0 │
         | 
| 2188 | 
            +
                #   # │ 4.0  ┆ 13.0 │
         | 
| 2189 | 
            +
                #   # └──────┴──────┘
         | 
| 2190 | 
            +
                def fill_nan(fill_value)
         | 
| 2191 | 
            +
                  if !fill_value.is_a?(Expr)
         | 
| 2192 | 
            +
                    fill_value = F.lit(fill_value)
         | 
| 2193 | 
            +
                  end
         | 
| 2194 | 
            +
                  _from_rbldf(_ldf.fill_nan(fill_value._rbexpr))
         | 
| 2195 | 
            +
                end
         | 
| 2196 | 
            +
             | 
| 2197 | 
            +
                # Aggregate the columns in the DataFrame to their standard deviation value.
         | 
| 2198 | 
            +
                #
         | 
| 2199 | 
            +
                # @return [LazyFrame]
         | 
| 2200 | 
            +
                #
         | 
| 2201 | 
            +
                # @example
         | 
| 2202 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
         | 
| 2203 | 
            +
                #   df.std.collect
         | 
| 2204 | 
            +
                #   # =>
         | 
| 2205 | 
            +
                #   # shape: (1, 2)
         | 
| 2206 | 
            +
                #   # ┌──────────┬─────┐
         | 
| 2207 | 
            +
                #   # │ a        ┆ b   │
         | 
| 2208 | 
            +
                #   # │ ---      ┆ --- │
         | 
| 2209 | 
            +
                #   # │ f64      ┆ f64 │
         | 
| 2210 | 
            +
                #   # ╞══════════╪═════╡
         | 
| 2211 | 
            +
                #   # │ 1.290994 ┆ 0.5 │
         | 
| 2212 | 
            +
                #   # └──────────┴─────┘
         | 
| 2213 | 
            +
                #
         | 
| 2214 | 
            +
                # @example
         | 
| 2215 | 
            +
                #   df.std(ddof: 0).collect
         | 
| 2216 | 
            +
                #   # =>
         | 
| 2217 | 
            +
                #   # shape: (1, 2)
         | 
| 2218 | 
            +
                #   # ┌──────────┬──────────┐
         | 
| 2219 | 
            +
                #   # │ a        ┆ b        │
         | 
| 2220 | 
            +
                #   # │ ---      ┆ ---      │
         | 
| 2221 | 
            +
                #   # │ f64      ┆ f64      │
         | 
| 2222 | 
            +
                #   # ╞══════════╪══════════╡
         | 
| 2223 | 
            +
                #   # │ 1.118034 ┆ 0.433013 │
         | 
| 2224 | 
            +
                #   # └──────────┴──────────┘
         | 
| 2225 | 
            +
                def std(ddof: 1)
         | 
| 2226 | 
            +
                  _from_rbldf(_ldf.std(ddof))
         | 
| 2227 | 
            +
                end
         | 
| 2228 | 
            +
             | 
| 2229 | 
            +
                # Aggregate the columns in the DataFrame to their variance value.
         | 
| 2230 | 
            +
                #
         | 
| 2231 | 
            +
                # @return [LazyFrame]
         | 
| 2232 | 
            +
                #
         | 
| 2233 | 
            +
                # @example
         | 
| 2234 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
         | 
| 2235 | 
            +
                #   df.var.collect
         | 
| 2236 | 
            +
                #   # =>
         | 
| 2237 | 
            +
                #   # shape: (1, 2)
         | 
| 2238 | 
            +
                #   # ┌──────────┬──────┐
         | 
| 2239 | 
            +
                #   # │ a        ┆ b    │
         | 
| 2240 | 
            +
                #   # │ ---      ┆ ---  │
         | 
| 2241 | 
            +
                #   # │ f64      ┆ f64  │
         | 
| 2242 | 
            +
                #   # ╞══════════╪══════╡
         | 
| 2243 | 
            +
                #   # │ 1.666667 ┆ 0.25 │
         | 
| 2244 | 
            +
                #   # └──────────┴──────┘
         | 
| 2245 | 
            +
                #
         | 
| 2246 | 
            +
                # @example
         | 
| 2247 | 
            +
                #   df.var(ddof: 0).collect
         | 
| 2248 | 
            +
                #   # =>
         | 
| 2249 | 
            +
                #   # shape: (1, 2)
         | 
| 2250 | 
            +
                #   # ┌──────┬────────┐
         | 
| 2251 | 
            +
                #   # │ a    ┆ b      │
         | 
| 2252 | 
            +
                #   # │ ---  ┆ ---    │
         | 
| 2253 | 
            +
                #   # │ f64  ┆ f64    │
         | 
| 2254 | 
            +
                #   # ╞══════╪════════╡
         | 
| 2255 | 
            +
                #   # │ 1.25 ┆ 0.1875 │
         | 
| 2256 | 
            +
                #   # └──────┴────────┘
         | 
| 2257 | 
            +
                def var(ddof: 1)
         | 
| 2258 | 
            +
                  _from_rbldf(_ldf.var(ddof))
         | 
| 2259 | 
            +
                end
         | 
| 2260 | 
            +
             | 
| 2261 | 
            +
                # Aggregate the columns in the DataFrame to their maximum value.
         | 
| 2262 | 
            +
                #
         | 
| 2263 | 
            +
                # @return [LazyFrame]
         | 
| 2264 | 
            +
                #
         | 
| 2265 | 
            +
                # @example
         | 
| 2266 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
         | 
| 2267 | 
            +
                #   df.max.collect
         | 
| 2268 | 
            +
                #   # =>
         | 
| 2269 | 
            +
                #   # shape: (1, 2)
         | 
| 2270 | 
            +
                #   # ┌─────┬─────┐
         | 
| 2271 | 
            +
                #   # │ a   ┆ b   │
         | 
| 2272 | 
            +
                #   # │ --- ┆ --- │
         | 
| 2273 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 2274 | 
            +
                #   # ╞═════╪═════╡
         | 
| 2275 | 
            +
                #   # │ 4   ┆ 2   │
         | 
| 2276 | 
            +
                #   # └─────┴─────┘
         | 
| 2277 | 
            +
                def max
         | 
| 2278 | 
            +
                  _from_rbldf(_ldf.max)
         | 
| 2279 | 
            +
                end
         | 
| 2280 | 
            +
             | 
| 2281 | 
            +
                # Aggregate the columns in the DataFrame to their minimum value.
         | 
| 2282 | 
            +
                #
         | 
| 2283 | 
            +
                # @return [LazyFrame]
         | 
| 2284 | 
            +
                #
         | 
| 2285 | 
            +
                # @example
         | 
| 2286 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
         | 
| 2287 | 
            +
                #   df.min.collect
         | 
| 2288 | 
            +
                #   # =>
         | 
| 2289 | 
            +
                #   # shape: (1, 2)
         | 
| 2290 | 
            +
                #   # ┌─────┬─────┐
         | 
| 2291 | 
            +
                #   # │ a   ┆ b   │
         | 
| 2292 | 
            +
                #   # │ --- ┆ --- │
         | 
| 2293 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 2294 | 
            +
                #   # ╞═════╪═════╡
         | 
| 2295 | 
            +
                #   # │ 1   ┆ 1   │
         | 
| 2296 | 
            +
                #   # └─────┴─────┘
         | 
| 2297 | 
            +
                def min
         | 
| 2298 | 
            +
                  _from_rbldf(_ldf.min)
         | 
| 2299 | 
            +
                end
         | 
| 2300 | 
            +
             | 
| 2301 | 
            +
                # Aggregate the columns in the DataFrame to their sum value.
         | 
| 2302 | 
            +
                #
         | 
| 2303 | 
            +
                # @return [LazyFrame]
         | 
| 2304 | 
            +
                #
         | 
| 2305 | 
            +
                # @example
         | 
| 2306 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
         | 
| 2307 | 
            +
                #   df.sum.collect
         | 
| 2308 | 
            +
                #   # =>
         | 
| 2309 | 
            +
                #   # shape: (1, 2)
         | 
| 2310 | 
            +
                #   # ┌─────┬─────┐
         | 
| 2311 | 
            +
                #   # │ a   ┆ b   │
         | 
| 2312 | 
            +
                #   # │ --- ┆ --- │
         | 
| 2313 | 
            +
                #   # │ i64 ┆ i64 │
         | 
| 2314 | 
            +
                #   # ╞═════╪═════╡
         | 
| 2315 | 
            +
                #   # │ 10  ┆ 5   │
         | 
| 2316 | 
            +
                #   # └─────┴─────┘
         | 
| 2317 | 
            +
                def sum
         | 
| 2318 | 
            +
                  _from_rbldf(_ldf.sum)
         | 
| 2319 | 
            +
                end
         | 
| 2320 | 
            +
             | 
| 2321 | 
            +
                # Aggregate the columns in the DataFrame to their mean value.
         | 
| 2322 | 
            +
                #
         | 
| 2323 | 
            +
                # @return [LazyFrame]
         | 
| 2324 | 
            +
                #
         | 
| 2325 | 
            +
                # @example
         | 
| 2326 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
         | 
| 2327 | 
            +
                #   df.mean.collect
         | 
| 2328 | 
            +
                #   # =>
         | 
| 2329 | 
            +
                #   # shape: (1, 2)
         | 
| 2330 | 
            +
                #   # ┌─────┬──────┐
         | 
| 2331 | 
            +
                #   # │ a   ┆ b    │
         | 
| 2332 | 
            +
                #   # │ --- ┆ ---  │
         | 
| 2333 | 
            +
                #   # │ f64 ┆ f64  │
         | 
| 2334 | 
            +
                #   # ╞═════╪══════╡
         | 
| 2335 | 
            +
                #   # │ 2.5 ┆ 1.25 │
         | 
| 2336 | 
            +
                #   # └─────┴──────┘
         | 
| 2337 | 
            +
                def mean
         | 
| 2338 | 
            +
                  _from_rbldf(_ldf.mean)
         | 
| 2339 | 
            +
                end
         | 
| 2340 | 
            +
             | 
| 2341 | 
            +
                # Aggregate the columns in the DataFrame to their median value.
         | 
| 2342 | 
            +
                #
         | 
| 2343 | 
            +
                # @return [LazyFrame]
         | 
| 2344 | 
            +
                #
         | 
| 2345 | 
            +
                # @example
         | 
| 2346 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
         | 
| 2347 | 
            +
                #   df.median.collect
         | 
| 2348 | 
            +
                #   # =>
         | 
| 2349 | 
            +
                #   # shape: (1, 2)
         | 
| 2350 | 
            +
                #   # ┌─────┬─────┐
         | 
| 2351 | 
            +
                #   # │ a   ┆ b   │
         | 
| 2352 | 
            +
                #   # │ --- ┆ --- │
         | 
| 2353 | 
            +
                #   # │ f64 ┆ f64 │
         | 
| 2354 | 
            +
                #   # ╞═════╪═════╡
         | 
| 2355 | 
            +
                #   # │ 2.5 ┆ 1.0 │
         | 
| 2356 | 
            +
                #   # └─────┴─────┘
         | 
| 2357 | 
            +
                def median
         | 
| 2358 | 
            +
                  _from_rbldf(_ldf.median)
         | 
| 2359 | 
            +
                end
         | 
| 2360 | 
            +
             | 
| 2361 | 
            +
                # Aggregate the columns in the DataFrame to their quantile value.
         | 
| 2362 | 
            +
                #
         | 
| 2363 | 
            +
                # @param quantile [Float]
         | 
| 2364 | 
            +
                #   Quantile between 0.0 and 1.0.
         | 
| 2365 | 
            +
                # @param interpolation ["nearest", "higher", "lower", "midpoint", "linear"]
         | 
| 2366 | 
            +
                #   Interpolation method.
         | 
| 2367 | 
            +
                #
         | 
| 2368 | 
            +
                # @return [LazyFrame]
         | 
| 2369 | 
            +
                #
         | 
| 2370 | 
            +
                # @example
         | 
| 2371 | 
            +
                #   df = Polars::DataFrame.new({"a" => [1, 2, 3, 4], "b" => [1, 2, 1, 1]}).lazy
         | 
| 2372 | 
            +
                #   df.quantile(0.7).collect
         | 
| 2373 | 
            +
                #   # =>
         | 
| 2374 | 
            +
                #   # shape: (1, 2)
         | 
| 2375 | 
            +
                #   # ┌─────┬─────┐
         | 
| 2376 | 
            +
                #   # │ a   ┆ b   │
         | 
| 2377 | 
            +
                #   # │ --- ┆ --- │
         | 
| 2378 | 
            +
                #   # │ f64 ┆ f64 │
         | 
| 2379 | 
            +
                #   # ╞═════╪═════╡
         | 
| 2380 | 
            +
                #   # │ 3.0 ┆ 1.0 │
         | 
| 2381 | 
            +
                #   # └─────┴─────┘
         | 
| 2382 | 
            +
                def quantile(quantile, interpolation: "nearest")
         | 
| 2383 | 
            +
                  quantile = Utils.parse_into_expression(quantile, str_as_lit: false)
         | 
| 2384 | 
            +
                  _from_rbldf(_ldf.quantile(quantile, interpolation))
         | 
| 2385 | 
            +
                end
         | 
| 2386 | 
            +
             | 
| 2387 | 
            +
                # Explode lists to long format.
         | 
| 2388 | 
            +
                #
         | 
| 2389 | 
            +
                # @return [LazyFrame]
         | 
| 2390 | 
            +
                #
         | 
| 2391 | 
            +
                # @example
         | 
| 2392 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 2393 | 
            +
                #     {
         | 
| 2394 | 
            +
                #       "letters" => ["a", "a", "b", "c"],
         | 
| 2395 | 
            +
                #       "numbers" => [[1], [2, 3], [4, 5], [6, 7, 8]],
         | 
| 2396 | 
            +
                #     }
         | 
| 2397 | 
            +
                #   ).lazy
         | 
| 2398 | 
            +
                #   df.explode("numbers").collect
         | 
| 2399 | 
            +
                #   # =>
         | 
| 2400 | 
            +
                #   # shape: (8, 2)
         | 
| 2401 | 
            +
                #   # ┌─────────┬─────────┐
         | 
| 2402 | 
            +
                #   # │ letters ┆ numbers │
         | 
| 2403 | 
            +
                #   # │ ---     ┆ ---     │
         | 
| 2404 | 
            +
                #   # │ str     ┆ i64     │
         | 
| 2405 | 
            +
                #   # ╞═════════╪═════════╡
         | 
| 2406 | 
            +
                #   # │ a       ┆ 1       │
         | 
| 2407 | 
            +
                #   # │ a       ┆ 2       │
         | 
| 2408 | 
            +
                #   # │ a       ┆ 3       │
         | 
| 2409 | 
            +
                #   # │ b       ┆ 4       │
         | 
| 2410 | 
            +
                #   # │ b       ┆ 5       │
         | 
| 2411 | 
            +
                #   # │ c       ┆ 6       │
         | 
| 2412 | 
            +
                #   # │ c       ┆ 7       │
         | 
| 2413 | 
            +
                #   # │ c       ┆ 8       │
         | 
| 2414 | 
            +
                #   # └─────────┴─────────┘
         | 
| 2415 | 
            +
                def explode(columns)
         | 
| 2416 | 
            +
                  columns = Utils.parse_into_list_of_expressions(columns)
         | 
| 2417 | 
            +
                  _from_rbldf(_ldf.explode(columns))
         | 
| 2418 | 
            +
                end
         | 
| 2419 | 
            +
             | 
| 2420 | 
            +
                # Drop duplicate rows from this DataFrame.
         | 
| 2421 | 
            +
                #
         | 
| 2422 | 
            +
                # Note that this fails if there is a column of type `List` in the DataFrame or
         | 
| 2423 | 
            +
                # subset.
         | 
| 2424 | 
            +
                #
         | 
| 2425 | 
            +
                # @param maintain_order [Boolean]
         | 
| 2426 | 
            +
                #   Keep the same order as the original DataFrame. This requires more work to
         | 
| 2427 | 
            +
                #   compute.
         | 
| 2428 | 
            +
                # @param subset [Object]
         | 
| 2429 | 
            +
                #   Subset to use to compare rows.
         | 
| 2430 | 
            +
                # @param keep ["first", "last"]
         | 
| 2431 | 
            +
                #   Which of the duplicate rows to keep.
         | 
| 2432 | 
            +
                #
         | 
| 2433 | 
            +
                # @return [LazyFrame]
         | 
| 2434 | 
            +
                def unique(maintain_order: true, subset: nil, keep: "first")
         | 
| 2435 | 
            +
                  if !subset.nil? && !subset.is_a?(::Array)
         | 
| 2436 | 
            +
                    subset = [subset]
         | 
| 2437 | 
            +
                  end
         | 
| 2438 | 
            +
                  _from_rbldf(_ldf.unique(maintain_order, subset, keep))
         | 
| 2439 | 
            +
                end
         | 
| 2440 | 
            +
             | 
| 2441 | 
            +
                # Drop rows with null values from this LazyFrame.
         | 
| 2442 | 
            +
                #
         | 
| 2443 | 
            +
                # @param subset [Object]
         | 
| 2444 | 
            +
                #   Subset of column(s) on which `drop_nulls` will be applied.
         | 
| 2445 | 
            +
                #
         | 
| 2446 | 
            +
                # @return [LazyFrame]
         | 
| 2447 | 
            +
                #
         | 
| 2448 | 
            +
                # @example
         | 
| 2449 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 2450 | 
            +
                #     {
         | 
| 2451 | 
            +
                #       "foo" => [1, 2, 3],
         | 
| 2452 | 
            +
                #       "bar" => [6, nil, 8],
         | 
| 2453 | 
            +
                #       "ham" => ["a", "b", "c"]
         | 
| 2454 | 
            +
                #     }
         | 
| 2455 | 
            +
                #   )
         | 
| 2456 | 
            +
                #   df.lazy.drop_nulls.collect
         | 
| 2457 | 
            +
                #   # =>
         | 
| 2458 | 
            +
                #   # shape: (2, 3)
         | 
| 2459 | 
            +
                #   # ┌─────┬─────┬─────┐
         | 
| 2460 | 
            +
                #   # │ foo ┆ bar ┆ ham │
         | 
| 2461 | 
            +
                #   # │ --- ┆ --- ┆ --- │
         | 
| 2462 | 
            +
                #   # │ i64 ┆ i64 ┆ str │
         | 
| 2463 | 
            +
                #   # ╞═════╪═════╪═════╡
         | 
| 2464 | 
            +
                #   # │ 1   ┆ 6   ┆ a   │
         | 
| 2465 | 
            +
                #   # │ 3   ┆ 8   ┆ c   │
         | 
| 2466 | 
            +
                #   # └─────┴─────┴─────┘
         | 
| 2467 | 
            +
                def drop_nulls(subset: nil)
         | 
| 2468 | 
            +
                  if !subset.nil? && !subset.is_a?(::Array)
         | 
| 2469 | 
            +
                    subset = [subset]
         | 
| 2470 | 
            +
                  end
         | 
| 2471 | 
            +
                  _from_rbldf(_ldf.drop_nulls(subset))
         | 
| 2472 | 
            +
                end
         | 
| 2473 | 
            +
             | 
| 2474 | 
            +
                # Unpivot a DataFrame from wide to long format.
         | 
| 2475 | 
            +
                #
         | 
| 2476 | 
            +
                # Optionally leaves identifiers set.
         | 
| 2477 | 
            +
                #
         | 
| 2478 | 
            +
                # This function is useful to massage a DataFrame into a format where one or more
         | 
| 2479 | 
            +
                # columns are identifier variables (index) while all other columns, considered
         | 
| 2480 | 
            +
                # measured variables (on), are "unpivoted" to the row axis leaving just
         | 
| 2481 | 
            +
                # two non-identifier columns, 'variable' and 'value'.
         | 
| 2482 | 
            +
                #
         | 
| 2483 | 
            +
                # @param on [Object]
         | 
| 2484 | 
            +
                #   Column(s) or selector(s) to use as values variables; if `on`
         | 
| 2485 | 
            +
                #   is empty all columns that are not in `index` will be used.
         | 
| 2486 | 
            +
                # @param index [Object]
         | 
| 2487 | 
            +
                #   Column(s) or selector(s) to use as identifier variables.
         | 
| 2488 | 
            +
                # @param variable_name [String]
         | 
| 2489 | 
            +
                #   Name to give to the `variable` column. Defaults to "variable"
         | 
| 2490 | 
            +
                # @param value_name [String]
         | 
| 2491 | 
            +
                #   Name to give to the `value` column. Defaults to "value"
         | 
| 2492 | 
            +
                # @param streamable [Boolean]
         | 
| 2493 | 
            +
                #   Allow this node to run in the streaming engine.
         | 
| 2494 | 
            +
                #   If this runs in streaming, the output of the unpivot operation
         | 
| 2495 | 
            +
                #   will not have a stable ordering.
         | 
| 2496 | 
            +
                #
         | 
| 2497 | 
            +
                # @return [LazyFrame]
         | 
| 2498 | 
            +
                #
         | 
| 2499 | 
            +
                # @example
         | 
| 2500 | 
            +
                #   lf = Polars::LazyFrame.new(
         | 
| 2501 | 
            +
                #     {
         | 
| 2502 | 
            +
                #       "a" => ["x", "y", "z"],
         | 
| 2503 | 
            +
                #       "b" => [1, 3, 5],
         | 
| 2504 | 
            +
                #       "c" => [2, 4, 6]
         | 
| 2505 | 
            +
                #     }
         | 
| 2506 | 
            +
                #   )
         | 
| 2507 | 
            +
                #   lf.unpivot(Polars::Selectors.numeric, index: "a").collect
         | 
| 2508 | 
            +
                #   # =>
         | 
| 2509 | 
            +
                #   # shape: (6, 3)
         | 
| 2510 | 
            +
                #   # ┌─────┬──────────┬───────┐
         | 
| 2511 | 
            +
                #   # │ a   ┆ variable ┆ value │
         | 
| 2512 | 
            +
                #   # │ --- ┆ ---      ┆ ---   │
         | 
| 2513 | 
            +
                #   # │ str ┆ str      ┆ i64   │
         | 
| 2514 | 
            +
                #   # ╞═════╪══════════╪═══════╡
         | 
| 2515 | 
            +
                #   # │ x   ┆ b        ┆ 1     │
         | 
| 2516 | 
            +
                #   # │ y   ┆ b        ┆ 3     │
         | 
| 2517 | 
            +
                #   # │ z   ┆ b        ┆ 5     │
         | 
| 2518 | 
            +
                #   # │ x   ┆ c        ┆ 2     │
         | 
| 2519 | 
            +
                #   # │ y   ┆ c        ┆ 4     │
         | 
| 2520 | 
            +
                #   # │ z   ┆ c        ┆ 6     │
         | 
| 2521 | 
            +
                #   # └─────┴──────────┴───────┘
         | 
| 2522 | 
            +
                def unpivot(
         | 
| 2523 | 
            +
                  on,
         | 
| 2524 | 
            +
                  index: nil,
         | 
| 2525 | 
            +
                  variable_name: nil,
         | 
| 2526 | 
            +
                  value_name: nil,
         | 
| 2527 | 
            +
                  streamable: true
         | 
| 2528 | 
            +
                )
         | 
| 2529 | 
            +
                  if !streamable
         | 
| 2530 | 
            +
                    warn "The `streamable` parameter for `LazyFrame.unpivot` is deprecated"
         | 
| 2531 | 
            +
                  end
         | 
| 2532 | 
            +
             | 
| 2533 | 
            +
                  on = on.nil? ? [] : Utils._expand_selectors(self, on)
         | 
| 2534 | 
            +
                  index = index.nil? ? [] : Utils._expand_selectors(self, index)
         | 
| 2535 | 
            +
             | 
| 2536 | 
            +
                  _from_rbldf(
         | 
| 2537 | 
            +
                    _ldf.unpivot(on, index, value_name, variable_name)
         | 
| 2538 | 
            +
                  )
         | 
| 2539 | 
            +
                end
         | 
| 2540 | 
            +
                alias_method :melt, :unpivot
         | 
| 2541 | 
            +
             | 
| 2542 | 
            +
                # def map
         | 
| 2543 | 
            +
                # end
         | 
| 2544 | 
            +
             | 
| 2545 | 
            +
                # Interpolate intermediate values. The interpolation method is linear.
         | 
| 2546 | 
            +
                #
         | 
| 2547 | 
            +
                # @return [LazyFrame]
         | 
| 2548 | 
            +
                #
         | 
| 2549 | 
            +
                # @example
         | 
| 2550 | 
            +
                #   df = Polars::DataFrame.new(
         | 
| 2551 | 
            +
                #     {
         | 
| 2552 | 
            +
                #       "foo" => [1, nil, 9, 10],
         | 
| 2553 | 
            +
                #       "bar" => [6, 7, 9, nil],
         | 
| 2554 | 
            +
                #       "baz" => [1, nil, nil, 9]
         | 
| 2555 | 
            +
                #     }
         | 
| 2556 | 
            +
                #   ).lazy
         | 
| 2557 | 
            +
                #   df.interpolate.collect
         | 
| 2558 | 
            +
                #   # =>
         | 
| 2559 | 
            +
                #   # shape: (4, 3)
         | 
| 2560 | 
            +
                #   # ┌──────┬──────┬──────────┐
         | 
| 2561 | 
            +
                #   # │ foo  ┆ bar  ┆ baz      │
         | 
| 2562 | 
            +
                #   # │ ---  ┆ ---  ┆ ---      │
         | 
| 2563 | 
            +
                #   # │ f64  ┆ f64  ┆ f64      │
         | 
| 2564 | 
            +
                #   # ╞══════╪══════╪══════════╡
         | 
| 2565 | 
            +
                #   # │ 1.0  ┆ 6.0  ┆ 1.0      │
         | 
| 2566 | 
            +
                #   # │ 5.0  ┆ 7.0  ┆ 3.666667 │
         | 
| 2567 | 
            +
                #   # │ 9.0  ┆ 9.0  ┆ 6.333333 │
         | 
| 2568 | 
            +
                #   # │ 10.0 ┆ null ┆ 9.0      │
         | 
| 2569 | 
            +
                #   # └──────┴──────┴──────────┘
         | 
| 2570 | 
            +
                def interpolate
         | 
| 2571 | 
            +
                  select(F.col("*").interpolate)
         | 
| 2572 | 
            +
                end
         | 
| 2573 | 
            +
             | 
| 2574 | 
            +
                # Decompose a struct into its fields.
         | 
| 2575 | 
            +
                #
         | 
| 2576 | 
            +
                # The fields will be inserted into the `DataFrame` on the location of the
         | 
| 2577 | 
            +
                # `struct` type.
         | 
| 2578 | 
            +
                #
         | 
| 2579 | 
            +
                # @param names [Object]
         | 
| 2580 | 
            +
                #   Names of the struct columns that will be decomposed by its fields
         | 
| 2581 | 
            +
                #
         | 
| 2582 | 
            +
                # @return [LazyFrame]
         | 
| 2583 | 
            +
                #
         | 
| 2584 | 
            +
                # @example
         | 
| 2585 | 
            +
                #   df = (
         | 
| 2586 | 
            +
                #     Polars::DataFrame.new(
         | 
| 2587 | 
            +
                #       {
         | 
| 2588 | 
            +
                #         "before" => ["foo", "bar"],
         | 
| 2589 | 
            +
                #         "t_a" => [1, 2],
         | 
| 2590 | 
            +
                #         "t_b" => ["a", "b"],
         | 
| 2591 | 
            +
                #         "t_c" => [true, nil],
         | 
| 2592 | 
            +
                #         "t_d" => [[1, 2], [3]],
         | 
| 2593 | 
            +
                #         "after" => ["baz", "womp"]
         | 
| 2594 | 
            +
                #       }
         | 
| 2595 | 
            +
                #     )
         | 
| 2596 | 
            +
                #     .lazy
         | 
| 2597 | 
            +
                #     .select(
         | 
| 2598 | 
            +
                #       ["before", Polars.struct(Polars.col("^t_.$")).alias("t_struct"), "after"]
         | 
| 2599 | 
            +
                #     )
         | 
| 2600 | 
            +
                #   )
         | 
| 2601 | 
            +
                #   df.fetch
         | 
| 2602 | 
            +
                #   # =>
         | 
| 2603 | 
            +
                #   # shape: (2, 3)
         | 
| 2604 | 
            +
                #   # ┌────────┬─────────────────────┬───────┐
         | 
| 2605 | 
            +
                #   # │ before ┆ t_struct            ┆ after │
         | 
| 2606 | 
            +
                #   # │ ---    ┆ ---                 ┆ ---   │
         | 
| 2607 | 
            +
                #   # │ str    ┆ struct[4]           ┆ str   │
         | 
| 2608 | 
            +
                #   # ╞════════╪═════════════════════╪═══════╡
         | 
| 2609 | 
            +
                #   # │ foo    ┆ {1,"a",true,[1, 2]} ┆ baz   │
         | 
| 2610 | 
            +
                #   # │ bar    ┆ {2,"b",null,[3]}    ┆ womp  │
         | 
| 2611 | 
            +
                #   # └────────┴─────────────────────┴───────┘
         | 
| 2612 | 
            +
                #
         | 
| 2613 | 
            +
                # @example
         | 
| 2614 | 
            +
                #   df.unnest("t_struct").fetch
         | 
| 2615 | 
            +
                #   # =>
         | 
| 2616 | 
            +
                #   # shape: (2, 6)
         | 
| 2617 | 
            +
                #   # ┌────────┬─────┬─────┬──────┬───────────┬───────┐
         | 
| 2618 | 
            +
                #   # │ before ┆ t_a ┆ t_b ┆ t_c  ┆ t_d       ┆ after │
         | 
| 2619 | 
            +
                #   # │ ---    ┆ --- ┆ --- ┆ ---  ┆ ---       ┆ ---   │
         | 
| 2620 | 
            +
                #   # │ str    ┆ i64 ┆ str ┆ bool ┆ list[i64] ┆ str   │
         | 
| 2621 | 
            +
                #   # ╞════════╪═════╪═════╪══════╪═══════════╪═══════╡
         | 
| 2622 | 
            +
                #   # │ foo    ┆ 1   ┆ a   ┆ true ┆ [1, 2]    ┆ baz   │
         | 
| 2623 | 
            +
                #   # │ bar    ┆ 2   ┆ b   ┆ null ┆ [3]       ┆ womp  │
         | 
| 2624 | 
            +
                #   # └────────┴─────┴─────┴──────┴───────────┴───────┘
         | 
| 2625 | 
            +
                def unnest(names)
         | 
| 2626 | 
            +
                  if names.is_a?(::String)
         | 
| 2627 | 
            +
                    names = [names]
         | 
| 2628 | 
            +
                  end
         | 
| 2629 | 
            +
                  _from_rbldf(_ldf.unnest(names))
         | 
| 2630 | 
            +
                end
         | 
| 2631 | 
            +
             | 
| 2632 | 
            +
                # Take two sorted DataFrames and merge them by the sorted key.
         | 
| 2633 | 
            +
                #
         | 
| 2634 | 
            +
                # The output of this operation will also be sorted.
         | 
| 2635 | 
            +
                # It is the callers responsibility that the frames are sorted
         | 
| 2636 | 
            +
                # by that key otherwise the output will not make sense.
         | 
| 2637 | 
            +
                #
         | 
| 2638 | 
            +
                # The schemas of both LazyFrames must be equal.
         | 
| 2639 | 
            +
                #
         | 
| 2640 | 
            +
                # @param other [DataFrame]
         | 
| 2641 | 
            +
                #   Other DataFrame that must be merged
         | 
| 2642 | 
            +
                # @param key [String]
         | 
| 2643 | 
            +
                #   Key that is sorted.
         | 
| 2644 | 
            +
                #
         | 
| 2645 | 
            +
                # @return [LazyFrame]
         | 
| 2646 | 
            +
                #
         | 
| 2647 | 
            +
                # @example
         | 
| 2648 | 
            +
                #   df0 = Polars::LazyFrame.new(
         | 
| 2649 | 
            +
                #     {"name" => ["steve", "elise", "bob"], "age" => [42, 44, 18]}
         | 
| 2650 | 
            +
                #   ).sort("age")
         | 
| 2651 | 
            +
                #   df1 = Polars::LazyFrame.new(
         | 
| 2652 | 
            +
                #     {"name" => ["anna", "megan", "steve", "thomas"], "age" => [21, 33, 42, 20]}
         | 
| 2653 | 
            +
                #   ).sort("age")
         | 
| 2654 | 
            +
                #   df0.merge_sorted(df1, "age").collect
         | 
| 2655 | 
            +
                #   # =>
         | 
| 2656 | 
            +
                #   # shape: (7, 2)
         | 
| 2657 | 
            +
                #   # ┌────────┬─────┐
         | 
| 2658 | 
            +
                #   # │ name   ┆ age │
         | 
| 2659 | 
            +
                #   # │ ---    ┆ --- │
         | 
| 2660 | 
            +
                #   # │ str    ┆ i64 │
         | 
| 2661 | 
            +
                #   # ╞════════╪═════╡
         | 
| 2662 | 
            +
                #   # │ bob    ┆ 18  │
         | 
| 2663 | 
            +
                #   # │ thomas ┆ 20  │
         | 
| 2664 | 
            +
                #   # │ anna   ┆ 21  │
         | 
| 2665 | 
            +
                #   # │ megan  ┆ 33  │
         | 
| 2666 | 
            +
                #   # │ steve  ┆ 42  │
         | 
| 2667 | 
            +
                #   # │ steve  ┆ 42  │
         | 
| 2668 | 
            +
                #   # │ elise  ┆ 44  │
         | 
| 2669 | 
            +
                #   # └────────┴─────┘
         | 
| 2670 | 
            +
                def merge_sorted(other, key)
         | 
| 2671 | 
            +
                  _from_rbldf(_ldf.merge_sorted(other._ldf, key))
         | 
| 2672 | 
            +
                end
         | 
| 2673 | 
            +
             | 
| 2674 | 
            +
                # Indicate that one or multiple columns are sorted.
         | 
| 2675 | 
            +
                #
         | 
| 2676 | 
            +
                # @param column [Object]
         | 
| 2677 | 
            +
                #   Columns that are sorted
         | 
| 2678 | 
            +
                # @param descending [Boolean]
         | 
| 2679 | 
            +
                #   Whether the columns are sorted in descending order.
         | 
| 2680 | 
            +
                #
         | 
| 2681 | 
            +
                # @return [LazyFrame]
         | 
| 2682 | 
            +
                def set_sorted(
         | 
| 2683 | 
            +
                  column,
         | 
| 2684 | 
            +
                  descending: false
         | 
| 2685 | 
            +
                )
         | 
| 2686 | 
            +
                  if !Utils.strlike?(column)
         | 
| 2687 | 
            +
                    msg = "expected a 'str' for argument 'column' in 'set_sorted'"
         | 
| 2688 | 
            +
                    raise TypeError, msg
         | 
| 2689 | 
            +
                  end
         | 
| 2690 | 
            +
                  with_columns(F.col(column).set_sorted(descending: descending))
         | 
| 2691 | 
            +
                end
         | 
| 2692 | 
            +
             | 
| 2693 | 
            +
                # TODO
         | 
| 2694 | 
            +
                # def update
         | 
| 2695 | 
            +
                # end
         | 
| 2696 | 
            +
             | 
| 2697 | 
            +
                private
         | 
| 2698 | 
            +
             | 
| 2699 | 
            +
                def initialize_copy(other)
         | 
| 2700 | 
            +
                  super
         | 
| 2701 | 
            +
                  self._ldf = _ldf._clone
         | 
| 2702 | 
            +
                end
         | 
| 2703 | 
            +
             | 
| 2704 | 
            +
                def _from_rbldf(rb_ldf)
         | 
| 2705 | 
            +
                  self.class._from_rbldf(rb_ldf)
         | 
| 2706 | 
            +
                end
         | 
| 2707 | 
            +
              end
         | 
| 2708 | 
            +
            end
         |