polars-df 0.10.0-x86_64-linux-musl
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.yardopts +3 -0
- data/CHANGELOG.md +175 -0
- data/Cargo.lock +2536 -0
- data/Cargo.toml +6 -0
- data/LICENSE-THIRD-PARTY.txt +38726 -0
- data/LICENSE.txt +20 -0
- data/README.md +437 -0
- data/lib/polars/3.1/polars.so +0 -0
- data/lib/polars/3.2/polars.so +0 -0
- data/lib/polars/3.3/polars.so +0 -0
- data/lib/polars/array_expr.rb +537 -0
- data/lib/polars/array_name_space.rb +423 -0
- data/lib/polars/batched_csv_reader.rb +98 -0
- data/lib/polars/binary_expr.rb +77 -0
- data/lib/polars/binary_name_space.rb +66 -0
- data/lib/polars/cat_expr.rb +72 -0
- data/lib/polars/cat_name_space.rb +125 -0
- data/lib/polars/config.rb +530 -0
- data/lib/polars/convert.rb +93 -0
- data/lib/polars/data_frame.rb +5418 -0
- data/lib/polars/data_types.rb +466 -0
- data/lib/polars/date_time_expr.rb +1444 -0
- data/lib/polars/date_time_name_space.rb +1484 -0
- data/lib/polars/dynamic_group_by.rb +52 -0
- data/lib/polars/exceptions.rb +31 -0
- data/lib/polars/expr.rb +6105 -0
- data/lib/polars/expr_dispatch.rb +22 -0
- data/lib/polars/functions/aggregation/horizontal.rb +246 -0
- data/lib/polars/functions/aggregation/vertical.rb +282 -0
- data/lib/polars/functions/as_datatype.rb +248 -0
- data/lib/polars/functions/col.rb +47 -0
- data/lib/polars/functions/eager.rb +182 -0
- data/lib/polars/functions/lazy.rb +1280 -0
- data/lib/polars/functions/len.rb +49 -0
- data/lib/polars/functions/lit.rb +35 -0
- data/lib/polars/functions/random.rb +16 -0
- data/lib/polars/functions/range/date_range.rb +103 -0
- data/lib/polars/functions/range/int_range.rb +51 -0
- data/lib/polars/functions/repeat.rb +144 -0
- data/lib/polars/functions/whenthen.rb +96 -0
- data/lib/polars/functions.rb +57 -0
- data/lib/polars/group_by.rb +548 -0
- data/lib/polars/io.rb +890 -0
- data/lib/polars/lazy_frame.rb +2833 -0
- data/lib/polars/lazy_group_by.rb +84 -0
- data/lib/polars/list_expr.rb +791 -0
- data/lib/polars/list_name_space.rb +445 -0
- data/lib/polars/meta_expr.rb +222 -0
- data/lib/polars/name_expr.rb +198 -0
- data/lib/polars/plot.rb +109 -0
- data/lib/polars/rolling_group_by.rb +37 -0
- data/lib/polars/series.rb +4527 -0
- data/lib/polars/slice.rb +104 -0
- data/lib/polars/sql_context.rb +194 -0
- data/lib/polars/string_cache.rb +75 -0
- data/lib/polars/string_expr.rb +1519 -0
- data/lib/polars/string_name_space.rb +810 -0
- data/lib/polars/struct_expr.rb +98 -0
- data/lib/polars/struct_name_space.rb +96 -0
- data/lib/polars/testing.rb +507 -0
- data/lib/polars/utils.rb +422 -0
- data/lib/polars/version.rb +4 -0
- data/lib/polars/whenthen.rb +83 -0
- data/lib/polars-df.rb +1 -0
- data/lib/polars.rb +72 -0
- metadata +125 -0
data/LICENSE.txt
ADDED
@@ -0,0 +1,20 @@
|
|
1
|
+
Copyright (c) 2020 Ritchie Vink
|
2
|
+
Copyright (c) 2022-2024 Andrew Kane
|
3
|
+
|
4
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
5
|
+
of this software and associated documentation files (the "Software"), to deal
|
6
|
+
in the Software without restriction, including without limitation the rights
|
7
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
8
|
+
copies of the Software, and to permit persons to whom the Software is
|
9
|
+
furnished to do so, subject to the following conditions:
|
10
|
+
|
11
|
+
The above copyright notice and this permission notice shall be included in all
|
12
|
+
copies or substantial portions of the Software.
|
13
|
+
|
14
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
15
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
16
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
17
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
18
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
19
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
20
|
+
SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,437 @@
|
|
1
|
+
# Polars Ruby
|
2
|
+
|
3
|
+
:fire: Blazingly fast DataFrames for Ruby, powered by [Polars](https://github.com/pola-rs/polars)
|
4
|
+
|
5
|
+
[![Build Status](https://github.com/ankane/polars-ruby/actions/workflows/build.yml/badge.svg)](https://github.com/ankane/polars-ruby/actions)
|
6
|
+
|
7
|
+
## Installation
|
8
|
+
|
9
|
+
Add this line to your application’s Gemfile:
|
10
|
+
|
11
|
+
```ruby
|
12
|
+
gem "polars-df"
|
13
|
+
```
|
14
|
+
|
15
|
+
## Getting Started
|
16
|
+
|
17
|
+
This library follows the [Polars Python API](https://pola-rs.github.io/polars/py-polars/html/reference/index.html).
|
18
|
+
|
19
|
+
```ruby
|
20
|
+
Polars.read_csv("iris.csv")
|
21
|
+
.lazy
|
22
|
+
.filter(Polars.col("sepal_length") > 5)
|
23
|
+
.group_by("species")
|
24
|
+
.agg(Polars.all.sum)
|
25
|
+
.collect
|
26
|
+
```
|
27
|
+
|
28
|
+
You can follow [Polars tutorials](https://pola-rs.github.io/polars-book/user-guide/) and convert the code to Ruby in many cases. Feel free to open an issue if you run into problems.
|
29
|
+
|
30
|
+
## Reference
|
31
|
+
|
32
|
+
- [Series](https://www.rubydoc.info/gems/polars-df/Polars/Series)
|
33
|
+
- [DataFrame](https://www.rubydoc.info/gems/polars-df/Polars/DataFrame)
|
34
|
+
- [LazyFrame](https://www.rubydoc.info/gems/polars-df/Polars/LazyFrame)
|
35
|
+
|
36
|
+
## Examples
|
37
|
+
|
38
|
+
### Creating DataFrames
|
39
|
+
|
40
|
+
From a CSV
|
41
|
+
|
42
|
+
```ruby
|
43
|
+
Polars.read_csv("file.csv")
|
44
|
+
|
45
|
+
# or lazily with
|
46
|
+
Polars.scan_csv("file.csv")
|
47
|
+
```
|
48
|
+
|
49
|
+
From Parquet
|
50
|
+
|
51
|
+
```ruby
|
52
|
+
Polars.read_parquet("file.parquet")
|
53
|
+
|
54
|
+
# or lazily with
|
55
|
+
Polars.scan_parquet("file.parquet")
|
56
|
+
```
|
57
|
+
|
58
|
+
From Active Record
|
59
|
+
|
60
|
+
```ruby
|
61
|
+
Polars.read_database(User.all)
|
62
|
+
# or
|
63
|
+
Polars.read_database("SELECT * FROM users")
|
64
|
+
```
|
65
|
+
|
66
|
+
From JSON
|
67
|
+
|
68
|
+
```ruby
|
69
|
+
Polars.read_json("file.json")
|
70
|
+
# or
|
71
|
+
Polars.read_ndjson("file.ndjson")
|
72
|
+
|
73
|
+
# or lazily with
|
74
|
+
Polars.scan_ndjson("file.ndjson")
|
75
|
+
```
|
76
|
+
|
77
|
+
From Feather / Arrow IPC
|
78
|
+
|
79
|
+
```ruby
|
80
|
+
Polars.read_ipc("file.arrow")
|
81
|
+
|
82
|
+
# or lazily with
|
83
|
+
Polars.scan_ipc("file.arrow")
|
84
|
+
```
|
85
|
+
|
86
|
+
From Avro
|
87
|
+
|
88
|
+
```ruby
|
89
|
+
Polars.read_avro("file.avro")
|
90
|
+
```
|
91
|
+
|
92
|
+
From a hash
|
93
|
+
|
94
|
+
```ruby
|
95
|
+
Polars::DataFrame.new({
|
96
|
+
a: [1, 2, 3],
|
97
|
+
b: ["one", "two", "three"]
|
98
|
+
})
|
99
|
+
```
|
100
|
+
|
101
|
+
From an array of hashes
|
102
|
+
|
103
|
+
```ruby
|
104
|
+
Polars::DataFrame.new([
|
105
|
+
{a: 1, b: "one"},
|
106
|
+
{a: 2, b: "two"},
|
107
|
+
{a: 3, b: "three"}
|
108
|
+
])
|
109
|
+
```
|
110
|
+
|
111
|
+
From an array of series
|
112
|
+
|
113
|
+
```ruby
|
114
|
+
Polars::DataFrame.new([
|
115
|
+
Polars::Series.new("a", [1, 2, 3]),
|
116
|
+
Polars::Series.new("b", ["one", "two", "three"])
|
117
|
+
])
|
118
|
+
```
|
119
|
+
|
120
|
+
## Attributes
|
121
|
+
|
122
|
+
Get number of rows
|
123
|
+
|
124
|
+
```ruby
|
125
|
+
df.height
|
126
|
+
```
|
127
|
+
|
128
|
+
Get column names
|
129
|
+
|
130
|
+
```ruby
|
131
|
+
df.columns
|
132
|
+
```
|
133
|
+
|
134
|
+
Check if a column exists
|
135
|
+
|
136
|
+
```ruby
|
137
|
+
df.include?(name)
|
138
|
+
```
|
139
|
+
|
140
|
+
## Selecting Data
|
141
|
+
|
142
|
+
Select a column
|
143
|
+
|
144
|
+
```ruby
|
145
|
+
df["a"]
|
146
|
+
```
|
147
|
+
|
148
|
+
Select multiple columns
|
149
|
+
|
150
|
+
```ruby
|
151
|
+
df[["a", "b"]]
|
152
|
+
```
|
153
|
+
|
154
|
+
Select first rows
|
155
|
+
|
156
|
+
```ruby
|
157
|
+
df.head
|
158
|
+
```
|
159
|
+
|
160
|
+
Select last rows
|
161
|
+
|
162
|
+
```ruby
|
163
|
+
df.tail
|
164
|
+
```
|
165
|
+
|
166
|
+
## Filtering
|
167
|
+
|
168
|
+
Filter on a condition
|
169
|
+
|
170
|
+
```ruby
|
171
|
+
df[Polars.col("a") == 2]
|
172
|
+
df[Polars.col("a") != 2]
|
173
|
+
df[Polars.col("a") > 2]
|
174
|
+
df[Polars.col("a") >= 2]
|
175
|
+
df[Polars.col("a") < 2]
|
176
|
+
df[Polars.col("a") <= 2]
|
177
|
+
```
|
178
|
+
|
179
|
+
And, or, and exclusive or
|
180
|
+
|
181
|
+
```ruby
|
182
|
+
df[(Polars.col("a") > 1) & (Polars.col("b") == "two")] # and
|
183
|
+
df[(Polars.col("a") > 1) | (Polars.col("b") == "two")] # or
|
184
|
+
df[(Polars.col("a") > 1) ^ (Polars.col("b") == "two")] # xor
|
185
|
+
```
|
186
|
+
|
187
|
+
## Operations
|
188
|
+
|
189
|
+
Basic operations
|
190
|
+
|
191
|
+
```ruby
|
192
|
+
df["a"] + 5
|
193
|
+
df["a"] - 5
|
194
|
+
df["a"] * 5
|
195
|
+
df["a"] / 5
|
196
|
+
df["a"] % 5
|
197
|
+
df["a"] ** 2
|
198
|
+
df["a"].sqrt
|
199
|
+
df["a"].abs
|
200
|
+
```
|
201
|
+
|
202
|
+
Rounding
|
203
|
+
|
204
|
+
```ruby
|
205
|
+
df["a"].round(2)
|
206
|
+
df["a"].ceil
|
207
|
+
df["a"].floor
|
208
|
+
```
|
209
|
+
|
210
|
+
Logarithm
|
211
|
+
|
212
|
+
```ruby
|
213
|
+
df["a"].log # natural log
|
214
|
+
df["a"].log(10)
|
215
|
+
```
|
216
|
+
|
217
|
+
Exponentiation
|
218
|
+
|
219
|
+
```ruby
|
220
|
+
df["a"].exp
|
221
|
+
```
|
222
|
+
|
223
|
+
Trigonometric functions
|
224
|
+
|
225
|
+
```ruby
|
226
|
+
df["a"].sin
|
227
|
+
df["a"].cos
|
228
|
+
df["a"].tan
|
229
|
+
df["a"].asin
|
230
|
+
df["a"].acos
|
231
|
+
df["a"].atan
|
232
|
+
```
|
233
|
+
|
234
|
+
Hyperbolic functions
|
235
|
+
|
236
|
+
```ruby
|
237
|
+
df["a"].sinh
|
238
|
+
df["a"].cosh
|
239
|
+
df["a"].tanh
|
240
|
+
df["a"].asinh
|
241
|
+
df["a"].acosh
|
242
|
+
df["a"].atanh
|
243
|
+
```
|
244
|
+
|
245
|
+
Summary statistics
|
246
|
+
|
247
|
+
```ruby
|
248
|
+
df["a"].sum
|
249
|
+
df["a"].mean
|
250
|
+
df["a"].median
|
251
|
+
df["a"].quantile(0.90)
|
252
|
+
df["a"].min
|
253
|
+
df["a"].max
|
254
|
+
df["a"].std
|
255
|
+
df["a"].var
|
256
|
+
```
|
257
|
+
|
258
|
+
## Grouping
|
259
|
+
|
260
|
+
Group
|
261
|
+
|
262
|
+
```ruby
|
263
|
+
df.group_by("a").count
|
264
|
+
```
|
265
|
+
|
266
|
+
Works with all summary statistics
|
267
|
+
|
268
|
+
```ruby
|
269
|
+
df.group_by("a").max
|
270
|
+
```
|
271
|
+
|
272
|
+
Multiple groups
|
273
|
+
|
274
|
+
```ruby
|
275
|
+
df.group_by(["a", "b"]).count
|
276
|
+
```
|
277
|
+
|
278
|
+
## Combining Data Frames
|
279
|
+
|
280
|
+
Add rows
|
281
|
+
|
282
|
+
```ruby
|
283
|
+
df.vstack(other_df)
|
284
|
+
```
|
285
|
+
|
286
|
+
Add columns
|
287
|
+
|
288
|
+
```ruby
|
289
|
+
df.hstack(other_df)
|
290
|
+
```
|
291
|
+
|
292
|
+
Inner join
|
293
|
+
|
294
|
+
```ruby
|
295
|
+
df.join(other_df, on: "a")
|
296
|
+
```
|
297
|
+
|
298
|
+
Left join
|
299
|
+
|
300
|
+
```ruby
|
301
|
+
df.join(other_df, on: "a", how: "left")
|
302
|
+
```
|
303
|
+
|
304
|
+
## Encoding
|
305
|
+
|
306
|
+
One-hot encoding
|
307
|
+
|
308
|
+
```ruby
|
309
|
+
df.to_dummies
|
310
|
+
```
|
311
|
+
|
312
|
+
## Conversion
|
313
|
+
|
314
|
+
Array of hashes
|
315
|
+
|
316
|
+
```ruby
|
317
|
+
df.rows(named: true)
|
318
|
+
```
|
319
|
+
|
320
|
+
Hash of series
|
321
|
+
|
322
|
+
```ruby
|
323
|
+
df.to_h
|
324
|
+
```
|
325
|
+
|
326
|
+
CSV
|
327
|
+
|
328
|
+
```ruby
|
329
|
+
df.to_csv
|
330
|
+
# or
|
331
|
+
df.write_csv("file.csv")
|
332
|
+
```
|
333
|
+
|
334
|
+
Parquet
|
335
|
+
|
336
|
+
```ruby
|
337
|
+
df.write_parquet("file.parquet")
|
338
|
+
```
|
339
|
+
|
340
|
+
Numo array
|
341
|
+
|
342
|
+
```ruby
|
343
|
+
df.to_numo
|
344
|
+
```
|
345
|
+
|
346
|
+
## Types
|
347
|
+
|
348
|
+
You can specify column types when creating a data frame
|
349
|
+
|
350
|
+
```ruby
|
351
|
+
Polars::DataFrame.new(data, schema: {"a" => Polars::Int32, "b" => Polars::Float32})
|
352
|
+
```
|
353
|
+
|
354
|
+
Supported types are:
|
355
|
+
|
356
|
+
- boolean - `Boolean`
|
357
|
+
- float - `Float64`, `Float32`
|
358
|
+
- integer - `Int64`, `Int32`, `Int16`, `Int8`
|
359
|
+
- unsigned integer - `UInt64`, `UInt32`, `UInt16`, `UInt8`
|
360
|
+
- string - `String`, `Binary`, `Categorical`
|
361
|
+
- temporal - `Date`, `Datetime`, `Time`, `Duration`
|
362
|
+
- nested - `List`, `Struct`, `Array`
|
363
|
+
- other - `Object`, `Null`
|
364
|
+
|
365
|
+
Get column types
|
366
|
+
|
367
|
+
```ruby
|
368
|
+
df.schema
|
369
|
+
```
|
370
|
+
|
371
|
+
For a specific column
|
372
|
+
|
373
|
+
```ruby
|
374
|
+
df["a"].dtype
|
375
|
+
```
|
376
|
+
|
377
|
+
Cast a column
|
378
|
+
|
379
|
+
```ruby
|
380
|
+
df["a"].cast(Polars::Int32)
|
381
|
+
```
|
382
|
+
|
383
|
+
## Visualization
|
384
|
+
|
385
|
+
Add [Vega](https://github.com/ankane/vega-ruby) to your application’s Gemfile:
|
386
|
+
|
387
|
+
```ruby
|
388
|
+
gem "vega"
|
389
|
+
```
|
390
|
+
|
391
|
+
And use:
|
392
|
+
|
393
|
+
```ruby
|
394
|
+
df.plot("a", "b")
|
395
|
+
```
|
396
|
+
|
397
|
+
Specify the chart type (`line`, `pie`, `column`, `bar`, `area`, or `scatter`)
|
398
|
+
|
399
|
+
```ruby
|
400
|
+
df.plot("a", "b", type: "pie")
|
401
|
+
```
|
402
|
+
|
403
|
+
Group data
|
404
|
+
|
405
|
+
```ruby
|
406
|
+
df.group_by("c").plot("a", "b")
|
407
|
+
```
|
408
|
+
|
409
|
+
Stacked columns or bars
|
410
|
+
|
411
|
+
```ruby
|
412
|
+
df.group_by("c").plot("a", "b", stacked: true)
|
413
|
+
```
|
414
|
+
|
415
|
+
## History
|
416
|
+
|
417
|
+
View the [changelog](CHANGELOG.md)
|
418
|
+
|
419
|
+
## Contributing
|
420
|
+
|
421
|
+
Everyone is encouraged to help improve this project. Here are a few ways you can help:
|
422
|
+
|
423
|
+
- [Report bugs](https://github.com/ankane/polars-ruby/issues)
|
424
|
+
- Fix bugs and [submit pull requests](https://github.com/ankane/polars-ruby/pulls)
|
425
|
+
- Write, clarify, or fix documentation
|
426
|
+
- Suggest or add new features
|
427
|
+
|
428
|
+
To get started with development:
|
429
|
+
|
430
|
+
```sh
|
431
|
+
git clone https://github.com/ankane/polars-ruby.git
|
432
|
+
cd polars-ruby
|
433
|
+
bundle install
|
434
|
+
bundle exec rake compile
|
435
|
+
bundle exec rake test
|
436
|
+
bundle exec rake test:docs
|
437
|
+
```
|
Binary file
|
Binary file
|
Binary file
|