polars-df 0.10.0-x86_64-linux-musl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (67) hide show
  1. checksums.yaml +7 -0
  2. data/.yardopts +3 -0
  3. data/CHANGELOG.md +175 -0
  4. data/Cargo.lock +2536 -0
  5. data/Cargo.toml +6 -0
  6. data/LICENSE-THIRD-PARTY.txt +38726 -0
  7. data/LICENSE.txt +20 -0
  8. data/README.md +437 -0
  9. data/lib/polars/3.1/polars.so +0 -0
  10. data/lib/polars/3.2/polars.so +0 -0
  11. data/lib/polars/3.3/polars.so +0 -0
  12. data/lib/polars/array_expr.rb +537 -0
  13. data/lib/polars/array_name_space.rb +423 -0
  14. data/lib/polars/batched_csv_reader.rb +98 -0
  15. data/lib/polars/binary_expr.rb +77 -0
  16. data/lib/polars/binary_name_space.rb +66 -0
  17. data/lib/polars/cat_expr.rb +72 -0
  18. data/lib/polars/cat_name_space.rb +125 -0
  19. data/lib/polars/config.rb +530 -0
  20. data/lib/polars/convert.rb +93 -0
  21. data/lib/polars/data_frame.rb +5418 -0
  22. data/lib/polars/data_types.rb +466 -0
  23. data/lib/polars/date_time_expr.rb +1444 -0
  24. data/lib/polars/date_time_name_space.rb +1484 -0
  25. data/lib/polars/dynamic_group_by.rb +52 -0
  26. data/lib/polars/exceptions.rb +31 -0
  27. data/lib/polars/expr.rb +6105 -0
  28. data/lib/polars/expr_dispatch.rb +22 -0
  29. data/lib/polars/functions/aggregation/horizontal.rb +246 -0
  30. data/lib/polars/functions/aggregation/vertical.rb +282 -0
  31. data/lib/polars/functions/as_datatype.rb +248 -0
  32. data/lib/polars/functions/col.rb +47 -0
  33. data/lib/polars/functions/eager.rb +182 -0
  34. data/lib/polars/functions/lazy.rb +1280 -0
  35. data/lib/polars/functions/len.rb +49 -0
  36. data/lib/polars/functions/lit.rb +35 -0
  37. data/lib/polars/functions/random.rb +16 -0
  38. data/lib/polars/functions/range/date_range.rb +103 -0
  39. data/lib/polars/functions/range/int_range.rb +51 -0
  40. data/lib/polars/functions/repeat.rb +144 -0
  41. data/lib/polars/functions/whenthen.rb +96 -0
  42. data/lib/polars/functions.rb +57 -0
  43. data/lib/polars/group_by.rb +548 -0
  44. data/lib/polars/io.rb +890 -0
  45. data/lib/polars/lazy_frame.rb +2833 -0
  46. data/lib/polars/lazy_group_by.rb +84 -0
  47. data/lib/polars/list_expr.rb +791 -0
  48. data/lib/polars/list_name_space.rb +445 -0
  49. data/lib/polars/meta_expr.rb +222 -0
  50. data/lib/polars/name_expr.rb +198 -0
  51. data/lib/polars/plot.rb +109 -0
  52. data/lib/polars/rolling_group_by.rb +37 -0
  53. data/lib/polars/series.rb +4527 -0
  54. data/lib/polars/slice.rb +104 -0
  55. data/lib/polars/sql_context.rb +194 -0
  56. data/lib/polars/string_cache.rb +75 -0
  57. data/lib/polars/string_expr.rb +1519 -0
  58. data/lib/polars/string_name_space.rb +810 -0
  59. data/lib/polars/struct_expr.rb +98 -0
  60. data/lib/polars/struct_name_space.rb +96 -0
  61. data/lib/polars/testing.rb +507 -0
  62. data/lib/polars/utils.rb +422 -0
  63. data/lib/polars/version.rb +4 -0
  64. data/lib/polars/whenthen.rb +83 -0
  65. data/lib/polars-df.rb +1 -0
  66. data/lib/polars.rb +72 -0
  67. metadata +125 -0
@@ -0,0 +1,548 @@
1
+ module Polars
2
+ # Starts a new GroupBy operation.
3
+ class GroupBy
4
+ # @private
5
+ def initialize(df, by, maintain_order: false)
6
+ @df = df
7
+ @by = by
8
+ @maintain_order = maintain_order
9
+ end
10
+
11
+ # Allows iteration over the groups of the group by operation.
12
+ #
13
+ # @return [Object]
14
+ #
15
+ # @example
16
+ # df = Polars::DataFrame.new({"foo" => ["a", "a", "b"], "bar" => [1, 2, 3]})
17
+ # df.group_by("foo", maintain_order: true).each.to_h
18
+ # # =>
19
+ # # {"a"=>shape: (2, 2)
20
+ # # ┌─────┬─────┐
21
+ # # │ foo ┆ bar │
22
+ # # │ --- ┆ --- │
23
+ # # │ str ┆ i64 │
24
+ # # ╞═════╪═════╡
25
+ # # │ a ┆ 1 │
26
+ # # │ a ┆ 2 │
27
+ # # └─────┴─────┘, "b"=>shape: (1, 2)
28
+ # # ┌─────┬─────┐
29
+ # # │ foo ┆ bar │
30
+ # # │ --- ┆ --- │
31
+ # # │ str ┆ i64 │
32
+ # # ╞═════╪═════╡
33
+ # # │ b ┆ 3 │
34
+ # # └─────┴─────┘}
35
+ def each
36
+ return to_enum(:each) unless block_given?
37
+
38
+ temp_col = "__POLARS_GB_GROUP_INDICES"
39
+ groups_df =
40
+ @df.lazy
41
+ .with_row_index(name: temp_col)
42
+ .group_by(@by, maintain_order: @maintain_order)
43
+ .agg(Polars.col(temp_col))
44
+ .collect(no_optimization: true)
45
+
46
+ group_names = groups_df.select(Polars.all.exclude(temp_col))
47
+
48
+ # When grouping by a single column, group name is a single value
49
+ # When grouping by multiple columns, group name is a tuple of values
50
+ if @by.is_a?(::String) || @by.is_a?(Expr)
51
+ _group_names = group_names.to_series.each
52
+ else
53
+ _group_names = group_names.iter_rows
54
+ end
55
+
56
+ _group_indices = groups_df.select(temp_col).to_series
57
+ _current_index = 0
58
+
59
+ while _current_index < _group_indices.length
60
+ group_name = _group_names.next
61
+ group_data = @df[_group_indices[_current_index]]
62
+ _current_index += 1
63
+
64
+ yield group_name, group_data
65
+ end
66
+ end
67
+
68
+ # Apply a custom/user-defined function (UDF) over the groups as a sub-DataFrame.
69
+ #
70
+ # Implementing logic using a Ruby function is almost always _significantly_
71
+ # slower and more memory intensive than implementing the same logic using
72
+ # the native expression API because:
73
+
74
+ # - The native expression engine runs in Rust; UDFs run in Ruby.
75
+ # - Use of Ruby UDFs forces the DataFrame to be materialized in memory.
76
+ # - Polars-native expressions can be parallelised (UDFs cannot).
77
+ # - Polars-native expressions can be logically optimised (UDFs cannot).
78
+ #
79
+ # Wherever possible you should strongly prefer the native expression API
80
+ # to achieve the best performance.
81
+ #
82
+ # @return [DataFrame]
83
+ #
84
+ # @example
85
+ # df = Polars::DataFrame.new(
86
+ # {
87
+ # "id" => [0, 1, 2, 3, 4],
88
+ # "color" => ["red", "green", "green", "red", "red"],
89
+ # "shape" => ["square", "triangle", "square", "triangle", "square"]
90
+ # }
91
+ # )
92
+ # df.group_by("color").apply { |group_df| group_df.sample(2) }
93
+ # # =>
94
+ # # shape: (4, 3)
95
+ # # ┌─────┬───────┬──────────┐
96
+ # # │ id ┆ color ┆ shape │
97
+ # # │ --- ┆ --- ┆ --- │
98
+ # # │ i64 ┆ str ┆ str │
99
+ # # ╞═════╪═══════╪══════════╡
100
+ # # │ 1 ┆ green ┆ triangle │
101
+ # # │ 2 ┆ green ┆ square │
102
+ # # │ 4 ┆ red ┆ square │
103
+ # # │ 3 ┆ red ┆ triangle │
104
+ # # └─────┴───────┴──────────┘
105
+ # def apply(&f)
106
+ # _dataframe_class._from_rbdf(_df.group_by_apply(by, f))
107
+ # end
108
+
109
+ # Use multiple aggregations on columns.
110
+ #
111
+ # This can be combined with complete lazy API and is considered idiomatic polars.
112
+ #
113
+ # @param aggs [Object]
114
+ # Single / multiple aggregation expression(s).
115
+ #
116
+ # @return [DataFrame]
117
+ #
118
+ # @example
119
+ # df = Polars::DataFrame.new(
120
+ # {"foo" => ["one", "two", "two", "one", "two"], "bar" => [5, 3, 2, 4, 1]}
121
+ # )
122
+ # df.group_by("foo", maintain_order: true).agg(
123
+ # [
124
+ # Polars.sum("bar").suffix("_sum"),
125
+ # Polars.col("bar").sort.tail(2).sum.suffix("_tail_sum")
126
+ # ]
127
+ # )
128
+ # # =>
129
+ # # shape: (2, 3)
130
+ # # ┌─────┬─────────┬──────────────┐
131
+ # # │ foo ┆ bar_sum ┆ bar_tail_sum │
132
+ # # │ --- ┆ --- ┆ --- │
133
+ # # │ str ┆ i64 ┆ i64 │
134
+ # # ╞═════╪═════════╪══════════════╡
135
+ # # │ one ┆ 9 ┆ 9 │
136
+ # # │ two ┆ 6 ┆ 5 │
137
+ # # └─────┴─────────┴──────────────┘
138
+ def agg(aggs)
139
+ @df.lazy
140
+ .group_by(@by, maintain_order: @maintain_order)
141
+ .agg(aggs)
142
+ .collect(no_optimization: true)
143
+ end
144
+
145
+ # Get the first `n` rows of each group.
146
+ #
147
+ # @param n [Integer]
148
+ # Number of rows to return.
149
+ #
150
+ # @return [DataFrame]
151
+ #
152
+ # @example
153
+ # df = Polars::DataFrame.new(
154
+ # {
155
+ # "letters" => ["c", "c", "a", "c", "a", "b"],
156
+ # "nrs" => [1, 2, 3, 4, 5, 6]
157
+ # }
158
+ # )
159
+ # # =>
160
+ # # shape: (6, 2)
161
+ # # ┌─────────┬─────┐
162
+ # # │ letters ┆ nrs │
163
+ # # │ --- ┆ --- │
164
+ # # │ str ┆ i64 │
165
+ # # ╞═════════╪═════╡
166
+ # # │ c ┆ 1 │
167
+ # # │ c ┆ 2 │
168
+ # # │ a ┆ 3 │
169
+ # # │ c ┆ 4 │
170
+ # # │ a ┆ 5 │
171
+ # # │ b ┆ 6 │
172
+ # # └─────────┴─────┘
173
+ #
174
+ # @example
175
+ # df.group_by("letters").head(2).sort("letters")
176
+ # # =>
177
+ # # shape: (5, 2)
178
+ # # ┌─────────┬─────┐
179
+ # # │ letters ┆ nrs │
180
+ # # │ --- ┆ --- │
181
+ # # │ str ┆ i64 │
182
+ # # ╞═════════╪═════╡
183
+ # # │ a ┆ 3 │
184
+ # # │ a ┆ 5 │
185
+ # # │ b ┆ 6 │
186
+ # # │ c ┆ 1 │
187
+ # # │ c ┆ 2 │
188
+ # # └─────────┴─────┘
189
+ def head(n = 5)
190
+ @df.lazy
191
+ .group_by(@by, maintain_order: @maintain_order)
192
+ .head(n)
193
+ .collect(no_optimization: true)
194
+ end
195
+
196
+ # Get the last `n` rows of each group.
197
+ #
198
+ # @param n [Integer]
199
+ # Number of rows to return.
200
+ #
201
+ # @return [DataFrame]
202
+ #
203
+ # @example
204
+ # df = Polars::DataFrame.new(
205
+ # {
206
+ # "letters" => ["c", "c", "a", "c", "a", "b"],
207
+ # "nrs" => [1, 2, 3, 4, 5, 6]
208
+ # }
209
+ # )
210
+ # # =>
211
+ # # shape: (6, 2)
212
+ # # ┌─────────┬─────┐
213
+ # # │ letters ┆ nrs │
214
+ # # │ --- ┆ --- │
215
+ # # │ str ┆ i64 │
216
+ # # ╞═════════╪═════╡
217
+ # # │ c ┆ 1 │
218
+ # # │ c ┆ 2 │
219
+ # # │ a ┆ 3 │
220
+ # # │ c ┆ 4 │
221
+ # # │ a ┆ 5 │
222
+ # # │ b ┆ 6 │
223
+ # # └─────────┴─────┘
224
+ #
225
+ # @example
226
+ # df.group_by("letters").tail(2).sort("letters")
227
+ # # =>
228
+ # # shape: (5, 2)
229
+ # # ┌─────────┬─────┐
230
+ # # │ letters ┆ nrs │
231
+ # # │ --- ┆ --- │
232
+ # # │ str ┆ i64 │
233
+ # # ╞═════════╪═════╡
234
+ # # │ a ┆ 3 │
235
+ # # │ a ┆ 5 │
236
+ # # │ b ┆ 6 │
237
+ # # │ c ┆ 2 │
238
+ # # │ c ┆ 4 │
239
+ # # └─────────┴─────┘
240
+ def tail(n = 5)
241
+ @df.lazy
242
+ .group_by(@by, maintain_order: @maintain_order)
243
+ .tail(n)
244
+ .collect(no_optimization: true)
245
+ end
246
+
247
+ # Aggregate the first values in the group.
248
+ #
249
+ # @return [DataFrame]
250
+ #
251
+ # @example
252
+ # df = Polars::DataFrame.new(
253
+ # {
254
+ # "a" => [1, 2, 2, 3, 4, 5],
255
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
256
+ # "c" => [true, true, true, false, false, true],
257
+ # "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
258
+ # }
259
+ # )
260
+ # df.group_by("d", maintain_order: true).first
261
+ # # =>
262
+ # # shape: (3, 4)
263
+ # # ┌────────┬─────┬──────┬───────┐
264
+ # # │ d ┆ a ┆ b ┆ c │
265
+ # # │ --- ┆ --- ┆ --- ┆ --- │
266
+ # # │ str ┆ i64 ┆ f64 ┆ bool │
267
+ # # ╞════════╪═════╪══════╪═══════╡
268
+ # # │ Apple ┆ 1 ┆ 0.5 ┆ true │
269
+ # # │ Orange ┆ 2 ┆ 0.5 ┆ true │
270
+ # # │ Banana ┆ 4 ┆ 13.0 ┆ false │
271
+ # # └────────┴─────┴──────┴───────┘
272
+ def first
273
+ agg(Polars.all.first)
274
+ end
275
+
276
+ # Aggregate the last values in the group.
277
+ #
278
+ # @return [DataFrame]
279
+ #
280
+ # @example
281
+ # df = Polars::DataFrame.new(
282
+ # {
283
+ # "a" => [1, 2, 2, 3, 4, 5],
284
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
285
+ # "c" => [true, true, true, false, false, true],
286
+ # "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
287
+ # }
288
+ # )
289
+ # df.group_by("d", maintain_order: true).last
290
+ # # =>
291
+ # # shape: (3, 4)
292
+ # # ┌────────┬─────┬──────┬───────┐
293
+ # # │ d ┆ a ┆ b ┆ c │
294
+ # # │ --- ┆ --- ┆ --- ┆ --- │
295
+ # # │ str ┆ i64 ┆ f64 ┆ bool │
296
+ # # ╞════════╪═════╪══════╪═══════╡
297
+ # # │ Apple ┆ 3 ┆ 10.0 ┆ false │
298
+ # # │ Orange ┆ 2 ┆ 0.5 ┆ true │
299
+ # # │ Banana ┆ 5 ┆ 14.0 ┆ true │
300
+ # # └────────┴─────┴──────┴───────┘
301
+ def last
302
+ agg(Polars.all.last)
303
+ end
304
+
305
+ # Reduce the groups to the sum.
306
+ #
307
+ # @return [DataFrame]
308
+ #
309
+ # @example
310
+ # df = Polars::DataFrame.new(
311
+ # {
312
+ # "a" => [1, 2, 2, 3, 4, 5],
313
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
314
+ # "c" => [true, true, true, false, false, true],
315
+ # "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
316
+ # }
317
+ # )
318
+ # df.group_by("d", maintain_order: true).sum
319
+ # # =>
320
+ # # shape: (3, 4)
321
+ # # ┌────────┬─────┬──────┬─────┐
322
+ # # │ d ┆ a ┆ b ┆ c │
323
+ # # │ --- ┆ --- ┆ --- ┆ --- │
324
+ # # │ str ┆ i64 ┆ f64 ┆ u32 │
325
+ # # ╞════════╪═════╪══════╪═════╡
326
+ # # │ Apple ┆ 6 ┆ 14.5 ┆ 2 │
327
+ # # │ Orange ┆ 2 ┆ 0.5 ┆ 1 │
328
+ # # │ Banana ┆ 9 ┆ 27.0 ┆ 1 │
329
+ # # └────────┴─────┴──────┴─────┘
330
+ def sum
331
+ agg(Polars.all.sum)
332
+ end
333
+
334
+ # Reduce the groups to the minimal value.
335
+ #
336
+ # @return [DataFrame]
337
+ #
338
+ # @example
339
+ # df = Polars::DataFrame.new(
340
+ # {
341
+ # "a" => [1, 2, 2, 3, 4, 5],
342
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
343
+ # "c" => [true, true, true, false, false, true],
344
+ # "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"],
345
+ # }
346
+ # )
347
+ # df.group_by("d", maintain_order: true).min
348
+ # # =>
349
+ # # shape: (3, 4)
350
+ # # ┌────────┬─────┬──────┬───────┐
351
+ # # │ d ┆ a ┆ b ┆ c │
352
+ # # │ --- ┆ --- ┆ --- ┆ --- │
353
+ # # │ str ┆ i64 ┆ f64 ┆ bool │
354
+ # # ╞════════╪═════╪══════╪═══════╡
355
+ # # │ Apple ┆ 1 ┆ 0.5 ┆ false │
356
+ # # │ Orange ┆ 2 ┆ 0.5 ┆ true │
357
+ # # │ Banana ┆ 4 ┆ 13.0 ┆ false │
358
+ # # └────────┴─────┴──────┴───────┘
359
+ def min
360
+ agg(Polars.all.min)
361
+ end
362
+
363
+ # Reduce the groups to the maximal value.
364
+ #
365
+ # @return [DataFrame]
366
+ #
367
+ # @example
368
+ # df = Polars::DataFrame.new(
369
+ # {
370
+ # "a" => [1, 2, 2, 3, 4, 5],
371
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
372
+ # "c" => [true, true, true, false, false, true],
373
+ # "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
374
+ # }
375
+ # )
376
+ # df.group_by("d", maintain_order: true).max
377
+ # # =>
378
+ # # shape: (3, 4)
379
+ # # ┌────────┬─────┬──────┬──────┐
380
+ # # │ d ┆ a ┆ b ┆ c │
381
+ # # │ --- ┆ --- ┆ --- ┆ --- │
382
+ # # │ str ┆ i64 ┆ f64 ┆ bool │
383
+ # # ╞════════╪═════╪══════╪══════╡
384
+ # # │ Apple ┆ 3 ┆ 10.0 ┆ true │
385
+ # # │ Orange ┆ 2 ┆ 0.5 ┆ true │
386
+ # # │ Banana ┆ 5 ┆ 14.0 ┆ true │
387
+ # # └────────┴─────┴──────┴──────┘
388
+ def max
389
+ agg(Polars.all.max)
390
+ end
391
+
392
+ # Count the number of values in each group.
393
+ #
394
+ # @return [DataFrame]
395
+ #
396
+ # @example
397
+ # df = Polars::DataFrame.new(
398
+ # {
399
+ # "a" => [1, 2, 2, 3, 4, 5],
400
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
401
+ # "c" => [true, true, true, false, false, true],
402
+ # "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
403
+ # }
404
+ # )
405
+ # df.group_by("d", maintain_order: true).count
406
+ # # =>
407
+ # # shape: (3, 2)
408
+ # # ┌────────┬───────┐
409
+ # # │ d ┆ count │
410
+ # # │ --- ┆ --- │
411
+ # # │ str ┆ u32 │
412
+ # # ╞════════╪═══════╡
413
+ # # │ Apple ┆ 3 │
414
+ # # │ Orange ┆ 1 │
415
+ # # │ Banana ┆ 2 │
416
+ # # └────────┴───────┘
417
+ def count
418
+ agg(Polars.len.alias("count"))
419
+ end
420
+
421
+ # Reduce the groups to the mean values.
422
+ #
423
+ # @return [DataFrame]
424
+ #
425
+ # @example
426
+ # df = Polars::DataFrame.new(
427
+ # {
428
+ # "a" => [1, 2, 2, 3, 4, 5],
429
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
430
+ # "c" => [true, true, true, false, false, true],
431
+ # "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
432
+ # }
433
+ # )
434
+ # df.group_by("d", maintain_order: true).mean
435
+ # # =>
436
+ # # shape: (3, 4)
437
+ # # ┌────────┬─────┬──────────┬──────────┐
438
+ # # │ d ┆ a ┆ b ┆ c │
439
+ # # │ --- ┆ --- ┆ --- ┆ --- │
440
+ # # │ str ┆ f64 ┆ f64 ┆ f64 │
441
+ # # ╞════════╪═════╪══════════╪══════════╡
442
+ # # │ Apple ┆ 2.0 ┆ 4.833333 ┆ 0.666667 │
443
+ # # │ Orange ┆ 2.0 ┆ 0.5 ┆ 1.0 │
444
+ # # │ Banana ┆ 4.5 ┆ 13.5 ┆ 0.5 │
445
+ # # └────────┴─────┴──────────┴──────────┘
446
+ def mean
447
+ agg(Polars.all.mean)
448
+ end
449
+
450
+ # Count the unique values per group.
451
+ #
452
+ # @return [DataFrame]
453
+ #
454
+ # @example
455
+ # df = Polars::DataFrame.new(
456
+ # {
457
+ # "a" => [1, 2, 1, 3, 4, 5],
458
+ # "b" => [0.5, 0.5, 0.5, 10, 13, 14],
459
+ # "d" => ["Apple", "Banana", "Apple", "Apple", "Banana", "Banana"]
460
+ # }
461
+ # )
462
+ # df.group_by("d", maintain_order: true).n_unique
463
+ # # =>
464
+ # # shape: (2, 3)
465
+ # # ┌────────┬─────┬─────┐
466
+ # # │ d ┆ a ┆ b │
467
+ # # │ --- ┆ --- ┆ --- │
468
+ # # │ str ┆ u32 ┆ u32 │
469
+ # # ╞════════╪═════╪═════╡
470
+ # # │ Apple ┆ 2 ┆ 2 │
471
+ # # │ Banana ┆ 3 ┆ 3 │
472
+ # # └────────┴─────┴─────┘
473
+ def n_unique
474
+ agg(Polars.all.n_unique)
475
+ end
476
+
477
+ # Compute the quantile per group.
478
+ #
479
+ # @param quantile [Float]
480
+ # Quantile between 0.0 and 1.0.
481
+ # @param interpolation ["nearest", "higher", "lower", "midpoint", "linear"]
482
+ # Interpolation method.
483
+ #
484
+ # @return [DataFrame]
485
+ #
486
+ # @example
487
+ # df = Polars::DataFrame.new(
488
+ # {
489
+ # "a" => [1, 2, 2, 3, 4, 5],
490
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
491
+ # "d" => ["Apple", "Orange", "Apple", "Apple", "Banana", "Banana"]
492
+ # }
493
+ # )
494
+ # df.group_by("d", maintain_order: true).quantile(1)
495
+ # # =>
496
+ # # shape: (3, 3)
497
+ # # ┌────────┬─────┬──────┐
498
+ # # │ d ┆ a ┆ b │
499
+ # # │ --- ┆ --- ┆ --- │
500
+ # # │ str ┆ f64 ┆ f64 │
501
+ # # ╞════════╪═════╪══════╡
502
+ # # │ Apple ┆ 3.0 ┆ 10.0 │
503
+ # # │ Orange ┆ 2.0 ┆ 0.5 │
504
+ # # │ Banana ┆ 5.0 ┆ 14.0 │
505
+ # # └────────┴─────┴──────┘
506
+ def quantile(quantile, interpolation: "nearest")
507
+ agg(Polars.all.quantile(quantile, interpolation: interpolation))
508
+ end
509
+
510
+ # Return the median per group.
511
+ #
512
+ # @return [DataFrame]
513
+ #
514
+ # @example
515
+ # df = Polars::DataFrame.new(
516
+ # {
517
+ # "a" => [1, 2, 2, 3, 4, 5],
518
+ # "b" => [0.5, 0.5, 4, 10, 13, 14],
519
+ # "d" => ["Apple", "Banana", "Apple", "Apple", "Banana", "Banana"]
520
+ # }
521
+ # )
522
+ # df.group_by("d", maintain_order: true).median
523
+ # # =>
524
+ # # shape: (2, 3)
525
+ # # ┌────────┬─────┬──────┐
526
+ # # │ d ┆ a ┆ b │
527
+ # # │ --- ┆ --- ┆ --- │
528
+ # # │ str ┆ f64 ┆ f64 │
529
+ # # ╞════════╪═════╪══════╡
530
+ # # │ Apple ┆ 2.0 ┆ 4.0 │
531
+ # # │ Banana ┆ 4.0 ┆ 13.0 │
532
+ # # └────────┴─────┴──────┘
533
+ def median
534
+ agg(Polars.all.median)
535
+ end
536
+
537
+ # Plot data.
538
+ #
539
+ # @return [Vega::LiteChart]
540
+ def plot(*args, **options)
541
+ raise ArgumentError, "Multiple groups not supported" if @by.is_a?(::Array) && @by.size > 1
542
+ # same message as Ruby
543
+ raise ArgumentError, "unknown keyword: :group" if options.key?(:group)
544
+
545
+ @df.plot(*args, **options, group: @by)
546
+ end
547
+ end
548
+ end