polars-df 0.10.0-x86_64-linux-musl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. checksums.yaml +7 -0
  2. data/.yardopts +3 -0
  3. data/CHANGELOG.md +175 -0
  4. data/Cargo.lock +2536 -0
  5. data/Cargo.toml +6 -0
  6. data/LICENSE-THIRD-PARTY.txt +38726 -0
  7. data/LICENSE.txt +20 -0
  8. data/README.md +437 -0
  9. data/lib/polars/3.1/polars.so +0 -0
  10. data/lib/polars/3.2/polars.so +0 -0
  11. data/lib/polars/3.3/polars.so +0 -0
  12. data/lib/polars/array_expr.rb +537 -0
  13. data/lib/polars/array_name_space.rb +423 -0
  14. data/lib/polars/batched_csv_reader.rb +98 -0
  15. data/lib/polars/binary_expr.rb +77 -0
  16. data/lib/polars/binary_name_space.rb +66 -0
  17. data/lib/polars/cat_expr.rb +72 -0
  18. data/lib/polars/cat_name_space.rb +125 -0
  19. data/lib/polars/config.rb +530 -0
  20. data/lib/polars/convert.rb +93 -0
  21. data/lib/polars/data_frame.rb +5418 -0
  22. data/lib/polars/data_types.rb +466 -0
  23. data/lib/polars/date_time_expr.rb +1444 -0
  24. data/lib/polars/date_time_name_space.rb +1484 -0
  25. data/lib/polars/dynamic_group_by.rb +52 -0
  26. data/lib/polars/exceptions.rb +31 -0
  27. data/lib/polars/expr.rb +6105 -0
  28. data/lib/polars/expr_dispatch.rb +22 -0
  29. data/lib/polars/functions/aggregation/horizontal.rb +246 -0
  30. data/lib/polars/functions/aggregation/vertical.rb +282 -0
  31. data/lib/polars/functions/as_datatype.rb +248 -0
  32. data/lib/polars/functions/col.rb +47 -0
  33. data/lib/polars/functions/eager.rb +182 -0
  34. data/lib/polars/functions/lazy.rb +1280 -0
  35. data/lib/polars/functions/len.rb +49 -0
  36. data/lib/polars/functions/lit.rb +35 -0
  37. data/lib/polars/functions/random.rb +16 -0
  38. data/lib/polars/functions/range/date_range.rb +103 -0
  39. data/lib/polars/functions/range/int_range.rb +51 -0
  40. data/lib/polars/functions/repeat.rb +144 -0
  41. data/lib/polars/functions/whenthen.rb +96 -0
  42. data/lib/polars/functions.rb +57 -0
  43. data/lib/polars/group_by.rb +548 -0
  44. data/lib/polars/io.rb +890 -0
  45. data/lib/polars/lazy_frame.rb +2833 -0
  46. data/lib/polars/lazy_group_by.rb +84 -0
  47. data/lib/polars/list_expr.rb +791 -0
  48. data/lib/polars/list_name_space.rb +445 -0
  49. data/lib/polars/meta_expr.rb +222 -0
  50. data/lib/polars/name_expr.rb +198 -0
  51. data/lib/polars/plot.rb +109 -0
  52. data/lib/polars/rolling_group_by.rb +37 -0
  53. data/lib/polars/series.rb +4527 -0
  54. data/lib/polars/slice.rb +104 -0
  55. data/lib/polars/sql_context.rb +194 -0
  56. data/lib/polars/string_cache.rb +75 -0
  57. data/lib/polars/string_expr.rb +1519 -0
  58. data/lib/polars/string_name_space.rb +810 -0
  59. data/lib/polars/struct_expr.rb +98 -0
  60. data/lib/polars/struct_name_space.rb +96 -0
  61. data/lib/polars/testing.rb +507 -0
  62. data/lib/polars/utils.rb +422 -0
  63. data/lib/polars/version.rb +4 -0
  64. data/lib/polars/whenthen.rb +83 -0
  65. data/lib/polars-df.rb +1 -0
  66. data/lib/polars.rb +72 -0
  67. metadata +125 -0
@@ -0,0 +1,1444 @@
1
+ module Polars
2
+ # Namespace for datetime related expressions.
3
+ class DateTimeExpr
4
+ # @private
5
+ attr_accessor :_rbexpr
6
+
7
+ # @private
8
+ def initialize(expr)
9
+ self._rbexpr = expr._rbexpr
10
+ end
11
+
12
+ # Divide the date/datetime range into buckets.
13
+ #
14
+ # Each date/datetime is mapped to the start of its bucket.
15
+ #
16
+ # @param every [String]
17
+ # Every interval start and period length
18
+ # @param offset [String]
19
+ # Offset the window
20
+ #
21
+ # @return [Expr]
22
+ #
23
+ # @note
24
+ # The `every` and `offset` argument are created with the
25
+ # the following small string formatting language:
26
+ #
27
+ # 1ns # 1 nanosecond
28
+ # 1us # 1 microsecond
29
+ # 1ms # 1 millisecond
30
+ # 1s # 1 second
31
+ # 1m # 1 minute
32
+ # 1h # 1 hour
33
+ # 1d # 1 day
34
+ # 1w # 1 week
35
+ # 1mo # 1 calendar month
36
+ # 1y # 1 calendar year
37
+ #
38
+ # eg: 3d12h4m25s # 3 days, 12 hours, 4 minutes, and 25 seconds
39
+ #
40
+ # @example
41
+ # start = DateTime.new(2001, 1, 1)
42
+ # stop = DateTime.new(2001, 1, 2)
43
+ # df = Polars.date_range(
44
+ # start, stop, "225m", name: "dates"
45
+ # ).to_frame
46
+ # # =>
47
+ # # shape: (7, 1)
48
+ # # ┌─────────────────────┐
49
+ # # │ dates │
50
+ # # │ --- │
51
+ # # │ datetime[μs] │
52
+ # # ╞═════════════════════╡
53
+ # # │ 2001-01-01 00:00:00 │
54
+ # # │ 2001-01-01 03:45:00 │
55
+ # # │ 2001-01-01 07:30:00 │
56
+ # # │ 2001-01-01 11:15:00 │
57
+ # # │ 2001-01-01 15:00:00 │
58
+ # # │ 2001-01-01 18:45:00 │
59
+ # # │ 2001-01-01 22:30:00 │
60
+ # # └─────────────────────┘
61
+ #
62
+ # @example
63
+ # df.select(Polars.col("dates").dt.truncate("1h"))
64
+ # # =>
65
+ # # shape: (7, 1)
66
+ # # ┌─────────────────────┐
67
+ # # │ dates │
68
+ # # │ --- │
69
+ # # │ datetime[μs] │
70
+ # # ╞═════════════════════╡
71
+ # # │ 2001-01-01 00:00:00 │
72
+ # # │ 2001-01-01 03:00:00 │
73
+ # # │ 2001-01-01 07:00:00 │
74
+ # # │ 2001-01-01 11:00:00 │
75
+ # # │ 2001-01-01 15:00:00 │
76
+ # # │ 2001-01-01 18:00:00 │
77
+ # # │ 2001-01-01 22:00:00 │
78
+ # # └─────────────────────┘
79
+ #
80
+ # @example
81
+ # start = DateTime.new(2001, 1, 1)
82
+ # stop = DateTime.new(2001, 1, 1, 1)
83
+ # df = Polars.date_range(start, stop, "10m", name: "dates").to_frame
84
+ # df.select(["dates", Polars.col("dates").dt.truncate("30m").alias("truncate")])
85
+ # # =>
86
+ # # shape: (7, 2)
87
+ # # ┌─────────────────────┬─────────────────────┐
88
+ # # │ dates ┆ truncate │
89
+ # # │ --- ┆ --- │
90
+ # # │ datetime[μs] ┆ datetime[μs] │
91
+ # # ╞═════════════════════╪═════════════════════╡
92
+ # # │ 2001-01-01 00:00:00 ┆ 2001-01-01 00:00:00 │
93
+ # # │ 2001-01-01 00:10:00 ┆ 2001-01-01 00:00:00 │
94
+ # # │ 2001-01-01 00:20:00 ┆ 2001-01-01 00:00:00 │
95
+ # # │ 2001-01-01 00:30:00 ┆ 2001-01-01 00:30:00 │
96
+ # # │ 2001-01-01 00:40:00 ┆ 2001-01-01 00:30:00 │
97
+ # # │ 2001-01-01 00:50:00 ┆ 2001-01-01 00:30:00 │
98
+ # # │ 2001-01-01 01:00:00 ┆ 2001-01-01 01:00:00 │
99
+ # # └─────────────────────┴─────────────────────┘
100
+ def truncate(every, offset: nil, use_earliest: nil)
101
+ if offset.nil?
102
+ offset = "0ns"
103
+ end
104
+
105
+ if !every.is_a?(Expr)
106
+ every = Utils._timedelta_to_pl_duration(every)
107
+ end
108
+ every = Utils.parse_as_expression(every, str_as_lit: true)
109
+
110
+ Utils.wrap_expr(
111
+ _rbexpr.dt_truncate(
112
+ every,
113
+ Utils._timedelta_to_pl_duration(offset),
114
+ )
115
+ )
116
+ end
117
+
118
+ # Divide the date/datetime range into buckets.
119
+ #
120
+ # Each date/datetime in the first half of the interval
121
+ # is mapped to the start of its bucket.
122
+ # Each date/datetime in the seconod half of the interval
123
+ # is mapped to the end of its bucket.
124
+ #
125
+ # @param every [String]
126
+ # Every interval start and period length
127
+ # @param offset [String]
128
+ # Offset the window
129
+ #
130
+ # @return [Expr]
131
+ #
132
+ # @note
133
+ # The `every` and `offset` argument are created with the
134
+ # the following small string formatting language:
135
+ #
136
+ # 1ns # 1 nanosecond
137
+ # 1us # 1 microsecond
138
+ # 1ms # 1 millisecond
139
+ # 1s # 1 second
140
+ # 1m # 1 minute
141
+ # 1h # 1 hour
142
+ # 1d # 1 day
143
+ # 1w # 1 week
144
+ # 1mo # 1 calendar month
145
+ # 1y # 1 calendar year
146
+ #
147
+ # eg: 3d12h4m25s # 3 days, 12 hours, 4 minutes, and 25 seconds
148
+ #
149
+ # @note
150
+ # This functionality is currently experimental and may
151
+ # change without it being considered a breaking change.
152
+ #
153
+ # @example
154
+ # start = DateTime.new(2001, 1, 1)
155
+ # stop = DateTime.new(2001, 1, 2)
156
+ # df = Polars.date_range(
157
+ # start, stop, "225m", name: "dates"
158
+ # ).to_frame
159
+ # # =>
160
+ # # shape: (7, 1)
161
+ # # ┌─────────────────────┐
162
+ # # │ dates │
163
+ # # │ --- │
164
+ # # │ datetime[μs] │
165
+ # # ╞═════════════════════╡
166
+ # # │ 2001-01-01 00:00:00 │
167
+ # # │ 2001-01-01 03:45:00 │
168
+ # # │ 2001-01-01 07:30:00 │
169
+ # # │ 2001-01-01 11:15:00 │
170
+ # # │ 2001-01-01 15:00:00 │
171
+ # # │ 2001-01-01 18:45:00 │
172
+ # # │ 2001-01-01 22:30:00 │
173
+ # # └─────────────────────┘
174
+ #
175
+ # @example
176
+ # df.select(Polars.col("dates").dt.round("1h"))
177
+ # # =>
178
+ # # shape: (7, 1)
179
+ # # ┌─────────────────────┐
180
+ # # │ dates │
181
+ # # │ --- │
182
+ # # │ datetime[μs] │
183
+ # # ╞═════════════════════╡
184
+ # # │ 2001-01-01 00:00:00 │
185
+ # # │ 2001-01-01 04:00:00 │
186
+ # # │ 2001-01-01 08:00:00 │
187
+ # # │ 2001-01-01 11:00:00 │
188
+ # # │ 2001-01-01 15:00:00 │
189
+ # # │ 2001-01-01 19:00:00 │
190
+ # # │ 2001-01-01 23:00:00 │
191
+ # # └─────────────────────┘
192
+ #
193
+ # @example
194
+ # start = DateTime.new(2001, 1, 1)
195
+ # stop = DateTime.new(2001, 1, 1, 1)
196
+ # df = Polars.date_range(start, stop, "10m", name: "dates").to_frame
197
+ # df.select(["dates", Polars.col("dates").dt.round("30m").alias("round")])
198
+ # # =>
199
+ # # shape: (7, 2)
200
+ # # ┌─────────────────────┬─────────────────────┐
201
+ # # │ dates ┆ round │
202
+ # # │ --- ┆ --- │
203
+ # # │ datetime[μs] ┆ datetime[μs] │
204
+ # # ╞═════════════════════╪═════════════════════╡
205
+ # # │ 2001-01-01 00:00:00 ┆ 2001-01-01 00:00:00 │
206
+ # # │ 2001-01-01 00:10:00 ┆ 2001-01-01 00:00:00 │
207
+ # # │ 2001-01-01 00:20:00 ┆ 2001-01-01 00:30:00 │
208
+ # # │ 2001-01-01 00:30:00 ┆ 2001-01-01 00:30:00 │
209
+ # # │ 2001-01-01 00:40:00 ┆ 2001-01-01 00:30:00 │
210
+ # # │ 2001-01-01 00:50:00 ┆ 2001-01-01 01:00:00 │
211
+ # # │ 2001-01-01 01:00:00 ┆ 2001-01-01 01:00:00 │
212
+ # # └─────────────────────┴─────────────────────┘
213
+ def round(every, offset: nil)
214
+ if offset.nil?
215
+ offset = "0ns"
216
+ end
217
+
218
+ Utils.wrap_expr(
219
+ _rbexpr.dt_round(
220
+ Utils._timedelta_to_pl_duration(every),
221
+ Utils._timedelta_to_pl_duration(offset)
222
+ )
223
+ )
224
+ end
225
+
226
+ # Create a naive Datetime from an existing Date/Datetime expression and a Time.
227
+ #
228
+ # If the underlying expression is a Datetime then its time component is replaced,
229
+ # and if it is a Date then a new Datetime is created by combining the two values.
230
+ #
231
+ # @param time [Object]
232
+ # A Ruby time literal or Polars expression/column that resolves to a time.
233
+ # @param time_unit ["ns", "us", "ms"]
234
+ # Unit of time.
235
+ #
236
+ # @return [Expr]
237
+ def combine(time, time_unit: "us")
238
+ unless time.is_a?(Time) || time.is_a?(Expr)
239
+ raise TypeError, "expected 'time' to be a Ruby time or Polars expression, found #{time}"
240
+ end
241
+ time = Utils.expr_to_lit_or_expr(time)
242
+ Utils.wrap_expr(_rbexpr.dt_combine(time._rbexpr, time_unit))
243
+ end
244
+
245
+ # Format Date/datetime with a formatting rule.
246
+ #
247
+ # See [chrono strftime/strptime](https://docs.rs/chrono/latest/chrono/format/strftime/index.html).
248
+ #
249
+ # @return [Expr]
250
+ def strftime(fmt)
251
+ Utils.wrap_expr(_rbexpr.strftime(fmt))
252
+ end
253
+
254
+ # Extract year from underlying Date representation.
255
+ #
256
+ # Applies to Date and Datetime columns.
257
+ #
258
+ # Returns the year number in the calendar date.
259
+ #
260
+ # @return [Expr]
261
+ #
262
+ # @example
263
+ # start = DateTime.new(2001, 1, 1)
264
+ # stop = DateTime.new(2002, 7, 1)
265
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "180d")})
266
+ # # =>
267
+ # # shape: (4, 1)
268
+ # # ┌─────────────────────┐
269
+ # # │ date │
270
+ # # │ --- │
271
+ # # │ datetime[μs] │
272
+ # # ╞═════════════════════╡
273
+ # # │ 2001-01-01 00:00:00 │
274
+ # # │ 2001-06-30 00:00:00 │
275
+ # # │ 2001-12-27 00:00:00 │
276
+ # # │ 2002-06-25 00:00:00 │
277
+ # # └─────────────────────┘
278
+ #
279
+ # @example
280
+ # df.select(Polars.col("date").dt.year)
281
+ # # =>
282
+ # # shape: (4, 1)
283
+ # # ┌──────┐
284
+ # # │ date │
285
+ # # │ --- │
286
+ # # │ i32 │
287
+ # # ╞══════╡
288
+ # # │ 2001 │
289
+ # # │ 2001 │
290
+ # # │ 2001 │
291
+ # # │ 2002 │
292
+ # # └──────┘
293
+ def year
294
+ Utils.wrap_expr(_rbexpr.year)
295
+ end
296
+
297
+ # Determine whether the year of the underlying date is a leap year.
298
+ #
299
+ # Applies to Date and Datetime columns.
300
+ #
301
+ # @return [Expr]
302
+ #
303
+ # @example
304
+ # start = DateTime.new(2000, 1, 1)
305
+ # stop = DateTime.new(2002, 1, 1)
306
+ # df = Polars::DataFrame.new(
307
+ # {"date" => Polars.date_range(start, stop, "1y")}
308
+ # )
309
+ # df.select(Polars.col("date").dt.is_leap_year)
310
+ # # =>
311
+ # # shape: (3, 1)
312
+ # # ┌───────┐
313
+ # # │ date │
314
+ # # │ --- │
315
+ # # │ bool │
316
+ # # ╞═══════╡
317
+ # # │ true │
318
+ # # │ false │
319
+ # # │ false │
320
+ # # └───────┘
321
+ def is_leap_year
322
+ Utils.wrap_expr(_rbexpr.dt_is_leap_year)
323
+ end
324
+
325
+ # Extract ISO year from underlying Date representation.
326
+ #
327
+ # Applies to Date and Datetime columns.
328
+ #
329
+ # Returns the year number in the ISO standard.
330
+ # This may not correspond with the calendar year.
331
+ #
332
+ # @return [Expr]
333
+ def iso_year
334
+ Utils.wrap_expr(_rbexpr.iso_year)
335
+ end
336
+
337
+ # Extract quarter from underlying Date representation.
338
+ #
339
+ # Applies to Date and Datetime columns.
340
+ #
341
+ # Returns the quarter ranging from 1 to 4.
342
+ #
343
+ # @return [Expr]
344
+ #
345
+ # @example
346
+ # start = DateTime.new(2001, 1, 1)
347
+ # stop = DateTime.new(2002, 6, 1)
348
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "180d")})
349
+ # # =>
350
+ # # shape: (3, 1)
351
+ # # ┌─────────────────────┐
352
+ # # │ date │
353
+ # # │ --- │
354
+ # # │ datetime[μs] │
355
+ # # ╞═════════════════════╡
356
+ # # │ 2001-01-01 00:00:00 │
357
+ # # │ 2001-06-30 00:00:00 │
358
+ # # │ 2001-12-27 00:00:00 │
359
+ # # └─────────────────────┘
360
+ #
361
+ # @example
362
+ # df.select(Polars.col("date").dt.quarter)
363
+ # # =>
364
+ # # shape: (3, 1)
365
+ # # ┌──────┐
366
+ # # │ date │
367
+ # # │ --- │
368
+ # # │ i8 │
369
+ # # ╞══════╡
370
+ # # │ 1 │
371
+ # # │ 2 │
372
+ # # │ 4 │
373
+ # # └──────┘
374
+ def quarter
375
+ Utils.wrap_expr(_rbexpr.quarter)
376
+ end
377
+
378
+ # Extract month from underlying Date representation.
379
+ #
380
+ # Applies to Date and Datetime columns.
381
+ #
382
+ # Returns the month number starting from 1.
383
+ # The return value ranges from 1 to 12.
384
+ #
385
+ # @return [Expr]
386
+ #
387
+ # @example
388
+ # start = DateTime.new(2001, 1, 1)
389
+ # stop = DateTime.new(2001, 4, 1)
390
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "31d")})
391
+ # # =>
392
+ # # shape: (3, 1)
393
+ # # ┌─────────────────────┐
394
+ # # │ date │
395
+ # # │ --- │
396
+ # # │ datetime[μs] │
397
+ # # ╞═════════════════════╡
398
+ # # │ 2001-01-01 00:00:00 │
399
+ # # │ 2001-02-01 00:00:00 │
400
+ # # │ 2001-03-04 00:00:00 │
401
+ # # └─────────────────────┘
402
+ #
403
+ # @example
404
+ # df.select(Polars.col("date").dt.month)
405
+ # # =>
406
+ # # shape: (3, 1)
407
+ # # ┌──────┐
408
+ # # │ date │
409
+ # # │ --- │
410
+ # # │ i8 │
411
+ # # ╞══════╡
412
+ # # │ 1 │
413
+ # # │ 2 │
414
+ # # │ 3 │
415
+ # # └──────┘
416
+ def month
417
+ Utils.wrap_expr(_rbexpr.month)
418
+ end
419
+
420
+ # Extract the week from the underlying Date representation.
421
+ #
422
+ # Applies to Date and Datetime columns.
423
+ #
424
+ # Returns the ISO week number starting from 1.
425
+ # The return value ranges from 1 to 53. (The last week of year differs by years.)
426
+ #
427
+ # @return [Expr]
428
+ #
429
+ # @example
430
+ # start = DateTime.new(2001, 1, 1)
431
+ # stop = DateTime.new(2001, 4, 1)
432
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "31d")})
433
+ # # =>
434
+ # # shape: (3, 1)
435
+ # # ┌─────────────────────┐
436
+ # # │ date │
437
+ # # │ --- │
438
+ # # │ datetime[μs] │
439
+ # # ╞═════════════════════╡
440
+ # # │ 2001-01-01 00:00:00 │
441
+ # # │ 2001-02-01 00:00:00 │
442
+ # # │ 2001-03-04 00:00:00 │
443
+ # # └─────────────────────┘
444
+ #
445
+ # @example
446
+ # df.select(Polars.col("date").dt.week)
447
+ # # =>
448
+ # # shape: (3, 1)
449
+ # # ┌──────┐
450
+ # # │ date │
451
+ # # │ --- │
452
+ # # │ i8 │
453
+ # # ╞══════╡
454
+ # # │ 1 │
455
+ # # │ 5 │
456
+ # # │ 9 │
457
+ # # └──────┘
458
+ def week
459
+ Utils.wrap_expr(_rbexpr.week)
460
+ end
461
+
462
+ # Extract the week day from the underlying Date representation.
463
+ #
464
+ # Applies to Date and Datetime columns.
465
+ #
466
+ # Returns the ISO weekday number where monday = 1 and sunday = 7
467
+ #
468
+ # @return [Expr]
469
+ #
470
+ # @example
471
+ # start = DateTime.new(2001, 1, 1)
472
+ # stop = DateTime.new(2001, 1, 9)
473
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "3d")})
474
+ # # =>
475
+ # # shape: (3, 1)
476
+ # # ┌─────────────────────┐
477
+ # # │ date │
478
+ # # │ --- │
479
+ # # │ datetime[μs] │
480
+ # # ╞═════════════════════╡
481
+ # # │ 2001-01-01 00:00:00 │
482
+ # # │ 2001-01-04 00:00:00 │
483
+ # # │ 2001-01-07 00:00:00 │
484
+ # # └─────────────────────┘
485
+ #
486
+ # @example
487
+ # df.select(
488
+ # [
489
+ # Polars.col("date").dt.weekday.alias("weekday"),
490
+ # Polars.col("date").dt.day.alias("day_of_month"),
491
+ # Polars.col("date").dt.ordinal_day.alias("day_of_year")
492
+ # ]
493
+ # )
494
+ # # =>
495
+ # # shape: (3, 3)
496
+ # # ┌─────────┬──────────────┬─────────────┐
497
+ # # │ weekday ┆ day_of_month ┆ day_of_year │
498
+ # # │ --- ┆ --- ┆ --- │
499
+ # # │ i8 ┆ i8 ┆ i16 │
500
+ # # ╞═════════╪══════════════╪═════════════╡
501
+ # # │ 1 ┆ 1 ┆ 1 │
502
+ # # │ 4 ┆ 4 ┆ 4 │
503
+ # # │ 7 ┆ 7 ┆ 7 │
504
+ # # └─────────┴──────────────┴─────────────┘
505
+ def weekday
506
+ Utils.wrap_expr(_rbexpr.weekday)
507
+ end
508
+
509
+ # Extract day from underlying Date representation.
510
+ #
511
+ # Applies to Date and Datetime columns.
512
+ #
513
+ # Returns the day of month starting from 1.
514
+ # The return value ranges from 1 to 31. (The last day of month differs by months.)
515
+ #
516
+ # @return [Expr]
517
+ #
518
+ # @example
519
+ # start = DateTime.new(2001, 1, 1)
520
+ # stop = DateTime.new(2001, 1, 9)
521
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "3d")})
522
+ # # =>
523
+ # # shape: (3, 1)
524
+ # # ┌─────────────────────┐
525
+ # # │ date │
526
+ # # │ --- │
527
+ # # │ datetime[μs] │
528
+ # # ╞═════════════════════╡
529
+ # # │ 2001-01-01 00:00:00 │
530
+ # # │ 2001-01-04 00:00:00 │
531
+ # # │ 2001-01-07 00:00:00 │
532
+ # # └─────────────────────┘
533
+ #
534
+ # @example
535
+ # df.select(
536
+ # [
537
+ # Polars.col("date").dt.weekday.alias("weekday"),
538
+ # Polars.col("date").dt.day.alias("day_of_month"),
539
+ # Polars.col("date").dt.ordinal_day.alias("day_of_year")
540
+ # ]
541
+ # )
542
+ # # =>
543
+ # # shape: (3, 3)
544
+ # # ┌─────────┬──────────────┬─────────────┐
545
+ # # │ weekday ┆ day_of_month ┆ day_of_year │
546
+ # # │ --- ┆ --- ┆ --- │
547
+ # # │ i8 ┆ i8 ┆ i16 │
548
+ # # ╞═════════╪══════════════╪═════════════╡
549
+ # # │ 1 ┆ 1 ┆ 1 │
550
+ # # │ 4 ┆ 4 ┆ 4 │
551
+ # # │ 7 ┆ 7 ┆ 7 │
552
+ # # └─────────┴──────────────┴─────────────┘
553
+ def day
554
+ Utils.wrap_expr(_rbexpr.day)
555
+ end
556
+
557
+ # Extract ordinal day from underlying Date representation.
558
+ #
559
+ # Applies to Date and Datetime columns.
560
+ #
561
+ # Returns the day of month starting from 1.
562
+ # The return value ranges from 1 to 31. (The last day of month differs by months.)
563
+ #
564
+ # @return [Expr]
565
+ #
566
+ # @example
567
+ # start = DateTime.new(2001, 1, 1)
568
+ # stop = DateTime.new(2001, 1, 9)
569
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "3d")})
570
+ # # =>
571
+ # # shape: (3, 1)
572
+ # # ┌─────────────────────┐
573
+ # # │ date │
574
+ # # │ --- │
575
+ # # │ datetime[μs] │
576
+ # # ╞═════════════════════╡
577
+ # # │ 2001-01-01 00:00:00 │
578
+ # # │ 2001-01-04 00:00:00 │
579
+ # # │ 2001-01-07 00:00:00 │
580
+ # # └─────────────────────┘
581
+ #
582
+ # @example
583
+ # df.select(
584
+ # [
585
+ # Polars.col("date").dt.weekday.alias("weekday"),
586
+ # Polars.col("date").dt.day.alias("day_of_month"),
587
+ # Polars.col("date").dt.ordinal_day.alias("day_of_year")
588
+ # ]
589
+ # )
590
+ # # =>
591
+ # # shape: (3, 3)
592
+ # # ┌─────────┬──────────────┬─────────────┐
593
+ # # │ weekday ┆ day_of_month ┆ day_of_year │
594
+ # # │ --- ┆ --- ┆ --- │
595
+ # # │ i8 ┆ i8 ┆ i16 │
596
+ # # ╞═════════╪══════════════╪═════════════╡
597
+ # # │ 1 ┆ 1 ┆ 1 │
598
+ # # │ 4 ┆ 4 ┆ 4 │
599
+ # # │ 7 ┆ 7 ┆ 7 │
600
+ # # └─────────┴──────────────┴─────────────┘
601
+ def ordinal_day
602
+ Utils.wrap_expr(_rbexpr.ordinal_day)
603
+ end
604
+
605
+ # Time
606
+ #
607
+ # @return [Expr]
608
+ def time
609
+ Utils.wrap_expr(_rbexpr.dt_time)
610
+ end
611
+
612
+ # Date
613
+ #
614
+ # @return [Expr]
615
+ def date
616
+ Utils.wrap_expr(_rbexpr.dt_date)
617
+ end
618
+
619
+ # Datetime
620
+ #
621
+ # @return [Expr]
622
+ def datetime
623
+ Utils.wrap_expr(_rbexpr.dt_datetime)
624
+ end
625
+
626
+ # Extract hour from underlying DateTime representation.
627
+ #
628
+ # Applies to Datetime columns.
629
+ #
630
+ # Returns the hour number from 0 to 23.
631
+ #
632
+ # @return [Expr]
633
+ #
634
+ # @example
635
+ # start = DateTime.new(2001, 1, 1)
636
+ # stop = DateTime.new(2001, 1, 2)
637
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "12h")})
638
+ # # =>
639
+ # # shape: (3, 1)
640
+ # # ┌─────────────────────┐
641
+ # # │ date │
642
+ # # │ --- │
643
+ # # │ datetime[μs] │
644
+ # # ╞═════════════════════╡
645
+ # # │ 2001-01-01 00:00:00 │
646
+ # # │ 2001-01-01 12:00:00 │
647
+ # # │ 2001-01-02 00:00:00 │
648
+ # # └─────────────────────┘
649
+ #
650
+ # @example
651
+ # df.select(Polars.col("date").dt.hour)
652
+ # # =>
653
+ # # shape: (3, 1)
654
+ # # ┌──────┐
655
+ # # │ date │
656
+ # # │ --- │
657
+ # # │ i8 │
658
+ # # ╞══════╡
659
+ # # │ 0 │
660
+ # # │ 12 │
661
+ # # │ 0 │
662
+ # # └──────┘
663
+ def hour
664
+ Utils.wrap_expr(_rbexpr.hour)
665
+ end
666
+
667
+ # Extract minutes from underlying DateTime representation.
668
+ #
669
+ # Applies to Datetime columns.
670
+ #
671
+ # Returns the minute number from 0 to 59.
672
+ #
673
+ # @return [Expr]
674
+ #
675
+ # @example
676
+ # start = DateTime.new(2001, 1, 1)
677
+ # stop = DateTime.new(2001, 1, 1, 0, 4, 0)
678
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "2m")})
679
+ # # =>
680
+ # # shape: (3, 1)
681
+ # # ┌─────────────────────┐
682
+ # # │ date │
683
+ # # │ --- │
684
+ # # │ datetime[μs] │
685
+ # # ╞═════════════════════╡
686
+ # # │ 2001-01-01 00:00:00 │
687
+ # # │ 2001-01-01 00:02:00 │
688
+ # # │ 2001-01-01 00:04:00 │
689
+ # # └─────────────────────┘
690
+ #
691
+ # @example
692
+ # df.select(Polars.col("date").dt.minute)
693
+ # # =>
694
+ # # shape: (3, 1)
695
+ # # ┌──────┐
696
+ # # │ date │
697
+ # # │ --- │
698
+ # # │ i8 │
699
+ # # ╞══════╡
700
+ # # │ 0 │
701
+ # # │ 2 │
702
+ # # │ 4 │
703
+ # # └──────┘
704
+ def minute
705
+ Utils.wrap_expr(_rbexpr.minute)
706
+ end
707
+
708
+ # Extract seconds from underlying DateTime representation.
709
+ #
710
+ # Applies to Datetime columns.
711
+ #
712
+ # Returns the integer second number from 0 to 59, or a floating
713
+ # point number from 0 < 60 if `fractional: true` that includes
714
+ # any milli/micro/nanosecond component.
715
+ #
716
+ # @return [Expr]
717
+ #
718
+ # @example
719
+ # df = Polars::DataFrame.new(
720
+ # {
721
+ # "date" => Polars.date_range(
722
+ # DateTime.new(2001, 1, 1, 0, 0, 0.456789),
723
+ # DateTime.new(2001, 1, 1, 0, 0, 6),
724
+ # "2s654321us"
725
+ # )
726
+ # }
727
+ # )
728
+ # # =>
729
+ # # shape: (3, 1)
730
+ # # ┌────────────────────────────┐
731
+ # # │ date │
732
+ # # │ --- │
733
+ # # │ datetime[μs] │
734
+ # # ╞════════════════════════════╡
735
+ # # │ 2001-01-01 00:00:00.456789 │
736
+ # # │ 2001-01-01 00:00:03.111110 │
737
+ # # │ 2001-01-01 00:00:05.765431 │
738
+ # # └────────────────────────────┘
739
+ #
740
+ # @example
741
+ # df.select(Polars.col("date").dt.second.alias("secs"))
742
+ # # =>
743
+ # # shape: (3, 1)
744
+ # # ┌──────┐
745
+ # # │ secs │
746
+ # # │ --- │
747
+ # # │ i8 │
748
+ # # ╞══════╡
749
+ # # │ 0 │
750
+ # # │ 3 │
751
+ # # │ 5 │
752
+ # # └──────┘
753
+ #
754
+ # df.select(Polars.col("date").dt.second(fractional: true).alias("secs"))
755
+ # # =>
756
+ # # shape: (3, 1)
757
+ # # ┌──────────┐
758
+ # # │ secs │
759
+ # # │ --- │
760
+ # # │ f64 │
761
+ # # ╞══════════╡
762
+ # # │ 0.456789 │
763
+ # # │ 3.11111 │
764
+ # # │ 5.765431 │
765
+ # # └──────────┘
766
+ #
767
+ # @example
768
+ # start = DateTime.new(2001, 1, 1)
769
+ # stop = DateTime.new(2001, 1, 1, 0, 0, 4)
770
+ # df = Polars::DataFrame.new(
771
+ # {"date" => Polars.date_range(start, stop, "2s")}
772
+ # )
773
+ # # =>
774
+ # # shape: (3, 1)
775
+ # # ┌─────────────────────┐
776
+ # # │ date │
777
+ # # │ --- │
778
+ # # │ datetime[μs] │
779
+ # # ╞═════════════════════╡
780
+ # # │ 2001-01-01 00:00:00 │
781
+ # # │ 2001-01-01 00:00:02 │
782
+ # # │ 2001-01-01 00:00:04 │
783
+ # # └─────────────────────┘
784
+ #
785
+ # @example
786
+ # df.select(Polars.col("date").dt.second)
787
+ # # =>
788
+ # # shape: (3, 1)
789
+ # # ┌──────┐
790
+ # # │ date │
791
+ # # │ --- │
792
+ # # │ i8 │
793
+ # # ╞══════╡
794
+ # # │ 0 │
795
+ # # │ 2 │
796
+ # # │ 4 │
797
+ # # └──────┘
798
+ def second(fractional: false)
799
+ sec = Utils.wrap_expr(_rbexpr.second)
800
+ if fractional
801
+ sec + (Utils.wrap_expr(_rbexpr.nanosecond) / Utils.lit(1_000_000_000.0))
802
+ else
803
+ sec
804
+ end
805
+ end
806
+
807
+ # Extract milliseconds from underlying DateTime representation.
808
+ #
809
+ # Applies to Datetime columns.
810
+ #
811
+ # @return [Expr]
812
+ def millisecond
813
+ Utils.wrap_expr(_rbexpr.millisecond)
814
+ end
815
+
816
+ # Extract microseconds from underlying DateTime representation.
817
+ #
818
+ # Applies to Datetime columns.
819
+ #
820
+ # @return [Expr]
821
+ def microsecond
822
+ Utils.wrap_expr(_rbexpr.microsecond)
823
+ end
824
+
825
+ # Extract nanoseconds from underlying DateTime representation.
826
+ #
827
+ # Applies to Datetime columns.
828
+ #
829
+ # @return [Expr]
830
+ def nanosecond
831
+ Utils.wrap_expr(_rbexpr.nanosecond)
832
+ end
833
+
834
+ # Get the time passed since the Unix EPOCH in the give time unit.
835
+ #
836
+ # @param tu ["us", "ns", "ms", "s", "d"]
837
+ # Time unit.
838
+ #
839
+ # @return [Expr]
840
+ #
841
+ # @example
842
+ # start = DateTime.new(2001, 1, 1)
843
+ # stop = DateTime.new(2001, 1, 3)
844
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "1d")})
845
+ # df.select(
846
+ # [
847
+ # Polars.col("date"),
848
+ # Polars.col("date").dt.epoch.alias("epoch_ns"),
849
+ # Polars.col("date").dt.epoch("s").alias("epoch_s")
850
+ # ]
851
+ # )
852
+ # # =>
853
+ # # shape: (3, 3)
854
+ # # ┌─────────────────────┬─────────────────┬───────────┐
855
+ # # │ date ┆ epoch_ns ┆ epoch_s │
856
+ # # │ --- ┆ --- ┆ --- │
857
+ # # │ datetime[μs] ┆ i64 ┆ i64 │
858
+ # # ╞═════════════════════╪═════════════════╪═══════════╡
859
+ # # │ 2001-01-01 00:00:00 ┆ 978307200000000 ┆ 978307200 │
860
+ # # │ 2001-01-02 00:00:00 ┆ 978393600000000 ┆ 978393600 │
861
+ # # │ 2001-01-03 00:00:00 ┆ 978480000000000 ┆ 978480000 │
862
+ # # └─────────────────────┴─────────────────┴───────────┘
863
+ def epoch(tu = "us")
864
+ if Utils::DTYPE_TEMPORAL_UNITS.include?(tu)
865
+ timestamp(tu)
866
+ elsif tu == "s"
867
+ Utils.wrap_expr(_rbexpr.dt_epoch_seconds)
868
+ elsif tu == "d"
869
+ Utils.wrap_expr(_rbexpr).cast(:date).cast(:i32)
870
+ else
871
+ raise ArgumentError, "tu must be one of {{'ns', 'us', 'ms', 's', 'd'}}, got #{tu}"
872
+ end
873
+ end
874
+
875
+ # Return a timestamp in the given time unit.
876
+ #
877
+ # @param tu ["us", "ns", "ms"]
878
+ # Time unit.
879
+ #
880
+ # @return [Expr]
881
+ #
882
+ # @example
883
+ # start = DateTime.new(2001, 1, 1)
884
+ # stop = DateTime.new(2001, 1, 3)
885
+ # df = Polars::DataFrame.new({"date" => Polars.date_range(start, stop, "1d")})
886
+ # df.select(
887
+ # [
888
+ # Polars.col("date"),
889
+ # Polars.col("date").dt.timestamp.alias("timestamp_ns"),
890
+ # Polars.col("date").dt.timestamp("ms").alias("timestamp_ms")
891
+ # ]
892
+ # )
893
+ # # =>
894
+ # # shape: (3, 3)
895
+ # # ┌─────────────────────┬─────────────────┬──────────────┐
896
+ # # │ date ┆ timestamp_ns ┆ timestamp_ms │
897
+ # # │ --- ┆ --- ┆ --- │
898
+ # # │ datetime[μs] ┆ i64 ┆ i64 │
899
+ # # ╞═════════════════════╪═════════════════╪══════════════╡
900
+ # # │ 2001-01-01 00:00:00 ┆ 978307200000000 ┆ 978307200000 │
901
+ # # │ 2001-01-02 00:00:00 ┆ 978393600000000 ┆ 978393600000 │
902
+ # # │ 2001-01-03 00:00:00 ┆ 978480000000000 ┆ 978480000000 │
903
+ # # └─────────────────────┴─────────────────┴──────────────┘
904
+ def timestamp(tu = "us")
905
+ Utils.wrap_expr(_rbexpr.timestamp(tu))
906
+ end
907
+
908
+ # Set time unit of a Series of dtype Datetime or Duration.
909
+ #
910
+ # This does not modify underlying data, and should be used to fix an incorrect
911
+ # time unit.
912
+ #
913
+ # @param tu ["ns", "us", "ms"]
914
+ # Time unit for the `Datetime` Series.
915
+ #
916
+ # @return [Expr]
917
+ #
918
+ # @example
919
+ # df = Polars::DataFrame.new(
920
+ # {
921
+ # "date" => Polars.date_range(
922
+ # DateTime.new(2001, 1, 1), DateTime.new(2001, 1, 3), "1d", time_unit: "ns"
923
+ # )
924
+ # }
925
+ # )
926
+ # df.select(
927
+ # [
928
+ # Polars.col("date"),
929
+ # Polars.col("date").dt.with_time_unit("us").alias("tu_us")
930
+ # ]
931
+ # )
932
+ # # =>
933
+ # # shape: (3, 2)
934
+ # # ┌─────────────────────┬───────────────────────┐
935
+ # # │ date ┆ tu_us │
936
+ # # │ --- ┆ --- │
937
+ # # │ datetime[ns] ┆ datetime[μs] │
938
+ # # ╞═════════════════════╪═══════════════════════╡
939
+ # # │ 2001-01-01 00:00:00 ┆ +32971-04-28 00:00:00 │
940
+ # # │ 2001-01-02 00:00:00 ┆ +32974-01-22 00:00:00 │
941
+ # # │ 2001-01-03 00:00:00 ┆ +32976-10-18 00:00:00 │
942
+ # # └─────────────────────┴───────────────────────┘
943
+ def with_time_unit(tu)
944
+ Utils.wrap_expr(_rbexpr.dt_with_time_unit(tu))
945
+ end
946
+
947
+ # Cast the underlying data to another time unit. This may lose precision.
948
+ #
949
+ # @param tu ["ns", "us", "ms"]
950
+ # Time unit for the `Datetime` Series.
951
+ #
952
+ # @return [Expr]
953
+ #
954
+ # @example
955
+ # df = Polars::DataFrame.new(
956
+ # {
957
+ # "date" => Polars.date_range(
958
+ # DateTime.new(2001, 1, 1), DateTime.new(2001, 1, 3), "1d"
959
+ # )
960
+ # }
961
+ # )
962
+ # df.select(
963
+ # [
964
+ # Polars.col("date"),
965
+ # Polars.col("date").dt.cast_time_unit("ms").alias("tu_ms"),
966
+ # Polars.col("date").dt.cast_time_unit("ns").alias("tu_ns")
967
+ # ]
968
+ # )
969
+ # # =>
970
+ # # shape: (3, 3)
971
+ # # ┌─────────────────────┬─────────────────────┬─────────────────────┐
972
+ # # │ date ┆ tu_ms ┆ tu_ns │
973
+ # # │ --- ┆ --- ┆ --- │
974
+ # # │ datetime[μs] ┆ datetime[ms] ┆ datetime[ns] │
975
+ # # ╞═════════════════════╪═════════════════════╪═════════════════════╡
976
+ # # │ 2001-01-01 00:00:00 ┆ 2001-01-01 00:00:00 ┆ 2001-01-01 00:00:00 │
977
+ # # │ 2001-01-02 00:00:00 ┆ 2001-01-02 00:00:00 ┆ 2001-01-02 00:00:00 │
978
+ # # │ 2001-01-03 00:00:00 ┆ 2001-01-03 00:00:00 ┆ 2001-01-03 00:00:00 │
979
+ # # └─────────────────────┴─────────────────────┴─────────────────────┘
980
+ def cast_time_unit(tu)
981
+ Utils.wrap_expr(_rbexpr.dt_cast_time_unit(tu))
982
+ end
983
+
984
+ # Set time zone for a Series of type Datetime.
985
+ #
986
+ # @param tz [String]
987
+ # Time zone for the `Datetime` Series.
988
+ #
989
+ # @return [Expr]
990
+ #
991
+ # @example
992
+ # df = Polars::DataFrame.new(
993
+ # {
994
+ # "date" => Polars.date_range(
995
+ # DateTime.new(2020, 3, 1),
996
+ # DateTime.new(2020, 5, 1),
997
+ # "1mo",
998
+ # time_zone: "UTC"
999
+ # )
1000
+ # }
1001
+ # )
1002
+ # df.select(
1003
+ # [
1004
+ # Polars.col("date"),
1005
+ # Polars.col("date")
1006
+ # .dt.convert_time_zone("Europe/London")
1007
+ # .alias("London")
1008
+ # ]
1009
+ # )
1010
+ # # =>
1011
+ # # shape: (3, 2)
1012
+ # # ┌─────────────────────────┬─────────────────────────────┐
1013
+ # # │ date ┆ London │
1014
+ # # │ --- ┆ --- │
1015
+ # # │ datetime[μs, UTC] ┆ datetime[μs, Europe/London] │
1016
+ # # ╞═════════════════════════╪═════════════════════════════╡
1017
+ # # │ 2020-03-01 00:00:00 UTC ┆ 2020-03-01 00:00:00 GMT │
1018
+ # # │ 2020-04-01 00:00:00 UTC ┆ 2020-04-01 01:00:00 BST │
1019
+ # # │ 2020-05-01 00:00:00 UTC ┆ 2020-05-01 01:00:00 BST │
1020
+ # # └─────────────────────────┴─────────────────────────────┘
1021
+ def convert_time_zone(tz)
1022
+ Utils.wrap_expr(_rbexpr.dt_convert_time_zone(tz))
1023
+ end
1024
+
1025
+ # Cast time zone for a Series of type Datetime.
1026
+ #
1027
+ # Different from `convert_time_zone`, this will also modify
1028
+ # the underlying timestamp,
1029
+ #
1030
+ # @param time_zone [String]
1031
+ # Time zone for the `Datetime` Series. Pass `nil` to unset time zone.
1032
+ # @param use_earliest [Boolean]
1033
+ # Determine how to deal with ambiguous datetimes.
1034
+ # @param ambiguous [String]
1035
+ # Determine how to deal with ambiguous datetimes.
1036
+ # @param non_existent [String]
1037
+ # Determine how to deal with non-existent datetimes.
1038
+ #
1039
+ # @return [Expr]
1040
+ def replace_time_zone(time_zone, use_earliest: nil, ambiguous: "raise", non_existent: "raise")
1041
+ ambiguous = Utils.rename_use_earliest_to_ambiguous(use_earliest, ambiguous)
1042
+ ambiguous = Polars.lit(ambiguous) unless ambiguous.is_a?(Expr)
1043
+ Utils.wrap_expr(_rbexpr.dt_replace_time_zone(time_zone, ambiguous._rbexpr, non_existent))
1044
+ end
1045
+
1046
+ # Extract the days from a Duration type.
1047
+ #
1048
+ # @return [Expr]
1049
+ #
1050
+ # @example
1051
+ # df = Polars::DataFrame.new(
1052
+ # {
1053
+ # "date" => Polars.date_range(
1054
+ # DateTime.new(2020, 3, 1), DateTime.new(2020, 5, 1), "1mo"
1055
+ # )
1056
+ # }
1057
+ # )
1058
+ # df.select(
1059
+ # [
1060
+ # Polars.col("date"),
1061
+ # Polars.col("date").diff.dt.days.alias("days_diff")
1062
+ # ]
1063
+ # )
1064
+ # # =>
1065
+ # # shape: (3, 2)
1066
+ # # ┌─────────────────────┬───────────┐
1067
+ # # │ date ┆ days_diff │
1068
+ # # │ --- ┆ --- │
1069
+ # # │ datetime[μs] ┆ i64 │
1070
+ # # ╞═════════════════════╪═══════════╡
1071
+ # # │ 2020-03-01 00:00:00 ┆ null │
1072
+ # # │ 2020-04-01 00:00:00 ┆ 31 │
1073
+ # # │ 2020-05-01 00:00:00 ┆ 30 │
1074
+ # # └─────────────────────┴───────────┘
1075
+ def total_days
1076
+ Utils.wrap_expr(_rbexpr.dt_total_days)
1077
+ end
1078
+ alias_method :days, :total_days
1079
+
1080
+ # Extract the hours from a Duration type.
1081
+ #
1082
+ # @return [Expr]
1083
+ #
1084
+ # @example
1085
+ # df = Polars::DataFrame.new(
1086
+ # {
1087
+ # "date" => Polars.date_range(
1088
+ # DateTime.new(2020, 1, 1), DateTime.new(2020, 1, 4), "1d"
1089
+ # )
1090
+ # }
1091
+ # )
1092
+ # df.select(
1093
+ # [
1094
+ # Polars.col("date"),
1095
+ # Polars.col("date").diff.dt.hours.alias("hours_diff")
1096
+ # ]
1097
+ # )
1098
+ # # =>
1099
+ # # shape: (4, 2)
1100
+ # # ┌─────────────────────┬────────────┐
1101
+ # # │ date ┆ hours_diff │
1102
+ # # │ --- ┆ --- │
1103
+ # # │ datetime[μs] ┆ i64 │
1104
+ # # ╞═════════════════════╪════════════╡
1105
+ # # │ 2020-01-01 00:00:00 ┆ null │
1106
+ # # │ 2020-01-02 00:00:00 ┆ 24 │
1107
+ # # │ 2020-01-03 00:00:00 ┆ 24 │
1108
+ # # │ 2020-01-04 00:00:00 ┆ 24 │
1109
+ # # └─────────────────────┴────────────┘
1110
+ def total_hours
1111
+ Utils.wrap_expr(_rbexpr.dt_total_hours)
1112
+ end
1113
+ alias_method :hours, :total_hours
1114
+
1115
+ # Extract the minutes from a Duration type.
1116
+ #
1117
+ # @return [Expr]
1118
+ #
1119
+ # @example
1120
+ # df = Polars::DataFrame.new(
1121
+ # {
1122
+ # "date" => Polars.date_range(
1123
+ # DateTime.new(2020, 1, 1), DateTime.new(2020, 1, 4), "1d"
1124
+ # )
1125
+ # }
1126
+ # )
1127
+ # df.select(
1128
+ # [
1129
+ # Polars.col("date"),
1130
+ # Polars.col("date").diff.dt.minutes.alias("minutes_diff")
1131
+ # ]
1132
+ # )
1133
+ # # =>
1134
+ # # shape: (4, 2)
1135
+ # # ┌─────────────────────┬──────────────┐
1136
+ # # │ date ┆ minutes_diff │
1137
+ # # │ --- ┆ --- │
1138
+ # # │ datetime[μs] ┆ i64 │
1139
+ # # ╞═════════════════════╪══════════════╡
1140
+ # # │ 2020-01-01 00:00:00 ┆ null │
1141
+ # # │ 2020-01-02 00:00:00 ┆ 1440 │
1142
+ # # │ 2020-01-03 00:00:00 ┆ 1440 │
1143
+ # # │ 2020-01-04 00:00:00 ┆ 1440 │
1144
+ # # └─────────────────────┴──────────────┘
1145
+ def total_minutes
1146
+ Utils.wrap_expr(_rbexpr.dt_total_minutes)
1147
+ end
1148
+ alias_method :minutes, :total_minutes
1149
+
1150
+ # Extract the seconds from a Duration type.
1151
+ #
1152
+ # @return [Expr]
1153
+ #
1154
+ # @example
1155
+ # df = Polars::DataFrame.new(
1156
+ # {
1157
+ # "date" => Polars.date_range(
1158
+ # DateTime.new(2020, 1, 1), DateTime.new(2020, 1, 1, 0, 4, 0), "1m"
1159
+ # )
1160
+ # }
1161
+ # )
1162
+ # df.select(
1163
+ # [
1164
+ # Polars.col("date"),
1165
+ # Polars.col("date").diff.dt.seconds.alias("seconds_diff")
1166
+ # ]
1167
+ # )
1168
+ # # =>
1169
+ # # shape: (5, 2)
1170
+ # # ┌─────────────────────┬──────────────┐
1171
+ # # │ date ┆ seconds_diff │
1172
+ # # │ --- ┆ --- │
1173
+ # # │ datetime[μs] ┆ i64 │
1174
+ # # ╞═════════════════════╪══════════════╡
1175
+ # # │ 2020-01-01 00:00:00 ┆ null │
1176
+ # # │ 2020-01-01 00:01:00 ┆ 60 │
1177
+ # # │ 2020-01-01 00:02:00 ┆ 60 │
1178
+ # # │ 2020-01-01 00:03:00 ┆ 60 │
1179
+ # # │ 2020-01-01 00:04:00 ┆ 60 │
1180
+ # # └─────────────────────┴──────────────┘
1181
+ def total_seconds
1182
+ Utils.wrap_expr(_rbexpr.dt_total_seconds)
1183
+ end
1184
+ alias_method :seconds, :total_seconds
1185
+
1186
+ # Extract the milliseconds from a Duration type.
1187
+ #
1188
+ # @return [Expr]
1189
+ #
1190
+ # @example
1191
+ # df = Polars::DataFrame.new(
1192
+ # {
1193
+ # "date" => Polars.date_range(
1194
+ # DateTime.new(2020, 1, 1), DateTime.new(2020, 1, 1, 0, 0, 1), "1ms"
1195
+ # )
1196
+ # }
1197
+ # )
1198
+ # df.select(
1199
+ # [
1200
+ # Polars.col("date"),
1201
+ # Polars.col("date").diff.dt.milliseconds.alias("milliseconds_diff")
1202
+ # ]
1203
+ # )
1204
+ # # =>
1205
+ # # shape: (1_001, 2)
1206
+ # # ┌─────────────────────────┬───────────────────┐
1207
+ # # │ date ┆ milliseconds_diff │
1208
+ # # │ --- ┆ --- │
1209
+ # # │ datetime[μs] ┆ i64 │
1210
+ # # ╞═════════════════════════╪═══════════════════╡
1211
+ # # │ 2020-01-01 00:00:00 ┆ null │
1212
+ # # │ 2020-01-01 00:00:00.001 ┆ 1 │
1213
+ # # │ 2020-01-01 00:00:00.002 ┆ 1 │
1214
+ # # │ 2020-01-01 00:00:00.003 ┆ 1 │
1215
+ # # │ 2020-01-01 00:00:00.004 ┆ 1 │
1216
+ # # │ … ┆ … │
1217
+ # # │ 2020-01-01 00:00:00.996 ┆ 1 │
1218
+ # # │ 2020-01-01 00:00:00.997 ┆ 1 │
1219
+ # # │ 2020-01-01 00:00:00.998 ┆ 1 │
1220
+ # # │ 2020-01-01 00:00:00.999 ┆ 1 │
1221
+ # # │ 2020-01-01 00:00:01 ┆ 1 │
1222
+ # # └─────────────────────────┴───────────────────┘
1223
+ def total_milliseconds
1224
+ Utils.wrap_expr(_rbexpr.dt_total_milliseconds)
1225
+ end
1226
+ alias_method :milliseconds, :total_milliseconds
1227
+
1228
+ # Extract the microseconds from a Duration type.
1229
+ #
1230
+ # @return [Expr]
1231
+ #
1232
+ # @example
1233
+ # df = Polars::DataFrame.new(
1234
+ # {
1235
+ # "date" => Polars.date_range(
1236
+ # DateTime.new(2020, 1, 1), DateTime.new(2020, 1, 1, 0, 0, 1), "1ms"
1237
+ # )
1238
+ # }
1239
+ # )
1240
+ # df.select(
1241
+ # [
1242
+ # Polars.col("date"),
1243
+ # Polars.col("date").diff.dt.microseconds.alias("microseconds_diff")
1244
+ # ]
1245
+ # )
1246
+ # # =>
1247
+ # # shape: (1_001, 2)
1248
+ # # ┌─────────────────────────┬───────────────────┐
1249
+ # # │ date ┆ microseconds_diff │
1250
+ # # │ --- ┆ --- │
1251
+ # # │ datetime[μs] ┆ i64 │
1252
+ # # ╞═════════════════════════╪═══════════════════╡
1253
+ # # │ 2020-01-01 00:00:00 ┆ null │
1254
+ # # │ 2020-01-01 00:00:00.001 ┆ 1000 │
1255
+ # # │ 2020-01-01 00:00:00.002 ┆ 1000 │
1256
+ # # │ 2020-01-01 00:00:00.003 ┆ 1000 │
1257
+ # # │ 2020-01-01 00:00:00.004 ┆ 1000 │
1258
+ # # │ … ┆ … │
1259
+ # # │ 2020-01-01 00:00:00.996 ┆ 1000 │
1260
+ # # │ 2020-01-01 00:00:00.997 ┆ 1000 │
1261
+ # # │ 2020-01-01 00:00:00.998 ┆ 1000 │
1262
+ # # │ 2020-01-01 00:00:00.999 ┆ 1000 │
1263
+ # # │ 2020-01-01 00:00:01 ┆ 1000 │
1264
+ # # └─────────────────────────┴───────────────────┘
1265
+ def total_microseconds
1266
+ Utils.wrap_expr(_rbexpr.dt_total_microseconds)
1267
+ end
1268
+ alias_method :microseconds, :total_microseconds
1269
+
1270
+ # Extract the nanoseconds from a Duration type.
1271
+ #
1272
+ # @return [Expr]
1273
+ #
1274
+ # @example
1275
+ # df = Polars::DataFrame.new(
1276
+ # {
1277
+ # "date" => Polars.date_range(
1278
+ # DateTime.new(2020, 1, 1), DateTime.new(2020, 1, 1, 0, 0, 1), "1ms"
1279
+ # )
1280
+ # }
1281
+ # )
1282
+ # df.select(
1283
+ # [
1284
+ # Polars.col("date"),
1285
+ # Polars.col("date").diff.dt.nanoseconds.alias("nanoseconds_diff")
1286
+ # ]
1287
+ # )
1288
+ # # =>
1289
+ # # shape: (1_001, 2)
1290
+ # # ┌─────────────────────────┬──────────────────┐
1291
+ # # │ date ┆ nanoseconds_diff │
1292
+ # # │ --- ┆ --- │
1293
+ # # │ datetime[μs] ┆ i64 │
1294
+ # # ╞═════════════════════════╪══════════════════╡
1295
+ # # │ 2020-01-01 00:00:00 ┆ null │
1296
+ # # │ 2020-01-01 00:00:00.001 ┆ 1000000 │
1297
+ # # │ 2020-01-01 00:00:00.002 ┆ 1000000 │
1298
+ # # │ 2020-01-01 00:00:00.003 ┆ 1000000 │
1299
+ # # │ 2020-01-01 00:00:00.004 ┆ 1000000 │
1300
+ # # │ … ┆ … │
1301
+ # # │ 2020-01-01 00:00:00.996 ┆ 1000000 │
1302
+ # # │ 2020-01-01 00:00:00.997 ┆ 1000000 │
1303
+ # # │ 2020-01-01 00:00:00.998 ┆ 1000000 │
1304
+ # # │ 2020-01-01 00:00:00.999 ┆ 1000000 │
1305
+ # # │ 2020-01-01 00:00:01 ┆ 1000000 │
1306
+ # # └─────────────────────────┴──────────────────┘
1307
+ def total_nanoseconds
1308
+ Utils.wrap_expr(_rbexpr.dt_total_nanoseconds)
1309
+ end
1310
+ alias_method :nanoseconds, :total_nanoseconds
1311
+
1312
+ # Offset this date by a relative time offset.
1313
+ #
1314
+ # This differs from `Polars.col("foo") + timedelta` in that it can
1315
+ # take months and leap years into account. Note that only a single minus
1316
+ # sign is allowed in the `by` string, as the first character.
1317
+ #
1318
+ # @param by [String]
1319
+ # The offset is dictated by the following string language:
1320
+ #
1321
+ # - 1ns (1 nanosecond)
1322
+ # - 1us (1 microsecond)
1323
+ # - 1ms (1 millisecond)
1324
+ # - 1s (1 second)
1325
+ # - 1m (1 minute)
1326
+ # - 1h (1 hour)
1327
+ # - 1d (1 day)
1328
+ # - 1w (1 week)
1329
+ # - 1mo (1 calendar month)
1330
+ # - 1y (1 calendar year)
1331
+ # - 1i (1 index count)
1332
+ #
1333
+ # @return [Expr]
1334
+ #
1335
+ # @example
1336
+ # df = Polars::DataFrame.new(
1337
+ # {
1338
+ # "dates" => Polars.date_range(
1339
+ # DateTime.new(2000, 1, 1), DateTime.new(2005, 1, 1), "1y"
1340
+ # )
1341
+ # }
1342
+ # )
1343
+ # df.select(
1344
+ # [
1345
+ # Polars.col("dates").dt.offset_by("1y").alias("date_plus_1y"),
1346
+ # Polars.col("dates").dt.offset_by("-1y2mo").alias("date_min")
1347
+ # ]
1348
+ # )
1349
+ # # =>
1350
+ # # shape: (6, 2)
1351
+ # # ┌─────────────────────┬─────────────────────┐
1352
+ # # │ date_plus_1y ┆ date_min │
1353
+ # # │ --- ┆ --- │
1354
+ # # │ datetime[μs] ┆ datetime[μs] │
1355
+ # # ╞═════════════════════╪═════════════════════╡
1356
+ # # │ 2001-01-01 00:00:00 ┆ 1998-11-01 00:00:00 │
1357
+ # # │ 2002-01-01 00:00:00 ┆ 1999-11-01 00:00:00 │
1358
+ # # │ 2003-01-01 00:00:00 ┆ 2000-11-01 00:00:00 │
1359
+ # # │ 2004-01-01 00:00:00 ┆ 2001-11-01 00:00:00 │
1360
+ # # │ 2005-01-01 00:00:00 ┆ 2002-11-01 00:00:00 │
1361
+ # # │ 2006-01-01 00:00:00 ┆ 2003-11-01 00:00:00 │
1362
+ # # └─────────────────────┴─────────────────────┘
1363
+ def offset_by(by)
1364
+ by = Utils.parse_as_expression(by, str_as_lit: true)
1365
+ Utils.wrap_expr(_rbexpr.dt_offset_by(by))
1366
+ end
1367
+
1368
+ # Roll backward to the first day of the month.
1369
+ #
1370
+ # @return [Expr]
1371
+ #
1372
+ # @example
1373
+ # df = Polars::DataFrame.new(
1374
+ # {
1375
+ # "dates" => Polars.date_range(
1376
+ # DateTime.new(2000, 1, 15, 2),
1377
+ # DateTime.new(2000, 12, 15, 2),
1378
+ # "1mo"
1379
+ # )
1380
+ # }
1381
+ # )
1382
+ # df.select(Polars.col("dates").dt.month_start)
1383
+ # # =>
1384
+ # # shape: (12, 1)
1385
+ # # ┌─────────────────────┐
1386
+ # # │ dates │
1387
+ # # │ --- │
1388
+ # # │ datetime[μs] │
1389
+ # # ╞═════════════════════╡
1390
+ # # │ 2000-01-01 02:00:00 │
1391
+ # # │ 2000-02-01 02:00:00 │
1392
+ # # │ 2000-03-01 02:00:00 │
1393
+ # # │ 2000-04-01 02:00:00 │
1394
+ # # │ 2000-05-01 02:00:00 │
1395
+ # # │ … │
1396
+ # # │ 2000-08-01 02:00:00 │
1397
+ # # │ 2000-09-01 02:00:00 │
1398
+ # # │ 2000-10-01 02:00:00 │
1399
+ # # │ 2000-11-01 02:00:00 │
1400
+ # # │ 2000-12-01 02:00:00 │
1401
+ # # └─────────────────────┘
1402
+ def month_start
1403
+ Utils.wrap_expr(_rbexpr.dt_month_start)
1404
+ end
1405
+
1406
+ # Roll forward to the last day of the month.
1407
+ #
1408
+ # @return [Expr]
1409
+ #
1410
+ # @example
1411
+ # df = Polars::DataFrame.new(
1412
+ # {
1413
+ # "dates" => Polars.date_range(
1414
+ # DateTime.new(2000, 1, 15, 2),
1415
+ # DateTime.new(2000, 12, 15, 2),
1416
+ # "1mo"
1417
+ # )
1418
+ # }
1419
+ # )
1420
+ # df.select(Polars.col("dates").dt.month_end)
1421
+ # # =>
1422
+ # # shape: (12, 1)
1423
+ # # ┌─────────────────────┐
1424
+ # # │ dates │
1425
+ # # │ --- │
1426
+ # # │ datetime[μs] │
1427
+ # # ╞═════════════════════╡
1428
+ # # │ 2000-01-31 02:00:00 │
1429
+ # # │ 2000-02-29 02:00:00 │
1430
+ # # │ 2000-03-31 02:00:00 │
1431
+ # # │ 2000-04-30 02:00:00 │
1432
+ # # │ 2000-05-31 02:00:00 │
1433
+ # # │ … │
1434
+ # # │ 2000-08-31 02:00:00 │
1435
+ # # │ 2000-09-30 02:00:00 │
1436
+ # # │ 2000-10-31 02:00:00 │
1437
+ # # │ 2000-11-30 02:00:00 │
1438
+ # # │ 2000-12-31 02:00:00 │
1439
+ # # └─────────────────────┘
1440
+ def month_end
1441
+ Utils.wrap_expr(_rbexpr.dt_month_end)
1442
+ end
1443
+ end
1444
+ end