opener-opinion-detector-base 2.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/README.md +101 -0
- data/bin/opinion-detector-base +19 -0
- data/core/annotation.cfg.erb +9 -0
- data/core/packages/KafNafParser-1.4.tar.gz +0 -0
- data/core/packages/VUA_pylib-1.5.tar.gz +0 -0
- data/core/python-scripts/LICENSE +339 -0
- data/core/python-scripts/README.md +226 -0
- data/core/python-scripts/classify_kaf_naf_file.py +499 -0
- data/core/python-scripts/cross_validation.py +634 -0
- data/core/python-scripts/generate_folds.py +134 -0
- data/core/python-scripts/models.cfg +10 -0
- data/core/python-scripts/my_templates/README +33 -0
- data/core/python-scripts/my_templates/templates_exp.only0.txt +6 -0
- data/core/python-scripts/my_templates/templates_exp.pol0.txt +10 -0
- data/core/python-scripts/my_templates/templates_exp.red.txt +7 -0
- data/core/python-scripts/my_templates/templates_exp.txt +10 -0
- data/core/python-scripts/my_templates/templates_holder.only0.txt +11 -0
- data/core/python-scripts/my_templates/templates_holder.red.txt +9 -0
- data/core/python-scripts/my_templates/templates_holder.txt +10 -0
- data/core/python-scripts/my_templates/templates_target.only0.txt +11 -0
- data/core/python-scripts/my_templates/templates_target.red.txt +9 -0
- data/core/python-scripts/my_templates/templates_target.txt +10 -0
- data/core/python-scripts/run_all_experiments.sh +49 -0
- data/core/python-scripts/run_basic.py +20 -0
- data/core/python-scripts/run_experiment.sh +42 -0
- data/core/python-scripts/scripts/__init__.py +1 -0
- data/core/python-scripts/scripts/config_manager.py +314 -0
- data/core/python-scripts/scripts/crfutils.py +215 -0
- data/core/python-scripts/scripts/extract_feats_relations.py +295 -0
- data/core/python-scripts/scripts/extract_features.py +376 -0
- data/core/python-scripts/scripts/feats_to_crf.exp.py +105 -0
- data/core/python-scripts/scripts/lexicons.py +44 -0
- data/core/python-scripts/scripts/link_entities_distance.py +77 -0
- data/core/python-scripts/scripts/relation_classifier.py +250 -0
- data/core/python-scripts/train.py +566 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/SOURCES.txt +22 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/installed-files.txt +47 -0
- data/core/site-packages/pre_build/KafNafParser-1.4-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/KafNafParser/KafNafParserMod.py +390 -0
- data/core/site-packages/pre_build/KafNafParser/KafNafParserMod.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/__init__.py +14 -0
- data/core/site-packages/pre_build/KafNafParser/__init__.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/constituency_data.py +125 -0
- data/core/site-packages/pre_build/KafNafParser/constituency_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/coreference_data.py +52 -0
- data/core/site-packages/pre_build/KafNafParser/coreference_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/dependency_data.py +78 -0
- data/core/site-packages/pre_build/KafNafParser/dependency_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/entity_data.py +59 -0
- data/core/site-packages/pre_build/KafNafParser/entity_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/external_references_data.py +41 -0
- data/core/site-packages/pre_build/KafNafParser/external_references_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/__init__.py +2 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/__init__.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/constituency.py +205 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/constituency.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/dependency.py +309 -0
- data/core/site-packages/pre_build/KafNafParser/feature_extractor/dependency.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/features_data.py +131 -0
- data/core/site-packages/pre_build/KafNafParser/features_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/header_data.py +127 -0
- data/core/site-packages/pre_build/KafNafParser/header_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/opinion_data.py +211 -0
- data/core/site-packages/pre_build/KafNafParser/opinion_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/references_data.py +23 -0
- data/core/site-packages/pre_build/KafNafParser/references_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/span_data.py +63 -0
- data/core/site-packages/pre_build/KafNafParser/span_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/term_data.py +111 -0
- data/core/site-packages/pre_build/KafNafParser/term_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/term_sentiment_data.py +42 -0
- data/core/site-packages/pre_build/KafNafParser/term_sentiment_data.pyc +0 -0
- data/core/site-packages/pre_build/KafNafParser/text_data.py +99 -0
- data/core/site-packages/pre_build/KafNafParser/text_data.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/SOURCES.txt +14 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/installed-files.txt +23 -0
- data/core/site-packages/pre_build/VUA_pylib-1.5-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/VUA_pylib/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/common/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/common/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/common/common.py +28 -0
- data/core/site-packages/pre_build/VUA_pylib/common/common.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/google_web_nl.py +156 -0
- data/core/site-packages/pre_build/VUA_pylib/corpus_reader/google_web_nl.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/feature_file.py +121 -0
- data/core/site-packages/pre_build/VUA_pylib/io_utils/feature_file.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/__init__.py +1 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/__init__.pyc +0 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/lexicon.py +72 -0
- data/core/site-packages/pre_build/VUA_pylib/lexicon/lexicon.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/PKG-INFO +10 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/SOURCES.txt +7 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/dependency_links.txt +1 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/installed-files.txt +11 -0
- data/core/site-packages/pre_build/VUKafParserPy-1.0-py2.7.egg-info/top_level.txt +1 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafDataObjectsMod.py +165 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafDataObjectsMod.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafParserMod.py +439 -0
- data/core/site-packages/pre_build/VUKafParserPy/KafParserMod.pyc +0 -0
- data/core/site-packages/pre_build/VUKafParserPy/__init__.py +7 -0
- data/core/site-packages/pre_build/VUKafParserPy/__init__.pyc +0 -0
- data/core/vendor/src/crfsuite/AUTHORS +1 -0
- data/core/vendor/src/crfsuite/COPYING +27 -0
- data/core/vendor/src/crfsuite/ChangeLog +103 -0
- data/core/vendor/src/crfsuite/INSTALL +236 -0
- data/core/vendor/src/crfsuite/Makefile.am +19 -0
- data/core/vendor/src/crfsuite/Makefile.in +783 -0
- data/core/vendor/src/crfsuite/README +183 -0
- data/core/vendor/src/crfsuite/aclocal.m4 +9018 -0
- data/core/vendor/src/crfsuite/autogen.sh +38 -0
- data/core/vendor/src/crfsuite/compile +143 -0
- data/core/vendor/src/crfsuite/config.guess +1502 -0
- data/core/vendor/src/crfsuite/config.h.in +198 -0
- data/core/vendor/src/crfsuite/config.sub +1714 -0
- data/core/vendor/src/crfsuite/configure +14273 -0
- data/core/vendor/src/crfsuite/configure.in +149 -0
- data/core/vendor/src/crfsuite/crfsuite.sln +42 -0
- data/core/vendor/src/crfsuite/depcomp +630 -0
- data/core/vendor/src/crfsuite/example/chunking.py +49 -0
- data/core/vendor/src/crfsuite/example/crfutils.py +179 -0
- data/core/vendor/src/crfsuite/example/ner.py +270 -0
- data/core/vendor/src/crfsuite/example/pos.py +78 -0
- data/core/vendor/src/crfsuite/example/template.py +88 -0
- data/core/vendor/src/crfsuite/frontend/Makefile.am +29 -0
- data/core/vendor/src/crfsuite/frontend/Makefile.in +640 -0
- data/core/vendor/src/crfsuite/frontend/dump.c +116 -0
- data/core/vendor/src/crfsuite/frontend/frontend.vcxproj +129 -0
- data/core/vendor/src/crfsuite/frontend/iwa.c +273 -0
- data/core/vendor/src/crfsuite/frontend/iwa.h +65 -0
- data/core/vendor/src/crfsuite/frontend/learn.c +439 -0
- data/core/vendor/src/crfsuite/frontend/main.c +137 -0
- data/core/vendor/src/crfsuite/frontend/option.c +93 -0
- data/core/vendor/src/crfsuite/frontend/option.h +86 -0
- data/core/vendor/src/crfsuite/frontend/readdata.h +38 -0
- data/core/vendor/src/crfsuite/frontend/reader.c +136 -0
- data/core/vendor/src/crfsuite/frontend/tag.c +427 -0
- data/core/vendor/src/crfsuite/genbinary.sh.in +15 -0
- data/core/vendor/src/crfsuite/include/Makefile.am +11 -0
- data/core/vendor/src/crfsuite/include/Makefile.in +461 -0
- data/core/vendor/src/crfsuite/include/crfsuite.h +1063 -0
- data/core/vendor/src/crfsuite/include/crfsuite.hpp +555 -0
- data/core/vendor/src/crfsuite/include/crfsuite_api.hpp +400 -0
- data/core/vendor/src/crfsuite/include/os.h +61 -0
- data/core/vendor/src/crfsuite/install-sh +520 -0
- data/core/vendor/src/crfsuite/lib/cqdb/COPYING +28 -0
- data/core/vendor/src/crfsuite/lib/cqdb/Makefile.am +21 -0
- data/core/vendor/src/crfsuite/lib/cqdb/Makefile.in +549 -0
- data/core/vendor/src/crfsuite/lib/cqdb/cqdb.vcxproj +86 -0
- data/core/vendor/src/crfsuite/lib/cqdb/include/cqdb.h +524 -0
- data/core/vendor/src/crfsuite/lib/cqdb/src/cqdb.c +587 -0
- data/core/vendor/src/crfsuite/lib/cqdb/src/lookup3.c +976 -0
- data/core/vendor/src/crfsuite/lib/crf/Makefile.am +46 -0
- data/core/vendor/src/crfsuite/lib/crf/Makefile.in +721 -0
- data/core/vendor/src/crfsuite/lib/crf/crf.vcxproj +216 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d.h +353 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_context.c +705 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_encode.c +943 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_feature.c +352 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_model.c +994 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crf1d_tag.c +550 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite.c +492 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite_internal.h +236 -0
- data/core/vendor/src/crfsuite/lib/crf/src/crfsuite_train.c +272 -0
- data/core/vendor/src/crfsuite/lib/crf/src/dataset.c +106 -0
- data/core/vendor/src/crfsuite/lib/crf/src/dictionary.c +118 -0
- data/core/vendor/src/crfsuite/lib/crf/src/holdout.c +80 -0
- data/core/vendor/src/crfsuite/lib/crf/src/logging.c +91 -0
- data/core/vendor/src/crfsuite/lib/crf/src/logging.h +48 -0
- data/core/vendor/src/crfsuite/lib/crf/src/params.c +335 -0
- data/core/vendor/src/crfsuite/lib/crf/src/params.h +80 -0
- data/core/vendor/src/crfsuite/lib/crf/src/quark.c +172 -0
- data/core/vendor/src/crfsuite/lib/crf/src/quark.h +46 -0
- data/core/vendor/src/crfsuite/lib/crf/src/rumavl.c +1107 -0
- data/core/vendor/src/crfsuite/lib/crf/src/rumavl.h +160 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_arow.c +408 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_averaged_perceptron.c +242 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_l2sgd.c +507 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_lbfgs.c +338 -0
- data/core/vendor/src/crfsuite/lib/crf/src/train_passive_aggressive.c +435 -0
- data/core/vendor/src/crfsuite/lib/crf/src/vecmath.h +341 -0
- data/core/vendor/src/crfsuite/ltmain.sh +8413 -0
- data/core/vendor/src/crfsuite/missing +376 -0
- data/core/vendor/src/crfsuite/swig/Makefile.am +13 -0
- data/core/vendor/src/crfsuite/swig/Makefile.in +365 -0
- data/core/vendor/src/crfsuite/swig/crfsuite.cpp +2 -0
- data/core/vendor/src/crfsuite/swig/export.i +32 -0
- data/core/vendor/src/crfsuite/swig/python/README +92 -0
- data/core/vendor/src/crfsuite/swig/python/crfsuite.py +329 -0
- data/core/vendor/src/crfsuite/swig/python/export_wrap.cpp +14355 -0
- data/core/vendor/src/crfsuite/swig/python/export_wrap.h +63 -0
- data/core/vendor/src/crfsuite/swig/python/prepare.sh +9 -0
- data/core/vendor/src/crfsuite/swig/python/sample_tag.py +52 -0
- data/core/vendor/src/crfsuite/swig/python/sample_train.py +68 -0
- data/core/vendor/src/crfsuite/swig/python/setup.py +44 -0
- data/core/vendor/src/crfsuite/win32/stdint.h +679 -0
- data/core/vendor/src/liblbfgs/AUTHORS +1 -0
- data/core/vendor/src/liblbfgs/COPYING +22 -0
- data/core/vendor/src/liblbfgs/ChangeLog +120 -0
- data/core/vendor/src/liblbfgs/INSTALL +231 -0
- data/core/vendor/src/liblbfgs/Makefile.am +10 -0
- data/core/vendor/src/liblbfgs/Makefile.in +638 -0
- data/core/vendor/src/liblbfgs/NEWS +0 -0
- data/core/vendor/src/liblbfgs/README +71 -0
- data/core/vendor/src/liblbfgs/aclocal.m4 +6985 -0
- data/core/vendor/src/liblbfgs/autogen.sh +38 -0
- data/core/vendor/src/liblbfgs/config.guess +1411 -0
- data/core/vendor/src/liblbfgs/config.h.in +64 -0
- data/core/vendor/src/liblbfgs/config.sub +1500 -0
- data/core/vendor/src/liblbfgs/configure +21146 -0
- data/core/vendor/src/liblbfgs/configure.in +107 -0
- data/core/vendor/src/liblbfgs/depcomp +522 -0
- data/core/vendor/src/liblbfgs/include/lbfgs.h +745 -0
- data/core/vendor/src/liblbfgs/install-sh +322 -0
- data/core/vendor/src/liblbfgs/lbfgs.sln +26 -0
- data/core/vendor/src/liblbfgs/lib/Makefile.am +24 -0
- data/core/vendor/src/liblbfgs/lib/Makefile.in +499 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_ansi.h +133 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_sse_double.h +294 -0
- data/core/vendor/src/liblbfgs/lib/arithmetic_sse_float.h +298 -0
- data/core/vendor/src/liblbfgs/lib/lbfgs.c +1371 -0
- data/core/vendor/src/liblbfgs/lib/lib.vcxproj +95 -0
- data/core/vendor/src/liblbfgs/ltmain.sh +6426 -0
- data/core/vendor/src/liblbfgs/missing +353 -0
- data/core/vendor/src/liblbfgs/sample/Makefile.am +15 -0
- data/core/vendor/src/liblbfgs/sample/Makefile.in +433 -0
- data/core/vendor/src/liblbfgs/sample/sample.c +81 -0
- data/core/vendor/src/liblbfgs/sample/sample.cpp +126 -0
- data/core/vendor/src/liblbfgs/sample/sample.vcxproj +105 -0
- data/core/vendor/src/svm_light/LICENSE.txt +59 -0
- data/core/vendor/src/svm_light/Makefile +105 -0
- data/core/vendor/src/svm_light/kernel.h +40 -0
- data/core/vendor/src/svm_light/svm_classify.c +197 -0
- data/core/vendor/src/svm_light/svm_common.c +985 -0
- data/core/vendor/src/svm_light/svm_common.h +301 -0
- data/core/vendor/src/svm_light/svm_hideo.c +1062 -0
- data/core/vendor/src/svm_light/svm_learn.c +4147 -0
- data/core/vendor/src/svm_light/svm_learn.h +169 -0
- data/core/vendor/src/svm_light/svm_learn_main.c +397 -0
- data/core/vendor/src/svm_light/svm_loqo.c +211 -0
- data/ext/hack/Rakefile +17 -0
- data/ext/hack/support.rb +88 -0
- data/lib/opener/opinion_detectors/base.rb +112 -0
- data/lib/opener/opinion_detectors/base/version.rb +7 -0
- data/lib/opener/opinion_detectors/configuration_creator.rb +86 -0
- data/lib/opener/opinion_detectors/de.rb +7 -0
- data/lib/opener/opinion_detectors/en.rb +7 -0
- data/lib/opener/opinion_detectors/it.rb +7 -0
- data/lib/opener/opinion_detectors/nl.rb +6 -0
- data/opener-opinion-detector-base.gemspec +35 -0
- data/pre_build_requirements.txt +3 -0
- metadata +374 -0
@@ -0,0 +1,1371 @@
|
|
1
|
+
/*
|
2
|
+
* Limited memory BFGS (L-BFGS).
|
3
|
+
*
|
4
|
+
* Copyright (c) 1990, Jorge Nocedal
|
5
|
+
* Copyright (c) 2007-2010 Naoaki Okazaki
|
6
|
+
* All rights reserved.
|
7
|
+
*
|
8
|
+
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
9
|
+
* of this software and associated documentation files (the "Software"), to deal
|
10
|
+
* in the Software without restriction, including without limitation the rights
|
11
|
+
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
12
|
+
* copies of the Software, and to permit persons to whom the Software is
|
13
|
+
* furnished to do so, subject to the following conditions:
|
14
|
+
*
|
15
|
+
* The above copyright notice and this permission notice shall be included in
|
16
|
+
* all copies or substantial portions of the Software.
|
17
|
+
*
|
18
|
+
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
19
|
+
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
20
|
+
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
21
|
+
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
22
|
+
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
23
|
+
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
24
|
+
* THE SOFTWARE.
|
25
|
+
*/
|
26
|
+
|
27
|
+
/* $Id$ */
|
28
|
+
|
29
|
+
/*
|
30
|
+
This library is a C port of the FORTRAN implementation of Limited-memory
|
31
|
+
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method written by Jorge Nocedal.
|
32
|
+
The original FORTRAN source code is available at:
|
33
|
+
http://www.ece.northwestern.edu/~nocedal/lbfgs.html
|
34
|
+
|
35
|
+
The L-BFGS algorithm is described in:
|
36
|
+
- Jorge Nocedal.
|
37
|
+
Updating Quasi-Newton Matrices with Limited Storage.
|
38
|
+
<i>Mathematics of Computation</i>, Vol. 35, No. 151, pp. 773--782, 1980.
|
39
|
+
- Dong C. Liu and Jorge Nocedal.
|
40
|
+
On the limited memory BFGS method for large scale optimization.
|
41
|
+
<i>Mathematical Programming</i> B, Vol. 45, No. 3, pp. 503-528, 1989.
|
42
|
+
|
43
|
+
The line search algorithms used in this implementation are described in:
|
44
|
+
- John E. Dennis and Robert B. Schnabel.
|
45
|
+
<i>Numerical Methods for Unconstrained Optimization and Nonlinear
|
46
|
+
Equations</i>, Englewood Cliffs, 1983.
|
47
|
+
- Jorge J. More and David J. Thuente.
|
48
|
+
Line search algorithm with guaranteed sufficient decrease.
|
49
|
+
<i>ACM Transactions on Mathematical Software (TOMS)</i>, Vol. 20, No. 3,
|
50
|
+
pp. 286-307, 1994.
|
51
|
+
|
52
|
+
This library also implements Orthant-Wise Limited-memory Quasi-Newton (OWL-QN)
|
53
|
+
method presented in:
|
54
|
+
- Galen Andrew and Jianfeng Gao.
|
55
|
+
Scalable training of L1-regularized log-linear models.
|
56
|
+
In <i>Proceedings of the 24th International Conference on Machine
|
57
|
+
Learning (ICML 2007)</i>, pp. 33-40, 2007.
|
58
|
+
|
59
|
+
I would like to thank the original author, Jorge Nocedal, who has been
|
60
|
+
distributing the effieicnt and explanatory implementation in an open source
|
61
|
+
licence.
|
62
|
+
*/
|
63
|
+
|
64
|
+
#ifdef HAVE_CONFIG_H
|
65
|
+
#include <config.h>
|
66
|
+
#endif/*HAVE_CONFIG_H*/
|
67
|
+
|
68
|
+
#include <stdint.h>
|
69
|
+
#include <stdio.h>
|
70
|
+
#include <stdlib.h>
|
71
|
+
#include <math.h>
|
72
|
+
|
73
|
+
#include <lbfgs.h>
|
74
|
+
|
75
|
+
#ifdef _MSC_VER
|
76
|
+
#define inline __inline
|
77
|
+
#endif/*_MSC_VER*/
|
78
|
+
|
79
|
+
#if defined(USE_SSE) && defined(__SSE2__) && LBFGS_FLOAT == 64
|
80
|
+
/* Use SSE2 optimization for 64bit double precision. */
|
81
|
+
#include "arithmetic_sse_double.h"
|
82
|
+
|
83
|
+
#elif defined(USE_SSE) && defined(__SSE__) && LBFGS_FLOAT == 32
|
84
|
+
/* Use SSE optimization for 32bit float precision. */
|
85
|
+
#include "arithmetic_sse_float.h"
|
86
|
+
|
87
|
+
#else
|
88
|
+
/* No CPU specific optimization. */
|
89
|
+
#include "arithmetic_ansi.h"
|
90
|
+
|
91
|
+
#endif
|
92
|
+
|
93
|
+
#define min2(a, b) ((a) <= (b) ? (a) : (b))
|
94
|
+
#define max2(a, b) ((a) >= (b) ? (a) : (b))
|
95
|
+
#define max3(a, b, c) max2(max2((a), (b)), (c));
|
96
|
+
|
97
|
+
struct tag_callback_data {
|
98
|
+
int n;
|
99
|
+
void *instance;
|
100
|
+
lbfgs_evaluate_t proc_evaluate;
|
101
|
+
lbfgs_progress_t proc_progress;
|
102
|
+
};
|
103
|
+
typedef struct tag_callback_data callback_data_t;
|
104
|
+
|
105
|
+
struct tag_iteration_data {
|
106
|
+
lbfgsfloatval_t alpha;
|
107
|
+
lbfgsfloatval_t *s; /* [n] */
|
108
|
+
lbfgsfloatval_t *y; /* [n] */
|
109
|
+
lbfgsfloatval_t ys; /* vecdot(y, s) */
|
110
|
+
};
|
111
|
+
typedef struct tag_iteration_data iteration_data_t;
|
112
|
+
|
113
|
+
static const lbfgs_parameter_t _defparam = {
|
114
|
+
6, 1e-5, 0, 1e-5,
|
115
|
+
0, LBFGS_LINESEARCH_DEFAULT, 40,
|
116
|
+
1e-20, 1e20, 1e-4, 0.9, 0.9, 1.0e-16,
|
117
|
+
0.0, 0, -1,
|
118
|
+
};
|
119
|
+
|
120
|
+
/* Forward function declarations. */
|
121
|
+
|
122
|
+
typedef int (*line_search_proc)(
|
123
|
+
int n,
|
124
|
+
lbfgsfloatval_t *x,
|
125
|
+
lbfgsfloatval_t *f,
|
126
|
+
lbfgsfloatval_t *g,
|
127
|
+
lbfgsfloatval_t *s,
|
128
|
+
lbfgsfloatval_t *stp,
|
129
|
+
const lbfgsfloatval_t* xp,
|
130
|
+
const lbfgsfloatval_t* gp,
|
131
|
+
lbfgsfloatval_t *wa,
|
132
|
+
callback_data_t *cd,
|
133
|
+
const lbfgs_parameter_t *param
|
134
|
+
);
|
135
|
+
|
136
|
+
static int line_search_backtracking(
|
137
|
+
int n,
|
138
|
+
lbfgsfloatval_t *x,
|
139
|
+
lbfgsfloatval_t *f,
|
140
|
+
lbfgsfloatval_t *g,
|
141
|
+
lbfgsfloatval_t *s,
|
142
|
+
lbfgsfloatval_t *stp,
|
143
|
+
const lbfgsfloatval_t* xp,
|
144
|
+
const lbfgsfloatval_t* gp,
|
145
|
+
lbfgsfloatval_t *wa,
|
146
|
+
callback_data_t *cd,
|
147
|
+
const lbfgs_parameter_t *param
|
148
|
+
);
|
149
|
+
|
150
|
+
static int line_search_backtracking_owlqn(
|
151
|
+
int n,
|
152
|
+
lbfgsfloatval_t *x,
|
153
|
+
lbfgsfloatval_t *f,
|
154
|
+
lbfgsfloatval_t *g,
|
155
|
+
lbfgsfloatval_t *s,
|
156
|
+
lbfgsfloatval_t *stp,
|
157
|
+
const lbfgsfloatval_t* xp,
|
158
|
+
const lbfgsfloatval_t* gp,
|
159
|
+
lbfgsfloatval_t *wp,
|
160
|
+
callback_data_t *cd,
|
161
|
+
const lbfgs_parameter_t *param
|
162
|
+
);
|
163
|
+
|
164
|
+
static int line_search_morethuente(
|
165
|
+
int n,
|
166
|
+
lbfgsfloatval_t *x,
|
167
|
+
lbfgsfloatval_t *f,
|
168
|
+
lbfgsfloatval_t *g,
|
169
|
+
lbfgsfloatval_t *s,
|
170
|
+
lbfgsfloatval_t *stp,
|
171
|
+
const lbfgsfloatval_t* xp,
|
172
|
+
const lbfgsfloatval_t* gp,
|
173
|
+
lbfgsfloatval_t *wa,
|
174
|
+
callback_data_t *cd,
|
175
|
+
const lbfgs_parameter_t *param
|
176
|
+
);
|
177
|
+
|
178
|
+
static int update_trial_interval(
|
179
|
+
lbfgsfloatval_t *x,
|
180
|
+
lbfgsfloatval_t *fx,
|
181
|
+
lbfgsfloatval_t *dx,
|
182
|
+
lbfgsfloatval_t *y,
|
183
|
+
lbfgsfloatval_t *fy,
|
184
|
+
lbfgsfloatval_t *dy,
|
185
|
+
lbfgsfloatval_t *t,
|
186
|
+
lbfgsfloatval_t *ft,
|
187
|
+
lbfgsfloatval_t *dt,
|
188
|
+
const lbfgsfloatval_t tmin,
|
189
|
+
const lbfgsfloatval_t tmax,
|
190
|
+
int *brackt
|
191
|
+
);
|
192
|
+
|
193
|
+
static lbfgsfloatval_t owlqn_x1norm(
|
194
|
+
const lbfgsfloatval_t* x,
|
195
|
+
const int start,
|
196
|
+
const int n
|
197
|
+
);
|
198
|
+
|
199
|
+
static void owlqn_pseudo_gradient(
|
200
|
+
lbfgsfloatval_t* pg,
|
201
|
+
const lbfgsfloatval_t* x,
|
202
|
+
const lbfgsfloatval_t* g,
|
203
|
+
const int n,
|
204
|
+
const lbfgsfloatval_t c,
|
205
|
+
const int start,
|
206
|
+
const int end
|
207
|
+
);
|
208
|
+
|
209
|
+
static void owlqn_project(
|
210
|
+
lbfgsfloatval_t* d,
|
211
|
+
const lbfgsfloatval_t* sign,
|
212
|
+
const int start,
|
213
|
+
const int end
|
214
|
+
);
|
215
|
+
|
216
|
+
|
217
|
+
#if defined(USE_SSE) && (defined(__SSE__) || defined(__SSE2__))
|
218
|
+
static int round_out_variables(int n)
|
219
|
+
{
|
220
|
+
n += 7;
|
221
|
+
n /= 8;
|
222
|
+
n *= 8;
|
223
|
+
return n;
|
224
|
+
}
|
225
|
+
#endif/*defined(USE_SSE)*/
|
226
|
+
|
227
|
+
lbfgsfloatval_t* lbfgs_malloc(int n)
|
228
|
+
{
|
229
|
+
#if defined(USE_SSE) && (defined(__SSE__) || defined(__SSE2__))
|
230
|
+
n = round_out_variables(n);
|
231
|
+
#endif/*defined(USE_SSE)*/
|
232
|
+
return (lbfgsfloatval_t*)vecalloc(sizeof(lbfgsfloatval_t) * n);
|
233
|
+
}
|
234
|
+
|
235
|
+
void lbfgs_free(lbfgsfloatval_t *x)
|
236
|
+
{
|
237
|
+
vecfree(x);
|
238
|
+
}
|
239
|
+
|
240
|
+
void lbfgs_parameter_init(lbfgs_parameter_t *param)
|
241
|
+
{
|
242
|
+
memcpy(param, &_defparam, sizeof(*param));
|
243
|
+
}
|
244
|
+
|
245
|
+
int lbfgs(
|
246
|
+
int n,
|
247
|
+
lbfgsfloatval_t *x,
|
248
|
+
lbfgsfloatval_t *ptr_fx,
|
249
|
+
lbfgs_evaluate_t proc_evaluate,
|
250
|
+
lbfgs_progress_t proc_progress,
|
251
|
+
void *instance,
|
252
|
+
lbfgs_parameter_t *_param
|
253
|
+
)
|
254
|
+
{
|
255
|
+
int ret;
|
256
|
+
int i, j, k, ls, end, bound;
|
257
|
+
lbfgsfloatval_t step;
|
258
|
+
|
259
|
+
/* Constant parameters and their default values. */
|
260
|
+
lbfgs_parameter_t param = (_param != NULL) ? (*_param) : _defparam;
|
261
|
+
const int m = param.m;
|
262
|
+
|
263
|
+
lbfgsfloatval_t *xp = NULL;
|
264
|
+
lbfgsfloatval_t *g = NULL, *gp = NULL, *pg = NULL;
|
265
|
+
lbfgsfloatval_t *d = NULL, *w = NULL, *pf = NULL;
|
266
|
+
iteration_data_t *lm = NULL, *it = NULL;
|
267
|
+
lbfgsfloatval_t ys, yy;
|
268
|
+
lbfgsfloatval_t xnorm, gnorm, beta;
|
269
|
+
lbfgsfloatval_t fx = 0.;
|
270
|
+
lbfgsfloatval_t rate = 0.;
|
271
|
+
line_search_proc linesearch = line_search_morethuente;
|
272
|
+
|
273
|
+
/* Construct a callback data. */
|
274
|
+
callback_data_t cd;
|
275
|
+
cd.n = n;
|
276
|
+
cd.instance = instance;
|
277
|
+
cd.proc_evaluate = proc_evaluate;
|
278
|
+
cd.proc_progress = proc_progress;
|
279
|
+
|
280
|
+
#if defined(USE_SSE) && (defined(__SSE__) || defined(__SSE2__))
|
281
|
+
/* Round out the number of variables. */
|
282
|
+
n = round_out_variables(n);
|
283
|
+
#endif/*defined(USE_SSE)*/
|
284
|
+
|
285
|
+
/* Check the input parameters for errors. */
|
286
|
+
if (n <= 0) {
|
287
|
+
return LBFGSERR_INVALID_N;
|
288
|
+
}
|
289
|
+
#if defined(USE_SSE) && (defined(__SSE__) || defined(__SSE2__))
|
290
|
+
if (n % 8 != 0) {
|
291
|
+
return LBFGSERR_INVALID_N_SSE;
|
292
|
+
}
|
293
|
+
if ((uintptr_t)(const void*)x % 16 != 0) {
|
294
|
+
return LBFGSERR_INVALID_X_SSE;
|
295
|
+
}
|
296
|
+
#endif/*defined(USE_SSE)*/
|
297
|
+
if (param.epsilon < 0.) {
|
298
|
+
return LBFGSERR_INVALID_EPSILON;
|
299
|
+
}
|
300
|
+
if (param.past < 0) {
|
301
|
+
return LBFGSERR_INVALID_TESTPERIOD;
|
302
|
+
}
|
303
|
+
if (param.delta < 0.) {
|
304
|
+
return LBFGSERR_INVALID_DELTA;
|
305
|
+
}
|
306
|
+
if (param.min_step < 0.) {
|
307
|
+
return LBFGSERR_INVALID_MINSTEP;
|
308
|
+
}
|
309
|
+
if (param.max_step < param.min_step) {
|
310
|
+
return LBFGSERR_INVALID_MAXSTEP;
|
311
|
+
}
|
312
|
+
if (param.ftol < 0.) {
|
313
|
+
return LBFGSERR_INVALID_FTOL;
|
314
|
+
}
|
315
|
+
if (param.linesearch == LBFGS_LINESEARCH_BACKTRACKING_WOLFE ||
|
316
|
+
param.linesearch == LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
|
317
|
+
if (param.wolfe <= param.ftol || 1. <= param.wolfe) {
|
318
|
+
return LBFGSERR_INVALID_WOLFE;
|
319
|
+
}
|
320
|
+
}
|
321
|
+
if (param.gtol < 0.) {
|
322
|
+
return LBFGSERR_INVALID_GTOL;
|
323
|
+
}
|
324
|
+
if (param.xtol < 0.) {
|
325
|
+
return LBFGSERR_INVALID_XTOL;
|
326
|
+
}
|
327
|
+
if (param.max_linesearch <= 0) {
|
328
|
+
return LBFGSERR_INVALID_MAXLINESEARCH;
|
329
|
+
}
|
330
|
+
if (param.orthantwise_c < 0.) {
|
331
|
+
return LBFGSERR_INVALID_ORTHANTWISE;
|
332
|
+
}
|
333
|
+
if (param.orthantwise_start < 0 || n < param.orthantwise_start) {
|
334
|
+
return LBFGSERR_INVALID_ORTHANTWISE_START;
|
335
|
+
}
|
336
|
+
if (param.orthantwise_end < 0) {
|
337
|
+
param.orthantwise_end = n;
|
338
|
+
}
|
339
|
+
if (n < param.orthantwise_end) {
|
340
|
+
return LBFGSERR_INVALID_ORTHANTWISE_END;
|
341
|
+
}
|
342
|
+
if (param.orthantwise_c != 0.) {
|
343
|
+
switch (param.linesearch) {
|
344
|
+
case LBFGS_LINESEARCH_BACKTRACKING:
|
345
|
+
linesearch = line_search_backtracking_owlqn;
|
346
|
+
break;
|
347
|
+
default:
|
348
|
+
/* Only the backtracking method is available. */
|
349
|
+
return LBFGSERR_INVALID_LINESEARCH;
|
350
|
+
}
|
351
|
+
} else {
|
352
|
+
switch (param.linesearch) {
|
353
|
+
case LBFGS_LINESEARCH_MORETHUENTE:
|
354
|
+
linesearch = line_search_morethuente;
|
355
|
+
break;
|
356
|
+
case LBFGS_LINESEARCH_BACKTRACKING_ARMIJO:
|
357
|
+
case LBFGS_LINESEARCH_BACKTRACKING_WOLFE:
|
358
|
+
case LBFGS_LINESEARCH_BACKTRACKING_STRONG_WOLFE:
|
359
|
+
linesearch = line_search_backtracking;
|
360
|
+
break;
|
361
|
+
default:
|
362
|
+
return LBFGSERR_INVALID_LINESEARCH;
|
363
|
+
}
|
364
|
+
}
|
365
|
+
|
366
|
+
/* Allocate working space. */
|
367
|
+
xp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
|
368
|
+
g = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
|
369
|
+
gp = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
|
370
|
+
d = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
|
371
|
+
w = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
|
372
|
+
if (xp == NULL || g == NULL || gp == NULL || d == NULL || w == NULL) {
|
373
|
+
ret = LBFGSERR_OUTOFMEMORY;
|
374
|
+
goto lbfgs_exit;
|
375
|
+
}
|
376
|
+
|
377
|
+
if (param.orthantwise_c != 0.) {
|
378
|
+
/* Allocate working space for OW-LQN. */
|
379
|
+
pg = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
|
380
|
+
if (pg == NULL) {
|
381
|
+
ret = LBFGSERR_OUTOFMEMORY;
|
382
|
+
goto lbfgs_exit;
|
383
|
+
}
|
384
|
+
}
|
385
|
+
|
386
|
+
/* Allocate limited memory storage. */
|
387
|
+
lm = (iteration_data_t*)vecalloc(m * sizeof(iteration_data_t));
|
388
|
+
if (lm == NULL) {
|
389
|
+
ret = LBFGSERR_OUTOFMEMORY;
|
390
|
+
goto lbfgs_exit;
|
391
|
+
}
|
392
|
+
|
393
|
+
/* Initialize the limited memory. */
|
394
|
+
for (i = 0;i < m;++i) {
|
395
|
+
it = &lm[i];
|
396
|
+
it->alpha = 0;
|
397
|
+
it->ys = 0;
|
398
|
+
it->s = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
|
399
|
+
it->y = (lbfgsfloatval_t*)vecalloc(n * sizeof(lbfgsfloatval_t));
|
400
|
+
if (it->s == NULL || it->y == NULL) {
|
401
|
+
ret = LBFGSERR_OUTOFMEMORY;
|
402
|
+
goto lbfgs_exit;
|
403
|
+
}
|
404
|
+
}
|
405
|
+
|
406
|
+
/* Allocate an array for storing previous values of the objective function. */
|
407
|
+
if (0 < param.past) {
|
408
|
+
pf = (lbfgsfloatval_t*)vecalloc(param.past * sizeof(lbfgsfloatval_t));
|
409
|
+
}
|
410
|
+
|
411
|
+
/* Evaluate the function value and its gradient. */
|
412
|
+
fx = cd.proc_evaluate(cd.instance, x, g, cd.n, 0);
|
413
|
+
if (0. != param.orthantwise_c) {
|
414
|
+
/* Compute the L1 norm of the variable and add it to the object value. */
|
415
|
+
xnorm = owlqn_x1norm(x, param.orthantwise_start, param.orthantwise_end);
|
416
|
+
fx += xnorm * param.orthantwise_c;
|
417
|
+
owlqn_pseudo_gradient(
|
418
|
+
pg, x, g, n,
|
419
|
+
param.orthantwise_c, param.orthantwise_start, param.orthantwise_end
|
420
|
+
);
|
421
|
+
}
|
422
|
+
|
423
|
+
/* Store the initial value of the objective function. */
|
424
|
+
if (pf != NULL) {
|
425
|
+
pf[0] = fx;
|
426
|
+
}
|
427
|
+
|
428
|
+
/*
|
429
|
+
Compute the direction;
|
430
|
+
we assume the initial hessian matrix H_0 as the identity matrix.
|
431
|
+
*/
|
432
|
+
if (param.orthantwise_c == 0.) {
|
433
|
+
vecncpy(d, g, n);
|
434
|
+
} else {
|
435
|
+
vecncpy(d, pg, n);
|
436
|
+
}
|
437
|
+
|
438
|
+
/*
|
439
|
+
Make sure that the initial variables are not a minimizer.
|
440
|
+
*/
|
441
|
+
vec2norm(&xnorm, x, n);
|
442
|
+
if (param.orthantwise_c == 0.) {
|
443
|
+
vec2norm(&gnorm, g, n);
|
444
|
+
} else {
|
445
|
+
vec2norm(&gnorm, pg, n);
|
446
|
+
}
|
447
|
+
if (xnorm < 1.0) xnorm = 1.0;
|
448
|
+
if (gnorm / xnorm <= param.epsilon) {
|
449
|
+
ret = LBFGS_ALREADY_MINIMIZED;
|
450
|
+
goto lbfgs_exit;
|
451
|
+
}
|
452
|
+
|
453
|
+
/* Compute the initial step:
|
454
|
+
step = 1.0 / sqrt(vecdot(d, d, n))
|
455
|
+
*/
|
456
|
+
vec2norminv(&step, d, n);
|
457
|
+
|
458
|
+
k = 1;
|
459
|
+
end = 0;
|
460
|
+
for (;;) {
|
461
|
+
/* Store the current position and gradient vectors. */
|
462
|
+
veccpy(xp, x, n);
|
463
|
+
veccpy(gp, g, n);
|
464
|
+
|
465
|
+
/* Search for an optimal step. */
|
466
|
+
if (param.orthantwise_c == 0.) {
|
467
|
+
ls = linesearch(n, x, &fx, g, d, &step, xp, gp, w, &cd, ¶m);
|
468
|
+
} else {
|
469
|
+
ls = linesearch(n, x, &fx, g, d, &step, xp, pg, w, &cd, ¶m);
|
470
|
+
owlqn_pseudo_gradient(
|
471
|
+
pg, x, g, n,
|
472
|
+
param.orthantwise_c, param.orthantwise_start, param.orthantwise_end
|
473
|
+
);
|
474
|
+
}
|
475
|
+
if (ls < 0) {
|
476
|
+
/* Revert to the previous point. */
|
477
|
+
veccpy(x, xp, n);
|
478
|
+
veccpy(g, gp, n);
|
479
|
+
ret = ls;
|
480
|
+
goto lbfgs_exit;
|
481
|
+
}
|
482
|
+
|
483
|
+
/* Compute x and g norms. */
|
484
|
+
vec2norm(&xnorm, x, n);
|
485
|
+
if (param.orthantwise_c == 0.) {
|
486
|
+
vec2norm(&gnorm, g, n);
|
487
|
+
} else {
|
488
|
+
vec2norm(&gnorm, pg, n);
|
489
|
+
}
|
490
|
+
|
491
|
+
/* Report the progress. */
|
492
|
+
if (cd.proc_progress) {
|
493
|
+
if ((ret = cd.proc_progress(cd.instance, x, g, fx, xnorm, gnorm, step, cd.n, k, ls))) {
|
494
|
+
goto lbfgs_exit;
|
495
|
+
}
|
496
|
+
}
|
497
|
+
|
498
|
+
/*
|
499
|
+
Convergence test.
|
500
|
+
The criterion is given by the following formula:
|
501
|
+
|g(x)| / \max(1, |x|) < \epsilon
|
502
|
+
*/
|
503
|
+
if (xnorm < 1.0) xnorm = 1.0;
|
504
|
+
if (gnorm / xnorm <= param.epsilon) {
|
505
|
+
/* Convergence. */
|
506
|
+
ret = LBFGS_SUCCESS;
|
507
|
+
break;
|
508
|
+
}
|
509
|
+
|
510
|
+
/*
|
511
|
+
Test for stopping criterion.
|
512
|
+
The criterion is given by the following formula:
|
513
|
+
(f(past_x) - f(x)) / f(x) < \delta
|
514
|
+
*/
|
515
|
+
if (pf != NULL) {
|
516
|
+
/* We don't test the stopping criterion while k < past. */
|
517
|
+
if (param.past <= k) {
|
518
|
+
/* Compute the relative improvement from the past. */
|
519
|
+
rate = (pf[k % param.past] - fx) / fx;
|
520
|
+
|
521
|
+
/* The stopping criterion. */
|
522
|
+
if (rate < param.delta) {
|
523
|
+
ret = LBFGS_STOP;
|
524
|
+
break;
|
525
|
+
}
|
526
|
+
}
|
527
|
+
|
528
|
+
/* Store the current value of the objective function. */
|
529
|
+
pf[k % param.past] = fx;
|
530
|
+
}
|
531
|
+
|
532
|
+
if (param.max_iterations != 0 && param.max_iterations < k+1) {
|
533
|
+
/* Maximum number of iterations. */
|
534
|
+
ret = LBFGSERR_MAXIMUMITERATION;
|
535
|
+
break;
|
536
|
+
}
|
537
|
+
|
538
|
+
/*
|
539
|
+
Update vectors s and y:
|
540
|
+
s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
|
541
|
+
y_{k+1} = g_{k+1} - g_{k}.
|
542
|
+
*/
|
543
|
+
it = &lm[end];
|
544
|
+
vecdiff(it->s, x, xp, n);
|
545
|
+
vecdiff(it->y, g, gp, n);
|
546
|
+
|
547
|
+
/*
|
548
|
+
Compute scalars ys and yy:
|
549
|
+
ys = y^t \cdot s = 1 / \rho.
|
550
|
+
yy = y^t \cdot y.
|
551
|
+
Notice that yy is used for scaling the hessian matrix H_0 (Cholesky factor).
|
552
|
+
*/
|
553
|
+
vecdot(&ys, it->y, it->s, n);
|
554
|
+
vecdot(&yy, it->y, it->y, n);
|
555
|
+
it->ys = ys;
|
556
|
+
|
557
|
+
/*
|
558
|
+
Recursive formula to compute dir = -(H \cdot g).
|
559
|
+
This is described in page 779 of:
|
560
|
+
Jorge Nocedal.
|
561
|
+
Updating Quasi-Newton Matrices with Limited Storage.
|
562
|
+
Mathematics of Computation, Vol. 35, No. 151,
|
563
|
+
pp. 773--782, 1980.
|
564
|
+
*/
|
565
|
+
bound = (m <= k) ? m : k;
|
566
|
+
++k;
|
567
|
+
end = (end + 1) % m;
|
568
|
+
|
569
|
+
/* Compute the steepest direction. */
|
570
|
+
if (param.orthantwise_c == 0.) {
|
571
|
+
/* Compute the negative of gradients. */
|
572
|
+
vecncpy(d, g, n);
|
573
|
+
} else {
|
574
|
+
vecncpy(d, pg, n);
|
575
|
+
}
|
576
|
+
|
577
|
+
j = end;
|
578
|
+
for (i = 0;i < bound;++i) {
|
579
|
+
j = (j + m - 1) % m; /* if (--j == -1) j = m-1; */
|
580
|
+
it = &lm[j];
|
581
|
+
/* \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}. */
|
582
|
+
vecdot(&it->alpha, it->s, d, n);
|
583
|
+
it->alpha /= it->ys;
|
584
|
+
/* q_{i} = q_{i+1} - \alpha_{i} y_{i}. */
|
585
|
+
vecadd(d, it->y, -it->alpha, n);
|
586
|
+
}
|
587
|
+
|
588
|
+
vecscale(d, ys / yy, n);
|
589
|
+
|
590
|
+
for (i = 0;i < bound;++i) {
|
591
|
+
it = &lm[j];
|
592
|
+
/* \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}. */
|
593
|
+
vecdot(&beta, it->y, d, n);
|
594
|
+
beta /= it->ys;
|
595
|
+
/* \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}. */
|
596
|
+
vecadd(d, it->s, it->alpha - beta, n);
|
597
|
+
j = (j + 1) % m; /* if (++j == m) j = 0; */
|
598
|
+
}
|
599
|
+
|
600
|
+
/*
|
601
|
+
Constrain the search direction for orthant-wise updates.
|
602
|
+
*/
|
603
|
+
if (param.orthantwise_c != 0.) {
|
604
|
+
for (i = param.orthantwise_start;i < param.orthantwise_end;++i) {
|
605
|
+
if (d[i] * pg[i] >= 0) {
|
606
|
+
d[i] = 0;
|
607
|
+
}
|
608
|
+
}
|
609
|
+
}
|
610
|
+
|
611
|
+
/*
|
612
|
+
Now the search direction d is ready. We try step = 1 first.
|
613
|
+
*/
|
614
|
+
step = 1.0;
|
615
|
+
}
|
616
|
+
|
617
|
+
lbfgs_exit:
|
618
|
+
/* Return the final value of the objective function. */
|
619
|
+
if (ptr_fx != NULL) {
|
620
|
+
*ptr_fx = fx;
|
621
|
+
}
|
622
|
+
|
623
|
+
vecfree(pf);
|
624
|
+
|
625
|
+
/* Free memory blocks used by this function. */
|
626
|
+
if (lm != NULL) {
|
627
|
+
for (i = 0;i < m;++i) {
|
628
|
+
vecfree(lm[i].s);
|
629
|
+
vecfree(lm[i].y);
|
630
|
+
}
|
631
|
+
vecfree(lm);
|
632
|
+
}
|
633
|
+
vecfree(pg);
|
634
|
+
vecfree(w);
|
635
|
+
vecfree(d);
|
636
|
+
vecfree(gp);
|
637
|
+
vecfree(g);
|
638
|
+
vecfree(xp);
|
639
|
+
|
640
|
+
return ret;
|
641
|
+
}
|
642
|
+
|
643
|
+
|
644
|
+
|
645
|
+
static int line_search_backtracking(
|
646
|
+
int n,
|
647
|
+
lbfgsfloatval_t *x,
|
648
|
+
lbfgsfloatval_t *f,
|
649
|
+
lbfgsfloatval_t *g,
|
650
|
+
lbfgsfloatval_t *s,
|
651
|
+
lbfgsfloatval_t *stp,
|
652
|
+
const lbfgsfloatval_t* xp,
|
653
|
+
const lbfgsfloatval_t* gp,
|
654
|
+
lbfgsfloatval_t *wp,
|
655
|
+
callback_data_t *cd,
|
656
|
+
const lbfgs_parameter_t *param
|
657
|
+
)
|
658
|
+
{
|
659
|
+
int count = 0;
|
660
|
+
lbfgsfloatval_t width, dg;
|
661
|
+
lbfgsfloatval_t finit, dginit = 0., dgtest;
|
662
|
+
const lbfgsfloatval_t dec = 0.5, inc = 2.1;
|
663
|
+
|
664
|
+
/* Check the input parameters for errors. */
|
665
|
+
if (*stp <= 0.) {
|
666
|
+
return LBFGSERR_INVALIDPARAMETERS;
|
667
|
+
}
|
668
|
+
|
669
|
+
/* Compute the initial gradient in the search direction. */
|
670
|
+
vecdot(&dginit, g, s, n);
|
671
|
+
|
672
|
+
/* Make sure that s points to a descent direction. */
|
673
|
+
if (0 < dginit) {
|
674
|
+
return LBFGSERR_INCREASEGRADIENT;
|
675
|
+
}
|
676
|
+
|
677
|
+
/* The initial value of the objective function. */
|
678
|
+
finit = *f;
|
679
|
+
dgtest = param->ftol * dginit;
|
680
|
+
|
681
|
+
for (;;) {
|
682
|
+
veccpy(x, xp, n);
|
683
|
+
vecadd(x, s, *stp, n);
|
684
|
+
|
685
|
+
/* Evaluate the function and gradient values. */
|
686
|
+
*f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
|
687
|
+
|
688
|
+
++count;
|
689
|
+
|
690
|
+
if (*f > finit + *stp * dgtest) {
|
691
|
+
width = dec;
|
692
|
+
} else {
|
693
|
+
/* The sufficient decrease condition (Armijo condition). */
|
694
|
+
if (param->linesearch == LBFGS_LINESEARCH_BACKTRACKING_ARMIJO) {
|
695
|
+
/* Exit with the Armijo condition. */
|
696
|
+
return count;
|
697
|
+
}
|
698
|
+
|
699
|
+
/* Check the Wolfe condition. */
|
700
|
+
vecdot(&dg, g, s, n);
|
701
|
+
if (dg < param->wolfe * dginit) {
|
702
|
+
width = inc;
|
703
|
+
} else {
|
704
|
+
if(param->linesearch == LBFGS_LINESEARCH_BACKTRACKING_WOLFE) {
|
705
|
+
/* Exit with the regular Wolfe condition. */
|
706
|
+
return count;
|
707
|
+
}
|
708
|
+
|
709
|
+
/* Check the strong Wolfe condition. */
|
710
|
+
if(dg > -param->wolfe * dginit) {
|
711
|
+
width = dec;
|
712
|
+
} else {
|
713
|
+
/* Exit with the strong Wolfe condition. */
|
714
|
+
return count;
|
715
|
+
}
|
716
|
+
}
|
717
|
+
}
|
718
|
+
|
719
|
+
if (*stp < param->min_step) {
|
720
|
+
/* The step is the minimum value. */
|
721
|
+
return LBFGSERR_MINIMUMSTEP;
|
722
|
+
}
|
723
|
+
if (*stp > param->max_step) {
|
724
|
+
/* The step is the maximum value. */
|
725
|
+
return LBFGSERR_MAXIMUMSTEP;
|
726
|
+
}
|
727
|
+
if (param->max_linesearch <= count) {
|
728
|
+
/* Maximum number of iteration. */
|
729
|
+
return LBFGSERR_MAXIMUMLINESEARCH;
|
730
|
+
}
|
731
|
+
|
732
|
+
(*stp) *= width;
|
733
|
+
}
|
734
|
+
}
|
735
|
+
|
736
|
+
|
737
|
+
|
738
|
+
static int line_search_backtracking_owlqn(
|
739
|
+
int n,
|
740
|
+
lbfgsfloatval_t *x,
|
741
|
+
lbfgsfloatval_t *f,
|
742
|
+
lbfgsfloatval_t *g,
|
743
|
+
lbfgsfloatval_t *s,
|
744
|
+
lbfgsfloatval_t *stp,
|
745
|
+
const lbfgsfloatval_t* xp,
|
746
|
+
const lbfgsfloatval_t* gp,
|
747
|
+
lbfgsfloatval_t *wp,
|
748
|
+
callback_data_t *cd,
|
749
|
+
const lbfgs_parameter_t *param
|
750
|
+
)
|
751
|
+
{
|
752
|
+
int i, count = 0;
|
753
|
+
lbfgsfloatval_t width = 0.5, norm = 0.;
|
754
|
+
lbfgsfloatval_t finit = *f, dgtest;
|
755
|
+
|
756
|
+
/* Check the input parameters for errors. */
|
757
|
+
if (*stp <= 0.) {
|
758
|
+
return LBFGSERR_INVALIDPARAMETERS;
|
759
|
+
}
|
760
|
+
|
761
|
+
/* Choose the orthant for the new point. */
|
762
|
+
for (i = 0;i < n;++i) {
|
763
|
+
wp[i] = (xp[i] == 0.) ? -gp[i] : xp[i];
|
764
|
+
}
|
765
|
+
|
766
|
+
for (;;) {
|
767
|
+
/* Update the current point. */
|
768
|
+
veccpy(x, xp, n);
|
769
|
+
vecadd(x, s, *stp, n);
|
770
|
+
|
771
|
+
/* The current point is projected onto the orthant. */
|
772
|
+
owlqn_project(x, wp, param->orthantwise_start, param->orthantwise_end);
|
773
|
+
|
774
|
+
/* Evaluate the function and gradient values. */
|
775
|
+
*f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
|
776
|
+
|
777
|
+
/* Compute the L1 norm of the variables and add it to the object value. */
|
778
|
+
norm = owlqn_x1norm(x, param->orthantwise_start, param->orthantwise_end);
|
779
|
+
*f += norm * param->orthantwise_c;
|
780
|
+
|
781
|
+
++count;
|
782
|
+
|
783
|
+
dgtest = 0.;
|
784
|
+
for (i = 0;i < n;++i) {
|
785
|
+
dgtest += (x[i] - xp[i]) * gp[i];
|
786
|
+
}
|
787
|
+
|
788
|
+
if (*f <= finit + param->ftol * dgtest) {
|
789
|
+
/* The sufficient decrease condition. */
|
790
|
+
return count;
|
791
|
+
}
|
792
|
+
|
793
|
+
if (*stp < param->min_step) {
|
794
|
+
/* The step is the minimum value. */
|
795
|
+
return LBFGSERR_MINIMUMSTEP;
|
796
|
+
}
|
797
|
+
if (*stp > param->max_step) {
|
798
|
+
/* The step is the maximum value. */
|
799
|
+
return LBFGSERR_MAXIMUMSTEP;
|
800
|
+
}
|
801
|
+
if (param->max_linesearch <= count) {
|
802
|
+
/* Maximum number of iteration. */
|
803
|
+
return LBFGSERR_MAXIMUMLINESEARCH;
|
804
|
+
}
|
805
|
+
|
806
|
+
(*stp) *= width;
|
807
|
+
}
|
808
|
+
}
|
809
|
+
|
810
|
+
|
811
|
+
|
812
|
+
static int line_search_morethuente(
|
813
|
+
int n,
|
814
|
+
lbfgsfloatval_t *x,
|
815
|
+
lbfgsfloatval_t *f,
|
816
|
+
lbfgsfloatval_t *g,
|
817
|
+
lbfgsfloatval_t *s,
|
818
|
+
lbfgsfloatval_t *stp,
|
819
|
+
const lbfgsfloatval_t* xp,
|
820
|
+
const lbfgsfloatval_t* gp,
|
821
|
+
lbfgsfloatval_t *wa,
|
822
|
+
callback_data_t *cd,
|
823
|
+
const lbfgs_parameter_t *param
|
824
|
+
)
|
825
|
+
{
|
826
|
+
int count = 0;
|
827
|
+
int brackt, stage1, uinfo = 0;
|
828
|
+
lbfgsfloatval_t dg;
|
829
|
+
lbfgsfloatval_t stx, fx, dgx;
|
830
|
+
lbfgsfloatval_t sty, fy, dgy;
|
831
|
+
lbfgsfloatval_t fxm, dgxm, fym, dgym, fm, dgm;
|
832
|
+
lbfgsfloatval_t finit, ftest1, dginit, dgtest;
|
833
|
+
lbfgsfloatval_t width, prev_width;
|
834
|
+
lbfgsfloatval_t stmin, stmax;
|
835
|
+
|
836
|
+
/* Check the input parameters for errors. */
|
837
|
+
if (*stp <= 0.) {
|
838
|
+
return LBFGSERR_INVALIDPARAMETERS;
|
839
|
+
}
|
840
|
+
|
841
|
+
/* Compute the initial gradient in the search direction. */
|
842
|
+
vecdot(&dginit, g, s, n);
|
843
|
+
|
844
|
+
/* Make sure that s points to a descent direction. */
|
845
|
+
if (0 < dginit) {
|
846
|
+
return LBFGSERR_INCREASEGRADIENT;
|
847
|
+
}
|
848
|
+
|
849
|
+
/* Initialize local variables. */
|
850
|
+
brackt = 0;
|
851
|
+
stage1 = 1;
|
852
|
+
finit = *f;
|
853
|
+
dgtest = param->ftol * dginit;
|
854
|
+
width = param->max_step - param->min_step;
|
855
|
+
prev_width = 2.0 * width;
|
856
|
+
|
857
|
+
/*
|
858
|
+
The variables stx, fx, dgx contain the values of the step,
|
859
|
+
function, and directional derivative at the best step.
|
860
|
+
The variables sty, fy, dgy contain the value of the step,
|
861
|
+
function, and derivative at the other endpoint of
|
862
|
+
the interval of uncertainty.
|
863
|
+
The variables stp, f, dg contain the values of the step,
|
864
|
+
function, and derivative at the current step.
|
865
|
+
*/
|
866
|
+
stx = sty = 0.;
|
867
|
+
fx = fy = finit;
|
868
|
+
dgx = dgy = dginit;
|
869
|
+
|
870
|
+
for (;;) {
|
871
|
+
/*
|
872
|
+
Set the minimum and maximum steps to correspond to the
|
873
|
+
present interval of uncertainty.
|
874
|
+
*/
|
875
|
+
if (brackt) {
|
876
|
+
stmin = min2(stx, sty);
|
877
|
+
stmax = max2(stx, sty);
|
878
|
+
} else {
|
879
|
+
stmin = stx;
|
880
|
+
stmax = *stp + 4.0 * (*stp - stx);
|
881
|
+
}
|
882
|
+
|
883
|
+
/* Clip the step in the range of [stpmin, stpmax]. */
|
884
|
+
if (*stp < param->min_step) *stp = param->min_step;
|
885
|
+
if (param->max_step < *stp) *stp = param->max_step;
|
886
|
+
|
887
|
+
/*
|
888
|
+
If an unusual termination is to occur then let
|
889
|
+
stp be the lowest point obtained so far.
|
890
|
+
*/
|
891
|
+
if ((brackt && ((*stp <= stmin || stmax <= *stp) || param->max_linesearch <= count + 1 || uinfo != 0)) || (brackt && (stmax - stmin <= param->xtol * stmax))) {
|
892
|
+
*stp = stx;
|
893
|
+
}
|
894
|
+
|
895
|
+
/*
|
896
|
+
Compute the current value of x:
|
897
|
+
x <- x + (*stp) * s.
|
898
|
+
*/
|
899
|
+
veccpy(x, xp, n);
|
900
|
+
vecadd(x, s, *stp, n);
|
901
|
+
|
902
|
+
/* Evaluate the function and gradient values. */
|
903
|
+
*f = cd->proc_evaluate(cd->instance, x, g, cd->n, *stp);
|
904
|
+
vecdot(&dg, g, s, n);
|
905
|
+
|
906
|
+
ftest1 = finit + *stp * dgtest;
|
907
|
+
++count;
|
908
|
+
|
909
|
+
/* Test for errors and convergence. */
|
910
|
+
if (brackt && ((*stp <= stmin || stmax <= *stp) || uinfo != 0)) {
|
911
|
+
/* Rounding errors prevent further progress. */
|
912
|
+
return LBFGSERR_ROUNDING_ERROR;
|
913
|
+
}
|
914
|
+
if (*stp == param->max_step && *f <= ftest1 && dg <= dgtest) {
|
915
|
+
/* The step is the maximum value. */
|
916
|
+
return LBFGSERR_MAXIMUMSTEP;
|
917
|
+
}
|
918
|
+
if (*stp == param->min_step && (ftest1 < *f || dgtest <= dg)) {
|
919
|
+
/* The step is the minimum value. */
|
920
|
+
return LBFGSERR_MINIMUMSTEP;
|
921
|
+
}
|
922
|
+
if (brackt && (stmax - stmin) <= param->xtol * stmax) {
|
923
|
+
/* Relative width of the interval of uncertainty is at most xtol. */
|
924
|
+
return LBFGSERR_WIDTHTOOSMALL;
|
925
|
+
}
|
926
|
+
if (param->max_linesearch <= count) {
|
927
|
+
/* Maximum number of iteration. */
|
928
|
+
return LBFGSERR_MAXIMUMLINESEARCH;
|
929
|
+
}
|
930
|
+
if (*f <= ftest1 && fabs(dg) <= param->gtol * (-dginit)) {
|
931
|
+
/* The sufficient decrease condition and the directional derivative condition hold. */
|
932
|
+
return count;
|
933
|
+
}
|
934
|
+
|
935
|
+
/*
|
936
|
+
In the first stage we seek a step for which the modified
|
937
|
+
function has a nonpositive value and nonnegative derivative.
|
938
|
+
*/
|
939
|
+
if (stage1 && *f <= ftest1 && min2(param->ftol, param->gtol) * dginit <= dg) {
|
940
|
+
stage1 = 0;
|
941
|
+
}
|
942
|
+
|
943
|
+
/*
|
944
|
+
A modified function is used to predict the step only if
|
945
|
+
we have not obtained a step for which the modified
|
946
|
+
function has a nonpositive function value and nonnegative
|
947
|
+
derivative, and if a lower function value has been
|
948
|
+
obtained but the decrease is not sufficient.
|
949
|
+
*/
|
950
|
+
if (stage1 && ftest1 < *f && *f <= fx) {
|
951
|
+
/* Define the modified function and derivative values. */
|
952
|
+
fm = *f - *stp * dgtest;
|
953
|
+
fxm = fx - stx * dgtest;
|
954
|
+
fym = fy - sty * dgtest;
|
955
|
+
dgm = dg - dgtest;
|
956
|
+
dgxm = dgx - dgtest;
|
957
|
+
dgym = dgy - dgtest;
|
958
|
+
|
959
|
+
/*
|
960
|
+
Call update_trial_interval() to update the interval of
|
961
|
+
uncertainty and to compute the new step.
|
962
|
+
*/
|
963
|
+
uinfo = update_trial_interval(
|
964
|
+
&stx, &fxm, &dgxm,
|
965
|
+
&sty, &fym, &dgym,
|
966
|
+
stp, &fm, &dgm,
|
967
|
+
stmin, stmax, &brackt
|
968
|
+
);
|
969
|
+
|
970
|
+
/* Reset the function and gradient values for f. */
|
971
|
+
fx = fxm + stx * dgtest;
|
972
|
+
fy = fym + sty * dgtest;
|
973
|
+
dgx = dgxm + dgtest;
|
974
|
+
dgy = dgym + dgtest;
|
975
|
+
} else {
|
976
|
+
/*
|
977
|
+
Call update_trial_interval() to update the interval of
|
978
|
+
uncertainty and to compute the new step.
|
979
|
+
*/
|
980
|
+
uinfo = update_trial_interval(
|
981
|
+
&stx, &fx, &dgx,
|
982
|
+
&sty, &fy, &dgy,
|
983
|
+
stp, f, &dg,
|
984
|
+
stmin, stmax, &brackt
|
985
|
+
);
|
986
|
+
}
|
987
|
+
|
988
|
+
/*
|
989
|
+
Force a sufficient decrease in the interval of uncertainty.
|
990
|
+
*/
|
991
|
+
if (brackt) {
|
992
|
+
if (0.66 * prev_width <= fabs(sty - stx)) {
|
993
|
+
*stp = stx + 0.5 * (sty - stx);
|
994
|
+
}
|
995
|
+
prev_width = width;
|
996
|
+
width = fabs(sty - stx);
|
997
|
+
}
|
998
|
+
}
|
999
|
+
|
1000
|
+
return LBFGSERR_LOGICERROR;
|
1001
|
+
}
|
1002
|
+
|
1003
|
+
|
1004
|
+
|
1005
|
+
/**
|
1006
|
+
* Define the local variables for computing minimizers.
|
1007
|
+
*/
|
1008
|
+
#define USES_MINIMIZER \
|
1009
|
+
lbfgsfloatval_t a, d, gamma, theta, p, q, r, s;
|
1010
|
+
|
1011
|
+
/**
|
1012
|
+
* Find a minimizer of an interpolated cubic function.
|
1013
|
+
* @param cm The minimizer of the interpolated cubic.
|
1014
|
+
* @param u The value of one point, u.
|
1015
|
+
* @param fu The value of f(u).
|
1016
|
+
* @param du The value of f'(u).
|
1017
|
+
* @param v The value of another point, v.
|
1018
|
+
* @param fv The value of f(v).
|
1019
|
+
* @param du The value of f'(v).
|
1020
|
+
*/
|
1021
|
+
#define CUBIC_MINIMIZER(cm, u, fu, du, v, fv, dv) \
|
1022
|
+
d = (v) - (u); \
|
1023
|
+
theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
|
1024
|
+
p = fabs(theta); \
|
1025
|
+
q = fabs(du); \
|
1026
|
+
r = fabs(dv); \
|
1027
|
+
s = max3(p, q, r); \
|
1028
|
+
/* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
|
1029
|
+
a = theta / s; \
|
1030
|
+
gamma = s * sqrt(a * a - ((du) / s) * ((dv) / s)); \
|
1031
|
+
if ((v) < (u)) gamma = -gamma; \
|
1032
|
+
p = gamma - (du) + theta; \
|
1033
|
+
q = gamma - (du) + gamma + (dv); \
|
1034
|
+
r = p / q; \
|
1035
|
+
(cm) = (u) + r * d;
|
1036
|
+
|
1037
|
+
/**
|
1038
|
+
* Find a minimizer of an interpolated cubic function.
|
1039
|
+
* @param cm The minimizer of the interpolated cubic.
|
1040
|
+
* @param u The value of one point, u.
|
1041
|
+
* @param fu The value of f(u).
|
1042
|
+
* @param du The value of f'(u).
|
1043
|
+
* @param v The value of another point, v.
|
1044
|
+
* @param fv The value of f(v).
|
1045
|
+
* @param du The value of f'(v).
|
1046
|
+
* @param xmin The maximum value.
|
1047
|
+
* @param xmin The minimum value.
|
1048
|
+
*/
|
1049
|
+
#define CUBIC_MINIMIZER2(cm, u, fu, du, v, fv, dv, xmin, xmax) \
|
1050
|
+
d = (v) - (u); \
|
1051
|
+
theta = ((fu) - (fv)) * 3 / d + (du) + (dv); \
|
1052
|
+
p = fabs(theta); \
|
1053
|
+
q = fabs(du); \
|
1054
|
+
r = fabs(dv); \
|
1055
|
+
s = max3(p, q, r); \
|
1056
|
+
/* gamma = s*sqrt((theta/s)**2 - (du/s) * (dv/s)) */ \
|
1057
|
+
a = theta / s; \
|
1058
|
+
gamma = s * sqrt(max2(0, a * a - ((du) / s) * ((dv) / s))); \
|
1059
|
+
if ((u) < (v)) gamma = -gamma; \
|
1060
|
+
p = gamma - (dv) + theta; \
|
1061
|
+
q = gamma - (dv) + gamma + (du); \
|
1062
|
+
r = p / q; \
|
1063
|
+
if (r < 0. && gamma != 0.) { \
|
1064
|
+
(cm) = (v) - r * d; \
|
1065
|
+
} else if (a < 0) { \
|
1066
|
+
(cm) = (xmax); \
|
1067
|
+
} else { \
|
1068
|
+
(cm) = (xmin); \
|
1069
|
+
}
|
1070
|
+
|
1071
|
+
/**
|
1072
|
+
* Find a minimizer of an interpolated quadratic function.
|
1073
|
+
* @param qm The minimizer of the interpolated quadratic.
|
1074
|
+
* @param u The value of one point, u.
|
1075
|
+
* @param fu The value of f(u).
|
1076
|
+
* @param du The value of f'(u).
|
1077
|
+
* @param v The value of another point, v.
|
1078
|
+
* @param fv The value of f(v).
|
1079
|
+
*/
|
1080
|
+
#define QUARD_MINIMIZER(qm, u, fu, du, v, fv) \
|
1081
|
+
a = (v) - (u); \
|
1082
|
+
(qm) = (u) + (du) / (((fu) - (fv)) / a + (du)) / 2 * a;
|
1083
|
+
|
1084
|
+
/**
|
1085
|
+
* Find a minimizer of an interpolated quadratic function.
|
1086
|
+
* @param qm The minimizer of the interpolated quadratic.
|
1087
|
+
* @param u The value of one point, u.
|
1088
|
+
* @param du The value of f'(u).
|
1089
|
+
* @param v The value of another point, v.
|
1090
|
+
* @param dv The value of f'(v).
|
1091
|
+
*/
|
1092
|
+
#define QUARD_MINIMIZER2(qm, u, du, v, dv) \
|
1093
|
+
a = (u) - (v); \
|
1094
|
+
(qm) = (v) + (dv) / ((dv) - (du)) * a;
|
1095
|
+
|
1096
|
+
/**
|
1097
|
+
* Update a safeguarded trial value and interval for line search.
|
1098
|
+
*
|
1099
|
+
* The parameter x represents the step with the least function value.
|
1100
|
+
* The parameter t represents the current step. This function assumes
|
1101
|
+
* that the derivative at the point of x in the direction of the step.
|
1102
|
+
* If the bracket is set to true, the minimizer has been bracketed in
|
1103
|
+
* an interval of uncertainty with endpoints between x and y.
|
1104
|
+
*
|
1105
|
+
* @param x The pointer to the value of one endpoint.
|
1106
|
+
* @param fx The pointer to the value of f(x).
|
1107
|
+
* @param dx The pointer to the value of f'(x).
|
1108
|
+
* @param y The pointer to the value of another endpoint.
|
1109
|
+
* @param fy The pointer to the value of f(y).
|
1110
|
+
* @param dy The pointer to the value of f'(y).
|
1111
|
+
* @param t The pointer to the value of the trial value, t.
|
1112
|
+
* @param ft The pointer to the value of f(t).
|
1113
|
+
* @param dt The pointer to the value of f'(t).
|
1114
|
+
* @param tmin The minimum value for the trial value, t.
|
1115
|
+
* @param tmax The maximum value for the trial value, t.
|
1116
|
+
* @param brackt The pointer to the predicate if the trial value is
|
1117
|
+
* bracketed.
|
1118
|
+
* @retval int Status value. Zero indicates a normal termination.
|
1119
|
+
*
|
1120
|
+
* @see
|
1121
|
+
* Jorge J. More and David J. Thuente. Line search algorithm with
|
1122
|
+
* guaranteed sufficient decrease. ACM Transactions on Mathematical
|
1123
|
+
* Software (TOMS), Vol 20, No 3, pp. 286-307, 1994.
|
1124
|
+
*/
|
1125
|
+
static int update_trial_interval(
|
1126
|
+
lbfgsfloatval_t *x,
|
1127
|
+
lbfgsfloatval_t *fx,
|
1128
|
+
lbfgsfloatval_t *dx,
|
1129
|
+
lbfgsfloatval_t *y,
|
1130
|
+
lbfgsfloatval_t *fy,
|
1131
|
+
lbfgsfloatval_t *dy,
|
1132
|
+
lbfgsfloatval_t *t,
|
1133
|
+
lbfgsfloatval_t *ft,
|
1134
|
+
lbfgsfloatval_t *dt,
|
1135
|
+
const lbfgsfloatval_t tmin,
|
1136
|
+
const lbfgsfloatval_t tmax,
|
1137
|
+
int *brackt
|
1138
|
+
)
|
1139
|
+
{
|
1140
|
+
int bound;
|
1141
|
+
int dsign = fsigndiff(dt, dx);
|
1142
|
+
lbfgsfloatval_t mc; /* minimizer of an interpolated cubic. */
|
1143
|
+
lbfgsfloatval_t mq; /* minimizer of an interpolated quadratic. */
|
1144
|
+
lbfgsfloatval_t newt; /* new trial value. */
|
1145
|
+
USES_MINIMIZER; /* for CUBIC_MINIMIZER and QUARD_MINIMIZER. */
|
1146
|
+
|
1147
|
+
/* Check the input parameters for errors. */
|
1148
|
+
if (*brackt) {
|
1149
|
+
if (*t <= min2(*x, *y) || max2(*x, *y) <= *t) {
|
1150
|
+
/* The trival value t is out of the interval. */
|
1151
|
+
return LBFGSERR_OUTOFINTERVAL;
|
1152
|
+
}
|
1153
|
+
if (0. <= *dx * (*t - *x)) {
|
1154
|
+
/* The function must decrease from x. */
|
1155
|
+
return LBFGSERR_INCREASEGRADIENT;
|
1156
|
+
}
|
1157
|
+
if (tmax < tmin) {
|
1158
|
+
/* Incorrect tmin and tmax specified. */
|
1159
|
+
return LBFGSERR_INCORRECT_TMINMAX;
|
1160
|
+
}
|
1161
|
+
}
|
1162
|
+
|
1163
|
+
/*
|
1164
|
+
Trial value selection.
|
1165
|
+
*/
|
1166
|
+
if (*fx < *ft) {
|
1167
|
+
/*
|
1168
|
+
Case 1: a higher function value.
|
1169
|
+
The minimum is brackt. If the cubic minimizer is closer
|
1170
|
+
to x than the quadratic one, the cubic one is taken, else
|
1171
|
+
the average of the minimizers is taken.
|
1172
|
+
*/
|
1173
|
+
*brackt = 1;
|
1174
|
+
bound = 1;
|
1175
|
+
CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
|
1176
|
+
QUARD_MINIMIZER(mq, *x, *fx, *dx, *t, *ft);
|
1177
|
+
if (fabs(mc - *x) < fabs(mq - *x)) {
|
1178
|
+
newt = mc;
|
1179
|
+
} else {
|
1180
|
+
newt = mc + 0.5 * (mq - mc);
|
1181
|
+
}
|
1182
|
+
} else if (dsign) {
|
1183
|
+
/*
|
1184
|
+
Case 2: a lower function value and derivatives of
|
1185
|
+
opposite sign. The minimum is brackt. If the cubic
|
1186
|
+
minimizer is closer to x than the quadratic (secant) one,
|
1187
|
+
the cubic one is taken, else the quadratic one is taken.
|
1188
|
+
*/
|
1189
|
+
*brackt = 1;
|
1190
|
+
bound = 0;
|
1191
|
+
CUBIC_MINIMIZER(mc, *x, *fx, *dx, *t, *ft, *dt);
|
1192
|
+
QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
|
1193
|
+
if (fabs(mc - *t) > fabs(mq - *t)) {
|
1194
|
+
newt = mc;
|
1195
|
+
} else {
|
1196
|
+
newt = mq;
|
1197
|
+
}
|
1198
|
+
} else if (fabs(*dt) < fabs(*dx)) {
|
1199
|
+
/*
|
1200
|
+
Case 3: a lower function value, derivatives of the
|
1201
|
+
same sign, and the magnitude of the derivative decreases.
|
1202
|
+
The cubic minimizer is only used if the cubic tends to
|
1203
|
+
infinity in the direction of the minimizer or if the minimum
|
1204
|
+
of the cubic is beyond t. Otherwise the cubic minimizer is
|
1205
|
+
defined to be either tmin or tmax. The quadratic (secant)
|
1206
|
+
minimizer is also computed and if the minimum is brackt
|
1207
|
+
then the the minimizer closest to x is taken, else the one
|
1208
|
+
farthest away is taken.
|
1209
|
+
*/
|
1210
|
+
bound = 1;
|
1211
|
+
CUBIC_MINIMIZER2(mc, *x, *fx, *dx, *t, *ft, *dt, tmin, tmax);
|
1212
|
+
QUARD_MINIMIZER2(mq, *x, *dx, *t, *dt);
|
1213
|
+
if (*brackt) {
|
1214
|
+
if (fabs(*t - mc) < fabs(*t - mq)) {
|
1215
|
+
newt = mc;
|
1216
|
+
} else {
|
1217
|
+
newt = mq;
|
1218
|
+
}
|
1219
|
+
} else {
|
1220
|
+
if (fabs(*t - mc) > fabs(*t - mq)) {
|
1221
|
+
newt = mc;
|
1222
|
+
} else {
|
1223
|
+
newt = mq;
|
1224
|
+
}
|
1225
|
+
}
|
1226
|
+
} else {
|
1227
|
+
/*
|
1228
|
+
Case 4: a lower function value, derivatives of the
|
1229
|
+
same sign, and the magnitude of the derivative does
|
1230
|
+
not decrease. If the minimum is not brackt, the step
|
1231
|
+
is either tmin or tmax, else the cubic minimizer is taken.
|
1232
|
+
*/
|
1233
|
+
bound = 0;
|
1234
|
+
if (*brackt) {
|
1235
|
+
CUBIC_MINIMIZER(newt, *t, *ft, *dt, *y, *fy, *dy);
|
1236
|
+
} else if (*x < *t) {
|
1237
|
+
newt = tmax;
|
1238
|
+
} else {
|
1239
|
+
newt = tmin;
|
1240
|
+
}
|
1241
|
+
}
|
1242
|
+
|
1243
|
+
/*
|
1244
|
+
Update the interval of uncertainty. This update does not
|
1245
|
+
depend on the new step or the case analysis above.
|
1246
|
+
|
1247
|
+
- Case a: if f(x) < f(t),
|
1248
|
+
x <- x, y <- t.
|
1249
|
+
- Case b: if f(t) <= f(x) && f'(t)*f'(x) > 0,
|
1250
|
+
x <- t, y <- y.
|
1251
|
+
- Case c: if f(t) <= f(x) && f'(t)*f'(x) < 0,
|
1252
|
+
x <- t, y <- x.
|
1253
|
+
*/
|
1254
|
+
if (*fx < *ft) {
|
1255
|
+
/* Case a */
|
1256
|
+
*y = *t;
|
1257
|
+
*fy = *ft;
|
1258
|
+
*dy = *dt;
|
1259
|
+
} else {
|
1260
|
+
/* Case c */
|
1261
|
+
if (dsign) {
|
1262
|
+
*y = *x;
|
1263
|
+
*fy = *fx;
|
1264
|
+
*dy = *dx;
|
1265
|
+
}
|
1266
|
+
/* Cases b and c */
|
1267
|
+
*x = *t;
|
1268
|
+
*fx = *ft;
|
1269
|
+
*dx = *dt;
|
1270
|
+
}
|
1271
|
+
|
1272
|
+
/* Clip the new trial value in [tmin, tmax]. */
|
1273
|
+
if (tmax < newt) newt = tmax;
|
1274
|
+
if (newt < tmin) newt = tmin;
|
1275
|
+
|
1276
|
+
/*
|
1277
|
+
Redefine the new trial value if it is close to the upper bound
|
1278
|
+
of the interval.
|
1279
|
+
*/
|
1280
|
+
if (*brackt && bound) {
|
1281
|
+
mq = *x + 0.66 * (*y - *x);
|
1282
|
+
if (*x < *y) {
|
1283
|
+
if (mq < newt) newt = mq;
|
1284
|
+
} else {
|
1285
|
+
if (newt < mq) newt = mq;
|
1286
|
+
}
|
1287
|
+
}
|
1288
|
+
|
1289
|
+
/* Return the new trial value. */
|
1290
|
+
*t = newt;
|
1291
|
+
return 0;
|
1292
|
+
}
|
1293
|
+
|
1294
|
+
|
1295
|
+
|
1296
|
+
|
1297
|
+
|
1298
|
+
static lbfgsfloatval_t owlqn_x1norm(
|
1299
|
+
const lbfgsfloatval_t* x,
|
1300
|
+
const int start,
|
1301
|
+
const int n
|
1302
|
+
)
|
1303
|
+
{
|
1304
|
+
int i;
|
1305
|
+
lbfgsfloatval_t norm = 0.;
|
1306
|
+
|
1307
|
+
for (i = start;i < n;++i) {
|
1308
|
+
norm += fabs(x[i]);
|
1309
|
+
}
|
1310
|
+
|
1311
|
+
return norm;
|
1312
|
+
}
|
1313
|
+
|
1314
|
+
static void owlqn_pseudo_gradient(
|
1315
|
+
lbfgsfloatval_t* pg,
|
1316
|
+
const lbfgsfloatval_t* x,
|
1317
|
+
const lbfgsfloatval_t* g,
|
1318
|
+
const int n,
|
1319
|
+
const lbfgsfloatval_t c,
|
1320
|
+
const int start,
|
1321
|
+
const int end
|
1322
|
+
)
|
1323
|
+
{
|
1324
|
+
int i;
|
1325
|
+
|
1326
|
+
/* Compute the negative of gradients. */
|
1327
|
+
for (i = 0;i < start;++i) {
|
1328
|
+
pg[i] = g[i];
|
1329
|
+
}
|
1330
|
+
|
1331
|
+
/* Compute the psuedo-gradients. */
|
1332
|
+
for (i = start;i < end;++i) {
|
1333
|
+
if (x[i] < 0.) {
|
1334
|
+
/* Differentiable. */
|
1335
|
+
pg[i] = g[i] - c;
|
1336
|
+
} else if (0. < x[i]) {
|
1337
|
+
/* Differentiable. */
|
1338
|
+
pg[i] = g[i] + c;
|
1339
|
+
} else {
|
1340
|
+
if (g[i] < -c) {
|
1341
|
+
/* Take the right partial derivative. */
|
1342
|
+
pg[i] = g[i] + c;
|
1343
|
+
} else if (c < g[i]) {
|
1344
|
+
/* Take the left partial derivative. */
|
1345
|
+
pg[i] = g[i] - c;
|
1346
|
+
} else {
|
1347
|
+
pg[i] = 0.;
|
1348
|
+
}
|
1349
|
+
}
|
1350
|
+
}
|
1351
|
+
|
1352
|
+
for (i = end;i < n;++i) {
|
1353
|
+
pg[i] = g[i];
|
1354
|
+
}
|
1355
|
+
}
|
1356
|
+
|
1357
|
+
static void owlqn_project(
|
1358
|
+
lbfgsfloatval_t* d,
|
1359
|
+
const lbfgsfloatval_t* sign,
|
1360
|
+
const int start,
|
1361
|
+
const int end
|
1362
|
+
)
|
1363
|
+
{
|
1364
|
+
int i;
|
1365
|
+
|
1366
|
+
for (i = start;i < end;++i) {
|
1367
|
+
if (d[i] * sign[i] <= 0) {
|
1368
|
+
d[i] = 0;
|
1369
|
+
}
|
1370
|
+
}
|
1371
|
+
}
|